April 2004

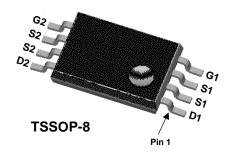
SEMICONDUCTOR®

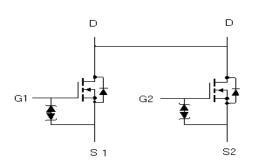
FDW2510NZ

FAIRCHILD

Dual N-Channel 2.5V Specified PowerTrench^o MOSFET

General Description


This N-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild's Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).


Applications

• Li-Ion Battery Pack

Features

- 6.4 A, 20 V $R_{DS(ON)} = 24 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 32 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Extended V_{GSS} range (±12V) for battery applications
- ESD protection diode (note 3)
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low profile TSSOP-8 package

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	rain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage			±12	V
ID	Drain Curre	ent – Continuous	(Note 1a)	6.4	A
– Pulsed				30	
P _D Power D		ipation for Single Operation	(Note 1a)	1.6	W
			(Note 1b)	1.1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	
Therma	l Charac	teristics			
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		nt (Note 1a)	77	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1b)		nt (Note 1b)	114	
Packag	e Markin	g and Ordering In	formation		
Device Marking		Device	Reel Size	Tape width	Quantity
	ONZ	FDW2510NZ	13"	12mm	3000 units

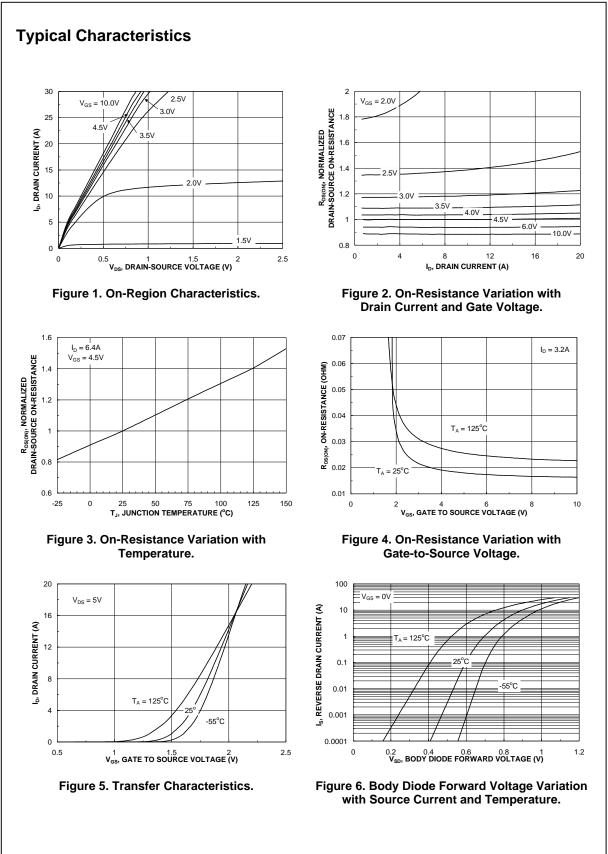
©2004 Fairchild Semiconductor Corporation

Electrical Characteristics T _A = 25°C unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_D = 250 \mu\text{A}$	20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 16 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS}=\pm 12~V, V_{DS}=0~V$			±10	μΑ
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.6	0.98	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-0.4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS}=4.5 \ V, & I_{D}=6.4 \ A \\ V_{GS}=4V, & I_{D}=6.1 \ A \\ V_{GS}=3.1 \ V, & I_{D}=5.8 \ A \\ V_{GS}=2.5 \ V, & I_{D}=5.6 \ A \\ V_{GS}=4.5 \ V, \ I_{D}=6.4 \ A, \ T_{J}{=}125^{\circ}C \end{array} $		18 19 21 25 26	24 25 28 32 37	mΩ
g FS	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 6.4 A$		28		S
Dynamic	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$		870		pF
Coss	Output Capacitance	f = 1.0 MHz		225		pF
Crss	Reverse Transfer Capacitance			125		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		1.9		Ω
Switchir	ng Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 10 V, \qquad I_D = 1 A,$		9	18	ns
t _r	Turn–On Rise Time	$V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \ \Omega$		13	23	ns
t _{d(off)}	Turn–Off Delay Time	7		18	33	ns
t _f	Turn–Off Fall Time			9	18	ns
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, \qquad I_D = 6.4 \text{ A},$		8.2	12	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = 4.5 V$		1.8		nC
Q _{gd}	Gate-Drain Charge			2.3		nC

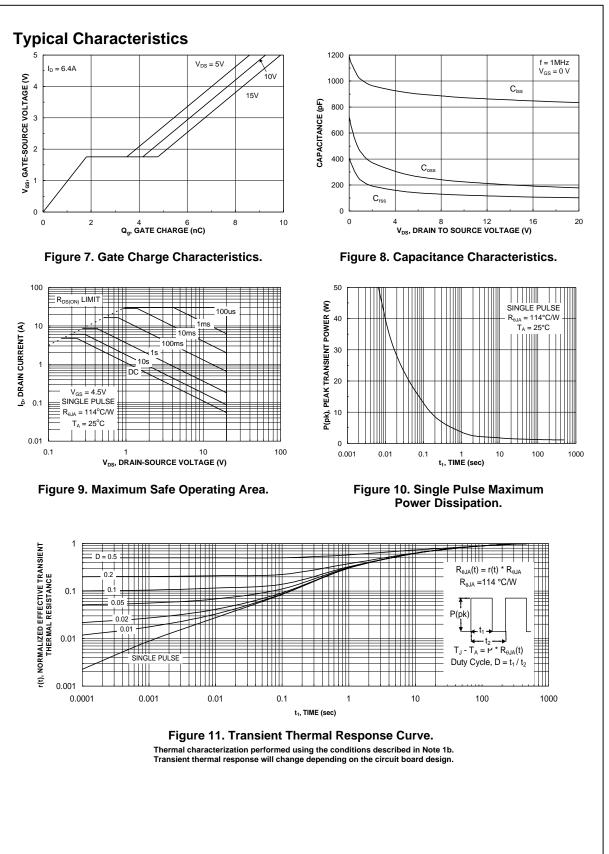
FDW2510NZ

FDW2510NZ Rev C(W)

	cal Characteristics	T _A = 25°C unless otherwise noted		1		T
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-S	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain–Source Diode Forward Current			1.3	А	
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V, I_S = 1.3 \ A \qquad (\text{Note 2})$		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 6.4 A		18		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)		6		nC


Notes:

1. R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\rm R_{_{\theta JC}}$ is guaranteed by design while $\rm R_{_{\theta CA}}$ is determined by the user's board design.


a) R_{θJA} is 77°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.
b) R_{θJA} is 114 °C/W (steady state) when mounted on a minimum copper pad on FR-4.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

3. The diode connected between the gate and source serves only as protection against ESD. No gate over voltage rating is implied.

FDW2510NZ

FDW2510NZ

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	FAST®		Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic [®]
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E ² CMOS™	l²C™	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect [™]	OCXPro™	µSerDes™	UltraFET [®]
FACT Quiet Series [™]		OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Across the board	d. Around the world.™	OPTOPLANAR™	SMART START™	
The Power France		PACMAN™	SPM™	
Programmable Active Droop™		POP™	Stealth™	
i iogiainnabio/				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. I11