HIGH-SPEED 3.3V 16/8K X 9 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM

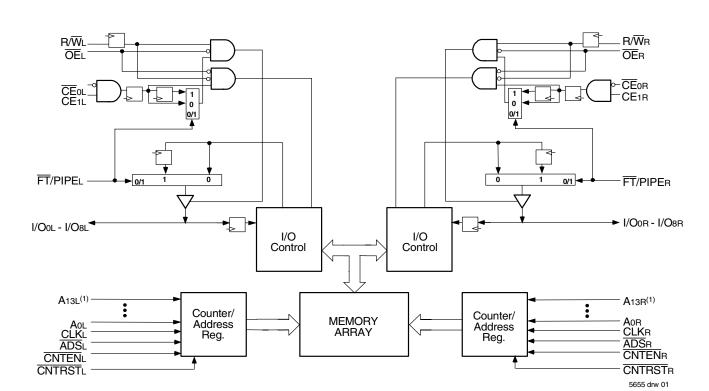
Features:

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed clock to data access
 Commercial: 6.5/7.5/9ns (max.)
 - Commercial: 0.57.5/905 (– Industrial: 7.5ns (max.)
- Industrial: 7.5ns (max
 Low-power operation
 - IDT70V916/59L/59L Active: 450mW (typ.)
 - Standby: 1.5mW (typ.)
- Flow-Through or Pipelined output mode on either port via the FT/PIPE pins
- * Counter enable and reset features
- Dual chip enables allow for depth expansion without additional logic
- 10ns cycle time, 100MHz operation in Pipelined output mode
 Separate upper-byte and lower-byte controls for multiplexed bus and bus matching compatibility

address inputs

- LVTTL- compatible, single 3.3V (±0.3V) power supply
- Industrial temperature range (-40°C to +85°C) is available for 83 MHz

Full synchronous operation on both ports


Data input, address, and control registers

Self-timed write allows fast cycle time

 Available in a 100-pin Thin Quad Flatpack (TQFP) and 100pin fine pitch Ball Grid Array (fpBGA) packages.

- 3.5ns setup to clock and 0ns hold on all control, data, and

- Fast 6.5ns clock to data out in the Pipelined output mode

NOTE:

1. A13 is a NC for IDT70V9159.

JUNE 2015

DSC-5655/4

Functional Block Diagram

IDT70V9169/59L

High-Speed 3.3V 16/8K x 9 Dual-Port Synchronous Pipelined Static RAM

Description:

The IDT70V9169/59 is a high-speed 16/8K x 9 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V9169/59 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by \overline{CE}_0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 450mW of power.

Index Π 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 100 99 98 97 96 95 NC ^C □ NC NC C 2 74 ⊐ NC A7R A7L □ 3 73 A8R 4 A8L 72 ⊐ A9R A9L C 5 71 □ A10R A10L C 6 70 [⊐] A11R 7 A11L C 69 ⊐ **A**12R 8 68 A12L A13R⁽¹⁾ A13L⁽¹⁾ □ 9 67 70V9169/59PF ⊐ NC NC ⊏ 10 PN100⁽⁵⁾ 66 11 [⊐] NC 65 NC 12 NC 64 100-Pin TQFP VDD 🗖 113 63 ⊐ Vss Top View⁽⁶⁾ NC □ 14 62 [⊐] NC 115 61 □ NC 116 60 NC 117 59 NC □ CEOR 58 18 57 CE1L □ CE1R 19 56 []] CNTRSTR R/₩L □ □ R/WR 55 21 OEL C 22 54 []] FT/PIPER 53 FT/PIPEL C 23 ⊐ Vss 52 NC 24 ^DNC NC □ 51 25 47 48 /O1R□ /OOR /O3Rc Ó7RC 5655 drw 02 , O G R I Vbb t Vss I /O2RI VDD [/04r /O5R /07L /06L /O3L /O5L /04L g Ş Vss

Pin Configurations^(1,2,3,4)

- 1. A13 is a NC for IDT70V9159
- 2. All VDD pins must be connected to power supply.
- 3. All Vss pins must be connected to ground supply.
- 4. Package body is approximately 14mm x 14mm x 1.4mm.
- 5. This package code is used to reference the package diagram.
- 6. This text does not indicate orientation of the actual part-marking.

Pin Configurations(cont'd)^(1,2,3,4)

70V9169/59PF BF100⁽⁵⁾

100-Pin fpBGA Top View⁽⁶⁾

A1	A2	A3	A4	^{A5}	A6	A7	a8	A9	A10
A 6R	A 9R	A12R	NC	Vss	Vss	NC	R∕₩r	Vss	NC
B1	^{B2}	B3	B4	^{B5}	B6	^{B7} NC	B8	^{B9}	в10
A4R	A 5R	A8R	A10R	NC	NC		OEr	NC	I/O6R
С1	C2	C3	C4	^{C5}	C6	C7	C8	C9	С10
Азк	NC	NC	A 7R	NC	CE0R	CE1R	PL/FTF	I/O7R	I/Озп
D1	D2	D3	D4	D5	D6	D7	d8	d9	D10
Aor	CLKR	A 1R	A 2R	A 11R	A13R ⁽¹⁾	CNTRST _R	I/O8r	I/O5r	I/O1R
E1	e2	E3	E4	e5	E6	e7	e8	e9	e10
Vss	ADSr	CNTEN _R	A1L	ADSl	Vss	I/O4r	I/O2r	I/Oor	Vdd
F1	F2	F3	F4	F5	^{F6}	f7	f8	f9	f10
Vss	CLKL	Aol	A3L	Vdd	Vss	Vdd	I/O2l	I/O1L	I/Ool
G1	G2	G3	G4	G5	G6	G7	G8	^{G9}	G10
CNTEN∟	NC	A5L	A12L	NC	R∕WL	NC	I/O4L	Vss	I/ОзL
H1	H2	нз	H4	H5	H6	^{H7} NC	h8	h9	н10
A2L	A4L	Аэ∟	A 13L ⁽¹⁾	NC	CE1L		I/O7l	I/O6l	I/O5L
J1	J2	J3	J4	J5	^{J6} NC	J7	_{J8}	^{J9}	J10
NC	A7L	A10L	NC	NC		OEL	Vss	Vss	I/O8L
K1	K2	кз	к4	k5	k6	K7	K8	к9	к10
A6L	A8L	А11L	NC	Vdd	Vdd	CEol	CNTRST∟	PL/FTL	NC

5655 drw 03

NOTES:

1. A13 is a NC for IDT70V9159.

2. All V_DD pins must be connected to power supply.

3. All Vss pins must be connected to ground supply.

4. Package body is approximately 10mm x 10mm x 1.4mm with 0.8mm ball pitch.

5. This package code is used to reference the package diagram.

6. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
CEOL, CE1L	\overline{CE} OR, CE1R	Chip Enables
R/WL	R/Wr	Read/Write Enable
ŌĒL	ŌĒr	Output Enable
Aol - A13l ⁽¹⁾	A0r - A13r ⁽¹⁾	Address
1/Ool - 1/O8l	1/O0r - 1/O8r	Data Input/Output
CLKL	CLKR	Clock
ĀDSL	ADSR	Address Strobe
		Counter Enable
CNTRST L	CNTRST R	Counter Reset
FT/PIPEL	FT /PIPER	Flow-Through/Pipeline
V	DD	Power (3.3V)
V	SS	Ground (0V)

NOTE:

5655 tbl 01

1. A13 is a NC for IDT70V9159.

Truth Table I—Read/Write and Enable Control^(1,2,3)

ŌĒ	CLK	ΓE	CE1	R/W	I/O0-8	Mode
Х	\uparrow	Н	Х	Х	High-Z	Deselected—Power Down
Х	\uparrow	Х	L	Х	High-Z	Deselected—Power Down
Х	\uparrow	L	Н	L	DATAIN	Write
L	\uparrow	L	Н	Н	DATAOUT	Read
Н	Х	L	Н	Х	High-Z	Outputs Disabled
						5655 tbl 02

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. \overline{ADS} , \overline{CNTEN} , \overline{CNTRST} = X.

3. $\overline{\text{OE}}$ is an asynchronous input signal.

Industrial and Commercial Temperature Ranges

5655 tbl 03

5655 tbl 05

5655 tbl 07

Truth Table II—Address Counter Control^(1,2)

External Address	Previous Internal Address	Internal Address Used	CLK	ADS	CNTEN	CNTRST	I/O ⁽³⁾	MODE
An	Х	An	Ŷ	L ⁽⁴⁾	Х	Н	Dvo (n)	External Address Used
Х	An	An + 1	Ŷ	Н	L ⁽⁵⁾	Н	Dvo(n+1)	Counter Enabled—Internal Address generation
Х	An + 1	An + 1	Ŷ	Н	Н	Н	Dvo(n+1)	External Address Blocked—Counter disabled (An + 1 reused)
Х	Х	A0	Ŷ	Х	Х	L ⁽⁴⁾	Dvo(0)	Counter Reset to Address 0

NOTES:

2. \overline{CE}_{0} , \overline{LB} , \overline{UB} , and \overline{OE} = VIL; CE1 and R/W = VIH.

3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle.

4. ADS and CNTRST are independent of all other signals including CE0, CE1, UB and LB.

5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CE0, CE1, UB and LB.

Recommended Operating Temperature and Supply Voltage

Grade	Ambient Temperature ⁽¹⁾	GND	Vdd
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 0.3V
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 0.3V
			5655 tbl 04

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0	0	0	V
Vih	Input High Voltage	2.0	_	VDD+0.3V ⁽²⁾	V
VIL	Input Low Voltage	-0.3(1)		0.8	V

NOTES:

1. VIL \geq -1.5V for pulse width less than 10 ns.

2. VTERM must not exceed VDD+0.3V.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Tbias	Temperature Under Bias	-55 to +125	٥°C
Tstg	Storage Temperature	-65 to +150	٥C
Ιουτ	DC Output Current	50	mA
NOTES			5655 tbl 06

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed VDb +0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 0.3V.

Capacitance⁽¹⁾ (TA = +25°C, f = 1.0MHz)

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	9	pF
Cout ⁽³⁾	Output Capacitance	Vout = 3dV	10	pF

NOTES:

1. These parameters are determined by device characterization, but are not production tested.

3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

3. COUT also references CI/O.

^{1. &}quot;H" = VIH, "L" = VIL, "X" = Don't Care.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD= 3.3V ± 0.3V)

			70V91	69/59L	
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
ILI	Input Leakage Current ⁽¹⁾	VDD = 3.6V, VIN = 0V to VDD	_	5	μA
llo	Output Leakage Current	\overline{CE} = VIH or CE1 = VIL, VOUT = 0V to VDD		5	μA
Vol	Output Low Voltage	loL = +4mA	_	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4		V

NOTE:

1. At VDD \leq 2.0V input leakages are undefined.

5655 tbl 08

5655 tbl 09

DC Electrical Characteristics Over the Operating Temperature Supply Voltage Range⁽³⁾ ($V_{DD} = 3.3V \pm 0.3V$)

						69/59L6 I Only		69/59L7 & Ind		69/59L9 I Only	
Symbol	Parameter	Test Condition	Versio	n	Typ. ⁽⁴⁾	Max.	Тур. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Unit
ldd	Dynamic Operating	CEL and CER= VL,	COM'L	L	175	330	155	280	135	230	mA
	Current (Both Ports Active)	Outputs Disabled, f = fMAX ⁽¹⁾	IND	L	_		155	330			
ISB1	Standby Current	CEL = CER = V⊮	COM'L	L	50	80	40	70	30	60	mA
	(Both Ports - TTL Level Inputs)	$f = fMAX^{(1)}$	IND	L		_	40	80			
ISB2	Standby	$\overline{\underline{CE}}$ "A" = VIL and \overline{CE} "B" = VIH ⁽⁵⁾	COM'L	L	115	185	105	170	95	155	mA
	Current (One Port - TTL Level Inputs)	Active Port Outputs Disabled, f=fMAX ⁽¹⁾	IND	L			105	180	_		
ISB3	Full Standby	Both Ports CEL and	COM'L	L	0.5	3.0	0.5	3.0	0.5	3.0	mA
	Current (Both Ports - CMOS Level Inputs)	CER ≥V _{DD} - 0.2V, VIN <u>></u> V _{DD} - 0.2V or VIN <u><</u> 0.2V, f = 0 ⁽²⁾	IND	L		-	0.5	3.0		-	
ISB4	Full Standby	\overline{CE} "A" $\leq 0.2V$ and	COM'L	L	105	175	95	160	85	145	mA
	Current (One Port - CMOS Level Inputs)	$\begin{array}{l} \overline{CE}"B" \geq V_{DD} - 0.2V^{(5)} \\ \overline{VN} \geq V_{DD} - 0.2V \mbox{ or } \\ \overline{VN} \leq 0.2V, \mbox{ Active Port,} \\ Outputs Disabled, \mbox{ f} = fMAX^{(1)} \end{array}$	IND	L			95	175	_		

NOTES:

1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V.

2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.

3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. Icc bc(f=0) = 90mA (Typ).

5. $\overline{CE}x = VIL$ means $\overline{CE}0x = VIL$ and CE1x = VIH

 $\overline{CE}x = VIH$ means $\overline{CE}0X = VIH$ or CE1X = VIL

 $\overline{CEx} \le 0.2V$ means $\overline{CE}_{0x} \le 0.2V$ and $CE_{1x} \ge V_{DD} - 0.2V$

 $\overline{CEx} \ge V_{DD} - 0.2V$ means $\overline{CE}_{0X} \ge V_{DD} - 0.2V$ or $CE_{1X} \le 0.2V$

"X" represents "L" for left port or "R" for right port.

IDT70V9169/59L High-Speed 3.3V 16/8K x 9 Dual-Port Synchronous Pipelined Static RAM

Industrial and Commercial Temperature Ranges

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	2ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1, 2 & 3

5655 tbl 10

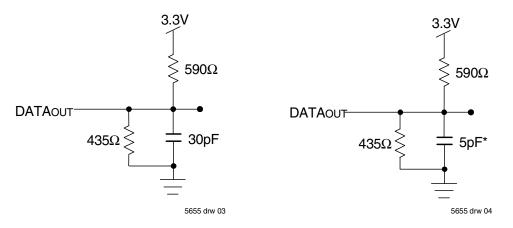
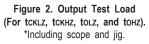
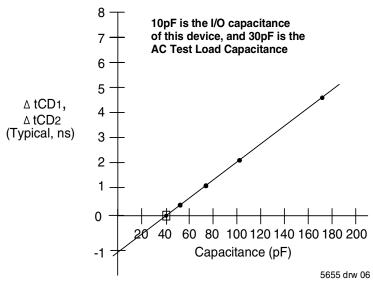
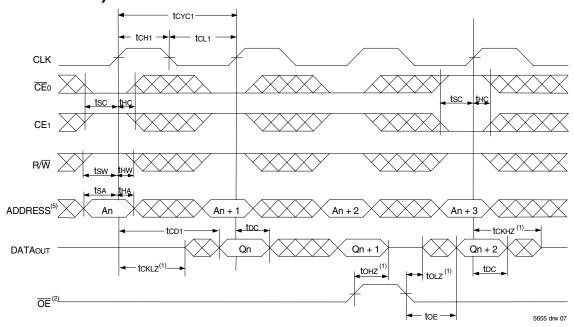




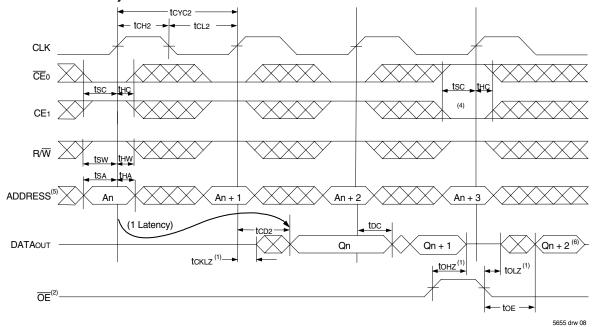
Figure 1. AC Output Test load.

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)⁽³⁾ (V_{DD} = 3.3V ± 0.3V, TA = 0°C to +70°C)

		70V91 Com'	69/59L6 I Only		69/59L7 & Ind	70V9169/59L9 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tCYC1	Clock Cycle Time (Flow-Through) ⁽²⁾	19		22		25		ns
tCYC2	Clock Cycle Time (Pipelined) ⁽²⁾	10		12		15		ns
tCH1	Clock High Time (Flow-Through) ⁽²⁾	6.5		7.5		12		ns
tCL1	Clock Low Time (Flow-Through) ⁽²⁾	6.5		7.5		12		ns
tCH2	Clock High Time (Pipelined) ⁽²⁾	4		5		6		ns
tCL2	Clock Low Time (Pipelined) ⁽²⁾	4		5		6		ns
tR	Clock Rise Time		3		3		3	ns
tr	Clock Fall Time		3		3		3	ns
tsa	Address Setup Time	3.5		4		4		ns
tHA	Address Hold Time	0		0		1		ns
tsc	Chip Enable Setup Time	3.5		4		4		ns
tHC	Chip Enable Hold Time	0		0		1		ns
tsв	Byte Enable Setup Time	3.5		4		4		ns
tнв	Byte Enable Hold Time	0		0		1		ns
tsw	R/W Setup Time	3.5		4		4		ns
tHW	R/W Hold Time	0		0		1		ns
tsp	Input Data Setup Time	3.5		4		4		ns
tHD	Input Data Hold Time	0		0		1		ns
tsad	ADS Setup Time	3.5		4		4		ns
thad	ADS Hold Time	0		0		1		ns
tSCN	CNTEN Setup Time	3.5		4		4		ns
tHCN	CNTEN Hold Time	0		0		1		ns
tSRST	CNTRST Setup Time	3.5		4		4		ns
tHRST	CNTRST Hold Time	0		0		1		ns
tOE	Output Enable to Data Valid		6.5		7.5		9	ns
toLz	Output Enable to Output Low-Z ⁽¹⁾	2		2		2		ns
tонz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tCD1	Clock to Data Valid (Flow-Through) ⁽²⁾		15		18		20	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾		6.5		7.5		9	ns
tDC	Data Output Hold After Clock High	2		2		2		ns
tскнz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	2	9	ns
tск∟z	Clock High to Output Low-Z ⁽¹⁾	2		2		2	_	ns
Port-to-Port	Delay	•	-	-	-	-	-	-
tcwdd	Write Port Clock High to Read Data Delay		24		28		35	ns
toos	Clock-to-Clock Setup Time		9		10		15	ns

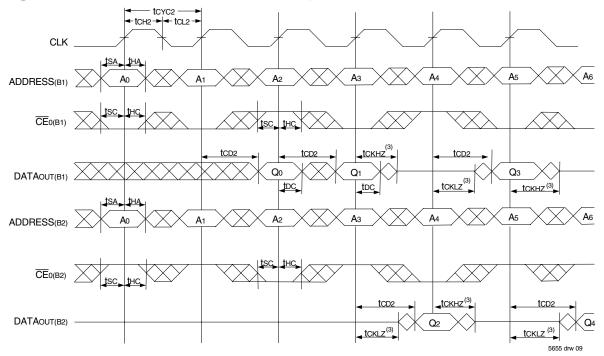

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

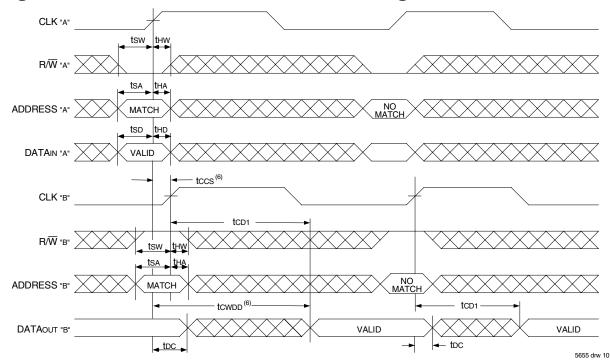

2. The Pipelined output parameters (tcvc2, tcD2) apply to either or both the Left and Right ports when FT/PIPE = VIH. Flow-through parameters (tcvc1, tcD1) apply when FT/PIPE = VIL for that port.

3. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPER, and FT/PIPEL.

Timing Waveform of Read Cycle for Flow-Through Output $(\overline{FT}/PIPE"x" = VIL)^{(3,6)}$

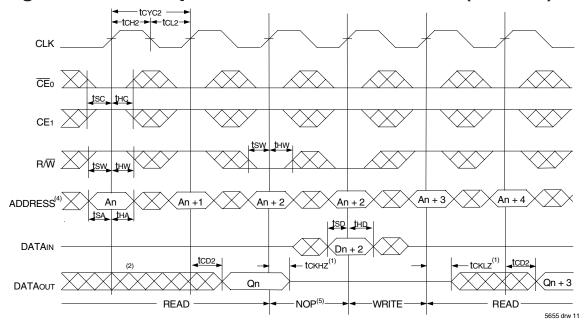


Timing Waveform of Read Cycle for Pipelined Operation $(\overline{FT}/PIPE"x" = VIH)^{(3,6)}$

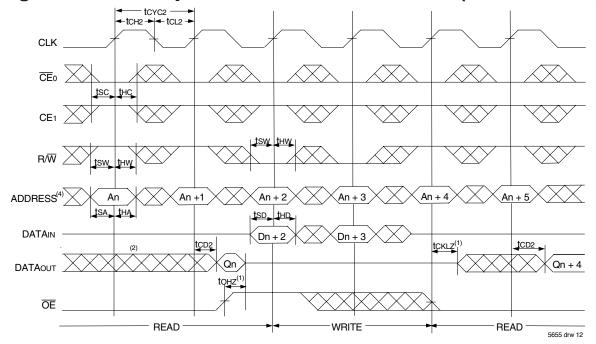


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. DE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. ADS = VIL, CNTEN and CNTRST = VIH.
- 4. The output is disabled (High-Impedance state) by \overline{CE}_0 = VIH, CE1 = VIL following the next rising edge of the clock. Refer to Truth Table 1.
- 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 6. "X' here denotes Left or Right port. The diagram is with respect to that port.

Timing Waveform of a Bank Select Pipelined Read^(1,2)

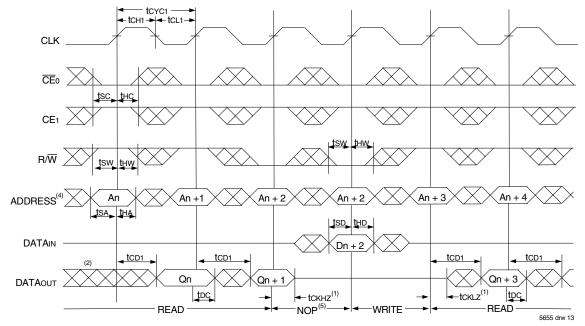


Timing Waveform with Port-to-Port Flow-Through $Read^{(4,5,7)}$

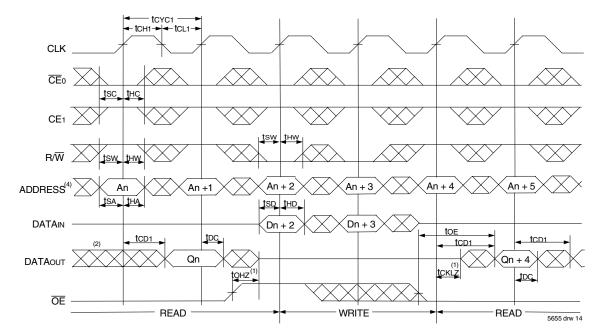


- 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V916/59L for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. \overline{OE} and \overline{ADS} = VIL; $\overline{CE1(B1)}$, CE1(B2), $\overline{R/W}$, \overline{CNTEN} , and \overline{CNTRST} = VIH.
- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. TEO and ADS = VIL; CE1, TOTEN, and TOTAST VIH.
- 5. \overline{OE} = VIL for the Right Port, which is being read from. \overline{OE} = VIH for the Left Port, which is being written to.
- 6. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwDD.
- If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1. tcwpp does not apply in this case.
- 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A".

Timing Waveform of Pipelined Read-to-Write-to-Read ($\overline{OE} = VIL$)⁽³⁾

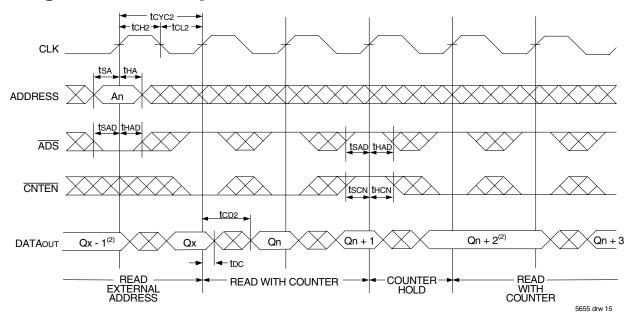


Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)⁽³⁾

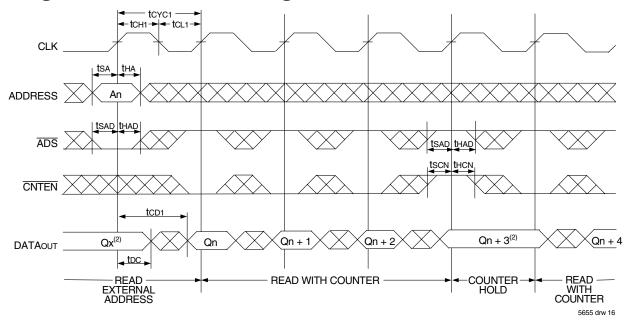


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. "NOP" is "No Operation".
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Flow-Through Read-to-Write-to-Read ($\overline{OE} = VIL$)⁽³⁾



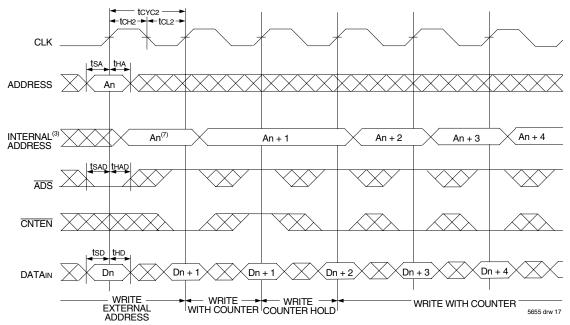
Timing Waveform of Flow-Through Read-to-Write-to-Read (\overline{OE} Controlled)⁽³⁾



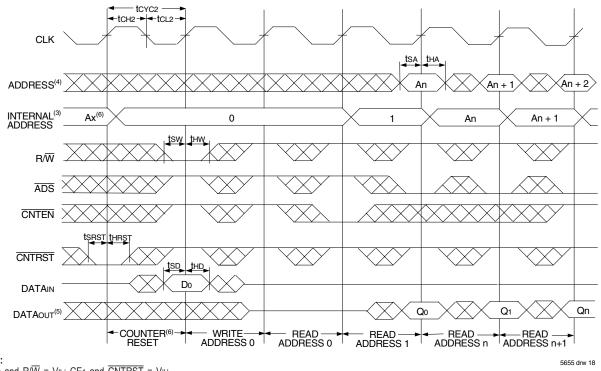
- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. CE0 and ADS = VIL; CE1, CNTEN, and CNTRST = VIH. "NOP" is "No Operation".
 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾

Timing Waveform of Flow-Through Read with Address Counter Advance $^{(1)}$



NOTES:


1. \overline{CE}_0 and \overline{OE} = VIL; CE1, R/W, and \overline{CNTRST} = VIH.

2. If there is no address change via $\overline{\text{ADS}}$ = VIL (loading a new address) or $\overline{\text{CNTEN}}$ = VIL (advancing the address), i.e. $\overline{\text{ADS}}$ = VIH and $\overline{\text{CNTEN}}$ = VIH, then the data output remains constant for subsequent clocks.

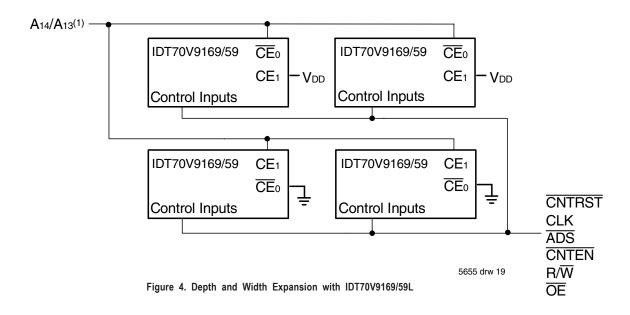
Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾

- 1. \overline{CE}_0 and $R/\overline{W} = V_{IL}$; CE1 and $\overline{CNTRST} = V_{IH}$.
- 2. $\overline{CE}_0 = V_{IL}$; $CE_1 = V_{IH}$.
- 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- Addresses do not have to be accessed sequentially since ADS = V ∟ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
 Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle. ADDRo will be accessed. Extra cycles are shown here simply for clarification.
- CINTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1' Address is written to during this cycle.

High-Speed 3.3V 16/8K x 9 Dual-Port Synchronous Pipelined Static RAM

Functional Description

The IDT70V9169/59 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.

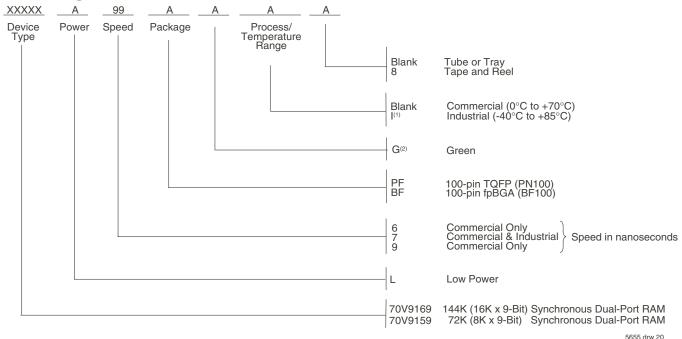

An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications.

 $\overline{CE}0$ = VIL and CE1 = VIH for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V9169/59's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{CE}0$ = VIL and CE1 = VIH to re-activate the outputs.

Depth and Width Expansion

The IDT70V9169/59 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The IDT70V9169/59 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 36-bit or wider applications.


NOTE:

1. A14 is for IDT70V9169, A13 is for IDT70V9159.

IDT70V9169/59L

High-Speed 3.3V 16/8K x 9 Dual-Port Synchronous Pipelined Static RAM

Ordering Information

NOTE:

1. Contact your local sales office for Industrial temp range for other speeds, packages and powers.

2. Green parts available. For specific speeds, packages and powers see your sales office.

IDT Clock Solution for IDT70V9169/59 Dual-Port

IDT Dual-Port Part Number	Dual-Port I/O Specitications		Clock Specifications				IDT	IDT
	Voltage	I/O	Input Capacitance	Input Duty Cycle Requirement	Maximum Frequency	Jitter Tolerance	PLL Clock Device	Non-PLL Clock Device
70V9169/59	3.3	LVTTL	9pF	40%	100	150ps	IDT2305 IDT2308 IDT2309	FCT3805 FCT3805D/E FCT3807 FCT3807D/E

5638 tbl 12

Datasheet Document History

- 07/08/02: Initial Public Release
- 08/15/03: Removed Preliminary status
 - Page 16 Added IDT Clock Solution Table
- 01/29/09: Page 16 Removed "IDT" from orderable part number
- 06/18/15: Page 2 Removed IDT with reference to fabrication

San Jose, CA 95138

Page 2 Removed date from 100-pin TQFP configuration

Page 2 & 16 The package code PN100-1 changed to PN100 to match standard package codes

- Page 3 Removed date from 100-pin fpBGA configuration
- Page 6 Corrected typo in the Typical Output Derating drawing

Page 16 Added Tape and Reel and Green indicators and updated the footnotes to the Ordering Information

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.