3C91C, 3C92C, 3N243, 3N244, 3N245, 3N261, 3N262, 3N263 (TX, TXV)

Features:

- TO-72 hermetically sealed package
- 1 kVDC electrical isolation
- High current transfer ratio
- TX and TXV devices processed to MIL-PRF-19500

Description:

Each device is a high reliability optically coupled isolator that consists of an infrared emitting diode and a NPN silicon phototransistor which are mounted in a hermetically sealed TO-72 package. The **3C91C** and **3C92C** have a 935 nm wavelength, whereas the 3N243, 3N244, 3N245, 3N261, 3N262 and 3N263 have an 880 nm wavelength. All devices have 0.50" (12.70 mm) leads. Electrical characteristics vary. The 3N261TX, 3N262TX and 3N263TX devices are similar to JEDEC registered optically coupled isolators.

TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

LED

Peak

Wavelength

935 nm

Contact your local representative or OPTEK for more information.

Part

Number

3C91C (TX, TXV)

3C92C (TX, TXV)

3N243 (TX, TXV)

3N2XX

3N2XX

Emitter

Cathode

Collector

Anode

Applications:

- High-voltage isolation between input and output
- Electrical isolation in dirty environments
- Industrial equipment
- Medical equipment
- Office equipment

3C91

Cathode

Collector

Emitter

Anode

3N244 (TX, TXV)		Transistor	1	0.3 / NA	3 / 40	10/30	0.50"		
3N245 (TX, TXV)	880 nm	TTATISISLOI	T	0.6 / NA			0.50		
3N261 (TX, TXV)				.05 / NA					
3N262 (TX, TXV)				1.0 / 5.0	1/40	5/30			
3N263 (TX, TXV)				2.0 / 10.0					
Phototransistor Collector is connected to the Header-Base-Case for ALL versions									

Sensor

Isolation

Voltage

(,000)

CTR

Min / Max

0.3 / 2.0

0.15 / NA

General Note

Pin #

1

2

3

4

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

2

3C92

Cathode

Emitter

Collector

Anode

TT Electronics | Optek Technology, Inc. 1645 Wallace Drive, Ste. 130, Carrollton, TX USA 75006 |Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

V_{CF} (V)

Typ /

Max

10/50

Lead

Length

I_F (mA)

Typ / Max

10/50

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	-55° C to +125° C
Storage Temperature Range	-65° C to +150° C
Input to Output Isolation Voltage	± 1 kVDC ⁽¹⁾
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽²⁾

Input Diode

Forward DC Current	40 mA
Reverse Voltage	2.0 V
Power Dissipation	60 mW ⁽³⁾

Output Phototransistor

Continuous Collector Current	30 mA
Collector-Emitter Voltage	30 V
Emitter-Collector Voltage	5.0 V
Power Dissipation	200 mW ⁽⁴⁾

Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.

3. Derate linearly 2.0 mW/° C above 25° C.

4. Derate linearly 0.60 mW/° C above 65° C.

 $I_{C(ON)}$ vs T_A

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	ТҮР	ΜΑΧ	UNITS	TEST CONDITIONS
Input Diode						
VF	Forward Voltage 3C91C, 3C92C (TX, TXV) 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	- 0.8 1.0 0.7 0.8 1.0 0.7		1.2 1.5 1.3 1.5 1.2 1.5 1.7 1.3	V	$\begin{split} I_{F} &= 2 \text{ mA} \\ I_{F} &= 50 \text{ mA} \\ I_{F} &= 10 \text{ mA} \\ I_{F} &= 10 \text{ mA}, T_{A} &= -55^{\circ} \text{ C} \\ I_{F} &= 10 \text{ mA}, T_{A} &= -100^{\circ} \text{ C} \\ I_{F} &= 10 \text{ mA}, T_{A} &= -55^{\circ} \text{ C} \\ I_{F} &= 10 \text{ mA}, T_{A} &= -100^{\circ} \text{ C} \end{split}$
V _R	Reverse Voltage 3C91C, 3C92C (TX, TXV)	7	-	-	V	I _R = 0.1 mA
I _R	Reverse Current 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	- - -	-	1 100 100	μΑ	V _R = 3.0 V V _R = 2.0 V V _R = 2.0 V
C _{IN}	Diode Capacitance 3C91C, 3C92C (TX, TXV)	-	25	-	pF	V = 0, f = 1 MHz
Output Pho	ototransistor	•		•		
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	50 30 40	- -	- - -	V	I _c = 10.0 mA I _c = 1.0 mA I _c = 1.0 mA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	7 5 7	- -	- -	V	I _c = 10 μA I _E = 100 μA I _E = 100 μA
I _{ceo}	Collector Dark Current 3C91C, 3C92C (TX, TXV) 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	- - - -	- - - -	10 50 100 100 100 100	nA nA μA μA μA	$V_{CE} = 5 V$ $V_{CE} = 50 V$ $V_{CE} = 10.0 V$ $V_{CE} = 10.0 V, T_A = 100° C$ $V_{CE} = 10.0 V, T_A = 100° C$ $V_{CE} = 10.0 V, T_A = 100° C$

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	PARAMETER		MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS
Coupled	•				•		
Coupled I _{C(ON)}	On-State Collector Current 3C91C, 3C92C (TX, TXV) 3C91C, 3C92C (TX, TXV) 3N243 (TX, TXV) 3N243 (TX, TXV) 3N243 (TX, TXV) 3N243 (TX, TXV) 3N244 (TX, TXV) 3N244 (TX, TXV) 3N244 (TX, TXV) 3N244 (TX, TXV) 3N245 (TX, TXV) 3N261 (TX, TXV) 3N261 (TX, TXV) 3N262 (TX, TXV) 3N262 (TX, TXV)		4.0 3.0 1.5 0.3 0.5 3.0 0.8 1.0 1.0 6.0 1.5 1.5 1.5 0.5 0.7 0.5 1.0 1.4		- 20 - - - - - - - - - - - - - 5 -	mA	$\begin{split} I_F &= 10 \text{ mA}, V_{CE} = 5 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 0.4 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 100^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V} \\ I_F &= 3 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 10.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 10 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, T_A = 55^{\circ} \text{ C} \\ I_F &= 1 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 0.0 \text{ M} \\ I_F &= 0.0 \text{ mA}, V_{CE} = 0.0 \text{ M} \\ I_F &= 0.0 \text{ mA}, V_{CE} \\ I_F &= 0.0 \text{ mA}, V_{C$
	3N262 (TX, TXV) 3N263 (TX, TXV) 3N263(TX, TXV) 3N263(TX, TXV)		1.0 2.0 2.8 2.0		- 10 - -		$\begin{split} I_F &= 2.0 \text{ mA }, V_{CE} = 5.0 \text{V}, T_A = 100^\circ \text{ C} \\ I_F &= 1 \text{mA }, V_{CE} = 5.0 \text{V} \\ I_F &= 2.0 \text{mA }, V_{CE} = 5.0 \text{V}, T_A = 55^\circ \text{C} \\ I_F &= 2.0 \text{mA }, V_{CE} = 5.0 \text{V}, T_A = 100^\circ \text{C} \end{split}$
V _{ce(sat)}	Collector-Emitter Saturation Voltage 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N262, 3N263 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)	3N261,			0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3	v	$\begin{split} I_F &= 50 \text{ mA }, \ I_C &= 10 \text{ mA} \\ I_F &= 20 \text{ mA }, \ I_C &= 1.50 \text{ mA} \\ I_F &= 20 \text{ mA }, \ I_C &= 3.0 \text{ mA} \\ I_F &= 20 \text{ mA }, \ I_C &= 6.0 \text{ mA} \\ I_F &= 2.0 \text{ mA }, \ I_C &= 0.50 \text{ mA} \\ I_F &= 2.0 \text{ mA }, \ I_C &= 1.0 \text{ mA} \\ I_F &= 2.0 \text{ mA }, \ I_C &= 2.0 \text{ mA} \end{split}$
t _{on}	Turn-on Time 3C91C, 3C92C (TX, TXV)		-	-	9	μs	V_{cc} = 5 V, I_c = 2 mA, R_L = 100 Ω
t _{IOFF}	Turn-off Time 3C91C, 3C92C (TX, TXV))		-	-	6	μs	V_{cc} = 5 V, I _c = 2 mA, R _L = 100 Ω

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

SYMBOL	BOL PARAMETER		ТҮР	MAX	UNITS	TEST CONDITIONS
Coupled						
C _{io}	Input-to-Output Capacitance 3C91C, 3C92C (TX, TXV) 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)		2 - -	2.5 5.0 5.0	pF	$ \begin{split} f &= 1 \; \text{MHz} \\ V_{\text{IO}} &= 0 \; \text{V, f} = 1.00 \; \text{MHz}^{(1)} \\ V_{\text{IO}} &= 0 \; \text{V, f} = 1.00 \; \text{MHz}^{(1)} \end{split} $
I _{IO}	Leakage Input -to-Output 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262, 3N263 (TX, TXV)		-	100 10	nA	$V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$ $V_{IO} = \pm 1.00 \text{ kVDC}^{(1)}$
R _{IO}	Isolation Resistance 3C91C, 3C92C (TX, TXV)	10 ⁹	-	-	Ω	V _{I0} = +1 kV
tr	Output Rise Time 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262 (TX, TXV) 3N263 (TX, TXV)		- - -	10 20 25	μs	$\begin{split} & V_{CC} = 10.0 \; V, \; I_{F} = 10.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} V_{CC} = \\ & 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \\ & V_{CC} = 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \end{split}$
t _f	Output Fall Time 3N243, 3N244, 3N245 (TX, TXV) 3N261, 3N262 (TX, TXV) 3N263 (TX, TXV)		- - -	10 10 25	μs	$\begin{split} & V_{CC} = 10.0 \; V, \; I_{F} = 10.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} V_{CC} = \\ & 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \\ & V_{CC} = 10.0 \; V, \; I_{F} = 5.0 \; mA, \; R_{L} = 100 \; \Omega^{(2)} \end{split}$

Notes:

1. Measured with input leads shorted together and output leads shorted together.

2. The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} = 50 \Omega$, $t_r \le 15$ ns, duty cycle ~ 1%, pulse width ~ 100 ms

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.