
Product BriefProduct Brief
ARM® CortexTM-M1

Product Summary

Key Features
• Designed Specifically for Implementation in FPGAs
• 32-Bit RISC Architecture (ARMv6-M)
• 32-Bit AHB-Lite Bus Interface
• 3-Stage Pipeline
• 32-Bit ALU
• 32-Bit Memory Addressing Range
• Embedded ICE-RT Real-Time Debug Unit
• JTAG Interface Unit

Intended Use
• MicroTCA
• System Management
• Avionics
• Robotics
• Medical Equipment
• Automotive Infotainment
• Personal Media Players
• Wireless Handsets
• Digital Still Cameras

Benefits
• Fully Implemented in FPGA Fabric
• User Can Access All Core Signals and I/Os
• User Can Program into FPGA
• No License Fees or Royalties
• Can Run All Existing Thumb® Code
• Upward Compatible with Cortex-M3

Supported Families
• IGLOO® (M1AGL)
• IGLOOe (M1AGLE)
• ProASIC®3L (M1A3PXXXXL)
• ProASIC3 (M1A3P)
• ProASIC3E (M1A3PE)
• Fusion (M1AFS)

Synthesis and Simulation support
• Directly Supported within the Actel Libero®

Integrated Design Environment (IDE)
• Synthesis: Synplify® and Design Compiler
• Simulation: Vital-Compliant VHDL Simulators and

OVI-Compliant Verilog Simulators

Verification and Compliance
• Compliant with ARMv6-M (ARM Cortex-M1)

Instruction Set Architecture (ISA)

Introduction
The Cortex-M1 soft IP core is a member of the ARM
Cortex family of processors and has been optimized for
use in Actel ARM-enabled FPGAs. Refer to the ARM
Cortex-M1 Handbook for detailed information on the
Cortex-M1.

The ARM Cortex-M1 is supplied with an AMBA AHB-Lite
interface for inclusion in an AMBA-based processor
system such as the one generated by the Actel
CoreConsole IP deployment platform.

Cortex-M1 Processor
ARM Cortex-M1 is a general purpose, 32-bit
microprocessor that offers high performance and small
size in FPGAs. ARM Cortex-M1 runs a subset of the
Thumb-2 instruction set (ARMv6-M), which includes all
base 16-bit Thumb instructions and a few Thumb-2 32-bit
instructions (BL, MRS, MSR, ISB, DSB, and DMB). This
enables very tight and efficient code to be written for
the processor that is ideal for the limited memory
typically found in embedded applications.

The main blocks in ARM Cortex-M1 are the processor
core, the Nested Vectored Interrupt Controller (NVIC),
the AHB interface, and the debug unit. The processor
core supports 13 general purpose 32-bit registers,
including the Link Register (LR), Program Counter (PC),
Program Status Register (xPSR), and two banked Stack
Pointers (SP).
December 2008 1
© 2008 Actel Corporation See Actel’s website for the latest version of the datasheet

http://www.actel.com/documents/CortexM1_HB.pdf
http://www.actel.com/documents/CortexM1_HB.pdf
http://www.actel.com/survey/rating/?f=CortexM1_PB.pdf

ARM® CortexTM-M1
Figure 1 shows an ARM Cortex-M1 processor with debug block diagram.

The NVIC is closely coupled to the ARM Cortex-M1 core
to achieve low-latency interrupt processing. The versions
currently available for use in M1 devices support 1
interrupt with 4 levels of priority. Future versions will
support up to 32 interrupts. To simplify software
development, the processor state is automatically saved
on interrupt entry, and restored on interrupt exist, with
no instruction overhead.

The ARM Cortex-M1 Thumb instruction set’s 16-bit
instruction length allows it to approach twice the density
in memory of standard 32-bit ARM code while retaining
most of the ARM performance advantage over a
traditional 16-bit processor using 16-bit registers. This is
possible because Thumb code operates on the 32-bit
register set in the processor. Thumb code is able to
provide up to 65% of the code size of ARM, and 160% of
the performance of an equivalent ARM processor
connected to a 16-bit memory system.

Figure 1 • Processor with Debug Block Diagram

Processor with Debug

AHB-PPB

NVIC

Debug Subsystem

AHB Decoder

AHB Multiplexer

AHB Matrix

Debug ITCM Interface

Debug DTCM Interface

Breakpoint Unit

Data Watchpoint Unit

Debug Control

ROM Table

Internal PPB Signals

External Bus Signals
DAP

AHB-AP SWJ-DP

Memory Interface

ITCM

DTCM

CoreDbg

AHB Master

NVIC Interrupt Interface External Interface Debug Port
2 Product Brief

ARM® CortexTM-M1
ARM Cortex-M1–Enabled FPGAs
ARM Cortex-M1 is available for use in a growing number
of Actel M1 devices. These include M1AFS600,
M1AGL600, M1A3P1000, and a number of additional M1
devices. The devices listed have the features shown in the
following sections:

M1AFS600 Fusion
Actel Fusion™ Programmable System Chips (PSCs) are the
world’s first mixed-signal FPGAs. Fusion integrates a
12-bit analog-to-digital converter, as many as 40 analog
I/Os, up to 8 Mbits of flash memory, and FPGA fabric all
in a single device. When used in conjunction with a soft
processor such as ARM Cortex-M1, Actel Fusion devices
represent the definitive soft MCU platform.

M1AFS600 Features
• Industry’s first mixed-signal FPGA

• 600,000 system gates – 13,824 logic tiles

• ARM Cortex-M1 uses less than 30% of FPGA logic

• 4 Mbits flash, 108 kbits SRAM

• 30 analog inputs, 10 analog outputs

• 172 digital I/Os

• 2 PLLs, 1% RC oscillator, Xtal oscillator, RTC

M1AGL600 IGLOO FPGAs
The M1 IGLOO devices are reprogrammable, full-
featured flash FPGAs designed to meet the demanding

power and area requirements of today's portable
electronics. Featuring Flash*Freeze™ technology and
with operating voltages of 1.2 V / 1.5 V, these devices
offer the industry's lowest power consumption. M1
IGLOO devices give designers a flexible system
construction platform for building portable products
that offer maximum battery life.

M1AGL600 Features
• Ultra-low power flash-based FPGA

• 600,000 system gates – 13,824 logic tiles

• ARM Cortex-M1 uses less than 33% of FPGA logic

• 144 kbits SRAM, 235 digital I/Os

M1A3P1000 ProASIC3/E FPGAs
ProASIC3/E devices, the third generation of Actel Flash
FPGAs, offer industry-leading unit cost and lowest total
system cost—up to 504 kbits of SRAM, 350 MHz
operation, and best-in-class logic utilization. These
single-chip FPGAs require no boot ROMs or other
support chips and are highly secure, with 128-bit AES
encryption and FlashLock® technology.

M1A3P1000 Features
• Low-cost flash-based FPGA

• 1,000,000 system gates – 24,576 logic tiles

• ARM Cortex-M1 uses less than 20% of FPGA logic

• 144 kbits SRAM

• 300 digital I/Os

Table 1 • ARM Cortex-M1 Utilization Data

Device
Variant Size (tiles)

Size (tiles)
RVDS

Size (tiles)
FlashPro RAM Blocks Device Utilization (%)

M1 Fusion

No debug 4,452 – – 4 M1AFS600 31

With debug – 9,272 9,462 4 M1AFS600 68

M1 IGLOO 1.5 V

No debug 4,435 – – 4 M1AGL600 31

With debug – 9,250 9,440 4 M1AGL600 68

M1 IGLOO 1.2 V

No debug 4,435 – – 4 M1AGL600 31

With debug – 9,250 9,440 4 M1AGL600 68

M1 ProASIC3/E

No debug 4,435 – – 4 M1A3PE1500 12

With debug – 9,250 9,440 4 M1A3PE1500 25

Note: Configuration is 0 kbytes ITCM, 0 kbytes DTCM, small multiplier, 1interrupt, no OS extensions, little-endian, and debug as shown.
Refer to the Cortex-M1 Handbook for performance information.
Product Brief 3

http://www.actel.com/documents/CortexM1_HB.pdf

ARM® CortexTM-M1
ARM Cortex-M1 Signals
The signals of the core are given in Table 2.

Table 2 • ARM Cortex-M1 Signal Descriptions

Name Width Type Description

HCLK 1 Input Main processor clock

NSYSRESET 1 Input External push-button/power-up reset

WDOGRES 1 Input Watchdog reset to ARM Cortex-M1

WDOGRESn 1 Output Reset of watchdog timer

HRESETn 1 Output Reset to other components in AHB system

RV_TCK 1 Input RealView JTAG

RV_nTRST 1 Input RealView JTAG

RV_TMS 1 Input RealView JTAG

RV_TDI 1 Input RealView JTAG

RV_nSRST_IN 1 Input RealView JTAG

RV_TRCK 1 Input RealView JTAG

RV_TDOUT 1 Output RealView JTAG

RV_nTDOEN 1 Output RealView JTAG

UJTAG_TCK 1 Input FlashPro3 JTAG

UJTAG_TDI 1 Input FlashPro3 JTAG

UJTAG_TMS 1 Input FlashPro3 JTAG

UJTAG_TRSTB 1 Input FlashPro3 JTAG

UJTAG_TDO 1 Output FlashPro3 JTAG

IRQ[31:0] 32 Input External Interrupts

NMI 1 Input Non-maskable Interrupt

EDBGRQ 1 Input External debug request

nTRST 1 Input JTAG reset

JTAGTOP 1 Output State Controller Indicator

nTDOEN 1 Output JTAG data out enable

LOCKUP 1 Output Core is locked up

HALTED 1 Output Core is in Halt Debug state

HREADY 1 Input Slave ready signal

HRESP 1 Input AHB response signal

HRDATA[31:0] 32 Input Data from Slave to Master

HTRANS[1:0] 2 Output AHB transfer type signal

HBURST[2:0] 3 Output AHB burst signal

HPROT[3:0] 4 Output Transfer protection bits

HSIZE[2:0] 3 Output Transfer size

HWRITE 1 Output Transfer direction

HMASTLOCK 1 Output Transfer is part of a locked sequence

HADDR[31:0] 32 Output Transfer address

HWDATA[31:0] 32 Output Data from Master to Slave
4 Product Brief

ARM® CortexTM-M1
Programmer’s Model
The ARM Cortex-M1 processor supports all ARMv6-M
Thumb instructions. This includes the entire 16-bit
Thumb instruction set architecture and some 32-bit
instructions. or information on ARMv6-M Thumb
instructions, see the ARMv6-M Architecture Reference
Manual. The processor does not support ARM
instructions.

Processor Operating States
The ARM Cortex-M1 processor has two operating states:

• Thumb state – This is the normal execution state,
with the processor running the 16-bit and 32-bit
halfword-aligned Thumb and Thumb-2 BL, MRS,
MSR, ISB, DSB, and DMB instructions.

• Debug state – This is the state the processor is in
for debugging.

Processor Operating Modes
The ARM Cortex-M1 processor supports two modes of
operation:

• Thread mode – Entered on Reset, and can be re-
entered as a result of an exception return.

• Handler mode – Entered as a result of an
exception.

Main Stack and Process Stack Access
Out of reset, all code uses the main stack. An exception
handler such as SVC can change the stack used by Thread
mode from main stack to process stack by changing the
EXC_RETURN value it uses on exit. All exceptions
continue to use the main stack. The stack pointer, R13, is
a banked register that switches between the main stack
and the process stack. Only one stack, either the process
stack or the main stack, is visible, using R13, at any time.

It is also possible to switch from the main stack to process
stack while in Thread mode by writing to the special
purpose Control Register using an MSR instruction.

Registers
The processor has the following 32-bit registers
(Figure 2):

• 13 general purpose registers, R0–R12

• Stack Pointer (SP) (SP, R13) and banked register
aliases, SP_process and SP_main

• Link Register (LR, R14)

• Program Counter (PC, R15)

• Program status registers (xPSR)

General Purpose Registers
The general purpose registers, R0–R12, have no special
architecturally-defined uses.

• Low registers – Registers R0–R7 are accessible by
all instructions that specify a general purpose
register.

• High registers – Registers R8-R12 are not
accessible by all 16-bit instructions.

The R13, R14, and R15 registers have the following
special functions:

• Stack Pointer – Register R13 is used as the Stack
Pointer (SP). Because the SP ignores writes to bits
[1:0], it is auto-aligned to a word, four-byte, and
boundary. Handler mode always uses SP_main, but
you can configure Thread mode to use either
SP_main or SP_process.

• Link Register – Register R14 is the subroutine
Link Register (LR). The LR receives the return
address from PC when a Branch and Link (BL)
instruction is executed. The LR is also used for an
exception return. At all other times, you can treat
R14 as a general purpose register.

• Program Counter – Register R15 is the Program
Counter (PC). Bit 0 is always 0, so instructions are
always aligned to halfword boundaries.

Special Purpose Program Status Registers
(xPSR)
Processor status at the system level breaks down into
three categories and can be accessed as individual
registers, a combination of any two from three, or a
combination of all three, using the MRS and MSR
instructions.

• Application PSR (APSR) – Contains the condition
code flags. Before entering an exception, the
processor saves the condition code flags on the

Figure 2 • Processor Register Set

r1
r2
r3
r4
r5

r0

High Registers

Low Registers

r9
r10
r11
r12

Program
Status Register

r8
r7
r6

r13 (SP)
r14 (LR)
r15 (PC)

xPSR

SP_mainSP_process
Product Brief 5

ARM® CortexTM-M1
stack. You can access the APSR with the MSR and
MRS instructions.

• Interrupt PSR (IPSR) – Contains the Interrupt
Service Routine (ISR) number of the current
exception activation.

• Execution PSR (EPSR) – Contains the Thumb state
bit (T-bit). Unless the processor is in Debug state,
the EPSR is not directly accessible. All fields read as
zero using an MRS instruction and MSR instruction
writes are ignored.

On entering an exception, the processor saves the
combined information from the three status registers on
the stack.

Special Purpose Priority Mask Register
Use the special purpose Priority Mask Register for
priority boosting. You can access the special purpose
Priority Mask Register using the MSR and MRS
instructions. You can also use the CPS instruction to set or
clear PRIMASK.

Special Purpose Control Register
The special purpose Control Register identifies the stack
pointers used.

Data Types
The processor supports the following data types:

• 32-bit words

• 16-bit halfwords

• 8-bit bytes

Note: Unless otherwise stated, the core can access all
regions of the memory map, including the code region,
with all data types. To support this, the system must
support sub-word writes without corrupting neighboring
bytes in that word.

Memory Formats
The processor views memory as a linear collection of
bytes numbered in ascending order from 0 (Figure 3).

Figure 3 • Processor Memory Map

0xE00FFFFF

0xF00FF000

0xE000ED00

0xE000E000

0xE0003000

0xE0002000

0xE0001000

0xE0000000

0xE000F000

0xE003FFFF
0xE0040000

0xE0041000

0xE0042000

ROM Table

Reserved

Reserved

BP

DW

Reserved

NVIC

Debug Control

Reserved

Reserved

Reserved

0x3FFFFFFF

0x20100000
511 MB

1 MB

511 MB

1 MB

External

DTCM

External

ITCM
0x00100000

0x1FFFFFFF

0x20000000

0x00000000

Reserved

Internal Private Peripheral Bus

1 GB

1 GB

0.5 GB

0.5 GB

Code

SRAM

Peripheral

External

External Device

0.5 GB

0xFFFFFFFF

0xE0100000

0x5FFFFFFF

0x40000000
0x3FFFFFFF

0x20000000
0x1FFFFFFF

0x00000000

0x60000000

0x9FFFFFFF
0xA0000000

0xDFFFFFFF
0x00000000
6 Product Brief

ARM® CortexTM-M1
For example:

• Bytes 0–3 hold the first stored word

• Bytes 4–7 hold the second stored word

The processor accesses data and code words in little-
endian format. Little-endian is the default memory
format for ARM processors.

In little-endian format, the byte with the lowest address
in a word is the least significant byte of the word. The
byte with the highest address in a word is the most
significant. The byte at address 0 of the memory system
connects to data lines 7–0.

Exceptions
The processor and the Nested Vectored Interrupt
Controller (NVIC) prioritize and handle all exceptions. All
exceptions are handled in Handler mode. Processor state
is automatically stored to the stack on an exception, and
automatically restored from the stack at the end of the
exception handler Interrupt Service Routine (ISR). The
following features enable efficient, low-latency
exception handling:

• Automatic state saving and restoring. The
processor pushes state registers on the stack
before entering the ISR, and pops them after
exiting the ISR with no instruction overhead.

• Automatic reading of the vector table entry that
contains the ISR address in code memory or data
SRAM

• Closely-coupled interface between the processor
and the NVIC to enable early processing of
interrupts and processing of late-arriving
interrupts with higher priority

• Fixed number of interrupt priorities, from 2 bits, 4
levels

• Separate stacks for Handler and Thread modes if
OS extensions are implemented

• ISR control transfer using the calling conventions
of the C/C++ standard Procedure Call Standard for
the ARM Architecture (PCSAA)

• Priority masking to support critical regions

Exception Types
Various types of exceptions exist in the processor. A fault
is an exception that results from an error condition.
Faults can be reported synchronously or asynchronously
to the instruction that caused them. In general, faults are
reported synchronously. Faults caused by writes over the
bus are asynchronous faults. A synchronous fault is
always reported with the instruction that caused the
fault. An asynchronous fault does not guarantee how it
is reported with respect to the instruction that caused
the fault. See Table 3 for a list and description of the
exceptions supported by ARM Cortex-M1.

Table 3 • Exception Types

Position
Exception

Type Priority Description Activated

– – – Stack top is loaded from first entry of vector table on Reset. –

1 Reset –3 (highest) Invoked on power-up and warm Reset. On first instruction,
drops to lowest priority. Thread mode.

Asynchronous

2 Non-maskable –2 Cannot be marked, prevented by activation, by any other
exception. Cannot be preempted by any other exception
other than Reset.

Asynchronous

3 Hard fault –1 All classes of fault Synchronous or
asynchronous

4–10 – – Reserved –

11 SVCall Configurable System service call with SVC instruction Synchronous

12–13 – – Reserved –

14 PendSV Configurable Pendable request for system service. This is only pended by
software.

Asynchronous

15 SysTick Configurable System tick timer has fired. Asynchronous

16–48 External
interrupt

Configurable Asserted from outside the processor, IRQ[2n-1:0], and fed
through the NVIC (prioritized).

Asynchronous
Product Brief 7

ARM® CortexTM-M1
Exception Priority
In the processor exception model, priority determines
when and how the processor takes exceptions. You can
assign software priority levels to interrupts.

The NVIC supports software-assigned priority levels. You
can assign a priority level from 0 to 3 to an interrupt by
writing to the 2-bit IP_N field in an Interrupt Priority
Register. Hardware priority decreases with increasing
interrupt number. Priority level –3 is the highest priority
level, and priority level 3 is the lowest. The priority level
overrides the hardware priority.

Stacks
The processor supports two separate stacks:

• Process stack – You can configure Thread mode
to use the process stack. Thread mode uses the
main stack out of reset. SP_process is the Stack
Pointer (SP) register for the process stack.

• Main stack – Handler mode uses the main stack.
SP_main is the SP register for the main stack.

Only one stack, the process stack or the main stack, is
visible at any time, using R13. After pushing the content,
the ISR uses the main stack, and all subsequent interrupt
preemptions use the main stack.

Clocking and Resets
The processor has one functional clock input, HCLK, and
one reset signal, SYSRESETn. If debug is implemented,
there is also a SWJ-DP clock, SWCLKTCK, and nTRST.
SWCLKTCK relates to the DAP logic. The debug reset
signal DBGRESETn relates to the debug logic clocked by
HCLK.

The SYSRESETn signal resets the entire processor system
with the exception of debug logic in the following:

• Nested Vectored Interrupt Controller (NVIC)

• Debug subsystem

The register file cannot be reset by SYSRESETn or
DBGRESETn.

Nested Vectored Interrupt Controller
The NVIC facilitates low-latency exception and interrupt
handling, and implements System Control Registers. The
NVIC supports reprioritizable interrupts. The NVIC and
the processor core interface are closely coupled, which
enables low latency interrupt processing and efficient
processing of late-arriving interrupts. All NVIC registers
are only accessible using word transfers. Any attempt to
write a halfword or byte individually causes corruption
of the register bits. All NVIC registers and system debug
registers are little-endian, regardless of the endianness
state of the processor. See Table 4 for a list of the NVIC
registers and their addresses.

Table 4 • NVIC Register

Name of Register Type Address Reset Value

IRQ 0 to 31 Set Enable Register R/W 0xE000E100 0x00000000

IRQ 0 to 31 Clear Enable Register R/W 0xE000E180 0x00000000

IRQ 0 to 31 Set Pending Register R/W 0xE000E200 0x00000000

IRQ 0 to 31 Clear Pending Register R/W 0xE000E280 0x00000000

Priority 0 Register R/W 0xE000E400 0x00000000

Priority 1 Register R/W 0xe000e404 0x00000000

Priority 2 Register R/W 0xe000e408 0x00000000

Priority 3 Register R/W 0xe000e40c 0x00000000

Priority 4 Register R/W 0xe000e410 0x00000000

Priority 5 Register R/W 0xe000e414 0x00000000

Priority 6 Register R/W 0xe000e418 0x00000000

Priority 7 Register R/W 0xe000e41c 0x00000000
8 Product Brief

ARM® CortexTM-M1
The processor supports both level and pulse interrupts. A
level interrupt is held asserted until it is cleared by the
ISR accessing the device. A pulse interrupt is a variant of
an edge model. The edge must be sampled on the rising
edge of the processor clock, HCLK, instead of being
asynchronous.

For level interrupts, if the signal is not deasserted before
the return from the interrupt routine, the interrupt
repends and reactivates. This is particularly useful for
FIFO and buffer-based devices because it ensures that
they drain either by a single ISR or by repeated
invocations, with no extra work. This means that the
device holds the signal in assert until the device is empty.

A pulse interrupt can be reasserted during the ISR so that
the interrupt can be pended and active at the same time.
The application design must ensure that a second pulse
does not arrive before the first pulse is activated. If it
does the second pend has no affect because it is already
pended. However, if the interrupt is asserted for at least
one cycle, the NVIC latches the pend bit. When the ISR
activates, the pend bit is cleared. If the interrupt asserts
again while it is activated, it can latch the pend bit again.

Processor Bus Interfaces
As currently available for use in M1 devices, the ARM
Cortex-M1 has an AHB-Lite external interface. The
processor also contains an internal bus called the Private
Peripheral Bus (PPB) for accesses to the Nested Vectored
Interrupt Controller (NVIC), Data Watchpoint (DW) unit,
and BreakPoint (BPU), but this is not directly accessible to
the user.

External Interface
The external interface is an AHB-Lite bus interface. The
processor accesses to AHB peripherals and memory are
implemented over this bus.

To prevent bus wait cycles from stalling the processor
during data stores, buffered stores to the external
interface go through a one-entry write buffer. If the
write buffer is full, subsequent accesses to the bus stall
until the write buffer has drained. The write buffer is
only used if the bus waits for the data phase of the
buffered store; otherwise, the transaction completes on
the bus.

Memory Interfaces
The tightly coupled memory interface defined in the
ARM Cortex-M1 architecture is not currently supported
on M1 devices. Future core releases will have support for
this memory interface.

Private Peripheral Bus
The AHB PPB is used to access the Nested Vector
Interrupt Controller and the debug components when
they are present. The PPB allows communication to flow
between the AHB and NVIC units and the debug circuitry
when it is implemented in the core.

Delivery and Deployment
ARM Cortex-M1 is delivered as a series of files by
CoreConsole that are directly imported into the Design
and Simulation folders by Libero IDE. These consist of the
BFM files and test wrapper, and the A1S secured CDB file,
which is the placed-and-routed ARM Cortex-M1 core,
actually instantiated on the user device. This deployment
flow is adopted to ensure that the design is kept
completely secure at all times.

Initially, the ARM Cortex-M1 processor is being made
available for use in Actel M1 devices with only one user
selectable option: with or without debug. The core is
configured with 0K ITCM, 0K DTCM, small multiplier,
little-endian, no OS extensions, and 1 interrupt.
Product Brief 9

ARM® CortexTM-M1
Bus Functional Model (BFM)

Introduction
During the development of an FPGA-based SoC, there
are various stages of testing that can be undertaken. This
can involve some, or all, of the following approaches:

• Hardware simulation using Verilog or VHDL

• Software simulation using a host-based instruction
set simulator (ISS) of the SoC’s processor

• Hardware and software co-verification using a
full-functional model of the processor in Verilog,
VHDL or SWIFT form, or using a tool such as
Seamless

BFM Usage Flow
The BFM acts as a pin-for-pin replacement of the
Cortex-M1 in the simulation of the SoC subsystem. It
initiates bus transactions on the native ARM Cortex-M1
bus, which are cycle-accurate with real bus cycles that
ARM Cortex-M1 would produce. It does not have the
ability, however, to implement real ARM Cortex-M1
instructions. The BFM may be used to run a basic test
suite of the SoC subsystem, using the skeleton system
testbench.

You can edit the SoC Verilog/VHDL to add new design
blocks. You can also fill out the system-level testbench to
include tasks that test any newly added functionality, or
add stubs to allow more complex system testing
involving the IP cores. The BFM input scripts can also be
manually enhanced to test out access to register
locations in newly added logic. In this way, you can
provide stimuli to the system from the inside (via the
ARM Cortex-M1 BFM), as well as from the outside (via
testbench tasks).

Timing Shell
There is a timing shell provided for each ARM Cortex-M1
variant wrapped around the BFM. Therefore, the BFM is
bus cycle accurate, and performs setup/hold checks to
model output propagation delays.

Debug
The ARM Debug Architecture uses a protocol converter
box to allow the debugger to talk directly to the core via
a JTAG port. In effect, the scan chains in the core that are
required for test are re-used for debugging. The core
uses the scan chains to insert instructions directly into
ARM Cortex-M1. The instructions are executed on the
core and depending on the type of instruction that has
been inserted, the core or the system state can be
examined, saved, or changed. The architecture has the
ability to execute instructions at a slow debug speed or
to execute instructions at system speed.

In debug mode, the user can perform the following
functions:

• Core halt

• Core stepping

• Core register access

• Read/Write to TCMs

• Read/Write to AHB address space

• Breakpoint

• Watchpoints

The main debug components are the following:

• Debug control registers – to access and control
debugging of the core

• Breakpoint Unit (BPU) – to implement breakpoints

• Data Watchpoint Unit (DW) – to implement
watchpoints and trigger resources

• Debug memory interfaces – to access external
ITCM and DTCM

• ROM table
10 Product Brief

ARM® CortexTM-M1
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.
Product Brief 11

51700087PB-4/12.08

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
www.jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

www.actel .com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	ARM® CortexTM-M1
	Product Summary
	Introduction
	Cortex-M1 Processor
	Figure 1 . Processor with Debug Block Diagram

	ARM Cortex-M1-Enabled FPGAs
	Table 1 . ARM Cortex-M1 Utilization Data

	ARM Cortex-M1 Signals
	Table 2 . ARM Cortex-M1 Signal Descriptions

	Programmer’s Model
	Processor Operating States
	Processor Operating Modes
	Main Stack and Process Stack Access
	Registers
	Figure 2 . Processor Register Set

	Data Types
	Memory Formats
	Figure 3 . Processor Memory Map

	Exceptions
	Exception Types
	Table 3 . Exception Types

	Exception Priority
	Stacks

	Clocking and Resets
	Nested Vectored Interrupt Controller
	Table 4 . NVIC Register

	Processor Bus Interfaces
	External Interface
	Memory Interfaces
	Private Peripheral Bus

	Delivery and Deployment
	Bus Functional Model (BFM)
	Introduction
	BFM Usage Flow
	Timing Shell

	Debug
	Datasheet Categories
	Product Brief
	Advanced
	Unmarked (production)

