General Purpose Transistors

PNP Silicon

This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications.

Features

• Pb–Free Package is Available

MAXIMUM RATINGS (T_A = 25°C)

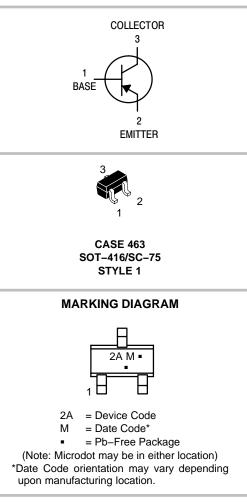
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-40	Vdc
Collector-Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR–4 Board (Note 1) @T _A = 25°C Derated above 25°C	P _D	200 1.6	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	R_{\thetaJA}	600	°C/W
Total Device Dissipation, FR–4 Board (Note 2) @T _A = 25°C Derated above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	R_{\thetaJA}	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. FR-4 @ Minimum Pad


2. FR-4 @ 1.0×1.0 Inch Pad

ON Semiconductor®

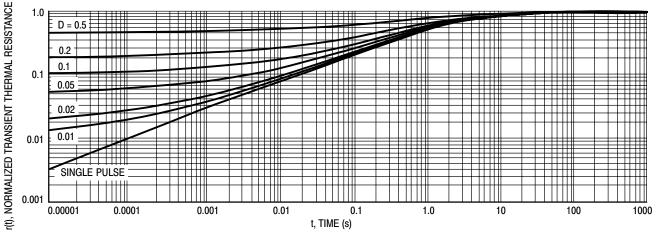
http://onsemi.com

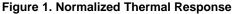
GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

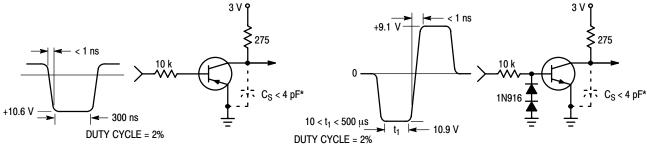
ORDERING INFORMATION

Device	Package	Shipping†
MMBT3906TT1	SOT-416	3000 / Tape & Reel
MMBT3906TT1G	SOT–416 (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure. BRD8011/D.

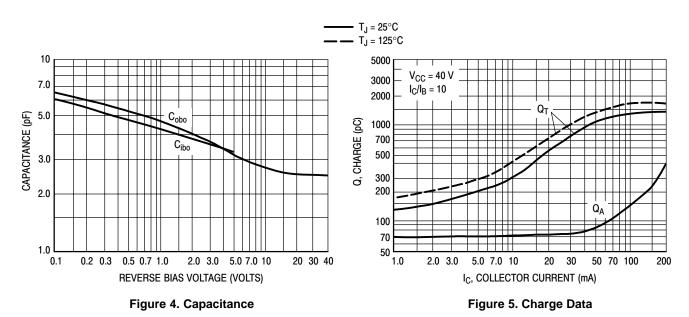

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)


	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERIS	STICS				
Collector – Emitter Br ($I_C = -1.0$ mAdc,	reakdown Voltage (Note 3) I _B = 0)	V _{(BR)CEO}	-40	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu Adc, I_E = 0)$		V _{(BR)CBO}	-40	_	Vdc
Emitter-Base Break (I _E = -10 μAdc, I _C		V _{(BR)EBO}	-5.0	_	Vdc
Base Cutoff Current (V _{CE} = -30 Vdc, V	V _{EB} = -3.0 Vdc)	I _{BL}	-	-50	nAdc
Collector Cutoff Curr ($V_{CE} = -30 \text{ Vdc}$,	I _{CEX}	-	-50	nAdc	
ON CHARACTERIS	TICS (Note 3)				
$\begin{array}{l} \text{DC Current Gain} \\ (I_{C}=-0.1 \text{ mAdc}, \\ (I_{C}=-1.0 \text{ mAdc}, \\ (I_{C}=-10 \text{ mAdc}, \\ (I_{C}=-50 \text{ mAdc}, \\ (I_{C}=-100 \text{ mAdc}, \\ \end{array} \end{array}$	V _{CE} = -1.0 Vdc) V _{CE} = -1.0 Vdc) V _{CE} = -1.0 Vdc)	h _{FE}	60 80 100 60 30	- - 300 - -	_
Collector – Emitter Sa ($I_C = -10 \text{ mAdc}$, I ($I_C = -50 \text{ mAdc}$, I	$_{\rm B} = -1.0 {\rm mAdc})$	V _{CE(sat)}		-0.25 -0.4	Vdc
Base – Emitter Satura ($I_C = -10 \text{ mAdc}$, $I_C = -50 \text{ mAdc}$, $I_C = -50 \text{ mAdc}$	B = -1.0 mAdc	V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc
SMALL-SIGNAL CH	HARACTERISTICS				
Current-Gain - Ban (I _C = -10 mAdc, V	dwidth Product V _{CE} = −20 Vdc, f = 100 MHz)	fT	250	_	MHz
Output Capacitance $(V_{CB} = -5.0 \text{ Vdc},$	I _E = 0, f = 1.0 MHz)	C _{obo}	-	4.5	pF
Input Capacitance1 ($V_{EB} = -0.5$ Vdc,	I _C = 0, f = 1.0 MHz)	C _{ibo}	-	10.0	pF
Input Impedance (V _{CE} = -10 Vdc,	I _C = −1.0 mAdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ
Voltage Feedback Ra (V _{CE} = -10 Vdc,	atio I _C = −1.0 mAdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10⁻
Small – Signal Currer (V _{CE} = –10 Vdc,	nt Gain I _C = −1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance (V _{CE} = -10 Vdc,	I _C = −1.0 mAdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmho
Noise Figure (V _{CE} = -5.0 Vdc,	I _C = -100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF	-	4.0	dB
SWITCHING CHAR	ACTERISTICS			•	
Delay Time	elay Time $(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$		-	35	
Rise Time	$(I_{C} = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	tr	-	35	ns
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	t _s	-	225	
Fall Time	$(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$	t _f	_	75	ns


Fall Time $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$ 3. Pulse Test: Pulse Width $\leq 300 \text{ µs}$, Duty Cycle $\leq 2.0\%$.

75

t_f



* Total shunt capacitance of test jig and connectors

Figure 2. Delay and Rise Time Equivalent Test Circuit

Figure 3. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

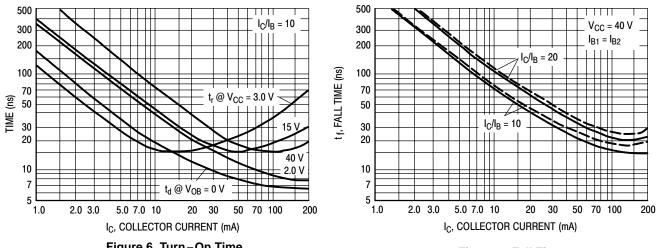
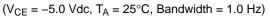
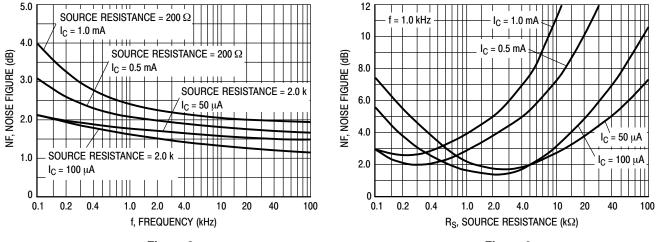
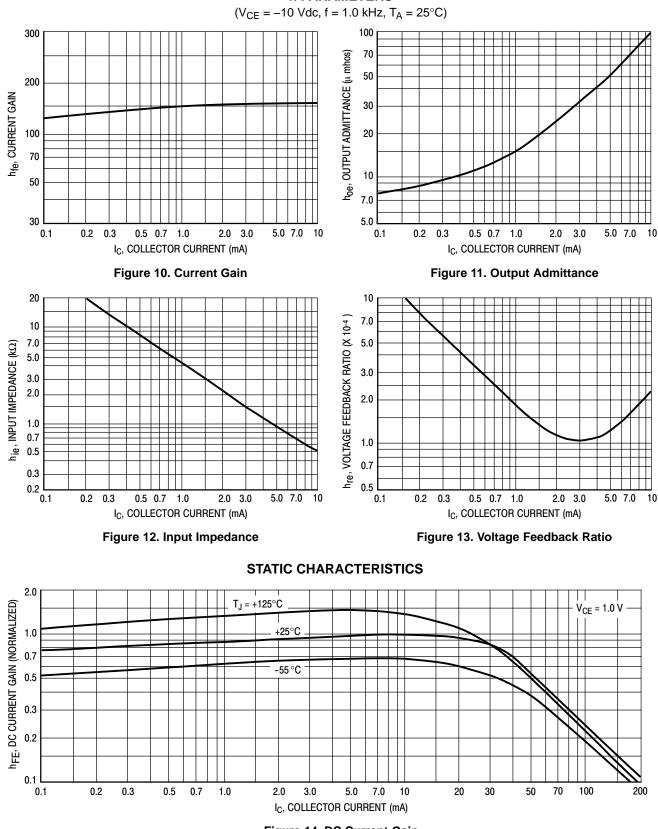
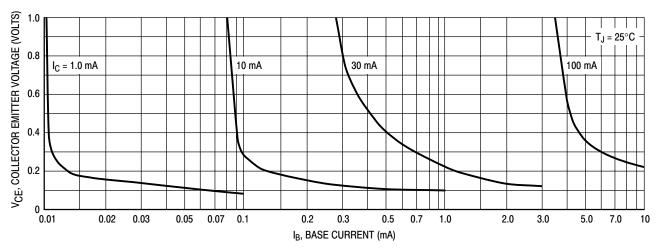
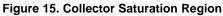



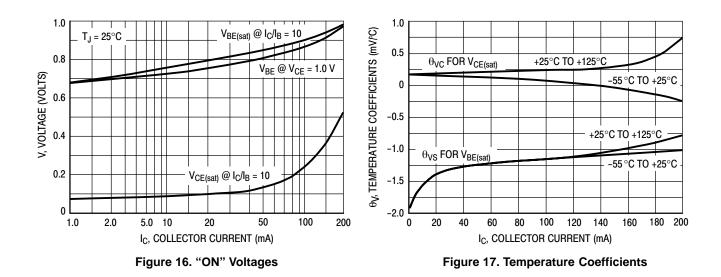
Figure 6. Turn-On Time

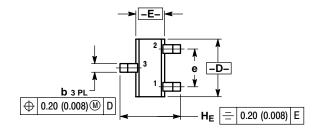
Figure 7. Fall Time

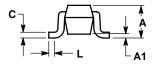
TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS


Figure 8.

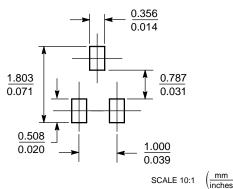

Figure 9.





PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463-01 ISSUE F


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.059	0.063	0.067
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1.00 BSC			0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.061	0.063	0.065

STYLE 1: PIN 1. BASE

2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

MMBT3906TT1/D