
CryptoCape Hookup Guide




What is a CryptoCape?

The CryptoCape is a collaboration with Hacker In Residence alumni Josh
Datko. The CryptoCape is the BeagleBone’s first dedicated security
daughterboard. Known as “shields” on other platforms, a BeagleBone cape
attaches to the expansion headers of the BeagleBone Black. This cape
adds specialized ICs that perform various cryptographic operations which
will allow you to add a hardware security layer to your BeagleBone project.
It also is a nice device for those performing embedded security research.

In this tutorial, we’ll tour the features on the CryptoCape and show you the
software resources available for you to start using the device.

Required Materials

Aside from the CryptoCape, you’ll also need the following items:

• BeagleBone Black
• Jumpers
• 0.1" Male Headers

Suggested Reading

Before getting into this tutorial, make sure you’re familiar with the concepts
below:

• Beagle Bone Black Proto Cape Hookup Guide
• Integrated Circuits
• I2C
• Serial Communication

Page 1 of 8

• Using GitHub
• How to Solder

Installing the Cape Firmware
The CryptoCape is a registered BeagleBone cape whose firmware is
included in the latest BeagleBone debian images. However, you may have
to upgrade your image to retrieve the latest software. Perform the following
command on your BeagleBone:

dmesg | grep CRYPTO

If you see something like this, then you have the firmware installed:

[0.717065] bone­capemgr bone_capemgr.9: slot #3: 'BB­BONE­
CRYPTO,00A0,SparkFun,BB­BONE­CRYPTO'
[0.717766] bone­capemgr bone_capemgr.9: loader: before slo
t­3 BB­BONE­CRYPTO:00A0 (prio 0)
[0.717783] bone­capemgr bone_capemgr.9: loader: check slot
­3 BB­BONE­CRYPTO:00A0 (prio 0)
[0.720127] bone­capemgr bone_capemgr.9: loader: after slot
­3 BB­BONE­CRYPTO:00A0 (prio 0)
[0.720149] bone­capemgr bone_capemgr.9: slot #3: Requestin
g part number/version based 'BB­BONE­CRYPTO­00A0.dtbo
[0.720167] bone­capemgr bone_capemgr.9: slot #3: Requestin
g firmware 'BB­BONE­CRYPTO­00A0.dtbo' for board­name 'BB­BONE­
CRYPTO', version '00A0'
[0.720196] bone­capemgr bone_capemgr.9: slot #3: dtbo 'BB­
BONE­CRYPTO­00A0.dtbo' loaded; converting to live tree
[0.756311] bone­capemgr bone_capemgr.9: loader: done slot
­3 BB­BONE­CRYPTO:00A0 (prio 0)

You still need to install tpm­tools to use the TPM.

If you don’t see the CryptoCape in dmesg , perform the following:

sudo apt­get install tpm­tools
cd /opt/scripts/tools/
sudo ./update_kernel.sh
sudo reboot

If you don’t have an /opt/scripts/tools directory, then you have a really
old version of sofware on your Beagle and you need to upgrade. Download
the latest image from the BeagleBoard.org site.

Cape EEPROM

Page 2 of 8

The Cape’s EEPROM is defaulted to an I2C address of 0x57 . If you plan
on stacking capes – the BeagleBone can support up to four stacked capes
– you may need to change the addresses of the EEPROM. The table below
contains the available addresses for the EEPROM. Close the appropriate
jumpers to change the address. (0 - Closed, 1 - Open).

Address Table

A2 A1 A0 7-bit address
1 0 0 0x54
1 0 1 0x55
1 1 0 0x56
1 1 1 0x57

If you want to prevent users from writing to the EEPROM, you’ll need to
solder 0.1" male headers to the write protect pads and place a jumper on
these pins. The EEPROM contains the cape definition, which is written
during manufacturing and testing. If you overwrite it, the cape may not load
correctly. You can always read the EEPROM with the following command:

sudo cat /sys/bus/i2c/devices/1­0057/eeprom| hexdump ­C

Real Time Clock

The Real-Time Clock is used to keep accurate time. The driver for the
DS3231M RTC will be loaded automatically with the rest of the cape
firmware. If you add a coin cell battery to the battery holder, the RTC will
keep time even when power is removed from the BeagleBone.

For a closer look at how to use the RTC and how I2C works on the
BeagleBone Black, checkout this tutorial.

Trusted Platform Module

Page 3 of 8

The Atmel Trusted Platform Module (TPM) is the AT97SC3205T, and only
a summary datasheet is available with an NDA. However, the full datasheet
is not required because there is existing software support. The TPM
conforms to the Trusted Computer Group (TCG) Software Stack (TSS)
Specification version 1.2, which is supported by the TrouSerS Linux
software.

A very generic description of the TPM is that it performs RSA encryption,
decryption, and signing in the hardware. It can perform much more than
that, and there are entire books on how to use the TPM.

The kernel driver was backported to the 3.8 kernel by Robert Nelson of
BeagleBoard.org and will be loaded automatically by the BeagleBone Cape
Manager.

Using the TPM

Instructions for using the TPM are located on this page.

AES-128 EEPROM

The Atmel AES132 is an AES encrypted EEPROM that can store up to
32Kb of data. Specifically, it uses AES with a 128 bit key in CCM mode.

There currently is not a linux driver that uses this hardware, however you
can use the Atmel AES132 AVR software. As with the other crypto chips,
once you run the lock command, this is an irreversible operation.

ATSHA204

Page 4 of 8

The Atmel ATSHA204 is an authentication chip that performs SHA-256 and
HMAC-256. It can store up to 16 secret keys that can be used for shared-
secret authentication between two devices with an ATSHA204 or between
a ATSHA204 and a remote server. It also can produce random numbers
with its on-chip random number generator. The ATSHA204 on the
CryptoCape is the I2C version of our Breakout Board version. It’s also on
the Electric Imp.

This chip, like the other crypto chips, is one-time-programmable. This
means that once you run certain commands on the chip, it can not be
reversed. This is a security feature.

Software
There are two options for software, you can use either Atmel’s AVR library
and load that to the ATmega328p, or you can use the Cryptotronix linux
driver.

Atmel’s AVR Library

Atmel’s ATSHA204 AVR Library page hash links to their software.

Cryptotronix Linux driver

The linux driver, called hashlet , can be download here or cloned from
GitHub. See the GitHub page for examples.

Elliptical Curve Generator

Page 5 of 8

The ATECC108 performs the Elliptic Curve Digital Signature Algorithm
(ECDSA) on the chip. This is an authentication chip, like the ATSHA204.
The goal of an authentication device is to assert the integrity and identity of
a communicating party. The ATECC108 uses asymmetric cryptography,
which means there is a public and private key. In short, this allows you to
distribute public keys and keep individual private keys secret. This is unlike
the ATSHA204 where each device needs a copy of the same secret key.

Atmel AVR Library
While the datasheet is under a NDA, Atmel provides an AVR based library
to interface with this chip.

Linux Driver
There is a Cryptotronix Linux driver, with examples, available on GitHub.
This blog post walks through using the software and describes the current
status.

Atmega 328

The ATmega328p operates at 3.3V and 8Mhz, just like the Arduino Pro
Mini. It is loaded with the Arduino Pro Mini 3.3V bootloader and contains a
basic test sketch from the factory. There are two ways to upload sketches
to this chip: Using an ISP programmer or from the BeagleBone.

Using an external programmer

The Pocket AVR Programmer will work to program the ATmega. You’ll
need to populate the ISP headers with some 0.1" male headers. When you
connect the Pocket Programmer, be sure to select “No Power” because the
CryptoCape receives 3.3V power from the BeagleBone. While most of the
chips on this board are 5V friendly, the oscillator for the TPM is not. You
can then use the USBTiny programmer option from the Arduino IDE.

Using the BeagleBone

Since the ATmega is tied to the BeagleBone’s UART4, the BeagleBone can
flash sketches up to the ATmega. If you want a detailed description of how
this works, check out the May 2014 cover article of Linux Journal. You’ll not
only see how to program the ATmega, you’ll read how the device tree
works in gory details.

For those that just want to upload sketches quickly, clone the following
repository from your BeagleBone:

Page 6 of 8

git clone https://github.com/jbdatko/BBB_ATmega328P_flasher.gi
t

In that repository, there is an upload.sh script, which is invoked as follows:

sudo ./upload.sh Blink.cpp.hex

Replace Blink.cpp.hex with the hex file you want to flash. How do you get
this hex file? In your Arduino IDE, go to “Preferences” then “Show verbose
output during compilation.” When you “verify” your sketch, the output
window will tell you where the hex file lives. Download this to the
BeagleBone with sftp or something similar.

Installing the Jumpers

Jumpers Installed

To flash the ATmega from the Beagle, you must physically attach jumpers
to the “Program Jumper” pads. You should solder 0.1" male headers to
these pads. The spacing between these jumpers is purposely oddly spaced
to prevent you from attaching the jumpers in the wrong direction. Without
the jumpers, you can’t upload sketches from the Beagle.

This is a security feature. We wouldn’t want some malware changing the
firmware on the ATmega, now would we?

Breakout Pads

The CryptoCape breaks out most of the ATmega signals to surrounding
pads. There is even a green LED which is compatible with the typical
“Blink” sketch, so you can upload that example to make sure everything is
working. Not all the Arduino signals are broken out, but the ones that are
available on the CryptoCape are listed here:

• GND
• 3.3V
• D0 - D10
• D13 with LED
• A0 - A13

The serial UART between the BeagleBone and the ATmega can be split. If
you don’t put the jumpers on, the serial line will not be connected, and the
BeagleBone can use the “upstream” side of the serial lines while the
ATmega can use the “downstream.” This might be useful if you have two
serial devices and you want the BeagleBone to talk to one of them and the
ATmega to the other, without mixing the signals.

Page 7 of 8

I2C

The ATmega is connected to the same I2C bus as all of the other chips.
This means you can join the bus as an I2C slave with
Wire.begin(address) and communicate with the Beagle over I2C. Just be

sure to pick an address not already in use. We recommend 0x42, because
it’s the answer to life, the universe, and everything. But if you attached the
HMC6352, you’ll need a new address since that is also 0x42.

This blog post contains a detailed overview of using I2C on the BeagleBone
Black.

Resources and Going Further
There is a dedicated CryptoCape Google Group if you have specific
questions. Also, feel free to join the #cryptotronix channel on Freenode.
While you are joining IRC channels, hang out in the SparkFun IRC channel
as well!

Further reading:

• BeagleBone Black Homepage
• Bone Script Library Support

Page 8 of 8

11/16/2015https://learn.sparkfun.com/tutorials/cryptocape-hookup-guide?_ga=1.29996927.19394569...

