

Surface Mount PTC ozCA Series

1206 Chip
RoHS 6 Compliant \& Halogen-Free
[HF (18)

Electrical Characteristios $\left(23^{\circ} \mathrm{C}\right)$

IH Hold current-maximum current at which the device will not trip in still air at $23^{\circ} \mathrm{C}$.
It Trip current-minimum current at which the device will always trip in still air at $23^{\circ} \mathrm{C}$.
$I_{\max } \quad$ Maximum fault current device can withstand without damage at rated voltage (Vmax).
$V_{\max } \quad$ Maximum voltage device can withstand without damage at its rated current.
$\mathbf{P d}_{\text {d }} \quad$ Typical power dissipated by device when in tripped state in $23^{\circ} \mathrm{C}$ still air environment.
$\mathbf{R}_{\min } \quad$ Minimum device resistance at $23^{\circ} \mathrm{C}$.
$\mathbf{R}_{\max }$ Maximum device resistance at $23^{\circ} \mathrm{C}$.
R1max Maximum device resistance at $23^{\circ} \mathrm{C}, 1$ hour after initial device trip.

Termination pad characteristios

Termination pad materials

Matte Tin-plated Copper

Pad Layout, Solder Reflow and Rework Recommendations

The dimensions in the table below provide the recommended pad layout for each OZCA device

$\mathrm{Br}_{\rightarrow}$

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Tsmax to Tp)	$3{ }^{\circ} \mathrm{C} /$ second max.
Preheat:	$150{ }^{\circ} \mathrm{C}$
Temperature Min (Tsmin)	$200{ }^{\circ} \mathrm{C}$
Temperature Max (Tsmax)	$60-180$ seconds
Time (tsmin to tsmax)	$217{ }^{\circ} \mathrm{C}$
Time maintained above:	$60-150$ seconds
Temperature(Th)	Time (L)

Solder Reflow

* Due to "lead free/RoHS6" construction of these PTC devices, the required Temperature and Dwell Time in the "Soldering" zone of the reflow profile are greater than those used for non-RoHS devices.

1. Recommended reflow methods; IR, vapor phase oven, hot air oven.
2. The OZCA Series is suitable for wave solder application methods.
3. Recommended maximum paste thickness is 0.25 mm .
4. Devices are compatible with standard industry cleaning solvents and methods.

Caution

If reflow temperature/dwell times exceed the recommended profile, the electrical performance of the PTC may be affected.

Rework
MIL-STD-202G Method 210F.Test Condition A.
halogen free $=$ HF LEAD FREE = (B)

Bel Fuse Inc. 206 Van Vorst Street, Jersey City, NJ 07302•Tel:201-432-0463 • Fax:201-432-9542•E-Mail: belfuse@belfuse.com Website:www.belfuse.com

Surface Mount PTC

 oZCA Series
Typical Time - To - Trip at $\mathbf{2 3}{ }^{\circ} \mathrm{C}$

(See Elec. Characteristics Table for P/N - Curve Correlation)

Thermal Derating Curve

Cautionary Notes

1. Operation beyond the specified maximum ratings or improper use may result in damage and possible electrical arcing and/or flame.
2. These Polymer PTC (PPTC) devices are intended for protection against occasional overcurrent/ overtemperature fault conditions and may not be suitable for use in applications where repeated and/ or prolonged fault conditions are anticipated.
3. Avoid contact of PTC device with chemical solvent. Prolonged contact may adversely impact the PTC performance.
4. These PTC devices may not be suitable for use in circuits with a large inductance, as the PTC trip can generate circuit voltage spikes above the PTC rated voltage.

Specifications subject to change without notice

Corporate Office
 Bel Fuse Inc.

206 Van Vorst Street, Jersey City, NJ 07302
Tel: 201-432-0463
Fax: 201-432-9542
E-Mail: belfuse@belfuse.com
Website: www.belfuse.com

Far East Dffice

Bel Fuse Ltd.

8F / 8 Luk Hop Street
San Po Kong
Kowloon, Hong Kong
Tel 852-2328-5515
Fax 852-2352-3706
E-Mail : bel_hk@belfuse.com

European Office

Bel Stewart GmbH
Industriestrasse 20
61381 Friedrichsdorf
Germany
Tel 49-6172-9552-0
Fax 49-6172-9552-40
E-Mail : cprebeck@bel-stewart.com

