
MPC5668x Microcontroller
Reference Manual

Devices Supported:
MPC5668E
MPC5668G

Document Number: MPC5668XRM
Rev. 4

01/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the
property of their respective owners.
The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service
marks licensed by Power.org.

All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2010. All rights reserved.

MPC5668XRM
Rev. 4
01/2011

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor iii

Chapter 1
Introduction

1.1 Overview . 1-1
1.2 MPC5668G/E Features . 1-1
1.3 MPC5668G Block Diagram . 1-4
1.4 MPC5668E Block Diagram . 1-5

1.4.1 Critical Performance Parameters . 1-6
1.4.2 Packages . 1-7
1.4.3 Module Features . 1-7

1.5 Developer Environment . 1-22
1.6 MPC5668G/E Memory Map . 1-22

Chapter 2
Signal Description

2.1 Introduction . 2-1
2.2 Signal Properties Summary . 2-1

2.2.1 I/O Power and Ground Segmentation . 2-19
2.3 Pinout . 2-20
2.4 Detailed Signal Description . 2-22

2.4.1 Port A Pins . 2-22
2.4.2 Port B Pins . 2-22
2.4.3 Port C Pins . 2-24
2.4.4 Port D Pins . 2-26
2.4.5 Port E Pins . 2-27
2.4.6 Port F Pins . 2-30
2.4.7 Port G Pins . 2-32
2.4.8 Port H Pins . 2-34
2.4.9 Port J Pins . 2-36
2.4.10 Port K Pins . 2-38
2.4.11 Nexus Signals . 2-40
2.4.12 Reset and Configuration Signals . 2-41
2.4.13 JTAG Signals . 2-41
2.4.14 Clock Synthesizer Signals . 2-42
2.4.15 Power / Ground Signals . 2-42

Chapter 3
Resets

3.1 Introduction . 3-1
3.2 External Signal Description . 3-1

3.2.1 Reset (RESET) . 3-2
3.2.2 Boot Configuration (BOOTCFG) . 3-2

3.3 Functional Description . 3-2
3.3.1 Z6, Z0 Cores Reset Vectors . 3-2
3.3.2 Reset Sources . 3-2

MPC5668x Microcontroller Reference Manual, Rev. 4

iv Freescale Semiconductor

3.4 Reset Configuration . 3-4
3.4.1 Reset Configuration Timing . 3-5

Chapter 4
System Clock Description

4.1 Introduction . 4-1
4.1.1 Features . 4-1
4.1.2 Clock Sources . 4-2
4.1.3 External High-Frequency Crystal (4 – 40 MHz XTAL) . 4-3
4.1.4 Internal High-Frequency RC Oscillator (16 MHz_IRC) . 4-4
4.1.5 Internal Low-Frequency RC Oscillator (128 kHz_IRC) . 4-4
4.1.6 External Low-Frequency Crystal (32 kHz_XTAL) . 4-5
4.1.7 FMPLL . 4-5

4.2 System Clock Architecture . 4-6
4.3 Clock Dividers . 4-8

4.3.1 System Clock Select . 4-8
4.3.2 System Clock Dividers . 4-8
4.3.3 External Bus Clock (CLKOUT) Divider . 4-8
4.3.4 Nexus Message Clock (MCKO) Divider . 4-9
4.3.5 Peripheral Clock Dividers . 4-9

4.4 Software-Controlled Power Management . 4-10
4.4.1 Module Disable (MDIS) Clock Gating . 4-10
4.4.2 Halt Clock Gating . 4-11
4.4.3 Core WAIT Clock Gating . 4-11

4.5 Alternate Module Clock Domains . 4-12
4.5.1 FlexCAN Clock Domains . 4-12
4.5.2 FlexRay Clock Domains . 4-12
4.5.3 API / RTC Clock Domains . 4-13
4.5.4 SWT Clock Domain . 4-13
4.5.5 Input/Output Processor (IOP) Clocking . 4-14
4.5.6 FEC Clocking . 4-14
4.5.7 Media Local Bus (MLB) DIM Clocking . 4-14

Chapter 5
Clocks, Reset, and Power (CRP)

5.1 Introduction . 5-1
5.1.1 Block Diagram . 5-1
5.1.2 Features . 5-2
5.1.3 Modes of Operation . 5-4

5.2 Memory Map and Registers . 5-4
5.2.1 Module Memory Map . 5-4
5.2.2 Register Descriptions . 5-5

5.3 Functional Description . 5-17
5.3.1 Low-Power Mode . 5-17

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor v

5.3.2 Wake-Up Lines . 5-17
5.3.3 Low-Power Mode Entry . 5-18
5.3.4 Low-Power Operation . 5-19
5.3.5 Low-Power Wakeup . 5-23

5.4 Real-Time Counter (RTC) . 5-25
5.4.1 RTC Features . 5-26
5.4.2 RTC Functional Description . 5-26
5.4.3 Register Description . 5-28

5.5 Power Supply Monitors . 5-29
5.5.1 Power-On Reset (POR) . 5-29
5.5.2 Low-Voltage Monitors (LVI) . 5-29

Chapter 6
Frequency Modulated Phase-Locked Loop (FMPLL)

6.1 Introduction . 6-1
6.1.1 Block Diagram . 6-1
6.1.2 Features . 6-1
6.1.3 Modes of Operation . 6-2

6.2 External Signal Description . 6-2
6.3 Memory Map and Registers . 6-2

6.3.1 Module Memory Map . 6-2
6.3.2 Register Descriptions . 6-3

6.4 Functional Description . 6-10
6.4.1 General . 6-10
6.4.2 PLL Off Mode . 6-11
6.4.3 Normal Mode . 6-11

6.5 Resets . 6-18
6.5.1 Clock Mode Selection . 6-18
6.5.2 PLL Loss-of-Lock Reset . 6-19
6.5.3 PLL Loss-of-Clock Reset . 6-19

6.6 Interrupts . 6-19
6.6.1 Loss-of-Lock Interrupt Request . 6-19
6.6.2 Loss-of-Clock Interrupt Request . 6-19

Chapter 7
System Integration Unit (SIU)

7.1 Introduction . 7-1
7.1.1 Block Diagram . 7-1
7.1.2 Features . 7-2
7.1.3 Modes of Operation . 7-3

7.2 External Signal Description . 7-3
7.2.1 Ports vs. General-Purpose I/O Pins . 7-4

7.3 Memory Map and Registers . 7-4
7.3.1 Module Memory Map . 7-4

MPC5668x Microcontroller Reference Manual, Rev. 4

vi Freescale Semiconductor

7.3.2 Register Descriptions . 7-13
7.4 Functional Description . 7-68

7.4.1 System Configuration . 7-68
7.4.2 Reset Control . 7-68
7.4.3 External Interrupt . 7-68
7.4.4 GPIO Operation . 7-69
7.4.5 Internal Multiplexing . 7-69

Chapter 8
Boot Assist Module (BAM)

8.1 Introduction . 8-1
8.1.1 Features . 8-1
8.1.2 Modes of Operation . 8-2

8.2 Memory Map and Registers . 8-2
8.2.1 Module Memory Map . 8-2
8.2.2 Register Descriptions . 8-3

8.3 Functional Description . 8-3
8.3.1 BAM Program Resources . 8-3
8.3.2 BAM Program Operation . 8-3
8.3.3 Features . 8-5

Chapter 9
Interrupts and Interrupt Controller (INTC)

9.1 Introduction . 9-1
9.1.1 Block Diagram . 9-1
9.1.2 Interrupt Controller Features . 9-3
9.1.3 Modes of Operation . 9-3

9.2 External Signal Description . 9-7
9.3 Memory Map and Registers . 9-8

9.3.1 INTC Memory Map . 9-8
9.3.2 Register Descriptions . 9-8

9.4 Functional Description . 9-18
9.4.1 External Interrupt Request Sources . 9-18
9.4.2 Priority Management . 9-33
9.4.3 Details on Handshaking with Processor . 9-35

9.5 Initialization/Application Information . 9-37
9.5.1 Initialization Flow . 9-37
9.5.2 Interrupt Exception Handler . 9-37
9.5.3 ISR, RTOS, and Task Hierarchy . 9-39
9.5.4 Order of Execution . 9-40
9.5.5 Priority Ceiling Protocol . 9-41
9.5.6 Selecting Priorities According to Request Rates and Deadlines 9-43
9.5.7 Software Settable Interrupt Requests . 9-43
9.5.8 Lowering Priority Within an ISR . 9-44

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor vii

9.5.9 Negating an Interrupt Request Outside of its ISR . 9-45
9.5.10 Examining LIFO Contents . 9-45

9.6 Non-Maskable Interrupt (NMI) . 9-46
9.7 Dynamic Interrupt Priority Elevation . 9-47

9.7.1 e200z6 Dynamic Priority Elevation . 9-47
9.7.2 e200z0 Dynamic Priority Elevation . 9-47
9.7.3 eDMA Dynamic Interrupt Priority Elevation . 9-48

Chapter 10
General-Purpose Static RAM (SRAM)

10.1 Introduction . 10-1
10.1.1 Block Diagram . 10-1
10.1.2 Features . 10-2
10.1.3 Modes of Operation . 10-3

10.2 External Signal Description . 10-3
10.3 Memory Map and Registers . 10-3
10.4 Functional Description . 10-3
10.5 SRAM ECC Mechanism . 10-3

10.5.1 Access Timing . 10-4
10.5.2 Reset Operation . 10-5

10.6 DMA Requests . 10-6
10.7 Interrupt Requests . 10-6
10.8 Initialization and Application Information . 10-6

10.8.1 Example Code . 10-6

Chapter 11
Flash Memory Array and Control

11.1 Introduction . 11-1
11.1.1 Block Diagram . 11-2
11.1.2 Features . 11-3
11.1.3 Modes of Operation . 11-3

11.2 External Signal Description . 11-4
11.3 Memory Map and Registers . 11-4

11.3.1 Module Memory Map . 11-4
11.3.2 Register Descriptions . 11-6

11.4 Functional Description . 11-27
11.4.1 Flash User Mode . 11-27
11.4.2 UTest Mode . 11-35
11.4.3 Flash Shadow Block . 11-37
11.4.4 Flash Sleep Mode . 11-38
11.4.5 Flash Reset . 11-38
11.4.6 DMA Requests . 11-38
11.4.7 Interrupt Requests . 11-38

MPC5668x Microcontroller Reference Manual, Rev. 4

viii Freescale Semiconductor

Chapter 12
e200z6 Core (Z6)

12.1 Introduction . 12-1
12.1.1 Block Diagram . 12-1
12.1.2 Overview . 12-2
12.1.3 Features . 12-3
12.1.4 Microarchitecture Summary . 12-5

12.2 Core Registers and Programmer’s Model . 12-6
12.2.1 Power Architecture Registers . 12-10
12.2.2 Core-Specific Registers . 12-12
12.2.3 e200z6 Core Complex Features Not Supported in the Device 12-14

12.3 Functional Description . 12-14
12.3.1 Memory Management Unit (MMU) . 12-14
12.3.2 L1 Cache . 12-21
12.3.3 Interrupt Types . 12-29
12.3.4 Bus Interface Unit (BIU) . 12-31
12.3.5 Timer Facilities . 12-31
12.3.6 Signal Processing Extension APU (SPE APU) . 12-32
12.3.7 SPE Programming Model . 12-32
12.3.8 12.3.8 Wait Instruction . 12-33

12.4 Power Architecture Instruction Extensions – VLE . 12-33
12.5 External References . 12-34

Chapter 13
e200z0 Core (Z0)

13.1 Introduction . 13-1
13.1.1 Features . 13-1

13.2 Microarchitecture Summary . 13-2
13.2.1 Instruction Unit Features . 13-3
13.2.2 Integer Unit Features . 13-4
13.2.3 Load/Store Unit Features . 13-4
13.2.4 e200z0 System Bus Features . 13-4
13.2.5 Nexus 2+ Features . 13-4

13.3 Core Registers and Programmer’s Model . 13-5
13.3.1 Power Architecture Book E Registers . 13-7
13.3.2 e200-Specific Special Purpose Registers . 13-9
13.3.3 e200z0 Core Complex Features not Supported on the MPC5668x 13-11

13.4 Interrupt Types . 13-11
13.5 Bus Interface Unit (BIU) . 13-13

Chapter 14
Semaphores

14.1 Introduction . 14-1
14.1.1 Block Diagram . 14-1

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor ix

14.1.2 Features . 14-2
14.1.3 Modes of Operation . 14-3

14.2 Signal Description . 14-3
14.3 Memory Map and Registers . 14-3

14.3.1 Module Memory Map . 14-3
14.3.2 Register Descriptions . 14-4

14.4 Functional Description . 14-10
14.4.1 Semaphore Usage . 14-12

14.5 Initialization Information . 14-12
14.6 Application Information . 14-12
14.7 DMA Requests . 14-14
14.8 Interrupt Requests . 14-14

Chapter 15
AMBA Crossbar Switch (AXBS)

15.1 Introduction . 15-1
15.1.1 Block Diagram . 15-1
15.1.2 AXBS Controller Configuration . 15-1
15.1.3 Overview . 15-2
15.1.4 Features . 15-2
15.1.5 Modes of Operation . 15-3

15.2 Memory Map and Register Definition . 15-3
15.2.1 Register Descriptions . 15-4

15.3 Functional Description . 15-8
15.3.1 Overview . 15-8
15.3.2 General Operation . 15-9
15.3.3 Master Ports . 15-9
15.3.4 Slave Ports . 15-10
15.3.5 Priority Assignment . 15-10
15.3.6 Arbitration . 15-10

Chapter 16
Peripheral Bridge (AIPS-lite)

16.1 Introduction . 16-1
16.1.1 Block Diagram . 16-1
16.1.2 Features . 16-1
16.1.3 Modes of Operation . 16-2

16.2 External Signal Description . 16-2
16.3 Memory Map and Register Description . 16-2
16.4 Functional Description . 16-2

16.4.1 Read Cycles . 16-2
16.4.2 Write Cycles . 16-2

MPC5668x Microcontroller Reference Manual, Rev. 4

x Freescale Semiconductor

Chapter 17
Memory Protection Unit (MPU)

17.1 Introduction . 17-1
17.1.1 Block Diagram . 17-1
17.1.2 Features . 17-2
17.1.3 Modes of Operation . 17-3

17.2 Signal Description . 17-3
17.3 Memory Map and Registers . 17-3

17.3.1 Module Memory Map . 17-3
17.3.2 Register Descriptions . 17-5

17.4 Functional Description . 17-15
17.4.1 Access Evaluation Macro . 17-15
17.4.2 Putting It All Together and AHB Error Terminations . 17-17

17.5 Initialization Information . 17-17
17.6 Application Information . 17-18

Chapter 18
Error Correction Status Module (ECSM)

18.1 Introduction . 18-1
18.1.1 Features . 18-1

18.2 Memory Map and Registers . 18-1
18.2.1 Module Memory Map . 18-2
18.2.2 Register Descriptions . 18-3

Chapter 19
Software Watchdog Timer (SWT)

19.1 Introduction . 19-1
19.1.1 Features . 19-1
19.1.2 Modes of Operation . 19-1

19.2 External Signal Description . 19-1
19.3 Memory Map and Register Definition . 19-2

19.3.1 Memory Map . 19-2
19.3.2 Register Descriptions . 19-2

19.4 Functional Description . 19-7

Chapter 20
System Timer Module (STM)

20.1 Overview . 20-1
20.1.1 Features . 20-1
20.1.2 Modes of Operation . 20-1
20.1.3 Clocking . 20-1
20.1.4 Interrupts . 20-1

20.2 External Signal Description . 20-1
20.3 Memory Map and Register Definition . 20-2

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xi

20.3.1 Memory Map . 20-2
20.3.2 Register Descriptions . 20-2

20.4 Functional Description . 20-5

Chapter 21
Periodic Interrupt Timer (PIT)

21.1 Introduction . 21-1
21.1.1 Block Diagram . 21-1
21.1.2 Features . 21-2
21.1.3 Modes of Operation . 21-2

21.2 Signal Description . 21-2
21.2.1 External Signal Description . 21-2

21.3 Memory Map and Registers . 21-2
21.3.1 Module Memory Map . 21-2
21.3.2 Register Descriptions . 21-4

21.4 Functional Description . 21-8
21.4.1 Timers . 21-8
21.4.2 Debug Mode . 21-9
21.4.3 Interrupts . 21-9

21.5 Initialization and Application Information . 21-9
21.5.1 Example Configuration . 21-9

Chapter 22
DMA Channel Multiplexer (DMA_MUX)

22.1 Introduction . 22-1
22.1.1 Block Diagram . 22-1
22.1.2 Features . 22-2
22.1.3 Modes of Operation . 22-2

22.2 External Signal Description . 22-2
22.3 Memory Map and Registers . 22-2

22.3.1 Module Memory Map . 22-2
22.3.2 Register Descriptions . 22-4

22.4 Functional Description . 22-8
22.4.1 DMA Channels 0–7 . 22-8
22.4.2 DMA Channels 8–31 . 22-10
22.4.3 Always Enabled DMA Sources . 22-11

22.5 Initialization/Application Information . 22-12
22.5.1 Reset . 22-12
22.5.2 Enabling and Configuring Sources . 22-12

22.6 Interrupts . 22-16

Chapter 23
Enhanced Direct Memory Access Controller (eDMA)

23.1 Introduction . 23-1

MPC5668x Microcontroller Reference Manual, Rev. 4

xii Freescale Semiconductor

23.1.1 Block Diagram . 23-1
23.1.2 Features . 23-2
23.1.3 Modes of Operation . 23-2

23.2 External Signal Description . 23-3
23.3 Memory Map and Registers . 23-3

23.3.1 Module Memory Map . 23-3
23.3.2 Register Descriptions . 23-7

23.4 Functional Description . 23-29
23.4.1 eDMA Basic Data Flow . 23-31

23.5 Initialization / Application Information . 23-34
23.5.1 eDMA Initialization . 23-34
23.5.2 DMA Programming Errors . 23-36
23.5.3 DMA Request Assignments . 23-37
23.5.4 DMA Arbitration Mode Considerations . 23-38
23.5.5 DMA Transfer . 23-40
23.5.6 TCD Status . 23-43
23.5.7 Channel Linking . 23-44
23.5.8 Dynamic Programming . 23-45

Chapter 24
Fast Ethernet Controller (FEC)

24.1 Introduction . 24-1
24.1.1 Block Diagram . 24-1
24.1.2 Overview . 24-2
24.1.3 Features . 24-4

24.2 Modes of Operation . 24-4
24.2.1 Full and Half Duplex Operation . 24-4
24.2.2 Interface Options . 24-5
24.2.3 Address Recognition Options . 24-5
24.2.4 Internal Loopback . 24-5

24.3 Programming Model . 24-5
24.3.1 Top Level Module Memory Map . 24-6
24.3.2 Detailed Memory Map (Control/Status Registers) . 24-6
24.3.3 MIB Block Counters Memory Map . 24-8
24.3.4 Registers . 24-10

24.4 Functional Description . 24-29
24.4.1 Initialization Sequence . 24-30
24.4.2 User Initialization (Prior to Asserting ECR[ETHER_EN]) . 24-30
24.4.3 Microcontroller Initialization . 24-31
24.4.4 User Initialization (After Asserting ECR[ETHER_EN]) . 24-31
24.4.5 Network Interface Options . 24-31
24.4.6 FEC Frame Transmission . 24-32
24.4.7 FEC Frame Reception . 24-34
24.4.8 Ethernet Address Recognition . 24-35
24.4.9 Hash Algorithm . 24-37

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xiii

24.4.10Full Duplex Flow Control . 24-40
24.4.11Inter-Packet Gap (IPG) Time . 24-41
24.4.12Collision Handling . 24-41
24.4.13Internal and External Loopback . 24-41
24.4.14Ethernet Error-Handling Procedure . 24-42

24.5 Buffer Descriptors . 24-43
24.5.1 Driver/DMA Operation with Buffer Descriptors . 24-43
24.5.2 Ethernet Receive Buffer Descriptor (RxBD) . 24-45
24.5.3 Ethernet Transmit Buffer Descriptor (TxBD) . 24-47

Chapter 25
FlexRay Communication Controller (FlexRAY)

25.1 Introduction . 25-1
25.1.1 Reference . 25-1
25.1.2 Glossary . 25-1
25.1.3 Color Coding . 25-2
25.1.4 Overview . 25-2
25.1.5 Features . 25-4
25.1.6 Modes of Operation . 25-5

25.2 External Signal Description . 25-6
25.2.1 Detailed Signal Descriptions . 25-6

25.3 Controller Host Interface Clocking . 25-7
25.4 Protocol Engine Clocking . 25-8

25.4.1 Oscillator Clocking . 25-8
25.4.2 PLL Clocking . 25-8

25.5 Memory Map and Register Description . 25-8
25.5.1 Memory Map . 25-8
25.5.2 Register Descriptions . 25-11

25.6 Functional Description . 25-78
25.6.1 Message Buffer Concept . 25-78
25.6.2 Physical Message Buffer . 25-78
25.6.3 Message Buffer Types . 25-79
25.6.4 FlexRay Memory Layout . 25-85
25.6.5 Physical Message Buffer Description . 25-88
25.6.6 Individual Message Buffer Functional Description . 25-97
25.6.7 Individual Message Buffer Search . 25-122
25.6.8 Individual Message Buffer Reconfiguration . 25-125
25.6.9 Receive FIFOs . 25-126
25.6.10Channel Device Modes . 25-132
25.6.11External Clock Synchronization . 25-134
25.6.12Sync Frame ID and Sync Frame Deviation Tables . 25-135
25.6.13MTS Generation . 25-138
25.6.14Key Slot Transmission . 25-139
25.6.15Sync Frame Filtering . 25-139
25.6.16Strobe Signal Support . 25-140

MPC5668x Microcontroller Reference Manual, Rev. 4

xiv Freescale Semiconductor

25.6.17Timer Support . 25-141
25.6.18Slot Status Monitoring . 25-142
25.6.19System Bus Access . 25-146
25.6.20Interrupt Support . 25-148
25.6.21Lower Bit Rate Support . 25-151

25.7 Application Information . 25-152
25.7.1 Initialization Sequence . 25-152
25.7.2 Shut Down Sequence . 25-153
25.7.3 Number of Usable Message Buffers . 25-153
25.7.4 Protocol Control Command Execution . 25-154
25.7.5 Message Buffer Search on Simple Message Buffer Configuration 25-155

Chapter 26
Media Local Bus (MLB)

26.1 Introduction . 26-1
26.1.1 Block Diagram . 26-1
26.1.2 Features . 26-2
26.1.3 Overview . 26-2
26.1.4 Modes of Operation . 26-3

26.2 External Signal Description . 26-3
26.3 Memory Map and Register Description . 26-4

26.3.1 Memory Map . 26-4
26.3.2 Register Descriptions . 26-8

26.4 Functional Description . 26-26
26.4.1 Clocking Requirements . 26-28
26.4.2 Interrupts . 26-28
26.4.3 System Memory Buffers . 26-29
26.4.4 Local Channel Buffer RAM . 26-30
26.4.5 Channel Arbiter . 26-31
26.4.6 DMA Controller (Ping-Pong Buffering) . 26-32
26.4.7 DMA Controller (Circular Buffering) . 26-36
26.4.8 Streaming Channel Frame Synchronization . 26-38
26.4.9 Loop Back Test Mode . 26-39

26.5 Initialization Information . 26-39
26.5.1 Main Loop . 26-40
26.5.2 Initialize Device . 26-41
26.5.3 Initialize Channel . 26-42
26.5.4 Channel Interrupts . 26-44
26.5.5 System Interrupts . 26-48

Chapter 27
Enhanced Modular Input/Output Subsystem (eMIOS200)

27.1 Introduction . 27-1
27.1.1 Block Diagram . 27-1

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xv

27.1.2 Features . 27-2
27.1.3 Modes of Operation . 27-3
27.1.4 eMIOS200 Channel Configurations . 27-3

27.2 External Signal Description . 27-6
27.2.1 eMIOS[n] . 27-6
27.2.2 Output Disable Input — eMIOS200 Output Disable Input Signal 27-6

27.3 Memory Map and Register Description . 27-6
27.3.1 Memory Map . 27-6
27.3.2 Register Descriptions . 27-8

27.4 Functional Description . 27-20
27.4.1 Unified Channel (UC) . 27-20
27.4.2 IP Bus Interface Unit (BIU) . 27-59
27.4.3 Global Clock Prescaler Submodule (GCP) . 27-59

27.5 Reset . 27-59
27.6 Interrupts . 27-59
27.7 DMA Requests . 27-59
27.8 Initialization/Application Information . 27-60

27.8.1 Considerations . 27-60
27.8.2 Application Information . 27-60
27.8.3 Time Base Generation . 27-60
27.8.4 Coherent Accesses . 27-62

Chapter 28
Controller Area Network (FlexCAN)

28.1 Introduction . 28-1
28.1.1 Block Diagram . 28-1
28.1.2 Features . 28-2
28.1.3 Modes of Operation . 28-3

28.2 External Signal Description . 28-4
28.3 Memory Map and Registers . 28-4

28.3.1 Module Memory Map . 28-4
28.3.2 Message Buffer Structure . 28-7
28.3.3 Rx FIFO Structure . 28-9
28.3.4 Register Descriptions . 28-11

28.4 Functional Description . 28-27
28.4.1 Transmit Process . 28-28
28.4.2 Arbitration Process . 28-28
28.4.3 Receive Process . 28-29
28.4.4 Matching Process . 28-30
28.4.5 Data Coherence . 28-31
28.4.6 Rx FIFO . 28-34
28.4.7 CAN Protocol Related Features . 28-35
28.4.8 Modes of Operation Details . 28-38
28.4.9 Interrupts . 28-39
28.4.10Bus Interface . 28-40

MPC5668x Microcontroller Reference Manual, Rev. 4

xvi Freescale Semiconductor

28.5 Initialization and Application Information . 28-40
28.5.1 FlexCAN Initialization Sequence . 28-40

Chapter 29
Deserial – Serial Peripheral Interface (DSPI)

29.1 Introduction . 29-1
29.1.1 Block Diagram . 29-2
29.1.2 Features . 29-2
29.1.3 DSPI Configurations . 29-3
29.1.4 Modes of Operation . 29-4

29.2 External Signal Description . 29-5
29.3 Memory Map and Registers . 29-5

29.3.1 Module Memory Map . 29-5
29.3.2 Register Descriptions . 29-7

29.4 Functional Description . 29-28
29.4.1 Modes of Operation . 29-29
29.4.2 Start and Stop of DSPI Transfers . 29-31
29.4.3 Serial Peripheral Interface (SPI) Configuration . 29-32
29.4.4 Deserial Serial Interface (DSI) Configuration . 29-35
29.4.5 Combined Serial Interface (CSI) Configuration . 29-37
29.4.6 Buffered SPI Operation . 29-40
29.4.7 DSPI Baud Rate and Clock Delay Generation . 29-40
29.4.8 Transfer Formats . 29-44
29.4.9 Continuous Serial Communications Clock . 29-51
29.4.10Timed Serial Bus (TSB) . 29-53
29.4.11Peripheral Chip Select Expansion and Deglitching . 29-56
29.4.12DMA and Interrupt Conditions . 29-56
29.4.13Power Saving Features . 29-58

29.5 Initialization/Application Information . 29-59
29.5.1 How to Change Queues . 29-59
29.5.2 Baud Rate Settings . 29-60
29.5.3 Delay Settings . 29-60
29.5.4 Oak Family Compatibility with the DSPI . 29-61
29.5.5 Calculation of FIFO Pointer Addresses . 29-62

Chapter 30
Enhanced Serial Communication Interface (eSCI)

30.1 Introduction . 30-1
30.1.1 Block Diagram . 30-1
30.1.2 Features . 30-1
30.1.3 Modes of Operation . 30-3

30.2 External Signal Description . 30-4
30.3 Memory Map and Registers . 30-4

30.3.1 Memory Map . 30-4

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xvii

30.3.2 Register Descriptions . 30-5
30.4 Functional Description . 30-20

30.4.1 Module Control . 30-20
30.4.2 Frame Formats . 30-20
30.4.3 Baud Rate and Clock Generation . 30-23
30.4.4 Baud Rate Tolerance . 30-25
30.4.5 SCI Mode . 30-27
30.4.6 LIN Mode . 30-42
30.4.7 Interrupts . 30-51

30.5 Application Information . 30-52
30.5.1 SCI Data Frames Separated by Preamble . 30-52

Chapter 31
Inter-Integrated Circuit Bus Controller Module (I2C)

31.1 Introduction . 31-1
31.1.1 Block Diagram . 31-1
31.1.2 DMA Interface . 31-2
31.1.3 Features . 31-3
31.1.4 Modes of Operation . 31-4

31.2 External Signal Description . 31-4
31.3 Memory Map and Registers . 31-4

31.3.1 Module Memory Map . 31-4
31.3.2 Register Descriptions . 31-5

31.4 Functional Description . 31-11
31.4.1 I-Bus Protocol . 31-11
31.4.2 Interrupts . 31-15

31.5 Initialization/Application Information . 31-16
31.5.1 I2C Programming Examples . 31-16
31.5.2 DMA Application Information . 31-20

Chapter 32
Cross Triggering Unit (CTU)

32.1 Introduction . 32-1
32.2 Main Features . 32-1
32.3 Block Diagram . 32-1
32.4 Memory Map and Register Description . 32-2

32.4.1 Module Memory Map . 32-2
32.5 Functional Description . 32-7

32.5.1 Pending Request . 32-10
32.5.2 Counter . 32-10
32.5.3 Prescaler . 32-10
32.5.4 Trigger Interrupt Request . 32-11
32.5.5 Halt Request . 32-11
32.5.6 Channel Value . 32-11

MPC5668x Microcontroller Reference Manual, Rev. 4

xviii Freescale Semiconductor

Chapter 33
Analog-to-Digital Converter (ADC)

33.1 Introduction . 33-1
33.1.1 Block Diagram . 33-1
33.1.2 Features . 33-2

33.2 External Signals . 33-2
33.3 Memory Map and Register Definition . 33-3

33.3.1 ADC Memory Map . 33-3
33.3.2 ADC Register Descriptions . 33-7

33.4 Functional Description . 33-41
33.4.1 Analog Channel Conversion . 33-41
33.4.2 Analog Clock Generator and Conversion Timings . 33-44
33.4.3 ADC Cross Triggering Unit . 33-45
33.4.4 Presampling . 33-48
33.4.5 Programmable Analog Watchdog . 33-49
33.4.6 DMA Functionality . 33-51
33.4.7 Interrupts . 33-52
33.4.8 External Decode Signals Delay . 33-53
33.4.9 Power Down Mode . 33-53
33.4.10Auto Clock Off Mode . 33-53

Chapter 34
IEEE 1149.1 Test Access Port Controller (JTAGC)

34.1 Introduction . 34-1
34.1.1 Block Diagram . 34-1
34.1.2 Features . 34-3
34.1.3 Modes of Operation . 34-3

34.2 External Signal Description . 34-5
34.3 Memory Map and Registers . 34-5

34.3.1 Instruction Register . 34-5
34.3.2 Bypass Register . 34-5
34.3.3 Device Identification Register . 34-6
34.3.4 Boundary Scan Register . 34-6

34.4 Functional Description . 34-6
34.4.1 JTAGC Reset Configuration . 34-6
34.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port . 34-7
34.4.3 TAP Controller State Machine . 34-7
34.4.4 JTAGC Instructions . 34-9
34.4.5 Boundary Scan . 34-12

34.5 e200z0 and e200z6 OnCE Controllers . 34-12
34.5.1 e200z0 OnCE Controller Block Diagram . 34-12
34.5.2 e200z0 OnCE Controller Functional Description . 34-13
34.5.3 e200z0 OnCE Controller Register Descriptions . 34-13

34.6 Initialization/Application Information . 34-15

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xix

Chapter 35
Nexus Development Interface (NDI)

35.1 Introduction . 35-1
35.2 Block Diagram . 35-1

35.2.1 NDI Features . 35-3
35.2.2 Modes of Operation . 35-5

35.3 External Signal Description . 35-6
35.4 Memory Map and Registers . 35-7

35.4.1 NDI Functional Description . 35-9
35.5 Nexus Port Controller (NPC) . 35-13

35.5.1 NPC Overview . 35-13
35.5.2 NPC Features . 35-14
35.5.3 Control of the device-wide debug mode NPC Memory Map 35-14
35.5.4 NPC Register Descriptions . 35-14
35.5.5 NPC Functional Description . 35-18
35.5.6 NPC Initialization/Application Information . 35-23

35.6 e200z6 Class 3 Nexus Module (Nexus3+) . 35-24
35.6.1 Nexus3+ Introduction . 35-24
35.6.2 Nexus3+ Block Diagram . 35-25
35.6.3 Nexus3+ Overview . 35-25
35.6.4 Nexus3+ Features . 35-26
35.6.5 Enabling Nexus3+ Operation . 35-27
35.6.6 TCODEs Supported by Nexus3+ . 35-27
35.6.7 Nexus3+ Memory Map . 35-31
35.6.8 Nexus3+ Register Definition . 35-32
35.6.9 Nexus3+ Register Access via JTAG / OnCE . 35-42
35.6.10Nexus3+ Functional Description . 35-43

35.7 e200z0 Class 2+ Nexus Module (Nexus2+) . 35-70
35.7.1 Nexus2+ Introduction . 35-70
35.7.2 Nexus2+ Block Diagram . 35-71
35.7.3 Nexus2+ Features . 35-71
35.7.4 Enabling Nexus2+ Operation . 35-72
35.7.5 TCODEs Supported by Nexus2+ . 35-72
35.7.6 Nexus2+ Memory Map . 35-75
35.7.7 Nexus2+ Register Definition . 35-76
35.7.8 Nexus2+ Register Access via JTAG / OnCE . 35-82
35.7.9 Nexus2+ Functional Description . 35-83

35.8 Debug Implementation . 35-102
35.9 Debug Capabilities . 35-102
35.10 Debug Port . 35-104

35.10.1Nexus2+/3 Auxiliary Port . 35-105
35.11 Debug Methods . 35-106

35.11.1208 MAPBGA Package Debug Method . 35-106
35.11.2256 MAPBGA Package Debug Method . 35-106

A.1 Introduction . A-1

MPC5668x Microcontroller Reference Manual, Rev. 4

xx Freescale Semiconductor

A.2 MPC5668x Register Map . A-1
A.3 e200z6 Core SPR Numbers . A-112

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xxi

About This Book
This reference manual describes the MPC5668x microcontroller family for software and hardware
developers. Information regarding bus timing, signal behavior, and AC, DC, and thermal characteristics
are detailed in the device data sheet (MPC5668x Microcontroller Family Data Sheet).

The information in this book is subject to change without notice, as described in the disclaimers on the title
page. As with any technical documentation, the reader needs to make sure to use the most recent version
of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.freescale.com/powerpc.

Audience

This manual is intended for system software and hardware developers and applications programmers who
want to develop products with the MPC5668x microcontroller family. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of software and hardware,
and basic details of the Power Architecture™.

Organization

Following is a summary and brief description of the major sections of this manual:

• Chapter 1, “Introduction,” includes general descriptions of the modules and features incorporated
in the device while focusing on new features.

• Chapter 2, “Signal Description,” summarizes the external signal functions, their static electrical
characteristics, and pad configuration settings for the MPC5668x.

• Chapter 3, “Resets,” describes the reset sources available on the MPC5668x, including details on
status flags and default configurations.

• Chapter 4, “System Clock Description,” describes the various clock sources that are available on
the MPC5668x.

• Chapter 5, “Clocks, Reset, and Power (CRP),” describes the CRP block, which manages entry into,
operation during, and exit from power-saving modes; and maintains all of the control logic that
requires power when other portions of the MPC5668x are powered down in power-saving modes.

• Chapter 6, “Frequency Modulated Phase-Locked Loop (FMPLL),” describes the features and
function of the FMPLL module.

• Chapter 7, “System Integration Unit (SIU),” describes the SIU module, which controls MCU reset
configuration, pad configuration, external interrupt, general-purpose I/O (GPIO), internal
peripheral multiplexing, and the system reset operation.

• Chapter 8, “Boot Assist Module (BAM),” describes the BAM, which contains the MCU boot
program code supporting the different booting modes for this device.

http://www.freescale.com/powerpc

MPC5668x Microcontroller Reference Manual, Rev. 4

xxii Freescale Semiconductor

• Chapter 9, “Interrupts and Interrupt Controller (INTC),” summarizes the software and hardware
interrupts for the MPC5668x device.

• Chapter 10, “General-Purpose Static RAM (SRAM),” describes the on-chip static RAM (SRAM)
implementation, covers general operations, configuration, and initialization. It also provides
information and examples of how to minimize power consumption when using the SRAM.

• Chapter 11, “Flash Memory Array and Control,” describes the flash memory block and the flash
memory controller.

• Chapter 12, “e200z6 Core (Z6),” describes the organization of the e200z6 Power processor core
and gives an overview of the programming models as they are implemented on the device. The
e200z6 is the main processor core on the MPC5668x.

• Chapter 13, “e200z0 Core (Z0),” describes the organization of the e200z0 Power processor core
and an overview of the programming models as they are implemented on the device. The e200z0
serves as an input/output (I/O) processor on the MPC5668x.

• Chapter 14, “Semaphores,” describes the module that lets each processor know which processor
has control of common memory.

• Chapter 15, “AMBA Crossbar Switch (AXBS),” describes the multi-port crossbar switch that
supports simultaneous connections between six master ports and six slave ports.

• Chapter 16, “Peripheral Bridge (AIPS-lite),” describes the interface between the system bus and
lower bandwidth peripherals.

• Chapter 17, “Memory Protection Unit (MPU),” describes the block that provides hardware access
control for all memory references generated in the MPC5668x.

• Chapter 18, “Error Correction Status Module (ECSM),” describes the ECSM block, which
provides monitoring and control functions to report memory errors and apply error-correcting code
(ECC) implementations.

• Chapter 19, “Software Watchdog Timer (SWT),” describes a hardware-based timer that can be
implemented to prevent software runaway.

• Chapter 20, “System Timer Module (STM),” describes the timer control module.

• Chapter 21, “Periodic Interrupt Timer (PIT),” describes an array of timers that can be used to
initiate interrupts and trigger DMA channels.

• Chapter 22, “DMA Channel Multiplexer (DMA_MUX),” describes the DMA multiplexer block
implemented on the MPC5668x.

• Chapter 23, “Enhanced Direct Memory Access Controller (eDMA),” describes the enhanced DMA
controller implemented on the MPC5668x.

• Chapter 24, “Fast Ethernet Controller (FEC),” describes the feature set, operation, and
programming model of the FEC block.

• Chapter 25, “FlexRay Communication Controller (FlexRAY),” describes the FlexRay
communication controller on the MPC5668x that implements the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

• Chapter 26, “Media Local Bus (MLB),” describes the MLB module, a multiplexed bus controller
that transfers multimedia data between the MOST ring and supporting system level ICs.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xxiii

• Chapter 27, “Enhanced Modular Input/Output Subsystem (eMIOS200),” describes the eMIOS
module, which provides timed I/O channels for communications with off-chip devices.

• Chapter 28, “Controller Area Network (FlexCAN),” describes the FlexCAN module, a
communication controller implementing the CAN protocol according to Bosch Specification
version 2.0B and ISO Standard 11898.

• Chapter 29, “Deserial – Serial Peripheral Interface (DSPI),” describes the DSPI block, which
provides a synchronous serial interface for communication between the MPC5668x and external
devices.

• Chapter 30, “Enhanced Serial Communication Interface (eSCI),” describes the eSCI interface,
which allows asynchronous serial communications with off-chip peripheral devices.

• Chapter 31, “Inter-Integrated Circuit Bus Controller Module (I2C),” describes the I2C module,
including I2C protocol, clock synchronization, and I2C programming model registers.

• Chapter 32, “Cross Triggering Unit (CTU),” describes the CTU block, which converts the events
generated by the eMIOS into ADC conversion requests. It also has a PIT channel. The CTU
interfaces between the eMIOS/PIT and the ADC and converts the events generated by the eMIOS
into ADC conversion requests.

• Chapter 33, “Analog-to-Digital Converter (ADC),” describes the ADC module implemented on
the MPC5668x.

• Chapter 34, “IEEE 1149.1 Test Access Port Controller (JTAGC),” describes configuration and
operation of the Joint Test Action Group (JTAG) controller implementation. It describes those
items required by the IEEE 1149.1 standard and provides additional information specific to the
device. For internal details and sample applications, see the IEEE 1149.1 document.

• Chapter 35, “Nexus Development Interface (NDI),” describes the Nexus Development Interface
(NDI) block, which provides real-time development support capabilities for the MPC5668x in
compliance with the IEEE-ISTO 5001-2003 standard.

• Appendix A, “Memory Map,” provides a detailed listing of the memory-mapped registers for the
MPC5668x.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about Power Architecture

General Information

Useful information about the Power Architecture and computer architecture in general:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC™ Architecture
(MPCFPE32B)

• Using Microprocessors and Microcomputers: The Motorola Family, William C. Wray, Ross
Bannatyne, Joseph D. Greenfield

• Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David
A. Patterson.

MPC5668x Microcontroller Reference Manual, Rev. 4

xxiv Freescale Semiconductor

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy.

Power Architecture Documentation

Power Architecture documentation is available from the sources listed on the back cover of this manual,
as well as our web site, http://www.freescale.com/powerpc.

• Reference manuals (formerly called user’s manuals)—These books provide details about
individual Power Architecture implementations and are intended to be used in conjunction with the
PowerPC Programmers Reference Manual.

• Addenda/errata to reference manuals—Because some processors have follow-on parts, an
addendum is provided that describes the additional features and functionality changes. Also, if
mistakes are found within a reference manual, an errata document will be issued before the next
published release of the reference manual. These addenda/errata are intended for use with the
corresponding reference manuals.

• Data sheets—Data sheets provide specific information regarding pin-out diagrams, bus timing,
signal behavior, and AC, DC, and thermal characteristics, as well as other design considerations.

• Product briefs—Each device has a product brief that provides an overview of its features. This
document is roughly equivalent to the overview (Chapter 1) of a device’s reference manual.

• Application notes—These short documents address specific design issues useful to programmers
and engineers working with Freescale Semiconductor processors.

Additional literature is published as new processors become available. For a current list of Power
Architecture documentation, refer to http://www.freescale.com/powerpc.

Conventions

This document uses the following notational conventions:

cleared/set When a bit takes the value 0, it is said to be cleared; when it takes a value of 1, it
is said to be set.

reserved When a bit or address is reserved, it should not be written. If read, its value is not
guaranteed. Reading or writing to reserved bits or addresses may cause
unexpected results.

MNEMONICS In text, instruction mnemonics are shown in uppercase.

mnemonics In code and tables, instruction mnemonics are shown in lowercase.

italics Italics indicate variable command parameters.
Book titles in text are set in italics.

0x Prefix to denote hexadecimal number

0b Prefix to denote binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges
appear in brackets. For example, RAMBAR[BA] identifies the base address field
in the RAM base address register.

nibble A 4-bit data unit

http://www.freescale.com/powerpc/

http://www.freescale.com/powerpc/

http://www.freescale.com/powerpc/

http://www.freescale.com/powerpc/

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xxv

byte An 8-bit data unit

halfword A 16-bit data unit1

word A 32-bit data unit

doubleword A 64-bit data unit

x In some contexts, such as signal encodings, x (without italics) indicates a “don’t
care” condition.

x With italics, used to express an undefined alphanumeric value (e.g., a variable in
an equation); or a variable alphabetic character in a bit, register, or module name
(e.g., DSPI_x could refer to DSPI_A or DSPI_B).

n Used to express an undefined numerical value; or a variable numeric character in
a bit, register, or module name (e.g., EIFn could refer to EIF1 or EIF0).

~ NOT logical operator

& AND logical operator

| OR logical operator

|| Field concatenation operator

OVERBAR An overbar indicates that a signal is active-low.

Register Figure Conventions

This document uses the following conventions for the register reset values in register figures:

— Bit value is undefined at reset.

U Bit value is unchanged by reset. Previous value preserved during reset.

[signal_name] Reset value is determined by the polarity of the indicated signal.

The following descriptions are used in register bit field description tables:

1. The only exceptions to this appear in the discussion of serial communication modules that support variable-length data
transmission units. To simplify the discussion these units are referred to as words regardless of length.

R 0 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 0.

W

R 1 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 1.

W

R FIELDNAME Indicates a read/write bit in a memory-mapped register.

W

R FIELDNAME Indicates a read-only bit field in a memory-mapped register.

W

R Indicates a write-only bit field in a memory-mapped register.

W FIELDNAME

MPC5668x Microcontroller Reference Manual, Rev. 4

xxvi Freescale Semiconductor

Acronyms and Abbreviations

Table i lists acronyms and abbreviations used in this document.

R FIELDNAME Write 1 to clear: indicates that writing a 1 to this bit field clears it.

W w1c

R FIELDNAME Read to clear: indicates that reading this bit field clears it, regardless of its returned value.

W r1c

R 0 Indicates a self-clearing bit.

W FIELDNAME

Table i. Acronyms and Abbreviated Terms

Term Meaning

ADC Analog-to-digital converter

ALU Arithmetic logic unit

BIST Built-in self test

DMA Direct memory access

EA Effective address

FIFO First-in, first-out

GPIO General-purpose I/O

I2C Inter-integrated circuit

IEEE Institute for Electrical and Electronics Engineers

JEDEC Joint Electron Device Engineering Council

JTAG Joint Test Action Group

LIFO Last-in, first-out

LSB Least-significant byte

LVI Low-voltage interrupt

lsb Least-significant bit

MAC Multiply accumulate unit, also Media access controller

MSB Most-significant byte

msb Most-significant bit

Mux Multiplex

NOP No operation

OEP Operand execution pipeline

PC Program counter

PLIC Physical layer interface controller

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xxvii

Terminology Conventions

Table ii shows terminology conventions used throughout this document.

PLL Phase-locked loop

POR Power-on reset

RISC Reduced instruction set computing

Rx Receive

SOF Start of frame

TAP Test access port

TTL Transistor transistor logic

Tx Transmit

UART Universal asynchronous/synchronous receiver transmitter

USB Universal serial bus

Table ii. Notational Conventions

Instruction Operand Syntax

Opcode Wildcard

cc Logical condition (example: NE for not equal)

Register Specifications

An Any address register n (example: A3 is address register 3)

Ay,Ax Source and destination address registers, respectively

Dn Any data register n (example: D5 is data register 5)

Dy,Dx Source and destination data registers, respectively

Rc Any control register (example VBR is the vector base register)

Rm MAC registers (ACC, MAC, MASK)

Rn Any address or data register

Rw Destination register w (used for MAC instructions only)

Ry,Rx Any source and destination registers, respectively

Xi Index register i (can be an address or data register: Ai, Di)

Miscellaneous Operands

 #<data> Immediate data following the 16-bit operation word of the instruction

<ea> Effective address

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning

MPC5668x Microcontroller Reference Manual, Rev. 4

xxviii Freescale Semiconductor

<ea>y,<ea>x Source and destination effective addresses, respectively

<label> Assembly language program label

<list> List of registers for MOVEM instruction (example: D3–D0)

<shift> Shift operation: shift left (<<), shift right (>>)

<size> Operand data size: byte (B), word (W), longword (L)

bc Instruction and data caches

dc Data cache

ic Instruction cache

<vector> Identifies the 4-bit vector number for trap instructions

<> identifies an indirect data address referencing memory

<xxx> identifies an absolute address referencing memory

dn Signal displacement value, n bits wide (example: d16 is a 16-bit displacement)

SF Scale factor (x1, x2, x4 for indexed addressing mode, <<1n>> for MAC operations)

Operations

+ Arithmetic addition or postincrement indicator

– Arithmetic subtraction or predecrement indicator

x Arithmetic multiplication

/ Arithmetic division

~ Invert; operand is logically complemented

& Logical AND

| Logical OR

^ Logical exclusive OR

<< Shift left (example: D0 << 3 is shift D0 left 3 bits)

>> Shift right (example: D0 >> 3 is shift D0 right 3 bits)

 Source operand is moved to destination operand

 Two operands are exchanged

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after then are performed. If the condition is false and the optional
else clause is present, the operations after else are performed. If the condition is false and else is omitted,
the instruction performs no operation. Refer to the Bcc instruction description as an example.

Table ii. Notational Conventions (continued)

Instruction Operand Syntax

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor xxix

Revision History

Table iii provides a revision history for this document.

Subfields and Qualifiers

{} Optional operation

() Identifies an indirect address

dn Displacement value, n-bits wide (example: d16 is a 16-bit displacement)

Address Calculated effective address (pointer)

Bit Bit selection (example: Bit 3 of D0)

lsb Least significant bit (example: lsb of D0)

LSB Least significant byte

LSW Least significant word

msb Most significant bit

MSB Most significant byte

MSW Most significant word

Table iii. MPC5668xRM Revision History

Revision
Number

Revision
Date

Description of Changes

0 04/2008 First NDA version of this document.

1 05/2008 Release 1 of this document.

2 09/2008 Release 2 of this document. Editorial and technical updates.

3 09/2009 Release 3 of this document. Editorial and technical updates.

4 01/2011 Release 4 of this document. Editorial and technical updates.

Table ii. Notational Conventions (continued)

Instruction Operand Syntax

MPC5668x Microcontroller Reference Manual, Rev. 4

xxx Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-1

Chapter 1
Introduction

1.1 Overview
The MPC5668G/E products are compatible 32-bit microcontrollers built on Power Architecture
technology. This document describes the available features, and highlights important characteristics of the
devices. This is a preliminary document for products still in development. Information contained within
this document is subject to change without notice.

The MPC5668G/E automotive-focused products are designed to address the need for more integration of
electronic features within the vehicle. The MPC5668G version is targeted at performing gateway functions
between different networks such as FlexRay, Ethernet, CAN, and MOST. The MPC5668E is tailored to
address the need for high performance and high memory size while keeping the power consumption low
in power down modes. Their core and bus architecture offer high performance processing optimized for
managing intensive data exchanges between different types of communication protocols. It capitalizes on
the available development infrastructure of current Power Architecture devices and will be supported with
software drivers and an operating system to assist with users implementations. Refer to Section 1.5,
“Developer Environment,” for more information.

The MPC5668G/E has two levels of memory hierarchy, a 32 KB unified cache and 592/128 KB on-chip
L2 SRAM. 2 MB of internal flash is also provided. Refer to Table 1-1 for specific memory and feature sets
of the proposed family members.

1.2 MPC5668G/E Features
Table 1-1 provides a summary of the different members of the MPC5668G/E family and their features.
This information is intended to provide an understanding of the range of functionality offered by this
family of devices.

Table 1-1. MPC5668G/E Family Comparison1

Feature MPC5668G MPC5668E

Central Processing Unit (CPU) e200z650 e200z650

Cache 32KB, 4/8way 32KB, 4/8way

Floating Point Unit (FPU) Yes Yes

Signal Processing Engine (SPE) Yes Yes

Memory Management Unit (MMU) 32 entry 32 entry

CPU Execution Speed2 Static, 116 MHz Static, 116 MHz

Input/Output Processor (IOP) e200z0 e200z0

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-2 Freescale Semiconductor

IOP Execution Speed 1/2 CPU execution speed 1/2 CPU execution speed

Semaphores 16 16

Flash with ECC 2 MB 2 MB

Data Flash Block3 8x16 KB 8x16 KB

RAM with ECC 592 KB 128 KB

Memory Protection Unit (MPU) No 16 entry

Direct Memory Access Unit (eDMA) 16 Channel 32 Channel

Ethernet (FEC) Yes No

MediaLB (MLB-DIM) Yes No

FlexRay Controller Yes (128 Message Buffers) No

Analog-to-Digital Converter (ADC)4 36 internal channels, 10-bit
Supports 32 external channels

64 internal channels, 10-bit
Supports 32 external channels

Total Timer I/O (eMIOS200)5 24 channels, 16-bit 32 channels, 16-bit

Cross Trigger Unit (CTU) No Yes

Asynchronous Serial Interfaces (eSCI) 6 12

Synchronous Serial Interfaces (DSPI) 4 4

CAN (FlexCAN) 6 5

Inter-Integrated Circuit (I2C) Controller 4 4

Frequency Modulated PLL (FMPLL) Yes Yes

4 – 40 MHz XTAL Oscillator Yes Yes

16 MHz IRC Oscillator Yes Yes

32 kHz XTAL Oscillator Yes Yes

128 kHz IRC Oscillator Yes Yes

Real Time Counter/ Autonomous
Periodic Interrupts (RTC/API)

Yes Yes

Periodic Interrupt Timer (PIT) 8 8

System Timer Module (STM) Yes Yes

Software Watchdog Timer (SWT) Yes Yes

General-Purpose I/O (GPIO)6 155 155

Clock Monitor (FMPLL) Yes Yes

JTAG Yes Yes

Nexus Debug
(Only supported on emulation package)

Nexus3 (e200z6)
Nexus2+ (e200z0)

Nexus3 (e200z6)
Nexus2+ (e200z0)

Production Package 208 MAPBGA 208 MAPBGA

Emulation Package
(for development use only)

256 MAPBGA 256 MAPBGA

Table 1-1. MPC5668G/E Family Comparison1 (continued)

Feature MPC5668G MPC5668E

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-3

NOTE
Throughout this book, the e200z650n3e core may also be referred to as the
Z6 or the e200z6. In the context of the MPC5668x device, these terms are
interchangeable. Refer to the e200z6 PowerPCTM Core Reference Manual
for more information on the e200z6 core.

Similarly, the e200z0 core is also referred to as the Z0.

1 Feature set dependent on selected peripheral multiplexing.
2 Based on 105°C ambient operating temperature.
3 Data Flash included within main Flash array memory size.
4 Depends on external pin muxing.
5 Refer to Chapter 27, “Enhanced Modular Input/Output Subsystem (eMIOS200),” for information on the channel

configuration and functions.
6 Estimated I/O count for proposed packages based on multiplexing with peripherals.

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-4 Freescale Semiconductor

1.3 MPC5668G Block Diagram
Figure 1-1 shows a top-level block diagram of the MPC5668G.

Figure 1-1. MPC5668G Block Diagram

ADC – Analog to Digital Converter
BAM – Boot Assist Module
DSPI – Serial Peripherals Interface
ECC – Error Correction Code
ECSM – Error Correction Status Module
eMIOS – Timed Input Output
eDMA – Enhanced Direct Memory Access controller
eSCI – Serial Communications Interface
FEC – Fast Ethernet Controller
FlexCAN – Controller Area Network controller
FlexRay™ – FlexRay Bus Controller
FMPLL – Frequency Modulated Phase Locked Loop

4 – 40 MHz

SPP Crossbar Switch (XBAR)

FMPLL
e200z650 Core

32K Cache

16ChDMA

16 MHz

FPU/SPE

VLE

MMU(32TLB)

LEGEND

e200z0 Core

VLE

MASTERS

Mux

Flash
(ECC)

SRAM
(ECC)

512 KB
2 MB

AIPS(0) BridgeB

6 x eSCI

36 x ADC

2 x I2C

2 x DSPI

24 x eMIOS 6 x FlexCAN

JTAG

NDI
Nexus3(Z6)

DEBUG

NDI
Nexus2+(Z0)

AIPS(1) Bridge A

2 x I2C

2 x DSPI

VREG

4/8 Way
FEC MLB-DIM FlexRay

ControllerIRCXTALMPC5668G

Standby RAM

SRAM
(ECC)

80 KB

I2C – Inter IC Controller
INTC – Interrupt Controller
JTAG – Joint Test Action Group interface
MLB-DIM – Media Local Bus Device Interface Module
NDI – Nexus Debug Interface
PIT – Periodic Interrupt Timer
RTC – Real Time Clock
SIU – System Integration
STM – System Timer Module
SWT – Software Watchdog Timer
VREG – Voltage Regulator

128 kHz
IRC

32 kHz
XTAL

SWT

INTC

SIU

PIT

BAM

RTC/API

STM

ECSMECSM ECSM

Semaphores

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-5

1.4 MPC5668E Block Diagram
Figure 1-2 shows a top-level block diagram for the MPC5668E.

Figure 1-2. MPC5668E Block Diagram

I2C – Inter IC Controller
INTC – Interrupt Controller
JTAG – Joint Test Action Group interface
MPU – Memory Protection Unit
NDI – Nexus Debug Interface
PIT – Periodic Interrupt Timer
RTC – Real Time Clock
SIU – System Integration
STM – System Timer Module
SWT – Software Watchdog Timer
VREG – Voltage Regulator

ADC – Analog to Digital Converter
BAM – Boot Assist Module
CTU – Cross Triggering Unit
DSPI – Serial Peripherals Interface controller
ECC – Error Correction Code
ECSM – Error Correction Status Module
eDMA – Enhanced Direct Memory Access controller
eMIOS200 – Timed Input Output
eSCI – Serial Communications Interface
FlexCAN – Controller Area Network controller
FMPLL – Frequency Modulated Phase Locked Loop

4 – 40 MHz

SPP Crossbar Switch (XBAR)

FMPLL
e200z650 Core

32K Cache

16 MHz

128 kHz

FPU/SPE

VLE

MMU(32TLB)

LEGEND

32 kHz

e200z0 Core

VLE

MASTERS

Mux

Memory Protection Unit (MPU)

Flash
(ECC)

SRAM
(ECC)

128 KB
2 MB

AIPS(0) BridgeB

64 x ADC

32 x eMIOS

5 x FlexCAN

2 x DSPI

8 x eSCI

CTU

2 x I2C

JTAG

NDI
Nexus3(Z6)

DEBUG

NDI
Nexus2+(Z0)

AIPS(1) Bridge A

4 x eSCI

2 x I2C

2 x DSPI

SWT

VREG

INTC

SIU

PIT

BAM

RTC/API

STM

4/8 Way

ControllerIRCXTAL XTAL

IRC

MPC5668E

Standby RAM

Semaphores

32ChDMA

Standby RAM

ECSMECSM

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-6 Freescale Semiconductor

1.4.1 Critical Performance Parameters

The critical performance parameters of the MPC5668G/E feature the following:

• Fully static design operation to a maximum of 116 MHz, based on 105°C ambient

• Temperature range –40° to 105° C ambient temperature

• Low power design

— Designed for dynamic power management of core and peripherals

— Software-controlled clock gating of peripherals

— Simple power domains to minimize leakage in low power modes

— Internal voltage regulator (VREG) enables operation with a single input voltage

— 3.3 V / 5 V (nominal) input ranges

— External Ballast control

• ADC analog supply range 3.0 – 5.5 V

• Low voltage detect circuit implemented

• Cold crank support

• Separate MLB I/O pin supply domain down to 2.5 V (nominal)

• Configurable pins

— Selectable pull-up, pull-down, or no pull on all GPIO pins

— Selectable open-drain pin

1.4.1.1 Low Power Operation

The MPC5668G/E has one dynamic power mode and one static power mode:

• Low-power modes use clock gating to halt the clock for all or part of the device

• The lowest power mode also uses power gating to automatically turn off the power supply to parts
of the device to minimize leakage

• Dynamic power mode: RUN

— RUN mode is the main operating mode where the entire device is powered and clocked and
where most processing activity is done

• Static power mode: SLEEP

— SLEEP mode halts the clock to the entire device and turns off the power to the majority of the
chip in order to offer the lowest power consumption mode of the MPC5668G/E. In SLEEP
mode the contents of the cores, on-chip peripheral registers and part of the volatile memory are
not held. The device can be awakened from as many as 32 I/O pins, from a reset, or from an
internal periodic wake-up. It is also possible to enable the 16 MHz IRC, the 4 – 40 MHz XTAL,
128 kHz IRC and the 32 kHz XTAL clock sources.

– SLEEP1 mode retains 32 KB of the on-chip RAM

– SLEEP2 mode retains the 64 KB of the on-chip RAM

– SLEEP3 mode retains 128 KB of the on-chip RAM

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-7

— Fast wake-up using the on-chip 16 MHz IRC allows rapid execution from RAM on exit from
low power modes

– In SLEEP mode, a 4 – 40 MHz XTAL can be enabled to continue to run

– In SLEEP mode, the 16 MHz IRC can be enabled to continue to run and may be selected to
clock the RTC and API

– In SLEEP mode, the 128 kHz IRC can be enabled to run and may be selected to clock the
RTC and API

– In Sleep mode the 32 kHz XTAL can be enabled to run and may be selected to clock the
RTC and API

• As many as 32 external pins for wake-up from low power modes

• Input filters available on all wake-up pins to minimize false wakeups due to noise

• Rapid exit from low power mode with fast startup internal voltage regulator

1.4.2 Packages

MPC5668G/E family members are offered in the following package types:

• 208-ball MAPBGA, 1mm ball pitch, 17mm17mm outline for production

• 256-ball MAPBGA 1mm ball pitch 17mm17mm outline for emulation, providing access to full
Nexus port without sacrificing GPIO functionality (not available for production)

1.4.3 Module Features

The following sections provide details of the modules implemented on the MPC5668G/E.

1.4.3.1 High Performance e200z650 Core Processor

32-bit CPU built on Power Architecture technology

• Freescale Variable Length Encoding (VLE) enhancements for code size footprint reduction

• Thirty-two 64-bit general-purpose registers (GPRs)

• Memory management unit (MMU) with 32-entry fully associative translation look-aside buffer
(TLB)

• Branch processing unit

• Fully pipelined load/store unit

• 32 KB unified cache with line locking

— 4/8-way set associative

— Two 32-bit fetches per clock

— Eight-entry store buffer

— Way locking

— Supports assigning cache as instruction or data only on a per way basis

— Supports tag and data parity

• Vectored interrupt support

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-8 Freescale Semiconductor

• Very low interrupt latency

• Reservation instructions for implementing read-modify-write constructs (internal SRAM and
flash)

• Signal processing engine (SPE) auxiliary processing unit (APU) operating on 64-bit general
purpose registers

• Floating point

— IEEE® 754 compatible with software wrapper

— Single precision in hardware; double precision with software library

— Conversion instructions between single precision floating point and fixed point

• Wait instruction

• Extensive system development support through Nexus debug module

1.4.3.2 I/O Processor (IOP) High Performance e200z0 Core

The IOP supports the following features:

• High performance, low cost e200z0 core processor for managing peripherals and interrupts
(runs at 1/2 e200z650 frequency)

• Single issue 4-stage pipelined in-order execution, 32-bit Power Architecture™ CPU

• Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions

— Results in efficient code size footprint

— Minimizes impact on performance

• Branch processing acceleration using lookahead instruction buffer

• Load/store unit

— 1-cycle load latency

— Misaligned access support

— No load-to-use pipeline bubbles

• Thirty-two 32-bit general purpose registers (GPRs)

• Hardware vectored interrupt support

• Reservation instructions for implementing read-modify-write constructs

• Multi-cycle divide (divw) and load multiple (lmw) store multiple (smw) multiple class
instructions, can be interrupted to prevent increases in interrupt latency

• Extensive system development support through Nexus debug port

1.4.3.3 Semaphores

The semaphores module implements hardware-enforced semaphores as a peripheral device and has these
major features:

• Support for 16 hardware-enforced gates in a dual-processor configuration

• Uses bus master ID number as a reference attribute plus the specified data patterns to validate all
write operations

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-9

• Supports secure reset mechanisms to clear the contents of individual semaphore gates or
notification logic, and clear_all capability

• Optionally enabled interrupt notification after a failed lock write indicates whether a gate is
unlocked

1.4.3.4 On-Chip Voltage Regulator (VREG)

The on-chip voltage regulator includes the following features:

• Single supply device

• 3.3 V / 5 V (nominal) input supply voltage supported

• Supports I/O levels independent of main supply

— MLB has separate supply pins to support down to 2.5 V (nominal) operation

— Multiple I/O domains with separate supply pins

• Low voltage detectors (LVD) supported on internal supplies

• Cold crank operation supported without triggering LVDs

1.4.3.5 Enhanced Direct Memory Access Controller (eDMA)

The following summarizes the MPC5668G/E implementation of the eDMA controller:

• Support independent 8, 16, or 32 bit single value or block transfers

• Supports variable sized queues and circular queues

• Source and destination address registers are independently configured to post-increment or remain
constant

• Each transfer is initiated by a peripheral, CPU, periodic timer interrupt or eDMA channel request

• Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single
value or block transfer

• DMA transfers possible between system memories, SPIs, I2C, ADC, eSCI, eMIOS200 and General
Purpose I/Os

• Programmable DMA channel mux allows assignment of any DMA source to any available DMA
channel with as many as 64 potential request sources.

1.4.3.6 Fast Ethernet Controller (FEC)

The FEC incorporates the following features

• Support for 3 different physical interfaces

— 100 Mbps IEEE 802.3 MII

— 10 Mbps IEEE 802.3 MII

— 10 Mbps 7-wire interface (industry standard)

• Built in FIFO and DMA controller

• IEEE 802.3 MAC (compliant with IEEE 802.3 1998 edition)

• Programmable max frame length supports IEEE 802.1 VLAN tags and priority

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-10 Freescale Semiconductor

• IEEE 802.3 full duplex flow control

• Support for full duplex operation (200 Mbps throughput) with a system clock of 100 MHz using
the external TX_CLK or RX_CLK

• Support for full duplex operation(100 Mbps throughput) with a system clock of 50 MHz using the
external TX_CLK or RX_CLK

• Retransmission from transmit FIFO following a collision (no system bus utilization)

• Automatic internal flushing of the receive FIFO for runts (collision fragments) and address
recognition rejects (no system bus utilization)

• Address recognition

• RMON and IEEE statistics

• Interrupts for network activity and error conditions

1.4.3.7 Media Local Bus (MLB)

The following summarizes the MLB configuration:

• Support of 16 logical channels running at a maximum speed of 1024 Fs

• Transmission of commands and data and reception of receive status when functioning as the
transmitting device associated with a logical channel address

• Reception of commands and data and transmission as receive status responses when functioning
as the receiving device associated with a logical channel address

• System channel command handling

• Internal DMA operation

• Local channel buffer RAM (single port RAM) size of 204836 bits words

• Support for 3-pin only

• Support for MLB I/O voltage specs 2.5 V (nominal) and 3.3 V (nominal)

1.4.3.8 Crossbar Switch (XBAR)

The Crossbar Switch allows concurrent accesses between masters and slaves, and provides these features:

• 6 master ports

— Masters: Z6 CPU, Z0 CPU, eDMA, FlexRay, FEC, MLB

• Multiple bus slaves to enable access to flash, SRAM ports and peripherals

• Multiple AIPS bridges to support connection to all peripheral modules

• Crossbar supports consecutive transfers from master to available slaves

• 32-bit internal address bus, 32-bit internal data bus

• User configurable priority arbitration based for masters

1.4.3.9 Memory Protection Unit (MPU)

The MPU provides the following features:

• Supports as many as 16 region descriptors for per-master protection

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-11

• Start and end address defined with 32-byte granularity

• Overlapping regions supported

• Protection attributes can optionally include process ID

• Protection offered for 4 concurrent read ports

• Read and write attributes for all masters

• Execute and supervisor/user mode attributes for processor masters

1.4.3.10 Interrupt Controller (INTC)

The MPC5668G/E implements an interrupt controller that features the following:

• Unique 9-bit vector for each of the 316 separate interrupt sources (22 reserved)

• 8 software triggerable interrupt sources

• 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source

• Ability to modify the ISR or task priority.

— Modifying the priority can be used to implement the priority ceiling protocol for accessing
shared resources.

• External high priority interrupt directly accessing the main core critical interrupt mechanism

• Interrupt steering between main CPU and IOP

— Independent selection of any interrupt source to be routed through IOP

— Interrupts share same priority level between IOP and CPU

1.4.3.11 System Clocks and Clock Generation

The following list summarizes the system clock and clock generation on the MPC5668G/E:

• System clock can be derived from the following sources

— 4 – 40 MHz XTAL

— FMPLL

— 16 MHz IRC oscillator

• Programmable output clock divider of system clock (1, 2, 4,)

• Separate programmable peripheral bus clock divider ratio (1, 2, 4,) applied to system clock

• Frequency Modulated Phase-locked loop (FMPLL)

— Input clock frequency from 4 MHz to 40 MHz

— Clock source from external oscillator

— Lock detect circuitry continuously monitors lock status

— Loss of clock (LOC) detection for reference and feedback clocks

— On-chip loop filter (for improved electromagnetic interference performance and reduces
number of external components required)

• On-chip crystal oscillator supporting 4 MHz to 40 MHz crystals

• Dedicated 16 MHz internal RC oscillator

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-12 Freescale Semiconductor

— 16 MHz internal RC oscillator supports low speed code execution and clocking of peripherals
through selection as the system clock

— Used as default clock source out of reset

— Provides a clock for rapid start-up from low power modes

— Provides a back-up clock in the event of PLL or external oscillator clock failure

— Provides a clock for Software Watchdog Timer (SWT)

— 5% accuracy over the operating temperature range (after factory trim)

— Trimming registers to support frequency adjustment with in-application calibration

• Dedicated internal 128 kHz internal RC oscillator for low power mode operation and self wake-up

— 5% accuracy (after factory trim)

— Trimming registers to support improve accuracy with in-application calibration

• Dedicated 32 kHz external oscillator for accurate timed wake-up

1.4.3.12 System Integration Unit (SIU)

The SIU features the following:

• As many as four levels of internal pin multiplexing, allowing exceptional flexibility in the
allocation of device functions for each package

• Centralized general purpose input output (GPIO) control of as many as 155 input/output pins
(package dependent)

• All GPIO pins can be independently configured to support pull-up, pull down, or no pull

• Reading and writing to GPIO supported both as individual pins and 16-bit wide ports

• The majority of the peripheral pins can be alternatively configured as both general purpose input
or output pins. The exception is selected precision ADC channels which support alternative
configuration as general purpose inputs only.

• Direct readback of the pin value supported on all digital output pins through the SIU

• Configurable digital input filter that can be applied to as many as 32 general purpose input pins for
noise elimination on external wakeups

1.4.3.13 Software Watchdog Timer (SWT)

The Watchdog timer on the MPC5668G/E features the following:

• Watchdog enabled out of reset with default 10 ms timeout from internal 16 MHz IRC clock

• Supports normal and windowed mode

• Support for protected access to watchdog control registers with optional soft and hard locks

— Soft lock allows the lock to be overridden by writing a special software code

— Hard lock prevents any changes until after a reset, once enabled

• Watchdog supports optional halting during low power modes

• Configurable response on timeout: reset, interrupt, or interrupt followed by reset

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-13

1.4.3.14 On-Chip Flash

On-chip flash on the MPC5668G/E features the following:

• 2 MB burst flash memory

— Flash partitioning: 4 16 KB; 4 16 KB; 2 64 KB; 2 128 KB; 6 256 KB

— 16 KB shadow flash blocks

— Typical flash access time: 0 wait-state for buffer hits, 3 wait-states for page buffer miss at
116 MHz

— 64-bit ECC with single-bit correction, double-bit detection for data integrity

• Dual flash ports to minimize access contention between main core and IOP

— Each port supported with separate page buffers

• Flash page buffers to improve access time to code and data held in flash

— 4 128-bit page buffers with programmable prefetch control for flash access

— Page buffers can be allocated for code-only, fixed partitions of code and data, all available for
any access

• Censorship protection scheme to prevent flash content visibility

• EE emulation supported by small 16 KB flash blocks in main array with multiple read while write
partitions

• Hardware managed flash writes, erase and verify sequence

• Supports flash writes using internal 16 MHz RC oscillator

• Flash partitioning:

Table 1-2. Flash Partitioning

MPC5668G/E

2 MB

Flash_Base + 0x0000_0000 16 KB

Flash_Base + 0x0000_4000 16 KB

Flash_Base + 0x0000_8000 16 KB

Flash_Base + 0x0000_C000 16 KB

Flash_Base + 0x0001_0000 16 KB

Flash_Base + 0x0001_4000 16 KB

Flash_Base + 0x0001_8000 16 KB

Flash_Base + 0x0001_C000 16 KB

Flash_Base + 0x0002_0000 64 KB

Flash_Base + 0x0003_0000 64 KB

Flash_Base + 0x0004_0000 128 KB

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-14 Freescale Semiconductor

• Error correction status

— Configurable error-correcting codes (ECC) reporting for RAM and flash

1.4.3.15 On-Chip SRAM

On-chip SRAM on the MPC5668G/E features the following:

• 592 KB general purpose RAM (MPC5668G)/128 KB general purpose RAM (MPC5668E)

• Two RAM blocks implemented on separate crossbar ports to reduce arbitration events for high
access master to on-chip RAM (MPC5668G only)

— One port with 80 KB (MPC5668G only)

— One port with 512 KB RAM(MPC5668G)/128 KB RAM (MPC5668E)

• Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait-state for 8- and 16-bit
writes if back to back with a read to same memory block

• 32-bit ECC with single-bit correction, double bit detection for data integrity

• Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory

• User transparent ECC encoding and decoding for byte, half word, and word accesses

1.4.3.16 Error Correction Status Module (ECSM)

The ECSM provides a set of registers that configure and report ECC errors for the device including
accesses to RAM and flash memory. The ECSM provides registers for capturing information on memory
errors if error-correcting codes (ECC) are implemented.

1.4.3.17 Boot Assist Module (BAM)

The BAM is implemented as follows:

• Configures device to support code download via FlexCAN or eSCI and execution of download
routine

Flash_Base + 0x0006_0000 128 KB

Flash_Base + 0x0008_0000 256 KB

Flash_Base + 0x000C_0000 256 KB

Flash_Base + 0x0010_0000 256 KB

Flash_Base + 0x0014_0000 256 KB

Flash_Base + 0x0018_0000 256 KB

Flash_Base + 0x001C_0000 256 KB

Shadow Block 16 KB

Table 1-2. Flash Partitioning (continued)

MPC5668G/E

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-15

• Multiple bootcode starting locations out of reset through implementation of search for valid reset
configuration halfword

1.4.3.18 Enhanced Modular Input Output System (eMIOS200)

The MPC5668G/E implements a scaled-down version of the eMIOS module:

• Supports timed I/O channels with 16-bit counter resolution

• Buffered updates

• Support for shifted PWM outputs to minimize occurrence of concurrent edges

• Supports configurable trigger outputs for ADC conversions for synchronization to channel output
waveforms

• Edge aligned output pulse width modulation

— Programmable pulse period and duty cycle

— Supports 0% and 100% duty cycle

— Shared or independent time bases

• As many as 32 1 single action channels offering input capture and output compare functions

• As many as 32 2 dual action channels offering output pulse width modulation,

• As many as 13 3 output pulse width and frequency modulation and center aligned output PWM
channels with dead time.

• As many as 13 4 modulus up/down counters that can be used to drive counter buses.

• DMA transfer support available

1.4.3.19 Analog to Digital Converter Module (ADC)

The MPC5668G/E ADC features the following:

• 10-bit A/D resolution

• 0–VDD common mode conversion range

• Supports conversion times as short as 1 µs (1 MHz speed)

• Internally multiplexed channels

— 10-bit 2 least significant bits (LSB) accuracy (TUE) available for 16 channels

— 10-bit 3 LSB accuracy (TUE) available for remaining channels

— Dedicated result register available for every internally muxed channel

• Externally multiplexed channels

— Internal control to support generation of external analog multiplexor selection

— Four internal channels optionally used to support externally multiplex inputs, providing
transparent control for additional ADC channels

1.Depends on pin muxing and product derivative
2.Depends on pin muxing and product derivative
3.Depends on pin muxing and product derivative
4.Depends on pin muxing and product derivative

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-16 Freescale Semiconductor

— Each of the four channels supports as many as 8 externally muxed inputs

• Three independently configurable sample and conversion times for high occurrence channels,
internally muxed channels and externally muxed channels

• Right-aligned result format

• Support for one-shot, scan and injection conversion modes

• Traceability of each channels with conversion result.

• Injection mode status bit implemented on adjacent 16-bit register for each result

• Independently configurable parameters for channels:

— Offset refresh

— Sampling

• Cross Triggering support (MPC5668E only)

— Internal conversion triggering from periodic interrupt timer (PIT) or timed I/O module
(eMIOS200) via Cross Triggering Unit (CTU)

— One input pin configurable as external conversion trigger source

• Four configurable analog comparator channels offering range comparison with triggered alarm

• Supports operation of ADC using internal 16 MHz RC oscillator

• All unused analog pins available as general purpose input pins

• Selected unused analog pins available as general purpose output pins

• Power-down mode

• Supports for DMA transfer of results

1.4.3.20 Cross Triggering Unit (CTU)

The CTU features the following:

• Collection of 9 bit timers with an exponential prescaler able to generate the trigger event for ADC
conversions

• 9-bit down counters counting from a programmable start value to 0

• Different counters associated with different channel groups

• Channel group is defined based on PWM channel clock

• Different delay value for each eMIOS flag/PIT event

• 4-bit programmable exponential prescaler

• Single cycle delayed trigger output. Trigger output is a combination of 64 input flags/events
connected to different timers in the system

• Maskable interrupt generation whenever a trigger output is generated

• Event configuration registers dedicated to UC flag/triggering event

• Acknowledgement signal to eMIOS for clearing the flag

• Synchronization with ADC to avoid collision

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-17

1.4.3.21 Deserial Serial Peripheral Interface Module (DSPI)

The MPC5668G/E DSPI features the following:

• Full duplex, synchronous transfers

• Master or slave operation

• Programmable master bit rates

• Programmable clock polarity and phase

• End-of-transmission interrupt flag

• Programmable transfer baud rate

• Programmable data frames from 4 to 16 bits

• As many as 24 chip select lines available (6 per DSPI module); the number available at any time
is dependent on package and pin multiplexing.

• As many as 4 independently configurable transfer types can be configured for each DSPI using the
clock and transfer attributes registers

• Chip select strobe available as alternate function on one of the chip select pins for de-glitching

• FIFOs for buffering as many as 4 transfers on the transmit and receive side

• General purpose I/O functionality on pins when not used for DSPI

• Queueing operation possible through use of eDMA

• Serialization of selected sources (eMIOS channels and Phantom ports in SIU)

1.4.3.22 Serial Communication Interface Module (eSCI)

The eSCI on the MPC5668G/E features the following:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• 13-bit baud rate selection

• Programmable 8-bit or 9-bit data format

• LIN master node automation support

• Separately enabled transmitter and receiver

• Two receiver wakeup methods:

— Idle line wakeup

— Address mark wakeup

• Interrupt driven with flags

• Receiver framing error detection

• Hardware parity checking

• 1/16 bit-time noise detection

• Two channel DMA interface

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-18 Freescale Semiconductor

1.4.3.23 Controller Area Network Module (FlexCAN)

The enhanced FlexCAN module features the following:

• Compliant with CAN protocol specification, Version 2.0B active

• 64 mailboxes, each configurable as transmit or receive

— Mailboxes configurable while module remains synchronized to CAN bus

• Transmit features

— Arbitration scheme according to message ID, message buffer number or local priority

— Internal arbitration to guarantee no inner priority inversion

— Multiple transmit buffers to avoid outer priority inversion

— Transmit abort procedure and notification

• Receive features

— Individual programmable filters for each mailbox

— Hardware FIFO can be enabled

– 8 mailboxes can be configured to provide a 6-entry receive FIFO and 8 programmable
acceptance filters

• Programmable clock source

— System clock

— Direct oscillator clock to avoid PLL jitter

— Listen-only mode capabilities

1.4.3.24 Inter IC Communications Module (I2C)

The I2C module features the following:

• Two-wire bi-directional serial bus for on-board communications

• Compatibility with I2C bus standard

• Multimaster operation

• Software-programmable for one of 256 different serial clock frequencies

• Software-selectable acknowledge bit

• Interrupt-driven, byte-by-byte data transfer

• Arbitration-lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus-busy detection

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-19

1.4.3.25 Dual-Channel FlexRay Controller (FR)

The dual-channel FlexRay controller features the following:

• Full implementation of FlexRay Protocol Specification 2.1, RevA

• Single channel support

— FlexRay PortA can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B

• FlexRay bus data rates of 10, 8, 5, and 2.5 Mbit/s supported

• As many as 128 configurable message buffers with

— Individual frame ID filtering

— Individual channel ID filtering

— Individual cycle counter filtering

• Message buffer header, status and payload data stored in dedicated FlexRay memory

— Allows for flexible and efficient message buffer implementation

— Consistent data access ensured by means of buffer locking scheme

— Application can lock multiple buffers at the same time

• Message buffers can be configured as:

— Receive message buffer

— Single buffered transmit message buffer

— Double buffered transmit message buffer (combines two single buffered message buffers)

• Individual message buffer reconfiguration supported

• Two independent receive FIFOs

— One receive FIFO per channel

— As many as 255 entries for each FIFO

— Global frame ID filtering, based on both value/mask filters and range filters

— Global channel ID filtering

— Global message ID filtering for dynamic segment

• Size of message buffer payload data configurable from 0 to 254 bytes

• Two independent message buffer segments with configurable size of payload data section

– Each segment can contain message buffers assigned to the static segment and message
buffers assigned to the dynamic segment at the same time

• Support for independent internal clock source provided to module from a separate external 40 MHz
crystal

• 1 absolute timer

— 1 timer that can be configured to absolute or relative

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-20 Freescale Semiconductor

1.4.3.26 Periodic Interrupt Timer Module (PIT)

The PIT features the following:

• 8 general purpose interrupt timers

• One PIT can be used to trigger ADC

• One PIT can be used to trigger CTU

• 32-bit counter resolution

• Clocked by system clock frequency

1.4.3.27 System Timer Module

One STM supporting

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels running off the same up-counter

• Independent interrupt source for each channel

• Clocked by the main system clock

• Instantiated in the same CPU clock domain

• Counter can be stopped in debug mode

1.4.3.28 Real Time Counter (RTC)

The Real Time counter supports wake-up from Low Power modes or real time clock generation

• Configurable resolution for different timeout periods

— 1 second resolution for > 1 hour period

— 1 ms resolution for 2-second period

• Selectable clock sources from:

— Internal 128 kHz RC oscillator

— Internal 16 MHz RC oscillator

— 32 kHz external oscillator

• RTC supports continued operation through reset, count only reset manually, or by power on reset
(POR)

1.4.3.29 JTAG Controller (JTAGC)

The JTAGC is compliant with the IEEE 1149.1-2001standard and has the following main features:

• IEEE 1149.1-2001 test access port (TAP) interface

• A JCOMP input that provides the ability to share the TAP

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, as well as
several public and private MCU specific instructions

• Three test data registers: Bypass register, boundary scan register and a device identification register

• Supporting boundary scan testing

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-21

• TAP controller state machine

1.4.3.30 Nexus Development Interface (NDI)

The NDI module is compliant with the IEEE-ISTO 5001-2003 standard. The following features are
implemented, but only available on the 256-pin MAPBGA emulation package:

• 17-bit full duplex pin interface for medium and high visibility throughput

— Full port mode (12 MDO)

— Auxiliary input port (MCKO, 12 × MDO, 2 × MSEO, EVTO, EVTI)

— Auxiliary output port

— 5 pin JTAG port (JCOMP, TDI, TDO, TMS and TCK)

The NPC block performs the following functions

• Controls arbitration between e200z6 and e200z0 Nexus modules to the Nexus Auxiliary output
port

• Generates full port mode indication output port

• Generates MCKO and frequency division (2, 4, 8).

• Controls sharing of EVTO/EVTI

• Enables gating of MCKO when the auxiliary output port is idle.

e200z6 development support features (Nexus class3)

• IEEE-ISTO 5001-2003 standard class 3 compliant

• Program trace via branch trace messaging (BTM)

• Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the
development tools to trace reads and /or writes to selected internal memory resources

• Ownership via ownership trace messaging (OTM). OTM facilitates ownership trace by providing
visibility of which process ID or operating system task is activated

• Run-time access to the e200z6 memory map via the JTAG port

• Watchpoint messaging

• Watchpoint trigger enable of program and/or data trace messaging

e200z0 development support features (Nexus class 2+)

• IEEE-ISTO 5001-2003 standard class 2 compliant with additional class 3 and 4 features available

• Program trace via branch trace messaging (BTM)

• Ownership via ownership trace messaging (OTM)

— OTM facilitates ownership trace by providing visibility of which process ID or operating
system task is activated

• Run-time access to the e200z6 memory map via the JTAG port

• Watchpoint messaging

• Watchpoint trigger enable of program and/or data trace messaging

Capability of an event output signal from either core to generate a debug request in the other core

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-22 Freescale Semiconductor

• All Nexus port pins operate at 3.3 V levels

• Nexus supports debug through reset and low power

1.5 Developer Environment
The MPC5668G/E family of MCUs supports similar tools and third party developers as other Freescale
MPC5500 and MPC5510 products, offering a widespread, established network of tools and software
vendors. It also features a high-performance Nexus debug interface.

A pin-compatible 256MAPBGA package exists to support full Nexus2+ debug capability without
sacrificing GPIOs in the application. Freescale will provide an adapter board featuring the 256MAPBGA
version that can connect onto an application board with a 208MAPBGA footprint.

A starter kit including the following will be available from Freescale and third-party providers:

• Evaluation board featuring CAN, LIN interfaces, and more

• CodeWarrior compiler

• P&E Nexus interface and debugger

More compiler and debugger tool suites will be available from Power Architecture ecosystem partners.
The following software support will be available:

• AutoSAR OS supported

• Flash and EEPROM drivers

• FlexRay, Ethernet, CAN and LIN communication stacks from 3rd parties

1.6 MPC5668G/E Memory Map
This section describes the MPC5668G/E memory map.

All addresses in the device, including those that are reserved, are identified in Table 1-3. The addresses
represent the physical addresses assigned to each IP block.

Table 1-3. MPC5668G/E System Memory Map

Address
Size
(KB)

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Flash (AXBS Port S0 and S1)

0x0000_0000 0x0000_3FFF 16 Program/Data Flash LAS Block L0

0x0000_4000 0x0000_7FFF 16 Program/Data Flash LAS Block L1

0x0000_8000 0x0000_BFFF 16 Program/Data Flash LAS Block L2

0x0000_C000 0x0000_FFFF 16 Program/Data Flash LAS Block L3

0x0001_0000 0x0001_3FFF 16 Program/Data Flash LAS Block L4

0x0001_4000 0x0001_7FFF 16 Program/Data Flash LAS Block L5

0x0001_8000 0x0001_BFFF 16 Program/Data Flash LAS Block L6

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-23

0x0001_C000 0x0001_FFFF 16 Program/Data Flash LAS Block L7

0x0002_0000 0x0002_FFFF 64 Program/Data Flash LAS Block L8

0x0003_0000 0x0003_FFFF 64 Program/Data Flash LAS Block L9

0x0004_0000 0x0005_FFFF 128 Program/Data Flash MAS Block M0

0x0006_0000 0x0007_FFFF 128 Program/Data Flash MAS Block M1

0x0008_0000 0x000B_FFFF 256 Program/Data Flash HAS Block H0

0x000C_0000 0x000F_FFFF 256 Program/Data Flash

0x0010_0000 0x0013_FFFF 256 Program/Data Flash HAS Block H1

0x0014_0000 0x0017_FFFF 256 Program/Data Flash

0x0018_0000 0x001B_FFFF 256 Program/Data Flash HAS Block H2

0x001C_0000 0x001F_FFFF 256 Program/Data Flash

0x0020_0000 0x00FF_BFFF 14,320 Reserved

0x00FF_C000 0x00FF_FFFF 16 Shadow Row

0x0100_0000 0x1FFF_FFFF 507,904 Flash Emulation Mapping

External Bus Interface

0x2000_0000 0x3FFF_FFFF 524,288 Reserved for External Bus
Interface

SRAM (AXBS Ports S2 and S3)

0x4000_0000 0x4007_FFFF 512 SRAM (AXBS Port S2) This 1 MB address
space is mirrored
512 times in the
address range

0x4000_0000 to
0x5FFF_FFFF

> 128 KB

0x4008_0000 0x4009_3FFF 80 SRAM (AXBS Port S3) X

0x4009_4000 0x400F_FFFF 432 Reserved

0x4010_0000 0x5FFF_FFFF 523,264 Mirrored address space

0x6000_0000 0xBFFF_FFFF 1,572,864 Reserved

Peripherals AIPS_A (AXBS Port S6)

0xC000_0000 0xC3EF_FFFF 64,512 Reserved

0xC3F0_0000 0xC3F0_3FFF 16 Reserved

0xC3F0_4000 0xC3F7_FFFF 496 Reserved

0xC3F8_0000 0xC3F8_3FFF 16 Reserved

0xC3F8_4000 0xC3F8_7FFF 16 MLB_DIM Configuration X

0xC3F8_8000 0xC3F8_BFFF 16 I2C_C

0xC3F8_C000 0xC3F8_FFFF 16 I2C_D

Table 1-3. MPC5668G/E System Memory Map (continued)

Address
Size
(KB)

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-24 Freescale Semiconductor

0xC3F9_0000 0xC3F9_3FFF 16 DSPI_C

0xC3F9_4000 0xC3F9_7FFF 16 DSPI_D

0xC3F9_8000 0xC3F9_BFFF 16 Reserved

0xC3F9_C000 0xC3F9_FFFF 16 Reserved

0xC3FA_0000 0xC3FA_3FFF 16 eSCI_J X

0xC3FA_4000 0xC3FA_7FFF 16 eSCI_K X

0xC3FA_8000 0xC3FA_BFFF 16 eSCI_L X

0xC3FA_C000 0xC3FA_FFFF 16 eSCI_M X

0xC3FB_0000 0xC3FB_3FFF 16 Reserved

0xC3FB_4000 0xC3FB_7FFF 16 Reserved

0xC3FB_8000 0xC3FB_BFFF 16 Reserved

0xC3FB_C000 0xC3FB_FFFF 16 Reserved

0xC3FC_0000 0xC3FC_3FFF 16 Reserved

0xC3FC_4000 0xC3FC_7FFF 16 Reserved

0xC3FC_8000 0xC3FC_BFFF 16 Reserved

0xC3FC_C000 0xC3FC_FFFF 16 Reserved

0xC3FD_0000 0xC3FD_3FFF 16 Reserved

0xC3FD_4000 0xC3FD_7FFF 16 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 Reserved

0xC3FD_C000 0xC3FD_FFFF 16 FlexRay X

0xC3FE_0000 0xC3FE_3FFF 16 Reserved

0xC3FE_4000 0xC3FE_7FFF 16 Reserved

0xC3FE_8000 0xC3FF_3FFF 48 Reserved

0xC3FF_4000 0xC3FF_7FFF 16 Reserved

0xC3FF_8000 0xDFFF_FFFF 458,752 Reserved

Peripherals AIPS_B (AXBS Port S7)

0xE000_0000 0xFFEF_FFFF 523,264 Reserved

0xFFF0_0000 0xFFF0_3FFF 16 Reserved

0xFFF0_4000 0xFFF0_7FFF 16 AXBS

0xFFF0_8000 0xFFF0_FFFF 32 Reserved

0xFFF1_0000 0xFFF1_3FFF 16 Sema4

Table 1-3. MPC5668G/E System Memory Map (continued)

Address
Size
(KB)

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 1-25

0xFFF1_4000 0xFFF1_7FFF 16 MPU X

0xFFF1_8000 0xFFF3_7FFF 128 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

0xFFF4_4000 0xFFF4_7FFF 16 eDMA Channels
16–31

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF4_FFFF 16 FEC X

0xFFF5_0000 0xFFF7_FFFF 192 Reserved

0xFFF8_0000 0xFFF8_3FFF 16 ADC_A

0xFFF8_4000 0xFFF8_7FFF 16 Reserved

0xFFF8_8000 0xFFF8_BFFF 16 I2C_A

0xFFF8_C000 0xFFF8_FFFF 16 I2C_B

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_A

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_B

0xFFF9_8000 0xFFF9_BFFF 16 Reserved

0xFFF9C000 0xFFF9_FFFF 16 Reserved

0xFFFA_0000 0xFFFA_3FFF 16 eSCI_A

0xFFFA_4000 0xFFFA_7FFF 16 eSCI_B

0xFFFA_8000 0xFFFA_BFFF 16 eSCI_C

0xFFFA_C000 0xFFFA_FFFF 16 eSCI_D

0xFFFB_0000 0xFFFB_3FFF 16 eSCI_E

0xFFFB_4000 0xFFFB_7FFF 16 eSCI_F

0xFFFB_8000 0xFFFB_BFFF 16 eSCI_G X

0xFFFB_C000 0xFFFB_FFFF 16 eSCI_H X

0xFFFC_0000 0xFFFC_3FFF 16 FlexCan_A

0xFFFC_4000 0xFFFC_7FFF 16 FlexCan_B

0xFFFC_8000 0xFFFC_BFFF 16 FlexCan_C

0xFFFC_C000 0xFFFC_FFFF 16 FlexCan_D

0xFFFD_0000 0xFFFD_3FFF 16 FlexCan_E

0xFFFD_4000 0xFFFD_7FFF 16 FlexCan_F X

Table 1-3. MPC5668G/E System Memory Map (continued)

Address
Size
(KB)

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Introduction

MPC5668x Microcontroller Reference Manual, Rev. 4

1-26 Freescale Semiconductor

0xFFFD_8000 0xFFFD_BFFF 16 CTU_A X

0xFFFD_C000 0xFFFD_FFFF 16 DMA Multiplexer

0xFFFE_0000 0xFFFE_3FFF 16 PIT

0xFFFE_4000 0xFFFE_7FFF 16 eMIOS_A Channels
24–31

0xFFFE_8000 0xFFFE_BFFF 16 SIU

0xFFFE_C000 0xFFFE_FFFF 16 CRP

0xFFFF_0000 0xFFFF_3FFF 16 PLL

0xFFFF_4000 0xFFFF_7FFF 16 Reserved

0xFFFF_8000 0xFFFF_BFFF 16 PFlash Configuration

0xFFFF_C000 0xFFFF_FFFF 16 BAM (upper 8K)

Table 1-3. MPC5668G/E System Memory Map (continued)

Address
Size
(KB)

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-1

Chapter 2
Signal Description

2.1 Introduction
This chapter describes signals that connect off-chip. It includes a signal properties summary, power and
ground segmentation summary, package pinouts, and detailed descriptions of signals. Because the
MPC5668x comes in multiple packages, some signals may not be available on every package. Refer to the
MPC5668x Microcontroller Family Data Sheet for electrical characteristics.

2.2 Signal Properties Summary
Table 2-1 shows the signals properties for each pin on MPC5668x. For all port pins that have an associated
SIU_PCRn register to control pin properties, the supported functions column lists the functions associated
with the programming of the SIU_PCRn[PA] bit in the order: general-purpose input/output (GPIO),
function 1, function 2, and function 3 (see Figure 2-1). When an alternate function is not implemented for
a value of SIU_PCRn[PA], a dash is shown in the Description column and the respective value in the PA
bitfield is reserved.

Figure 2-1. Supported Functions Example

PA[0]
AN[0]

GPIO

Function 1

Functions 2 and 3
not implemented

0 00
01
10
11

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description

Port A GPI
ADC Analog Input
—
—

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-2 Freescale Semiconductor

Table 2-1. MPC5668x Signal Properties

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Port A (16)

PA0 PA[0]
AN[0]

0 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — D15 D15

PA1 PA[1]
AN[1]

1 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — E15 E15

PA2 PA[2]
AN[2]

2 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — F16 F16

PA3 PA[3]
AN[3]

3 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — F15 F15

PA4 PA[4]
AN[4]

4 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — G16 G16

PA5 PA[5]
AN[5]

5 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — G15 G15

PA6 PA[6]
AN[6]

6 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — H16 H16

PA7 PA[7]
AN[7]

7 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — G14 G14

PA8 PA[8]
AN[8]

8 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — F14 F14

PA9 PA[9]
AN[9]

9 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — E14 E14

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-3

PA10 PA[10]
AN[10]

10 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — D13 D13

PA11 PA[11]
AN[11]

11 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — E13 E13

PA12 PA[12]
AN[12]

12 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — D14 D14

PA13 PA[13]
AN[13]

13 00
01
10
11

Port A GPI
ADC Analog Input
—
—

I
I

—
—

VDDA IHA — — F13 F13

PA14 PA[14]
AN[14]
EXTAL32

14 00
01
10
11

Port A GPI
ADC Analog Input
External 32 kHz Crystal In
—

I
I
I

—

VDDA IHA — — D16 D16

PA15 PA[15]
AN[15]
XTAL32

15 00
01
10
11

Port A GPI
ADC Analog Input
External 32 kHz Crystal Out
—

I
I
O
—

VDDA IHA — — E16 E16

Port B (16)

 PB0 PB[0]
AN[16]/ANW

16 00
01
10
11

Port B GPIO
ADC Analog Input/Mux In
—
—

I/O
I

—
—

VDDE1 SHA — — B14 B14

 PB1 PB[1]
AN[17]/ANX

17 00
01
10
11

Port B GPIO
ADC Analog Input/Mux In
—
—

I/O
I

—
—

VDDE1 SHA — — C14 C14

 PB2 PB[2]
AN[18]/ANY

18 00
01
10
11

Port B GPIO
ADC Analog Input/Mux In
—
—

I/O
I

—
—

VDDE1 SHA — — B13 B13

 PB3 PB[3]
AN[19]/ANZ

19 00
01
10
11

Port B GPIO
ADC Analog Input/Mux In
—
—

I/O
I

—
—

VDDE1 SHA — — C13 C13

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-4 Freescale Semiconductor

 PB4 PB[4]
AN[20]

20 00
01
10
11

Port B GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — C12 C12

 PB5 PB[5]
AN[21]

21 00
01
10
11

Port B GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — D12 D12

 PB6 PB[6]
AN[22]

22 00
01
10
11

Port B GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — C11 C11

 PB7 PB[7]
AN[23]

23 00
01
10
11

Port B GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — D11 D11

 PB8 PB[8]
AN[24]
PCS_A[2]

24 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_A Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — A10 A10

 PB9 PB[9]
AN[25]
PCS_A[3]

25 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_A Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — B12 B12

 PB10 PB[10]
AN[26]
PCS_B[4]

26 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_B Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — A9 A9

 PB11 PB[11]
AN[27]
PCS_B[5]

27 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_B Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — B9 B9

 PB12 PB[12]
AN[28]
PCS_C[1]

28 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_C Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — C10 C10

 PB13 PB[13]
AN[29]
PCS_C[2]

29 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_C Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — A8 A8

 PB14 PB[14]
AN[30]
PCS_D[3]

30 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_D Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — B8 B8

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-5

 PB15 PB[15]
AN[31]
PCS_D[4]

31 00
01
10
11

Port B GPIO
ADC Analog Input
DSPI_D Peripheral Chip Select
—

I/O
I
O
—

VDDE1 SHA — — C9 C9

Port C (16)

 PC0 PC[0]
AN[32]

32 00
01
10
11

Port C GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — D9 D9

 PC1 PC[1]
AN[33]

33 00
01
10
11

Port C GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — C8 C8

 PC2 PC[2]
AN[34]
EVTI

34 00
01
10
11

Port C GPIO
ADC Analog Input
Nexus Event In
—

I/O
I
I

—

VDDE1 SHA — — A7 A7

 PC3 PC[3]
AN[35]
EVTO

35 00
01
10
11

Port C GPIO
ADC Analog Input
Nexus Event Out
—

I/O
I
O
—

VDDE1 SHA — — B7 B7

 PC4 PC[4]
AN[36]

36 00
01
10
11

Port C GPIO
ADC Analog Input
—
—

I/O
I

—
—

VDDE1 SHA — — D8 D8

 PC5 PC[5]
AN[37]
Z6NMI

37 00
01
10
11

Port C GPIO
ADC Analog Input
Z6 Core Non-Maskable Interrupt
—

I/O
I
I

—

VDDE1 SHA — — C6 C6

 PC6 PC[6]
AN[38]
Z0NMI

38 00
01
10
11

Port C GPIO
ADC Analog Input
Z0 Core Non-Maskable Interrupt
—

I/O
I
I

—

VDDE1 SHA — — C7 C7

 PC7 PC[7]
AN[39]
FR_DBG3

39 00
01
10
11

Port C GPIO
ADC Analog Input
FlexRay Debug
—

I/O
I
O
—

VDDE1 SHA — — A6 A6

 PC8 PC[8]
AN[40]
FR_DBG2

40 00
01
10
11

Port C GPIO
ADC Analog Input
FlexRay Debug
—

I/O
I
O
—

VDDE1 SHA — — B6 B6

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-6 Freescale Semiconductor

 PC9 PC[9]
AN[41]
FR_DBG1

41 00
01
10
11

Port C GPIO
ADC Analog Input
FlexRay Debug
—

I/O
I
O
—

VDDE1 SHA — — A5 A5

 PC10 PC[10]
AN[42]
FR_DBG0

42 00
01
10
11

Port C GPIO
ADC Analog Input
FlexRay Debug
—

I/O
I
O
—

VDDE1 SHA — — B5 B5

 PC11 PC[11]
AN[43]
SCL_C
—

43 00
01
10
11

Port C GPIO
ADC Analog Input
I2C_C Serial Clock
—

I/O
I

I/O
—

VDDE1 SHA — — B4 B4

 PC12 PC[12]
AN[44]
SDA_C
—

44 00
01
10
11

Port C GPIO
ADC Analog Input
I2C_C Serial Data
—

I/O
I

I/O
—

VDDE1 SHA — — A4 A4

 PC13 PC[13]
AN[45]
—
MA[0]

45 00
01
10
11

Port C GPIO
ADC Analog Input
—
ADC Ext. Mux Address Select

I/O
I

—
O

VDDE1 SHA — — C5 C5

 PC14 PC[14]
AN[46]
MA[1]
—

46 00
01
10
11

Port C GPIO
ADC Analog Input
ADC Ext. Mux Address Select
—

I/O
I

—
O

VDDE1 SHA — — C4 C4

 PC15 PC[15]
AN[47]
MA[2]
—

47 00
01
10
11

Port C GPIO
ADC Analog Input
ADC Ext. Mux Address Select
—

I/O
I
O
—

VDDE1 SHA — — D5 D5

Port D (16)

PD0 PD[0]
CNTX_A

48 00
01
10
11

Port D GPIO
FlexCAN_A Transmit
—
—

I/O
O
—
—

VDDE2 SH — — A2 A2

PD1 PD[1]
CNRX_A

49 00
01
10
11

Port D GPIO
FlexCAN_A Receive
—
—

I/O
I

—
—

VDDE2 SH — — B2 B2

PD2 PD[2]
CNTX_B

50 00
01
10
11

Port D GPIO
FlexCAN_B Transmit
—
—

I/O
O
—
—

VDDE2 SH — — B1 B1

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-7

PD3 PD[3]
CNRX_B

51 00
01
10
11

Port D GPIO
FlexCAN_B Receive
—
—

I/O
I

—
—

VDDE2 SH — — C1 C1

PD4 PD[4]
CNTX_C

52 00
01
10
11

Port D GPIO
FlexCAN_C Transmit
—
—

I/O
O
—
—

VDDE2 SH — — C2 C2

PD5 PD[5]
CNRX_C

53 00
01
10
11

Port D GPIO
FlexCAN_C Receive
—
—

I/O
I

—
—

VDDE2 SH — — D1 D1

PD6 PD[6]
CNTX_D
TXD_K
SCL_B

54 00
01
10
11

Port D GPIO
FlexCAN_D Transmit
SCI_K Transmit
I2C_B Serial Clock

I/O
O
O

I/O

VDDE2 SH — — D2 D2

PD7 PD[7]
CNRX_D
RXD_K
SDA_B

55 00
01
10
11

Port D GPIO
FlexCAN_D Receive
SCI_K Receive
I2C_B Serial Data

I/O
I
I

I/O

VDDE2 SH — — E1 E1

PD8 PD[8]
CNTX_E
TXD_L
SCL_C

56 00
01
10
11

Port D GPIO
FlexCAN_E Transmit
SCI_L Transmit
I2C_C Serial Clock

I/O
O
O

I/O

VDDE2 SH — — E2 E2

PD9 PD[9]
CNRX_E
RXD_L
SDA_C

57 00
01
10
11

Port D GPIO
FlexCAN_E Receive
SCI_L Receive
I2C_C Serial Data

I/O
I
I

I/O

VDDE2 SH — — F1 F1

PD10 PD[10]
CNTX_F
TXD_M
SCL_D

58 00
01
10
11

Port D GPIO
FlexCAN_F Transmit
SCI_M Transmit
I2C_D Serial Clock

I/O
O
O

I/O

VDDE2 SH — — F2 F2

PD11 PD[11]
CNRX_F
RXD_M
SDA_D

59 00
01
10
11

Port D GPIO
FlexCAN_F Receive
SCI_M Receive
I2C_D Serial Data

I/O
I
I

I/O

VDDE2 SH — — G1 G1

PD12 PD[12]
TXD_A

60 00
01
10
11

Port D GPIO
eSCI_A Transmit
—
—

I/O
O
—
—

VDDE2 SH — — G2 G2

PD13 PD[13]
RXD_A

61 00
01
10
11

Port D GPIO
eSCI_A Receive
—
—

I/O
I

—
—

VDDE2 SH — — H1 H1

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-8 Freescale Semiconductor

PD14 PD[14]
TXD_B

62 00
01
10
11

Port D GPIO
eSCI_B Transmit
—
—

I/O
O
—
—

VDDE2 SH — — C3 C3

PD15 PD[15]
RXD_B

63 00
01
10
11

Port D GPIO
eSCI_B Receive
—
—

I/O
I

—
—

VDDE2 SH — — D3 D3

Port E (16)

PE0 PE[0]
TXD_C
eMIOS[31]

64 00
01
10
11

Port E GPIO
eSCI_C Transmit
eMIOS Channel
—

I/O
O

I/O
—

VDDE2 SH — — E3 E3

PE1 PE[1]
RXD_C
eMIOS[30]

65 00
01
10
11

Port E GPIO
eSCI_C Receive
eMIOS Channel
—

I/O
I

I/O

VDDE2 SH — — E4 E4

PE2 PE[2]
TXD_D
eMIOS[29]

66 00
01
10
11

Port E GPIO
eSCI_D Transmit
eMIOS Channel
—

I/O
O

I/O

VDDE2 SH — — F4 F4

PE3 PE[3]
RXD_D
eMIOS[28]

67 00
01
10
11

Port E GPIO
eSCI_D Receive
eMIOS Channel
—

I/O
I

I/O

VDDE2 SH — — F3 F3

PE4 PE[4]
TXD_E
eMIOS[27]

68 00
01
10
11

Port E GPIO
eSCI_E Transmit
eMIOS Channel
—

I/O
O

I/O

VDDE2 SH — — G3 G3

PE5 PE[5]
RXD_E
eMIOS[26]

69 00
01
10
11

Port E GPIO
eSCI_E Receive
eMIOS Channel
—

I/O
I

I/O

VDDE2 SH — — H3 H3

PE6 PE[6]
TXD_F
eMIOS[25]

70 00
01
10
11

Port E GPIO
eSCI_F Transmit
eMIOS Channel
—

I/O
O

I/O

VDDE2 SH — — M2 M2

PE7 PE[7]
RXD_F
eMIOS[24]

71 00
01
10
11

Port E GPIO
eSCI_F Receive
eMIOS Channel
—

I/O
I

I/O

VDDE2 SH — — L2 L2

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-9

PE8 PE[8]
TXD_G
PCS_A[1]

72 00
01
10
11

Port E GPIO
eSCI_G Transmit
DSPI_A Peripheral Chip Select
—

I/O
O
O

VDDE2 SH — — J4 J4

PE9 PE[9]
RXD_G
PCS_A[4]

73 00
01
10
11

Port E GPIO
eSCI_G Receive
DSPI_A Peripheral Chip Select
—

I/O
I
O

VDDE2 SH — — M4 M4

PE10 PE[10]
TXD_H
PCS_B[3]

74 00
01
10
11

Port E GPIO
eSCI_H Transmit
DSPI_B Peripheral Chip Select
—

I/O
O
O

VDDE2 SH — — N3 N3

PE11 PE[11]
RXD_H
PCS_B[2]

75 00
01
10
11

Port E GPIO
eSCI_H Receive
DSPI_B Peripheral Chip Select
—

I/O
I
O

VDDE2 SH — — N4 N4

PE12 PE[12]
TXD_J
PCS_C[5]

76 00
01
10
11

Port E GPIO
eSCI_J Transmit
DSPI_C Peripheral Chip Select
—

I/O
O
O

VDDE2 SH — — P4 P4

PE13 PE[13]
RXD_J
PCS_C[3]

77 00
01
10
11

Port E GPIO
eSCI_J Receive
DSPI_C Peripheral Chip Select
—

I/O
I
O

VDDE2 SH — — P5 P5

PE14 PE[14]
SCL_A
PCS_D[2]

78 00
01
10
11

Port E GPIO
I2C_A Serial Clock
DSPI_D Peripheral Chip Select
—

I/O
I/O
O
—

VDDE2 SH — — N7 N7

PE15 PE[15]
SDA_A
PCS_D[5]

79 00
01
10
11

Port E GPIO
I2C_A Serial Data
DSPI_D Peripheral Chip Select
—

I/O
I/O
O
—

VDDE2 SH — — N6 N6

Port F (16)

PF0 PF[0]
SCK_A

80 00
01
10
11

Port F GPIO
DSPI_A Serial Clock
—
—

I/O
I/O
—
—

VDDE2 MH — — H2 H2

PF1 PF[1]
SOUT_A

81 00
01
10
11

Port F GPIO
DSPI_A Serial Data Out
—
—

I/O
O
—
—

VDDE2 MH — — J1 J1

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-10 Freescale Semiconductor

PF2 PF[2]
SIN_A

82 00
01
10
11

Port F GPIO
DSPI_A Serial Data In
—
—

I/O
I

—
—

VDDE2 SH — — J2 J2

PF3 PF[3]
PCS_A[0]
PCS_B[5]
PCS_C[4]

83 00
01
10
11

Port F GPIO
DSPI_A Peripheral Chip Select
DSPI_B Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
I/O
O
O

VDDE2 SH — — N2 N2

PF4 PF[4]
SCK_B
PCS_A[1]
PCS_C[2]

84 00
01
10
11

Port F GPIO
DSPI_B Serial Clock
DSPI_A Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
I/O
O
O

VDDE2 MH — — M1 M1

PF5 PF[5]
SOUT_B
PCS_A[2]
PCS_C[3]

85 00
01
10
11

Port F GPIO
DSPI_B Serial Data Out
DSPI_A Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
O
O
O

VDDE2 MH — — P2 P2

PF6 PF[6]
SIN_B
PCS_A[3]
PCS_C[5]

86 00
01
10
11

Port F GPIO
DSPI_B Serial Data In
DSPI_A Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE2 SH — — N1 N1

PF7 PF[7]
PCS_B[0]
PCS_C[5]
PCS_D[4]

87 00
01
10
11

Port F GPIO
DSPI_B Peripheral Chip Select
DSPI_C Peripheral Chip Select
DSPI_D Peripheral Chip Select

I/O
I/O
O
O

VDDE2 SH — — R2 R2

PF8 PF[8]
SCK_C

88 00
01
10
11

Port F GPIO
DSPI_C Serial Clock
—
—

I/O
I/O
—
—

VDDE2 MH — — P1 P1

PF9 PF[9]
SOUT_C

89 00
01
10
11

Port F GPIO
DSPI_C Serial Data Out
—
—

I/O
O
—
—

VDDE2 MH — — T2 T2

PF10 PF[10]
SIN_C

90 00
01
10
11

Port F GPIO
DSPI_C Serial Data In
—
—

I/O
I

—
—

VDDE2 SH — — R1 R1

PF11 PF[11]
PCS_C[0]
PCS_D[5]
PCS_A[4]

91 00
01
10
11

Port F GPIO
DSPI_C Peripheral Chip Select
DSPI_D Peripheral Chip Select
DSPI_A Peripheral Chip Select

I/O
I/O
O
O

VDDE2 SH — — R3 R3

PF12 PF[12]
SCK_D

92 00
01
10
11

Port F GPIO
DSPI_D Serial Clock
—
—

I/O
I/O
—
—

VDDE3 MH — — N14 N14

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-11

PF13 PF[13]
SOUT_D

93 00
01
10
11

Port F GPIO
DSPI_D Serial Data Out
—
—

I/O
O
—
—

VDDE3 MH — — M14 M14

PF14 PF[14]
SIN_D

94 00
01
10
11

Port F GPIO
DSPI_D Serial Data In
—
—

I/O
I

—
—

VDDE3 SH — — P14 P14

PF15 PF[15]
PCS_D[0]
PCS_A[5]
PCS_B[4]

95 00
01
10
11

Port F GPIO
DSPI_D Peripheral Chip Select
DSPI_A Peripheral Chip Select
DSPI_B Peripheral Chip Select

I/O
I/O
O
O

VDDE3 SH — — P13 P13

Port G (16)

PG0 PG[0]
PCS_A[4]
PCS_B[3]
AN[48]

96 00
01
10
11

Port G GPIO
DSPI_A Peripheral Chip Select
DSPI_B Peripheral Chip Select
ADC Analog Input

I/O
O
O
I

VDDE2 SHA — — B3 B3

PG1 PG[1]
PCS_A[5]
PCS_B[4]
AN[49]

97 00
01
10
11

Port G GPIO
DSPI_A Peripheral Chip Select
DSPI_B Peripheral Chip Select
ADC Analog Input

I/O
O
O
I

VDDE2 SHA — — A3 A3

PG2 PG[2]
PCS_D[1]
SCL_C
AN[50]

98 00
01
10
11

Port G GPIO
DSPI_D Peripheral Chip Select
I2C_C Serial Clock
ADC Analog Input

I/O
O

I/O
I

VDDE3 SHA — — H14 H14

PG3 PG[3]
PCS_D[2]
SDA_C
AN[51]

99 00
01
10
11

Port G GPIO
DSPI_D Peripheral Chip Select
I2C_C Serial Data
ADC Analog Input

I/O
O

I/O
I

VDDE3 SHA — — J14 J14

PG4 PG[4]
PCS_D[3]
SCL_B
AN[52]

100 00
01
10
11

Port G GPIO
DSPI_D Peripheral Chip Select
I2C_B Serial Clock
ADC Analog Input

I/O
O

I/O
I

VDDE3 SHA — — K14 K14

PG5 PG[5]
PCS_D[4]
SDA_B
AN[53]

101 00
01
10
11

Port G GPIO
DSPI_D Peripheral Chip Select
I2C_B Serial Data
ADC Analog Input

I/O
O

I/O
I

VDDE3 SHA — — L14 L14

PG6 PG[6]
PCS_C[1]
FEC_MDC
AN[54]

102 00
01
10
11

Port G GPIO
DSPI_C Peripheral Chip Select
Ethernet Mgmt. Data Clock
ADC Analog Input

I/O
O
O
I

VDDE3 MHA — — H15 H15

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-12 Freescale Semiconductor

PG7 PG[7]
PCS_C[2]
FEC_MDIO
AN[55]

103 00
01
10
11

Port G GPIO
DSPI_C Peripheral Chip Select
Ethernet Mgmt. Data I/O
ADC Analog Input

I/O
O

I/O
I

VDDE3 MHA — — J15 J15

PG8 PG[8]
eMIOS[7]
FEC_TX_CLK
AN[56]

104 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Clock
ADC Analog Input

I/O
I/O
I
I

VDDE3 SHA — — K15 K15

PG9 PG[9]
eMIOS[6]
FEC_CRS
AN[57]

105 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Carrier Sense
ADC Analog Input

I/O
I/O
I
I

VDDE3 SHA — — L15 L15

PG10 PG[10]
eMIOS[5]
FEC_TX_ER
AN[58]

106 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Error
ADC Analog Input

I/O
I/O
O
I

VDDE3 MHA — — M15 M15

PG11 PG[11]
eMIOS[4]
FEC_RX_CLK
AN[59]

107 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Receive Clock
ADC Analog Input

I/O
I/O
I
I

VDDE3 SHA — — J16 J16

PG12 PG[12]
eMIOS[3]
FEC_TXD[0]
AN[60]

108 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Data
ADC Analog Input

I/O
I/O
O
I

VDDE3 MHA — — K16 K16

PG13 PG[13]
eMIOS[2]
FEC_TXD[1]
AN[61]

109 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Data
ADC Analog Input

I/O
I/O
O
I

VDDE3 MHA — — L16 L16

PG14 PG[14]
eMIOS[1]
FEC_TXD[2]
AN[62]

110 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Data
ADC Analog Input

I/O
I/O
O
I

VDDE3 MHA — — M16 M16

PG15 PG[15]
eMIOS[0]
FEC_TXD[3]
AN[63]

111 00
01
10
11

Port G GPIO
eMIOS Channel
Ethernet Transmit Data
ADC Analog Input

I/O
I/O
O
I

VDDE3 MHA — — N16 N16

Port H (16)

PH0 PH[0]
eMIOS[31]
FEC_COL

112 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Collision
—

I/O
I/O
I

—

VDDE3 SH — — T14 T14

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-13

PH1 PH[1]
eMIOS[30]
FEC_RX_DV

113 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Data Valid
—

I/O
I/O
I

—

VDDE3 SH — — P16 P16

PH2 PH[2]
eMIOS[29]
FEC_TX_EN

114 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Transmit Enable
—

I/O
I/O
O
—

VDDE3 MH — — R16 R16

PH3 PH[3]
eMIOS[28]
FEC_RX_ER

115 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Error
—

I/O
I/O
I

—

VDDE3 SH — — N15 N15

PH4 PH[4]
eMIOS[27]
FEC_RXD[0]

116 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Data
—

I/O
I/O
I

—

VDDE3 SH — — P15 P15

PH5 PH[5]
eMIOS[26]
FEC_RXD[1]

117 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Data
—

I/O
I/O
I

—

VDDE3 SH — — R14 R14

PH6 PH[6]
eMIOS[25]
FEC_RXD[2]

118 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Data
—

I/O
I/O
I

—

VDDE3 SH — — R15 R15

PH7 PH[7]
eMIOS[24]
FEC_RXD[3]

119 00
01
10
11

Port H GPIO
eMIOS Channel
Ethernet Receive Data
—

I/O
I/O
I

—

VDDE3 SH — — T15 T15

PH8 PH[8]
eMIOS[23]

120 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P7 P7

PH9 PH[9]
eMIOS[22]

121 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — N8 N8

PH10 PH[10]
eMIOS[21]

122 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P8 P8

PH11 PH[11]
eMIOS[20]

123 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — N9 N9

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-14 Freescale Semiconductor

PH12 PH[12]
eMIOS[19]

124 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P9 P9

PH13 PH[13]
eMIOS[18]

125 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P10 P10

PH14 PH[14]
eMIOS[17]

126 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P11 P11

PH15 PH[15]
eMIOS[16]

127 00
01
10
11

Port H GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — N11 N11

Port J (16)

PJ0 PJ[0]
eMIOS[15]
PCS_A[4]

128 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_A Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — R7 R7

PJ1 PJ[1]
eMIOS[14]
PCS_A[5]

129 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_A Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — T7 T7

PJ2 PJ[2]
eMIOS[13]
PCS_B[1]

130 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_B Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — R8 R8

PJ3 PJ[3]
eMIOS[12]
PCS_B[2]

131 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_B Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — T8 T8

PJ4 PJ[4]
eMIOS[11]
PCS_C[3]

132 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_C Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — R9 R9

PJ5 PJ[5]
eMIOS[10]
PCS_C[4]

133 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_C Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — T9 T9

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-15

PJ6 PJ[6]
eMIOS[09]
PCS_D[5]

134 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_D Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — R10 R10

PJ7 PJ[7]
eMIOS[08]
PCS_D[1]

135 00
01
10
11

Port J GPIO
eMIOS Channel
DSPI_D Peripheral Chip Select
—

I/O
I/O
O
—

VDDE4 SH — — T10 T10

PJ8 PJ[8]
eMIOS[07]

136 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — T11 T11

PJ9 PJ[9]
eMIOS[06]

137 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — R11 R11

PJ10 PJ[10]
eMIOS[05]

138 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — N12 N12

PJ11 PJ[11]
eMIOS[04]

139 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — P12 P12

PJ12 PJ[12]
eMIOS[03]

140 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — R12 R12

PJ13 PJ[13]
eMIOS[02]

141 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — T12 T12

PJ14 PJ[14]
eMIOS[01]

142 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — R13 R13

PJ15 PJ[15]
eMIOS[00]

143 00
01
10
11

Port J GPIO
eMIOS Channel
—
—

I/O
I/O
—
—

VDDE4 SH — — T13 T13

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-16 Freescale Semiconductor

Port K (11)

PK0 PK[0]
MLBCLK
SCK_B
CLKOUT

144 00
01
10
11

Port K GPIO
Media Local Bus Clock
DSPI_B Serial Clock
CLKOUT (Test Only)

I/O
I

I/O
O

VDDEMLB F — — L1 L1

PK1 PK[1]
MLBSIG
SOUT_B
PCS_D[4]

145 00
01
10
11

Port K GPIO
Media Local Bus Signal
DSPI_B Serial Data Out
DSPI_D Peripheral Chip Select

I/O
I/O
O
O

VDDEMLB F — — K1 K1

PK2 PK[2]
MLBDAT
SIN_B
PCS_D[5]

146 00
01
10
11

Port K GPIO
Media Local Bus Data
DSPI_B Serial Data In
DSPI_D Peripheral Chip Select

I/O
I/O
I
O

VDDEMLB F — — K2 K2

PK3 PK[3]
FR_A_RX
MA[0]
PCS_C[1]

147 00
01
10
11

Port K GPIO
FlexRay A Receive Data
ADC Ext. Mux Address Select
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE2 SH — — T3 T3

PK4 PK[4]
FR_A_TX
MA[1]
PCS_C[2]

148 00
01
10
11

Port K GPIO
FlexRay A Transmit Data
ADC Ext. Mux Address Select
DSPI_C Peripheral Chip Select

I/O
O
O
O

VDDE2 MH — — R4 R4

PK5 PK[5]
FR_A_TX_EN
MA[2]
PCS_C[3]

149 00
01
10
11

Port K GPIO
FlexRay A Transmit Enable
ADC Ext. Mux Address Select
DSPI_C Peripheral Chip Select

I/O
O
O
O

VDDE2 MH — — T4 T4

PK6 PK[6]
FR_B_RX
PCS_B[1]
PCS_C[4]

150 00
01
10
11

Port K GPIO
FlexRay B Receive Data
DSPI_B Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
I
O
O

VDDE2 SH — — R5 R5

PK7 PK[7]
FR_B_TX
PCS_B[2]
PCS_C[5]

151 00
01
10
11

Port K GPIO
FlexRay B Transmit Data
DSPI_B Peripheral Chip Select
DSPI_C Peripheral Chip Select

I/O
O
O
O

VDDE2 MH — — T5 T5

PK8 PK[8]
FR_B_TX_EN
PCS_B[3]
PCS_A[1]

152 00
01
10
11

Port K GPIO
FlexRay B Transmit Enable
DSPI_B Peripheral Chip Select
DSPI_A Peripheral Chip Select

I/O
O
O
O

VDDE2 MH — — R6 R6

PK9 PK[9]
CLKOUT
PCS_D[1]
PCS_A[2]
BOOTCFG

153 00
01
10
11

Port K GPIO
CLKOUT (User mode)
DSPI_D Peripheral Chip Select
DSPI_A Peripheral Chip Select
Boot Configuration

I/O
O
O
O
I

VDDE2 MH BOOT
CFG
(Pull-
down)

GPIO T6 T6

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-17

PK10 PK[10]
PCS_B[5]
PCS_D[2]
PCS_A[3]

154 00
01
10
11

Port K GPIO
DSPI_B Peripheral Chip Select
DSPI_D Peripheral Chip Select
DSPI_A Peripheral Chip Select

I/O
O
O
O

VDDE2 SH — — P6 P6

Nexus Pins (17)

EVTI EVTI — — Nexus Event In I VDDENEX F — — — M11

EVTO EVTO — — Nexus Event Out O VDDENEX F — — — M12

MSEO0 MSEO[0] — — Nexus Message Start/End Out O VDDENEX F — — — M9

MSEO1 MSEO[1] — — Nexus Message Start/End Out O VDDENEX F — — — M8

MCKO MCKO — — Nexus Message Clock Out O VDDENEX F — — — M10

MDO0 MDO[0] — — Nexus Message Data Out O VDDENEX F — — — E5

MDO1 MDO[1] — — Nexus Message Data Out O VDDENEX F — — — F5

MDO2 MDO[2] — — Nexus Message Data Out O VDDENEX F — — — G5

MDO3 MDO[3] — — Nexus Message Data Out O VDDENEX F — — — H5

MDO4 MDO[4] — — Nexus Message Data Out O VDDENEX F — — — H6

MDO5 MDO[5] — — Nexus Message Data Out O VDDENEX F — — — J6

MDO6 MDO[6] — — Nexus Message Data Out O VDDENEX F — — — J5

MDO7 MDO[7] — — Nexus Message Data Out O VDDENEX F — — — K5

MDO8 MDO[8] — — Nexus Message Data Out O VDDENEX F — — — L5

MDO9 MDO[9] — — Nexus Message Data Out O VDDENEX F — — — M5

MDO10 MDO[10] — — Nexus Message Data Out O VDDENEX F — — — M6

MDO11 MDO[11] — — Nexus Message Data Out O VDDENEX F — — — M7

Miscellaneous Pins (9)

EXTAL EXTAL
EXTCLK

— — Main Crystal Oscillator Input
External Clock Input

I
I

VDDSYN A EXTAL A14 A14

XTAL XTAL — — Main Crystal Oscillator Output O VDDSYN A XTAL A13 A13

TDI TDI — — JTAG Test Data Input I VDDE2 SH TDI (Pull Up) J3 J3

TDO TDO — — JTAG Test Data Output O VDDE2 MH TDO (Pull Up8) M3 M3

TMS TMS — — JTAG Test Mode Select Input I VDDE2 MH TMS (Pull Up) L3 L3

TCK TCK — — JTAG Test Clock Input I VDDE2 SH TCK (Pull Down) P3 P3

JCOMP JCOMP — — JTAG Compliancy I VDDE2 SH JCOMP (Pull Down) K3 K3

TEST TEST — — Test Mode Select I VDDE3 IH TEST9 M13 M13

RESET RESET — — External Reset I/O VDDE1 MH RESET (Pull Up) A11 A11

Table 2-1. MPC5668x Signal Properties (continued)

Pin
Name1

Supported
Functions2

GPIO
(PCR)
Num3

PA4 Description
I/O

Type
Volt-
age

Pad
Type5

Status
Package Pin

Locations

During
Reset6

After
Reset7

208
BGA

256
BGA

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-18 Freescale Semiconductor

1 The primary signal name is used as the pin label on the BGA map for identification purposes.
2 Each line in the Signal Name column corresponds to a separate signal function on the pin. For all device I/O pins, the primary,

alternate, or GPIO signal functions are designated in the PA field of the System Integration Unit (SIU) PCR registers except
where explicitly noted.

3 The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number.
4 The PA bitfield in the SIU_PCRn register selects the signal function for the pin. A dash in the Description field of this table

indicates that this value for PC is reserved on this pin, and should not be used.
5 The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only,

M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad.
6 The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high

impedance. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown
enabled, Low – output driven low, High – output driven high. A dash on the left side of the slash denotes that both the input and
output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on
the pin. The signal name to the left or right of the slash indicates the pin is enabled.

7 The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the
input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down
enabled on the pin.

8 Pullup is enabled only when JCOMP is negated.
9 Tie to VSS for normal operation.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-19

2.2.1 I/O Power and Ground Segmentation

Table 2-2 gives the preliminary power/ground segmentation. Each segment provides the power and ground
for the I/O pins and can be powered by any voltage within the allowed voltage range regardless of the
power on the other segments. The power/ground segmentation applies regardless of whether a particular
pin is configured for its primary function or GPIO.

Table 2-2. MPC5668x Power Segmentation

Pin
Name

Function Description Voltage1

1 Nominal voltages.

Package Pin Locations

208 256

VDD Internal Logic Power 1.2 V D4, D10, H4, G13, K13, N5 D4, D10, H4, G13, K13, N5

VDDE1 External I/O Power 3.3 or 5.0 V D6 D6

VDDE2 L4 L4

VDDE3 J13 J13

VDDE4 N10 N10

VDDA Analog Power 3.3 or 5.0 V B15 B15

VDD33 3.3 V I/O Power 3.3 V L13 L13

VDDEMLB Media Local Bus Power 2.5 or 3.3 V K4 K4

VDDENEX
2

2 Dedicated Nexus power pin on 256-pin package only. On the 208-pin package, VDDENEX is tied to VSS internal to the
package substrate and is not available externally.

Nexus Power 3.3 V — E6, K11, L7

VRCSEL Voltage Regulator Select VSSA / VDDA H13 H13

VRC Voltage Regulator Control Voltage 3.3 or 5.0 V B10 B10

VRCCTL Voltage Regulator Control Output —
3

3 Base current to external NPN power transistor. Voltage may vary.

B11 B11

VDDSYN Clock Synthesizer Power 3.3 V A12 A12

VRH Analog High Voltage Reference 5.0 V B16 B16

VRL Analog Low Voltage Reference 0 V C16 C16

VSS Ground 0 V A1, A16, D7, G4, G[7:10],
H[7:10], J[7:10], K[7:10], N13,

T1, T16

A1, A16, D7, E[7:12], F[7:12],
G4, G[6:12], H[7:12], J[7:12],

K[6:10], K12, L[8:10], L12,
N13, T1, T16

VSSA Analog Ground 0 V C15 C15

VSSSYN Clock Synthesizer Ground 0 V A15 A15

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-20 Freescale Semiconductor

2.3 Pinout
Figure 2-2 shows the 208-ball MAPBGA pin assignments. Figure 2-3 shows the 256-ball MAPBGA pin
assignments. For more information, see the MPC5668x Microcontroller Family Data Sheet.

Figure 2-2. MPC5668x Pinout – 208 MAPBGA

Note: This ballmap is preliminary and
should not be used for board
design.

VDD33

VDD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

VDDA

PA8

VSSA

PB14

PB6

PC3

PC7

PC10 VRCCTL

VDD

A

VDD

VRH

VRL

PA12

PB0

PB5PC0PC4

PC8PC11

PC12

B

VSS

PA9PA11 PA15

PB1PB4

PB7

PC1PC5

PC9

VSS

PC13PC14C

VSS

PA10 PA14

PB11

VDDE1

VSSPD0

PD1

D

PD2

PD3 PD4

E

PD6

PD7

PD9F

PD8

G VSSVSS VSS VSS

VSSVSS VSS VSS

VSSVSS VSS VSS

PE6

H

VSSVSS VSS VSS

PE9

PD14

J

PD15

PE0

K

PE1

L

M

VSS

PF0

VSS

N

PG3PF1

EXTAL

P

PG5

PF2 TDI

R

VDD

PG6

T

A

B

C

D

E

F

G

H

J

K

L

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PA13

208 MAPBGA Ball Map
(as viewed from top through the package)

N

P

R

T

PB9

PB8

PD10

PD11

PA6

PA3

RESET

PK0

PA7 PA5

PB3

PD13

PD12

PE7

PA4

PA0

PG7

XTAL

TMS

PC6

PD5

PE2

VSSSYN

PJ2

VDDE3

PA1

PA2

PJ13

PJ14

PJ15

PJ12 PH5 PH6

PH7PJ8

PJ9

VDDE2

PH0

PH2

PG13

PG14

PG9

PG10

PG11

PG0

PJ4PF7 PF11 PJ6

PG2

PF13

PJ3 PJ7

PF10

PG1

PF4

PF9 PJ5

TDO

VDDSYN

PB12PB15

PB13 PB10PC2

PB2

PC15

VRCSEL

VRC

PK9PK7

PK8

PK5

PK6

PK3

PK4

PE3

PE8

PE5

PE4

PJ0

PJ1

PE11PE10 PE14 VSSPF3 PE15 PF12PH11PH9 PJ10 PH3 PG15PH15PF6 VDDE4VDD

PK1 JCOMP VDD PG4 PG12PG8VDDEMLBPK2

PE12 PE13TCK PF15PH10 PF14PF8 PH12 PH13 PJ11 PH4 PH1PF5 PH14PH8PK10

TEST

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-21

Figure 2-3. MPC5668x Pinout – 256-pin MAPBGA

Note: This ballmap is preliminary and
should not be used for board
design.

VDDE3

VSS

VSSVSS

PA9PA11 PA15PD7 PD8 PE0 PE1 PA1VDDENEXMDO0 VSSVSS VSS VSS VSSVSS

VDD

VDDA

PA8

VSSA

PB14

PB6

PC3

PC7

PC10

VDD

VDD

VRH

VRL

PA12

PB0

PB5PC0PC4

PC8PC11

PC12

VSS

PB1PB4

PB7

PC1PC5

PC9

VSS

PC13PC14

VSS

PA10 PA14

PB11

VDDE1

VSSPD0

PD1PD2

PD3 PD4

PD6

PD9

VSSVSS VSS VSS

VSSVSS VSS VSS

VSSVSS VSS VSS

PE6

VSSVSS VSS VSS

PE9

PD14

PD15

VSS

PF0

VSS

PG3PF1

EXTAL

PG5

PF2 TDI

VDD

PG6

PA13

PB9

PB8

PD10

PD11

PA6

PA3

RESET

PK0

PA7 PA5

PB3

PD13

PD12

PE7

PA4

PA0

XTAL

TMS

PC6

PD5

PE2

VSSSYN

PJ2

PA2

PJ13

PJ14

PJ15

PJ12 PH5 PH6

PH7PJ8

PJ9

VDDE2

PH0

PH2

PG13

PG14

PG9

PG10

PG11

PG0

PJ4PF7 PF11 PJ6

PG2

PF13

PJ3 PJ7

PF10

PG1

PF4

PF9 PJ5

TDO

VDDSYN

PB12PB15

PB13 PB10PC2

PB2

PC15

VRCSEL

PK9PK7

PK8

PK5

PK6

PK3

PK4

PE3

PE8

PE5

PE4

PJ0

PJ1

PE11PE10 PE14 VSSPF3 PE15 PF12PH11PH9 PJ10 PH3 PG15PH15PF6 VDDE4VDD

PK1 JCOMP VDD PG4 PG12PG8VDDEMLBPK2

PE12 PE13TCK PF15PH10 PF14PF8 PH12 PH13 PJ11 PH4 PH1PF5 PH14PH8PK10

PG7

VDDENEX

VDDENEX

VRCCTLVRC

MSEO0

MDO4MDO3

MDO2

MDO1

MDO11MDO10

MDO8

MDO9

MDO7

MDO5MDO6

MSEO1 MCKO EVTI EVTO

VSSVSS VSS VSS

VSS

VSSVSS VSS VSS

VSS

VSS

VSS VSS

VSS

VSS

VSS

VSS

VSS

VSS

256 MAPBGA Ball Map
(as viewed from top through the package)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

A

B

C

D

E

F

G

H

J

K

L

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N

P

R

T

VDD33

TEST

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-22 Freescale Semiconductor

2.4 Detailed Signal Description
This section provides detailed descriptions of the signal functions available for the device.

2.4.1 Port A Pins

2.4.1.1 PA0 to PA13 — GPI (PA[0:13]) / Analog Input (AN[0:13])

PA[0:13] are general-purpose input (GPI) pins. AN[0:13] are single-ended analog input pins.

2.4.1.2 PA14 — GPI (PA[14]) / Analog Input (AN[14]) / 32 kHz Crystal Input
(EXTAL32)

PA[14] is a general-purpose input (GPI) pin. AN[14] is a single-ended analog input pin. EXTAL32 is the
input pin for an external 32 kHz crystal oscillator.

2.4.1.3 PA15 — GPI (PA[15]) / Analog Input (AN[15]) / 32 kHz Crystal Output
(XTAL32)

PA[15] is a GPI pin. AN[15] is a single-ended analog input pin. XTAL32 is the output pin for an external
32 kHz crystal oscillator.

2.4.2 Port B Pins

2.4.2.1 PB0 — GPIO (PB[0]) / Analog Input (AN[16]) / Analog Input Channel for
External Mux (ANW)

PB[0] is a GPIO pin. AN[16] is a single-ended analog input pin. ANW is an input channel for the ADC
external multiplexer.

2.4.2.2 PB1 — GPIO (PB[1]) / Analog Input (AN[17]) / Analog Input Channel for
External Mux (ANX)

PB[1] is a GPIO pin. AN[17] is a single-ended analog input pin. ANX is an input channel for the ADC
external multiplexer.

2.4.2.3 PB2 — GPIO (PB[2]) / Analog Input (AN[18]) / Analog Input Channel for
External Mux (ANY)

PB[2] is a GPIO pin. AN[18] is a single-ended analog input pin. ANY is an input channel for the ADC
external multiplexer.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-23

2.4.2.4 PB3 — GPIO (PB[3]) / Analog Input (AN[19]) / Analog Input Channel for
External Mux (ANZ)

PB[3] is a GPIO pin. AN[19] is a single-ended analog input pin. ANZ is an input channel for the ADC
external multiplexer.

2.4.2.5 PB4 to PB7 — GPIO (PB[4:7]) / Analog Input (AN[20:23])

PB[4:7] are GPIO pins. AN[20:23] are single-ended analog input pins. PB[4:7] can be configured as
wakeup pins in the CRP_PWKENL register.

2.4.2.6 PB8 — GPIO (PB[8]) / Analog Input (AN[24]) / DSPI_A Peripheral Chip
Select (PCS_A[2])

PB[8] is a GPIO pin. AN[24] is a single-ended analog input pin. PCS_A[2] is a peripheral chip select
output pin for the DSPI A module.

2.4.2.7 PB9 — GPIO (PB[9]) / Analog Input (AN[25]) / DSPI_A Peripheral Chip
Select (PCS_A[3])

PB[9] is a GPIO pin. AN[25] is a single-ended analog input pin. PCS_A[3] is a peripheral chip select
output pin for the DSPI A module.

2.4.2.8 PB10 — GPIO (PB[10]) / Analog Input (AN[26]) / DSPI_B Peripheral Chip
Select (PCS_B[4])

PB[10] is a GPIO pin. AN[26] is a single-ended analog input pin. PCS_B[4] is a peripheral chip select
output pin for the DSPI B module.

2.4.2.9 PB11 — GPIO (PB[11]) / Analog Input (AN[27]) / DSPI_B Peripheral Chip
Select (PCS_B[5])

PB[11] is a GPIO pin. AN[27] is a single-ended analog input pin. PCS_B[5] is a peripheral chip select
output pin for the DSPI B module.

2.4.2.10 PB12 — GPIO (PB[12]) / Analog Input (AN[28]) / DSPI_C Peripheral Chip
Select (PCS_C[1])

PB[12] is a GPIO pin. AN[28] is a single-ended analog input pin. PCS_C[1] is a peripheral chip select
output pin for the DSPI C module.

2.4.2.11 PB13 — GPIO (PB[13]) / Analog Input (AN[29]) / DSPI_C Peripheral Chip
Select (PCS_C[2])

PB[13] is a GPIO pin. AN[29] is a single-ended analog input pin. PCS_C[2] is a peripheral chip select
output pin for the DSPI C module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-24 Freescale Semiconductor

2.4.2.12 PB14 — GPIO (PB[14]) / Analog Input (AN[30]) / DSPI_D Peripheral Chip
Select (PCS_D[3])

PB[14] is a GPIO pin. AN[30] is a single-ended analog input pin. PCS_D[3] is a peripheral chip select
output pin for the DSPI D module.

2.4.2.13 PB15 — GPIO (PB[15]) / Analog Input (AN[31]) / DSPI_D Peripheral Chip
Select (PCS_D[4])

PB[15] is a GPIO pin. AN[31] is a single-ended analog input pin. PCS_D[4] is a peripheral chip select
output pin for the DSPI D module.

2.4.3 Port C Pins

2.4.3.1 PC0 to PC1 — GPIO (PC[0:1]) / Analog Input (AN[32:33])

PC[0:1] are GPIO pins. AN[32:33] are single-ended analog input pins.

2.4.3.2 PC2 — GPIO (PC[2]) / Analog Input (AN[34]) / Nexus Event In (EVTI)

PC[2] is a GPIO pin. AN[34] is a single-ended analog input pin. EVTI is the Nexus Event Input pin.

2.4.3.3 PC3 — GPIO (PC[3]) / Analog Input (AN[35]) / Nexus Event Out (EVTO)

PC[3] is a GPIO pin. AN[35] is a single-ended analog input pin. EVTO is the Nexus Event Output pin.

2.4.3.4 PC4 — GPIO (PC[4]) / Analog Input (AN[36])

PC[4] is a GPIO pin. AN[36] is a single-ended analog input pin.

2.4.3.5 PC5 — GPIO (PC[5]) / Analog Input (AN[37]) / Z6 Non-Maskable Interrupt
(Z6_NMI)

PC[5] is a GPIO pin. AN[37] is a single-ended analog input pin. Z6_NMI is the non-maskable interrupt
input pin for the Z6 core.

2.4.3.6 PC6 — GPIO (PC[6]) / Analog Input (AN[38]) / Z0 Non-Maskable Interrupt
(Z0_NMI)

PC[6] is a GPIO pin. AN[38] is a single-ended analog input pin. Z0_NMI is the non-maskable interrupt
input pin for the Z0 core.

2.4.3.7 PC7 — GPIO (PC[7]) / Analog Input (AN[39]) / FlexRay Debug 3
(FR_DBG[3])

PC[7] is a GPIO pin. AN[39] is a single-ended analog input pin. FR_DBG[3] is one of the FlexRay debug
output port pins.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-25

2.4.3.8 PC8 — GPIO (PC[8]) / Analog Input (AN[40]) / FlexRay Debug 2
(FR_DBG[2])

PC[8] is a GPIO pin. AN[40] is a single-ended analog input pin. FR_DBG[2] is one of the FlexRay debug
output port pins.

2.4.3.9 PC9 — GPIO (PC[9]) / Analog Input (AN[41]) / FlexRay Debug 1
(FR_DBG[1])

PC[9] is a GPIO pin. AN[41] is a single-ended analog input pin. FR_DBG[1] is one of the FlexRay debug
output port pins.

2.4.3.10 PC10 — GPIO (PC[10]) / Analog Input (AN[42]) / FlexRay Debug 0
(FR_DBG[0])

PC[10] is a GPIO pin. AN[42] is a single-ended analog input pin. FR_DBG[0] is one of the FlexRay debug
output port pins.

2.4.3.11 PC11 — GPIO (PC[11]) / Analog Input (AN[43]) / I2C_C Serial Clock Line
(SCL_C)

PC[11] is a GPIO pin. AN[43] is a single-ended analog input pin. SCL_C is the serial clock signal for the
I2C_C module.

2.4.3.12 PC12 — GPIO (PC[12]) / Analog Input (AN[44]) / I2C_C Serial Data Line
(SDA_C)

PC[12] is a GPIO pin. AN[44] is a single-ended analog input pin. SDA_C is the serial data line for the
I2C_B module.

2.4.3.13 PC13 — GPIO (PC[13]) / Analog Input (AN[45]) / External Analog Mux
Address Output (MA[0])

PC[13] is a GPIO pin. AN[45] is a single-ended analog input pin. MA[0] is an address output for an
external analog multiplexer used to select the multiplexer input channel to connect to the ADC.

2.4.3.14 PC14 — GPIO (PC[14]) / Analog Input (AN[46]) / External Analog Mux
Address Output (MA[1])

PC[14] is a GPIO pin. AN[46] is a single-ended analog input pin. MA[1] is an address output for an
external analog multiplexer used to select the multiplexer input channel to connect to the ADC.

2.4.3.15 PC15 — GPIO (PC[15]) / Analog Input (AN[47]) / External Analog Mux
Address Output (MA[2])

PC[15] is a GPIO pin. AN[47] is a single-ended analog input pin. MA[2] is an address output for an
external analog multiplexer used to select the multiplexer input channel to connect to the ADC.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-26 Freescale Semiconductor

2.4.4 Port D Pins

2.4.4.1 PD0 — GPIO (PD[0]) / CAN_A Transmit (CNTX_A)

PD[0] is a GPIO pin. CNTX_A is the transmit output pin for the FlexCAN A module.

2.4.4.2 PD1 — GPIO (PD[1]) / CAN_A Receive (CNRX_A)

PD[1] is a GPIO pin. CNRX_A is the receive input pin for the FlexCAN A module. PD[1] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.3 PD2 — GPIO (PD[2]) / CAN_B Transmit (CNTX_B)

PD[2] is a GPIO pin. CNTX_B is the transmit output pin for the FlexCAN B module.

2.4.4.4 PD3 — GPIO (PD[3]) / CAN_B Receive (CNRX_B)

PD[3] is a GPIO pin. CNRX_B is the receive input pin for the FlexCAN B module. PD[3] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.5 PD4 — GPIO (PD[4]) / CAN_C Transmit (CNTX_C)

PD[4] is a GPIO pin. CNTX_C is the transmit output pin for the FlexCAN C module.

2.4.4.6 PD5 — GPIO (PD[5]) / CAN_C Receive (CNRX_C)

PD[5] is a GPIO pin. CNRX_C is the receive input pin for the FlexCAN C module. PD[5] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.7 PD6 — GPIO (PD[6]) / CAN_D Transmit (CNTX_D) / TXD_K / I2C_B Serial
Clock Line (SCL_B)

PD[6] is a GPIO pin. CNTX_D is the transmit output pin for the FlexCAN D module. TXD_K is the
transmit output pin for the eSCI K module. SCL_B is the serial clock signal for the I2C B module.

2.4.4.8 PD7 — GPIO (PD[7]) / CAN_D Receive (CNRX_D) / RXD_K / I2C_B Serial
Data Line (SDA_B)

PD[7] is a GPIO pin. CNRX_D is the receive input pin for the FlexCAN D module. RXD_K is the receive
input pin for the eSCI K module. SDA_B is the serial data line for the I2C B module. PD[7] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.9 PD8 — GPIO (PD[8]) / CAN_E Transmit (CNTX_E) / TXD_LK / I2C_C Serial
Clock Line (SCL_C)

PD[8] is a GPIO pin. CNTX_E is the transmit output pin for the FlexCAN E module. TXD_L is the
transmit output pin for the eSCI L module. SCL_C is the serial clock signal for the I2C C module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-27

2.4.4.10 PD9 — GPIO (PD[9]) / CAN_E Receive (CNRX_E) / RXD_L / I2C_C Serial
Data Line (SDA_C)

PD[9] is a GPIO pin. CNRX_E is the receive input pin for the FlexCAN E module. RXD_L is the receive
input pin for the eSCI L module.SDA_C is the serial data line for the I2C C module. PD[9] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.11 PD10 — GPIO (PD[10]) / CAN_F Transmit (CNTX_F) / TXD_M / I2C_D
Serial Clock Line (SCL_D)

PD[10] is a GPIO pin. CNTX_F is the transmit output pin for the FlexCAN F module. TXD_M is the
transmit output pin for the eSCI M module. SCL_D is the serial clock signal for the I2C D module.

2.4.4.12 PD11 — GPIO (PD[11]) / CAN_F Receive (CNRX_F) / RXD_M / I2C_D
Serial Data Line (SDA_D)

PD[11] is a GPIO pin. CNRX_F is the receive input pin for the FlexCAN F module. RXD_M is the receive
input pin for the eSCI M module.SDA_D is the serial data line for the I2C D module. PD[11] can be
configured as a wakeup pin in the CRP_PWKENL register.

2.4.4.13 PD12 — GPIO (PD[12]) / eSCI_A Transmit (TXD_A)

PD[12] is a GPIO pin. TXD_A is the transmit output pin for the eSCI A module.

2.4.4.14 PD13 — GPIO (PD[13]) / eSCI_A Receive (RXD_A)

PD[13] is a GPIO pin. RXD_A is the receive input pin for the eSCI A module. PD[13] can be configured
as a wakeup pin in the CRP_PWKENL register.

2.4.4.15 PD14 — GPIO (PD[14]) / eSCI_B Transmit (TXD_B)

PD[14] is a GPIO pin. TXD_B is the transmit output pin for the eSCI B module.

2.4.4.16 PD15 — GPIO (PD[15]) / eSCI_B Receive (RXD_B)

PD[15] is a GPIO pin. RXD_B is the receive input pin for the eSCI B module. PD[15] can be configured
as a wakeup pin in the CRP_PWKENL register.

2.4.5 Port E Pins

2.4.5.1 PE0 — GPIO (PE[0]) / eSCI_C Transmit (TXD_C) / eMIOS Channel
(eMIOS[31])

PE[0] is a GPIO pin. TXD_C is the transmit output pin for the eSCI C module. eMIOS[31] is an
input/output channel pin for the eMIOS200 module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-28 Freescale Semiconductor

2.4.5.2 PE1 — GPIO (PE[1]) / eSCI_C Receive (RXD_C) / eMIOS Channel
(eMIOS[30])

PE[1] is a GPIO pin. RXD_C is the receive input pin for the eSCI C module. eMIOS[30] is an input/output
channel pin for the eMIOS200 module. PE[1] can be configured as a wakeup pin in the CRP_PWKENL
register.

2.4.5.3 PE2 — GPIO (PE[2]) / eSCI_D Transmit (TXD_D) / eMIOS Channel
(eMIOS[29])

PE[2] is a GPIO pin. TXD_D is the transmit output pin for the eSCI D module. eMIOS[29] is an
input/output channel pin for the eMIOS200 module.

2.4.5.4 PE3 — GPIO (PE[3]) / eSCI_D Receive (RXD_D) / eMIOS Channel
(eMIOS[28])

PE[3] is a GPIO pin. RXD_D is the receive input pin for the eSCI D module. eMIOS[28] is an input/output
channel pin for the eMIOS200 module. PE[3] can be configured as a wakeup pin in the CRP_PWKENL
register.

2.4.5.5 PE4 — GPIO (PE[4]) / eSCI_E Transmit (TXD_E) / eMIOS Channel
(eMIOS[27])

PE[4] is a GPIO pin. TXD_E is the transmit output pin for the eSCI E module. eMIOS[27] is an
input/output channel pin for the eMIOS200 module.

2.4.5.6 PE5 — GPIO (PE[5]) / eSCI_E Receive (RXD_E) / eMIOS Channel
(eMIOS[26])

PE[5] is a GPIO pin. RXD_E is the receive input pin for the eSCI E module. eMIOS[26] is an input/output
channel pin for the eMIOS200 module. PE[5] can be configured as a wakeup pin in the CRP_PWKENL
register.

2.4.5.7 PE6 — GPIO (PE[6]) / eSCI_F Transmit (TXD_F) / eMIOS Channel
(eMIOS[25])

PE[6] is a GPIO pin. TXD_F is the transmit output pin for the eSCI F module. eMIOS[25] is an
input/output channel pin for the eMIOS200 module.

2.4.5.8 PE7 — GPIO (PE[7]) / eSCI_F Receive (RXD_F) / eMIOS Channel
(eMIOS[24])

PE[7] is a GPIO pin. RXD_F is the receive input pin for the eSCI F module. eMIOS[24] is an input/output
channel pin for the eMIOS200 module. PE[7] can be configured as a wakeup pin in the CRP_PWKENL
register.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-29

2.4.5.9 PE8 — GPIO (PE[8]) / eSCI_G Transmit (TXD_G) / DSPI_A Peripheral
Chip Select (PCS_A[1])

PE[8] is a GPIO pin. TXD_G is the transmit output pin for the eSCI G module. PCS_A[1] is a peripheral
chip select output pin for the DSPI A module.

2.4.5.10 PE9 — GPIO (PE[9]) / eSCI_G Receive (RXD_G) / DSPI_A Peripheral Chip
Select (PCS_A[4])

PE[9] is a GPIO pin. RXD_G is the receive input pin for the eSCI G module. PCS_A[4] is a peripheral
chip select output pin for the DSPI A module. PE[9] can be configured as a wakeup pin in the
CRP_PWKENH register.

2.4.5.11 PE10 — GPIO (PE[10]) / eSCI_H Transmit (TXD_H) / DSPI_B Peripheral
Chip Select (PCS_B[3])

PE[10] is a GPIO pin. TXD_H is the transmit output pin for the eSCI H module. PCS_B[3] is a peripheral
chip select output pin for the DSPI B module.

2.4.5.12 PE11 — GPIO (PE[11]) / eSCI_H Receive (RXD_H) / DSPI_B Peripheral
Chip Select (PCS_B[2])

PE[11] is a GPIO pin. RXD_H is the receive input pin for the eSCI H module. PCS_B[2] is a peripheral
chip select output pin for the DSPI B module. PE[11] can be configured as a wakeup pin in the
CRP_PWKENH register.

2.4.5.13 PE12 — GPIO (PE[12]) / eSCI_J Transmit (TXD_J) / DSPI_C Peripheral
Chip Select (PCS_C[5])

PE[12] is a GPIO pin. TXD_J is the transmit output pin for the eSCI J module. PCS_C[5] is a peripheral
chip select output pin for the DSPI C module.

2.4.5.14 PE13 — GPIO (PE[13]) / eSCI_J Receive (RXD_J) / DSPI_C Peripheral
Chip Select (PCS_C[3])

PE[13] is a GPIO pin. RXD_J is the receive input pin for the eSCI J module. PCS_C[3] is a peripheral chip
select output pin for the DSPI C module. PE[13] can be configured as a wakeup pin in the CRP_PWKENH
register.

2.4.5.15 PE14 — GPIO (PE[14]) / I2C_A Serial Clock Line (SCL_A) / DSPI_D
Peripheral Chip Select (PCS_D[2])

PE[14] is a GPIO pin. SCL_A is the serial clock signal for the I2C A module. PCS_D[2] is a peripheral
chip select output pin for the DSPI D module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-30 Freescale Semiconductor

2.4.5.16 PE15 — GPIO (PE[15]) / I2C_A Serial Data Line (SDA_A) / DSPI_D
Peripheral Chip Select (PCS_D[5])

PE[15] is a GPIO pin. SDA_A is the serial data line for the I2C A module. PCS_D[5] is a peripheral chip
select output pin for the DSPI D module.

2.4.6 Port F Pins

2.4.6.1 PF0 — GPIO (PF[0]) / DSPI_A Clock (SCK_A)

PF[0] is a GPIO pin. SCK_A is the SPI clock pin for the DSPI A module.

2.4.6.2 PF1 — GPIO (PF[1]) / DSPI_A Data Output (SOUT_A)

PF[1] is a GPIO pin. SOUT_A is the data output pin for the DSPI A module.

2.4.6.3 PF2 — GPIO (PF[2]) / DSPI_A Data Input (SIN_A)

PF[2] is a GPIO pin. SIN_A is the data input pin for the DSPI A module.

2.4.6.4 PF3 — GPIO (PF[3]) / DSPI_A Peripheral Chip Select (PCS_A[0]) /
DSPI_B Peripheral Chip Select (PCS_B[5]) / DSPI_C Peripheral Chip
Select (PCS_C[4])

PF[3] is a GPIO pin. PCS_A[0] is a peripheral chip select input/output pin for the DSPI A module.
PCS_B[5] is a peripheral chip select output pin for the DSPI B module. PCS_C[4] is a peripheral chip
select output pin for the DSPI C module. PF[3] can be configured as a wakeup pin in the CRP_PWKENH
register.

2.4.6.5 PF4 — GPIO (PF[4]) / DSPI_B Clock (SCK_B) / DSPI_A Peripheral Chip
Select (PCS_A[1]) / DSPI_C Peripheral Chip Select (PCS_C[2])

PF[4] is a GPIO pin. SCK_B is the SPI clock pin for the DSPI B module. PCS_A[1] is a peripheral chip
select output pin for the DSPI A module. PCS_C[2] is a peripheral chip select output pin for the DSPI C
module.

2.4.6.6 PF5 — GPIO (PF[5]) / DSPI_B Data Output (SOUT_B) / DSPI_A Peripheral
Chip Select (PCS_A[2]) / DSPI_C Peripheral Chip Select (PCS_C[3])

PF[5] is a GPIO pin. SOUT_B is the data output pin for the DSPI B module. PCS_A[2] is a peripheral chip
select output pin for the DSPI A module. PCS_C[3] is a peripheral chip select output pin for the DSPI C
module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-31

2.4.6.7 PF6 — GPIO (PF[6]) / DSPI_B Data Input (SIN_B) / DSPI_A Peripheral
Chip Select (PCS_A[3]) / DSPI_C Peripheral Chip Select (PCS_C[5])

PF[6] is a GPIO pin. SIN_B is the data input pin for the DSPI B module. PCS_A[3] is a peripheral chip
select output pin for the DSPI A module. PCS_C[5] is a peripheral chip select output pin for the DSPI C
module.

2.4.6.8 PF7 — GPIO (PF[7]) / DSPI_B Peripheral Chip Select (PCS_B[0]) /
DSPI_C Peripheral Chip Select / (PCS_C[5]) / DSPI_D Peripheral Chip
Select (PCS_D[4])

PF[7] is a GPIO pin. PCS_B[0] is a peripheral chip select input/output pin for the DSPI B module.
PCS_C[5] is a peripheral chip select output pin for the DSPI C module. PCS_D[4] is a peripheral chip
select output pin for the DSPI D module. PF[7] can be configured as a wakeup pin in the CRP_PWKENH
register.

2.4.6.9 PF8 — GPIO (PF[8]) / DSPI_C Clock (SCK_C)

PF[8] is a GPIO pin. SCK_C is the SPI clock pin for the DSPI C module.

2.4.6.10 PF9 — GPIO (PF[9]) / DSPI_C Data Output (SOUT_C)

PF[9] is a GPIO pin. SOUT_C is the data output pin for the DSPI C module.

2.4.6.11 PF10 — GPIO (PF[10]) / DSPI_C Data Input (SIN_C)

PF[10] is a GPIO pin. SIN_C is the data input pin for the DSPI C module.

2.4.6.12 PF11 — GPIO (PF[11]) / DSPI_C Peripheral Chip Select (PCS_C[0]) /
DSPI_D Peripheral Chip Select / (PCS_D[5]) / DSPI_A Peripheral Chip
Select (PCS_A[4])

PF[11] is a GPIO pin. PCS_C[0] is a peripheral chip select input/output pin for the DSPI C module.
PCS_D[5] is a peripheral chip select output pin for the DSPI D module. PCS_A[4] is a peripheral chip
select output pin for the DSPI A module. PF[11] can be configured as a wakeup pin in the CRP_PWKENH
register.

2.4.6.13 PF12 — GPIO (PF[12]) / DSPI_D Clock (SCK_D)

PF[12] is a GPIO pin. SCK_D is the SPI clock pin for the DSPI D module.

2.4.6.14 PF13 — GPIO (PF[13]) / DSPI_D Data Output (SOUT_D)

PF[13] is a GPIO pin. SOUT_D is the data output pin for the DSPI D module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-32 Freescale Semiconductor

2.4.6.15 PF14 — GPIO (PF[14]) / DSPI_D Data Input (SIN_D)

PF[14] is a GPIO pin. SIN_D is the data input pin for the DSPI D module.

2.4.6.16 PF15 — GPIO (PF[15]) / DSPI_D Peripheral Chip Select (PCS_D[0]) /
DSPI_A Peripheral Chip Select (PCS_A[5]) / DSPI_B Peripheral Chip
Select (PCS_B[4])

PF[15] is a GPIO pin. PCS_D[0] is a peripheral chip select input/output pin for the DSPI D module.
PCS_A[5] is a peripheral chip select output pin for the DSPI A module. PCS_B[4] is a peripheral chip
select output pin for the DSPI B module. PF[15] can be configured as a wakeup pin in the CRP_PWKENH
register.

2.4.7 Port G Pins

2.4.7.1 PG0 — GPIO (PG[0]) / DSPI_A Peripheral Chip Select (PCS_A[4]) /
DSPI_B Peripheral Chip Select (PCS_B[3]) / Analog Input (AN[48])

PG[0] is a GPIO pin. PCS_A[4] is a peripheral chip select output pin for the DSPI A module. PCS_B[3]
is a peripheral chip select output pin for the DSPI B module. AN[48] is a single-ended analog input pin.

2.4.7.2 PG1 — GPIO (PG[1]) / DSPI_A Peripheral Chip Select (PCS_A[5]) /
DSPI_B Peripheral Chip Select (PCS_B[4]) / Analog Input (AN[49])

PG[1] is a GPIO pin. PCS_A[5] is a peripheral chip select output pin for the DSPI A module. PCS_B[4]
is a peripheral chip select output pin for the DSPI B module. AN[49] is a single-ended analog input pin.

2.4.7.3 PG2 — GPIO (PG[2]) / DSPI_D Peripheral Chip Select (PCS_D[1]) / I2C_C
Serial Clock Line (SCL_C) / Analog Input (AN[50])

PG[2] is a GPIO pin. PCS_D[1] is a peripheral chip select output pin for the DSPI D module. SCL_C is
the serial clock signal for the I2C_C module. AN[50] is a single-ended analog input pin.

2.4.7.4 PG3 — GPIO (PG[3]) / DSPI_D Peripheral Chip Select (PCS_D[2]) / I2C_C
Serial Data Line (SDA_C) / Analog Input (AN[51])

PG[3] is a GPIO pin. PCS_D[2] is a peripheral chip select output pin for the DSPI D module. SDA_C is
the serial data line for the I2C_C module. AN[51] is a single-ended analog input pin.

2.4.7.5 PG4 — GPIO (PG[4]) / DSPI_D Peripheral Chip Select (PCS_D[3]) / I2C_B
Serial Clock Line (SCL_B) / Analog Input (AN[52])

PG[4] is a GPIO pin. PCS_D[3] is a peripheral chip select output pin for the DSPI D module. SCL_B is
the serial clock signal for the I2C_B module. AN[52] is a single-ended analog input pin.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-33

2.4.7.6 PG5 — GPIO (PG[5]) / DSPI_D Peripheral Chip Select (PCS_D[4]) / I2C_B
Serial Data Line (SDA_B) / Analog Input (AN[53])

PG[5] is a GPIO pin. PCS_D[4] is a peripheral chip select output pin for the DSPI D module. SDA_B is
the serial data line for the I2C_B module. AN[53] is a single-ended analog input pin.

2.4.7.7 PG6 — GPIO (PG[6]) / DSPI_C Peripheral Chip Select (PCS_C[1]) /
Ethernet Management Data Clock (FEC_MDC) / Analog Input (AN[54])

PG[6] is a GPIO pin. PCS_C[1] is a peripheral chip select output pin for the DSPI C module. FEC_MDC
is the Ethernet management data clock output pin. AN[54] is a single-ended analog input pin.

2.4.7.8 PG7 — GPIO (PG[7]) / DSPI_C Peripheral Chip Select (PCS_C[2]) /
Ethernet Management Data I/O (FEC_MDIO) / Analog Input (AN[55])

PG[7] is a GPIO pin. PCS_C[2] is a peripheral chip select output pin for the DSPI C module. FEC_MDIO
is the Ethernet management data I/O pin. AN[55] is a single-ended analog input pin.

2.4.7.9 PG8 — GPIO (PG[8]) / eMIOS Channel (eMIOS[7]) / Ethernet Transmit
Clock (FEC_TX_CLK) / Analog Input (AN[56])

PG[8] is a GPIO pin. eMIOS[7] is an input/output channel pin for the eMIOS200 module. FEC_TX_CLK
is the Ethernet transmit clock input pin. AN[56] is a single-ended analog input pin.

2.4.7.10 PG9 — GPIO (PG[9]) / eMIOS Channel (eMIOS[6]) / Ethernet Carrier
Sense (FEC_CRS) / Analog Input (AN[57])

PG[9] is a GPIO pin. eMIOS[6] is an input/output channel pin for the eMIOS200 module. FEC_CRS is
the Ethernet carrier sense input pin. AN[57] is a single-ended analog input pin.

2.4.7.11 PG10 — GPIO (PG[10]) / eMIOS Channel (eMIOS[5]) / Ethernet Transmit
Error (FEC_TX_ER) / Analog Input (AN[58])

PG[10] is a GPIO pin.eMIOS[5] is an input/output channel pin for the eMIOS200 module. FEC_TX_ER
is the Ethernet transmit error output pin. AN[58] is a single-ended analog input pin.

2.4.7.12 PG11 — GPIO (PG[11]) / eMIOS Channel (eMIOS[4]) / Ethernet Receive
Clock (FEC_RX_CLK) / Analog Input (AN[59])

PG[11] is a GPIO pin. eMIOS[4] is an input/output channel pin for the eMIOS200 module. FEC_RX_CLK
is the Ethernet receive clock input pin. AN[59] is a single-ended analog input pin.

2.4.7.13 PG12 — GPIO (PG[12]) / eMIOS Channel (eMIOS[3]) / Ethernet Transmit
Data (FEC_TXD[0]) / Analog Input (AN[60])

PG[12] is a GPIO pin. eMIOS[3] is an input/output channel pin for the eMIOS200 module. FEC_TXD[0]
is an Ethernet transmit data output pin. AN[60] is a single-ended analog input pin.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-34 Freescale Semiconductor

2.4.7.14 PG13 — GPIO (PG[13]) / eMIOS Channel (eMIOS[2]) / Ethernet Transmit
Data (FEC_TXD[1]) / Analog Input (AN[61])

PG[13] is a GPIO pin. eMIOS[2] is an input/output channel pin for the eMIOS200 module. FEC_TXD[1]
is an Ethernet transmit data output pin. AN[61] is a single-ended analog input pin.

2.4.7.15 PG14 — GPIO (PG[14]) / eMIOS Channel (eMIOS[1] / Ethernet Transmit
Data (FEC_TXD[2]) / Analog Input (AN[62])

PG[14] is a GPIO pin. eMIOS[1] is an input/output channel pin for the eMIOS200 module. FEC_TXD[2]
is an Ethernet transmit data output pin. AN[62] is a single-ended analog input pin.

2.4.7.16 PG15 — GPIO (PG[15]) / eMIOS Channel (eMIOS[0]) / Ethernet Transmit
Data (FEC_TXD[3]) / Analog Input (AN[63])

PG[15] is a GPIO pin. eMIOS[0] is an input/output channel pin for the eMIOS200 module. FEC_TXD[3]
is an Ethernet transmit data output pin. AN[63] is a single-ended analog input pin.

2.4.8 Port H Pins

2.4.8.1 PH0 — GPIO (PH[0]) / eMIOS Channel (eMIOS[31]) / Ethernet Collision
(FEC_COL)

PH[0] is a GPIO pin. eMIOS[31] is an input/output channel pin for the eMIOS200 module. FEC_COL is
the Ethernet collision output pin.

2.4.8.2 PH1 — GPIO (PH[1]) / eMIOS Channel (eMIOS[30]) / Ethernet Receive
Data Valid (FEC_RX_DV)

PH[1] is a GPIO pin. eMIOS[30] is an input/output channel pin for the eMIOS200 module. FEC_RX_DV
the Ethernet receive data valid input pin.

2.4.8.3 PH2 — GPIO (PH[2]) / eMIOS Channel (eMIOS[29]) / Ethernet Transmit
Enable (FEC_TX_EN)

PH[2] is a GPIO pin. eMIOS[29] is an input/output channel pin for the eMIOS200 module. FEC_TX_EN
is the Ethernet transmit enable output pin.

2.4.8.4 PH3 — GPIO (PH[3]) / eMIOS Channel (eMIOS[28]) / Ethernet Receive
Error (FEC_RX_ER)

PH[3] is a GPIO pin. eMIOS[28] is an input/output channel pin for the eMIOS200 module. FEC_RX_ER
the Ethernet receive error input pin.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-35

2.4.8.5 PH4 — GPIO (PH[4]) / eMIOS Channel (eMIOS[27]) / Ethernet Receive
Data (FEC_RXD[0])

PH[4] is a GPIO pin. eMIOS[27] is an input/output channel pin for the eMIOS200 module. FEC_RXD[0]
is an Ethernet receive data input pin.

2.4.8.6 PH5 — GPIO (PH[5]) / eMIOS Channel (eMIOS[26]) / Ethernet Receive
Data (FEC_RXD[1])

PH[5] is a GPIO pin. eMIOS[26] is an input/output channel pin for the eMIOS200 module. FEC_RXD[1]
is an Ethernet receive data input pin.

2.4.8.7 PH6 — GPIO (PH[6]) / eMIOS Channel (eMIOS[25]) / Ethernet Receive
Data (FEC_RXD[2])

PH[6] is a GPIO pin. eMIOS[25] is an input/output channel pin for the eMIOS200 module. FEC_RXD[2]
is an Ethernet receive data input pin.

2.4.8.8 PH7 — GPIO (PH[7]) / eMIOS Channel (eMIOS[24]) / Ethernet Receive
Data (FEC_RXD[3])

PH[7] is a GPIO pin. eMIOS[24] is an input/output channel pin for the eMIOS200 module. FEC_RXD[3]
is an Ethernet receive data input pin.

2.4.8.9 PH8 — GPIO (PH[8]) / eMIOS Channel (eMIOS[23])

PH[8] is a GPIO pin. eMIOS[23] is an input/output channel pin for the eMIOS200 module.

2.4.8.10 PH9 — GPIO (PH[9]) / eMIOS Channel (eMIOS[22])

PH[9] is a GPIO pin. eMIOS[22] is an input/output channel pin for the eMIOS200 module.

2.4.8.11 PH10 — GPIO (PH[10]) / eMIOS Channel (eMIOS[21])

PH[10] is a GPIO pin. eMIOS[21] is an input/output channel pin for the eMIOS200 module.

2.4.8.12 PH11 — GPIO (PH[11]) / eMIOS Channel (eMIOS[20])

PH[11] is a GPIO pin. eMIOS[20] is an input/output channel pin for the eMIOS200 module.

2.4.8.13 PH12 — GPIO (PH[12]) / eMIOS Channel (eMIOS[19])

PH[12] is a GPIO pin. eMIOS[19] is an input/output channel pin for the eMIOS200 module.

2.4.8.14 PH13 — GPIO (PH[13]) / eMIOS Channel (eMIOS[18])

PH[13] is a GPIO pin. eMIOS[18] is an input/output channel pin for the eMIOS200 module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-36 Freescale Semiconductor

2.4.8.15 PH14 — GPIO (PH[14]) / eMIOS Channel (eMIOS[17])

PH[14] is a GPIO pin. eMIOS[17] is an input/output channel pin for the eMIOS200 module.

2.4.8.16 PH15 — GPIO (PH[15]) / eMIOS Channel (eMIOS[16])

PH[15] is a GPIO pin. eMIOS[16] is an input/output channel pin for the eMIOS200 module.

2.4.9 Port J Pins

2.4.9.1 PJ0 — GPIO (PJ[0]) / eMIOS Channel (eMIOS[15]) / DSPI_A Peripheral
Chip Select (PCS_A[4])

PJ[0] is a GPIO pin. eMIOS[15] is an input/output channel pin for the eMIOS200 module. PCS_A[4] is a
peripheral chip select output pin for the DSPI A module.

2.4.9.2 PJ1 — GPIO (PJ[1]) / eMIOS Channel (eMIOS[14]) / DSPI_A Peripheral
Chip Select (PCS_A[5])

PJ[1] is a GPIO pin. eMIOS[14] is an input/output channel pin for the eMIOS200 module. PCS_A[5] is a
peripheral chip select output pin for the DSPI A module.

2.4.9.3 PJ2 — GPIO (PJ[2]) / eMIOS Channel (eMIOS[13]) / DSPI_B Peripheral
Chip Select (PCS_B[1])

PJ[2] is a GPIO pin. eMIOS[13] is an input/output channel pin for the eMIOS200 module. PCS_B[1] is a
peripheral chip select output pin for the DSPI B module.

2.4.9.4 PJ3 — GPIO (PJ[3]) / eMIOS Channel (eMIOS[12]) / DSPI_B Peripheral
Chip Select (PCS_B[2])

PJ[3] is a GPIO pin. eMIOS[12] is an input/output channel pin for the eMIOS200 module. PCS_B[2] is a
peripheral chip select output pin for the DSPI B module.

2.4.9.5 PJ4 — GPIO (PJ[4]) / eMIOS Channel (eMIOS[11]) / DSPI_C Peripheral
Chip Select (PCS_C[3])

PJ[4] is a GPIO pin. eMIOS[11] is an input/output channel pin for the eMIOS200 module. PCS_C[3] is a
peripheral chip select output pin for the DSPI C module.

2.4.9.6 PJ5 — GPIO (PJ[5]) / eMIOS Channel (eMIOS[10]) / DSPI_C Peripheral
Chip Select (PCS_C[4])

PJ[5] is a GPIO pin. eMIOS[10] is an input/output channel pin for the eMIOS200 module. PCS_C[4] is a
peripheral chip select output pin for the DSPI C module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-37

2.4.9.7 PJ6 — GPIO (PJ[6]) / eMIOS Channel (eMIOS[9]) / DSPI_D Peripheral
Chip Select (PCS_D[5])

PJ[6] is a GPIO pin. eMIOS[9] is an input/output channel pin for the eMIOS200 module. PCS_D[5] is a
peripheral chip select output pin for the DSPI D module.

2.4.9.8 PJ7 — GPIO (PJ[7]) / eMIOS Channel (eMIOS[8]) / DSPI_D Peripheral
Chip Select (PCS_D[1])

PJ[7] is a GPIO pin. eMIOS[8] is an input/output channel pin for the eMIOS200 module. PCS_D[1] is a
peripheral chip select output pin for the DSPI D module.

2.4.9.9 PJ8 — GPIO (PJ[8]) / eMIOS Channel (eMIOS[7])

PJ[8] is a GPIO pin. eMIOS[7] is an input/output channel pin for the eMIOS200 module. PJ[8] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.10 PJ9 — GPIO (PJ[9]) / eMIOS Channel (eMIOS[6])

PJ[9] is a GPIO pin. eMIOS[6] is an input/output channel pin for the eMIOS200 module. PJ[9] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.11 PJ10 — GPIO (PJ[10]) / eMIOS Channel (eMIOS[5])

PJ[10] is a GPIO pin. eMIOS[5] is an input/output channel pin for the eMIOS200 module. PJ[10] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.12 PJ11 — GPIO (PJ[11]) / eMIOS Channel (eMIOS[4])

PJ[11] is a GPIO pin. eMIOS[4] is an input/output channel pin for the eMIOS200 module. PJ[11] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.13 PJ12 — GPIO (PJ[12]) / eMIOS Channel (eMIOS[3])

PJ[12] is a GPIO pin. eMIOS[3] is an input/output channel pin for the eMIOS200 module. PJ[12] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.14 PJ13 — GPIO (PJ[13]) / eMIOS Channel (eMIOS[2])

PJ[13] is a GPIO pin. eMIOS[2] is an input/output channel pin for the eMIOS200 module. PJ[13] can be
configured as a wakeup pin in the CRP_PWKENH register.

2.4.9.15 PJ14 — GPIO (PJ[14]) / eMIOS Channel (eMIOS[1])

PJ[14] is a GPIO pin. eMIOS[1] is an input/output channel pin for the eMIOS200 module. PJ[14] can be
configured as a wakeup pin in the CRP_PWKENH register.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-38 Freescale Semiconductor

2.4.9.16 PJ15 — GPIO (PJ[15]) / eMIOS Channel (eMIOS[0])

PJ[15] is a GPIO pin. eMIOS[0] is an input/output channel pin for the eMIOS200 module.

2.4.10 Port K Pins

2.4.10.1 PK0 — GPIO (PK[0]) / Media Local Bus Clock (MLBCLK) / DSPI_B Clock
(SCK_B) / Clock Output (CLKOUT)

PK[0] is a GPIO pin. MLBCLK is the Media Local Bus (MLB) clock input pin. SCK_B is the SPI clock
pin for the DSPI B module. CLKOUT is the external bus interface clock output (test mode only).

2.4.10.2 PK1 — GPIO (PK[1]) / Media Local Bus Signal (MLBSIG) / DSPI_B Data
Output (SOUT_B) / DSPI_D Peripheral Chip Select (PCS_D[4])

PK[1] is a GPIO pin. MLBSIG is the bidirectional signal line that transfers bus management data to/from
the MOST network controller. SOUT_B is the data output pin for the DSPI B module. PCS_D[4] is a
peripheral chip select output pin for the DSPI D module.

2.4.10.3 PK2 — GPIO (PK[2]) / Media Local Bus Data (MLBDAT) / DSPI_B Data
Input (SIN_B) / DSPI_D Peripheral Chip Select (PCS_D[5])

PK[2] is a GPIO pin. MLBDAT is the bidirectional data line that transfers user data to/from the MOST
network controller. SIN_B is the data input pin for the DSPI B module. PCS_D[5] is a peripheral chip
select output pin for the DSPI D module.

2.4.10.4 PK3 — GPIO (PK[3]) / FlexRay Channel A Receive (FR_A_RX) / External
Analog Mux Address Output (MA[0]) / DSPI_C Peripheral Chip Select
(PCS_C[1])

PK[3] is a GPIO pin. FR_A_RX in the FlexRay Channel A receive pin. MA[0] is an address output for an
external analog multiplexer used to select the multiplexer input channel to connect to the ADC. PCS_C[1]
is a peripheral chip select output pin for the DSPI C module. PK[3] can be configured as a wakeup pin in
the CRP_PWKENH register.

2.4.10.5 PK4 — GPIO (PK[4]) / FlexRay Channel A Transmit (FR_A_TX) / External
Analog Mux Address Output (MA[1]) / DSPI_C Peripheral Chip Select
(PCS_C[2])

PK[4] is a GPIO pin. FR_A_TX is the FlexRay Channel A transmit pin. MA[1] is an address output for
an external analog multiplexer used to select the multiplexer input channel to connect to the ADC.
PCS_C[2] is a peripheral chip select output pin for the DSPI C module.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-39

2.4.10.6 PK5 — GPIO (PK[5]) / FlexRay Channel A Transmit Enable
(FR_A_TX_EN) / External Analog Mux Address Output (MA[2]) / DSPI_C
Peripheral Chip Select (PCS_C[3])

PK[5] is a GPIO pin. FR_A_TX_EN in the FlexRay Channel A transmit enable pin. MA[2] is an address
output for an external analog multiplexer used to select the multiplexer input channel to connect to the
ADC. PCS_C[3] is a peripheral chip select output pin for the DSPI C module.

2.4.10.7 PK6 — GPIO (PK[6]) / FlexRay Channel B Receive (FR_B_RX) / DSPI_B
Peripheral Chip Select (PCS_B[1]) / DSPI_C Peripheral Chip Select
(PCS_C[4])

PK[6] is a GPIO pin. FR_B_RX in the FlexRay Channel B receive pin. PCS_B[1] is a peripheral chip
select output pin for the DSPI B module. PCS_C[4] is a peripheral chip select output pin for the DSPI C
module. PK[6] can be configured as a wakeup pin in the CRP_PWKENH register.

2.4.10.8 PK7 — GPIO (PK[7]) / FlexRay Channel B Transmit (FR_B_TX) / DSPI_B
Peripheral Chip Select (PCS_B[2]) / DSPI_C Peripheral Chip Select
(PCS_C[5])

PK[7] is a GPIO pin. FR_B_TX is the FlexRay Channel B transmit pin. PCS_B[2] is a peripheral chip
select output pin for the DSPI B module. PCS_C[5] is a peripheral chip select output pin for the DSPI C
module.

2.4.10.9 PK8 — GPIO (PK[8]) / FlexRay Channel B Transmit Enable
(FR_B_TX_EN) / DSPI_B Peripheral Chip Select (PCS_B[3]) / DSPI_A
Peripheral Chip Select (PCS_A[1])

PK[8] is a GPIO pin. FR_B_TX_EN in the FlexRay Channel B transmit enable pin. PCS_B[3] is a
peripheral chip select output pin for the DSPI B module. PCS_A[1] is a peripheral chip select output pin
for the DSPI A module.

2.4.10.10 PK9 — GPIO (PK[9]) / Clock Output (CLKOUT) / DSPI_D Peripheral Chip
Select (PCS_D[1]) / DSPI_A Peripheral Chip Select (PCS_A[2]) / Boot
Configuration (BOOTCFG)

PK[9] is a GPIO pin. CLKOUT is the external bus interface clock output (user mode only). PCS_D[1] is
a peripheral chip select output pin for the DSPI D module. PCS_A[2] is a peripheral chip select output pin
for the DSPI A module. During reset, BOOTCFG is an input to control certain boot options.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-40 Freescale Semiconductor

2.4.10.11 PK10 — GPIO (PK[10]) / DSPI_B Peripheral Chip Select (PCS_B[5]) /
DSPI_D Peripheral Chip Select (PCS_D[2]) / DSPI_A Peripheral Chip
Select (PCS_A[3])

PK[10] is a GPIO pin. PCS_B[5] is a peripheral chip select output pin for the DSPI A module. PCS_D[2]
is a peripheral chip select output pin for the DSPI A module. PCS_A[3] is a peripheral chip select output
pin for the DSPI A module.

2.4.11 Nexus Signals

Except as noted, the Nexus signals are available only on the 256-pin package. For more information, see
Chapter 35, “Nexus Development Interface (NDI).”

2.4.11.1 Nexus Event In
EVTI

EVTI is an input that is read during a debug port reset to enable or disable the Nexus Auxiliary port for
data trace. After reset, the EVTI pin is used to initiate program and data trace synchronization messages
or generate a breakpoint. On the 208-pin BGA package, this pin is multiplexed with PC2.

2.4.11.2 Nexus Event Out
EVTO

EVTO is an output that provides timing to a development tool for a single watchpoint or breakpoint
occurrence. On the 208-pin BGA package, this pin is multiplexed with PC3.

2.4.11.3 Nexus Message Clock Out
MCKO

MCKO is a free running clock output to the development tools which is used for timing of the MDO and
MSEO signals.

2.4.11.4 Nexus Message Data Out
MDO[0]

MDO[0] indicates power-on reset (POR) status. In addition, MDO[0] indicates the lock status of the
system clock following a POR. MDO[0] is driven high following a POR until the system clock achieves
lock, at which time it is then negated. There is an internal pullup on MDO[0].

2.4.11.5 Nexus Message Data Out
MDO[11:1]

MDO[11:1] are the trace message outputs to the development tools for full port mode.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-41

2.4.11.6 Nexus Message Start/End Out
MSEO[1:0]

MSEO[1:0] are outputs that indicate when messages start and end on the MDO pins.

2.4.12 Reset and Configuration Signals

2.4.12.1 External Reset Input
RESET

The RESET pin is a bidirectional I/O pin. It is asserted by an external device to reset the all modules of
the device MCU. It is also an open drain output signal that is asserted during an internal reset. For more
information, see Chapter 3, “Resets.”

2.4.13 JTAG Signals

For more information, see Chapter 34, “IEEE 1149.1 Test Access Port Controller (JTAGC).”

2.4.13.1 JTAG Test Clock Input
TCK

TCK provides the clock input for the on-chip test logic.

2.4.13.2 JTAG Test Data Input
TDI

TDI provides the serial test instruction and data input for the on-chip test logic.

2.4.13.3 JTAG Test Data Output
TDO

TDO provides the serial test data output for the on-chip test logic.

2.4.13.4 JTAG Test Mode Select Input
TMS

TMS controls test mode operations for the on-chip test logic.

2.4.13.5 JTAG Compliance Input
JCOMP

The JCOMP pin is used to enable the JTAG TAP controller.

2.4.13.6 Test Mode Enable Input
TEST

The TEST pin is used to place the chip in test mode. It must be tied to VSS for normal operation.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-42 Freescale Semiconductor

2.4.14 Clock Synthesizer Signals

2.4.14.1 Crystal Oscillator Input / External Clock Input
EXTAL

EXTAL is the input pin for an external crystal oscillator or an external clock source.

2.4.14.2 Crystal Oscillator Output
XTAL

XTAL is the output pin for an external crystal oscillator.

2.4.14.3 System Clock Output
CLKOUT

CLKOUT is the device system clock output. This signal is multiplexed with PK9 (user mode) and PK0
(test mode).

2.4.15 Power / Ground Signals

2.4.15.1 Internal Logic Supply Input
VDD

VDD is the 1.2 V (nominal) internal logic supply input.

2.4.15.2 Fixed 3.3V Internal Supply Input
VDD33

VDD33 is the 3.3V (nominal) internal supply input.

2.4.15.3 Analog Supply
VDDA

VDDA is the 3.3 or 5.0 V (nominal) analog supply input pin for the ADC.

2.4.15.4 External I/O Supply Input
VDDEn

VDDEn is the 3.3 or 5.0 V (nominal) external I/O supply input. Four separate inputs are provided.

2.4.15.5 Media Local Bus Supply Input
VDDEMLB

VDDEMLB is the 2.5 – 3.3 V supply input for the Media Local Bus interface.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 2-43

2.4.15.6 Nexus Interface Supply Input
VDDENEX

VDDENEX is the 3.3 V (nominal) supply input for the Nexus Debug Interface. This supply is used only on
the 256-pin package.

2.4.15.7 Clock Synthesizer Power Input
VDDSYN

VDDSYN is the is the power supply input for the FMPLL.

2.4.15.8 Voltage Regulator Control Voltage
VRC

VRC is the 3.3 V or 5 V (nominal) input power supply.

2.4.15.9 Voltage Regulator Control Output
VRCCTL

VRCCTL is the current control for external NPN transistor.

2.4.15.10 Supply
VRCSEL

VRCSEL is the input power supply range select.

• VRCSEL = 0: 3.3 V supplied external (3.3 V mode)

• VRCSEL = 1: 3.3 V internal voltage regulator (5 V mode)

2.4.15.11 Analog High Voltage Reference
VRH

VRH is the analog high voltage reference.

2.4.15.12 Analog Low Voltage Reference
VRL

VRL is the analog low voltage reference.

2.4.15.13 Ground
VSS

VSS is the ground reference input.

2.4.15.14 Analog Ground
VSSA

VSSA is the analog ground reference input.

Signal Description

MPC5668x Microcontroller Reference Manual, Rev. 4

2-44 Freescale Semiconductor

2.4.15.15 Clock Synthesizer Ground Input
VSSSYN

VSSSYN is the ground reference input for the FMPLL clock synthesizer.

NOTE
If VDDEMLB is greater than VDD33, then the PK0-2 pins will have extra
leakage current if the pin is low (either output drive low, external drive low,
or internal pull-down). Typical leakage currents at room temperature is
0.1µA per pin for a differential voltage of 0.18V, 1µA per per for a
differential voltage of 0.27V, 5µA per pin for a differential voltage of 0.33V
up to 300µA per pin for a differential voltage of 0.5V. If the internal pull
devices are enabled, then the extra current will add to the make the internal
pullup stronger and will weaken the internal pulldown. Note that the Nexus
pins in the 256MAPBGA development package also have this issue if
VDDENEX is greater than VDD33, but there is no issue in the
208MAPBGA package since VDDENEX is grounded. In order to avoid
this, design a circuitry which will allow for extra leakage if there is the
possibility that the VDDEMLB or VDDENEX supply can be greater than
VDD33.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 3-1

Chapter 3
Resets

3.1 Introduction
This chapter describes the resets and reset sources for the MPC5668x.

The reset sources supported in the MPC5668x are:

• Power-on reset (POR)

• Low-voltage inhibit (LVI) reset

• External reset

• Loss-of-lock reset

• Loss-of-clock reset

• Watchdog timer reset

• JTAG reset

• Checkstop reset (both Z6 and Z0 cores)

• Software-system reset

All reset sources are processed by the reset controller, which is located in the SIU module (Chapter 7,
“System Integration Unit (SIU)”). The reset controller monitors the reset input sources. Upon detection of
a reset event, the reset controller resets internal logic and controls the assertion of the RESET pin.

The MCU is clocked by the 16 MHz IRC clock after any reset.

The reset status register (SIU_RSR) gives the source, or sources, of the last reset and is updated for all reset
sources except JTAG reset

The BOOTCFG pin controls the MCU boot sequence after any reset. If the pin is driven low during the
MCU reset, the MCU boots from internal flash and the Reset Configuration Halfword (RCHW) controls
the boot sequence. The RCHW needs to be programmed by user in internal flash in one of predefined
locations together with the user application start address.

If the pin is driven high, the BAM executes the serial boot sequence.

See Chapter 8, “Boot Assist Module (BAM),” for more details about the boot procedures.

3.2 External Signal Description
Refer to Table 2-1 and Section 2.4, “Detailed Signal Description,” for signal properties.

Resets

MPC5668x Microcontroller Reference Manual, Rev. 4

3-2 Freescale Semiconductor

3.2.1 Reset (RESET)

This pin provides the system reset. It is an open-drain, active-low bidirectional pin. It acts as an input to
initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset.
Externally asserting the RESET pin resets the chip asynchronously. The chip remains in reset as long as
the external RESET pin is asserted. Any internal reset event asserts the RESET pin for as long as the reset
event is active. When the internal reset sources are negated, the RESET pin is asserted by the reset
controller for 1000 clocks (16 clocks if CRP_RECPRTR[FASTREC] = 1). Then the reset controller stops
asserting the RESET pin. After another predefined time, the RESET pin is sampled, and if still asserted
then an external reset request is assumed. When the RESET pin is sampled high (the pin is no longer being
driven low by the MPC5668x reset logic or by external logic that might be requesting reset), the
BOOTCFG reset configuration pin (pin PK9) is sampled and the internal reset to the chip negates.

On assertion, the SIU_RSR[ERS] flag is set.

3.2.2 Boot Configuration (BOOTCFG)

The BOOTCFG pin (pin name PK9 in package diagrams and signal lists) is used to determine the boot
mode initiated by the BAM program. The pin state during reset is latched in the SIU_RSR[BOOTCFG]
field. The BAM program uses the BOOTCFG field to determine whether initiate internal flash boot mode
or a CAN or SCI “serial” boot.

Refer to 7.3.2.2, “Reset Status Register (SIU_RSR),” for more information.

NOTE
The reset controller latches the state of the BOOTCFG pin into the
SIU_RSR register 4 clock cycles prior to the negation of RESET.

3.3 Functional Description

3.3.1 Z6, Z0 Cores Reset Vectors

The reset vectors for the Z6 and Z0 cores in the MPC5668x MCU are controlled via the Z6VEC and
Z0VEC registers in the Clock, Reset, and Power control (CRP) module. The power-on reset values for the
Z6VEC and Z0VEC registers point to the first instruction the BAM program.

The Z0 core is disabled after the POR and Z6 is active. Thus, following the POR, the Z6 core starts to
execute the BAM code. See Chapter 8, “Boot Assist Module (BAM),” for more details about the boot
process.

3.3.2 Reset Sources

3.3.2.1 Power-on Reset (POR)

The internal Power On Reset (POR) monitors the main supply input voltage (VDDA) and shall not release
the internal reset line until VDDA is above the de-assertion threshold. On assertion, the SIU_RSR[PORS]
flag is set.

Resets

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 3-3

3.3.2.2 Low-Voltage Inhibit (LVI) Resets

The internal LVI reset signals are asserted when the voltage on the corresponding supply is below defined
values. The following are the LVI resets:

• LVI12—LVI on internal 1.2 V supply (VDD)

• LVI33—LVI on internal 3.3 V supply to I/O pads and flash (VDD33)

• LVISYN—LVI on 3.3 V VDDSYN supply

• LVIL_VDDA—LVI on VDDA input supply and generates reset

• LVI_VDDA—LVI on VDDA input supply and generates either a reset or an interrupt

— Reset: configured in the CRP_SOCSC register, reported in SIU_RSR register (default)

— Interrupt: configured and reported in CRP_SOCSC register

On assertion, the SIU_RSR[PORS] flag is set.

3.3.2.3 External Reset

When the reset controller detects assertion of the RESET pin, the internal reset signal is asserted. The
SIU_RSR[ERS] bit is set, and all other reset status bits in the SIU_RSR are cleared.

3.3.2.4 Loss-of-Lock Reset

A loss-of-lock reset occurs when the PLL loses lock and the loss-of-lock reset enable (LOLRE) bit in the
PLL enhanced synthesizer control register 2 (ESYNCR2) is set. The internal reset signal and RESET pin
are asserted. The SIU_RSR[LLRS] bit is set, and all other reset status bits in the SIU_RSR are cleared.

3.3.2.5 Loss-of-Clock Reset

A loss-of-clock reset occurs when a failure is detected in either the reference clock signal or PLL output
when the PLL is enabled. The internal reset signal and RESET pin are asserted. The SIU_RSR[LCRS] bit
is set, and all other reset status bits in the SIU_RSR are cleared.

3.3.2.6 Watchdog Timer Reset

A watchdog timer reset occurs when the SWT watchdog timer is enabled and a timeout occurs. The
internal reset signal and RESET pin are asserted. The SIU_RSR[WTRS] bit is set, and all other reset status
bits in the SIU_RSR are cleared.

3.3.2.7 Z6 Core Checkstop Reset

When the Z6 core enters a checkstop state, and the checkstop reset is enabled (SIU_SRCR[CRE0] bit), a
checkstop reset occurs. The internal reset signal and RESET pin are asserted. The SIU_RSR[CRS] bit is
set and all other reset status bits in the SIU_RSR are cleared.

Resets

MPC5668x Microcontroller Reference Manual, Rev. 4

3-4 Freescale Semiconductor

3.3.2.8 Z0 Core Checkstop Reset

When the Z0 core enters a checkstop state, and the checkstop reset is enabled (SIU_SRCR[CRE1] bit), a
checkstop reset occurs. The internal reset signal and RESET pin are asserted. The SIU_RSR[CRS] bit is
set and all other reset status bits in the SIU_RSR are cleared.

3.3.2.9 JTAG Reset

A system reset occurs when JTAG is enabled and the EXTEST, CLAMP, or HIGHZ instruction is executed
by the JTAG controller. The internal reset signal is asserted. The state of the RESET pin is determined by
the JTAG instruction. The reset status bits in the SIU_RSR are unaffected by JTAG reset.

3.3.2.10 Software System Reset

A software system reset is caused by writing to the SIU_RCR[SSR] bit. Setting the SSR bit causes an
internal reset of the MCU. The internal reset signal and RESET pin are asserted. The SIU_RSR[SSRS] bit
is set, and all other reset status bits in the SIU_RSR are cleared.

3.4 Reset Configuration
The reset state of the system is:

• All pads on ports A–K are placed in a disabled mode with output enables, input enables, and pull
devices all disabled. PK9 is configured for BOOTCFG function.

• TDI pad is an input with pullup enabled.

• TDO pad is an output with fastest slew rate selected.

• TCK pad is an input with pulldown enabled.

• TMS pad is an input with pullup enabled.

• JCOMP pad is an input with pulldown enabled.

• RESET pin is configured as open drain output with pullup disabled and initially driven low, but
switched to an input with pullup enabled after the reset sequence.

• BOOTCFG pin is an input, the pin data is latched 4 clock cycles before the RESET signal is
negated (high).

• Nexus pads

— The following configuration is valid as long as the NPC is out of reset and enabled via JTAG:

– EVTO output with fastest slew rate enabled, high

– EVTI output buffer disabled, input buffer enabled, pullup enabled

– MCKO output with fastest slew rate enabled. Low until MCKO_EN = 1

– MDO[11:0] output with fastest slew rate enabled, low

– MSEO[1:0] output with fastest slew rate enabled, high

NOTE
Nexus is only available on the 256MAPBGA emulation package.

Resets

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 3-5

3.4.1 Reset Configuration Timing

The timing diagram in Figure 3-1 shows the sampling of the BOOTCFG (PK9) pin for a power-on reset.
The timing diagram is also valid for internal/external resets assuming VDD and VDD33 are within valid
operating ranges. The value of the BOOTCFG pin is latched 4 clock cycles before the negation of the
RESET pin and stored in the reset status register.

Figure 3-1. Reset Configuration Timing

RESET

VDD

POR

BOOTCFG is latched.

(4 clock cycles)

 10001 clocks

BOOTCFG can be applied,
but not latched.

1 If the CRP_RECPTR[FASTREC] is set, then the clock count is 16 for Sleep mode recovery.

User drives
configuration pins
relative to RESET

Internal
Reset

Resets

MPC5668x Microcontroller Reference Manual, Rev. 4

3-6 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-1

Chapter 4
System Clock Description

4.1 Introduction
This chapter describes the clock architecture and sources of the MPC5668x system clocks.

The MPC5668x has a number of different clock sources, serving various application requirements and
allowing maximum flexibility for the user application.

These are:

• High-frequency crystal oscillator described in Section 4.1.3, “External High-Frequency Crystal
(4 – 40 MHz XTAL),” supporting external crystals in the range of 4 – 40MHz. This is mainly used
as a precise clock source and PLL input clock source.

• Fast on-chip RC oscillator, described in Section 4.1.4, “Internal High-Frequency RC Oscillator
(16 MHz_IRC).” This is mainly used as the default clock source with fast startup, a fast clock
source in low-power modes, and for the watchdog timer.

• Slow on-chip RC oscillator, described in Section 4.1.5, “Internal Low-Frequency RC Oscillator
(128 kHz_IRC).” This is mainly used as an independent clock source for the ultra low power
modes.

• 32 kHz crystal oscillator described in Section 4.1.6, “External Low-Frequency Crystal
(32 kHz_XTAL),” supporting an external crystal of 32 kHz. This is used for the Real Time Clock
applications and alternate clock source to the slow on-chip RC oscillator.

• Phase-locked loop, described in Section 4.1.7, “FMPLL,” supporting spread spectrum modulation
to reduce EMI and providing system frequencies above 40 MHz. This is mainly used in full run
mode and uses the high frequency crystal as its clock source. See Chapter 6, “Frequency
Modulated Phase-Locked Loop (FMPLL),” for more information.

4.1.1 Features

The following list summarizes the system clock and clock generation on the MPC5668x:

• System clock can be derived from the following sources

— 4 – 40 MHz XTAL

— FMPLL

— 16 MHz IRC oscillator

• Programmable output clock divider of system clock (1, 2, 4,)

• Separate programmable peripheral bus clock divider ratio (1, 2, 4,) applied to system clock

• Frequency Modulated Phase-locked loop (FMPLL)

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-2 Freescale Semiconductor

— Input clock frequency from 4 MHz to 40 MHz

— Clock source from external oscillator

— Lock detect circuitry continuously monitors lock status

— Loss of clock (LOC) detection for reference and feedback clocks

— On-chip loop filter (for improved electromagnetic interference performance and reduces
number of external components required)

— Programmable frequency modulation

• On-chip crystal oscillator (4 – 40 MHz XTAL) supporting 4 MHz to 40 MHz crystals

• Dedicated 16 MHz internal RC oscillator

— 16 MHz internal RC oscillator supports low speed code execution and clocking of peripherals
through selection as the system clock

— Used as default clock source out of reset

— Provides a clock for rapid start-up from low power modes

— Provides a back-up clock in the event of PLL or external oscillator clock failure

— Provides watchdog timer

— 5% accuracy over the operating temperature range (after factory trim)

— Trimming registers to support frequency adjustment with in-application calibration

• Dedicated internal 128 kHz_IRC oscillator for low power mode operation and self wake-up

— 5% accuracy (after factory trim)

— Trimming registers to support improve accuracy with in-application calibration

• Dedicated 32 kHz_XTAL external oscillator for accurate timed wake-up

4.1.2 Clock Sources

The MPC5668x clock sources are:

• High Frequency Crystal oscillator (4 – 40 MHz XTAL)

• Fast on-chip RC oscillator (16 MHz_IRC)

• Slow on-chip RC oscillator (128 kHz_IRC)

• 32 kHz crystal oscillator (32 kHz_XTAL)

• Phase-Locked Loop (FMPLL)

The clock sources available on the MPC5668x are shown in Figure 4-1 and discussed in more detail in
subsequent sections.

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-3

Figure 4-1. MPC5668x Available Clock Sources

4.1.3 External High-Frequency Crystal (4 – 40 MHz XTAL)

The 4 – 40 MHz XTAL clock uses an external high frequency crystal to provide the main clock source to
the circuit. The on-chip crystal oscillator has automatic level control and supports 4 MHz to 40 MHz
crystals. It can be used as external square-wave input.

A low power output buffer is selected automatically in Sleep mode to allow crystals of 8 MHz and below
to continue to run and clock the Real Time Clock (RTC) and Autonomous Periodic Interrupts (API).

A crystal in the full 4 – 40 MHz range can be kept enabled in Sleep mode to facilitate fast start up. In this
mode, the crystal oscillator cannot drive any internal modules (e.g.,RTC/ API), as the output driver is
disabled.

4.1.3.1 4 – 40 MHz XTAL Features

• Input frequency range: 4 MHz – 40 MHz

• Automatic level control

• Oscillator input mode 3.3V (VDDSYN)

• External crystal mode enabled by default after reset. External square wave input supported, but
crystal bypass mode should be selected in startup code if an external crystal is not used.

• FMPLL reference clock

• Jitter < 0.5%, over one CAN frame

• Duty cycle: 40 – 60%

• Clock source capable of supporting FlexRay communications

4 – 40

OSCCLK

SYSCLKSEL 2 1 0

16 MHz
IRCPLL

Clock
Switcher

+1,2,4,8,16SYSCLKDIV

System Clock

Peripheral Clocks

TRIMIRC

3.3 or 5 V
3.3 V

EXTAL

3.3 V

XTAL

3.3 V

3.3 V

EXTAL32

3.3 or 5 V

XTAL32

3.3 or 5 V

128 kHz
IRC

TRIM128IRC

1.2 V
32 kHz XTAL

OSC32KEN

MHz XTAL

(VDDA)

(VRC)

(VDDA)

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-4 Freescale Semiconductor

— jitter < 0.5%

— duty cycle: 50% ±10%

• Clock source can be kept alive in Sleep mode to facilitate fast start up. However, if > 8 MHz is
required, it cannot drive the RTC/API as the output driver needs to be disabled.

• Can be stopped in low power mode to reduce current consumption

• PLL Off mode to reduce consumption with external clock

• External square-wave input with PLL Off mode XTAL enabled by default out of Reset, turned off
for Square wave i/p

4.1.4 Internal High-Frequency RC Oscillator (16 MHz_IRC)

This internal RC oscillator provides a 16 MHz clock source to the device. The initial trimming value is
copied into the trimming register during power on reset (POR). The device’s individual value is
determined during one of the silicon test steps and stored in the device test Flash block. Until the Flash is
up and stable, the IRC runs at its untrimmed frequency.

4.1.4.1 16 MHz_IRC Features

• 16 MHz_IRC is the default system clock out of reset. This clock features the following:

— Clock for rapid startup from low power modes

— Can be configured to run in Sleep mode

— Backup clock in case of external oscillator or PLL failure

• Fast stabilization, enabling fast recovery

• Frequency trimmable for accuracy

• Powered from VRC (3.3 V or 5 V nominal)

• Always enabled except in sleep modes when not being used (disabled in hardware only)

• The 16 MHz_IRC block contains no dividers of its own.

4.1.5 Internal Low-Frequency RC Oscillator (128 kHz_IRC)

The MPC5668x includes a 128 kHz internal RC oscillator that is a highly reliable clock source during
low-power modes. This internal RC oscillator provide a 128 kHz clock source to the device. The initial
trimming value is copied into the trimming register during power on reset. This device’s individual value
is determined during one of the silicon test steps and stored in the device test Flash block. This trim value
is retained through Sleep mode.

4.1.5.1 128 kHz_IRC Features

The 128 kHz_IRC clock features the following:

• Frequency trimmable for accuracy

• Option to clock the API to provide a wakeup

• Option to clock the RTC to provide timekeeping

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-5

• Powered from internal 1.2 V

• Optionally disabled in Sleep mode

• Current consumption < 2 µA

• 128 kHz ±35% across process, voltage and temperature (before trimming)

• 128 kHz ±10% across voltage and temperature (after factory trimming)

• 128 kHz ±2% across voltage and temperature for a minimum duration of 100 ms (after application
trimming)

The internal 128 kHz RC oscillator is for low power mode operation and wake-up. It does not offer a
system clock source.

The 128 kHz_IRC clock can be optionally stopped to reduce current consumption in Sleep mode. See
Section 4.5.4, “SWT Clock Domain.”

4.1.6 External Low-Frequency Crystal (32 kHz_XTAL)

The MPC5668x supports an external 32 kHz crystal oscillator to provide accurate wake-up and
time-keeping functions. The 32 kHz_XTAL clock is an external low power, high accuracy clock source to
provide the optional clock source for the RTC/API.

4.1.6.1 32 kHz_XTAL Features

• Two external pins required: EXTAL32 and XTAL32

• Supports external low frequency crystals in the range 32 kHz to 40 kHz

• Amplitude Level Control (ALC) to optimize power consumption

• Voltage and frequency filtering to guarantee clock frequency and stability

• Option to clock the API to provide a more accurate wakeup

• Option to clock the RTC to provide accurate time keeping

• Current consumption < 2 µA

• Powered from VDDA (3.3 V or 5 V)

• Can be disabled via software

4.1.7 FMPLL

The FMPLL module is one of the clock sources for the system clock. It is used especially for higher speed
run modes up to the maximum design speed of 128 MHz.1 Its input clock is the undivided 4 – 40 MHz
XTAL.

4.1.7.1 FMPLL Features

• Input clock frequency range: 4 MHz to 40 MHz (on EXTAL)

1.Maximum speed for the current revision of silicon may be lower. See the MPC5668x Microcontroller Family Data
Sheet for more information.

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-6 Freescale Semiconductor

• Because the MPC5668x uses a 16 MHz IRC as its default system clock, the FMPLL is put in PLL
Off mode during reset, so that power dissipation is minimized by disabling the FMPLL until
needed by the system.

• Programmable frequency multiplication factor settings generating VCO frequencies of
192 MHz – 600 MHz

• PLL Off mode (low-power mode)

• Register programmable output clock divider (ERFD)

• Programmable frequency modulation

— Modulation applied as a triangle waveform

— Peak-to-peak register programmable modulation depths of 0.5%, 1%, 1.5%, and 2% of the
system frequency

— Register programmable modulation rates of Fextal/80, Fextal/40, and Fextal/20

• Lock detect circuitry provides a signal indicating the FMPLL has acquired lock and continuously
monitors the FMPLL output for any loss of lock

• Loss-of-clock circuitry monitors input reference and FMPLL output clocks with programmable
ability to select a backup clock source as well as generate a reset or interrupt in the event of a failure

• PLL Analog can be turned off if not used.

• The FMPLL cannot run in Sleep mode

4.2 System Clock Architecture
The MPC5668x clocking architecture is shown in Figure 4-2. The figure shows all clock sources that are
available. It also shows clock selection and divider options that apply to each module. Peripheral sets are
shown in Table 4-1.

To optimize system power consumption, the MPC5668x supports both system- and peripheral-level clock
dividers, and static clock gating using peripheral-level module disable (MDIS) bits and a system-level halt
mechanism. Figure 4-2 shows the device-level clock gating mechanism for the MPC5668x.These features
are detailed in Figure 4-3.

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-7

Figure 4-2. MPC5668x System Clock Architecture

System
Clock

Selector

System clock

Clock Monitor Unit

FMPLL

32_kHz_XTAL

128_kHz_IRC

1 to

1: Dividers: 1, 2, 4, 8, 16
2: Dividers: 1, 2, 4, 8
3: Dividers: 1, 2, 4

1 to 82

1 to 82

2PLL_Clk

116 MHz

4 – 40_MHz_XTAL

16_MHZ_IRC

Peripheral
Set 1

Core,
Platform

Peripheral
Set 2

Peripheral
Set 3

Peripheral
Set 4

IOP

FEC

MLB
DIM

API/RTC

2

CLKOUT

Watchdog

CLKOUT
Selector

1 to 161

1 to 161

1 to 43

4 – 40_MHz_XTAL

16_MHZ_IRC

System clock

2

161

FlexRay

1 to 82

1 to 82

1 to 82

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-8 Freescale Semiconductor

Figure 4-3. Detailed Clock Gating Scheme

4.3 Clock Dividers

4.3.1 System Clock Select

The source for the system clock can be selected by the SYSCLKSEL field of the SIU system clock register
(SIU_SYSCLK) to be the 16 MHz IRC, the 4 – 40 MHz XTAL, or the FMPLL.

4.3.2 System Clock Dividers

The system clock dividers can be programmed to create a system clock, which is created from the selected
clock source divided by 1, 2, 4, 8, or 16, based on the setting of the SYSCLKDIV field in the SIU system
clock register (SIU_SYSCLK).

4.3.3 External Bus Clock (CLKOUT) Divider

The system clock divided by 1, 2, 4, or 8 based on the settings of the ECDF bit field in the SIU external
clock control register (SIU_ECCR). The reset value of ECDF selects a CLKOUT frequency of one half of
the system clock frequency.

ipg_clk_s

HLTn

HLTACKn

Halt
control

ips_module_en

Bus interface
(Memory mapped registers)

MDIS

Core

halt
ipg_clk

Always clocked logic

halt

DOZE

halt

Logic

ipg_stop_ack

ipg_stop

ipg_clk

(Tied VSS)
Idle&

&
halt

ipg_clk

Protocol interface
(e.g., CAN, FlexRay, etc.)

<other>_clk
(e.g., osc_clk)

Clock gate

ipg_clk_enable

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-9

NOTE
The CLKOUT provides a nominal 50% duty cycle clock with the exception
of the case when the CLKOUT prescaler is equal to ÷ 1 and the system clock
and has been divided by its prescaler. When running at this full speed
(116 MHz system clock), the CLKOUT should be configured by the user
with a divide ratio of at least ÷ 4.

Out of Reset the CLKOUT pin is disabled to minimize noise. This must be
turned on by the user during initialization.

4.3.4 Nexus Message Clock (MCKO) Divider

The Nexus message clock (MCKO) divider can be programmed to divide the system clock by 1, 2, 4, or
8, based on the MCKO_DIV bit field in the port configuration register (PCR) in the Nexus port controller
(NPC). The reset value of MCKO_DIV selects an MCKO clock frequency one half of the system clock
frequency. The MCKO divider is configured by writing to the NPC through the JTAG port. The
MCKO_EN bit may be used to disable the MCKO clock. The MCKO_GT bit may be used to disable the
MCKO clock when Nexus is not actively transmitting messages on the Nexus port.

NOTE
The MCKO provides a nominal 50% duty cycle clock with the exception of
the case that the MCKO prescaler is equal to ÷ 1 and the system clock has
been divided by its prescaler. There is no guaranteed phase relationship
between CLKOUT and MCKO.

NOTE
Z6 tracing is supported for MCKO divides of 1, 2, 4, or 8. Since the Z0
clocking is based on half the system bus clock frequency, the Z0 tracing is
supported for MCKO divides of 2, 4, or 8 with a divide of 1 not supported.
Also, concurrent tracing of both the Z6 and Z0 is supported for MCKO
divides of 2, 4, or 8, with a divide of 1 not supported.

4.3.5 Peripheral Clock Dividers

The system and peripheral bus clocks can all be divided down to tune performance to meet the needs of
the application, helping to save power and to meet the required peripheral speeds. The system clock speed
can be divided down from ÷ 1 to ÷ 16 in discrete steps (÷ 1, ÷ 2, ÷ 4, ÷ 8, ÷ 16). This allows the CPU speed
to be reduced to 1 MHz when operating from the 16 MHz IRC for slow dynamic run current. In addition
the peripherals can divide this system bus clock speed for their normal operation from ÷ 1 to ÷ 8 in discrete
steps (÷ 1, ÷ 2, ÷ 4, ÷ 8) enabling slow peripheral groups such as Peripheral Set 1 (Refer to Table 4-1 for
more information) to be able to be optimized to run at more efficient speeds.

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-10 Freescale Semiconductor

NOTE
Unlisted peripherals such as the Flash, SIU, etc., are considered part of the
Platform and hence are not listed here.

Each divider can be changed independently of the other dividers. However, the user must ensure that the
system bus clock is always equal to or faster than the other clocks.

It should be noted that reducing clock speed for peripheral groups results in slower access times by the
device masters and may impact performance of other operations as a result of restricting bandwidth on the
respective IPS bus, or from the accessing master.

NOTE
• The ADC requires a 50% duty cycle clock. Thus, if the system clock has

been divided by its prescaler, then the ÷ 2 clock divider internal to the
ADC module must be selected (i.e., ADC MCR[ADCLKSEL] = 0).

• DMA operations are not supported for peripherals when the peripheral
clock is divided.

NOTE
• If using the PIT to trigger the CTU, do not divide the CTU peripheral

clock. SIU_SYSCLK[LPCLKDIV2] should be kept at the default
setting SIU_SYSCLK[LPCLKDIV2]=0b00.

4.4 Software-Controlled Power Management

4.4.1 Module Disable (MDIS) Clock Gating

Static clock gating is enabled by software writes to configuration bits for the modules to disable the
modules. Modules are re-enabled by software to ungate the module clocks.

The modules support software controlled clock gating where the application software can disable the
non-memory-mapped portions of the blocks by writing to module disable (MDIS) bits in registers within
the blocks. (The memory-mapped portions of the blocks are clocked by the system clock only when they
are accessed.) The Nexus port controller (NPC) can be configured to disable the MCKO signal when there
are no Nexus messages pending.

The flash array can be disabled by writing to the FDIS bit in the CRP module.

The modules that support software-controlled power management/clock gating are listed in Table 4-2
along with the registers and bits that disable each block. Default out of reset disables the
software-controlled clocks.

Table 4-1. Peripheral Sets

Peripheral Set 1 Peripheral Set 2 Peripheral Set 3 Peripheral Set 4

All eSCI modules All FlexCAN modules ADC eMIOS

I2C All SPI modules CTU

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-11

4.4.2 Halt Clock Gating

System clock gating is forced via the centralized halt mechanism. The SIU_HLT0 and SIU_HLT1 bits
corresponding to individual modules are configured to determine which modules are clock gated.

The SIU_HLT0 and SIU_HLT1 bits are used to drive the stop inputs to the modules. After the module
completes a clean shutdown, the module asserts the stop acknowledge handshake. The stop acknowledge
is visible in the SIU_HLTACK0 and SIU_HLTACK1 read-only register bits. The modules are individually
controlled and halted.

The halted module recovers when the HLT bit is cleared by software. After HLT is cleared, the device’s
logic re-enables the clocks to the modules and negates the stop signal after the required timing has been
met.

There is no hardware disable for the eDMA and FlexRay modules. Thus before setting the HLT bits for
these masters, software should take actions to prepare for the eDMA and FlexRay clocks to be stopped.
Then software sets the HLT bits for the eDMA and FlexRay to indicate to the clock logic that the clocks
to these modules can now be stopped.

When the Z0 and Z6 have executed WAIT instructions, then the clocks to the platform are also gated. The
platform logic includes the MPU, AXBS, AIPS, and ECSM. The INTC and SIU are not clock gated to
allow for an interrupt to be used to exit WAIT.

4.4.3 Core WAIT Clock Gating

Core clock gating is enabled via the CPU WAIT instruction.

Table 4-2. Software-Controlled Clock Gating Support

Block Name Register Name Bit Name

DSPI DSPI_MCR
Offset: Base + 0x0000

MDIS

ESCI ESCIx_CR2
Offset: Base + 0x0004

MDIS

FlexCAN CANx_MCR
Offset: Base + 0x0000

MDIS

EMIOS EMIOS_MCR
Offset: Base + 0x0000

MDIS

CTU CTUPCR
Offset: Base + 0x00CC

MDIS

PIT PITCTRL
Offset: Base + 0x0110

MDIS

I2C IBCR
Offset: Base + 0x0002

MDIS

NPC Nexus PCR[30]= MCKO_GT
Nexus PCR[29]= MCKO_EN==MDIS

Reg Index: 127

MCKO_EN,
MCKO_GT

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-12 Freescale Semiconductor

The Z6 and Z0 cores may be idled by their WAIT instructions. The WAIT instructions are used as a
power-saving feature to halt the core. Executing the WAIT instruction puts the corresponding core in an
idle state at a clean transition point. When the core stops, clocks to the core are gated off, and the core
asserts a signal indicating it is waiting for an interrupt. The state of this signal is software accessible via
the appropriate SIU_HLTACK0 and SIU_HLTACK1 bits.

An interrupt to the corresponding core exits the WAIT instruction and the core continues to the appropriate
interrupt service routine (ISR).

NOTE
If both the Z6 and Z0 cores are stopped (either in WAIT or disabled with
ZxRST), then only an NMI interrupt will recover the core from WAIT. A
core may be recovered from WAIT with either an NMI or external interrupt
if the other core is not stopped.

4.5 Alternate Module Clock Domains

4.5.1 FlexCAN Clock Domains

The FlexCAN blocks have two distinct software-controlled clock domains. One of the clock domains is
always derived from the system clock. This clock domain includes the message buffer logic. The source
for the second clock domain can be the system clock or the 4 – 40 MHz XTAL output. The logic in the
second clock domain controls the CAN interface pins. The CLK_SRC bit in the FlexCAN CTRL register
selects between the system clock and the oscillator clock as the clock source for the second domain.
Selecting the oscillator as the clock source ensures low jitter on the CAN bus. System software can gate
both clocks by writing to the MDIS bit in the FlexCAN MCR register.

NOTE
To prevent improper FlexCAN behavior when switching of the system
clock or the CAN protocol engine clock source, or before the desired clock
source has stabilized, the FlexCAN module must first be disabled by setting
the CANx_MCR[MDIS] = 1.

If the oscillator clock source is selected, the frequency of the peripheral clock needs to be the same or
greater than the oscillator clock frequency.

If the 4 – 40 MHz XTAL is used as the system clock source and is divided down, then the clock source
selected for the CAN interface must be the system clock (i.e., the divided 4 – 40 MHz XTAL) to keep the
system clock not slower than the CAN interface clock.

4.5.2 FlexRay Clock Domains

The FlexRay block has two distinct software-controlled clock domains. One of the clock domains is
always derived from the system clock. The source for the second clock domain can be the system clock or
the 4 – 40 MHz XTAL output. The logic in the second clock domain controls the FlexRay interface pins.
The CLK_SRC bit in the FlexRay CTRL register selects between the system clock and the oscillator clock

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 4-13

as the clock source for the second domain. Selecting the oscillator as the clock source ensures low jitter on
the FlexRay bus.

NOTE
To prevent improper FlexRay behavior, the system clock or the FlexRay
protocol engine clock source must be switched and stable before enabling
the FlexRay module. After it is enabled, the FlexRay module can be
disabled only by asserting RESET.

If the oscillator clock source is selected for the FlexRay interface, then a divided down 4 – 40 MHz XTAL
cannot be selected as the source for the system clock.

4.5.3 API / RTC Clock Domains

The clock source for the RTC can be selected as one of the following:

• 32 kHz_XTAL

• 4 – 40 MHz XTAL

• 128 kHz_IRC

• 16 MHz_ IRC

If the 32 kHz crystal is used (enabled), it is assumed that the crystal always remains the clock source.

The API/RTC includes a divide of the clock sources. The division of these clock sources can be configured
to have a ÷512 and a ÷32. Both can be bypassed if required.

The 4 – 40 MHz XTAL and 16 MHz IRC can be optionally divided down by ÷1, ÷2, ÷4, ÷8, or ÷16 before
being supplied to the API/RTC. This allows the required wake-up times and resolution to be met since the
÷32 may be too large for some users of the RTC to meet the desired resolution. The 128 kHz IRC can be
divided by ÷1, ÷2, or ÷4. This allows the speed of the clock to be reduced to minimize power consumption
in low power modes and to clock the RTC and 32 kHz.

For accurate RTC support, the 32 kHz_XTAL and 4 – 40 MHz XTAL clocks can be used. The
32 kHz_XTAL is normally used, but there are use cases to have the main 4 – 40 MHz XTAL crystal
oscillator running in low power mode and clocking the RTC.

The maximum 4 – 40 MHz XTAL that can be run in low power mode is an 8 MHz crystal. The oscillator
supports an automatically switched low power output buffer to minimize the current consumption when
the 4 – 40 MHz XTAL is allowed to run. This keeps the overall low power mode current consumption
down.

For low power API, the 128 kHz_IRC is used.

NOTE
To prevent improper real-time clock (RTC) behavior when switching the
system clock source, or before the desired clock source has stabilized, the
RTC must first be disabled by clearing the CRP_RTCC[CNTEN] = 0.

System Clock Description

MPC5668x Microcontroller Reference Manual, Rev. 4

4-14 Freescale Semiconductor

4.5.4 SWT Clock Domain

The clock source for the SWT is the 16 MHz_IRC.

4.5.5 Input/Output Processor (IOP) Clocking

The e200z0 IOP always runs at half the system frequency. If the system frequency source is the
16 MHz_IRC (e.g. after wake-up) the IOP is clocked at 8 MHz.

4.5.6 FEC Clocking

The Fast Ethernet Controller is not capable of running at the target system bus speed of the device. A
permanent divide-by-two prescaler has been introduced into the clock tree for the FEC so that it always
runs at half the speed of the system clock.

4.5.7 Media Local Bus (MLB) DIM Clocking

The MLB DIM always runs at half the system frequency.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-1

Chapter 5
Clocks, Reset, and Power (CRP)

5.1 Introduction
The primary function of the clock, reset, and power (CRP) block is to maintain all of the control logic that
requires power when other portions of the device are powered down in power-saving modes. The CRP
manages entry into, operation during, and exit from power-saving modes.

The CRP consists of the input isolation block, the RTC/API, the wakeup and power status block, the clock
and reset control block, low-power state machine, and bus interface unit. The input isolation block allows
inputs from external blocks to be driven to known states when the logic driving the input is powered down.
The RTC/API block implements a real-time counter and periodic interrupt. The wakeup and power status
block implements the logic to select power mode operation and wakeup sources. The clock and reset
control block implements miscellaneous logic related to PLL and oscillator operation, and reset gating for
power-saving modes. The low-power state machine controls the transitions into and out of the power-
saving modes. The bus interface unit allows for slave read/write register access from the device’s core.
There are also several miscellaneous integration functions included in the CRP that are discussed in detail
in later sections of this chapter.

5.1.1 Block Diagram

A simplified block diagram of the CRP illustrates the functionality and interdependence of major blocks
(see Figure 5-1).

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-2 Freescale Semiconductor

Figure 5-1. CRP Block Diagram

5.1.2 Features

The CRP has these major features:

• Real-time clock/autonomous periodic interrupt (RTC/API):

— 32-bit counter

MHz XTAL

RTC /

LOW

BIU

POWER
FSM

API

CLOCKS,
RESET

CONTROL

WAKEUP,
POWER
STATUS

SEA-OF-GATES
LOGIC

16 MHz

128 kHz

32 kHz

CONTROL
CLOCK

BLOCK

VREG

4 – 40

RAM BLOCKS

SYSTEM

POWER
SWITCHES

IP

ISOLATION
LOGIC

ISOLATION
INPUT

CLOCK
FMPLL

CRP

IRC

XTAL

IRC

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-3

— Four selectable counter clock sources

– 4 – 40 MHz XTAL with 1 to 16 divider

– 32 kHz XTAL

– 16 MHz_IRC with 1 to 16 divider stage

– 128 kHz_IRC with 1 to 4 divider stage

— Optional divide-by-512 prescaler and optional divide-by-32 prescaler connected in series in the
clock path feeding the 32-bit counter

— 32-bit counter supports times up to greater than 1.5 months with 1 ms resolution.

— 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s
resolution

— RTC interrupt with interrupt enable.

— Counter runs in all modes of operation.

— RTC status and control register are reset only by POR

— RTC counter is reset when counter is disabled by software and by POR.

— Autonomous periodic interrupt support includes:

– 10-bit compare value to support wakeup intervals of 1.0 ms to 1 s

– Wakeup logic has separate enable to support changing compare value while RTC running

– API interrupt with interrupt enable

– Operates in all modes of operation

– API compare value can be modified while RTC is running

— Optional interrupt for RTC match, API match, and RTC rollover.

• Low-power mode management:

— Provides control of voltage regulator, LVI circuits, isolation enables, and power switches

— FSM clock gates itself off when waiting for asynchronous wakeup signal for power savings

— Four selections available for block sizes for RAM data retention (0, 32 KB, 64 KB, and
128 KB)

• Low-power wakeup:

— Wakeup sources can be either the RTC, API, RTC rollover, or external pin

— All wakeup sources can be enabled at any given time (first to occur generates wakeup)

— 32 pin wakeup sources

— Pin wakeup occurs on rising edge, falling edge, or both

— Two clock-source inputs for pin wakeup to allow for lower power or faster wakeup

— System level reset control to ensure clean recovery from sleep mode

• Miscellaneous:

— All functional logic inputs isolated in low-power modes

— All logic with multiple clock sources internally synchronized

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-4 Freescale Semiconductor

5.1.3 Modes of Operation

There are two functional modes of operation for the CRP: normal operation and sleep mode.

In normal operation, all CRP registers can be read or written. The input isolation, low-power FSM, and
wake-up logic are disabled. The voltage regulator, LVI, and power switch outputs are in the enabled state.
The RTC/API and associated interrupts are optionally enabled.

In sleep mode, the bus interface is disabled and the input isolation is enabled. The RTC/API is enabled if
enabled prior to entry into sleep. See Section 5.4.2, “RTC Functional Description,” for further details.

5.2 Memory Map and Registers
This section provides a detailed description of all CRP registers.

5.2.1 Module Memory Map

The CRP memory map is shown in Table 5-1. The address of each register is given as an offset to the CRP
base address. Registers are listed in address order, identified by complete name and mnemonic, and lists
the type of accesses allowed.

Table 5-1. CRP Memory Map

Offset from
CRP_BASE

(0xFFFE_C000)
Register Access Reset Value Section/Page

0x0000 CRP_CLKSRC—Clock source register R/W 0x0001_1F3F 5.2.2.1/5-5

0x0004–0x000F Reserved

0x0010 CRP_RTCC—RTC control register R/W 0x0000_0000 5.2.2.2/5-6

0x0014 CRP_RTSC—RTC status register R 0x0000_0000 5.2.2.3/5-8

0x0018 CRP_RTCCNT—RTC counter register R 0x0000_0000 5.2.2.4/5-9

0x001C–0x003F Reserved

0x0040 CRP_PWKENH—Pin wakeup enable high register R/W 0x0000_0000 5.2.2.5/5-9

0x0044 CRP_PWKENL—Pin wakeup enable low register R/W 0x0000_0000 5.2.2.5/5-9

0x0048 CRP_PWKSRCIE—Pin wakeup source interrupt enable
register

R/W 0x0000_0000 5.2.2.6/5-11

0x004C CRP_PWKSRCF—Pin wakeup source flag register R 0x0000_0000 5.2.2.7/5-11

0x0050 CRP_Z6VEC—Z6 reset vector register R/W 0xFFFF_0001 5.2.2.8/5-12

0x0054 CRP_Z0VEC—Z0 reset vector register R/W 0xFFFF_FFFE 5.2.2.9/5-12

0x0058 CRP_RECPTR—Recovery pointer register R/W 0xFFFF_FFFC 5.2.2.10/5-13

0x005C–0x005F Reserved

0x0060 CRP_PSCR—Power status and control register R/W 0x0000_0000 5.2.2.11/5-14

0x0064–0x006F Reserved

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-5

5.2.2 Register Descriptions

This section lists the CRP registers in address order and describes the registers and their bit fields.

5.2.2.1 Clock Source Register (CRP_CLKSRC)

The CRP_CLKSRC contains:

• Enable bits for the 32 kHz OSC, 128 kHz IRC, and 4 – 40 MHz OSC

• Low power configuration for the 4 – 40 MHz OSC

• The trim values for the 16 MHz IRC and 128 kHz IRC

0x0070 CRP_SOCSC—SoC status and control register R/W 0x4000_0000 5.2.2.12/5-15

0x0074–0x03FF Reserved

Offset: CRP_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R IRC
TRIM
EN

0 0 0 0
PREDIV

0 0 0 0
EN128K

IRC
EN32
KOSC

ENLP
OSC

EN40M
OSCW

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
TRIM128IRC

0 0
TRIM16IRC

W

Reset1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1
1 These bits are only reset by power-on, VDD12 LVI, VDD33 LVI, VDDSYN LVI, VDD5 Low LVI, and VDD5 LVI.

Figure 5-2. Clock Source Register (CRP_CLKSRC)

Table 5-2. CRP_CLKSRC Field Descriptions

Field Description

IRCTRIMEN IRC Trim Enable. The IRCTRIMEN bit enable write access to TRIM128IRC and TRIM16IRC.
0 IRC trim bit writes disabled.
1 IRC trim bit writes enabled.

PREDIV RTC Clock Pre-divider. The PREDIV bits control the pre-divider for the RTC clock source. Divide clock
sources are the 32 kHz OSC, 128 kHz IRC, 16 MHz IRC, or the 4 – 40 MHz OSC. See the CLKSEL bitfield
in Table 5-3.The pre-divider is in addition to any other divide selects internal to the RTC logic.
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Divide by 8
100 Divide by 16
Other Reserved

Table 5-1. CRP Memory Map (continued)

Offset from
CRP_BASE

(0xFFFE_C000)
Register Access Reset Value Section/Page

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-6 Freescale Semiconductor

5.2.2.2 RTC Control Register (CRP_RTCC)

The CRP_RTCC register contains:

• RTC counter enable

• RTC interrupt enable

• RTC clock source select

• RTC compare value

• API enable

• API interrupt enable

• API compare value

EN128KIRC Enable 128 kHz IRC Oscillator. The EN128KIRCbit enables the 128 kHz IRC oscillator.
0 128 kHz IRC disabled.
1 128 kHz IRC enabled.

Note: After enabling the128 kHz IRC, software needs to wait the required crystal startup/stabilization time
before making use of this oscillator.

EN32KOSC Enable 32 kHz Oscillator. The EN32KOSC bit enables the 32 kHz XTAL oscillator.
0 32 kHz OSC disabled.
1 32 kHz OSC enabled.

Note: After enabling the 32 kHz OSC, software needs to wait the required crystal startup/stabilization time
before making use of this oscillator.

ENLPOSC Enable Low Power External Oscillator. The ENLPOSC bit controls how the 4 – 40 MHz OSC behaves during
sleep if EN40MOSC is high. If EN40MOSC is low, then ENLPOSC has no effect.
0 4 – 40 MHz OSC clock disabled to save power, but connection to the external crystal is still active thus

supports faster recovery time for availability of 4 – 40 MHz OSC after sleep recovery. Supports full 4 – 40
MHz range of external crystals.

1 4 – 40 MHz OSC clock active and may be used as clock source for RTC/API. The external crystal
frequency is limited to 8 MHz.

EN40MOSC Enable 4 – 40 MHz Oscillator Enable. The EN40MOSC bit enables the 4 – 40 MHz OSC external oscillator
for external crystal.
0 4 – 40 MHz OSC disabled.
1 4 – 40 MHz OSC enabled.

Note: During sleep mode with EN40MOSC = 1, the 4 – 40 MHz OSC still can actively drive an external
crystal and can be used to clock the RTC/API if the crystal frequency is 8 MHz.

TRIM128IRC Trim Value for 128 kHz IRC. The TRIM128IRC bits are a 2’s complement trimming method, so the trimming
code increases from –16 to +15. The default trimming code is 0b11111 (–1, nearly in the middle of –16
and +15). As the code increases/decreases the frequency reduces/increases. TRIM128IRC can only be
updated if IRCTRIMEN is enabled.

TRIMIRC Trim Value for 16 MHz IRC. The TRIM16IRC bits are a 2’s complement trimming method, so the trimming
code increases from –32 to +31. The default trimming code is 0b111111 (–1, nearly in the middle of –32
and +31). As the code increases/decreases the frequency reduces/increases. TRIM16IRC can only be
updated if IRCTRIMEN is enabled.

Table 5-2. CRP_CLKSRC Field Descriptions (continued)

Field Description

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-7

Offset: CRP_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CNTE
N

RTCIE
FRZE

N
ROVREN RTCVAL

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APIEN APIIE CLKSEL DIV512EN DIV32EN APIVAL

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 These bits are only reset by power-on: VDD15 LVI, VDD33 LVI, and VDDSYN LVI, VDD5 low LVI, and VDD5 LVI.

Figure 5-3. RTC Control Register (CRP_RTCC)

Table 5-3. CRP_RTCC Field Descriptions

Field Description

CNTEN Counter Enable. The CNTEN bit enable the RTC counter. Making CNTEN bit 1’b0 has the effect of
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for the RTC
configuration and clock source selection to be updated without causing synchronization issues.
0 Counter disabled.
1 Counter enabled.

RTCIE RTC Interrupt Enable. The RTCIE bit enables interrupts requests to the system if RTCF is asserted.
0 RTC interrupts disabled.
1 RTC interrupts enabled.

FRZEN Freeze Enable Bit. The counter freezes on entering the debug mode (as the ipg_debug is detected active) on
the last valid count value if the FRZEN bit is set. After coming out of the debug mode, the counter starts from
the frozen value.
0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.

ROVREN Counter Roll Over Wakeup/Interrupt Enable. The ROVREN bit enables wakeup and interrupt requests when
the RTC has rolled over from 0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to
generate an interrupt from a counter rollover.
0) RTC rollover wakeup/interrupt disabled
1) RTC rollover wakeup/interrupt enabled.

RTCVAL RTC Compare Value. The RTCVAL bits are compared to bits 21–10 of the RTC counter. If they match, RTCF
is set.
Note: RTCVAL must be non-zero for a match to occur.

APIEN Autonomous Periodic Interrupt Enable. The APIEN bit enables the autonomous periodic interrupt function.
0 API disabled.
1 API enabled.

APIIE API Interrupt Enable. The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 API interrupts enabled.
0 API interrupts disabled.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-8 Freescale Semiconductor

5.2.2.3 RTC Status Register (CRP_RTSC)

The CRP_RTSC register contains:

• RTC interrupt flag

• API interrupt flag

• ROLLOVR Flag

CLKSEL Clock Select. The CLKSEL bits select the clock source for the RTC. CLKSEL should only be updated when
CNTEN is 0. The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 32 kHz OSC
01 128 kHz IRC
10 16 MHz IRC
11 4 – 40 MHz OSC

DIV512EN Divide by 512 enable. The DIV512EN bit enables the 512 clock divider. DIV512EN should only be updated
when CNTEN is 0.
0 Divide by 512 is disabled.
1 Divide by 512 is enabled

DIV32EN Divide by 32 enable. The DIV32EN bit enables the 32 clock divider. DIV32EN should only be updated when
CNTEN is 0.
0 Divide by 32is disabled.
1 Divide by 32 is enabled

APIVAL API Compare Value. The APIVAL bits are compared to an offset value based on bits 22–31 of the RTC counter.
If they match, a wakeup/interrupt request is asserted. APIVAL can be updated only when APIEN = 0 or when
the API function is undefined.
Note: API functionality starts only when APIVAL is non-zero. The first API interrupt takes two more cycles

because of synchronization of APIVAL to the RTC clock. After that, interrupts are periodic in nature. The
compare value is API + 1 and the minimum supported value is 4, because of synchronization issues.

Offset: CRP_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RTCF 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 APIF 0 0 ROVRF 0 0 0 0 0 0 0 0 0 0

W w1c w1c

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 These bits are only reset by power-on: VDD15 LVI, VDD33 LVI, and VDDSYN LVI, VDD5 low LVI, and VDD5 LVI.

Figure 5-4. RTC Status Register (CRP_RTSC)

Table 5-3. CRP_RTCC Field Descriptions (continued)

Field Description

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-9

5.2.2.4 RTC Counter Register (CRP_RTCCNT)

The CRP_RTCCNT register contains the RTC counter value.

5.2.2.5 Pin Wakeup Enable Registers (CRP_PWKENH/L)

The CRP_PWKENH and CRP_PWKENL registers enable the pin wakeup sources and select the trigger
edge for the wakeup inputs.

Table 5-4. CRP_RTSC Field Descriptions

Field Description

RTCF RTC Interrupt Flag. The RTCF bit indicates that the RTC counter has reached the counter value matching
RTCVAL. RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect. Note that the RTCF bit
must be cleared before entering sleep mode, if the RTC is to be used as the wakeup source.
0 No RTC interrupt.
1 RTC interrupt.

APIF API Interrupt Flag. The APIF bit indicates that the RTC counter has reached the counter value matching API
offset value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect. Note that the APIF bit
must be cleared before entering SLEEP mode, if the API is to be used as the wakeup source.
0 No API interrupt.
1 API interrupt.

ROVRF Counter Roll Over Interrupt Flag. The ROVRF bit indicates that the RTC has rolled over from 0xFFFF_FFFF
to 0x0000_0000. ROVRF is cleared by writing a 1 to ROVRF. Writing a 0 to ROVRF has no effect. Note that
the ROVRF bit must be cleared before entering sleep mode, if the RTC rollover is to be used as the wakeup
source.
0) RTC has not rolled over.
1) RTC has rolled over.

Offset: CRP_BASE + 0x0018 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RTCCNT

W

Reset1 0
1 These bits are only reset by power-on: VDD15 LVI, VDD33 LVI, and VDDSYN LVI, VDD5 low LVI, and VDD5 LVI.

Figure 5-5. RTC Counter Register (CRP_RTCCNT)

Table 5-5. CRP_RTCCNT Field Descriptions

Field Description

RTCCNT RTC Counter Value. Due to the clock synchronization, the RTCCNT value may actually represent a previous
counter value

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-10 Freescale Semiconductor

Offset: CRP_BASE + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWK31 PWK30 PWK29 PWK28 PWK27 PWK26 PWK25 PWK24

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWK23 PWK22 PWK21 PWK20 PWK19 PWK18 PWK17 PWK16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-6. Pin Wakeup Enable High Register (CRP_PWKENH)

Offset: CRP_BASE + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWK15 PWK14 PWK13 PWK12 PWK11 PWK10 PWK9 PWK8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWK7 PWK6 PWK5 PWK4 PWK3 PWK2 PWK1 PWK0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-7. Pin Wakeup Enable Low Register (CRP_PWKENL)

Table 5-6. CRP_PWKENH/L Field Descriptions

Field Description

PWKn Pin Wakeup Enable and Select. The PWKn bits enable the external pin wakeup sources and define which edge
transition is used for the wakeup.
00 External pin wakeup source disabled.
01 Positive edge of selected external pin triggers the wakeup request.
10 Negative edge of selected external pin triggers the wakeup request.
11 Positive or negative edge of selected external pin triggers the wakeup request.

Table 5-7. Wakeup Source Number vs. Pin

CRP_PWKENL CRP_PWKENH

PWKn Pin PWKn Pin PWKn Pin PWKn Pin

0 PB4 8 PD9 16 PE9 24 PJ9

1 PB5 9 PD11 17 PE11 25 PJ10

2 PB6 10 PD13 18 PE13 26 PJ11

3 PB7 11 PD15 19 PF3 27 PJ12

4 PD1 12 PE1 20 PF7 28 PJ13

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-11

NOTE
Program any pins that are to be used as wakeup sources as inputs in the
associated SIU_PCRn register prior to entering a low-power mode.

5.2.2.6 Pin Wakeup Source Interrupt Enable Register (CRP_PWKSRCIE)

The CRP_PWKSRCIE register enables interrupt requests individually for each of the pin wakeup sources.

5.2.2.7 Pin Wakeup Source Flag Register (CRP_PWKSRCF)

The CRP_PWKSRCF register indicates external pin wakeup source events.

5 PD3 13 PE3 21 PF11 29 PJ14

6 PD5 14 PE5 22 PF15 30 PK3

7 PD7 15 PE7 23 PJ8 31 PK6

Offset: CRP_BASE + 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWKSRCIE31-0

W

Reset 0

Figure 5-8. Pin Wakeup Source Interrupt Enable Register (CRP_PWKSRCIE)

Table 5-8. CRP_PWKSRCIE Field Descriptions

Field Description

PWKSRCIEn Pin Wakeup Source Interrupt Enables. The PWKSRIEn bits enable interrupt requests to the system if the
corresponding PWKn bit in CRP_PWKENH/L is asserted.
0 Wakeup source interrupt disabled.
1 Wakeup source interrupt enabled.

Offset: CRP_BASE + 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PWKSRCF[31:0]

W w1c

Reset 0

Figure 5-9. Pin Wakeup Source Flag Register (CRP_PWKSRCF)

Table 5-7. Wakeup Source Number vs. Pin (continued)

CRP_PWKENL CRP_PWKENH

PWKn Pin PWKn Pin PWKn Pin PWKn Pin

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-12 Freescale Semiconductor

5.2.2.8 Z6 Reset Vector Register (CRP_Z6VEC)

The CRP_Z6VEC register contains:

• Recovery vector for the Z6 core

• Reset for the Z6 core

• VLE select for the Z6 core

NOTE
The user may attempt to set both the CRP_Z6VEC[Z6RST] and
CRP_Z0VEC[Z0RST] bits to 1, but if one of these bits is already set to a
value of 1, the write to the other bit is blocked.

5.2.2.9 Z0 Reset Vector Register (CRP_Z0VEC)

The CRP_Z0VEC register contains:

Table 5-9. CRP_PWKSRCF Field Descriptions

Field Description

PWKSRCFn Pin Wakeup Source Flag. The PWKSRCF bits indicate which external pin wakeup source event caused the
wakeup. More than one external wakeup source can be asserted at a time if the wakeup events happened
simultaneously. A write of 1 clears the interrupt flag. A write of 0 has no effect.
0 PWKSRCFn did not cause the last wakeup.
1 PWKSRCFn caused the last wakeup.

Offset: CRP_BASE + 0x0050 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
Z6VEC

0 0 0 0 0 0 0 0 0 0
Z6RST VLE

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 1

Figure 5-10. Z6 Reset Vector Register (CRP_Z6VEC)

Table 5-10. CRP_Z6VEC Field Descriptions

Field Description

Z6VEC The user needs to change this value to point to a different memory location for system reinitialization when
exiting low-power sleep mode. The program counter value for the Z6 after Sleep mode recovery is
{Z6VEC, 0xFFC}, which aligns to a 4 KB address boundary offset by 0xFFC. Note that the default Z6 MMU
configuration is a 4 KB memory space aligned to the 4 KB address boundary defined by Z6VEC. Thus the
reinitialization code needs to access within the 4 KB memory space until the MMU is reconfigured.

Z6RST Controls the assertion of RESET to the Z6 core. Writes to this bit cause the Z6 to immediately enter/exit reset.
Reads of this bit indicate if the core is being held in reset.
0 Z6 not in reset.
1 Z6 in reset.

VLE VLE Select. The VLE bit selects whether the Z6 recovers into VLE or Book_E mode.
0 Z6 recovers into Book_E mode.
1 Z6 recovers into VLE mode.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-13

• Recovery vector for the Z0 core

• Reset for the Z0 core

NOTE
The user may attempt to set the CRP_Z6VEC[Z6RST] and
CRP_Z0VEC[Z0RST] bits to 1, but if one of these bits is already set to a
value of 1, the write to the other bit is blocked.

5.2.2.10 Reset Recovery Pointer Register (CRP_RECPTR)

The CRP_RECPTR register contains:

• Recovery pointer

• Fast recovery enable

Offset: CRP_BASE + 0x0054 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
Z0VEC Z0RST

0

W

Reset 1 0

Figure 5-11. Z0 Reset Vector Register (CRP_Z0VEC)

Table 5-11. CRP_Z0VEC Field Descriptions

Field Description

Z0VEC Z0 Recovery Vector. The Z0VEC value determines the initial program counter for the Z0 when exiting reset.
On reset, the value contained in the register defaults to 0xFFFF_FFFE, and the Z0 is held in reset. Change
this value to point to a different memory location for Z0 specific initialization when negating the Z0RST bit or
recovering from Sleep mode.

Z0RST Controls the assertion of RESET to the Z0 core. Writes to this bit cause the Z0 to immediately enter/exit reset.
Reads of this bit indicate if the core is being held in reset.
0 Z0 not in reset.
1 Z0 in reset.

Offset: CRP_BASE + 0x0058 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RECPTR

FAST
REC

0

W

Reset 1 0 0

Figure 5-12. Reset Recovery Pointer (CRP_RECPTR)

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-14 Freescale Semiconductor

5.2.2.11 Power Status and Control Register (CRP_PSCR)

The power status and control register (CRP_PSCR) contains:

• Wakeup mode and source flags

• Sleep mode enable

• Sleep RAM retention select

Table 5-12. CRP_RECPTR Field Descriptions

Field Description

RECPTR Recovery Pointer. The RECPTR value is a generic 30-bit register available to the user application which retains
a value during all low-power modes. This register may be used by the user software to indicate where in RAM
a recovery routine exists.

FASTREC Fast Reset Recovery. Allows the reset sequence generated at the exit of a sleep mode to be shortened to 16
clocks. This bit may be used when the CRP_Z6VEC or CRP_Z0VEC register of the core(s) executing code
after a sleep mode points to a memory other than the flash. This allows code to be executed from those other
memories while the flash completes its internal initialization.
0 Reset occurs for 1000 clocks.
1 Reset occurs for 16 clocks.

Offset: CRP_BASE + 0x0060 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SLEEP

F
0 0 0 0 0 0 0 0 0 0 0 0

RTC
OVR
WKF

RT
CWK

F

API
WKF

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SLEEP

0 0 0 0

RAMSEL

0 0

 0 0
WKC
LK

SEL

RTC
OVR
WK
EN

RTC
WK
EN

API
WK
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-13. Power Status and Control Register (CRP_PSCR)

Table 5-13. CRP_PSCR Field Descriptions

Field Description

SLEEPF SLEEP Flag. The SLEEPF bit indicates whether recovery from the last low-power modes was sleep. While
SLEEPF is set, the pads remain in a safe state after Sleep mode recovery ad clearing SLEEPF will return the
pads to normal operation. A write of 1 clears this status flag and a write of 0 has no effect.
0 Low-power sleep mode was not entered.
1 Low-power sleep mode entered.

RTCOVRWKF RTC Counter Rollover Wakeup Flag. The RTCOVRWKF bit indicates that a RTC counter rollover was the
wakeup source. A write of 1 clears the interrupt flag and a write of 0 has no effect.
0 The RTC counter did not cause the last wakeup.
1 The RTC counter caused the last wakeup.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-15

5.2.2.12 SoC Status and Control Register (CRP_SOCSC)

The CRP_SOCSC register contains:

• LVI interrupt flags

• LVI interrupt enables

RTCWKF RTC Wakeup Flag. The RTCWKF bit indicates that the RTC match was the wakeup source. A write of 1 clears
the interrupt flag and a write of 0 has no effect.
0 The RTC did not cause the last wakeup.
1 The RTC caused the last wakeup.

APIWKF API Wakeup Flag. The APIWKF bit indicates the API was the wakeup source. A write of 1 clears the interrupt
flag and a write of 0 has no effect.
0 The API did not cause the last wakeup.
1 The API caused the last wakeup.

SLEEP SLEEP Request. The SLEEP bit indicates a request to enter the sleep low-power mode. This bit is cleared
automatically when exiting from SLEEP.
0 No request to enter the sleep low-power mode.
1 Request to enter the sleep low-power mode.

RAMSEL RAM Selects. The RAMSEL bits select which ram configuration retains power during the sleep mode.
000 All RAMs powered down
001 32 KB RAM retains power (0x4000_0000 – 0x4000_7FFF).
010 64 KB RAM retains power (0x4000_0000 – 0x4000_FFFF).
011 128 KB RAM retains power (0x4000_0000 – 0x4001_FFFF).

Other reserved.

WKCLKSEL Wakeup Clock Select. The WKCLKSEL bit selects the clock source used for the wakeup logic synchronizer
and edge detect. WKCLKSEL can be switched only when all wakeup sources are disabled.
0 Clock source for wakeup logic is the 128 kHz IRC.
1 Clock source for wakeup logic is the 16 MHz IRC.

Note: The 128 kHz IRC is not automatically enabled if selected; therefore, it must be enabled before it is
selected for use.

Note: When using the 128 kHz IRC to wake up from SLEEP, the application software must wait at least one
128 kHz clock cycle after entering SLEEP before waking up.

Note: The wakeup flag cannot be cleared until at least three 128 kHz cycles after it has been set.

RTCOVRWKEN RTC Rollover Wakeup Enable. The RTCOVRWKEN bit enables a rollover of the RTC counter to be a wakeup
source for exit from low-power modes.
0 RTC rollover does not generate a wakeup request from low-power mode.
1 RTC rollover generates a wakeup request from low-power modes.

RTCWKEN RTC Wakeup Enable. The RTCWKEN bit enables the RTC to be a wakeup source for exit from low-power
modes.
0 RTC not enabled as a wakeup source.
1 RTC enabled as a wakeup source.

APIWKEN API Wakeup Enable. The APIWKEN bit enables the API to be a wakeup source for exit from low-power
modes.
0 The API does not generate a wakeup request from low-power mode.
1 The API generates a wakeup request from low-power modes.

Table 5-13. CRP_PSCR Field Descriptions (continued)

Field Description

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-16 Freescale Semiconductor

• LVI reset enables

• LVI lock bit

Offset: CRP_BASE + 0x0070 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LVI5
LOCK

LVI5
RE

0 0 0 0 0 0 0 LVI5H
IE

LVI5N
IE

LVI5
IE

0 0
FRIE FDIS

W

Reset 01 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 LVI5HIF LVI5NF LVI5F 0 0 FRF FRDY

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 These bits are only reset by power on, VDD15 LVI, VDD33 LVI, VDDSYN LVI, and VDD5 Low LVI.

Figure 5-14. SoC Status and Control Register (CRP_SOCSC)

Table 5-14. CRP_SOCSC Field Descriptions

Field Description

LVI5LOCK LVI5 Lock. The LVI5LOCK bit disables writes to the LVI5RE register bit. After it is set, this bit remains set until
the next POR.
0 LVI5RE writeable.
1 LVI5RE not writeable.

LVI5RE LVI5 Reset Enable. The LVI5RE bit enables the reset function of the LVI5.
0 LVI5 does not generate a reset when LVI5F is set.
1 LVI5 generates a reset when the LVI5F is set.
Note: When the VRCSEL pin is low, the 5V LVI logic is disabled and this bit has no effect.

LVI5HIE LVI5 High Interrupt Enable. TheLVI5HIE bit enables interrupts requests to the system if LVI5HF is asserted.
0 LVI5H interrupts disabled.
1 LVI5H interrupts enabled.
Note: When the VRCSEL pin is low, the 5V LVI logic is disabled and this bit has no effect.

LVI5NIE LVI5N Interrupt Enable. TheLVI5NIE bit enables interrupts requests to the system if LVI5NF is asserted.
0 LVI5N interrupts disabled.
1 LVI5N interrupts enabled.
Note: When the VRCSEL pin is low, the 5V LVI logic is disabled and this bit has no effect.

LVI5IE LVI5 Interrupt Enable. TheLVI5IE bit enables interrupts requests to the system if LVI5F is asserted.
0 LVI5 interrupts disabled.
1 LVI5 interrupts enabled.
Note: When the VRCSEL pin is low, the 5V LVI logic is disabled and this bit has no effect.

FRIE Flash Ready Interrupt Enable. The FRIE bit enables an interrupt that is generated based on the value of FRF.
This notifies the user that the Flash is ready and available for read/write operations.
0 FRF interrupts disabled.
1 FRF interrupts enabled.

FDIS Flash Disable. The FDIS bit places the flash into a disabled low power state. See 11.4.4, “Flash Sleep Mode,”
for more information.
0 Flash enabled.
1 Flash disabled.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-17

5.3 Functional Description

5.3.1 Low-Power Mode

The CRP supports a low power mode of operation, Sleep. During Sleep, the CRP logic remains powered
and is not reset. The standard cell logic is powered down in Sleep mode. In order to achieve the functional
requirements of this low power mode, the CRP provides the following functionality: control of the on-chip
voltage regulator, LVI circuits, and power gates; wakeup monitoring on external pins or internal RTC/API;
external reset pin monitoring to allow user to abort the low power mode; system recovery on wakeup; and
support for JTAG and Nexus debug capability. The following sections discuss in detail the entry sequence,
the operation, and the exit sequence for the low power Sleep mode.

5.3.2 Wake-Up Lines

The wake-up lines are implemented as described in Chapter 7, “System Integration Unit (SIU),” and
detailed in Section 5.2.2.5, “Pin Wakeup Enable Registers (CRP_PWKENH/L).” These wake-up signals

LVI5HF LVI 5V High Interrupt Flag. The LVI5HF bit indicates that the LVI5H LVI circuit has detected that the 5V supply
is below the trip limit. LVI5HF is cleared by writing a 1 to LVI5HF. Writing a 0 to LVI5HF has no effect.
0 No LVI5H interrupt.
1 LVI5H interrupt.
Note: The LVI5H LVI circuit is disabled when VRCSEL is low and thus LVI5HF remains cleared.

LVI5NF LVIN 5V Interrupt Flag. The LVI5NF bit indicates that the LVI5 LVI circuit has detected that the 5 V supply is
above the defined trip limit. LVI5NF is cleared by writing a 1 to LVI5NF. Writing a 0 to LVI5NF has no effect.
Note: If the supply remains above the defined trip limit, the LVI5NF flag is immediately re-set after the clear

sequence.

0 No LVI5 negation interrupt.
1 LVI5 negation interrupt.
Note: The LVI5 LVI circuit is disabled when VRCSEL is low and thus LVI5NF remains set.

LVI5F LVI 5V Interrupt Flag. The LVI5F bit indicates that the LVI5 LVI circuit has detected that the 5 V supply is below
the defined trip limit. LVI5F is cleared by writing a 1 to LVI5F. Writing a 0 to LVI5F has no effect.
Note: If the supply remains below the defined trip limit, the LVI5F flag is immediately re-set after the clear

sequence.

0 No LVI5 assertion interrupt.
1 LVI5 assertion interrupt.
Note: The LVI5 LVI circuit is disabled when VRCSEL is low and thus LVI5F remains cleared.

FRF Flash Ready Flag. The FRF bit is set when the Flash becomes available for read/write operations after
recovery from Sleep or reset. FRF is cleared by writing a 1 to FRF. Writing a 0 to FRF has no effect.
exiting low Power mode. It is used to notify the user software that Flash operation may begin.
0 Flash not ready.
1 Flash ready.

FRDY Flash Ready. The FRDY bit is a real time indication of whether the Flash is ready for read/write operations after
recovery from Sleep or reset.
0 Flash not ready.
1 Flash ready.

Table 5-14. CRP_SOCSC Field Descriptions (continued)

Field Description

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-18 Freescale Semiconductor

generate an interrupt when the device wakes up. Each external wake-up has individual wakeup flag and
interrupt enable and are grouped together into one interrupt vector. Refer to Chapter 2, “Signal
Description,” for details on the allocation of pins to the Wake-up lines.

In order to minimize spurious wake-up as a result of noise, fixed duration input filters are applied to every
wake-up pin.These filters are based on either the 128 kHz or 16 MHz clock sources and use 2 clock cycles
to synchronize the input wake-up signal.

5.3.3 Low-Power Mode Entry

The sequence to enter the low-power sleep mode is for the user to disable the DMA, MLB, FEC, and
FlexRay masters. Then halt all modules via the SIU_HLT registers. The system clock source should be set
to the 16 MHz IRC prior to disabling the PLL or powering down the 4 – 40 MHz XTAL. The PLL should
then be disabled since it does not clock any logic in sleep mode.

The main external oscillator (4 – 40 MHz XTAL) can be optionally powered down in sleep mode by
clearing the EN40MOSC bit in the CRP_CLKSRC register. If EN40MOSC is enabled during Sleep, and
EN40MOSC is 0, then the 4 – 40 MHz OSC can not be used as a clock source during sleep, but is still
actively driving the external crystal which may support the full 4 – 40 MHz frequency range. If
EN40MOSC is enabled during Sleep, and EN40MOSC is 1, then the 4 – 40 MHz XTAL may be used as
a clock source for the RTC/API during sleep, but the external crystal frequency is limited to less than or
equal to 8 MHz.

If the 4 – 40 MHz XTAL is powered down for sleep mode, the crystal oscillator must restart on the exit
from sleep mode. If the 4 – 40 MHz XTAL powered down option is chosen, the user must be sure to first
disable any logic that is being clocked directly by the 4 – 40 MHz XTAL to prevent glitches.

All program and erase operations on the flash array need to be completed before entering sleep mode.

Prior to entry into sleep mode, the ADC halt bit must be set or the ADC must be disabled. When exiting
sleep mode, the required recovery time must elapse before the ADC can be enabled or the ADC halt bit is
cleared. The recovery time allows the ADC circuits to stabilize. See the MPC5668x Microcontroller
Family Data Sheet for recovery times.

Sleep mode selection is done by setting the SLEEP bit in the CRP_PSCR register. With this bit set, each
active core should individually execute the WAIT instruction to enter sleep mode. If only one core is
active, and one is held in reset by the user, then executing the WAIT instruction on the active core initiates
entry into the low-power mode. At this point, the CRP takes over operation of the device until a wakeup
event occurs.

5.3.3.1 CRP Clock Selection

In sleep mode, the CRP control logic is clocked by the 16 MHz IRC. The RTC/API can be clocked by the
128 kHz_IRC, the 32 kHz_XTAL, the 16 MHz IRC, or the 4 – 40 MHz XTAL (restricted to less than or
equal to 8 MHz). The pin wakeup logic can be clocked by either the 128 kHz IRC or the 16 MHz IRC.
These clock source selections must be made prior to executing both WAIT instructions to the cores.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-19

5.3.3.2 Sleep Mode RAM Retention

The RAMSEL bits in the CRP_PSCR register determine the amount of RAM that remains powered in
sleep mode. This selection must be made prior to executing the WAIT instructions to the cores with the
CRP_PSCR[SLEEP] bit set.

5.3.4 Low-Power Operation

After the WAIT instructions have been executed with the SLEEP bit set, and the cores have cleanly halted,
the clock control block signals the CRP to enter the selected low-power mode.

At this point, the CRP has complete control of the device. Figure 5-15 shows the sequence to transition
from RUN mode to SLEEP. Figure 5-16 and Figure 5-17 give the transition diagram for going from RUN
mode to sleep, and then back to RUN mode.

The pads are put into a safe state during entry into Sleep mode. While is a safe state, the pad output buffers,
input buffers, and pull devices are disabled. The RESET pad retains its function. The input buffers for the
32 wakeup pins retain the same state as previous to Sleep mode entry. The TDO pin is still active if debug
is enabled before Sleep mode entry.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-20 Freescale Semiconductor

Figure 5-15. SLEEP Mode Entry Diagram

(Run Mode)

Mode Transition: RUN SLEEP

INIT

T

F

F

F

F

T

T

T

Sleep

debug

enabled?

Set Sleep
Handshake bit
in NPC PCR

Handshake
bit cleared?

- Acknowledge clock
stop ready to CCB

Clock stop
asserted
by CCB?

wait
5 clks

3 clks

Request

Assert clock stop
to clock control block

- Assert TDO OBE

Go to Figure 5-16

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-21

Figure 5-16. SLEEP Mode Transition Diagram (Part 1)

- Enable isolation
for mem/analog blks
- Isolate CRP block
- Safe state pads

- Disable isolation

Mode Transition:

1 2 3

4 5

6

7 8 9

10

wakeup = 0

wait
50 usec

wakeup = 1

10 clocks

(disable 16M IRC & clkgate,
if not wakeup or RTC clock)

wait

- Assert system POR

1-3 clks from wakeup
edge if 16 MHz_IRC
enabled (depends
on where pin
wakeup edge
occurred), 3 clks +
16 MHz_IRC start up
time if disabled

SLEEP RUN

- Negate PMC run
- Disable LVI
(LVI12 still active)
- Bias resistor off

- Assert PMC run
- Assert run
(pgates)

2 clks

wait

- Negate prerun
(pgates)

-Negate run
(pgates)

- RAMs sbias

- Assert prerun
(pgates)

- Enable Wakeup

- RAMs in standby
- Bias resistor on

From Figure 5-15

- Enable LVIs
- Bias resistor on

Go to Figure 5-17- Start clocks

11 12

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-22 Freescale Semiconductor

Figure 5-17. SLEEP Mode Transition Diagram (Part 2)

13

- Device exits SLEEP

16

- Bias resistor off
- Negate system POR

Debug
Enabled?

- Block NPC debug
signals

- dbg clk = 16 MHz_IRC
- Assert core debug
enable

T F

14

15
- Negate core debug

enable
- Set dbg clk = TCK

- TDO Pin Low

Mode Transition: SLEEP RUN

- Un-latch NPC
 debug signals

- Negate TDO Pin

- Clear NPC PCR
 Sleep Sync Bit

wait NPC PCR
sleep sync bit set

State 16
Figure 5-16

Go to INIT
(Figure 5-15)

wait core dbg ack

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-23

5.3.4.1 Sleep Mode Reset Operation

The reset controller in the SIU controls the normal reset sequences from POR, LVI, and other resets when
the device is in RUN mode. The CRP controls reset operation for the device in sleep mode.

The external RESET pin is enabled in all modes. Assertion of the RESET pin or a POR during sleep mode
causes the device to restart in RUN mode.

Upon power up from sleep mode, POR and reset is asserted to all logic that was powered down. The SIU
processes the sleep recovery POR in the same manner as a normal POR. The RSR[PORS] bit in the SIU
is set after the reset controller sequence completes. The CRP_PSCR[SLEEPF] bit is set in this case to
indicate that the POR came from a sleep recovery.

NOTE
When powering up from sleep mode, the BOOTCFG pin is not read and the
BAM boot sequence is bypassed since the Z6 and Z0 cores branch to the
appropriate reset vector set in the CRP_Z0VEC and CRP_Z6VEC registers,
assuming the core was active (not held in reset) prior to sleep mode entry.

5.3.5 Low-Power Wakeup

A POR, LVI12, or assertion of the external RESET pin causes exit from sleep mode as a reset condition,
and not a wakeup. A POR or external reset is captured in the SIU Reset Status Register. All CRP registers
are reset for a POR, but some like the CRP_RTCC are maintained for an external reset. Note that there are
no internal reset sources (except POR and LVI12) active in sleep.

There are four methods for waking up the device from sleep mode:

• RTC counter match

• RTC counter rollover

• API counter match

• External pin transition

All wakeup methods are independently enabled. The RTC, RTC rollover, and API wakeup logic is
discussed in Section 5.4, “Real-Time Counter (RTC).”

Wakeup from sleep can be enabled from transitions on as many as 32 external pins. External pin wakeup
source selection is done in the CRP_PWKENH/L registers. To be used as a low-power mode wakeup, pins
must be configured with the output buffer disabled in the SIU_PCR registers prior to entry into the
low-power mode. During sleep mode, all pins (except the 32 wakeup pins and RESET) are put into a safe
state with the input buffer, output buffer, and pull devices disabled. The wakeup pins input buffer enables
will retain the state configured prior to entry into sleep mode with the output buffers and pull devices
disabled.

External pin wakeup generation can be selected for either a rising edge event on the pin, falling edge, or
both. The edge capture logic can be selectively clocked from either the 16 MHz IRC clock for faster
wakeup, or the 128 kHz IRC clock for lower average power. For wakeup, the value of the Pin Assignment
(PA) bitfield in the SIU_PCR does not matter. This enables a pin, such as a CAN receive pin, to wake up
the device on a transition.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-24 Freescale Semiconductor

The corresponding CRP_PSCR[PWKSRCF] flag bit is set when a selected and enabled event occurs on
an external pin wakeup source. An interrupt request can be generated for an external pin wakeup by setting
the corresponding CRP_PSCR[PWKSRIE] bit. This interrupt request is pending once the device recovers
from the previous low-power mode.

On exiting sleep mode, the PC value is loaded with the value contained in the CRP_Z6VEC or
CRP_Z0VEC registers. The RECPTR register is a general purpose register which retains a value during
sleep mode and thus may be used by software to hold a generic value used by recovery routines.

A block diagram for the external pin wakeup logic is given in Figure 5-18.

Figure 5-18. External Pin Wakeup Logic

5.3.5.1 Low Power Mode Debug Support

The CRP supports debug after exit from sleep mode for both Nexus and JTAG debug tools. This function
is enabled by setting the NPC PCR[LP_DBG_EN] bit prior to entry into sleep modes.

On entry into sleep mode, if the NPC PCR[LP_DBG_EN] bit is set, the CRP sets the NPC
PCR[SLEEP_SYNC] bit to inform the debug tool that sleep mode is being entered. The CRP waits for this
bit to be cleared before proceeding into sleep mode. During sleep mode, most of the SOC is powered down,
and the contents of the debug registers are lost. The CRP supports restoration of the debug registers on
wakeup from sleep mode. The CRP latches the NPC PCR[LP_DBG_EN] bit when sleep mode is entered.
On wakeup from sleep mode, if the latched bit is set, the CRP places both the Z0 and Z6 cores into debug
mode. The CRP selects the 16 MHz IRC to clock the core debug logic, so the development tool does not
need to drive a clock on the TCK pin at this point. Once both cores have acknowledged that they have
entered debug mode, the CRP allows the TCK pin to drive the debug logic, enables the JTAG pins, and
drives the assertion of the TDO pin.

0

1

128 kHz IRC

16 MHz IRC

32

CRP_PWKEN

Edge
detect
logic

2

CRP_PSCR

CRP_PWKSRCIE

To Wakeup Logic

CRP_PWKSRCF
[PWKSRCFn]

[WKCLKSEL]

[PWKENn]

[PWKSRIEn]

To
interrupt
controller

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-25

NOTE
TDO is pulled high on entry into low power mode. It is driven low when the
MCU wakes up.

The assertion of the TDO pin indicates to the debug tool that it can now restore the debug register contents
via the JTAG interface. The Nexus pins cannot be used until the NPC configuration is restored. The TDO
pin remains asserted until the debug tool sets the NPC PCR[SLEEP_SYNC] bit. At that point, TDO is
negated, control of the pin given back to the JTAG controller, and the wakeup interrupt is asserted to the
Z0 and Z6 cores. A block diagram of the SOC blocks and the connections between them to support debug
on sleep wakeup is given in Figure 5-19.

NOTE
The CRP enables only the debug pins that were enabled prior to sleep mode
entry.

Figure 5-19. Sleep Mode Debug Block Integration

5.4 Real-Time Counter (RTC)
The RTC is a free-running counter used for time-keeping applications. The RTC may be configured to
generate an interrupt at a pre-defined interval independent of the mode of operation. If in sleep mode when
the RTC interval is reached, the RTC first generates a wakeup, and then asserts the interrupt request.

16 MHz
Z0 Core

Z6 Core

CRP

NPC

TCK

TCK TCLK

sleep reset

debug req

debug req
debug enable

debug enable

16 MHz IRC

npc_lp_dbg

nexus port enables

Pad

Remaining Nexus & JTAG Pins

nexus pad control

TDO

tool handshake

TDO

FSM

TDO

IRC

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-26 Freescale Semiconductor

The RTC also supports an autonomous periodic interrupt function used to generate a periodic wakeup
request to exit sleep mode or an interrupt request.

5.4.1 RTC Features

Features of the RTC include:

• 32-bit counter

• Four selectable counter clock sources:

— 128 kHz IRC

— 32 kHz_XTAL

— 16 MHz IRC

— 4 – 40 MHz XTAL (restricted to 8 MHz)

• Optional divide-by-512 prescaler and optional divide-by-32 prescaler connected in series in the
clock path feeding the 32-bit counter

• 32-bit counter supports times up to greater than 1.5 months with 1 ms resolution

• 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s resolution

• RTC interrupt with interrupt enable

• Counter runs in all modes of operation

• RTC status and control register are reset only by POR RTCVAL and APIVAL can be updated
anytime without disabling the clock

• RTC counter is reset when counter is disabled by software and by POR

• Autonomous periodic interrupt support includes:

— 10-bit compare value to support wake-up intervals of 1.0 ms to 1 s

— Wake-up logic has separate enable to support changing compare value while RTC running API
interrupt with interrupt enable

— Operates in all modes of operation

— API compare value can be modified while RTC is running

• Optional interrupt for RTC match, API match, and RTC rollover

• RTC continues to count through all resets except POR, VDD12 LVI, VDD33 LVI, VDDSYN LVI,
VDD5 Low LVI, and VDD5 LVI.

5.4.2 RTC Functional Description

The RTC consists of a 32-bit free-running counter enabled with CNTEN. (CNTEN when negated
asynchronously resets the counter and synchronously enables the counter when enabled.) The value of the
counter may be read via the RTCCNT register. Due to the clock synchronization, the RTCCNT value may
actually represent a previous counter value.

The clock source to the counter is selected with CLKSEL and may be the 128 kHz IRC, the 32 kHz XTAL,
16 MHz IRC, or the 4 – 40 MHz XTAL (if restricted to 8 MHz). The clock path feeding the 32-bit
counter can optionally be divided by the divide-by-512 prescaler or the divide-by-32 prescaler. Note that

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-27

the 32 kHz OSC must be enabled before being selected. The 32 kHz OSC is selected to give a more
accurate wakeup than the 128 kHz IRC. (CNTEN must be disabled when the clock sources are switched.)

When the counter value for counter bits 10–21 match the 12-bit value in RTCVAL, then the RTCF interrupt
flag is set (after proper clock synchronization). If the RTCIE interrupt enable bit is set, the RTC interrupt
request is generated. The RTCF flag can be cleared by writing a 1 to RTCF. The RTCF supports interrupt
requests in the range of 1 second to 4096 seconds (> 1 hr) with a 1 second resolution.

NOTE
RTCVAL and APIVAL can be updated at any time.

If there is a match while in sleep mode, and the CRP_PSCR[RTCWKEN] bit is set, then the RTC first
generates a wakeup request to force a wakeup to run mode, then sets the RTCF flag. The RTC wakeup
signal is captured in the CRP_PSCR[WKRTCF] flag bit.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count of
0xFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the CRP_RTCC[ROVREN] bit.
An RTC counter rollover with this bit and the CRP_PSCR[RTCOVRWKEN] bit set causes a wakeup from
sleep mode. The rollover wakeup flag is captured in the CRP_PSCR[WKRLLOVRF] bit. An interrupt
request is generated for an RTC counter rollover when both the CRP_RTCC[ROVREN] and
CRP_RTCC[RTCIE] bits are set.

Setting APIEN enables the autonomous interrupt function. The 10 bit APIVAL selects the time interval for
triggering an interrupt and/or wakeup event. Since the RTC is a free-running counter, the APIVAL is added
to the current count to calculate an offset. When the counter reaches the offset count, a interrupt and/or
wakeup request is generated. Then the offset value is recalculated and again retriggers a new request when
the new value is reached. APIVAL (and RTCVAL) can be updated at any time. When a compare is reached,
the APIF interrupt flag is set (after proper clock synchronization). If the APIIE interrupt enable bit is set,
then the API interrupt request is generated. The APIF flag can be cleared by writing a 1 to APIF. If there
is a match while in sleep mode, and the CRP_PSCR[APIWKEN] bit is set, then the API first generates a
wakeup request to force a wakeup to run mode, then sets the APIF flag. The API wakeup flag is captured
in the CRP_PSCR[WKAPIF] bit.

If the CRP_RTCC[FRZEN] bit is set, the RTC counter is frozen during debug mode.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-28 Freescale Semiconductor

Figure 5-20. RTC/API Block Diagram

5.4.3 Register Description

The RTC registers control and monitor operation of the RTC. The registers that are relevant to the use of
the RTC are as follows.

• RTC status and control register (Section 5.2.2.2, “RTC Control Register (CRP_RTCC)”)

• RTC counter register (Section 5.2.2.4, “RTC Counter Register (CRP_RTCCNT)”)

0 1 2CLKSEL 3

128
kH

z IR
C

16
M

H
z IR

C

32
kH

z_X
TA

L

C
N

T
E

N

21–10

RTC Interrupt

9–0
API Wakeup

load

9–0

APIEN

reset

reset

RTC Wakeup

API Interrupt

4
–

40
M

H
z X

TA
L

0 31

sync sync

sync

sync

==

== RTCVAL

APIVAL

+

offset reg

RTCCNT APIF

APIIE

RTCF

RTCIE

ROVRF

ROVREN

32-bit counter

or
CNTEN

DIV32EN

DIV512EN

512

 32

ROVREN

ROVREN

RTC cnt_or_rlovr

RTC Rollover Wakeup

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 5-29

5.5 Power Supply Monitors

5.5.1 Power-On Reset (POR)

The internal Power On Reset (POR) monitors the main supply input voltage (VDDA) and shall not release
the internal reset line until VDDA is above the de-assertion threshold. The POR is always enabled.

5.5.2 Low-Voltage Monitors (LVI)

The internal LVI circuits monitor when the voltage on the corresponding supply is lower than defined
values, and either assert a reset or an interrupt. All LVI circuits are enabled in run mode. In sleep mode,
LVI12 remains on. The LVIs also support hysteresis in the falling and rising trip points.

• LVI12—1.2 V supply

— The LVI12 supply monitors VDD and triggers a reset when it drops below the assert threshold
of the LVI12.

• LVI33—3.3 V supply

— The LVI33 monitors VDD33 and triggers a reset when it falls below the assert level.

• LVI33SYN—3.3 V VDDSYN supply

— The LVI33SYN monitors VDDSYN and triggers a reset when it falls below the assert level.

• LVI5_VDDA—3.3 V – 5 V supply

— The LVI_VDDA monitors VDDA and triggers an interrupt or internal reset when it drops down
below the assert level. LVI5_VDDA is automatically disabled when VRCSEL is low.

• LVI5L_VDDA— 3.3 V – 5 V supply

— The LVIL_VDDA monitors VDDA and triggers an internal reset when it drops down below the
assert level.

• LVI5H_VDDA— 3.3 V – 5 V supply

— The LVIH_VDDA monitors VDDA and may be used to generate an internal interrupt when it
drops down below the assert level. LVI5H_VDDA is automatically disabled when VRCSEL is
low.

When a LVI5 trigger event occurs, the CRP_SOCSC[LVI5F] flag bit is set, and either a reset or an interrupt
generated, depending on the configuration of the CRP_SOCSC[LVI5IE] and CRP_SOCSC[LVIRE] bits
in the CRP. The CRP_SOCSC[LVI5RE] is always writable as long as the CRP_SOCSC[LVI5LOCK] bit
is cleared. When CRP_SOCSC[LVI5LOCK] is set, then writes to CRP_SOCSC[LVI5RE] have no effect.
The CRP_SOCSC[LVI5LOCK] bit is write-once and cleared only with POR.

There is no internal LVI monitoring of the individual VDDE I/O segments.

Clocks, Reset, and Power (CRP)

MPC5668x Microcontroller Reference Manual, Rev. 4

5-30 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-1

Chapter 6
Frequency Modulated Phase-Locked Loop (FMPLL)

6.1 Introduction
The frequency modulated phase-locked loop (FMPLL) module is a frequency modulated phase-locked
loop that has been optimized to generate voltage controlled oscillator (VCO) frequencies from
192 MHz – 600 MHz based on an input clock range of 4 MHz to 40 MHz. The frequency multiplication,
output dividers and the frequency modulation waveform are register-programmable through a peripheral
bus interface.

6.1.1 Block Diagram

A simplified block diagram of the FMPLL illustrates the functionality and interdependence of major
blocks (see Figure 6-1). Shaded blocks represent analog circuit components that make up the core analog
portion of the FMPLL. The complete FMPLL closed-loop system contains the feedback divider (EMFD)
and output divider (ERFD), which are implemented with standard cell core logic elements. Refer to
Section 6.4.3.3, “PLL Normal Mode Without FM,” for details on each sub-block.

Figure 6-1. FMPLL Block Diagram

6.1.2 Features

The FMPLL has these major features:

• Input clock frequency range: 4 MHz to 40 MHz (EXTAL)

FMDAC_STEP[0:9] D2AFM CALDAC

EXTAL EPREDIV

PFD FILTER VCO ERFD

LOC_PLL

LOC_REF

EMFD

PLL Clock
Out

Used to create the
loss of clock reset
request and decide
which PLL mode to
switch to when
these things happen

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-2 Freescale Semiconductor

• Because the MPC5668x uses a 16 MHz IRC as its default system clock, the FMPLL is put in PLL
Off mode during reset, so that power dissipation is minimized by disabling the FMPLL until
needed by the system.

• Programmable frequency multiplication factor settings generating VCO frequencies of
192 MHz – 600 MHz

• PLL Off mode (low-power mode)

• Register programmable output clock divider (ERFD)

• Programmable frequency modulation

— Modulation applied as a triangle waveform

— Peak-to-peak register programmable modulation depths of 0.5%, 1%, 1.5%, and 2% of the
system frequency

— Register programmable modulation rates of Fextal/80, Fextal/40, and Fextal/20

• Lock detect circuitry provides a signal indicating the FMPLL has acquired lock and continuously
monitors the FMPLL output for any loss of lock

• Loss-of-clock circuitry monitors input reference and FMPLL output clocks with programmable
ability to select a backup clock source as well as generate a reset or interrupt in the event of a failure

6.1.3 Modes of Operation

There are two main modes of FMPLL: PLL Off mode and normal mode. These modes are briefly
described in this section.

When PLL Off mode is selected, the FMPLL is turned off and the end-system user must select a different
source than the PLL output in SIU_SYSCLK[SYSCLKSEL]. The lock detector is not functional and does
not indicate that the FMPLL is in a locked state. Frequency modulation is not available and the FMPLL is
put into a low-power, idle state. This operating mode is described in Section 6.4.2, “PLL Off Mode.”

When normal mode is selected, the FMPLL is fully programmable. The FMPLL reference clock source
can be a crystal oscillator or an external clock generator. The lock detector indicates the lock status of the
FMPLL, and frequency modulation of the output clock can be enabled. This operating mode is described
in Section 6.4.3, “Normal Mode.”

6.2 External Signal Description
Refer to Table 2-1 and Section 2.4, “Detailed Signal Description,” for detailed signal descriptions.

6.3 Memory Map and Registers
This section provides a detailed description of the FMPLL registers.

6.3.1 Module Memory Map

Table 6-1 shows the FMPLL memory map. The address of each register is given as an offset to the FMPLL
base address. Registers are listed in address order, identified by complete name and mnemonic, and lists
the type of accesses allowed.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-3

6.3.2 Register Descriptions

This section lists the FMPLL registers in address order and describes the registers and their bit fields.

6.3.2.1 FMPLL Synthesizer Status Register (SYNSR)

Table 6-1. FMPLL Memory Map

Offset from
FMPLL_BASE_ADDR

(0xFFFF_0000)
Register Access Reset Value Section/Page

0x0000 Reserved

0x0004 SYNSR—FMPLL synthesizer status register R/W 0x0000_0000 6.3.2.1/6-3

0x0008 ESYNCR1—FMPLL enhanced synthesizer control register 1 R/W 0x8000_0030 6.3.2.2/6-5

0x000C ESYNCR2—FMPLL enhanced synthesizer control register 2 R/W 0x0000_0003 6.3.2.3/6-7

0x0010–0x0014 Reserved

Offset: FMPLL_BASE_ADDR + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 LOLF LOC MODE

PLL
SEL

PLL
REF

LOCKS LOCK LOCF
CAL

DONE
CAL

PASS

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-2. FMPLL Synthesizer Status Register (SYNSR)

Table 6-2. SYNSR Register Field Descriptions

Field Description

LOLF Loss- of-Lock Flag. This bit provides the interrupt request flag. To clear the flag, write a 1 to the bit. Writing 0 has
no effect. This flag will not be set, and an interrupt will not be requested, if the loss-of-lock condition was caused
by a system reset, enabling of frequency modulation, or a write to the ESYNCR1 which modifies the
ESYNCR1[EMFD] bits. If the flag is set due to a system failure, writing the ESYNCR1[EMFD] bits or enabling FM
does not clear the flag. Assert reset to clear the flag. If lock is reacquired, the bit remains set until either a write
1 or reset is asserted.
0 Interrupt service not requested.
1 Interrupt service requested.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-4 Freescale Semiconductor

LOC Loss-Of-Clock Status. The LOC bit is an indication of whether a loss-of-clock condition is present when operating
in normal PLL mode. If LOC = 0, the system clocks are operating normally. If LOC = 1, the system clocks have
failed due to a reference failure or a PLL failure. If the read of the LOC bit and the loss-of-clock condition occur
simultaneously, the bit does not reflect the current loss-of-clock condition. If a loss-of-clock condition occurs that
sets this bit and the clocks later return to normal, this bit is cleared. LOC is always zero in PLL Off mode.
0 Clocks are operating normally.
1 Clocks are not operating normally.

MODE Clock Mode. The state of this bit, along with PLLSEL and PLLREF, indicates which clock mode the PLL is
operating in (see Table 6-3). The value of ESYNCR1[CLKCFG0] is reflected in this location.
0 PLL Off mode.
1 PLL clock mode.

PLLSEL PLL Mode Select. The state of this bit, along with MODE and PLLREF, indicates which mode the PLL operates
in (see Table 6-3). This bit is cleared in PLL Off mode. The value of ESYNCR1[CLKCFG1] is reflected in this
location.
0 PLL Off mode.
1 Normal PLL mode.

PLLREF PLL Clock Reference Source. The state of this bit, along with MODE and PLLSEL, indicates which reference
source has been chosen for normal PLL mode (see Table 6-3). This bit is cleared in PLL Off mode. The value of
ESYNCR1[CLKCFG2] is reflected in this location.
0 External clock reference chosen.
1 Crystal clock reference chosen.
Note: The user must also use the XOSC bit in the CRP_CLKSRC register to enable the 4 – 40 MHz oscillator.

LOCKS Sticky PLL Lock Status Bit. The LOCKS bit is a sticky indication of PLL lock status. LOCKS is set by the lock
detect circuitry when the PLL acquires lock after: 1) a system reset, or 2) a write to the ESYNCR2 which modifies
the ESYNCR2[EMFD] bits, or 3) frequency modulation is enabled. Whenever the PLL loses lock, LOCKS is
cleared. LOCKS remains cleared after the PLL re-locks, until one of the three conditions occurs. Furthermore, if
the LOCKS bit is read when the PLL simultaneously loses lock, the bit does not reflect the current loss-of-lock
condition.
If operating in PLL Off mode, LOCKS remains cleared after reset.
0 PLL has lost lock since last system reset, a write to ESYNCR1 to modify the ESYNCR1[EMFD] bit field, or

frequency modulation enabled
1 PLL has not lost lock since last system reset, a write to ESYNCR1 to modify the ESYNCR1[EMFD] bit field,

or frequency modulation enabled

LOCK PLL Lock Status Bit. The LOCK bit indicates whether the PLL has acquired lock. PLL lock occurs when the
synthesized frequency matches to within approximately 0.75% of the programmed frequency. The PLL loses lock
when a frequency deviation of greater than approximately 1.5% occurs. If the LOCK bit is read when the PLL
simultaneously loses lock or acquires lock, the bit does not reflect the current condition of the PLL.
If operating in PLL Off mode, LOCK remains cleared after reset.
0 PLL is unlocked
1 PLL is locked

LOCF Loss-of-Clock Flag. This bit provides the interrupt request flag. To clear the flag, write a 1 to the bit. Writing 0 has
no effect. Asserting reset clears the flag. If clocks return to normal after the flag has been set, the bit remains set
until cleared by either writing 1 or asserting reset. A loss-of-clock condition can only be detected if LOCEN = 1.
0 Interrupt service not requested.
1 Interrupt service requested.

Table 6-2. SYNSR Register Field Descriptions (continued)

Field Description

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-5

NOTE
If LOLF has been set previously (due to an unexpected loss of lock
condition) and then cleared (by writing a 1), a change of the MFD, PREDIV
or DEPTH fields can cause the LOLF to be set again which can trigger an
interrupt request if LOLIRQ bit is set. In addition, changing the RATE bit
will also set the LOLF regardless of previous conditions.

The Loss of Lock Interrupt Request enable in the Synthesizer Control
Register (FMPLL_SYNCR[LOLIRQ]) should be cleared before any
change to the multiplication factor (MFD), PREDIV, modulation depth
(DEPTH), or modulation rate (RATE) to avoid unintentional interrupt
requests. After the PLL has locked (LOCK=1), LOLF should be cleared (by
writing a 1) and LOLIRQ may be set again if required.

6.3.2.2 FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)

This is one of two FMPLL synthesizer control registers that are used to access enhanced features in the
FMPLL. The bit fields in the ESYNCR1 behave as described in Figure 6-3.

CALDONE Calibration Complete. The CALDONE bit is an indication of whether the calibration sequence has been
completed since the last time modulation was enabled. If CALDONE = 0 then the calibration sequence is in
progress or modulation is disabled. If CALDONE = 1 then the calibration sequence has been completed, and
frequency modulation is operating.
0 Calibration not complete.
1 Calibration complete.

CALPASS Calibration Passed. The CALPASS bit tells whether the calibration routine was successful. If CALPASS = 1 and
CALDONE = 1 then the routine was successful. If CALPASS = 0 and CALDONE = 1, then the routine was
unsuccessful. When the calibration routine is initiated the CALPASS is asserted. CALPASS remains asserted
until modulation is disabled by clearing the EDEPTH bits in the ESYNCR2 register or a failure occurs within the
FMPLL calibration sequence.
0 Calibration unsuccessful,
1 Calibration successful.
If calibration is unsuccessful, then actual depth is not guaranteed to match the desired depth

Table 6-3. System Clock Status Per Mode

MODE PLLSEL PLLREF Clock Mode

0 X X PLL Off mode

1 0 0 Reserved

1 1 0 Normal PLL mode with external clock reference

1 1 1 Normal PLL mode with crystal clock reference

Table 6-2. SYNSR Register Field Descriptions (continued)

Field Description

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-6 Freescale Semiconductor

Offset: FMPLL_BASE_ADDR + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1
CLKCFG[0:2]

0 0 0 0 0 0 0 0
EPREDIV

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
EMFD

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 6-3. FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)

Table 6-4. ESYNCR1 Register Field Descriptions

Field Description

bit 0 Reserved.

Note: This bit is set to 1 on reset and always reads as 1.

CLKCFG Clock Configuration. The CLKCFG[0:2] bits are writable versions of the MODE, PLLSEL, and PLLREF bits
in the SYNSR. These change the clock mode, after reset has negated, via software. CLKCFG[0:2] map
directly to MODE, PLLSEL, and PLLREF to control the system clock mode (see Table 6-3).
Note: CLKCFG[0:2] = 0b101 can produce an unpredictable clock output.

Note: The ESYNCR2[LOLRE] and ESYNCR2[LOCRE] should be set to 0 before changing the PLL mode, so
that a reset is not immediately generated when CLKCFG[0:2] is written.

EPREDIV Enhanced Pre-Divider. The EPREDIV bits control the value of the divider on the input clock. The output of
the pre-divider circuit generates the reference clock to the PLL analog loop. The decimal equivalent of the
EPREDIV binary number is substituted into the equation from Table 6-10.
Note: Setting EPREDIV to any of the invalid states in Table 6-4 causes the PLL to produce an unpredictable

output clock. The output frequency of the divider must equal fpllref (see the MPC5668x Microcontroller
Family Data Sheet).

When the EPREDIV bits are changed, the PLL immediately loses lock. If the EPREDIV bits are changed
during FM calibration, the current calibration sequence is terminated and the DEPTH bits are cleared. The
PLL re-locks to the new EPREDIV value. Modulation must be re-enabled manually. To prevent an immediate
reset, clear the LOLRE bit before writing the EPREDIV bits. In PLL bypass mode, the EPREDIV bits have no
effect.

EMFD Enhanced Multiplication Factor Divider. The EMFD bits control the value of the divider in the PLL feedback
loop. The value specified by the EMFD bits establish the multiplication factor applied to the reference
frequency. The decimal equivalent of the EMFD binary number is substituted into the equation from
Table 6-11 for Fsys to determine the equivalent multiplication factor. The range of settings is
32 EMFD 132.
Note: EMFD values less than 32 and greater than 132 are invalid and cause the PLL to produce an

unpredictable clock output. The VCO frequency must be within the fVCO specification (see the
MPC5668x Microcontroller Family Data Sheet).

When the EMFD bits are changed, the PLL loses lock.If the EMFD bits are changed during FM calibration,
the current calibration sequence is terminated and the DEPTH bits are cleared. The PLL re-locks to the new
EMFD value and you must manually re-enable modulation. To prevent an immediate reset, clear the LOLRE
bit before writing the EMFD bits.
In PLL Off mode, the EMFD bits have no effect.
Table 6-6 shows the available divide ratios.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-7

6.3.2.3 FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

This is the second of two enhanced versions of the FMPLL synthesizer control register used to access
enhanced features in the FMPLL. The bit fields in the ESYNCR2 behave as described in Figure 6-4.

Table 6-5. Pre-divider Ratios

EPREDIV Input Divide Ratio (EPREDIV+1)

0000 1 (default for MPC5668x)

0001 2

0010 3

0011 4

0100 5

0101 6

0110 Invalid

0111 8

1000 Invalid

1001 10

1010–1111 Invalid

Table 6-6. Feedback Divide Ratios

EMFD Feedback Divide Ratio (EMFD+16)

0000_0000–0001_1111 Invalid

0010_0000 48

0010_0001 49

0010_0010 50

0010_0011 51

0010_0100 52

0010_0101 53

.

.
0011_0000

.

.

.

.
64 (default for MPC5668x)

.

.

1000_0100 148

1000_0101–1111_1111 Invalid

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-8 Freescale Semiconductor

Offset: FMPLL_BASE_ADDR + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
LOCEN LOLRE LOCRE

LOL
IRQ

LOC
IRQ

0
ERATE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
EDEPTH

0 0
ERFD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 6-4. FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

Table 6-7. ESYNCR2 Field Descriptions

Field Description

LOCEN Loss-of-Clock Enable. The LOCEN bit determines whether the loss-of-clock function is operational along with
backup clock modes, and interrupt and reset functions. See Section 6.4.3.2, “Loss-of-Clock Detection,” for
more information.
In PLL Off mode, this bit has no effect.
LOCEN does not affect the loss-of-lock circuitry.
0 Loss-of-clock disabled.
1 Loss-of-clock enabled.

LOLRE Loss-of-Lock Reset Enable. The LOLRE bit determines how the integration module handles a loss-of-lock
indication. See Section 6.4.3.1, “PLL Lock Detection,” for more information.
When operating in normal PLL mode, the PLL must be locked before setting the LOLRE bit. Otherwise reset
is immediately asserted.
The LOLRE bit has no effect in PLL Off mode.
0 Assert reset on loss of lock is disabled.
1 Assert reset on loss of lock.

LOCRE Loss-of-Clock Reset Enable. The LOCRE bit determines how the integration module handles a loss-of-clock
condition when LOCEN is equal to 1. LOCRE has no effect when LOCEN is equal to 0.
If the LOCF bit in the SYNSR indicates a loss-of-clock condition, setting the LOCRE bit causes an immediate
reset.
The LOCRE bit has no effect in PLL Off mode.
0 Assert reset on loss of clock is disabled.
1 Assert reset on loss of clock.

LOLIRQ Loss-of-Lock Interrupt Request. The LOLIRQ bit determines how the integration module handles a
loss-of-lock indication. See Section 6.6.1, “Loss-of-Lock Interrupt Request,” for more information.
When operating in normal mode, the PLL must be locked before setting the LOLIRQ bit. Otherwise an
interrupt is immediately requested.
The LOLIRQ bit has no effect in PLL Off mode.
0 Request interrupt is disabled.
1 Request interrupt.

LOCIRQ Loss- of-Clock Interrupt Request. The LOCIRQ bit determines how the integration module handles a loss-
of-clock condition when LOCEN = 1. LOCIRQ has no effect when LOCEN = 0.
If the LOCF bit in the SYNSR indicates a loss-of-clock condition, setting (or having previously set) the
LOCIRQ bit causes an interrupt request.
The LOCIRQ bit has no effect in PLL Off mode.
0 Request interrupt on loss of clock is disabled.
1 Request interrupt on loss of clock.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-9

ERATE Enhanced Modulation Rate. The ERATE bits control the rate of frequency modulation applied to the system
frequency. Table 6-8 shows the allowable modulation rates.
Note: The PLL modulation rate must be within the fMOD specification (see the MPC5668x Microcontroller

Family Data Sheet).

EDEPTH Enhanced Modulation Depth. The EDEPTH bit field controls the frequency modulation depth and enables the
frequency modulation. When programmed to a value other than 0x0, the frequency modulation is
automatically enabled. Table 6-9 shows are the programmable frequency deviations from the system
frequency. When the depth value is changed to a value other than 0x0, the calibration sequence is
reinitialized.

ERFD Enhanced Reduced Frequency Divider. The ERFD bits control a divider at the output of the PLL. The value
specified by the ERFD bits establish the divisor applied to the PLL frequency. The ERFD divides the output
clock by the quantity (ERFD + 1). Even-numbered ERFD settings, which would result in odd divide ratios, are
not allowed.
The decimal equivalent of the ERFD binary number is substituted into the equation from Table 6-11.
Note: The ERFD divides the output clock by the quantity (ERFD + 1). Even numbered ERFD settings, which

would result in odd divide ratios, are invalid and cause the PLL to produce an unpredictable output
clock. The PLL output clock must be within the fPLL specification (see the MPC5668x Microcontroller
Family Data Sheet).

Changing the ERFD bits does not affect the PLL, hence, no re-lock delay is incurred. Resulting changes in
clock frequency are synchronized to the next falling edge of the current system clock. These bits should be
written only when the lock bit (LOCK) is set, to avoid surpassing the allowable system operating frequency.
In PLL Off mode, the ERFD bits have no effect.
The available output divider ratios are given in Table 6-10.

Table 6-8. Programmable Modulation Rates

ERATE Modulation Rate (Hz)

00 Fmod = Fextal/80

01 Fmod = Fextal/40

10 Fmod = Fextal/20

11 Invalid

Table 6-9. Programmable Modulation Depths

EDEPTH Modulation Depth (% of Fsys)

000 0

001 0.25% – 0.5%

010 0.75% – 1.0%

011 1.25% – 1.5%

100 1.75% – 2.0%

101 – 111 Reserved

Table 6-7. ESYNCR2 Field Descriptions (continued)

Field Description

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-10 Freescale Semiconductor

6.4 Functional Description
The FMPLL module contains the frequency modulated phase lock loop (FMPLL), enhanced frequency
divider (ERFD), enhanced synthesizer control registers (ESYNCR1 and ESYNCR2), synthesizer status
register (SYNSR), and clock/PLL control logic. The block also contains a reference frequency pre-divider
controlled by the EPREDIV bits in the ESYNCR1. This enables the user to use a high frequency crystal
or external clock generator and obtain finer frequency synthesis resolution than would be available if the
raw input clock were used directly by the analog loop. For the remainder of this chapter, the term
“reference frequency” and the symbol Fref indicate the output of the pre-divider circuit. This is the clock
on which frequency multiplication is performed.

6.4.1 General

At reset, the system clock is driven by the internal oscillator (16 MHz IRC) and the module is in PLL Off
mode. After reset, software can change the PLL mode (see Section 6.5.1, “Clock Mode Selection”).

Table 6-11 shows the PLL-clock to input-clock frequency relationships for the available clock modes.

Table 6-10. Output Divide Ratios

ERFD Output Divide Ratio (ERFD+1)

00_0000 1

00_0001 2

00_0010 Invalid

00_0011 4 (default value for MPC5668x)

00_0100 Invalid

00_0101 6

00_0110 Invalid

00_0111 8

.

.

.

.

.

.

11_1100 Invalid

11_1101 62

11_1110 Invalid

11_1111 64

Table 6-11. Clock-Out vs. Clock-In Relationships

Clock Mode Frequency Equation

Normal PLL Mode
Fsys

Fextal EMFD 16+

EPREDIV 1+ ERFD 1+
---=

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-11

6.4.2 PLL Off Mode

When PLL Off mode is selected, the PLL is turned off. Either the 16 MHz IRC must be selected as the
system clock, or the user must supply an external clock or crystal on the EXTAL pin and select that clock
source before entering PLL off mode. The selected clock is directly used to produce the various system
clocks. Refer to MPC5668x Microcontroller Family Data Sheet for external clock input requirements. In
PLL Off mode, the analog portion of the PLL is disabled, the frequency modulation capability is not
available, and no clocks are generated at the PLL output. The pre-divider is bypassed and has no effect on
the system clock frequency in PLL Off mode.

6.4.3 Normal Mode

When normal PLL mode is selected, the PLL is fully programmable. The PLL can synthesize frequencies
ranging from 48× to 148× the reference frequency of the output of the predivider. with or without
frequency modulation enabled. The post-divider is capable of reducing the PLL clock frequency without
forcing a re-lock. The PLL reference can be a crystal oscillator reference or an external clock reference.
This clock is divided by the pre-divider circuit to create the PLL reference clock.

6.4.3.1 PLL Lock Detection

The lock detect logic monitors the reference frequency and the PLL feedback frequency to determine when
frequency lock has been achieved. Phase lock is inferred by the frequency relationship, but is not
guaranteed. The PLL lock status is reflected in the LOCK status bit in the SYNSR. A sticky lock status
indication, LOCKS, is also provided.

The lock detect function uses two counters, which are clocked by the reference and PLL feedback
respectively. When the reference counter has counted N cycles, the feedback counter’s count is compared.
If the feedback counter has also counted N cycles, the process is repeated for N + K counts. Then if the
two counters’ counts match, the lock criteria is relaxed by one count and the system is notified that the
PLL has achieved frequency lock. After three successful compares, the tolerance is relaxed.

After lock has been detected, the lock circuitry continues to monitor the reference and feedback
frequencies using the alternate count and compare process. If the counters do not match at any comparison
time, then the LOCK status bit is cleared to indicate that the PLL has lost lock. At this point, the lock
criteria is tightened and the lock detect process is repeated.

The alternate count sequences prevent false lock detects due to frequency aliasing while the PLL tries to
lock. Alternating between a tight and relaxed lock criteria prevents the lock detect function from randomly
toggling between locked and not locked status due to phase sensitivities. Figure 6-5 illustrates the
sequence for detecting locked and not-locked conditions.

When the frequency modulation is enabled, the loss of lock continues to function as described but with the
lock and loss of lock criteria reduced to ensure that false loss of lock conditions are not detected.

In PLL Off mode, the PLL cannot lock because the PLL is disabled.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-12 Freescale Semiconductor

Figure 6-5. Lock Detect Sequence

After the PLL acquires lock after reset, the LOCK and LOCKS status bits are set. If the EPREDIV or
EMFD are changed, or if an unexpected loss-of-lock condition occurs, the LOCK and LOCKS status bits
are negated. While the PLL is in an unlocked condition, the system clocks continue to be sourced from the
PLL as the PLL attempts to re-lock. Consequently, during the re-locking process, the system clock
frequency is not well defined and may exceed the maximum system frequency violating the system clock
timing specifications. Because of this condition, use of the loss-of-lock reset function is recommended.

After the PLL has re-locked, the LOCK bit is set. The LOCKS bit remains cleared if the loss of lock was
unexpected. The LOCKS bit is set to one when the loss of lock was caused by changing the EPREDIV or
EMFD fields.

6.4.3.2 Loss-of-Clock Detection

When enabled by the LOCEN bit in the ESYNCR2, the loss-of-clock (LOC) detection circuit monitors the
input clocks to the phase/frequency detector (PFD) (see Figure 6-1). When the reference or feedback clock
frequency falls below a minimum frequency, the LOC circuitry considers the clock to have failed and a
loss-of-clock status is reflected by the sticky LOCF bit, and non-sticky LOC bit in the SYNSR. See
MPC5668x Microcontroller Family Data Sheet for the minimum clock frequency. In PLL Off mode, the
loss-of-clock circuitry is disabled.

Depending which clock source has failed, the LOC circuitry switches the PLL output clock’s source to the
remaining operational clock if enabled by LOCEN. The PLL output clocks are derived from the alternate
clock source until reset is asserted. The alternate clock source used is dependent on whether the LOC is

Count N + K
Reference cycles,

and compare
number of feed-

Lock detected

back cycles

Relax lock
 criteria.

Reference count
equals N and feed-
back count equals N
in same count and
compare sequence.

Reference count
equals N + K and feed-
back count equals N + K
in same count and
compare sequence.

Alert system that
PLL has locked.

Feedback count does not
equal reference count of N or
N+K. Alert system that PLL
is not locked. Tighten
lock criteria.

Continue
monitoring PLL
with alternate

N and N+K count
and compare
sequences.

Count N
reference cycles,

and compare
number of feedback

cycles elapsed.

elapsed.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-13

caused by a reference clock failure or a PLL failure. If the reference fails, the PLL goes out of lock and
into self-clocked mode (SCM) (see Table 6-12). The PLL remains in SCM until the next reset. When the
PLL is operating in SCM, the PLL runs open loop at a default VCO frequency. The RFD will set to
divide-by-4 to ensure the clock presented to the system is well below the maximum allowable frequency
for the device. If the loss-of-clock condition is due to a PLL failure (i.e., loss of feedback clock), the PLL
reference becomes the system clock source until the next reset, even if the PLL regains itself and re-locks.

A special loss-of-clock condition occurs when both the reference and the PLL fail. The failures may be
simultaneous or the PLL may fail first. In either case, the reference clock failure takes priority and the PLL
attempts to operate in SCM. If successful, the PLL remains in SCM until the next reset. During SCM,
modulation is always disabled. If the PLL cannot operate in SCM, the system remains static until the next
reset. If a loss-of-clock reset is enabled, then the reset switches the system clock over to the 16 MHz IRC
(and shuts off the PLL).

6.4.3.3 PLL Normal Mode Without FM

In PLL mode, the system clocks are synthesized by the FMPLL by multiplying up the reference clock
frequency. It is critical that the system clock frequency remain within the range for the device (see
MPC5668x Microcontroller Family Data Sheet). The output of the FMPLL can be divided down in powers
ranging from 2 to 128 to reduce the system frequency with the ERFD. The ERFD is not contained in the
feedback loop of the PLL, so changing the ERFD bits does not affect FMPLL operation. Finally, the PLL
can be frequency modulated to reduce electromagnetic interference often associated with clock circuitry.
Figure 6-1 shows the overall block diagram for the PLL. Each of the major blocks is discussed briefly in
the following sections.

6.4.3.3.1 Phase/Frequency Detector

The phase/frequency detector (PFD) is a dual-latch phase-frequency detector. It compares both the phase
and frequency of the reference clock and the feedback clock. The reference clock comes from the crystal
oscillator or an external clock source. The feedback clock comes from the VCO output divided down by
the EMFD in normal PLL mode.

When the frequency of the feedback clock equals the frequency of the reference clock (i.e., the PLL is
frequency locked), the PFD pulses the UP or DOWN signals depending on the relative phase of the two
clocks. If the falling edge of the reference clock leads the falling edge of the feedback clock, then the UP
signal is pulsed. If the falling edge of the feedback clock leads the falling edge of the reference clock, then
the DOWN signal is pulsed. The width of these pulses relative to the reference clock is dependent on how

Table 6-12. Loss-of-Clock Summary

Clock Mode
System Clock

Source
before Failure

REFERENCE FAILURE
Alternate Clock Selected by

LOC Circuitry until Reset

PLL FAILURE
Alternate Clock Selected by

LOC Circuitry until Reset

PLL PLL PLL self-clocked mode PLL reference

PLL Off Ext. Clock(s) None NA

Note: The LOC circuit monitors the inputs to the PFD: reference and feedback clocks (see Figure 6-1).

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-14 Freescale Semiconductor

much the two clocks lead or lag each other. After phase lock is achieved, the PFD continues to pulse the
UP and DOWN signals for a very short duration during each reference clock cycle. These short pulses
force the PLL to continually update and prevent a frequency drift phenomena referred to as
“dead-banding.” Dead-band describes the minimum amount of phase error between the reference and
feedback clocks that a phase detector cannot correct.

6.4.3.3.2 Charge Pump/Loop Filter

Operation of the charge pump is controlled by the UP and DOWN signals from the PFD. They control
whether the charge pumps apply or remove charge, respectively, from the loop filter.

6.4.3.3.3 VCO

The voltage into the VCO controls the frequency of its output. The frequency-to-voltage relationship
(VCO gain) is positive.

6.4.3.3.4 EMFD

The MFD divides down the output of the VCO and feeds it back to the PFD. The PFD controls the VCO
frequency (via the charge pump and loop filter) such that the reference and feedback clocks have the same
frequency and phase. Thus, the input to the MFD, which is also the output of the VCO, is at a frequency
that is the reference frequency multiplied by the same amount the MFD divides by. For example, if the
MFD divides the VCO frequency by 48, then the PLL is frequency locked when the VCO frequency is 48
times the reference frequency. The presence of the MFD in the loop allows the PLL to perform frequency
multiplication, or synthesis.

6.4.3.3.5 Programming System Clock Frequency

In normal PLL clock mode, the default system frequency is determined by the default EPREDIV, EMFD,
and ERFD values.

When programming the PLL, do not violate the maximum system clock frequency or max/min VCO
frequency specifications. Based on the desired system clock frequency, EPREDIV, EMFD, and ERFD
must be calculated for the given crystal or external reference frequency. See MPC5668x Microcontroller
Family Data Sheet for the max/min VCO frequency range and the maximum allowable system frequency.

Frequency modulation should be disabled prior to changing the EPREDIV, EMFD, or RATE bit fields.
After enabling frequency modulation a new calibration sequence is performed. A change to EPREDIV,
EMFD, DEPTH, or RATE while modulation is enabled invalidates the previous calibration results.

Use these directions to accommodate the frequency overshoot that occurs when the EPREDIV or EMFD
bits are changed. If frequency modulation is going to be enabled the maximum allowable frequency must
be reduced by the programmed Fm.

1. Determine the appropriate value for the EPREDIV, EMFD, and ERFD fields in the synthesizer
control register(s), remember to include the Fm if frequency modulation is to be enabled. The
amount of jitter in the system clocks can be minimized by selecting the maximum EMFD factor
that can be paired with an ERFD factor to provide the desired frequency. The maximum EMFD
value that can be used is determined by the VCO and EMFD range.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-15

2. Write a value of ERFD = ERFD (from step 1) + 1 to the ERFD field of the ESYNCR2. Not
increasing the ERFD when changing the EPREDIV or EMFD could subject the device to clock
frequencies beyond the range specified for the device due to the PLL’s unlocked state.

3. If frequency modulation is currently enabled, disable it by writing 00 to the EDEPTH field of the
ESYNCR2.

4. If programming the EPREDIV and/or EMFD, write the value(s) determined in step 1 to the
appropriate field(s) in the ESYNCR1.

5. Monitor the synthesizer lock bit (LOCK) in the synthesizer status register (SYNSR). When the
PLL achieves lock, write the ERFD value determined in step 1 to the ERFD field of the ESYNCR2.
This changes the system clocks frequency to the desired frequency. If frequency modulation is
desired, leave ERFD programmed to ERFD + 1 until after completing the steps in
Section 6.4.3.4.2, “Programming System Clock Frequency With Frequency Modulation.”

6. If frequency modulation was enabled initially, it can be re-enabled following the steps listed in
Section 6.4.3.4.2, “Programming System Clock Frequency With Frequency Modulation.”

6.4.3.4 PLL Normal Mode With Frequency Modulation

In normal PLL clock mode, frequency modulation is not enabled in the default synthesis mode. When
frequency modulation is enabled two parameters must be set to generate the desired level of modulation.
The parameters to be programmed are the RATE and DEPTH bit fields of the ESYNCR2 register. The
RATE bit controls the frequency of modulation, Fmod. The DEPTH bits work to control the modulation
depth, Fm. The available modulation rates and depths are given in Table 6-8 and Table 6-9, respectively.
The modulation waveform is always a triangle wave and its shape is not programmable. An example of
one period of the modulation waveform is shown in Figure 6-6.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-16 Freescale Semiconductor

Figure 6-6. Frequency Modulation Waveform

6.4.3.4.1 Frequency Modulation Depth Calibration

The frequency modulation calibration system tunes a reference current into the modulation D/A so that the
modulation depth (Fmax and Fmin) remains within specification. Disable frequency modulation prior to
changing the EPREDIV, EMFD, or ERATE bit fields. Upon enabling frequency modulation a new
calibration sequence is performed. A change to EPREDIV, EMFD, or ERATE while modulation is active
invalidates calibration results.

This routine corrects for process variations, but because temperature can change after the calibration has
been performed, variation due to temperature drift is not eliminated. This system is also voltage dependent,
so if the supply changes after the sequence takes place, error incurred is not corrected. The calibration
system reuses the two counters in the lock detect circuit, the reference and feedback counters. The
reference counter remains clocked by the reference clock, but the feedback counter is clocked by the VCO
clock.

When the calibration routine is initiated by writing to the EDEPTH bits, the CALPASS and CALDONE
status bits are immediately cleared.

When calibration is induced the VCO is given time to settle before the feedback and reference counters
start counting. Full VCO clock cycles are counted by the feedback counter during this time to give the
initial center frequency count. When the reference counter has counted to the programmed number of
reference count cycles, the input to the feedback counter is disabled and the result is placed in the
COUNT0 register. The calibration system then enables modulation at programmed Fm and the VCO gets
time to settle. Both counters are reset and restarted. The feedback counter begins to count full VCO clock

Fmax

Fmin

t 1
Fmod
----------------=

t

f

Fmax = Fsys + {0.5%, 1%, 1.5%, 2%}

Fmin = Fsys – {0.5%, 1%,1.5%, 2%}

Fmod = Fextal/Q where Q = {20, 40, 80}

Fm

Fm

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-17

cycles again to obtain the delta-frequency count. The counter runs only during the high phase of the
triangular modulation waveform. Several half-modulation periods are measured during the calibration
routine to increase the resolution of the frequency measurement. This results in a measurement of the
average frequency during the high phase of the modulation waveform, which under ideal circumstances is
equivalent to one-half of the desired modulation depth. When the reference counter has counted to the new
programmed number of reference count cycles, the feedback counter is stopped again.

The delta-frequency count minus the center frequency count (COUNT0) results in a delta count
proportional to the reference current into the modulation D/A. That delta count is subtracted from the
expected value for the selected depth resulting in an error count. The sign of this error count determines
the direction taken by the calibration D/A to update the calibration current. After obtaining the error count
for the present iteration, both counters are cleared. The stored count of COUNT0 is preserved while a new
feedback count is obtained, and the process to determine the error count is repeated. The calibration system
repeats this process eight times, once for each bit of the calibration D/A.

After the last decision is made, a 1 is written to the CALDONE bit of the SYNSR. If an error occurs during
the calibration routine, then CALPASS remains 0. If the routine completed successfully, CALPASS is set
to 1.

6.4.3.4.2 Programming System Clock Frequency With Frequency Modulation

The following steps illustrate proper programming of the frequency modulation mode. These steps ensure
proper operation of the calibration routine and prevent frequency overshoot from the sequence. The PLL
should be programmed and allowed to lock in non-FM mode at the desired frequency as outlined in
Section 6.4.3.3.5, “Programming System Clock Frequency.”

1. Monitor LOCK bit. Do not proceed until the PLL is locked in non-modulation mode.

2. Write a value of ERFD = ERFD + 1 to the ERFD field of the ESYNCR2 to ensure the maximum
system frequency is not exceeded during the calibration routine. This should have been done when
allowing the PLL to lock in non-FM mode.

3. Program the desired modulation rate and depth to the ERATE and EDEPTH bitfields
simultaneously using a single 32-bit write to the ESYNCR register2. Setting ERATE alone may set
the LOLF flag. This action initiates the calibration sequence.

4. Allow time for the calibration sequence. Wait for the PLL to lock (i.e.,the LOCK bit to set in the
SYNSR). At this time CALDONE should be asserted. CALPASS is asserted if the calibration was
successful. If not, the calibration can be re-initiated by repeating from step 3. When the PLL
achieves lock, write the ERFD value desired.

The frequency modulation system is dependent on several factors, including the accuracies of the
VDDSYN/VSSSYN voltage, of the crystal oscillator frequency, and of the manufacturing variation.

For example, if a 5% accurate supply voltage is used, then a 5% modulation depth error results. If the
crystal oscillator frequency is skewed from the nominal operating frequency, the resulting modulation
frequency is proportionally skewed. Finally, the error due to the manufacturing and environment variation
alone can cause the frequency modulation depth error to be greater than 20%.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-18 Freescale Semiconductor

6.5 Resets
This section describes the reset operation of the PLL, including power-on reset and normal resets. The
reset values of registers and signals are provided in other sections.

6.5.1 Clock Mode Selection

The initial clock mode is reflected in the MODE, PLLSEL, and PLLREF bits of the synthesizer status
register (SYNSR) as well as the ESYNCR1[CLKCFG] bit field. The clock mode can be modified by
writing to the CLKCFG bit field. The synthesizer status register then reflects the newly-selected PLL clock
mode.

Table 6-13 summarizes clock mode selection.

6.5.1.1 Power-On Reset (POR)

The PLL will not operate until the POR signal has been deasserted and the ESYNCR1[CLKCFG] bitfield
set for PLL mode. Refer to MPC5668x Microcontroller Family Data Sheet for these thresholds. At this
point, the PLL operates in self-clocked mode (SCM) until a valid reference clock is detected by the internal
clock monitor circuit.

Internal to the PLL, the VCO is held in reset until the negation of the POR signal. This prevents the PLL
from attempting to lock before its supplies are within specification, which can cause VCO/loop gain to be
lower than what the analog loop is designed for.

6.5.1.2 External Reset

After POR has negated, the PLL defaults to PLL Off mode and the default clock source for the system
clock is the 16 MHz_IRC. After reset exit, the PLL may be configured for operation and after lock may
be selected as the system clock source.

After the initial lock with the default MFD (assuming normal mode was selected), ESYNCR1 may be
written to modify the MFD for the desired operating frequency. The PLL may not lock with an MFD and
crystal frequency combination that attempts to force the VCO outside of its operating range.

Table 6-13. Clock Mode Selection

Clock Mode

Synthesizer Status Register (SYNSR)
MODE, PLLSEL, and PLLREF Bits

MODE/
CLKCFG2

PLLSEL/
CLKCFG1

PLLREF/
CLKCFG0

 PLL Off mode 0 X X

Normal mode with external reference 1 1 0

Normal mode with crystal reference 1 1 1

Reserved 1 0 0

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 6-19

CAUTION
When running in an unlocked state, the clocks generated by the PLL are not
guaranteed stable and may exceed the maximum specified operating
frequency of the device. The RFD should always be used as described in
Section 6.4.3.3.5, “Programming System Clock Frequency,” to insulate the
system from any potential frequency overshoot of the PLL clocks.

6.5.2 PLL Loss-of-Lock Reset

By programming the LOLRE bit in the ESYNCR2, the PLL can assert reset when a loss-of-lock condition
occurs. Because the LOCK and LOCKS bits in the SYNSR are re-initialized after reset, the SIU reset status
register described in Chapter 7, “System Integration Unit (SIU),” must be read to determine a loss-of-lock
condition occurred.

In PLL Off mode, the PLL cannot lock; therefore a loss-of-lock condition cannot occur and LOLRE has
no effect.

6.5.3 PLL Loss-of-Clock Reset

When a loss-of-clock condition is recognized, RESET is asserted if the LOCRE bit in the SYNCR is set.
The LOCF and LOC bits in the SYNSR are cleared after reset, therefore, the LOC bit must be read in the
SIU_RSR to determine that a loss-of-clock condition occurred. LOCRE has no effect in PLL Off mode.

6.6 Interrupts
This section describes the interrupt requests that the PLL can generate.

6.6.1 Loss-of-Lock Interrupt Request

By setting the LOLIRQ bit in the ESYNCR2, the PLL can request an interrupt when a loss-of-lock
condition occurs.

In PLL Off mode, the PLL cannot lock; therefore a loss-of-lock condition cannot occur and the LOLIRQ
has no effect.

6.6.2 Loss-of-Clock Interrupt Request

When a loss-of-clock condition is recognized, the PLL requests an interrupt if the LOCIRQ bit in the
SYNCR is set. The LOCIRQ bit has no effect in PLL Off mode or if LOCEN is equal to 0.

Frequency Modulated Phase-Locked Loop (FMPLL)

MPC5668x Microcontroller Reference Manual, Rev. 4

6-20 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-1

Chapter 7
System Integration Unit (SIU)

7.1 Introduction
The system integration unit (SIU) controls MCU reset configuration, the system reset operation, pad
configuration, external interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, clock
frequency divider configuration, peripheral clock disable configuration, and peripheral clock disable
acknowledge. The reset configuration block contains the external pin boot configuration logic. The pad
configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides
uniform and discrete input/output control of the MCU I/O pins. The reset controller performs reset
monitoring of internal and external reset sources, and drives the RESET pin. The core accesses the SIU
through the peripheral bus.

7.1.1 Block Diagram

Figure 7-1 is a block diagram of the SIU. The signals shown are external pins to the device. The SIU
registers are accessed through the crossbar switch. The power-on reset (POR) detection block, pad
interface/pad ring block, and peripheral I/O channels are external to the SIU.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-2 Freescale Semiconductor

Figure 7-1. SIU Block Diagram

7.1.2 Features

Features of the SIU include the following:

• System configuration

— MCU reset configuration via external pins

— Pad configuration control

• System reset monitoring and generation

Reset

RESET

Configuration

SIU
Registers

Reset
Controller

Pad
Interface/

Pad
Ring

Pad Configuration

Power-on
Reset

Detection

External
IRQ/
Edge

Detects

GPIO

Peripheral
I/O Channels

IMUXIRQ Inputs &
ADC Triggers

PC5 (NMI[0] Z6)

PC6 (NMI[1] Z0)

PK[0:10]

•••

• • •

• • •

•••

•••
•••

PJ[0:15]

PH[0:15]

PA[0:15]

PK9 (BOOTCFG)

•••

&
NMI

Control

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-3

— Power-on reset support

— Reset status register providing last reset source to software

— Software controlled reset assertion

• External interrupt

— 16 interrupt requests (139 inputs multiplexed down to 16 inputs in eight groups of 16 and one
group of 11, on Ports A through K)

— Rising or falling edge event detection

— Programmable digital filter for glitch rejection

• GPIO

— GPIO function on as many as 155 I/O pins

— Dedicated input and output registers for each GPIO pin.

— Parallel input and output registers with pins grouped into 16-bit ports (Ports A through K)

– Read/Write data is coherent with data written/read using dedicated input/output registers

• Internal multiplexing

— Allows flexible selection of ADC trigger inputs

— Allows selection of interrupt requests among external pins

— Allows selection of eMIOS inputs between external pins and deserialized DSPI outputs

— Allows selection of eMIOS outputs or SIU data register to be serialized via the DSPI

• System clock control

— Clock divider control for individual peripherals or peripheral groups for lower power operation

— Halt request registers to disable clocks to unused peripherals for lower power operation

— Halt acknowledge registers to determine when peripheral clocks are disabled

7.1.3 Modes of Operation

7.1.3.1 Normal Mode

In normal mode, the SIU provides the register interface and logic that controls system configuration, the
reset controller, GPIO, clock divider control, and peripheral clock disable/acknowledge.

7.1.3.2 Debug Mode

SIU operation in debug mode is identical to normal mode operation.

7.2 External Signal Description
Refer to Table 2-1 and Section 2.2, “Signal Properties Summary” for signal properties.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-4 Freescale Semiconductor

7.2.1 Ports vs. General-Purpose I/O Pins

The MPC5668x provides 155 individual GPIO pins, organized into 10 ports named Port A through Port
K. Port I is omitted from the series of ports. Of these ports, Ports A through J provide 16 pins each, and
Port K provides 11 pins.

The GPIO pins provide general-purpose input and output function. The GPIO pins are multiplexed with
other I/O pin functions. A pad control register (SIU_PCR) sets the multiplexing and other functions for the
pins. An input (SIU_GPDI) or output (SIU_GPDO) register controls each GPIO input and output
separately. Pins correspond to numbered control registers beginning with Port A (pin A0) and continuing
consecutively to Port K (pin K10). Registers are numbered consecutively from 0 to 154. See the following:

• Section 7.3.2.13, “Pad Configuration Registers (SIU_PCR)

• Section 7.3.2.14, “GPIO Pin Data Output Registers (SIU_GPDO16_19–SIU_GPDO152_154)”

• Section 7.3.2.15, “GPIO Pin Data Input Registers (SIU_GPDI0_3–SIU_GPDI152_154)”

• Section 7.3.2.27, “Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)” through
Section 7.3.2.36, “Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)”

• Section 7.3.2.37, “Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1).”

7.3 Memory Map and Registers
This section provides a detailed description of all DSPI registers.

7.3.1 Module Memory Map

Table 7-1 is the address map for the SIU registers. All register addresses are given as an offset of the SIU
base address.

Table 7-1. SIU Memory Map

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

0x0000–0x0003 Reserved

0x0004 SIU_MIDR—MCU ID register R —1 7.3.2.1/7-13

0x0008–0x000B Reserved

0x000C SIU_RSR—Reset status register R 0x8000_000U 7.3.2.2/7-14

0x0010 SIU_SRCR—System reset control register R/W 0x0800_C000 7.3.2.3/7-15

0x0014 SIU_EISR—SIU external interrupt status register R/W 0x0000_0000 7.3.2.4/7-16

0x0018 SIU_DIRER—DMA/interrupt request enable register R/W 0x0000_0000 7.3.2.5/7-17

0x001C SIU_DIRSR—DMA/interrupt request select register R/W 0x0000_0000 7.3.2.6/7-18

0x0020 SIU_OSR—Overrun status register R/W 0x0000_0000 7.3.2.7/7-19

0x0024 SIU_ORER—Overrun request enable register R/W 0x0000_0000 7.3.2.8/7-19

0x0028 SIU_IREER—External IRQ rising-edge event enable register R/W 0x0000_0000 7.3.2.9/7-20

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-5

0x002C SIU_IFEER—External IRQ falling-edge event enable register R/W 0x0000_0000 7.3.2.10/7-20

0x0030 SIU_IDFR—External IRQ digital filter register R/W 0x0000_0000 7.3.2.11/7-21

0x0034 SIU_IFIR—External IRQ filtered input register R/W 0x0000_0000 7.3.2.12/7-22

0x0038–0x003F Reserved

0x0040–0x0174 SIU_PCR0 – SIU_PCR154—Pad configuration register 0 – Pad
configuration register 154

R/W —1 7.3.2.13/7-22

0x0176–0x060F Reserved

0x0610–0x0689 SIU_GPDO16_19 – SIU_GPDO152_154—GPIO pin data output
register 16-19–GPIO pin data output register 152–154

R/W 0x0000_0000 7.3.2.14/7-26

0x0690–0x07FF Reserved

0x0800–0x0898 SIU_GPDI0_3 – SIU_GPDI152_155—GPIO pin data input
register 0–3 –GPIO pin data input register 152–154

R/W —1 7.3.2.15/7-28

0x089C–0x0903 Reserved

0x0904 SIU_ISEL1—External interrupt select register 1 R/W 0x0000_0000 7.3.2.16/7-29

0x0908 SIU_ISEL2—External interrupt select register 2 R/W 0x0000_0000 7.3.2.17/7-33

0x090C–0x090F Reserved

0x0910 SIU_ISEL4—ADC trigger input select register 4 R/W 0x0000_0000 7.3.2.18/7-35

0x0914–0x097F Reserved

0x0980 SIU_CCR—Chip configuration register R/W 0x000U_0000 7.3.2.19/7-36

0x0984 SIU_ECCR—External clock control register R/W 0x0000_1001 7.3.2.20/7-37

0x0988 SIU_GPR0—General purpose register 0 R/W 0x0000_0000 7.3.2.21/7-38

0x098C SIU_GPR1—General purpose register 1 R/W 0x0000_0000 7.3.2.21/7-38

0x0990 SIU_GPR2—General purpose register 2 R/W 0x0000_0000 7.3.2.21/7-38

0x0994 SIU_GPR3—General purpose register 3 R/W 0x0000_0000 7.3.2.21/7-38

0x0998–0x099F Reserved

0x09A0 SIU_SYSCLK—System clock register R/W 0x0000_0000 7.3.2.22/7-38

0x09A4 SIU_HLT0—Halt request register 0 R/W 0x0000_0000 7.3.2.23/7-39

0x09A8 SIU_HLT1—Halt request register 1 R/W 0x0000_0000 7.3.2.23/7-39

0x09AC SIU_HLTACK0—Halt acknowledge register 0 R 0x0000_0000 7.3.2.24/7-41

0x09B0 SIU_HLTACK1—Halt acknowledge register 1 R 0x0000_0000 7.3.2.24/7-41

0x09B4 SIU_EMIOS_SEL0—eMIOS select register 0 R/W 0x0000_0000 7.3.2.25/7-44

0x09B8 SIU_EMIOS_SEL1—eMIOS select register 1 R/W 0x0000_0000 7.3.2.25/7-44

0x09BC SIU_EMIOS_SEL2—eMIOS select register 2 R/W 0x0000_0000 7.3.2.25/7-44

Table 7-1. SIU Memory Map (continued)

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-6 Freescale Semiconductor

0x09C0 SIU_EMIOS_SEL3—eMIOS select register 3 R/W 0x0000_0000 7.3.2.25/7-44

0x09C4 SIU_ISEL2A—External interrupt select register 2A R/W 0x0000_0000 7.3.2.26/7-45

0x09C8–0x0BFF Reserved

0x0C00 SIU_PGPDO0—Parallel GPIO pin data output register 0 R/W 0x0000_0000 7.3.2.27/7-48

0x0C04 SIU_PGPDO1—Parallel GPIO pin data output register 1 R/W 0x0000_0000 7.3.2.28/7-48

0x0C08 SIU_PGPDO2—Parallel GPIO pin data output register 2 R/W 0x0000_0000 7.3.2.29/7-49

0x0C0C SIU_PGPDO3—Parallel GPIO pin data output register 3 R/W 0x0000_0000 7.3.2.30/7-49

0x0C10 SIU_PGPDO4—Parallel GPIO pin data output register 4 R/W 0x0000_0000 7.3.2.31/7-49

0x0C14–0x0C3F Reserved

0x0C40 SIU_PGPDI0—Parallel GPIO pin data input register 0 R —1 7.3.2.32/7-50

0x0C44 SIU_PGPDI1—Parallel GPIO pin data input register 1 R —1 7.3.2.33/7-50

0x0C48 SIU_PGPDI2—Parallel GPIO pin data input register 2 R —1 7.3.2.34/7-51

0x0C4C SIU_PGPDI3—Parallel GPIO pin data input register 3 R —1 7.3.2.35/7-51

0x0C50 SIU_PGPDI4—Parallel GPIO pin data input register 4 R —1 7.3.2.36/7-52

0x0C54–0x0C83 Reserved

0x0C84 SIU_MPGPDO1—Masked parallel GPIO data output register 1 W 0x0000_0000 7.3.2.37/7-52

0x0C88 SIU_MPGPDO2—Masked parallel GPIO data output register 2 W 0x0000_0000 7.3.2.38/7-53

0x0C8C SIU_MPGPDO3—Masked parallel GPIO data output register 3 W 0x0000_0000 7.3.2.39/7-53

0x0C90 SIU_MPGPDO4—Masked parallel GPIO data output register 4 W 0x0000_0000 7.3.2.40/7-54

0x0C94 SIU_MPGPDO5—Masked parallel GPIO data output register 5 W 0x0000_0000 7.3.2.41/7-54

0x0C98 SIU_MPGPDO6—Masked parallel GPIO data output register 6 W 0x0000_0000 7.3.2.42/7-55

0x0C9C SIU_MPGPDO7—Masked parallel GPIO data output register 7 W 0x0000_0000 7.3.2.43/7-55

0x0CA0 SIU_MPGPDO8—Masked parallel GPIO data output register 8 W 0x0000_0000 7.3.2.44/7-56

0x0CA4 SIU_MPGPDO9—Masked parallel GPIO data output register 9 W 0x0000_0000 7.3.2.45/7-56

0x0CA8–0x0CFF Reserved

0x0D00 SIU_DSPIAH—Masked serial GPO register for DSPI_A high R/W 0x0000_0000 7.3.2.46/7-57

0x0D04 SIU_DSPIAL—Masked serial GPO register for DSPI_A low R/W 0x0000_0000 7.3.2.47/7-58

0x0D08 SIU_DSPIBH—Masked serial GPO register for DSPI_B high R/W 0x0000_0000 7.3.2.48/7-58

0x0D0C SIU_DSPIBL—Masked serial GPO register for DSPI_B low R/W 0x0000_0000 7.3.2.49/7-59

0x0D10 SIU_DSPICH—Masked serial GPO register for DSPI_C high R/W 0x0000_0000 7.3.2.50/7-60

0x0D14 SIU_DSPICL—Masked serial GPO register for DSPI_C low R/W 0x0000_0000 7.3.2.51/7-60

Table 7-1. SIU Memory Map (continued)

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-7

Table 7-2 provides absolute hex addresses for the SIU_PCR and SIU_GPDO registers.

0x0D18 SIU_DSPIDH—Masked serial GPO register for DSPI_D high R/W 0x0000_0000 7.3.2.52/7-61

0x0D1C SIU_DSPIDL—Masked serial GPO register for DSPI_D low R/W 0x0000_0000 7.3.2.53/7-62

0x0D20–0x0D43 Reserved

0x0D44 SIU_EMIOSA—eMIOS select register for DSPI_A R/W 0x0000_0000 7.3.2.54/7-62

0x0D48 SIU_DSPIAHLA—SIU_DSPIAH/L select register for DSPI_A R/W 0x0000_0000 7.3.2.55/7-63

0x0D4C–0x0D53 Reserved

0x0D54 SIU_EMIOSB—eMIOS select register for DSPI_B R/W 0x0000_0000 7.3.2.56/7-64

0x0D58 SIU_DSPIBHLB—SIU_DSPIBH/L select register for DSPI_B R/W 0x0000_0000 7.3.2.57/7-64

0x0D5C–0x0D63 Reserved

0x0D64 SIU_EMIOSC—eMIOS select register for DSPI_C R/W 0x0000_0000 7.3.2.58/7-65

0x0D68 SIU_DSPICHLC—H/L select register for DSPI_C R/W 0x0000_0000 7.3.2.59/7-65

0x0D6C–0x0D73 Reserved

0x0D74 SIU_EMIOSD—eMIOS select register for DSPI_D R/W 0x0000_0000 7.3.2.60/7-66

0x0D78–0x0D7B SIU_DSPIDHLD—SIU_DSPIDH/L select register for DSPI_D R/W 0x0000_0000 7.3.2.61/7-67

0x0D7C–0x3FFF Reserved

1 See register description for reset value.

Table 7-1. SIU Memory Map (continued)

Offset from
SIU_BASE

(0xFFFE_8000)
Register Access Reset Value Section/Page

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-8 Freescale Semiconductor

Table 7-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

PA0 0 FFFE_8040 PA[15:0]
are

inputs
only

FFFE_8800

PA1 1 FFFE_8042 FFFE_8801

PA2 2 FFFE_8044 FFFE_8802

PA3 3 FFFE_8046 FFFE_8803

PA4 4 FFFE_8048 FFFE_8804

PA5 5 FFFE_804A FFFE_8805

PA6 6 FFFE_804C FFFE_8806

PA7 7 FFFE_804E FFFE_8807

PA8 8 FFFE_8050 FFFE_8808

PA9 9 FFFE_8052 FFFE_8809

PA10 10 FFFE_8054 FFFE_880A

PA11 11 FFFE_8056 FFFE_880B

PA12 12 FFFE_8058 FFFE_880C

PA13 13 FFFE_805A FFFE_880D

PA14 14 FFFE_805C FFFE_880E

PA15 15 FFFE_805E FFFE_880F

PB0 16 FFFE_8060 FFFE_8610 FFFE_8810

PB1 17 FFFE_8062 FFFE_8611 FFFE_8811

PB2 18 FFFE_8064 FFFE_8612 FFFE_8812

PB3 19 FFFE_8066 FFFE_8613 FFFE_8813

PB4 20 FFFE_8068 FFFE_8614 FFFE_8814

PB5 21 FFFE_806A FFFE_8615 FFFE_8815

PB6 22 FFFE_806C FFFE_8616 FFFE_8816

PB7 23 FFFE_806E FFFE_8617 FFFE_8817

PB8 24 FFFE_8070 FFFE_8618 FFFE_8818

PB9 25 FFFE_8072 FFFE_8619 FFFE_8819

PB10 26 FFFE_8074 FFFE_861A FFFE_881A

PB11 27 FFFE_8076 FFFE_861B FFFE_881B

PB12 28 FFFE_8078 FFFE_861C FFFE_881C

PB13 29 FFFE_807A FFFE_861D FFFE_881D

PB14 30 FFFE_807C FFFE_861E FFFE_881E

PB15 31 FFFE_807E FFFE_861F FFFE_881F

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-9

PC0 32 FFFE_8080 FFFE_8620 FFFE_8820

PC1 33 FFFE_8082 FFFE_8621 FFFE_8821

PC2 34 FFFE_8084 FFFE_8622 FFFE_8822

PC3 35 FFFE_8086 FFFE_8623 FFFE_8823

PC4 36 FFFE_8088 FFFE_8624 FFFE_8824

PC5 37 FFFE_808A FFFE_8625 FFFE_8825

PC6 38 FFFE_808C FFFE_8626 FFFE_8826

PC7 39 FFFE_808E FFFE_8627 FFFE_8827

PC8 40 FFFE_8090 FFFE_8628 FFFE_8828

PC9 41 FFFE_8092 FFFE_8629 FFFE_8829

PC10 42 FFFE_8094 FFFE_862A FFFE_882A

PC11 43 FFFE_8096 FFFE_862B FFFE_882B

PC12 44 FFFE_8098 FFFE_862C FFFE_882C

PC13 45 FFFE_809A FFFE_862D FFFE_882D

PC14 46 FFFE_809C FFFE_862E FFFE_882E

PC15 47 FFFE_809E FFFE_862F FFFE_882F

PD0 48 FFFE_80A0 FFFE_8630 FFFE_8830

PD1 49 FFFE_80A2 FFFE_8631 FFFE_8831

PD2 50 FFFE_80A4 FFFE_8632 FFFE_8832

PD3 51 FFFE_80A6 FFFE_8633 FFFE_8833

PD4 52 FFFE_80A8 FFFE_8634 FFFE_8834

PD5 53 FFFE_80AA FFFE_8635 FFFE_8835

PD6 54 FFFE_80AC FFFE_8636 FFFE_8836

PD7 55 FFFE_80AE FFFE_8637 FFFE_8837

PD8 56 FFFE_80B0 FFFE_8638 FFFE_8838

PD9 57 FFFE_80B2 FFFE_8639 FFFE_8839

PD10 58 FFFE_80B4 FFFE_863A FFFE_883A

PD11 59 FFFE_80B6 FFFE_863B FFFE_883B

PD12 60 FFFE_80B8 FFFE_863C FFFE_883C

PD13 61 FFFE_80BA FFFE_863D FFFE_883D

PD14 62 FFFE_80BC FFFE_863E FFFE_883E

PD15 63 FFFE_80BE FFFE_863F FFFE_883F

Table 7-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI (continued)

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-10 Freescale Semiconductor

PE0 64 FFFE_80C0 FFFE_8640 FFFE_8840

PE1 65 FFFE_80C2 FFFE_8641 FFFE_8841

PE2 66 FFFE_80C4 FFFE_8642 FFFE_8842

PE3 67 FFFE_80C6 FFFE_8643 FFFE_8843

PE4 68 FFFE_80C8 FFFE_8644 FFFE_8844

PE5 69 FFFE_80CA FFFE_8645 FFFE_8845

PE6 70 FFFE_80CC FFFE_8646 FFFE_8846

PE7 71 FFFE_80CE FFFE_8647 FFFE_8847

PE8 72 FFFE_80D0 FFFE_8648 FFFE_8848

PE9 73 FFFE_80D2 FFFE_8649 FFFE_8849

PE10 74 FFFE_80D4 FFFE_864A FFFE_884A

PE11 75 FFFE_80D6 FFFE_864B FFFE_884B

PE12 76 FFFE_80D8 FFFE_864C FFFE_884C

PE13 77 FFFE_80DA FFFE_864D FFFE_884D

PE14 78 FFFE_80DC FFFE_864E FFFE_884E

PE15 79 FFFE_80DE FFFE_864F FFFE_884F

PF0 80 FFFE_80E0 FFFE_8650 FFFE_8850

PF1 81 FFFE_80E2 FFFE_8651 FFFE_8851

PF2 82 FFFE_80E4 FFFE_8652 FFFE_8852

PF3 83 FFFE_80E6 FFFE_8653 FFFE_8853

PF4 84 FFFE_80E8 FFFE_8654 FFFE_8854

PF5 85 FFFE_80EA FFFE_8655 FFFE_8855

PF6 86 FFFE_80EC FFFE_8656 FFFE_8856

PF7 87 FFFE_80EE FFFE_8657 FFFE_8857

PF8 88 FFFE_80F0 FFFE_8658 FFFE_8858

PF9 89 FFFE_80F2 FFFE_8659 FFFE_8859

PF10 90 FFFE_80F4 FFFE_865A FFFE_885A

PF11 91 FFFE_80F6 FFFE_865B FFFE_885B

PF12 92 FFFE_80F8 FFFE_865C FFFE_885C

PF13 93 FFFE_80FA FFFE_865D FFFE_885D

PF14 94 FFFE_80FC FFFE_865E FFFE_885E

PF15 95 FFFE_80FE FFFE_865F FFFE_885F

Table 7-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI (continued)

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-11

PG0 96 FFFE_8100 FFFE_8660 FFFE_8860

PG1 97 FFFE_8102 FFFE_8661 FFFE_8861

PG2 98 FFFE_8104 FFFE_8662 FFFE_8862

PG3 99 FFFE_8106 FFFE_8663 FFFE_8863

PG4 100 FFFE_8108 FFFE_8664 FFFE_8864

PG5 101 FFFE_810A FFFE_8665 FFFE_8865

PG6 102 FFFE_810C FFFE_8666 FFFE_8866

PG7 103 FFFE_810E FFFE_8667 FFFE_8867

PG8 104 FFFE_8110 FFFE_8668 FFFE_8868

PG9 105 FFFE_8112 FFFE_8669 FFFE_8869

PG10 106 FFFE_8114 FFFE_866A FFFE_886A

PG11 107 FFFE_8116 FFFE_866B FFFE_886B

PG12 108 FFFE_8118 FFFE_866C FFFE_886C

PG13 109 FFFE_811A FFFE_866D FFFE_886D

PG14 110 FFFE_811C FFFE_866E FFFE_886E

PG15 111 FFFE_811E FFFE_866F FFFE_886F

PH0 112 FFFE_8120 FFFE_8670 FFFE_8870

PH1 113 FFFE_8122 FFFE_8671 FFFE_8871

PH2 114 FFFE_8124 FFFE_8672 FFFE_8872

PH3 115 FFFE_8126 FFFE_8673 FFFE_8873

PH4 116 FFFE_8128 FFFE_8674 FFFE_8874

PH5 117 FFFE_812A FFFE_8675 FFFE_8875

PH6 118 FFFE_812C FFFE_8676 FFFE_8876

PH7 119 FFFE_812E FFFE_8677 FFFE_8877

PH8 120 FFFE_8130 FFFE_8678 FFFE_8878

PH9 121 FFFE_8132 FFFE_8679 FFFE_8879

PH10 122 FFFE_8134 FFFE_867A FFFE_887A

PH11 123 FFFE_8136 FFFE_867B FFFE_887B

PH12 124 FFFE_8138 FFFE_867C FFFE_887C

PH13 125 FFFE_813A FFFE_867D FFFE_887D

PH14 126 FFFE_813C FFFE_867E FFFE_887E

PH15 127 FFFE_813E FFFE_867F FFFE_887F

Table 7-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI (continued)

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-12 Freescale Semiconductor

PJ0 128 FFFE_8140 FFFE_8680 FFFE_8880

PJ1 129 FFFE_8142 FFFE_8681 FFFE_8881

PJ2 130 FFFE_8144 FFFE_8682 FFFE_8882

PJ3 131 FFFE_8146 FFFE_8683 FFFE_8883

PJ4 132 FFFE_8148 FFFE_8684 FFFE_8884

PJ5 133 FFFE_814A FFFE_8685 FFFE_8885

PJ6 134 FFFE_814C FFFE_8686 FFFE_8886

PJ7 135 FFFE_814E FFFE_8687 FFFE_8887

PJ8 136 FFFE_8150 FFFE_8688 FFFE_8888

PJ9 137 FFFE_8152 FFFE_8689 FFFE_8889

PJ10 138 FFFE_8154 FFFE_868A FFFE_888A

PJ11 139 FFFE_8156 FFFE_868B FFFE_888B

PJ12 140 FFFE_8158 FFFE_868C FFFE_888C

PJ13 141 FFFE_815A FFFE_868D FFFE_888D

PJ14 142 FFFE_815C FFFE_868E FFFE_888E

PJ15 143 FFFE_815E FFFE_868F FFFE_888F

PK0 144 FFFE_8160 FFFE_8690 FFFE_8890

PK1 145 FFFE_8162 FFFE_8691 FFFE_8891

PK2 146 FFFE_8164 FFFE_8692 FFFE_8892

PK3 147 FFFE_8166 FFFE_8693 FFFE_8893

PK4 148 FFFE_8168 FFFE_8694 FFFE_8894

PK5 149 FFFE_816A FFFE_8695 FFFE_8895

PK6 150 FFFE_816C FFFE_8696 FFFE_8896

PK7 151 FFFE_816E FFFE_8697 FFFE_8897

PK8 152 FFFE_8170 FFFE_8698 FFFE_8898

PK9 153 FFFE_8172 FFFE_8699 FFFE_8899

PK10 154 FFFE_8174 FFFE_869A FFFE_889A

Table 7-2. Detailed Memory Map for SIU_PCR, SIU_GPDO, and SIU_GPDI (continued)

Pad ID Pad #
SIU_PCR
Address

SIU_GPDO
Address

SIU_GPDI
Address

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-13

7.3.2 Register Descriptions

This section lists the DSPI registers in address order and describes the registers and their bit fields.

7.3.2.1 MCU ID Register (SIU_MIDR)

The SIU_MIDR contains the part identification number, package type, and mask revision number specific
to the device. The part number is a read-only field mask-programmed with the device part number. It is
not changed for bug fixes or process changes. The package type is a read-only field that reflects the device
package type. The mask number is a read-only field mask-programmed with the device’s specific mask
revision level.

Offset: SIU_BASE + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM

W

Reset 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSP PKG 0 0 MASKNUM_MAJOR MASKNUM_MINOR

W

Reset1

1 PKG default value reflects the device package type as defined in Table 7-3.
MASKNUM_MAJOR default value is 0x0 for the device’s initial mask set and changes for each major mask set revision.
MASKNUM_MINOR default value is 0x0 for the device’s initial mask set and changes for each minor mask set revision.

0 * * * * * 0 0 * * * * * * * *

Figure 7-2. MCU ID Register (SIU_MIDR)

Table 7-3. SIU_MIDR Field Descriptions

Field Description

PARTNUM MCU Part Number. Read-only, mask-programmed part identification number of the MCU. Reads
0x5668 for the MPC5668x.

CSP Chip Scale Package. The CSP bit indicates whether the die is mounted in a chip scale package.
0 Not a chip scale package.
1 Chip scale package.

PKG Package Configuration. These values set the pin package used for each MPC5668x device.
0b10000 208-pin MAPBGA
0b00000 256-pin MAPBGA
All other combinations are reserved.

MASKNUM_MAJOR Major Mask Revision Number. Read-only, mask-programmed mask number of the MCU. Reads
0x0 for the device’s initial mask set and changes for each major mask set revision.

MASKNUM_MINOR Minor Mask Revision Number. Read-only, mask-programmed mask number of the MCU. Reads
0x0 for the device’s initial mask set and changes for each minor mask set.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-14 Freescale Semiconductor

7.3.2.2 Reset Status Register (SIU_RSR)

The SIU_RSR reflects the most recent source, or reset sources, and the pins’ configuration state at reset.
This register contains one bit for each reset source, indicating the last reset was power-on reset (POR),
external, software system, watchdog, loss of PLL lock, loss of clock, or checkstop reset. A reset status bit
set to logic one indicates the reset type that occurred. After it is set, the reset source status bits in the
SIU_RSR remain set until another reset occurs. In the following cases more than one reset bit is set:

1. If any reset request has negated and the device is still in the resulting reset, and then an external
reset is requested, both the original reset type and external reset status bits are set. In this case, the
device started the reset sequence due to due to a non-external reset request but ended the reset
sequence after an external reset request.

2. If any of the loss of clock, loss of lock, watchdog or checkstop reset requests occur on the same
clock cycle, and no other higher priority reset source is requesting reset (Table 7-4), the reset status
bits for all of the requesting resets are set.

Simultaneous reset requests are prioritized. When reset requests of different priorities occur on the same
clock cycle, the lower priority reset request is ignored. Only the highest priority reset request's status bit is
set. Except for a power-on reset request and condition 1 above, all reset requests of any priority are ignored
until the device exits reset.

Table 7-4. Reset Source Priorities

Reset Source Priority

Power on reset (POR), LVI resets, and external reset (Group 0) Highest

Software system reset (Group1) .

Loss of clock, loss of lock, watchdog, checkstop (Group2) .

Software external reset (Group 3) Lowest

Offset: SIU_BASE + 0x000C Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PORS ERS LLRS LCRS WDRS CRS 0 0 0 0 0 0 0 0 SSRS 0

W

Reset1 12 03 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0

BOOT
CFG

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U4 0
1 The reset status register receives its reset values during power-on reset.
2 The PORS bit is also set on LVI or recovery from low-power sleep mode.
3 The ERS bit is also set if the RESET pin is held low to extend the reset sequence.
4 Before the rising edge of RESET, the PK9 pin state sets the BOOTCFG bit value. During sleep mode recovery, this

bit takes the state of PK9 when internal reset is negated.

Figure 7-3. Reset Status Register (SIU_RSR)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-15

7.3.2.3 System Reset Control Register (SIU_SRCR)

Table 7-5. SIU_RSR Field Descriptions

Field Description

PORS Power-on Reset Status. Set for any power-on or LVI reset. Also set on recovery from sleep mode.
0 The reset controller acknowledged another reset source since the last assertion of the power-on reset input.
1 The power-on reset input to the reset controller is asserted, and no other reset source has been acknowledged

since that assertion of the power-on reset input except an external reset.

ERS External Reset Status. (Asynchronous reset source)
0 Last reset source the reset controller acknowledged was not a valid assertion of the RESET pin.
1 Last reset source the reset controller acknowledged was a valid assertion of the RESET pin.

LLRS Loss-of-Lock Reset Status. (Asynchronous reset source)
0 Last reset source the reset controller acknowledged was not a loss of PLL lock reset.
1 Last reset source the reset controller acknowledged was a loss of PLL lock reset.

LCRS Loss-of-Clock Reset Status. (Asynchronous reset source)
0 Last reset source the reset controller acknowledged was not a loss of clock reset.
1 Last reset source the reset controller acknowledged was a loss of clock reset.

WDRS Watchdog Timer Reset Status.
0 Last reset source the reset controller acknowledged was not a watchdog timer reset.
1 Last reset source the reset controller acknowledged was a watchdog timer reset.

CRS Checkstop Reset Status. Set for Z6 or Z0 core reset.
0 Last reset source the reset controller acknowledged was not an enabled checkstop reset.
1 Last reset source the reset controller acknowledged was an enabled checkstop reset.

SSRS Software System Reset Status.
0 Last reset source the reset controller acknowledged was not a software system reset.
1 Last reset source the reset controller acknowledged was a software system reset.

BOOTCFG Status of BOOTCFG pin at negation of RESET.

Offset: SIU_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SSR1 0 0 0

RSVD
0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CRE1 CRE0

0 0 0 0 0 0
SSRL3 0 0 0

RSVD
0 0 0

W

Reset 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 The SSR bit always reads as zero. A write of zero to this bit has no effect.
2 The CRE0/1 bits are reset to 0b1 by POR. Other resets sources do not reset the bit value.
3 Once written to a 1, the SSRL bit can be reset only to zero by POR.

Figure 7-4. System Reset Control Register (SIU_SRCR)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-16 Freescale Semiconductor

7.3.2.4 External Interrupt Status Register (SIU_EISR)

The external interrupt status register is used to record edge-triggered events on the IRQ0–IRQ15 and
NMI0–NMI1 inputs to the SIU. When an edge-triggered event is enabled in the SIU_IREER or
SIU_IFEER for an IRQn input and then sensed, the corresponding SIU_EISR flag bit is set. The IRQ flag
bit is set, regardless of the state of the corresponding DMA/IRQ enable bit in SIU_DIRER (SIU_DIRER
only affects interrupts and has no effect on enabling/selecting DMA requests). The IRQ flag bit remains
set until cleared by software or through the servicing of a DMA request. The IRQ flag bits are cleared by
writing a 1 to the bits. A write of 0 has no effect.

Table 7-6. SIU_SRCR Field Descriptions

Field Description

SSR Software System Reset. Used to generate a software system reset. Writing a 1 to this bit causes an internal reset.
The software system reset is processed as a synchronous reset. The bit is automatically cleared on the assertion
of any other reset source except a software external reset.
0 Do not generate a software system reset.
1 Generate a software system reset.

RSVD Reserved for system use. Do not write to this bit.

CRE1 Checkstop Reset Enable (enable secondary CPU, Z0, checkstop to generate reset). Writing a 1 to this bit enables
a reset when the e200z0 checkstop reset request input is asserted. The checkstop reset request input is a
synchronous internal reset source. The CRE1 bit defaults to checkstop reset enabled at POR. If this bit is cleared,
it remains cleared until the next POR.
0 No reset occurs when the e200z0 checkstop reset input to the reset controller is asserted.
1 A reset occurs when the e200z0 checkstop reset input to the reset controller is asserted.

CRE0 Checkstop Reset Enable (enable primary CPU, Z6, checkstop to generate reset). Writing a 1 to this bit enables a
reset when the e200z6 checkstop reset request input is asserted. The checkstop reset request input is a
synchronous internal reset source. The CRE0 bit defaults to checkstop reset enabled at POR. If this bit is cleared,
it remains cleared until the next POR.
0 No reset occurs when the e200z6 checkstop reset input to the reset controller is asserted.
1 A reset occurs when the e200z6 checkstop reset input to the reset controller is asserted.

SSRL Software System Reset Lock. This bit is used to disable the software system reset. This bit defaults to 0. A write of
1 disables the SSR bit until the next POR (write once).
0 Enable the SSR bit.
1 Disable the SSR bit.

RSVD Reserved for system use. Do not write to this bit.
Note: Once written to a 1, this bit can be reset to 0 only by POR. When this bit is set, bit 4 is automatically cleared.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-17

7.3.2.5 DMA/Interrupt Request Enable Register (SIU_DIRER)

The SIU_DIRER allows the assertion of a DMA or interrupt request if the corresponding flag bit is set in
the SIU_EISR. The external interrupt request enable bits enable the interrupt. SIU_DIRER only affects
interrupts and has no effect on enabling/selecting DMA requests. There are five interrupt requests from the
SIU to the interrupt controller. The first four interrupts (0 to 3) go from the SIU to the interrupt controller.
The remaining interrupts (4 to 15) are ORed together to form one additional source to the interrupt
controller.

The EIRE bits allow selection of which external interrupt request flag bits cause assertion of the one
interrupt request signal.

Offset: SIU_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
NMI0 NMI1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset w1c w1c 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF
15

EIF
14

EIF
13

EIF
12

EIF
11

EIF
10

EIF
9

EIF
8

EIF
7

EIF
6

EIF
5

EIF
4

EIF
3

EIF
2

EIF
1

EIF
0W

Reset w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 7-5. SIU External Interrupt Status Register (SIU_EISR)

Table 7-7. SIU_EISR Field Descriptions

Field Description

NMI0 Non-Maskable Interrupt Flag for primary CPU (Z6). NMI0 is for the primary core. This bit is set when an
edge-triggered event occurs on the corresponding NMI0 input.
0 No edge-triggered event occurred on the corresponding NMI0 input.
1 An edge-triggered event occurred on the corresponding NMI0 input.

NMI1 Non-Maskable Interrupt Flag for secondary CPU (Z0). NMI1 is for the secondary core. This bit is set when an
edge-triggered event occurs on the corresponding NMI1 input.
0 No edge-triggered event occurred on the corresponding NMI1 input.
1 An edge-triggered event occurred on the corresponding NMI1 input.

EIFn External Interrupt Request Flag n. Set when an edge-triggered event occurs on the corresponding IRQn input.
0 No edge triggered event occurred on the corresponding IRQn input.
1 An edge triggered event occurred on the corresponding IRQn input.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-18 Freescale Semiconductor

7.3.2.6 DMA/Interrupt Request Select Register (SIU_DIRSR)

The SIU_DIRSR allows selection between a DMA or interrupt request for events on the IRQ1–IRQ0
inputs. The SIU_DIRSR selects between DMA and interrupt requests. If the corresponding bits are set in
SIU_EISR and the SIU_DIRER, then the DMA/interrupt request select bit determines whether a DMA or
interrupt request is asserted.

Offset: SIU_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIRE
15

EIRE
14

EIRE
13

EIRE
12

EIRE
11

EIRE
10

EIRE
9

EIRE
8

EIRE
7

EIRE
6

EIRE
5

EIRE
4

EIRE
3

EIRE
2

EIRE
1

EIRE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-6. SIU DMA/Interrupt Request Enable Register (SIU_DIRER)

Table 7-8. SIU_DIRER Field Descriptions

Field Description

EIREn External Interrupt Request Enable n. Enables assertion of the interrupt request from the SIU to the interrupt
controller when an edge triggered event occurs on the IRQn pin.
0 External interrupt request disabled.
1 External interrupt request enabled.

Offset: SIU_BASE + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIRS1 DIRS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-7. DMA/Interrupt Request Select Register (SIU_DIRSR)

Table 7-9. SIU_DIRSR Field Descriptions

Field Description

DIRSn DMA/Interrupt Request Select n. Selects between a DMA or interrupt request when an edge triggered event occurs
on the corresponding IRQn pin.
0 Interrupt request selected.
1 DMA request selected.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-19

7.3.2.7 Overrun Status Register (SIU_OSR)

The SIU_OSR contains flag bits that record an overrun. These flag bits are cleared by writing 1 to the bits
(w1c); writing 0 has no effect.

7.3.2.8 Overrun Request Enable Register (SIU_ORER)

The SIU_ORER contains bits to enable an overrun if the corresponding flag bit is set in the SIU_OSR. If
any overrun request enable bit and the corresponding flag bit are set, the single combined overrun request
from the SIU to the interrupt controller is asserted.

Offset: SIU_BASE + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVF
15

OVF
14

OVF
13

OVF
12

OVF
11

OVF
10

OVF
9

OVF
8

OVF
7

OVF
6

OVF
5

OVF
4

OVF
3

OVF
2

OVF
1

OVF
0W

Reset w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Figure 7-8. Overrun Status Register (SIU_OSR)

Table 7-10. SIU_OSR Field Descriptions

Field Function

OVFn Overrun Flag n. This bit is set when an overrun occurs on the corresponding IRQn pin.
0 No overrun occurred on the corresponding IRQn pin.
1 An overrun occurred on the corresponding IRQn pin.

Offset: SIU_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ORE
15

ORE
14

ORE
13

ORE
12

ORE
11

ORE
10

ORE
9

ORE
8

ORE
7

ORE
6

ORE
5

ORE
4

ORE
3

ORE
2

ORE
1

ORE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-9. Overrun Request Enable Register (SIU_ORER)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-20 Freescale Semiconductor

7.3.2.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)

The SIU_IREER allows rising-edge-triggered events to be enabled on the corresponding IRQn pins.
Setting the corresponding bits in the SIU_IREER and SIU_IFEER enables rising- and falling-edge events.

7.3.2.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)

The SIU_IFEER allows falling-edge-triggered events to be enabled on the corresponding IRQn pins.
Setting the corresponding bits in the SIU_IREER and SIU_IFEER enables rising- and falling-edge events.

Table 7-11. SIU_ORER Field Descriptions

Field Function

OREn Overrun Request Enable n. Enables the corresponding overrun request when an overrun occurs on the
corresponding IRQn pin.
0 Overrun request disabled.
1 Overrun request enabled.

Offset: SIU_BASE + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
NREE01 NREE11

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IREE
15

IREE
14

IREE
13

IREE
12

IREE
11

IREE
10

IREE
9

IREE
8

IREE
7

IREE
6

IREE
5

IREE
4

IREE
3

IREE
2

IREE
1

IREE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Once written, the NREEn bits cannot be changed until the next reset.

Figure 7-10. IRQ Rising-Edge Event Enable Register (SIU_IREER)

Table 7-12. SIU_IREER Field Descriptions

Field Function

NREEn NMI Rising-Edge Event Enable n. These write-once bits enable rising-edge-triggered events on the corresponding
NMIn input.
0 Rising edge event disabled.
1 Rising edge event enabled.
Note: Once written, the NREEn bits cannot be changed until the next reset.

IREEn IRQ Rising-Edge Event Enable n. Enables rising-edge triggered events on the corresponding IRQn pin.
0 Rising edge event disabled.
1 Rising edge event enabled.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-21

7.3.2.11 External IRQ Digital Filter Register (SIU_IDFR)

The SIU_IDFR specifies the amount of digital filtering on the IRQ0–IRQ15 pins. The digital filter length
field specifies the number of system clocks that define the period of the digital filter and the minimum time
a signal must be held in the active state on the IRQ pins to be recognized as an edge-triggered event.

Offset: SIU_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
NFEE01 NFEE11

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IFEE
15

IFEE
14

IFEE
13

IFEE
12

IFEE
11

IFEE
10

IFEE
9

IFEE
8

IFEE
7

IFEE
6

IFEE
5

IFEE
4

IFEE
3

IFEE
2

IFEE
1

IFEE
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Once written, the NFEEn bits cannot be changed until the next reset.

Figure 7-11. IRQ Falling-Edge Event Enable Register (SIU_IFEER)

Table 7-13. SIU_IFEER Field Descriptions

Field Function

NFEEn NMI Falling-Edge Event Enable n. These write-once bits enable rising-edge triggered events on the corresponding
NMIn input.
0 Falling edge event disabled.
1 Falling edge event enabled.
Note: Once written, the NFEEn bits cannot be changed until the next reset.

IFEEn IRQ Falling-Edge Event Enable n. Enables falling-edge triggered events on the corresponding IRQn pin.
0 Falling edge event disabled.
1 Falling edge event enabled.

Offset: SIU_BASE + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-12. External IRQ Digital Filter Register (SIU_IDFR)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-22 Freescale Semiconductor

7.3.2.12 IRQ Filtered Input Register (SIU_IFIR)

This is a read-only register that captures the output of the NMIn and IRQn digital input filters.

7.3.2.13 Pad Configuration Registers (SIU_PCR)

The following subsections define the SIU_PCRs for all device pins that allow configuration of the pin
function, direction, and static electrical attributes. The information presented pertains to which bits and
fields are active for a given pin or group of pins, and the register reset state. The reset state of SIU_PCRs
in the following sections is prior to executing the boot-assist module (BAM) program. The BAM program
may change SIU_PCRs based on reset configuration. See the BAM section of the manual for more detail.

For all SIU_PCRs:

Table 7-14. SIU_IDFR Field Descriptions

Field Function

DFL
Digital Filter Length. Defines digital filter period on the IRQn inputs according to the following equation:

For a 116 MHz system clock, this gives a range of 15.6 ns to 256 s. The minimum time of two clocks accounts for
synchronization of the IRQ input pins with the system clock.

Offset: SIU_BASE + 0x0034 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FNMI0 FNMI1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FI15 FI14 FI13 FI12 IFI11 FI10 FI9 FI8 FI7 FI6 FI5 FI4 FI3 FI2 FI1 FI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-13. External IRQ Filtered Input Register (SIU_IFIR)

Table 7-15. SIU_IFIR Field Descriptions

Field Function

FNMI0 Filtered Non-Maskable Interrupt 0. This bit is set/cleared for the corresponding NMI pin:
0 A logic one has passed through the NMI digital filter for NMI0 pin.
1 A logic zero has passed through the NMI digital filter for NMI0 pin.

FNMI1 Filtered Non-Maskable Interrupt 1. This bit is set/cleared for the corresponding NMI pin:
0 A logic one has passed through the NMI digital filter for NMI1 pin.
1 A logic zero has passed through the NMI digital filter for NMI1 pin.

FIn Filtered Input n. This bit is set/cleared for the corresponding filtered IRQ pin:
0 A logic one has passed through the IRQ digital filter for the corresponding IRQ pin.
1 A logic zero has passed through the IRQ digital filter for the corresponding IRQ pin.

Filter Period SystemClockPeriod 2
DFL

 1 S ystemClockPeriod +=

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-23

• If the pin is configured as an input, the ODE and SRC bits do not apply.

• If the pin is configured as an output, the HYS bit does not apply.

• When a pin is configured as an output, the weak internal pull up/down is disabled, regardless of the
WPE or WPS settings in the SIU_PCR.

IBE and OBE bit definitions are specific to each SIU_PCR. When an I/O function is input- or output-only,
the IBE and OBE bits do not have to be set to enable the input or output. When an I/O function can be
either an input and output, the IBE and OBE bits must be set accordingly (IBE = 1 for input, and OBE = 1
for output). For I/O functions that change direction dynamically, such as the MLBSIG and MLBDAT,
switching between input and output is handled internally, and the IBE and OBE bits have no effect.

For all SIU_PCRs where GPIO function is available on the pin, if the pin is configured as an output and
the IBE bit is set, the actual pin value is reflected in the corresponding GPDIn register. Negating the IBE
bit when the pin is configured as an output reduces noise and power consumption. Reads from the GPDIn
registers are undefined when the corresponding IBE bit is negated.

The SIU_PCRs are 16-bit registers that may be read or written as 32-bit values aligned on 32-bit address
boundaries. Table 7-16 describes the SIU_PCR fields.

NOTE
Not all of the fields may be present in a given SIU_PCR, depending on the
type of pad it controls. See the specific SIU_PCR definition.

For all SIU_PCRs, the associated pin supports GPIO and as many as three alternate functions. The PA field
is defined in Table 7-16. For all SIU_PCRs of this type, a value of 0b11 selects Function 3, a value of 0b10
selects Function 2, the value 0b01 selects Function 1, and a value 0b00 selects GPIO.

All pins are named according to their associated parallel port name and associated bit number. For
example, the Port A pins are named PA0 to PA15 (these pin names should not be confused with the PA
bitfield, which is present in every SIU_PCR.) See Table 2-1 in Section Chapter 2, “Signal Description,”
for a list of pins and their functions, including values for the PA bitfield for setting the function of each
GPIO pin.

NOTE
Table 2-1 lists the available functions for each pin. Do not select reserved
values for the PA bitfield.

Some SIU_PCRs contain a slew rate control (SRC) field. Slew rate control pertains to pins with slow or
medium I/O pad types. The SRC field for all SIU_PCRs with slew rate control is defined in Table 7-16.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-24 Freescale Semiconductor

Table 7-16. SIU_PCR Field Descriptions

Field Description

PA Pin Assignment. Selects a multiplexed pad function. A separate port enable output signal from the SIU is asserted
for each register value.

OBE Output Buffer Enable. Enables the pad as an output and drives the output buffer enable signal.
0 Output buffer for the pad disabled.
1 Output buffer for the pad enabled.

IBE Input Buffer Enable. Enables the pad as an input and drives the input buffer enable signal.
0 Input buffer for the pad disabled.
1 Input buffer for the pad enabled.

DSC Drive Strength Control. Controls the drive strength control output signals from the SIU. The output signals are driven
to the value of this field. The actual drive strengths are defined by the implementation of the pad devices for a given
device.

Note: DSC is applicable to fast pads only. See Table 2-1 in Chapter 2, “Signal Description,” for a listing of pad types.

ODE Open Drain Output Enable. Controls output driver configuration for the pads. Either open drain or push/pull driver
configurations can be selected. This feature applies only when pins are configured as outputs.
0 Open drain disabled for the pad (push/pull driver enabled).
1 Open drain enabled for the pad.

HYS Input Hysteresis. Controls whether hysteresis is enabled for the pad.
0 Hysteresis disabled for the pad.
1 Hysteresis enabled for the pad.

PA Field Pin Function

0b00 GPIO

0b01 Function 1

0b10 Function 2

0b11 Function 3

DSC Drive Strength

0b00 10 pF Drive Strength

0b01 20 pF Drive Strength

0b10 30 pF Drive Strength

0b11 50 pF Drive Strength

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-25

7.3.2.13.1 Pad Configuration Registers 0–15 (SIU_PCR0–SIU_PCR15)

The SIU_PCR0 to SIU_PCR15 registers control the pin function and static electrical attributes of the
Port A pins PA0 to PA15 (input only). For each pin, Table 2-1 lists the signals available as the PA settings
for Function1, Function2, and Function3.

See Table 7-16 for bit field definitions.

7.3.2.13.2 Pad Configuration Registers 16–143 (SIU_PCR16–SIU_PCR143) and 147–154
(SIU_PCR147–SIU_PCR154)

The SIU_PCR16 to SIU_PCR143 and SIU_PCR147 to SIU_PCR154 registers control the pin function,
direction, and static electrical attributes of the Port B (PB0–PB15), Port C (PC0–PC15), Port D
(PD0–PD15), Port E (PE0–PE15), Port F (PF0–PF15), Port G (PG0–PG15), Port H (PH0–PH15), Port J
(PJ0–PJ15), and Port K (PK0–PK10) pins, except for Port K pins PK[0:2], which are shown in

SRC Slew Rate Control. Controls slew rate for the pad. Slew rate control pertains to pins with slow or medium I/O pad
types, and the output signals are driven according to the value of this field. Actual slew rate is dependent on the pad
type and load. See the MPC5668x Microcontroller Family Data Sheet for this information.

Note: SRC is applicable to slow or medium pads only. See Table 2-1 in Chapter 2, “Signal Description,” for a listing
of pad types.

WPE Weak Pullup/Down Enable. Controls whether the weak pullup/down devices are enabled/disabled for the pad.
0 Weak pull device is disabled for the pad.
1 Weak pull device is enabled for the pad.

WPS Weak Pullup/Down Select. Controls whether weak pullup or weak pulldown devices are used for the pad when weak
pullup/down devices are enabled.
0 Pulldown value enabled for the pad.
1 Pullup value enabled for the pad.

Offset: SIU_BASE + 0x0040–SIU_BASE + 0x005E Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA

0
IBE

0 0 0
HYS

0 0
WPE WPS

W

Reset 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0
1 A write to this bit has no effect. A read will return the written value.

Figure 7-14. Port A Pad Configuration Registers (SIU_PCR0–SIU_PCR15)

Table 7-16. SIU_PCR Field Descriptions (continued)

Field Description

SRC Slew Rate

0b00 Minimum slew rate (slowest)

0b01 Medium slew rate

0b10 Reserved

0b11 Maximum slew rate (fastest)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-26 Freescale Semiconductor

Section 7.3.2.13.3, “Pad Configuration Registers 144–146 (SIU_PCR144–SIU_PCR146).” For each pin,
Table 2-1 lists the signals that are available as the PA settings for Function1, Function2, and Function3.

See Table 7-16 for bit field definitions.

7.3.2.13.3 Pad Configuration Registers 144–146 (SIU_PCR144–SIU_PCR146)

The SIU_PCR144 to SIU_PCR146 registers control the pin function, direction, and static electrical
attributes of the Port K pins 0–2 (PK0–PK2). For each pin, Table 2-1 lists the signals that are available as
the PA settings for Function1, Function2, and Function3.

See Table 7-16 for bit field definitions.

7.3.2.14 GPIO Pin Data Output Registers (SIU_GPDO16_19–SIU_GPDO152_154)

The SIU_GPDO16_19 register definition is in Figure 7-17. All other SIU_GPDOn registers follow the
same pattern where four GPDO bits are placed in a 32-bit word, with one bit per byte. Each of the 139
PDO bits corresponds to a port pin in the order given in Table 7-18. Gaps exist in this memory space where
the pin is not available in the package.

NOTE
On MPC5668x, the Port A pins are only general-purpose inputs. Therefore,
there are no output data registers associated with these pins.

The SIU_GPDOn registers are written to by software to drive data out on the external GPIO pin. Each byte
of a register drives a single external GPIO pin, which allows the pin state to be controlled independently
from other GPIO pins. Writes to the SIU_GPDOn registers do not affect pin states if the pins are
configured as inputs or as non-GPIO function by the associated pad configuration registers. The
SIU_GPDOn register values are automatically driven to the GPIO pins without software update if the
GPIO pins’ direction changes from input to output.

 Offset: SIU_BASE+0x0060–SIU_BASE+0x015E; SIU_BASE+0x0166–SIU_BASE+0x0174 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE IBE

0 0
ODE HYS SRC WPE WPS

W

Reset 0 0 0 0 0 0 0 U1 0 0 0 0 0 0 01 0
1 The reset value is 1 for SIU_PCR153 (BOOTCFG), 0 for all other SIU_PCRs in this range.

Figure 7-15. Port B to Port K Pad Config Registers (SIU_PCR16–SIU_PCR143, SIU_PCR147–SIU_PCR154)

 Offset: SIU_BASE+0x0160–SIU_BASE+0x0164 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PA OBE IBE DSC1 ODE HYS

0 0
WPE WPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 When using PK[0:2] for MLB (PA = 0b01), the recommended value for DSC is 0b11.

Figure 7-16. Port K[0:2] Pad Configuration Registers (SIU_PCR144–SIU_PCR146)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-27

Offset: SIU_BASE + 0x0610–SIU_BASE+0x0698 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 PDO
16

0 0 0 0 0 0 0 PDO
17W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 PDO
18

0 0 0 0 0 0 0 PDO
19W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-17. GPIO Pin Data Out Register 16–19 (SIU_GPDO16_19)

Table 7-17. SIU_GPDOn Field Descriptions

Field Description

PDOn Pin Data Out. Stores the data to be driven out on the external GPIO pin
associated with the register. If the register is read, it returns the value written.
0 VOL driven on the external GPIO pin when the pin is configured as an output.
1 VOH driven on the external GPIO pin when the pin is configured as an output.

Table 7-18. Pin Data Output Register to Pin Mapping

SIU_GPDOn Address Offset Pins

16_19
20_23
24_27
28_31

0x0610
0x0614
0x0618
0x061C

PB0–PB3
PB4–PB7
PB8–PB11

PB12–PB15

32_35
36_39
40_43
44_47

0x0620
0x0624
0x0628
0x062C

PC0–PC3
PC4–PC7

PC8–PC11
PC12–PC15

48_51
52_55
56_59
60_63

0x0630
0x0634
0x0638
0x063C

PD0–PD3
PD4–PD7

PD8–PD11
PD12–PD15

64_67
68_71
72_75
76_79

0x0640
0x0644
0x0648
0x064C

PE0–PE3
PE4–PE7
PE8–PE11

PE12–PE15

80_83
84_87
88_91
92_95

0x0650
0x0654
0x0658
0x065C

PF0–PF3
PF4–PF7

PF8–PF11
PF12–PF15

96_99
100_103
104_107
108_111

0x0660
0x0664
0x0668
0x066C

PG0–PG3
PG4–PG7

PG8–PG11
PG12–PG15

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-28 Freescale Semiconductor

7.3.2.15 GPIO Pin Data Input Registers (SIU_GPDI0_3–SIU_GPDI152_154)

The definition of the SIU_GPDI0_3 register is given in Figure 7-18. All other SIU_GPDIn registers follow
the same pattern where 4 GPDI bits are placed in a 32-bit word, with one bit per byte. Each of the 155
GPDI bits correspond to the port pin (Table 7-20). Gaps exist in this memory space where the pin is not
available in the package.

The SIU_GPDIn registers are read-only registers that allow software to read the input state of an external
GPIO pin. Each byte of a register represents the input state of a single external GPIO pin. If the GPIO pin
is configured as an output, and the input buffer enable (IBE) bit is set in the associated Pad Configuration
Register, the SIU_GPDIn register reflects the actual state of the output pin.

112_115
116_119
120_123
124_127

0x0670
0x0674
0x0678
0x067C

PH0–PH3
PH4–PH7

PH8–PH11
PH12–PH15

128_131
132_135
136_139
140_143

0x0680
0x0684
0x0688
0x068C

PJ0–PJ3
PJ4–PJ7
PJ8–PJ11

PJ12–PJ15

144_147
148_151
152_154

0x0690
0x0694
0x0698

PK0–PK3
PK4–PK7
PK8–PK10

Offset: SIU_BASE + 0x0800–SIU_BASE+0x0891 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 PDI0 0 0 0 0 0 0 0 PDI1

W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 PDI2 0 0 0 0 0 0 0 PDI3

W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

Figure 7-18. GPIO Pin Data Input Register 0–3 (SIU_GPDI0_3)

Table 7-19. SIU_GPDIn Field Description

Field Description

PDIn Pin Data In. This bit reflects the input state on the external GPIO pin associated with the register.
0 Signal on pin is less than or equal to VIL.
1 Signal on pin is greater than or equal to VIH.

Table 7-18. Pin Data Output Register to Pin Mapping (continued)

SIU_GPDOn Address Offset Pins

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-29

7.3.2.16 IMUX Select Register 1 (SIU_ISEL1)

The SIU_ISEL1 selects the source for the external interrupt. The selection is made in conjunction with
SIU_ISEL2 and SIU_ISEL2A registers. Figure 7-72 shows how ISEL1, ISEL2, and ISEL2A interact.

Table 7-20. GPIO Pin Data Input Register to Pin Mapping

SIU_GPDIn Address Offset Pins

0_3
4_7

8_11
12_15

0x0800
0x0804
0x0808
0x080C

PA0–PA3
PA4–PA7
PA8–PA11

PA12–PA15

16_19
20_23
24_27
28_31

0x0810
0x0814
0x0818
0x081C

PB0–PB3
PB4–PB7
PB8–PB11

PB12–PB15

32_35
36_39
40_43
44_47

0x0820
0x0824
0x0828
0x082C

PC0–PC3
PC4–PC7
PC8–PC11

PC12–PC15

48_51
52_55
56_59
60_63

0x0830
0x0834
0x0838
0x083C

PD0–PD3
PD4–PD7
PD8–PD11

PD12–PD15

64_67
68_71
72_75
76_79

0x0840
0x0844
0x0848
0x084C

PE0–PE3
PE4–PE7
PE8–PE11

PE12–PE15

80_83
84_87
88_91
92_95

0x0850
0x0854
0x0858
0x085C

PF0–PF3
PF4–PF7

PF8–PF11
PF12–PF15

96_99
100_103
104_107
108_111

0x0860
0x0864
0x0868
0x086C

PG0–PG3
PG4–PG7

PG8–PG11
PG12–PG15

112_115
116_119
120_123
124_127

0x0870
0x0874
0x0878
0x087C

PH0–PH3
PH4–PH7
PH8–PH11

PH12–PH15

128_131
132_135
136_139
140_143

0x0880
0x0884
0x0888
0x088C

PJ0–PJ3
PJ4–PJ7
PJ8–PJ11

PJ12–PJ15

144_147
148_151
152_154

0x0890
0x0894
0x0898

PK0–PK3
PK4–PK7
PK8–PK10

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-30 Freescale Semiconductor

Offset: SIU_BASE + 0x0904 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ESEL7 ESEL6 ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-19. IMUX Select Register 1 (SIU_ISEL1)

Table 7-21. SIU_ISEL1 Field Descriptions

Field Description1

ESEL15 External IRQ Input Select 15. Specifies input for IRQ15.
00 PB15 pin.
01 PC15 pin.
10 PD15 pin.
11 ISEL2.

ESEL14 External IRQ Input Select 14. Specifies input for IRQ14.
00 PB14 pin.
01 PC14 pin.
10 PD14 pin.
11 ISEL2.

ESEL13 External IRQ Input Select 13. Specifies input for IRQ13.
00 PB13 pin.
01 PC13 pin.
10 PD13 pin.
11 ISEL2.

ESEL12 External IRQ Input Select 12. Specifies input for IRQ12.
00 PB12 pin.
01 PC12 pin.
10 PD12 pin.
11 ISEL2.

ESEL11 External IRQ Input Select 11. Specifies input for IRQ11.
00 PB11 pin.
01 PC11 pin.
10 PD11 pin.
11 ISEL2.

ESEL10 External IRQ Input Select 10. Specifies input for IRQ10.
00 PB10 pin.
01 PC10 pin.
10 PD10 pin.
11 ISEL2.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-31

ESEL9 External IRQ Input Select 9. Specifies input for IRQ9.
00 PB9 pin.
01 PC9 pin.
10 PD9 pin.
11 ISEL2.

ESEL8 External IRQ Input Select 8. Specifies input for IRQ8.
00 PB8 pin.
01 PC8 pin.
10 PD8 pin.
11 ISEL2.

ESEL7 External IRQ Input Select 7. Specifies input for IRQ7.
00 PB7 pin.
01 PC7 pin.
10 PD7 pin.
11 ISEL2.

ESEL6 External IRQ Input Select 6. Specifies input for IRQ6.
00 PB6 pin.
01 PC6 pin.
10 PD6 pin.
11 ISEL2.

ESEL5 External IRQ Input Select 5. Specifies input for IRQ5.
00 PB5 pin.
01 PC5 pin.
10 PD5 pin.
11 ISEL2.

ESEL4 External IRQ Input Select 4. Specifies input for IRQ4.
00 PB4 pin.
01 PC4 pin.
10 PD4 pin.
11 ISEL2.

ESEL3 External IRQ Input Select 3. Specifies input for IRQ3.
00 PB3 pin.
01 PC3 pin.
10 PD3 pin.
11 ISEL2.

ESEL2 External IRQ Input Select 2. Specifies input for IRQ2.
00 PB2 pin.
01 PC2 pin.
10 PD2 pin.
11 ISEL2.

Table 7-21. SIU_ISEL1 Field Descriptions (continued)

Field Description1

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-32 Freescale Semiconductor

ESEL1 External IRQ Input Select 1. Specifies input for IRQ1.
00 PB1 pin.
01 PC1 pin.
10 PD1 pin.
11 ISEL2.

ESEL0 External IRQ Input Select 0. Specifies input for IRQ0.
00 PB0 pin.
01 PC0 pin.
10 PD0 pin.
11 ISEL2.

1 Pins specified in this table must be configured as general purpose inputs to be used as external IRQs.

Table 7-21. SIU_ISEL1 Field Descriptions (continued)

Field Description1

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-33

7.3.2.17 IMUX Select Register 2 (SIU_ISEL2)

The SIU_ISEL2 register selects the source for the external interrupt. The selection is made in conjunction
with SIU_ISEL1 and SIU_ISEL2A. Figure 7-72 shows how ISEL1, ISEL2, and ISEL2A interact.

Offset: SIU_BASE + 0x0908 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ESEL7 ESEL6 ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-20. IMUX Select Register 2 (SIU_ISEL2)

Table 7-22. SIU_ISEL2 Field Descriptions

Field Description

ESEL15 External IRQ Input Select 15. Specifies input for IRQ15.
00 PE15 pin.
01 PF15 pin.
10 PG15 pin.
11 ISEL2A.

ESEL14 External IRQ Input Select 14. Specifies input for IRQ14.
00 PE14 pin.
01 PF14 pin.
10 PG14 pin.
11 ISEL2A.

ESEL13 External IRQ Input Select 13. Specifies input for IRQ13.
00 PE13 pin.
01 PF13 pin.
10 PG13 pin.
11 ISEL2A.

ESEL12 External IRQ Input Select 12. Specifies input for IRQ12.
00 PE12 pin.
01 PF12 pin.
10 PG12 pin.
11 ISEL2A.

ESEL11 External IRQ Input Select 11. Specifies input for IRQ11.
00 PE11 pin.
01 PF11 pin.
10 PG11 pin.
11 ISEL2A.

ESEL10 External IRQ Input Select 10. Specifies input for IRQ10.
00 PE10 pin.
01 PF10 pin.
10 PG10 pin.
11 ISEL2A.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-34 Freescale Semiconductor

ESEL9 External IRQ Input Select 9. Specifies input for IRQ9.
00 PE9 pin.
01 PF9 pin.
10 PG9 pin.
11 ISEL2A.

ESEL8 External IRQ Input Select 8. Specifies input for IRQ8.
00 PE8 pin.
01 PF8 pin.
10 PG8 pin.
11 ISEL2A.

ESEL7 External IRQ Input Select 7. Specifies input for IRQ7.
00 PE7 pin.
01 PF7 pin.
10 PG7 pin.
11 ISEL2A.

ESEL6 External IRQ Input Select 6. Specifies input for IRQ6.
00 PE6 pin.
01 PF6 pin.
10 PG6 pin.
11 ISEL2A.

ESEL5 External IRQ Input Select 5. Specifies input for IRQ5.
00 PE5 pin.
01 PF5 pin.
10 PG5 pin.
11 ISEL2A.

ESEL4 External IRQ Input Select 4. Specifies input for IRQ4.
00 PE4 pin.
01 PF4 pin.
10 PG4 pin.
11 ISEL2A.

ESEL3 External IRQ Input Select 3. Specifies input for IRQ3.
00 PE3 pin.
01 PF3 pin.
10 PG3 pin.
11 ISEL2A.

ESEL2 External IRQ Input Select 2. Specifies input for IRQ2.
00 PE2 pin.
01 PF2 pin.
10 PG2 pin.
11 ISEL2A.

Table 7-22. SIU_ISEL2 Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-35

7.3.2.18 IMUX Select Register 4 (SIU_ISEL4)

The SIU_ISEL4 register specifies the source for the trigger input for ADC.

ESEL1 External IRQ Input Select 1. Specifies input for IRQ1.
00 PE1 pin.
01 PF1 pin.
10 PG1 pin.
11 ISEL2A.

ESEL0 External IRQ Input Select 0. Specifies input for IRQ0.
00 PE0 pin.
01 PF0 pin.
10 PG0 pin.
11 ISEL2A.

Offset: SIU_BASE + 0x0910 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
TSEL1

0
TSEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-21. ADC Trigger Input Select Register 4 (SIU_ISEL4)

Table 7-23. SIU_ISEL4 Field Descriptions

Field Description

TSEL0 ADC External Trigger for start of conversion.
000_0000 PE10.
000_0001 PE11.
000_0010 PE12.
000_0011 PE13.
000_0100 PIT2.
000_0101 – 111_1111 Reserved (default is PE10).

TSEL1 Trigger for injected trigger.
000_0000 PE10.
000_0001 PE11.
000_0010 PE12.
000_0011 PE13.
000_0100 PIT2.
000_0101 – 111_1111 Reserved (default is PE10).

Table 7-22. SIU_ISEL2 Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-36 Freescale Semiconductor

7.3.2.19 Chip Configuration Register (SIU_CCR)

Offset: SIU_BASE + 0x0980 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MATCH DISNEX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 TEST
LOCK

0 0 0 0 0 01 02

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Writes to this bit have no effect, but reads return the written value.
2 Reserved, do not write.

Figure 7-22. Chip Configuration Register (SIU_CCR)

Table 7-24. SIU_CCR Field Descriptions

Field Description

MATCH Compare Register Match. The MATCH bit is a read-only bit that holds the value of the match input signal to the
SIU. The match input is asserted if the serial boot password provided by the user matches the password stored
in the flash.
0 Match input signal is negated.
1 Match input signal is asserted.

DISNEX Disable Nexus. The DISNEX bit is a read-only bit that holds the value of the Nexus disable input signal to the SIU.
When system reset negates, the value in this bit depends on the censorship control word and the boot
configuration bits.
0 Nexus disable input signal negated.
1 Nexus disable input signal asserted.

TESTLOCK TEST Lock. The TESTLOCK bit prevents access to Freescale internal test features.
These internal test features are enabled by writing to reserved test bits in the device. Setting the TESTLOCK bit
locks the test bits so that they cannot be changed inadvertently by runaway code.
Customer initialization code should always set this bit.
0 Internal test features could be enabled.
1 Internal test features are disabled.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-37

7.3.2.20 External Clock Control Register (SIU_ECCR)

The SIU_ECCR controls the timing relationship between the system clock and the external clocks,
CLKOUT. All bits and fields in the SIU_ECCR are read/write and reset by the asynchronous reset signal.

Offset: SIU_BASE + 0x0984 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 01 01 01 01 01 01 01 01 01 0 0 0
ECEN

0
ECDF

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 Writes to this bit have no effect, but reads return the written value.

Figure 7-23. External Clock Control Register (SIU_ECCR)

Table 7-25. SIU_ECCR Field Descriptions

Field Description

ECEN External Clock Enable. The ECEN bit enables CLKOUT. The CLKOUT waveform is determined by ECDF divides
relative to the internal system clock.
Note: To correctly reflect the CLKOUT waveform to the external pin, the SIU_PCR for the CLKOUT pin needs to

be configured.

0 Disable CLKOUT waveform.
1 Enable CLKOUT waveform.

ECDF External Clock Division Factor. Specifies frequency ratio between system clock and external clock, CLKOUT. The
CLKOUT frequency is divided from the system clock frequency according to the descriptions below.
00 Divide by 1.
01 Divide by 2 (default value).
10 Divide by 4.
11 Divide by 8.

Note: If ECDF is equal to 0b00 and SIU_SYSCLK[SYSCLKDIV] is not equal to 0b000, then the CLKOUT pin will
not have a nominal 50% duty cycle.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-38 Freescale Semiconductor

7.3.2.21 General Purpose Register 0–3 (SIU_GPRn)

The SIU_GPRn registers provide general-purpose read/write registers for customer use.

7.3.2.22 System Clock Register (SIU_SYSCLK)

The SIU_SYSCLK register controls the source for the system clock, the divider for the system clock, and
eight fields that control the clock divider for groups of peripherals. For a listing of which peripherals are
associated with which LPCLKDIV bit on MPC5668x, see Section 4.3.5, “Peripheral Clock Dividers.”

Offset: SIU_BASE + 0x0988 (SIU_GPR0)
0x098C (SIU_GPR1)

0x0990 (SIU_GPR2)
0x0994 (SIU_GPR3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
GP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-24. General Purpose Register 0–3 (SIU_GPRn)

Offset: SIU_BASE + 0x09A0 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SYSCLKSEL SYSCLKDIV

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
LPCLKDIV3 LPCLKDIV2 LPCLKDIV1 LPCLKDIV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-25. System Clock Register (SIU_SYSCLK)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-39

7.3.2.23 Halt Register (SIU_HLTn)

The SIU_HLTn register is used to halt the various peripherals by disabling the clocks to the module.
Writing a 1 to a HLTn bit drives a separate halt request to the associated peripheral. After completing any
task in progress, the peripheral shuts down its clock input and signals to the SIU_HLTACKn register that
it has halted. Writing a 0 to a HLTn bit drives a separate request to the associated peripheral causes the
peripheral to restart its clock input and signals to the SIU_HLTACKn register that it has restarted.

Writes to bits in SIU_HLTn that are not associated with a peripheral are reflected in the SIU_HLTn register
and in the SIU_HLTACKn register, but have no other effect.

Table 7-26. SIU_SYSCLK Field Descriptions

Field Description

SYSCLKSEL System Clock Select. The SYSCLKSEL bit selects the source for the system clock.
00 System clock supplied by 16 MHz IRC.
01 System clock supplied by 4 – 40 MHz_XTAL.
10 System clock supplied by FMPLL.
11 Reserved (defaults to 16 MHz IRC).
Note: The default SYSCLKSEL value may be modified by the BAM code execution to 0b01 to select the

4–40 MHz XTAL as the system clock source to support the serial download operation. Please see
Chapter 8, “Boot Assist Module (BAM),” for more details.

SYSCLKDIV System Clock Divide. The SYSCLKDIV bits select the divider value for the system clock. The SYSCLKDIV
divider is required in addition to the RFD to allow the other sources for the system clock (16 MHz IRC and
4 – 40 MHz XTAL) to be divided to slowest frequencies to improve power consumption.
000 Divide by 1.
001 Divide by 2.
010 Divide by 4.
011 Divide by 8.
100 Divide by 16.
101 – 111 Reserved (defaults to divide by 1).

LPCLKDIVn Low-Power Peripheral Clock Divides. The LPCLKDIV bits select the divider values for each peripheral group.
00 Divide by 1.
01 Divide by 2.
10 Divide by 4.
11 Divide by 8.

LPCLKDIVn Peripheral Set Number Peripheral Groups

LPCLKDIV0 Peripheral Set 1 eSCI, I2C

LPCLKDIV1 Peripheral Set 2 FlexCAN, SPI

LPCLKDIV2 Peripheral Set 3 ADC, CTU

LPCLKDIV3 Peripheral Set 4 eMIOS

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-40 Freescale Semiconductor

Offset: SIU_BASE + 0x09A4 Access: User read-only

0
1

1
1

2
1

3
1

4
1

5
1

6 7 8
1

9 10 11 12 13 14 15

R 0 0 0 0 0 0 HLT
6

HLT
7

0 HLT
9

HLT
10

HLT
11

HLT
12

HLT
13

HLT
14

HLT
15W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24
1

25
1

26 27 28 29 30
1

31

R HLT
16

HLT
17

HLT
18

HLT
19

HLT
20

HLT
21

HLT
22

HLT
23

0 0 HLT
26

HLT
27

HLT
28

HLT
29

0 HLT
31W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Writes to this bit are reflected in the SIU_HLT0 and SIU_HLTACK0 register, but have no other effect.

Figure 7-26. Halt Register 0 (SIU_HLT0)

Table 7-27. SIU_HLT0 Register Field Descriptions

Field Description

HLT6 Halt bit 6. Setting this bit halts the EMIOS200 module.

HLT7 Halt bit 7. Setting this bit halts the PIT module.

HLT9 Halt bit 9. Setting this bit halts the CTU module.

HLT10 Halt bit 10. Setting this bit halts the FLEXCAN_F module.

HLT11 Halt bit 11. Setting this bit halts the FLEXCAN_E module.

HLT12 Halt bit 12. Setting this bit halts the FLEXCAN_D module.

HLT13 Halt bit 13. Setting this bit halts the FLEXCAN_C module.

HLT14 Halt bit 14. Setting this bit halts the FLEXCAN_B module.

HLT15 Halt bit 15. Setting this bit halts the FLEXCAN_A module.

HLT16 Halt bit 16. Setting this bit halts the ESCI_H module.

HLT17 Halt bit 17. Setting this bit halts the ESCI_G module.

HLT18 Halt bit 18. Setting this bit halts the ESCI_F module.

HLT19 Halt bit 19. Setting this bit halts the ESCI_E module.

HLT20 Halt bit 20. Setting this bit halts the ESCI_D module.

HLT21 Halt bit 21. Setting this bit halts the ESCI_C module.

HLT22 Halt bit 22. Setting this bit halts the ESCI_B module.

HLT23 Halt bit 23. Setting this bit halts the ESCI_A module.

HLT26 Halt bit 26. Setting this bit halts the DSPI_B module.

HLT27 Halt bit 27. Setting this bit halts the DSPI_A module.

HLT28 Halt bit 28. Setting this bit halts the I2C_B module.

HLT29 Halt bit 29. Setting this bit halts the I2C_A module.

HLT31 Halt bit 31. Setting this bit halts the ADC module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-41

7.3.2.24 Halt Acknowledge Register (SIU_HLTACKn)

The SIU_HLTACKn bits indicate that the peripheral requested to halt via the HLTn bit has completed its
halt process and has entered a halted state with the peripheral clocks disabled. The HLTACKn bits are
read-only; writes have no effect.

Offset: SIU_BASE + 0x09A8 Access: User read-only

0
1

1
1

2
2

3 4 5
2

6
2

7
2

8
2

9
2

10
2

11
2

12
2

13
2

14
2

15
2

R 0 0 0 HLT
3

HLT
4

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16
2

17
2

18
2

19
2

20 21 22 23 24
2

25
2

26 27 28 29 30
2

31
2

R 0 0 0 0 HLT
20

HLT
21

HLT
22

HLT
23

0 0 HLT
26

HLT
27

HLT
28

HLT
29

0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Reserved, do not write to this bit.
2 Writes to this bit are reflected in the SIU_HLT1 and SIU_HLTACK1 register, but have no other effect.

Figure 7-27. Halt Register 1 (SIU_HLT1)

Table 7-28. SIU_HLT1 Register Field Descriptions

Field Description

HLT3 Halt bit 3. Setting this bit halts the DMA module.

HLT4 Halt bit 4. Setting this bit halts the NPC module.

HLT20 Halt bit 20. Setting this bit halts the ESCI_M module.

HLT21 Halt bit 21. Setting this bit halts the ESCI_L module.

HLT22 Halt bit 22. Setting this bit halts the ESCI_K module.

HLT23 Halt bit 23. Setting this bit halts the ESCI_J module.

HLT26 Halt bit 26. Setting this bit halts the DSPI_D module.

HLT27 Halt bit 27. Setting this bit halts the DSPI_C module.

HLT28 Halt bit 28. Setting this bit halts the I2C_D module.

HLT29 Halt bit 29. Setting this bit halts the I2C_C module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-42 Freescale Semiconductor

Offset: SIU_BASE + 0x09AC Access: User read-only

0
1

1
1

2
1

3
1

4
1

5
1

6 7 8
1

9 10 11 12 13 14 15

R
0 0 0 0 0 0

HLT
ACK

6

HLT
ACK

7
0

HLT
ACK

9

HLT
ACK
10

HLT
ACK
11

HLT
ACK
12

HLT
ACK
13

HLT
ACK
14

HLT
ACK
15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24
1

25
1

26 27 28 29 30
1

31

R HLT
ACK
16

HLT
CK
17

HLT
ACK
18

HLT
ACK
19

HLT
ACK
20

HLT
ACK
21

HLT
ACK
22

HLT
ACK
23

0 0
HLT
ACK
26

HLT
ACK
27

HLT
ACK
28

HLT
ACK
29

0
HLT
ACK
31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Setting the corresponding bit in SIU_HLT0 sets this bit, but has no other effect.

Figure 7-28. Halt Acknowledge Register 0 (SIU_HLTACK0)

Table 7-29. SIU_HLTACK0 Register Field Descriptions

Field Description

HLTACK6 Halt acknowledge bit 6. When this bit is set, the EMIOS200 module is halted.

HLTACK7 Halt acknowledge bit 7. When this bit is set, the PIT module is halted.

HLTACK9 Halt acknowledge bit 9. When this bit is set, the CTU module is halted.

HLTACK10 Halt acknowledge bit 10. When this bit is set, the FLEXCAN_F module is halted.

HLTACK11 Halt acknowledge bit 11. When this bit is set, the FLEXCAN_E module is halted.

HLTACK12 Halt acknowledge bit 12. When this bit is set, the FLEXCAN_D module is halted.

HLTACK13 Halt acknowledge bit 13. When this bit is set, the FLEXCAN_C module is halted.

HLTACK14 Halt acknowledge bit 14. When this bit is set, the FLEXCAN_B module is halted.

HLTACK15 Halt acknowledge bit 15. When this bit is set, the FLEXCAN_A module is halted.

HLTACK16 Halt acknowledge bit 16. When this bit is set, the ESCI_H module is halted.

HLTACK17 Halt acknowledge bit 17. When this bit is set, the ESCI_G module is halted.

HLTACK18 Halt acknowledge bit 18. When this bit is set, the ESCI_F module is halted.

HLTACK19 Halt acknowledge bit 19. When this bit is set, the ESCI_E module is halted.

HLTACK20 Halt acknowledge bit 20. When this bit is set, the ESCI_D module is halted.

HLTACK21 Halt acknowledge bit 21. When this bit is set, the ESCI_C module is halted.

HLTACK22 Halt acknowledge bit 22. When this bit is set, the ESCI_B module is halted.

HLTACK23 Halt acknowledge bit 23. When this bit is set, the ESCI_A module is halted.

HLTACK26 Halt acknowledge bit 26. When this bit is set, the DSPI_B module is halted.

HLTACK27 Halt acknowledge bit 27. When this bit is set, the DSPI_A module is halted.

HLTACK28 Halt acknowledge bit 28. When this bit is set, the I2C_B module is halted.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-43

HLTACK29 Halt acknowledge bit 29. When this bit is set, the I2C_A module is halted.

HLTACK31 Halt acknowledge bit 31. When this bit is set, the ADC module is halted.

Offset: SIU_HLTACK1: SIU_BASE + 0x09B0 Access: User read-only

0 1 2
1

3 4 5
1

6
1

7
1

8
1

9
1

10
1

11
1

12
1

13
1

14
1

15
1

R HLT
ACK

0

HLT
ACK

1
0

HLT
ACK

3

HLT
ACK

4
0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16
1

17
1

18
1

19
1

20 21 22 23 24
1

25
1

26 27 28 29 30
1

31
1

R
0 0 0 0

HLT
ACK
20

HLT
ACK
21

HLT
ACK
22

HLT
ACK
23

0 0
HLT
ACK
26

HLT
ACK
27

HLT
ACK
28

HLT
ACK
29

0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Setting the corresponding bit in SIU_HLT0 sets this bit, but has no other effect.

Figure 7-29. Halt Acknowledge Register 1 (SIU_HLTACK1)

Table 7-30. SIU_HLTACK1 Register Field Descriptions

Field Description

HLTACK0 Halt acknowledge bit 0. When this bit is set, the Z6 core is halted.
Note: This flag indicates a core-generated halt, not a halt caused by writing to SIU_HLT10[HLT0].

HLTACK1 Halt acknowledge bit 1. When this bit is set, the Z0 core is halted.
Note: This flag indicates a core-generated halt, not a halt caused by writing to SIU_HLT1[HLT1].

HLTACK3 Halt acknowledge bit 3. When this bit is set, the DMA module is halted.

HLTACK4 Halt acknowledge bit 4. When this bit is set, the NPC module is halted.

HLTACK20 Halt acknowledge bit 20. When this bit is set, the ESCI_M module is halted.

HLTACK21 Halt acknowledge bit 21. When this bit is set, the ESCI_L module is halted.

HLTACK22 Halt acknowledge bit 22. When this bit is set, the ESCI_K module is halted.

HLTACK23 Halt acknowledge bit 23. When this bit is set, the ESCI_J module is halted.

HLTACK26 Halt acknowledge bit 26. When this bit is set, the DSPI_D module is halted.

HLTACK27 Halt acknowledge bit 27. When this bit is set, the DSPI_C module is halted.

HLTACK28 Halt acknowledge bit 28. When this bit is set, the I2C_D module is halted.

HLTACK29 Halt acknowledge bit 29. When this bit is set, the I2C_C module is halted.

Table 7-29. SIU_HLTACK0 Register Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-44 Freescale Semiconductor

7.3.2.25 eMIOS Select Register n (SIU_EMIOS_SELn)

The SIU_EMIOS_SELn register specifies the source for the eMIOS[31:0] input channels, thus allowing
the timer input channels to come from the pins, or from the deserialized output of one of the four DSPI
modules. Each 4-bit field (32 fields across the four SIU_EMIOS_SELn registers) in this set of registers
individually controls the setting for one eMIOS input channel.

Offset: SIU_BASE + 0x09B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EMIOSSEL31 EMIOSSEL30 EMIOSSEL29 EMIOSSEL28

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EMIOSSEL27 EMIOSSEL26 EMIOSSEL25 EMIOSSEL24

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-30. eMIOS Select Register 0 (SIU_EMIOS_SEL0)

Offset: SIU_BASE + 0x09B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EMIOSSEL23 EMIOSSEL22 EMIOSSEL21 EMIOSSEL20

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EMIOSSEL19 EMIOSSEL18 EMIOSSEL17 EMIOSSEL16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-31. eMIOS Select Register 1 (SIU_EMIOS_SEL1)

Offset: SIU_BASE + 0x09BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EMIOSSEL15 EMIOSSEL14 EMIOSSEL13 EMIOSSEL12

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EMIOSSEL11 EMIOSSEL10 EMIOSSEL9 EMIOSSEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-32. eMIOS Select Register 2 (SIU_EMIOS_SEL2)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-45

7.3.2.26 External Interrupt Select Register 2A (SIU_ISEL2A)

The SIU_ISEL2A register selects the source for the external interrupts. Figure 7-72 shows how ISEL1,
ISEL2, and ISEL2A interact.

Offset: SIU_BASE + 0x09C0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EMIOSSEL7 EMIOSSEL6 EMIOSSEL5 EMIOSSEL4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EMIOSSEL3 EMIOSSEL2 EMIOSSEL1 EMIOSSEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-33. eMIOS Select Register 3 (SIU_EMIOS_SEL3)

Table 7-31. SIU_EMIOS_SELn Field Descriptions

Field Description

EMIOSSELn eMIOS Channel[n] connection options.
0000–0011 eMIOS[n] input pin.
0100 DSPI_A deserialized output.
0101 DSPI_B deserialized output.
0110 DSPI_C deserialized output.
0111 DSPI_D deserialized output.
1000–1111 eMIOS[n] input pin.

Offset: SIU_BASE + 0x09C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ESEL7 ESEL6 ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-34. External Interrupt Select Register 2A (SIU_ISEL2A)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-46 Freescale Semiconductor

Table 7-32. SIU_ISEL2A Field Descriptions

Field Description

ESEL15 External IRQ Input Select 15. Specifies input for IRQ15.
00 PH15 pin.
01 PJ15 pin.
10 Reserved.
11 Reserved.

ESEL14 External IRQ Input Select 14. Specifies input for IRQ14.
00 PH14 pin.
01 PJ14 pin.
10 Reserved.
11 Reserved.

ESEL13 External IRQ Input Select 13. Specifies input for IRQ13.
00 PH13 pin.
01 PJ13 pin.
10 Reserved.
11 Reserved.

ESEL12 External IRQ Input Select 12. Specifies input for IRQ12.
00 PH12 pin.
01 PJ12 pin.
10 Reserved.
11 Reserved.

ESEL11 External IRQ Input Select 11. Specifies input for IRQ11.
00 PH11 pin.
01 PJ11 pin.
10 Reserved.
11 Reserved.

ESEL10 External IRQ Input Select 10. Specifies input for IRQ10.
00 PH10 pin.
01 PJ10 pin.
10 PK10 pin.
11 Reserved.

ESEL9 External IRQ Input Select 9. Specifies input for IRQ9.
00 PH9 pin.
01 PJ9 pin.
10 PK9 pin.
11 Reserved.

ESEL8 External IRQ Input Select 8. Specifies input for IRQ8.
00 PH8 pin.
01 PJ8 pin.
10 PK8 pin.
11 Reserved.

ESEL7 External IRQ Input Select 7. Specifies input for IRQ7.
00 PH7 pin.
01 PJ7 pin.
10 PK7 pin.
11 Reserved.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-47

ESEL6 External IRQ Input Select 6. Specifies input for IRQ6.
00 PH6 pin.
01 PJ6 pin.
10 PK6 pin.
11 Reserved.

ESEL5 External IRQ Input Select 5. Specifies input for IRQ5.
00 PH5 pin.
01 PJ5 pin.
10 PK5 pin.
11 Reserved.

ESEL4 External IRQ Input Select 4. Specifies input for IRQ4.
00 PH4 pin.
01 PJ4 pin.
10 PK4 pin.
11 Reserved.

ESEL3 External IRQ Input Select 3. Specifies input for IRQ3.
00 PH3 pin.
01 PJ3 pin.
10 PK3 pin.
11 Reserved.

ESEL2 External IRQ Input Select 2. Specifies input for IRQ2.
00 PH2 pin.
01 PJ2 pin.
10 PK2 pin.
11 Reserved.

ESEL1 External IRQ Input Select 1. Specifies input for IRQ1.
00 PH1 pin.
01 PJ1 pin.
10 PK1 pin.
11 Reserved.

ESEL0 External IRQ Input Select 0. Specifies input for IRQ0.
00 PH0 pin.
01 PJ0 pin.
10 PK0 pin.
11 Reserved.

Table 7-32. SIU_ISEL2A Field Descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-48 Freescale Semiconductor

7.3.2.27 Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)

The SIU_PGPDO0 register contains the parallel GPIO pin data output for PB[0:15].

Reads and writes to this register are coherent with the registers SIU_GPDO16_19, SIU_GPDO20_23,
SIU_GPDO24_27, and SIU_GPDO28_31.

NOTE
On the MPC5668x, the port A pins are general-purpose inputs only.
Therefore, there are no parallel GPIO pin data output register bits for port A.

7.3.2.28 Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)

The SIU_PGPDO1 register contains the parallel GPIO pin data output for PC[0:15] and PD[0:15].

Reads and writes to this register are coherent with the registers SIU_GPDO32_35, SIU_GPDO36_39,
SIU_GPDO40_43, SIU_GPDO44_47, SIU_GPDO48_51, SIU_GPDO52_55, SIU_GPDO56_59, and
SIU_GPDO60_63.

Offset: SIU_BASE + 0xC00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PB0:PB15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-35. Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)

Offset: SIU_BASE + 0x0C04 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PC0:PC15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PD0:PD15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-36. Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-49

7.3.2.29 Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)

The SIU_PGPDO2 register contains the Parallel GPIO Pin Data Output for PE[0:15] and PF[0:15].

Reads and writes to this register are coherent with the registers SIU_GPDO64_67, SIU_GPDO68_71,
SIU_GPDO72_75, SIU_GPDO76_79, SIU_GPDO80_83, SIU_GPDO84_87, SIU_GPDO88_91, and
SIU_GPDO92_95.

7.3.2.30 Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)

The SIU_PGPDO3 register contains the parallel GPIO pin data output for PG[0:15]and PH[0:15].

Reads and writes to this register are coherent with the registers SIU_GPDO96_99, SIU_GPDO100_103,
SIU_GPDO104_107, SIU_GPDO108_111, SIU_GPDO112_115, SIU_GPDO116_119,
SIU_GPDO120_123, and SIU_GPDO124_127.

7.3.2.31 Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)

The SIU_PGPDO4 register contains the parallel GPIO pin data output for PJ[0:15] and PK[0:10].

Reads and writes to this register are coherent with the registers SIU_GPDO18_131, SIU_GPDO132_135,
SIU_GPDO136_139, SIU_GPDO140_143, SIU_GPDO144_147, and SIU_GPDO148_151, and
SIU_GPDO152_154.

Offset SIU_BASE + 0x0C08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PE0:PE15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PF0:PF15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-37. Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)

Offset: SIU_BASE + 0x0C0C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PG0:PG15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PH0:PH15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-38. Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-50 Freescale Semiconductor

7.3.2.32 Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)

Reads to the SIU_PGPDI0 register provide the parallel GPIO pin data input for PA[0:15] and PB[0:15].
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI0_3, SIU_GPDI4_7, SIU_GPDI8_11,
SIU_GPDI12_15, SIU_GPDI16_19, SIU_GPDI20_23, SIU_GPDI24_27, and SIU_GPDI28_31.

7.3.2.33 Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)

Reads to the SIU_PGPDI1 register provide the parallel GPIO pin data input for PC0:PC15 and PD0:PD15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI32_35, SIU_GPDI36_39,
SIU_GPDI40_43, SIU_GPDI44_47, SIU_GPDI48_51, SIU_GPDI52_55, SIU_GPDI56_59, and
SIU_GPDI60_63.

Offset: SIU_BASE + 0x0C10 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PJ0:PJ15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PK0:PK10

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-39. Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)

Offset: SIU_BASE + 0x0C40 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PA0:PA15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PB0:PB15

W

Reset U U U U U U U U U U U U U U U U

Figure 7-40. Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-51

7.3.2.34 Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)

Reads to the SIU_PGPDI2 register provide the parallel GPIO pin data input for PE0:PE15 and PF0:PF15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI64_67, SIU_GPDI68_71,
SIU_GPDI72_75, SIU_GPDI76_79, SIU_GPDI80_83, SIU_GPDI84_87, SIU_GPDI88_91, and
SIU_GPDI92_95.

7.3.2.35 Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)

Reads to the SIU_PGPDI2 register provide the parallel GPIO pin data input for PG0:PG15 and PH0:PH15.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI96_99, SIU_GPDI100_103,
SIU_GPDI104_107, SIU_GPDI108_111, SIU_GPDI112_115, SIU_GPDI116_119, SIU_GPDI120_123,
and SIU_GPDI124_127.

Offset: SIU_BASE + 0x0C44 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PC0:PC15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PD0:PD15

W

Reset U U U U U U U U U U U U U U U U

Figure 7-41. Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)

Offset: SIU_BASE + 0x0C48 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PE0:PE15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PF0:PF15

W

Reset U U U U U U U U U U U U U U U U

Figure 7-42. Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-52 Freescale Semiconductor

7.3.2.36 Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)

Reads to the SIU_PGPDI4 register provide the parallel GPIO pin data input for PJ0:PJ15 and PK0:PK10.
Writes have no effect.

Reads of this register are coherent with the registers SIU_GPDI128_131, SIU_GPDI132_135,
SIU_GPDI136_139, SIU_GPDI140_143, SIU_GPDI144_147, SIU_GPDI148_151, and
SIU_GPDI152_154.

7.3.2.37 Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1)

The purpose of the masked parallel GPIO pin data output registers is to allow any combination of bits in
a 16-bit parallel GPIO pin data output port to be updated in a single 32-bit write operation, while allowing
other bits to maintain their previous state. This is accomplished by grouping each 16-bit port with a 16-bit
mask register, and only updating those bits in the data register for which the corresponding mask bit is set.

For example, if the current state of the port B parallel GPIO pin data output register is 0x1234 and you
want to change only bits [12:15] (i.e., the 4) to be an 8, then a 32-bit write with a mask value of 0x000C
and data value of 0x0008 (i.e.,0x000C_0008) would be performed.

The masked parallel GPIO pin data output registers always read as 0.

The SIU_MPGPDO1 register contains the Masked Parallel GPIO Pin Data Output for PB[0:15].

Offset: SIU_BASE + 0x0C4C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PG0:PG15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PH0:PH15

W

Reset U U U U U U U U U U U U U U U U

Figure 7-43. Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)

Offset: SIU_BASE + 0x0C50 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PJ0:PJ15

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PK0:PK10 0 0 0 0 0

W

Reset U U U U U U U U U U U 0 0 0 0 0

Figure 7-44. Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-53

Writes to this register are coherent with the registers SIU_GPDO16_19, SIU_GPDO20_23,
SIU_GPDO24_27, and SIU_GPDO28_31.

7.3.2.38 Masked Parallel GPIO Pin Data Output Register 2 (SIU_MPGPDO2)

The SIU_MPGPDO2 register contains the masked parallel GPIO pin data output for PC[0:15].

Writes to this register are coherent with the registers SIU_GPDO32_35, SIU_GPDO36_39,
SIU_GPDO40_43, and SIU_GPDO44_47.

7.3.2.39 Masked Parallel GPIO Pin Data Output Register 3 (SIU_MPGPDO3)

The SIU_MPGPDO3 register contains the masked parallel GPIO pin data output for PD[0:15].

Writes to this register are coherent with the registers SIU_GPDO48_51, SIU_GPDO52_55,
SIU_GPDO56_59, and SIU_GPDO60_63.

Offset: SIU_BASE + 0x0C84 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PB_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PB[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-45. Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1)

Offset: SIU_BASE + 0x0C88 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PC_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PC[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-46. Masked Parallel GPIO Pin Data Output Register 2 (SIU_MPGPDO2)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-54 Freescale Semiconductor

7.3.2.40 Masked Parallel GPIO Pin Data Output Register 4 (SIU_MPGPDO4)

The SIU_MPGPDO4 register contains the masked parallel GPIO pin data output for PE[0:15].

Writes to this register are coherent with registers SIU_GPDO64_67, SIU_GPDO68_71,
SIU_GPDO72_75, and SIU_GPDO76_79.

7.3.2.41 Masked Parallel GPIO Pin Data Output Register 5 (SIU_MPGPDO5)

The SIU_MPGPDO5 register contains the masked parallel GPIO pin data output for PF[0:15].

Writes to this register are coherent with registers SIU_GPDO80_83, SIU_GPDO84_87,
SIU_GPDO88_91, and SIU_GPDO92_95.

Offset: SIU_BASE + 0x0C8C Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PD_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PD[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-47. Masked Parallel GPIO Pin Data Output Register 3 (SIU_MPGPDO3)

Offset: SIU_BASE + 0x0C90 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PE_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PE[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-48. Masked Parallel GPIO Pin Data Output Register 4 (SIU_MPGPDO4)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-55

7.3.2.42 Masked Parallel GPIO Pin Data Output Register 6 (SIU_MPGPDO6)

The SIU_MPGPDO6 register contains the masked parallel GPIO pin data output for PG[0:15]

Writes to this register are coherent with registers SIU_GPDO96_99, SIU_GPDO100_103,
SIU_GPDO104_107, and SIU_GPDO108_111.

7.3.2.43 Masked Parallel GPIO Pin Data Output Register 7 (SIU_MPGPDO7)

The SIU_MPGPDO7 register contains the masked parallel GPIO pin data output for PH[0:15].

Writes to this register are coherent with registers SIU_GPDO112_115, SIU_GPDO116_119,
SIU_GPDO120_123, and SIU_GPDO124_127.

Offset: SIU_BASE + 0x0C94 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PF_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PF[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-49. Masked Parallel GPIO Pin Data Output Register 5 (SIU_MPGPDO5)

Offset: SIU_BASE + 0x0C98 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PG_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PG[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-50. Masked Parallel GPIO Pin Data Output Register 6 (SIU_MPGPDO6)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-56 Freescale Semiconductor

7.3.2.44 Masked Parallel GPIO Pin Data Output Register 8 (SIU_MPGPDO8)

The SIU_MPGPDO8 register contains the masked parallel GPIO pin data output for PJ[0:15].

Writes to this register are coherent with registers SIU_GPDO128_131, SIU_GPDO132_135,
SIU_GPDO136_139, and SIU_GPDO140_143.

7.3.2.45 Masked Parallel GPIO Pin Data Output Register 9 (SIU_MPGPDO9)

The SIU_MPGPDO8 register contains the masked parallel GPIO pin data output for PK[0:10].

Writes to this register are coherent with registers SIU_GPDO144_147, SIU_GPDO148_151, and
SIU_GPDO152_154.

Offset: SIU_BASE + 0xC9C Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PH_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PH[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-51. Masked Parallel GPIO Pin Data Output Register 7 (SIU_MPGPDO7)

Offset: SIU_BASE + 0x0CA0 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PJ_MASK[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PJ[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-52. Masked Parallel GPIO Pin Data Output Register 8 (SIU_MPGPDO8)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-57

7.3.2.46 Masked Serial GPO Register for DSPI_A High (SIU_DSPIAH)

The SIU_DSPIAH register allows any combination of bits in the top half of the 32-bit serialized data frame
from DSPI_A to be updated with a single 32-bit write operation, while allowing other bits to maintain their
previous state. This is accomplished by writing a 16-bit masked value coherently with an update value
contained in a 16-bit output field, and only updating those bits in the output register for which the
corresponding mask bit is set.

Offset: SIU_BASE + 0x0CA4 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PK_MASK[0:10]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PK[0:10]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-53. Masked Parallel GPIO Pin Data Output Register 9 (SIU_MPGPDO9)

Offset: SIU_BASE + 0x0D00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
31

MASK
30

MASK
29

MASK
28

MASK
27

MASK
26

MASK
25

MASK
24

MASK
23

MASK
22

MASK
21

MASK
20

MASK
19

MASK
18

MASK
17

MASK
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
31

DATA
30

DATA
29

DATA
28

DATA
27

DATA
26

DATA
25

DATA
24

DATA
23

DATA
222

DATA
21

DATA
20

DATA
19

DATA
18

DATA
17

DATA
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-54. Masked Serial GPO Register for DSPI_A High (SIU_DSPIAH)

Table 7-33. SIU_DSPIAH Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_A.
0 The previous value defined by GPO for DSPI_A is maintained.
1 The corresponding GPO for DSPI_A is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_A output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_A when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_A when this output is selected in the DSPI

serialization module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-58 Freescale Semiconductor

7.3.2.47 Masked Serial GPO Register for DSPI_A Low (SIU_DSPIAL)

The SIU_DSPIAL register allows any combination of bits in the bottom half of the 32-bit serialized data
frame from DSPI_A to be updated with a single 32-bit write operation, while allowing other bits to
maintain their previous state. This is accomplished by writing a 16-bit masked value coherently with an
update value contained in a 16-bit output field, and only updating those bits in the output register for which
the corresponding mask bit is set.

7.3.2.48 Masked Serial GPO Register for DSPI_B High (SIU_DSPIBH)

The SIU_DSPIBH register allows any combination of bits in the top half of the 32-bit serialized data frame
from DSPI_B to be updated with a single 32-bit write operation, while allowing other bits to maintain their
previous state. This is accomplished by writing a 16-bit masked value coherently with an update value
contained in a 16-bit output field, and only updating those bits in the output register for which the
corresponding mask bit is set.

Offset: SIU_BASE + 0x0D04 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
15

MASK
14

MASK
13

MASK
12

MASK
11

MASK
10

MASK
9

MASK
8

MASK
7

MASK
6

MASK
5

MASK
4

MASK
3

MASK
2

MASK
1

MASK
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
15

DATA
14

DATA
13

DATA
12

DATA
11

DATA
10

DATA
9

DATA
8

DATA
7

DATA
6

DATA
5

DATA
4

DATA
3

DATA
2

DATA
1

DATA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-55. Masked Serial GPO Register for DSPI_A Low (SIU_DSPIAL)

Table 7-34. SIU_DSPIAL Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_A.
0 The previous value defined by GPO for DSPI_A is maintained.
1 The corresponding GPO for DSPI_A is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_A output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_A when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_A when this output is selected in the DSPI

serialization module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-59

7.3.2.49 Masked Serial GPO Register for DSPI_B Low (SIU_DSPIBL)

The SIU_DSPIBL register allows any combination of bits in the bottom half of the 32-bit serialized data
frame from DSPI_B to be updated with a single 32-bit write operation, while allowing other bits to
maintain their previous state. This is accomplished by writing a 16-bit masked value coherently with an
update value contained in a 16-bit output field, and only updating those bits in the output register for which
the corresponding mask bit is set.

Offset: SIU_BASE + 0x0D08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
31

MASK
30

MASK
29

MASK
28

MASK
27

MASK
26

MASK
25

MASK
24

MASK
23

MASK
22

MASK
21

MASK
20

MASK
19

MASK
18

MASK
17

MASK
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
31

DATA
30

DATA
29

DATA
28

DATA
27

DATA
26

DATA
25

DATA
24

DATA
23

DATA
222

DATA
21

DATA
20

DATA
19

DATA
18

DATA
17

DATA
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-56. Masked Serial GPO Register for DSPI_B High (SIU_DSPIBH)

Table 7-35. SIU_DSPIBH Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_B.
0 The previous value defined by GPO for DSPI_B is maintained.
1 The corresponding GPO for DSPI_B is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_B output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_B when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_B when this output is selected in the DSPI

serialization module.

Offset: SIU_BASE + 0x0D0C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
15

MASK
14

MASK
13

MASK
12

MASK
11

MASK
10

MASK
9

MASK
8

MASK
7

MASK
6

MASK
5

MASK
4

MASK
3

MASK
2

MASK
1

MASK
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
15

DATA
14

DATA
13

DATA
12

DATA
11

DATA
10

DATA
9

DATA
8

DATA
7

DATA
6

DATA
5

DATA
4

DATA
3

DATA
2

DATA
1

DATA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-57. Masked Serial GPO Register for DSPI_B Low (SIU_DSPIBL)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-60 Freescale Semiconductor

7.3.2.50 Masked Serial GPO Register for DSPI_C High (SIU_DSPICH)

The SIU_DSPICH register allows any combination of bits in the top half of the 32-bit serialized data frame
from DSPI_C to be updated with a single 32-bit write operation, while allowing other bits to maintain their
previous state. This is accomplished by writing a 16-bit masked value coherently with an update value
contained in a 16-bit output field, and only updating those bits in the output register for which the
corresponding mask bit is set.

7.3.2.51 Masked Serial GPO Register for DSPI_C Low (SIU_DSPICL)

The SIU_DSPICL register allows any combination of bits in the bottom half of the 32-bit serialized data
frame from DSPI_C to be updated with a single 32-bit write operation, while allowing other bits to

Table 7-36. SIU_DSPIBL Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_B.
0 The previous value defined by GPO for DSPI_B is maintained.
1 The corresponding GPO for DSPI_B is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_B output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_B when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_B when this output is selected in the DSPI

serialization module.

Offset: SIU_BASE + 0x0D10 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
31

MASK
30

MASK
29

MASK
28

MASK
27

MASK
26

MASK
25

MASK
24

MASK
23

MASK
22

MASK
21

MASK
20

MASK
19

MASK
18

MASK
17

MASK
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
31

DATA
30

DATA
29

DATA
28

DATA
27

DATA
26

DATA
25

DATA
24

DATA
23

DATA
222

DATA
21

DATA
20

DATA
19

DATA
18

DATA
17

DATA
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-58. Masked Serial GPO Register for DSPI_C High (SIU_DSPICH)

Table 7-37. SIU_DSPICH Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_C.
0 The previous value defined by GPO for DSPI_C is maintained.
1 The corresponding GPO for DSPI_C is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_C output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_C when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_C when this output is selected in the DSPI

serialization module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-61

maintain their previous state. This is accomplished by writing a 16-bit masked value coherently with an
update value contained in a 16-bit output field, and only updating those bits in the output register for which
the corresponding mask bit is set.

7.3.2.52 Masked Serial GPO Register for DSPI_D High (SIU_DSPIDH)

The SIU_DSPIDH register allows any combination of bits in the top half of the 32-bit serialized data frame
from DSPI_D to be updated with a single 32-bit write operation, while allowing other bits to maintain their
previous state. This is accomplished by writing a 16-bit masked value coherently with an update value
contained in a 16-bit output field, and only updating those bits in the output register for which the
corresponding mask bit is set.

Offset: SIU_BASE + 0x0D14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
15

MASK
14

MASK
13

MASK
12

MASK
11

MASK
10

MASK
9

MASK
8

MASK
7

MASK
6

MASK
5

MASK
4

MASK
3

MASK
2

MASK
1

MASK
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
15

DATA
14

DATA
13

DATA
12

DATA
11

DATA
10

DATA
9

DATA
8

DATA
7

DATA
6

DATA
5

DATA
4

DATA
3

DATA
2

DATA
1

DATA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-59. Masked Serial GPO Register for DSPI_C Low (SIU_DSPICL)

Table 7-38. SIU_DSPICL Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_C.
0 The previous value defined by GPO for DSPI_C is maintained.
1 The corresponding GPO for DSPI_C is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_C output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_C when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_C when this output is selected in the DSPI

serialization module.

Offset: SIU_BASE + 0x0D18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
31

MASK
30

MASK
29

MASK
28

MASK
27

MASK
26

MASK
25

MASK
24

MASK
23

MASK
22

MASK
21

MASK
20

MASK
19

MASK
18

MASK
17

MASK
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
31

DATA
30

DATA
29

DATA
28

DATA
27

DATA
26

DATA
25

DATA
24

DATA
23

DATA
222

DATA
21

DATA
20

DATA
19

DATA
18

DATA
17

DATA
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-60. Masked Serial GPO Register for DSPI_D High (SIU_DSPIDH)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-62 Freescale Semiconductor

7.3.2.53 Masked Serial GPO Register for DSPI_D Low (SIU_DSPIDL)

The SIU_DSPIDL register allows any combination of bits in the bottom half of the 32-bit serialized data
frame from DSPI_D to be updated with a single 32-bit write operation, while allowing other bits to
maintain their previous state. This is accomplished by writing a 16-bit masked value coherently with an
update value contained in a 16-bit output field, and only updating those bits in the output register for which
the corresponding mask bit is set.

7.3.2.54 eMIOS Select Register for DSPI_A (SIU_EMIOSA)

The SIU_EMIOSA register selects the output serialized source for the DSPI_A channel.

Table 7-39. SIU_DSPIDH Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_D.
0 The previous value defined by GPO for DSPI_D is maintained.
1 The corresponding GPO for DSPI_D is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_D output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_D when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_D when this output is selected in the DSPI

serialization module.

Offset: SIU_BASE + 0x0D1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MASK
15

MASK
14

MASK
13

MASK
12

MASK
11

MASK
10

MASK
9

MASK
8

MASK
7

MASK
6

MASK
5

MASK
4

MASK
3

MASK
2

MASK
1

MASK
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA
15

DATA
14

DATA
13

DATA
12

DATA
11

DATA
10

DATA
9

DATA
8

DATA
7

DATA
6

DATA
5

DATA
4

DATA
3

DATA
2

DATA
1

DATA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-61. Masked Serial GPO Register for DSPI_D Low (SIU_DSPIDL)

Table 7-40. SIU_DSPIDL Field Descriptions

Field Description

MASKn Mask Bit. This bit controls the write access to the corresponding GPO for DSPI_D.
0 The previous value defined by GPO for DSPI_D is maintained.
1 The corresponding GPO for DSPI_D is written with the value defined by the DATAn field.

DATAn Pin Data Out. This bit stores the data to be driven out on the GPO for DSPI_D output controlled by this register.
0 Logic low value is driven for the corresponding GPO for DSPI_D when this output is selected in the DSPI

serialization module.
1 Logic high value is driven for the corresponding GPO for DSPI_D when this output is selected in the DSPI

serialization module.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-63

7.3.2.55 SIU_DSPIAH/L Select Register for DSPI_A (SIU_DSPIAHLA)

The SIU_DSPIAHLA register enables the data path from the Masked Serial GPO register for DSPI_A to
the equivalent bit position in the DSPI_A channel frame.

Offset: SIU_BASE + 0x0D44 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMIOS
31

EMIOS
30

EMIOS
29

EMIOS
28

EMIOS
27

EMIOS
26

EMIOS
25

EMIOS
24

EMIOS
23

EMIOS
22

EMIOS
21

EMIOS
20

EMIOS
19

EMIOS
18

EMIOS
17

EMIOS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EMIOS
15

EMIOS
14

EMIOS
13

EMIOS
12

EMIOS
11

EMIOS
10

EMIOS
9

EMIOS
8

EMIOS
7

EMIOS
6

EMIOS
5

EMIOS
4

EMIOS
3

EMIOS
2

EMIOS
1

EMIOS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-62. SIU_EMIOSA Select Register for DSPI_A (SIU_EMIOSA)

Table 7-41. SIU_EMIOSA Field Descriptions

Field Description

EMIOSn eMIOS Channel Enable.
0 This eMIOS channel is not enabled.
1 This eMIOS channel is enabled.

Offset: SIU_BASE + 0x0D48 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DSPI
AH
31

DSPI
AH
30

DSPI
AH
29

DSPI
AH
28

DSPI
AH
27

DSPI
AH
26

DSPI
AH
25

DSPI
AH
24

DSPI
AH
23

DSPI
AH
22

DSPI
AH
21

DSPI
AH
20

DSPI
AH
19

DSPI
AH
18

DSPI
AH
17

DSPI
AH
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DSPI
AL
15

DSPI
AL
14

DSPI
AL
13

DSPI
AL
12

DSPI
AL
11

DSPI
AL
10

DSPI
AL
9

DSPI
AL
8

DSPI
AL
7

DSPI
AL
6

DSPI
AL
5

DSPI
AL
4

DSPI
AL
3

DSPI
AL
2

DSPI
AL
1

DSPI
AL
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-63. SIU_DSPIAH/L Select Register for DSPI_A (SIU_DSPIAHLA)

Table 7-42. SIU_DSPIAHLA Field Descriptions

Field Description

DSPIAHn Data Path Enable for DSPI_A High.
0 Data path disabled to DSPI_A High.
1 Data path enabled to DSPI_A High.

DSPIALn Data Path Enable for DSPI_A Low.
0 Data path disabled to DSPI_A Low.
1 Data path enabled to DSPI_A Low.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-64 Freescale Semiconductor

7.3.2.56 eMIOS Select Register for DSPI_B (SIU_EMIOSB)

The SIU_EMIOSB register selects the output serialized source for the DSPI_B channel.

7.3.2.57 SIU_DSPIBH/L Select Register for DSPI_B (SIU_DSPIAHLB)

The SIU_DSPIBHLB register enables the data path from the Masked Serial GPO register for DSPI_B to
the equivalent bit position in the DSPI_B channel frame.

Offset: SIU_BASE + 0x0D54 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMIOS
31

EMIOS
30

EMIOS
29

EMIOS
28

EMIOS
27

EMIOS
26

EMIOS
25

EMIOS
24

EMIOS
23

EMIOS
22

EMIOS
21

EMIOS
20

EMIOS
19

EMIOS
18

EMIOS
17

EMIOS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EMIOS
15

EMIOS
14

EMIOS
13

EMIOS
12

EMIOS
11

EMIOS
10

EMIOS
9

EMIOS
8

EMIOS
7

EMIOS
6

EMIOS
5

EMIOS
4

EMIOS
3

EMIOS
2

EMIOS
1

EMIOS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-64. eMIOS Select Register for DSPI_B (SIU_EMIOSB)

Table 7-43. SIU_EMIOSB Field Descriptions

Field Description

EMIOSn eMIOS Channel Enable.
0 This eMIOS channel is not enabled.
1 This eMIOS channel is enabled.

Offset: SIU_BASE + 0x0D58 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DSPI
BH
31

DSPI
BH
30

DSPI
BH
29

DSPI
BH
28

DSPI
BH
27

DSPI
BH
26

DSPI
BH
25

DSPI
BH
24

DSPI
BH
23

DSPI
BH
22

DSPI
BH
21

DSPI
BH
20

DSPI
BH
19

DSPI
BH
18

DSPI
BH
17

DSPI
BH
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DSPI
BL
15

DSPI
BL
14

DSPI
BL
13

DSPI
BL
12

DSPI
BL
11

DSPI
BL
10

DSPI
BL
9

DSPI
BL
8

DSPI
BL
7

DSPI
BL
6

DSPI
BL
5

DSPI
BL
4

DSPI
BL
3

DSPI
BL
2

DSPI
BL
1

DSPI
BL
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-65. SIU_DSPIBH/L Select Register for DSPI_B (SIU_DSPIBHLB)

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-65

7.3.2.58 eMIOS Select Register for DSPI_C (SIU_EMIOSC)

The SIU_EMIOSC register selects the output serialized source for the DSPI_C channel.

7.3.2.59 SIU_DSPICH/L Select Register for DSPI_C (SIU_DSPICHLC)

The SIU_DSPICHLC register enables the data path from the Masked Serial GPO register for DSPI_C to
the equivalent bit position in the DSPI_C channel frame.

Table 7-44. SIU_DSPIBHLB Field Descriptions

Field Description

DSPIBHn Data Path Enable for DSPI_B High.
0 Data path disabled to DSPI_B High.
1 Data path enabled to DSPI_B High.

DSPIBLn Data Path Enable for DSPI_B Low.
0 Data path disabled to DSPI_B Low.
1 Data path enabled to DSPI_B Low.

Offset: SIU_BASE + 0x0D64 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMIOS
31

EMIOS
30

EMIOS
29

EMIOS
28

EMIOS
27

EMIOS
26

EMIOS
25

EMIOS
24

EMIOS
23

EMIOS
22

EMIOS
21

EMIOS
20

EMIOS
19

EMIOS
18

EMIOS
17

EMIOS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EMIOS
15

EMIOS
14

EMIOS
13

EMIOS
12

EMIOS
11

EMIOS
10

EMIOS
9

EMIOS
8

EMIOS
7

EMIOS
6

EMIOS
5

EMIOS
4

EMIOS
3

EMIOS
2

EMIOS
1

EMIOS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-66. eMIOS Select Register for DSPI_C (SIU_EMIOSC)

Table 7-45. SIU_EMIOSC Field Descriptions

Field Description

EMIOSn eMIOS Channel Enable.
0 This eMIOS channel is not enabled.
1 This eMIOS channel is enabled.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-66 Freescale Semiconductor

7.3.2.60 eMIOS Select Register for DSPI_D (SIU_EMIOSD)

The SIU_EMIOSD register selects the output serialized source for the DSPI_D channel.

Offset: SIU_BASE + 0x0D68 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DSPI
CH
31

DSPI
CH
30

DSPI
CH
29

DSPI
CH
28

DSPI
CH
27

DSPI
CH
26

DSPI
CH
25

DSPI
CH
24

DSPI
CH
23

DSPI
CH
22

DSPI
CH
21

DSPI
CH
20

DSPI
CH
19

DSPI
CH
18

DSPI
CH
17

DSPI
CH
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DSPI
CL
15

DSPI
CL
14

DSPI
CL
13

DSPI
CL
12

DSPI
CL
11

DSPI
CL
10

DSPI
CL
9

DSPI
CL
8

DSPI
CL
7

DSPI
CL
6

DSPI
CL
5

DSPI
CL
4

DSPI
CL
3

DSPI
CL
2

DSPI
CL
1

DSPI
CL
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-67. SIU_DSPICH/L Select Register for DSPI_C (SIU_DSPICHLC)

Table 7-46. SIU_DSPICHLC Field Descriptions

Field Description

DSPICHn Data Path Enable for DSPI_C High.
0 Data path disabled to DSPI_C High.
1 Data path enabled to DSPI_C High.

DSPICLn Data Path Enable for DSPI_C Low.
0 Data path disabled to DSPI_C Low.
1 Data path enabled to DSPI_C Low.

Offset: SIU_BASE + 0x0D74 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMIOS
31

EMIOS
30

EMIOS
29

EMIOS
28

EMIOS
27

EMIOS
26

EMIOS
25

EMIOS
24

EMIOS
23

EMIOS
22

EMIOS
21

EMIOS
20

EMIOS
19

EMIOS
18

EMIOS
17

EMIOS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EMIOS
15

EMIOS
14

EMIOS
13

EMIOS
12

EMIOS
11

EMIOS
10

EMIOS
9

EMIOS
8

EMIOS
7

EMIOS
6

EMIOS
5

EMIOS
4

EMIOS
3

EMIOS
2

EMIOS
1

EMIOS
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-68. eMIOS Select Register for DSPI_D (SIU_EMIOSD)

Table 7-47. SIU_EMIOSD Field Descriptions

Field Description

EMIOSn eMIOS Channel Enable.
0 This eMIOS channel is not enabled.
1 This eMIOS channel is enabled.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-67

7.3.2.61 SIU_DSPIDH/L Select Register for DSPI_D (SIU_DSPIDHLD)

The SIU_DSPIDHLD register enables the data path from the Masked Serial GPO register for DSPI_D to
the equivalent bit position in the DSPI_D channel frame.

Offset: SIU_BASE + 0x0D78 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DSPI
DH
31

DSPI
DH
30

DSPI
DH
29

DSPI
DH
28

DSPI
DH
27

DSPI
DH
26

DSPI
DH
25

DSPI
DH
24

DSPI
DH
23

DSPI
DH
22

DSPI
DH
21

DSPI
DH
20

DSPI
DH
19

DSPI
DH
18

DSPI
DH
17

DSPI
DH
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DSPI
DL
15

DSPI
DL
14

DSPI
DL
13

DSPI
DL
12

DSPI
DL
11

DSPI
DL
10

DSPI
DL
9

DSPI
DL
8

DSPI
DL
7

DSPI
DL
6

DSPI
DL
5

DSPI
DL
4

DSPI
DL
3

DSPI
DL
2

DSPI
DL
1

DSPI
DL
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-69. SIU_DSPIDH/L Select Register for DSPI_D (SIU_DSPIDHLD)

Table 7-48. SIU_DSPIDHLD Field Descriptions

Field Description

DSPIDHn Data Path Enable for DSPI_D High.
0 Data path disabled to DSPI_D High.
1 Data path enabled to DSPI_D High.

DSPIDLn Data Path Enable for DSPI_D Low.
0 Data path disabled to DSPI_D Low.
1 Data path enabled to DSPI_D Low.

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-68 Freescale Semiconductor

7.4 Functional Description
The following sections provide an overview of the SIU operation.

7.4.1 System Configuration

7.4.1.1 Boot Configuration

During the assertion of RESET, the BOOTCFG pin is used to load a value into the SIU_RSR[BOOTCFG]
bit, so the BAM program can determine the location of the reset configuration half word (RCHW), the boot
mode to be initiated, and whether to initiate a CAN or SCI boot. See 8.3.3.1.1, “Reset Configuration
Halfword Read,” of the BAM chapter for detail on the RCHW. Table 7-49 defines the boot modes
specified by the SIU_RST[BOOTCFG] field.

7.4.1.2 Pad Configuration

The pad configuration registers (SIU_PCR) in the SIU allow software control of the static electrical
characteristics of external pins. The SIU_PCRs can select the multiplexed function of a pin, selection of
pullup or pulldown devices, the slew rate of I/O signals, open drain mode for output pins, and hysteresis.

7.4.2 Reset Control

The reset controller logic is located in the SIU. See Section 3.4, “Reset Configuration,” for reset operation
details.

7.4.3 External Interrupt

There are 16 external interrupt inputs, IRQ0–IRQ15, to the SIU. The IRQn inputs can be configured for
rising- or falling-edge events or both. Each IRQn input has a corresponding flag bit in the external interrupt
status register (SIU_EISR). The flag bits for the IRQ4–IRQ15 inputs are ORed together to form one
interrupt request to the interrupt controller. The flag bits for the IRQ1–IRQ0 inputs can generate an
interrupt request to the interrupt controller or a DMA transfer request to the DMA controller. Figure 7-70
shows the DMA and interrupt request connections to the interrupt and DMA controllers.

Any pin used as an external interrupt must be configured in its SIU_PCR as a GPIO in input mode. In
addition, either rising and/or falling edge must be enabled in the SIU_IREER, or SIU_IFEER.

Two external inputs from pins PC6 and PC5 connect through the SIU to the critical interrupt input to the
Z0 and Z6 cores, respectively. These signals should be used as non-maskable interrupt (NMI) inputs.

The SIU contains an overrun interrupt enable for each IRQ and one combined overrun interrupt request to
the interrupt controller which is the logical OR of the individual overrun requests’ flags. Only the

Table 7-49. SIU_RSR[BOOTCFG] Configuration

Value Meaning

0b0 Boot from internal flash memory

0b1 CAN/SCI boot

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-69

combined overrun interrupt request is used in the device, and the individual overrun requests are not
connected.

Each IRQ pin has a programmable filter for rejecting glitches on the IRQ signals. The filter length for the
IRQ pins is specified in the external IRQ digital filter register (SIU_IDFR).

Figure 7-70. SIU DMA/Interrupt Request Diagram

7.4.4 GPIO Operation

All GPIO functionality is provided by the SIU. Each pin that has GPIO functionality has an associated Pin
Configuration Register in the SIU where the GPIO function is selected for the pin. In addition, each pin
with GPIO functionality has an input data register (SIU_GPDIn) and an output data register
(SIU_GPDOn). The SIU also implements several parallel GPIO registers (SIU_PGPDOn and
SIU_PGPDIn) that can be used to access as many as 32 GPIO bits in single- and word-sized accesses. The
values read/written to these parallel register is coherent with the data read/written to the SIU_GPDOn and
SIU_GPDIn registers.

7.4.5 Internal Multiplexing

The IMUX Select Registers (SIU_ISELn) provide selection of the input source for the ADC external
trigger inputs and the SIU external interrupts.

7.4.5.1 ADC External Trigger Input Multiplexing

The two ADC external trigger inputs (start of conversion and injected trigger) can be connected to four
different external pins or to PIT2. The input source for each ADC external trigger is individually specified
in the IMUX Select Register 4 (SIU_ISEL4). Figure Figure 7-71 gives an example of the multiplexing of

••••
Interrupt
controller

D
M

A
/In

te
rr

up
t S

el
ec

t

EIF0

EIF1

EIF2

EIF3

EIF4

EIF15

IMUX

DMA
request

eDMA

OVF0

OVF1

OVF15

SIU_OSR

SIU_EISR

External
IRQ pins or

internal
sources

••
•

•
•

SIU_DIRSR
SIU

NMI1

NMI0

PC6

PC5

•••

Secondary
CPU

Primary
CPU

••

Overrun
request Critical

interrupt

EIF4–EIF15

DIRS0

DIRS1

DIRS0

DIRS1

DIRS0
DIRS1

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-70 Freescale Semiconductor

an ADC external trigger input. As shown in the figure, the start of conversion input of the ADC can be
connected to the PE10 pin, the PE11 pin, PE12 pin, PE13 pin, or the PIT2 channel. The external injected
trigger are multiplexed in the same manner.

Figure 7-71. Internal Multiplexing Block Diagram

7.4.5.2 SIU External Interrupt Input Multiplexing

The 16 SIU external interrupt inputs can be connected to one of nine external pins. The input source for
each SIU external interrupt is individually specified in the IMUX Select Register 1 (SIU_ISEL1), IMUX
Select Register 2 (SIU_ISEL2) and IMUX Select Register 2A (SIU_ISEL2A). Figure 7-72 shows an
example of the multiplexing of an SIU external interrupt input. As shown in the figure, the IRQ[0] input
of the SIU can be connected to the PB0 pin, PC0 pin, PD0 pin, PE0 pin, PF0 pin, PG0 pin, PH0 pin, PJ0
pin, or PK0 pin The remaining IRQ inputs are multiplexed in the same manner.

Start
PE12

PE13

PIT2 Channel

SIU_ISEL4[TSEL0]

SIU
PE10

PE11

of
Conversion

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 7-71

Figure 7-72. SIU External Interrupt Input Multiplexing

7.4.5.3 SIU EMIOS/DSPI Multiplexing

The Serialization Data Register from each of the four DSPI modules can be connected to the EMIOS
channel outputs (if selected by the SIU_EMIOSx registers) or the Masked Serial GPO registers (if selected
by the SIU_DSPIxHLx registers, as shown in Figure 7-73.

IRQ[0]

SIU

PE0

PF0

PG0

PH0

PJ0

PK0

SIU_ISEL2A[30:31]

SIU_ISEL2[30:31]

PB0

PC0

PD0

SIU_ISEL1[30:31]

System Integration Unit (SIU)

MPC5668x Microcontroller Reference Manual, Rev. 4

7-72 Freescale Semiconductor

Figure 7-73. SIU EMIOS/DSPI Multiplexing

SIU_EMIOSA

32EMIOS channel output

SIU_DSPIAHLA

SIU_DSPIA

DSPIA

DSPI Serialization Data Register

SIU_EMIOSD

SIU_EMIOSC

SIU_EMIOSB

EMIOS channel output

EMIOS channel output

EMIOS channel output

SIU_DSPIAHLB

SIU_DSPIAHLD

SIU_DSPIAHLC

SIU_DSPIB

SIU_DSPIC

SIU_DSPID

32

32

32

DSPIB

DSPI Serialization Data Register

DSPID

DSPI Serialization Data Register

DSPIC

DSPI Serialization Data Register

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-1

Chapter 8
Boot Assist Module (BAM)

8.1 Introduction
The MPC5668x boot assist module (BAM) is a 4 KB block of read-only memory (ROM) that is
programmed by Freescale using variable length encoding (VLE) code. The BAM program is executed by
the e200z6 when the MPC5668x performs a power-on-reset (POR) or any other reset for which the
CRP_Z6VEC register remains in its reset state. The BAM program provides MCU initialization. It also
transitions to the user application code that resides in the internal flash or downloads the user code into
internal RAM via CAN or SCI serial links and passes control to the user code.

8.1.1 Features

The BAM program provides the following functionality:

• Initial e200z6 core MMU setup with no address translation for all internal MCU resources and
external memory address space

• Location and detection of user boot code in the internal flash

• Automatic switch to serial-boot mode if internal flash is blank or invalid

• Supports user programmable 64-bit password protection for serial-boot mode

• Supports serial bootloading via CAN bus or eSCI to the internal SRAM

• Supports censorship protection for internal flash memory

• Provides an option to disable the error correction status module (ECSM) software watchdog timer
(enabled by default)

• Configures MMU boot block to boot as either classic Power Book E code or as Freescale VLE
code, allowing transition to the user code with classic Power Book E instructions or VLE
instructions

NOTE
The BAM program is intended to be run on e200z6 (main core) only.
Attempting to execute the BAM program by the e200z0 core may cause
erratic MCU behavior.

NOTE
During BAM program execution, the default reset values of various system
registers (e.g. SIU, FlexCAN, eSCI, ECSM, SWT) may be updated from
their default reset values.

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-2 Freescale Semiconductor

8.1.2 Modes of Operation

The BAM has the following modes of operation:

• Normal mode

• Debug mode

• Internal-boot mode

• Serial-boot mode

8.1.2.1 Normal Mode

In normal operation the BAM responds to all read requests within its address space. The e200z6 core
executes the BAM program after the negation of RESET if the CRP_Z6VEC register value is
0xFFFF_FFFC.

8.1.2.2 Debug Mode

The BAM program is not executed when the MCU comes out of reset in OnCE debug mode. The
development tool must initialize the MCU instead of BAM before starting the user application.

8.1.2.3 Internal-Boot Mode

This mode of operation is for systems that boot from internal memory. The internal flash is used for all
code and all boot configuration data. After the BAM has completed the boot process, user code may enable
the external bus interface if required.

8.1.2.4 Serial-Boot Mode

This mode of operation can load a user program into system RAM using the eSCI or FlexCAN serial
interface, then execute the downloaded program. The user program can then be used to control the
download of data and erasing/programming of the internal or external flash memory.

8.2 Memory Map and Registers
This section provides a detailed description of the BAM memory map.

8.2.1 Module Memory Map

Table 8-1 shows the BAM memory map. The BAM ROM module occupies the last 16 KB of the MCU
memory space; however, only 4 KB is physically present. The upper 4 KB shadows the lower 4 KB. Some
important absolute addresses are presented in Table 8-1.

Table 8-1. BAM Absolute Addresses

Address Comment

0xFFFF_FFFC BAM reset vector—first executed address after the reset

0xFFFF_F000 BAM start address

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-3

8.2.2 Register Descriptions

The BAM module does not have any registers.

8.3 Functional Description

8.3.1 BAM Program Resources

The BAM program uses/initializes these MCU resources:

• The BOOTCFG field in the reset status register (SIU_RSR) determines the boot option

• The location and value of the reset configuration halfword (RCHW) determines the location of
boot code and the boot configuration options

• FlexCAN_A and eSCI _A modules for serial-boot mode

• FlexCAN_A message buffer RAM for stack and global variables during serial-boot mode

• The DISNEX bit in the SIU_CCR register to determine if the Nexus port is enabled

The BAM program:

• Configures the e200z6 MMU to cover all available MCU address space: internal flash, peripheral
bridge, and SRAM without address translation

• Configures FlexCAN_A, eSCI_A when performing serial-boot mode

• Uses the eDMA during serial-boot mode.

8.3.2 BAM Program Operation

If the CRP_Z6VEC register value is 0xFFFF_FFFC, the BAM code is executed after the negation of reset
and before user code starts. To prevent the execution of the BAM code when exiting sleep mode, change
the value of the CRP_Z6VEC register before entering sleep mode. See Chapter 5, “Clocks, Reset, and
Power (CRP),” for more detail about the CRP_Z6VEC register.

The BAM reads the status of the BOOTCFG bit from the reset status register (SIU_RSR) and the
appropriate boot sequence is started (see Table 8-2).

Table 8-2 shows the encoding of the BOOTCFG bit in the SIU_RSR, with the value stored in the
Censorship word in the shadow row of internal flash memory. The table also shows whether the internal
flash memory is enabled or disabled, whether the Nexus port is enabled or disabled, and whether the
password downloaded in serial-boot mode is compared with a fixed public password or compared to a user
programmable flash password.

Table 8-2. Boot Modes

Boot Mode Name BOOTCFG
Censorship

Control
0x00FF_FDE0

Serial Boot
Control

0x00FF_FDE2

Internal
Flash
State

Nexus State
Serial

Password

Internal—Censored 0 Any other value Don't care Enabled Disabled Flash

Internal—Public 0x55AA Enabled Enabled Public

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-4 Freescale Semiconductor

The censorship control word (CCW) is a 32-bit word of data stored in the shadow row of internal flash
memory. This memory location is read and interpreted by hardware as part of the boot process. It is used
with the BOOTCFG bit to enable/disable the internal flash memory and the Nexus interface. The memory
address of the censorship control word is 0x00FF_FDE0. The censorship control word is programmed to
be 0x55AA_55AA. This results in a device that is not censored and uses a flash-based password for
serial-boot mode.

Figure 8-1. Censorship Control Word (CCW)

The BAM code uses the state of the DISNEX bit to determine if the serial password downloaded in
serial-boot mode is compared to a fixed public value (0xFEED_FACE_CAFE_BEEF) or is compared to a
flash value stored in the shadow row of internal flash at address 0x00FF_FDD8.

Serial—Flash Password 1 Don't care 0x55AA Enabled Disabled Flash

Serial—Public Password Any other value Disabled Enabled Public

Table 8-2. Boot Modes (continued)

Boot Mode Name BOOTCFG
Censorship

Control
0x00FF_FDE0

Serial Boot
Control

0x00FF_FDE2

Internal
Flash
State

Nexus State
Serial

Password

Censorship control word at 0x00FF_FDE0:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Censorship control—showing an uncensored part (factory default 0x55AA)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Serial boot control—showing the use of the flash-based password (factory default 0x55AA)

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-5

Figure 8-2. Serial Boot Flash Password

If the BAM fails to find a valid RCHW in internal-boot mode then serial-boot mode is entered. Therefore
a serial password must be provided for both values of the BOOTCFG bit.

8.3.3 Features

Because the MMU default out of reset is to allow access to the 4 KB range around the reset vector only,
the BAM program sets up the e200z6 core MMU to enable accesses to all MCU resources, as described in
Table 8-3.

Table 8-3. MMU Configuration for an Internal Boot

TLB
Entr

y
Region

Logical Base
Address

Physical Base
Address

Size Attributes

0 Peripheral bridge and BAM 0xFFF0_0000 0xFFF0_0000 1 MB Cache inhibited
Guarded

Big Endian
Global PID

1 Internal flash 0x0000_0000 0x0000_0000 256 MB Cache enabled
Not guarded
Big Endian
Global PID

Serial-boot flash password at 0x00FF_FDD8 – 0x00FF_FDDF:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

Serial boot password (0x00FF_FDD8)–0xFEED (factory default)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Serial boot password (0x00FF_FDDA)–0xFACE (factory default)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

Serial boot password (0x00FF_FDDC)–0xCAFE (factory default)

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

Serial boot password (0x00FF_FDDE)– 0xBEEF (factory default)

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-6 Freescale Semiconductor

Code type attributes for TLB entries 1–3 are set according to the coding of the user application (VLE or
classic Power Book E).

After configuring the MMU, the BAM determines the selected boot mode and provides the following
features for each of the boot modes:

8.3.3.1 Internal-Boot Mode

When the core determines that internal-boot mode has been selected, a machine check exception is
configured to handle possible ECC read errors that may occur while searching the internal flash to find the
reset configuration halfword (RCHW).

8.3.3.1.1 Reset Configuration Halfword Read

The BAM searches the internal flash memory for a valid RCHW. A valid RCHW is a 16-bit value that
contains a fixed 8-bit boot identifier and some configuration bits. The RCHW is expected to be the first
halfword in one of the low-address space small flash blocks.

The memory addresses of the six locations searched for a valid RCHW are shown in Table 8-4.

The BOOT_BLOCK_ADDRESS used in the register descriptions below is the address in Table 8-5 where
the BAM finds a valid RCHW.

2 reserved1 0x2000_0000 0x2000_0000 256 MB Cache enabled
Not guarded
Big Endian
Global PID

3 SRAM 0x4000_0000 0x4000_0000 256 KB Cache inhibited
Not guarded
Big Endian
Global PID

1 The MMU can be programmed at this address range, but nothing responds to an access.

Table 8-4. LAS Block Memory Addresses

Block Address

0 0x0000_0000

1 0x0000_4000

4 0x0001_0000

7 0x0001_C000

8 0x0002_0000

9 0x0003_0000

Table 8-3. MMU Configuration for an Internal Boot

TLB
Entr

y
Region

Logical Base
Address

Physical Base
Address

Size Attributes

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-7

Figure 8-3 shows the fields of the RCHW.

If the BAM fails to find a valid RCHW, it assumes the flash is erased or corrupt and switches to serial-boot
mode.

If the BAM finds a valid RCHW, the configuration bits are parsed as shown in Table 8-4. The BAM then
fetches the reset vector from the address of the RCHW + 4, and program execution continues from that
address.

Offset: BOOT_BLOCK_ADDRESS + 0x0000 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 WTE 0 VLE BOOT ID

W

Reset 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-3. RCHW Fields

Table 8-5. Internal Boot RCHW Field Descriptions

Field Description

WTE Watchdog timer enable. This bit determines if the software watchdog timer is disabled.
0 Disable software watchdog timer
1 Software watchdog timer maintains its default state out of reset, (i.e.,enabled).

VLE VLE Code Indicator. This bit is used to configure the MMU to execute the user code as either Classic Book E
code or as Freescale VLE code.
0 User code executes as classic Book E code.
1 User code executes as Freescale VLE code.

BOOTID Boot identifier. This field serves two functions. First, it is used to indicate which block in flash memory contains
the boot program. Second, it identifies whether the flash memory is programmed or invalid. The value of a valid
boot identifier is 0x5A (0b01011010). The BAM program checks the first halfword of each flash memory block
starting at block 0 until a valid boot identifier is found. If all blocks in the low- address space of the internal flash
are checked and no valid boot identifier is found, the internal flash is assumed to be invalid and a CAN/SCI boot
is initiated.

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-8 Freescale Semiconductor

8.3.3.2 Serial-Boot Mode Features

In this mode of operation, the BAM code configures FlexCAN_A and eSCI_A for serial download of a
user program. Unused message buffers in FlexCAN_A are used for stack and global variables. The system
clock is selected directly from main crystal oscillator output; thus, the crystal frequency defines baud rates
for serial interfaces, used to download the user application.

8.3.3.2.1 FlexCAN and eSCI Configuration

The BAM program configures FlexCAN_A and eSCI_A to receive messages. The CNRX_A and the
RXD_A pads are configured as inputs to the FlexCAN and eSCI modules. The CNTX_A pad is configured
as an output from the FlexCAN module.The TXD_A pad remains configured as GPIO input until a valid
eSCI byte is received before a valid CAN message.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency / 40, using the
standard 11 bit identifier format detailed in CAN 2.0A specification. (See Table 8-6 for examples of baud
rates.)

The BAM program ignores all possible errors that may happen during the serial communication. All
received data is assumed to be good and is echoed on the CNTX signal.

The CAN controller bit timing is programmed with 10 time quantas and the sample point is two time
quantas before the end (see Figure 8-5).

Offset: BOOT_BLOCK_ADDRESS + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-4. Reset Boot Vector

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-9

Figure 8-5. FlexCAN Bit Timing

The eSCI is configured for one start bit, eight data bits, no parity, and one stop bit. It operates at a
baud rate = system clock / 832. (See Table 8-6 for baud rate examples.)

NOTE
The BAM program during the serial download routine reconfigures the
software watchdog timer timeout (SWT_TO) from a default of 0x2_7100 to
0x800_0000. The SWT is always clocked from the 16 MHz IRC.

The BAM program ignores eSCI errors. All received data is assumed to be good and is echoed out on the
TXD_A signal.

Upon reception of a valid CAN message with ID = 0x011 that contains 8 bytes of data, or an eSCI byte,
the BAM program transitions to one of two serial boot sub-modes: CAN serial-boot mode or eSCI
serial-boot mode.

Table 8-6. Serial-Boot Mode—Baud Rates

Crystal
Frequency

(MHz)

SCI Baud Rate
(baud)

CAN Baud Rate
(baud)

fextal fextal / 832 fextal / 40

8 9600 200K

12 14400 300K

16 19200 400K

20 24000 500K

40 48000 1M

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
Time quanta Time quanta Time quanta

7 2

1 bit time

1 time quanta = 4 system clock periods

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-10 Freescale Semiconductor

In CAN serial-boot mode, the eSCI_A RXD_A pad reverts to GPIO input. The ensuing download protocol
is assumed to be all through the CAN, eSCI is disabled.

If the eSCI byte is received first, the CAN_A controller is disabled and its pad reprogrammed to the GPIO,
the TXD_A signal is reconfigured as an output. CAN messages are ignored.

8.3.3.2.2 Serial-Boot Mode Download Protocol

The download protocol follows four steps:

1. Send 64-bit password.

2. Send start address, size of download code in bytes and VLE bit.

3. Download data.

4. Switch to the loaded code at start address.

The communication is done in half-duplex manner, any transmission from host is followed by the MCU
transmission. The host computer will not send data until it receives echo from the MCU. All multibyte data
structures are sent most significant byte (MSB) first.

When the CAN is used for serial download, the data is packed into standard CAN messages in the
following manner:

• A message with 0x0011 ID and 8-byte length is used to send the password. The MCU echoes with
the same data, but ID = 0x0001.

• A message with 0x0012 ID and 8-byte length is used to send the start address, length, and the VLE
mode bit. The MCU echoes with a message with 0x002 ID.

• Messages with 0x0013 ID are used to send the downloaded data. The MCU echoes with 0x003 ID.

When the SCI is used for serial download, the data is sent byte-by-byte.

Table 8-7. CAN/eSCI Reset Configuration for CAN/eSCI Pins in Serial-Boot Mode

Pins
Reset

 Function
Initial Serial-Boot Mode

Serial-Boot Mode After a
Valid CAN Message Received

Serial-Boot Mode After a
Valid eSCI Message Received

CNTX_A GPIO CNTX_A CNTX_A GPIO

CNRX_A GPIO CNRX_A CNRX_A GPIO

TXD_A GPIO GPIO GPIO TXD_A

RXD_A GPIO RXD_A GPIO RXD_A

Table 8-8. CAN/eSCI Reset Pin Configuration

Pins I/O Hysteresis Driver Configuration

CNTX_A / TXD_A Output — Push/Pull

CNRX_A / RXD_A Input Y —

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-11

8.3.3.2.3 Serial-Boot Mode Processing

The BAM program executes the serial boot as following:

1. Download 64-bit password.

The received 8-byte password is checked for validity. It is checked to ensure that none of the
4 16-bit halfwords are illegal passwords, such as 0x0000 or 0xFFFF. A password must have at
least one 0 and one 1 in each halfword lane to be considered legal.

The BAM program then checks the censorship status of the MCU by checking the DISNEX bit in
the SIU_CCR register. If Nexus is disabled, the MCU is considered to be censored and the
password is compared with a password stored in the shadow row in internal flash memory.

If Nexus is enabled, the MCU is not considered to be censored and the password is compared to
the fixed value = 0xFEED_FACE_CAFE_BEEF.

If the password fails any validity test, the MCU stops responding to all stimulus. Then the RESET
signal must be asserted or the software watchdog must be allowed to time out. If the password is
valid, the BAM refreshes the software watchdog timer and performs the next step in the protocol.

2. Download start address, size of download, and VLE bit.

The next 8 bytes received by the MCU are considered to contain a 32-bit start address, the VLE
mode bit, and a 31-bit code length (see Figure 8-6).

Figure 8-6. Start Address, VLE Bit and Download Size in Bytes

The start address defines where the received data is stored and where the MCU branches after the
download is finished. The two least significant bits of the start address are ignored by the BAM
program, such that the loaded code should be 32-bit word aligned.

The length defines how many data bytes are loaded.

The VLE mode bit instructs the MCU to program MMU pages with VLE attribute. If it is 1, the
downloaded code must be compiled to VLE instructions. If it is 0, the code contains classic Power
Book E architecture instructions.

3. Download data.

Each byte of data received is stored in the MCU’s memory, starting at the address specified in the
previous protocol step and incrementing through memory until the number of bytes of data
received and stored in memory matches the number specified in the previous protocol step.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
START_ADDRESS[0:15]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
START_ADDRESS[16:31]

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
VLE CODE_LENGTH[0:14]

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
CODE_LENGTH[15:30]

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-12 Freescale Semiconductor

NOTE
In the MPC5668x, the SRAM is protected by 64-bit wide error correction
code (ECC). In the general case, this means any write to uninitialized
SRAM must be 64 bits wide, otherwise an ECC error may occur. Therefore
the BAM buffers downloaded data until 8 bytes have been received, and
then does a single 64-bit wide write. Only system RAM supports 64-bit
writes; therefore, attempting to download data to other RAM apart from
system RAM will cause errors. If the start address of the downloaded data
is not on an 8-byte boundary, the BAM will write 0x0000 to the memory
locations from the proceeding 8-byte boundary to the start address
(maximum 4 bytes). The BAM will also write 0x0000 to all memory
locations from the last byte of data downloaded to the following 8 byte
boundary (maximum 7 bytes).

4. Switch to the loaded code.

The BAM program waits for the last echo message transmission to complete, then the active
communication controller is disabled. Its pins revert to GPIO inputs. The BAM code passes control
to the loaded code at start address, which was received in step 2 of the protocol.

NOTE
The code that is downloaded and executed must periodically refresh the
platform watchdog timer or change the timeout period to a value that will
not cause resets during normal operation.

The serial download protocol is summarized in Table 8-9 and Table 8-10.

Table 8-9. CAN Serial-Boot Mode Download Protocol

Protocol
Step

Host Sent Message
BAM Response

Message
Action

1 CAN ID 0x0011 + 64-bit
password

CAN ID 0x0001 + 64-bit
password

Password checked for validity and compared against
stored password. Platform watchdog timer is refreshed
if the password check is successful.

2 CAN ID 0x0012 + 32-bit store
address + VLE bit + 31-bit

number of bytes

CAN ID 0x0002 + 32-bit
store address + VLE bit
+ 31-bit number of bytes

Load address and size of download are stored for future
use. The VLE bit determines whether the MMU entry for
the SRAM, EBI, and flash is configured to run Book E or
VLE code.

3 CAN ID 0x0013 + 8 to 64 bits of
raw binary data

CAN ID 0x0003 + 8 to 64
bits of raw binary data

Each byte of data received is stored in MCU memory,
starting at the address specified in the previous step
and incrementing until the amount of data received and
stored, matches the size as specified in the previous
step.

4 None None The BAM returns IO pins to their reset state, disables
FlexCAN_A module and then branches to the first
address the data was stored to (As specified in step 2).

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 8-13

NOTE
The BAM writes additional two zero double words to the system RAM after
loaded code to prevent possible ECC errors, which could happen because
the CPU speculatively pre-fetches data after the last loaded instruction,
where the RAM may not be initialized.

NOTE
The last loaded code address must not exceed 0x4003_FFF0 (the upper
allowed RAM address by MMU settings, minus two zero double words,
written by BAM at the end of code download).

NOTE
Serial download is unavailable to the last four words of system RAM

• When using the BAM Serial boot download feature, the BAM initializes
an additional four 32-bit words after the end of the downloaded records.
This is done to ensure that if the core fetches the last instruction of the
downloaded code from the internal SRAM while executing the code, it
will not prefetch instructions from memory locations that have not been
initialized. If the download image has the exact same size as the internal
SRAM, the 20 bytes at the beginning of the SRAM will be written with
zero value due to incomplete memory decoding. So, when using the
serial download feature of the BAM, make sure that the maximum
address of the downloaded code does not exceed the end address of the
SRAM minus 16 bytes.

Table 8-10. eSCI Serial-Boot Mode Download Protocol

Protocol
Step

Host Sent Message
BAM Response

Message
Action

1 64-bit password MSB first 64-bit password Password checked for validity and compared against
stored password. Platform Watchdog timer is refreshed
if the password check is successful.

2 32-bit store address + VLE bit +
31-bit number of bytes (MSB

first)

 32-bit store address +
VLE bit + 31-bit number

of bytes

Load address and size of download are stored for future
use. The VLE bit determines whether the MMU entry for
the SRAM, EBI and Flash is configured to run Book E or
VLE code.

3 8 bits of raw binary data 8 bits of raw binary data Each byte of data received is store in MCU memory,
starting at the address specified in the previous step
and incrementing until the amount of data received and
stored, matched the size as specified in the previous
step.

4 None None The BAM returns IO pins to their reset state and
disables the ESCI_A module. Then it branches to the
first address the data was stored to (as specified in step
2).

Boot Assist Module (BAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

8-14 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-1

Chapter 9
Interrupts and Interrupt Controller (INTC)

9.1 Introduction
This chapter describes the interrupts and the interrupt controller (INTC), which schedules interrupt
requests (IRQs) from software and internal peripherals to the e200z6 and e200z0 cores. The INTC
provides interrupt prioritization and preemption, interrupt masking, interrupt priority elevation, and
protocol support. The INTC supports 316 interrupt requests.

The INTC has two independent sets of priority arbitration/comparison, request selection, vector encoder
and acknowledge logic—one set for each CPU. This allows each CPU to handle its software-assigned
interrupt requests independently of the other CPU’s operation, and provides flexibility for the user to
decide which core should handle which interrupt sources in the application. This flexibility comes from a
set of configuration bits that allows any interrupt source to generate an interrupt request to either the Z6 or
Z0 or to both the Z6 and Z0 cores.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software settable interrupt requests,
i.e., by using application software to assert an interrupt request. These same software settable interrupt
requests also can be used to break the work involved in servicing an interrupt request into a high priority
portion and a low priority portion. The high priority portion is initiated by a peripheral interrupt request,
but then the ISR can assert a software settable interrupt request to finish the servicing in a lower priority
ISR.

9.1.1 Block Diagram

Interrupts implemented by the MCU are defined in the e200z6 PowerPC™ Core Reference Manual.

Figure 9-1 shows a block diagram of the interrupt controller (INTC).

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-2 Freescale Semiconductor

Figure 9-1. INTC Block Diagram

Peripheral
Bus

Processor 0
Hardware

Vector Enable

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

Peripheral
Interrupt
Requests

Priority
Arbitrator

Request
Selector

Block
Configuration

Register

1

Highest Priority4

Priority
Comparator

Slave
Interface

for Reads
& Writes

1Processor 0 Push/Update/Acknowledge

1

1

1Update Interrupt Vector

1

Interrupt
Request to
Processor 0

Memory Mapped Registers

Non-Memory Mapped Logic

Pushed
Priority

Processor 1
Current
Priority

Register

4

Popped
Priority

4

New
Priority

4

Current
Priority

4

Priority
Comparator

Highest Priority 4

Highest
Priority

Interrupt
Requests

316 Vector
Encoder

Processor 1
Interrupt

Acknowledge
Register

Processor 1
End of

Interrupt
Register

Processor 0
End of

Interrupt
Register

1

Processor 1
Interrupt
Vector

9316

Interrupt
Vector

9

Request
Selector

Priority
Arbitrator

Highest
Priority

Interrupt
Requests

316 316 Vector
Encoder

Interrupt
Vector

9
Processor 0

Interrupt
Acknowledge

Register

Processor 0
Interrupt
Vector

9308 316

Processor 1
Hardware

Vector Enable
Vector Table

Entry Size

Processor 1 Push/Update/Acknowledge

Interrupt
Request to
Processor 1

Processor 1 Pop

1

1

1

Update Interrupt
Vector

1

1

Interrupt
Acknowledge

from
Processor 1

8

316 x
6-bits

316 x
6-bits

New
Priority

4

Current
Priority

4

Processor 0
Current
Priority

Register

Processor 0
Priority
LIFO

Processor 0 Pop

Processor 1 Pop

Processor 1 Push/Update/Acknowledge 1

1

Interrupt
Acknowledge

from
Processor 0

1

Lowest
Vector

Interrupt
Request

Lowest
Vector

Interrupt
Request

Processor 1
Priority
LIFO

1Vector Table
Entry Size

Pushed
Priority

4

Popped
Priority

4

NOTE: Processor 0 is Z6
and Processor 1 is Z0.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-3

9.1.2 Interrupt Controller Features
• Supports 308 peripheral and eight software-settable interrupt request sources.

• Each interrupt source can be steered by software to processor 0 (Z6), processor 1 (Z0), or both
processors interrupt request outputs.

NOTE
By default, processor 0 (Z6) receives all interrupt requests, so backward
compatibility with single processor systems is maintained.

• 9-bit unique vector for each interrupt request source in hardware vector mode.

• Each interrupt source can be programmed to one of 16 priorities

• Preemption

— Preemptive prioritized interrupt requests to processor

— ISR at a higher priority preempts ISRs or tasks at lower priorities

— Automatic pushing or popping of preempted priority to or from a LIFO

— Ability to modify the ISR or task priority; modifying the priority can be used to implement the
priority ceiling protocol for accessing shared resources.

• Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to
processor.

9.1.3 Modes of Operation

The interrupt controller has two handshaking modes with the processor: software vector mode and
hardware vector mode. The state of the hardware vector enable bit, INTC_MCR[HVEN_PRCn],
independently determines which mode is used for each CPU.

In debug mode the interrupt controller operation is identical to its normal operation of software vector
mode or hardware vector mode.

9.1.3.1 Software Vector Mode

In software vector mode, as shown in Figure 9-2, the CPU branches to a common interrupt exception
handler whose location is determined by an address derived from special purpose registers IVPR and
IVOR4. The interrupt exception handler reads the INTC_IACKR to determine the vector of the interrupt
request source.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-4 Freescale Semiconductor

Figure 9-2. INTC Software Vector Mode

Typical program flow for software vector mode is shown in Figure 9-3.

Figure 9-3. Program Flow–Software Vector Mode

The common interrupt exception handler address is calculated by hardware as shown in Figure 9-4 for the
Z0 core and Figure 9-5 for the Z6 core. The upper half of the interrupt vector prefix register (IVPR) is
added to the offset contained in the external input interrupt vector offset register (IVOR4).

NOTE
Since bits IVOR4[28:31] are not part of the offset value for the Z6, the
vector offset must be located on a quad-word (16-byte) aligned location in
memory. For the Z0 core, the value of IVOR4 is hard coded to 0x040.

IRQs Interrupt
controller

(INTC)

External interrupt
exception request

e200z6
or

e200z0
core

ISRISR 0 address ISR 0

ISRISR 1

•••

ISRISR n

•••

ISRISR N – 1

ISR n address

ISR N – 1 address

ISR 1 address

•••

•••

Prolog
(Including

using IACKR
to get vector

then bl ISR_n

Epilog

IVPR + IVOR4IRQ[n]
taken IACKR

InstructionsAddressInstructionsAddress

VTBA

N is the maximum number of usable interrupt vectors, which equals 316, and includes 26 reserved IRQ vectors
and eight software-settable IRQ vectors.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-5

Figure 9-4. Z0 Software Vector Mode: Interrupt Exception Handler Address Calculation

Figure 9-5. Z6 Software Vector Mode: Interrupt Exception Handler Address Calculation

As shown in Figure 9-3, the common interrupt exception handler reads the INTC_IACKR_PRCn to
determine the vector of the interrupt request source. The INTC_IACKR_PRCn register contains a 32-bit
address for a vector table base address (VTBA) plus an offset to access the interrupt vector (INTVEC).
The address is then used to branch to the corresponding routine for that peripheral or software interrupt
source.

Reading the INTC_IACKR_PRCn acknowledges the INTC’s interrupt request and negates the interrupt
request to the processor. The interrupt request to the processor does not clear if a higher priority interrupt
request arrives. Even in this case, INTVEC does not update to the higher priority request until the lower
priority interrupt request is acknowledged by reading the INTC_IACKR_PRCn. The reading also pushes
the PRI value in the INTC current priority register (INTC_CPR_PRCn) onto the LIFO and updates PRI in
the INTC_CPR_PRCn with the priority of the interrupt request. The INTC_CPR_PRCn masks any
peripheral or software settable interrupt request at the same or lower priority of the current value of the
PRI field in INTC_CPR_PRCn from generating an interrupt request to the processor.

The interrupt exception handler must write to the end-of-interrupt register (INTC_EOIR_PRCn) to
complete the operation. Writing to the INTC_EOIR_PRCn ends the servicing of the interrupt request. The
INTC’s LIFO is popped into the INTC_CPR_PRCn’s PRI field by writing to the INTC_EOIR_PRCn, and

+

=

IVPR

0 19 20 31
Vector base 0x000

IVOR4

0 31
0x0000_0040

Software Vector Mode Interrupt Exception Handler Address

0 19 20 31
Vector base 0x040

3116150
IVPR

31282716150
+ IVOR4

31282716150

0x00

0x00

OFFSET

OFFSETPREFIX

0x0000

PREFIX

= Interrupt exception

0x0000

handler address

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-6 Freescale Semiconductor

the size of a write does not affect the operation of the write. Those values and sizes written to this register
neither update the INTC_EOIR_PRCn contents nor affect whether the LIFO pops. For possible future
compatibility, write four bytes of all 0s to the INTC_EOIR_PRCn. The timing relationship between
popping the LIFO and disabling recognition of external input has no restriction. The writes can happen in
either order.

However, disabling recognition of the external input before popping the LIFO eases the calculation of the
maximum stack depth at the cost of postponing the servicing of the next interrupt request.

9.1.3.2 Hardware Vector Mode

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral
to when the processor is performing useful work to service the interrupt request needs to be minimized.
The INTC can be optimized to support this goal through the hardware vector mode, where a unique vector
is provided for each interrupt request source. It also provides 16 priorities so that lower priority ISRs do
not delay the execution of higher priority ISRs. Since each individual application has different priorities
for each source of interrupt request, the priority of each interrupt request is configurable.

Typical program flow for hardware vector mode is shown in Figure 9-6.

Figure 9-6. Program Flow–Hardware Vector Mode

In hardware vector mode, the interrupt exception handler address is specific to the peripheral or software
settable interrupt source rather than being common to all of them. No IVOR is used. The interrupt
exception handler address is calculated by hardware as shown in Figure 9-7 for the Z0 core and in
Figure 9-8 for the Z6 core. The upper half of the interrupt vector prefix register (IVPR) is added to an offset
which corresponds to the peripheral or software interrupt source which caused the interrupt request. The
offset matches the value in the Interrupt Vector field, INTC_IACKR_PRCn[INTVEC]. Each interrupt
exception handler address is aligned on a quad word (16-byte) boundary for the Z6 and on a word
boundary (4-byte) for the Z0. IVOR4 is not used in this mode, and software does not need to read
INTC_IACKR_PRCn to get the interrupt vector number.

Prologb handler 0 handler 0

ISR

•••

•••

ISR

•••

•••

Instructions
NOTE:

‘b ISR_n’ is technically

Epilog

Prolog

Epilog

ISR

Prolog

Epilog

handler n

handler N

b handler 1

•••

b handler 2

•••

b handler n

b handler N – 1

IVPR + offset[0]

IVPR + offset[1]

IVPR + offset[2]

IVPR + n [0x0010]

IVPR + offset[N – 1]

IRQ[n]
taken

Address

Address IVPR + offset[N – 1] contains the 316th interrupt vector and is the last
usable interrupt vector address in the interrupt memory map for this device.

part of the handler.

N is the maximum number of usable interrupt vectors, which equals 316, and includes 26 reserved IRQ vectors
and eight software-settable IRQ vectors.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-7

Figure 9-7. Z0 Hardware Vector Mode: Interrupt Exception Handler Address Calculation

Figure 9-8. Z6 Hardware Vector Mode: Interrupt Exception Handler Address Calculation

The processor negates INTC’s interrupt request when automatically acknowledging the interrupt request.
However, the interrupt request to the processor do not negate if a higher priority interrupt request arrives.
Even in this case, the interrupt vector number does not update to the higher priority request until the lower
priority request is acknowledged by the processor.

The assertion of the interrupt acknowledge signal pushes the PRI value in the INTC_CPR_PRCn onto the
LIFO and updates PRI in the INTC_CPR_PRCn with the new priority.

9.2 External Signal Description
The INTC has no direct external MCU signals. However, there are external pins that can be configured in
the SIU as external interrupt request input pins. When configured in this function, an interrupt on the pin
sets an external interrupt flag. These flags can cause one of five peripheral interrupt requests to the
interrupt controller.

For more information on external interrupts, the pins used, and how to configure them, refer to Chapter 2,
“Signal Description,” and Chapter 7, “System Integration Unit (SIU),” for more information on these pins.

+

=

IVPR

0 19 20 31
Vector base 0x000

Hardware Vector Mode Offset

0 19 20 21 29 30 31
0x0_0000 0b1 Vector 0b00

Hardware Vector Mode Interrupt Exception Handler Address

0 19 20 21 29 30 31
Vector base 0b1 Vector 0b00

3116150
IVPR

312827161500

+ Hardware vector

150

0b0000INTC_IACKR[INTVEC]

PREFIX

0x0000

PREFIX

18

0b000

19

0x0000

31282716

0b0000IRQ SPECIFIC OFFSET

18

0b000

1916

= Interrupt exception
handler address

mode offset

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-8 Freescale Semiconductor

9.3 Memory Map and Registers

9.3.1 INTC Memory Map

Table 9-1 shows the INTC memory map.

9.3.2 Register Descriptions

With the exception of the INTC_SSCIn and INTC_PSRn registers, all registers are 32 bits in width. Any
combination of accessing the four bytes of a register with a single access is supported, provided that the
access does not cross a register boundary. These supported accesses include types and sizes of eight bits,
aligned 16 bits, misaligned 16 bits to the middle two bytes, and aligned 32 bits.Although INTC_SSCIn and
INTC_PSRn are 8 bits wide, they can be accessed with a single 16-bit or 32-bit access, provided that the
access does not cross a 32-bit boundary.

Table 9-1. INTC Memory Map

Offset from
INTC_BASE_ADDR

(0xFFF4_8000)
Register Access

Reset
Value

Section/Page

0x0000 INTC_MCR—INTC module configuration register R/W 0x0000_0000 9.3.2.1/9-9

0x0004 Reserved

0x0008 INTC_CPR_PRC0—INTC current priority register for
processor 0 (Z6)

R/W 0x0000_000F 9.3.2.2/9-10

0x00C INTC_CPR_PRC1—INTC current priority register for
processor 1 (Z0)

R/W 0x0000_000F 9.3.2.3/9-11

0x0010 INTC_IACKR_PRC0—INTC interrupt acknowledge register
for processor 0 (Z6)

R1/W

1 When the HVEN bit in the INTC module configuration register (INTC_MCR) is asserted, a read of the INTC_IACKR_PRCn has
no side effects.

0x0000_0000 9.3.2.4/9-12

0x0014 INTC_IACKR_PRC1—INTC interrupt acknowledge register
for processor 1 (Z0)

R1/W 0x0000_0000 9.3.2.5/9-13

0x0018 INTC_EOIR_PRC0—INTC end of interrupt register for
processor 0 (Z6)

W 0x0000_0000 9.3.2.6/9-14

0x001C INTC_EOIR_PRC1—INTC end of interrupt register for
processor 1 (Z0)

W 0x0000_0000 9.3.2.7/9-14

0x0020 INTC_SSCIR0_3—INTC software set/clear interrupt register
0–3

R/W 0x0000_0000 9.3.2.8/9-15

0x0024 INTC_SSCIR4_7—INTC software set/clear interrupt register
4–7

R/W 0x0000_0000 9.3.2.8/9-15

0x0028 – 0x003F Reserved

0x0040 – 0x017B2

2 A complete list of address offsets for INTC_PSR is provided in Table 9-10 and in Table A-4.

INTC_PSR0_3—INTC priority select register 0 – 3 to
INTC_PSR312_315 — INTC priority select register 312 – 315

R/W 0x0000_0000 9.3.2.9/9-16

0x017C – 0x3FFF Reserved

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-9

In software vector mode, the side effects of a read of INTC_IACKR_PRC0 and INTC_IACR_PRC1 are
the same regardless of the size of the read. In either software or hardware vector mode, the size of a write
to either INTC_EOIR_PRC0 or INTC_EOIR_PRC1 does not affect the operation of the write.

9.3.2.1 INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

Offset: INTC_BASE_ADDR + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 VTES_
PRC1

0 0 0 0 HVEN_
PRC1

0 0 VTES_
PRC0

0 0 0 0 HVEN_
PRC0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-9. INTC Module Configuration Register (INTC_MCR)

Table 9-2. INTC_MCR Field Descriptions

Field Description

VTES_PRC1 For software mode only, the Vector Table Entry Size for Processor 1 (Z0). The VTES_PRC1 bit controls the
number of 0s to the right of INTVEC_PRC1 in INTC_IACKR_PRC1. If the contents of INTC_IACKR_PRC1
are used as an address of an entry in a vector table, then the number of rightmost 0s will determine the size
of each vector table entry.
0 4 bytes.
1 8 bytes.

HVEN_PRC1 Hardware Vector Enable for Processor 1 (Z0). The HVEN bit controls whether the INTC is in hardware vector
mode or software vector mode. Refer to Section 9.1.3, “Modes of Operation,” for details of handshaking with
the processor in each mode.
0 Software vector mode.
1 Hardware vector mode.

VTES_PRC0 For software mode only, the Vector Table Entry Size for Processor 0 (Z6). The VTES_PRC0 bit controls the
number of 0s to the right of INTVEC_PRC0 in INTC_IACKR_PRC0. If the contents of INTC_IACKR_PRC0
are used as an address of an entry in a vector table, then the number of rightmost 0s will determine the size
of each vector table entry.
0 4 bytes.
1 8 bytes.

HVEN_PRC0 Hardware Vector Enable for Processor 0 (Z6). The HVEN bit controls whether the INTC is in hardware vector
mode or software vector mode. Refer to Section 9.1.3, “Modes of Operation,” for details of handshaking with
the processor in each mode.
0 Software vector mode.
1 Hardware vector mode.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-10 Freescale Semiconductor

9.3.2.2 INTC Current Priority Register for Processor 0 (Z6) (INTC_CPR_PRC0)

The current priority register masks any peripheral or software settable interrupt request at the same or
lower priority of the current value than the PRI field in INTC_CPR_PRC0 from generating an interrupt
request to processor 0 (Z6). When INTC_IACKR_PRC0 is read in software vector mode, or the interrupt
acknowledge signal from the processor is asserted in hardware vector mode, the value of PRI is pushed
onto the LIFO, and PRI is updated with the priority of the preempting interrupt request. When
INTC_EOIR_PRC0 is written, the LIFO is popped into the INTC_CPR_PRC0’s PRI field. An exception
case in hardware vector mode to this behavior is described in Section 9.1.3.2, “Hardware Vector Mode.”

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. Refer to
Section 9.5.5, “Priority Ceiling Protocol.”

NOTE
A store to raise the PRI field which closely precedes an access to a shared
resource can result in a non-coherent access to that resource unless an mbar
or msync followed by an isync sequence of instructions is executed between
the accesses. An mbar or msync instruction is also necessary after
accessing the resource but before lowering the PRI field. Refer to
Section 9.5.5.2, “Ensuring Coherency,” for example code to ensure
coherency.

Offset: INTC_BASE_ADDR + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 9-10. INTC Current Priority Register for Processor 0 (Z6) (INTC_CPR_PRC0)

Table 9-3. INTC_CPR_PRC0 Field Descriptions

Field Description

PRI Priority. PRI is the priority of the currently executing Z6 ISR according to the field values defined in Table 9-4.

Table 9-4. PRI Values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-11

9.3.2.3 INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority

Offset: INTC_BASE_ADDR + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 9-11. INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)

Table 9-5. INTC_CPR_PRC1 Field Descriptions

Field Description

PRI Priority. The function of this register is the same as described for processor 0 (Z6) in Section 9.3.2.2, “INTC
Current Priority Register for Processor 0 (Z6) (INTC_CPR_PRC0).”

Table 9-4. PRI Values (continued)

PRI Meaning

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-12 Freescale Semiconductor

9.3.2.4 INTC Interrupt Acknowledge Register for Processor 0 (Z6)
(INTC_IACKR_PRC0)

The INTC_IACKR_PRCn provides a value that can be used to load the address of an ISR from a vector
table. The vector table can be composed of addresses of the ISRs specific to their respective interrupt
vectors.

In software vector mode, reading the INTC_IACKR_PRC0 acknowledges the INTC's interrupt request.
Refer to Section 9.1.3, “Modes of Operation,” for a detailed description of the effect on the interrupt
request to the processor. The reading also pushes the PRI value in the INTC current priority register
(INTC_CPR_PRCn) onto the LIFO and updates PRI in the INTC_CPR_PRCn with the priority of the
interrupt request. The side effect from the reads in software vector mode, that is, the effect on the interrupt
request to the processor, the current priority, and the LIFO, are the same regardless of the size of the read

Reading the INTC_IACKR_PRCn does not have side effects in hardware vector mode.

NOTE
The INTC_IACKR_PRCn must not be read speculatively while in software
vector mode. Therefore, for future compatibility, the TLB entry covering the
INTC_IACKR_PRCn must be configured to be guarded.

In software vector mode, the INTC_IACKR_PRCn must be read before
setting MSR[EE]. No synchronization instruction is needed after reading
the INTC_IACKR_PRCn and before setting MSR[EE].

Offset: INTC_BASE_ADDR + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC0 (most significant 16 bits)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R VTBA_PRC0
(least significant five bits)

INTVEC_PRC01 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 When the VTES_PRC0 bit in INTC_MCR is asserted, INTVEC_PRC0 is shifted to the left one bit. Bit 29 is read as

a 0. VTBA_PRC0 is narrowed to 20 bits in width.

Figure 9-12. INTC Interrupt Acknowledge Register for Processor 0 (Z6) (INTC_IACKR_PRC0)

Table 9-6. INTC_IACKR_PRC0 Field Descriptions

Field Description

VTBA_PRC0 Vector Table Base Address for Processor 0 (Z6). VTBA_PRC0 can be the base address of a vector table of
addresses of ISRs for processor 0 (Z6). The VTBA_PRC0 only uses the leftmost 20 bits when the
VTES_PRC0 bit in INTC_MCR is asserted.

INTVEC_PRC0 Interrupt Vector for Processor 0 (Z6). INTVEC_PRC0 is the vector of the peripheral or software settable
interrupt request that caused the interrupt request to the processor. When the interrupt request to the
processor asserts, the INTVEC_PRC0 is updated, whether the INTC is in software or hardware vector mode.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-13

However, the time for the processor to recognize the assertion or negation
of the external input to it is not defined by the book E architecture and can
be greater than 0. Therefore, insert instructions between the reading of the
INTC_IACKR_PRCn and the setting of MSR[EE] that consumes at least
two processor clock cycles. This length of time allows the interrupt request
negation to propagate through the processor before MSR[EE] is set.

9.3.2.5 INTC Interrupt Acknowledge Register for Processor 1 (Z0)
(INTC_IACKR_PRC1)

Offset: INTC_BASE_ADDR + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC1 (most significant 16 bits)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R VTBA_PRC1
(5 least-significant bits)

INTVEC_PRC11 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 When the VTES_PRC1 bit in INTC_MCR is asserted, INTVEC_PRC1 is shifted to the left one bit. Bit 29 is read as

0. VTBA_PRC1 is narrowed to 20 bits wide

Figure 9-13. INTC Interrupt Acknowledge Register for Processor 1 (Z0) (INTC_IACKR_PRC1)

Table 9-7. INTC_IACKR_PRC1 Field Descriptions

Field Description

VTBA_PRC1 Vector Table Base Address for Processor 1 (Z0). VTBA_PRC1 can be the base address of a vector table of
addresses of ISRs for processor 1 (Z0). The VTBA_PRC1 only uses the leftmost 20 bits when the
VTES_PRC1 bit in INTC_MCR is asserted.

INTVEC_PRC1 Interrupt Vector for Processor 1 (Z0). INTVEC_PRC1 is the vector of the peripheral or software settable
interrupt request that caused the interrupt request to the processor. When the interrupt request to the
processor asserts, the INTVEC_PRC1 is updated, whether the INTC is in software or hardware vector mode.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-14 Freescale Semiconductor

9.3.2.6 INTC End-of-Interrupt Register for Processor 0 (Z6) (INTC_EOIR_PRC0)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt request. When the
INTC_EOIR_PRC0 is written, the priority last pushed on the LIFO is popped into INTC_CPR_PRC0. An
exception to this behavior is described in Section 9.1.3.2, “Hardware Vector Mode.” The values and size
of data written to the INTC_EOIR_PRC0 are ignored. The values and sizes written to this register neither
update the INTC_EOIR_PRC0 contents or affect whether the LIFO pops. For possible future
compatibility, write four bytes of all 0s to the INTC_EOIR_PRC0.

9.3.2.7 INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)

The register’s function is the same as for processor 0 (Z6) as described in Section 9.3.2.6, “INTC
End-of-Interrupt Register for Processor 0 (Z6) (INTC_EOIR_PRC0).”

Offset: INTC_BASE_ADDR + 0x0018 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W INTC_EOIR_PRC0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W INTC_EOIR_PRC0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-14. INTC End-of-Interrupt Register for Processor 0 (Z6) (INTC_EOIR_PRC0)

Offset: INTC_BASE_ADDR + 0x001C Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W INTC_EOIR_PRC1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W INTC_EOIR_PRC1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-15. INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-15

9.3.2.8 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

The software set/clear interrupt registers support the setting or clearing of software settable interrupt
request. These registers contain eight independent sets of bits to set and clear a corresponding flag bit by
software. Excepting being set by software, this flag bit behaves the same as a flag bit set within a
peripheral. This flag bit generates an interrupt request within the INTC like a peripheral interrupt request.
Writing a 1 to SETn leaves SETn unchanged at 0 but sets CLRn. Writing a 0 to SETn has no effect. CLRn
is the flag bit. Writing a 1 to CLRn clears it. Writing a 0 to CLRn has no effect. If a 1 is written
simultaneously to a pair of SETn and CLRn bits, CLRn is asserted, regardless of whether CLRn was
asserted before the write.

Offset: INTC_BASE_ADDR + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0
CLR0

0 0 0 0 0 0 0
CLR1

W SET0 SET1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
CLR2

0 0 0 0 0 0 0
CLR3

W SET2 SET3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-16. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

Offset: INTC_BASE_ADDR + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0
CLR4

0 0 0 0 0 0 0
CLR5

W SET4 SET5

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
CLR6

0 0 0 0 0 0 0
CLR7

W SET6 SET7

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-17. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Table 9-8. INTC_SSCIR[0:7] Field Descriptions

Field Description

SET Set Flag Bits. Writing a 1 sets the corresponding CLRn bit. Writing a 0 has no effect. Each SETn is always
read as a 0.

CLR Clear Flag Bits. CLRn is the flag bit. Writing a 1 to CLRnx clears it provided that a 1 is not written
simultaneously to its corresponding SETn bit. Writing a 0 to CLRn has no effect.
0 Interrupt request not pending within INTC.
1 Interrupt request pending within INTC.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-16 Freescale Semiconductor

9.3.2.9 INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR312_315)

Offset: INTC_BASE_ADDR + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRC_SEL0

0 0
PRI0 PRC_SEL1

0 0
PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRC_SEL2

0 0
PRI2 PRC_SEL3

0 0
PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-18. INTC Priority Select Register 0–3 (INTC_PSR0–3)

Offset: INTC_BASE_ADDR + 0x0178 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRC_
SEL312

0 0
PRI312

PRC_
SEL313

0 0
PRI313

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRC_
SEL314

0 0
PRI314

PRC_
SEL315

0 0
PRI315

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-19. INTC Priority Select Register 312–315 (INTC_PSR312–315)

Table 9-9. INTC_PSR0_3–INTC_PSR312_315 Field Descriptions

Field Description

PRC_SEL0–
PRC_SEL315

Processor Select. If an interrupt source is enabled, PRC_SELn selects whether the interrupt request is to
be sent to processor 0 (Z6), processor 1 (Z0), or both. See Table 9-11.

PRI0–
PRI315

Priority Select. PRIn selects the priority for interrupt requests. Refer to Section 9.4.2, “Priority
Management.”

Table 9-10. INTC Priority Select Register Address Offsets

INTC_PSRn_n Offset Address INTC_PSRn_n Offset Address

INTC_PSR0_3 0x0040 INTC_PSR160_163 0x00E0

INTC_PSR4_7 0x0044 INTC_PSR164_167 0x00E4

INTC_PSR8_11 0x0048 INTC_PSR168_171 0x00E8

INTC_PSR12_15 0x004C INTC_PSR172_175 0x00EC

INTC_PSR16_19 0x0050 INTC_PSR176_179 0x00F0

INTC_PSR20_23 0x0054 INTC_PSR180_183 0x00F4

INTC_PSR24_27 0x0058 INTC_PSR184_187 0x00F8

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-17

INTC_PSR28_31 0x005C INTC_PSR188_191 0x00FC

INTC_PSR32_35 0x0060 INTC_PSR192_195 0x0100

INTC_PSR36_39 0x0064 INTC_PSR196_199 0x0104

INTC_PSR40_43 0x0068 INTC_PSR200_203 0x0108

INTC_PSR44_47 0x006C INTC_PSR204_207 0x010C

INTC_PSR48_51 0x0070 INTC_PSR208_211 0x0110

INTC_PSR52_55 0x0074 INTC_PSR212_215 0x0114

INTC_PSR56_59 0x0078 INTC_PSR216_219 0x0118

INTC_PSR60_63 0x007C INTC_PSR220_223 0x011C

INTC_PSR64_67 0x0080 INTC_PSR224_227 0x0120

INTC_PSR68_71 0x0084 INTC_PSR228_231 0x0124

INTC_PSR72_75 0x0088 INTC_PSR232_235 0x0128

INTC_PSR76_79 0x008C INTC_PSR236_239 0x012C

INTC_PSR80_83 0x0090 INTC_PSR240_243 0x0130

INTC_PSR84_87 0x0094 INTC_PSR244_247 0x0134

INTC_PSR88_91 0x0098 INTC_PSR248_251 0x0138

INTC_PSR92_95 0x009C INTC_PSR252_255 0x013C

INTC_PSR96_99 0x00A0 INTC_PSR256_259 0x0140

INTC_PSR100_103 0x00A4 INTC_PSR260_263 0x0144

INTC_PSR104_107 0x00A8 INTC_PSR264_267 0x0148

INTC_PSR108_111 0x00AC INTC_PSR268_271 0x014C

INTC_PSR112_115 0x00B0 INTC_PSR272_275 0x0150

INTC_PSR116_119 0x00B4 INTC_PSR276_279 0x0154

INTC_PSR120_123 0x00B8 INTC_PSR280_283 0x0158

INTC_PSR124_127 0x00BC INTC_PSR284_287 0x015C

INTC_PSR128_131 0x00C0 INTC_PSR288_291 0x0160

INTC_PSR132_135 0x00C4 INTC_PSR292_295 0x0164

INTC_PSR136_139 0x00C8 INTC_PSR296_299 0x0168

INTC_PSR140_143 0x00CC INTC_PSR300_303 0x016C

INTC_PSR144_147 0x00D0 INTC_PSR304_307 0x0170

INTC_PSR148_151 0x00D4 INTC_PSR308_311 0x0174

INTC_PSR152_155 0x00D8 INTC_PSR312_315 0x0178

INTC_PSR156_159 0x00DC

Table 9-10. INTC Priority Select Register Address Offsets

INTC_PSRn_n Offset Address INTC_PSRn_n Offset Address

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-18 Freescale Semiconductor

The priority select registers support the selection of an individual priority for each source of interrupt
request, and whether the interrupt request is to be sent to processor 0 (Z6), processor 1, (Z0) or both. The
unique vector of each peripheral or software settable interrupt request determines which INTC_PSRn_n is
assigned to that interrupt request. The software settable interrupt requests 0–7 are assigned vectors 0–7,
and their priorities are configured in INTC_PSR0_3 and INTC_PSR4_7, respectively. The peripheral
interrupt requests are assigned vectors 8–315, and their priorities are configured in INTC_PSR8_11
through INTC_PSR312_315, respectively (see Section 9.4.1, “External Interrupt Request Sources,”).

NOTE
The PRC_SELn or PRIn field of an INTC_PSRn_n must not be modified
while the corresponding peripheral or software settable interrupt request is
asserted.

9.4 Functional Description

9.4.1 External Interrupt Request Sources

The INTC has two types of interrupt requests, peripheral and software settable. The assignments between
the interrupt requests from the modules to the vectors for input to the CPU are shown in

Table 9-12. The e200z6 and e200z0 Hardware Vector Mode Offset columns list the IRQ-specific offsets
when using hardware vector mode

It is important to note that interrupt table entries are 16 bytes in size for the e200z6. For the e200z0,
interrupt table entries are only 4 bytes in size. This difference in size, combined with the different starting
offset for the e200z0 interrupt requests, makes it impossible for the two cores to share a single interrupt
table. To solve this, either two different interrupt tables need to be created, or software vector mode should
be used for external interrupt requests.

Table 9-11. Selected Processor for Interrupt Request

PRC_SELn Meaning

00 Interrupt request sent to processor 0 (Z6)

01 Interrupt request sent to both processors

10 Reserved

11 Interrupt request sent to processor 1 (Z0)

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-19

Table 9-12. MPC5668x External Interrupt Requests

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

0 0x0000 0x0800 Software Interrupt 0 Software

1 0x0010 0x0804 Software Interrupt 1

2 0x0020 0x0808 Software Interrupt 2

3 0x0030 0x080C Software Interrupt 3

4 0x0040 0x0810 Software Interrupt 4

5 0x0050 0x0814 Software Interrupt 5

6 0x0060 0x0818 Software Interrupt 6

7 0x0070 0x081C Software Interrupt 7

8 0x0080 0x0820 SWT Timeout SWT SWT

9 0x0090 0x0824 ECC Error ECC ECC

10 0x00A0 0x0828 eDMA–Error 1 eDMA

11 0x00B0 0x082C eDMA–0

12 0x00C0 0x0830 eDMA–1

13 0x00D0 0x0834 eDMA–2

14 0x00E0 0x0838 eDMA–3

15 0x00F0 0x083C eDMA–4

16 0x0100 0x0840 eDMA–5

17 0x0110 0x0844 eDMA–6

18 0x0120 0x0848 eDMA–7

19 0x0130 0x084C eDMA–8

20 0x0140 0x0850 eDMA–9

21 0x0150 0x0854 eDMA–10

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-20 Freescale Semiconductor

22 0x0160 0x0858 eDMA–11 eDMA
(continued)

23 0x0170 0x085C eDMA–12

24 0x0180 0x0860 eDMA–13

25 0x0190 0x0864 eDMA–14

26 0x01A0 0x0868 eDMA–15

27 0x01B0 0x086C eDMA–16

28 0x01C0 0x0870 eDMA–17

29 0x01D0 0x0874 eDMA–18

30 0x01E0 0x0878 eDMA–19

31 0x01F0 0x087C eDMA–20

32 0x0200 0x0880 eDMA–21

33 0x0210 0x0884 eDMA–22

34 0x0220 0x0888 eDMA–23

35 0x0230 0x088C eDMA–24

36 0x0240 0x0890 eDMA–25

37 0x0250 0x0894 eDMA–26

38 0x0260 0x0898 eDMA–27

39 0x0270 0x089C eDMA–28

40 0x0280 0x08A0 eDMA–29

41 0x0290 0x08A4 eDMA–30

42 0x02A0 0x08A8 eDMA–31

43 0x02B0 0x08AC Semaphore Interrupt 0 Semaphore

44 0x02C0 0x08B0 Semaphore Interrupt 1

45 0x02D0 0x08B4 Pin Wakeup Interrupt CRP

46 0x02E0 0x08B8 API/RTC Interrupt

47 0x02F0 0x08BC LVI Interrupt

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-21

48 0x0300 0x08C0 I2C_A I2C
(see Interrupt vectors

314–315)

49 0x0310 0x08C4 I2C_B

50 0x0320 0x08C8 PLL Loss Of Clock PLL

51 0x0330 0x08CC PLL Loss Of Lock

52 0x0340 0x08D0 SIU Overrun SIU

53 0x0350 0x08D4 SIU External Interrupt 0

54 0x0360 0x08D8 SIU External Interrupt 1

55 0x0370 0x08DC SIU External Interrupt 2

56 0x0380 0x08E0 SIU External Interrupt 3

57 0x0390 0x08E4 SIU External Interrupts 15:4

58 0x03A0 0x08E8 EMIOS 0 EMIOS channels 0 to 23
(see Interrupt vectors

262–269)59 0x03B0 0x08EC EMIOS 1

60 0x03C0 0x08F0 EMIOS 2

61 0x03D0 0x08F4 EMIOS 3

62 0x03E0 0x08F8 EMIOS 4

63 0x03F0 0x08FC EMIOS 5

64 0x0400 0x0900 EMIOS 6

65 0x0410 0x0904 EMIOS 7

66 0x0420 0x0908 EMIOS 8

67 0x0430 0x090C EMIOS 9

68 0x0440 0x0910 EMIOS 10

69 0x0450 0x0914 EMIOS 11

70 0x0460 0x0918 EMIOS 12

71 0x0470 0x091C EMIOS 13

72 0x0480 0x0920 EMIOS 14

73 0x0490 0x0924 EMIOS 15

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-22 Freescale Semiconductor

74 0x04A0 0x0928 EMIOS 16 EMIOS channels 0 to 23
(see Interrupt vectors

262–269)
(continued)

75 0x04B0 0x092C EMIOS 17

76 0x04C0 0x0930 EMIOS 18

77 0x04D0 0x0934 EMIOS 19

78 0x04E0 0x0938 EMIOS 20

79 0x04F0 0x093C EMIOS 21

80 0x0500 0x0940 EMIOS 22

81 0x0510 0x0944 EMIOS 23

82 0x0520 0x0948 ADC_EOC ADC

83 0x0530 0x094C ADC_ERR

84 0x0540 0x0950 ADC_WD

85 0x0550 0x0954 Reserved ADC_B

86 0x0560 0x0958 Reserved ADC_B

87 0x0570 0x095C Reserved ADC_B

88 0x0580 0x0960 Reserved ADC_C

89 0x0590 0x0964 Reserved ADC_C

90 0x05A0 0x0968 Reserved ADC_C

91 0x05B0 0x096C Reserved Reserved

92 0x05C0 0x0970 CRP Flash Ready

93 0x05D0 0x0974 CTU Trigger

94 0x05E0 0x0978 Reserved

95 0x05F0 0x097C MLB Channel Interrupts 0–15
combined

MLB_DIM

96 0x0600 0x0980 MLB System Interrupt

97 0x0610 0x0984 MLB Channel Interrupt 0

98 0x0620 0x0988 MLB Channel Interrupt 1

99 0x0630 0x098C MLB Channel Interrupt 2

100 0x0640 0x0990 MLB Channel Interrupt 3

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-23

101 0x0650 0x0994 MLB Channel Interrupt 4 MLB_DIM
(continued)

102 0x0660 0x0998 MLB Channel Interrupt 5

103 0x0670 0x099C MLB Channel Interrupt 6

104 0x0680 0x09A0 MLB Channel Interrupt 7

105 0x0690 0x09A4 MLB Channel Interrupt 8

106 0x06A0 0x09A8 MLB Channel Interrupt 9

107 0x06B0 0x09AC MLB Channel Interrupt 10

108 0x06C0 0x09B0 MLB Channel Interrupt 11

109 0x06D0 0x09B4 MLB Channel Interrupt 12

110 0x06E0 0x09B8 MLB Channel Interrupt 13

111 0x06F0 0x09BC MLB Channel Interrupt 14

112 0x0700 0x09C0 MLB Channel Interrupt 15

113 0x0710 0x09C4 SCI_A SCI_A to SCI_D
(see Interrupt vectors

270–273)114 0x0720 0x09C8 SCI_B

115 0x0730 0x09CC SCI_C

116 0x0740 0x09D0 SCI_D

117 0x0750 0x09D4 DSPI_A FIFO Overflow/Underflow DSPI_A
(see Interrupt vectors

274–283 and 306–313)118 0x0760 0x09D8 DSPI_A End Of Queue

119 0x0770 0x09DC DSPI_A Tx FIFO Fill Request

120 0x0780 0x09E0 DSPI_A Transfer complete

121 0x0790 0x09E4 DSPI_A Rx FIFO Drain Request

122 0x07A0 0x09E8 DSPI_B FIFO Overflow/Underflow DSPI_B
(see Interrupt vectors

274–283 and 306–313)123 0x07B0 0x09EC DSPI_B End Of Queue

124 0x07C0 0x09F0 DSPI_B Tx FIFO Fill Request

125 0x07D0 0x09F4 DSPI_B Transfer complete

126 0x07E0 0x09F8 DSPI_B Rx FIFO Drain Request

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-24 Freescale Semiconductor

127 0x07F0 0x09FC FLEXCAN_A Bus Off and Warning FlexCAN_A

128 0x0800 0x0A00 FLEXCAN_A Error

129 0x0810 0x0A04 Reserved for FLEXCAN_A Wake
Up

130 0x0820 0x0A08 FLEXCAN_A Buffer 0

131 0x0830 0x0A0C FLEXCAN_A Buffer 1

132 0x0840 0x0A10 FLEXCAN_A Buffer 2

133 0x0850 0x0A14 FLEXCAN_A Buffer 3

134 0x0860 0x0A18 FLEXCAN_A Buffer 4

135 0x0870 0x0A1C FLEXCAN_A Buffer 5

136 0x0880 0x0A20 FLEXCAN_A Buffer 6

137 0x0890 0x0A24 FLEXCAN_A Buffer 7

138 0x08A0 0x0A28 FLEXCAN_A Buffer 8

139 0x08B0 0x0A2C FLEXCAN_A Buffer 9

140 0x08C0 0x0A30 FLEXCAN_A Buffer 10

141 0x08D0 0x0A34 FLEXCAN_A Buffer 11

142 0x08E0 0x0A38 FLEXCAN_A Buffer 12

143 0x08F0 0x0A3C FLEXCAN_A Buffer 13

144 0x0900 0x0A40 FLEXCAN_A Buffer 14

145 0x0910 0x0A44 FLEXCAN_A Buffer 15

146 0x0920 0x0A48 FLEXCAN_A Buffer 16-31

147 0x0930 0x0A4C FLEXCAN_A Buffer 32-63

148 0x0940 0x0A50 Reserved–RTI not implemented Reserved

149 0x0950 0x0A54 PIT1 PIT

150 0x0960 0x0A58 PIT2

151 0x0970 0x0A5C PIT3

152 0x0980 0x0A60 PIT4

153 0x0990 0x0A64 PIT5

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-25

154 0x09A0 0x0A68 PIT6 PIT
(continued)

155 0x09B0 0x0A6C PIT7

156 0x09C0 0x0A70 PIT8

157 0x09D0 0x0A74 FLEXCAN_B Bus Off and Warning FlexCAN_B

158 0x09E0 0x0A78 FLEXCAN_B Error

159 0x09F0 0x0A7C Reserved for FLEXCAN_B Wake
Up

160 0x0A00 0x0A80 FLEXCAN_B Buffer 0

161 0x0A10 0x0A84 FLEXCAN_B Buffer 1

162 0x0A20 0x0A88 FLEXCAN_B Buffer 2

163 0x0A30 0x0A8C FLEXCAN_B Buffer 3

164 0x0A40 0x0A90 FLEXCAN_B Buffer 4

165 0x0A50 0x0A94 FLEXCAN_B Buffer 5

166 0x0A60 0x0A98 FLEXCAN_B Buffer 6

167 0x0A70 0x0A9C FLEXCAN_B Buffer 7

168 0x0A80 0x0AA0 FLEXCAN_B Buffer 8

169 0x0A90 0x0AA4 FLEXCAN_B Buffer 9

170 0x0AA0 0x0AA8 FLEXCAN_B Buffer 10

171 0x0AB0 0x0AAC FLEXCAN_B Buffer 11

172 0x0AC0 0x0AB0 FLEXCAN_B Buffer 12

173 0x0AD0 0x0AB4 FLEXCAN_B Buffer 13

174 0x0AE0 0x0AB8 FLEXCAN_B Buffer 14

175 0x0AF0 0x0ABC FLEXCAN_B Buffer 15

176 0x0B00 0x0AC0 FLEXCAN_B Buffer 16–31

177 0x0B10 0x0AC4 FLEXCAN_B Buffer 32–63

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-26 Freescale Semiconductor

178 0x0B20 0x0AC8 FLEXCAN_C Bus Off and Warning FlexCAN_C

179 0x0B30 0x0ACC FLEXCAN_C Error

180 0x0B40 0x0AD0 Reserved for FLEXCAN_C Wake
Up

181 0x0B50 0x0AD4 FLEXCAN_C Buffer 0 FlexCAN_C
(continued)

182 0x0B60 0x0AD8 FLEXCAN_C Buffer 1

183 0x0B70 0x0ADC FLEXCAN_C Buffer 2

184 0x0B80 0x0AE0 FLEXCAN_C Buffer 3

185 0x0B90 0x0AE4 FLEXCAN_C Buffer 4

186 0x0BA0 0x0AE8 FLEXCAN_C Buffer 5

187 0x0BB0 0x0AEC FLEXCAN_C Buffer 6

188 0x0BC0 0x0AF0 FLEXCAN_C Buffer 7

189 0x0BD0 0x0AF4 FLEXCAN_C Buffer 8

190 0x0BE0 0x0AF8 FLEXCAN_C Buffer 9

191 0x0BF0 0x0AFC FLEXCAN_C Buffer 10

192 0x0C00 0x0B00 FLEXCAN_C Buffer 11

193 0x0C10 0x0B04 FLEXCAN_C Buffer 12

194 0x0C20 0x0B08 FLEXCAN_C Buffer 13

195 0x0C30 0x0B0C FLEXCAN_C Buffer 14

196 0x0C40 0x0B10 FLEXCAN_C Buffer 15

197 0x0C50 0x0B14 FLEXCAN_C Buffer 16–31

198 0x0C60 0x0B18 FLEXCAN_C Buffer 32–63

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-27

199 0x0C70 0x0B1C FLEXCAN_D Bus Off and Warning FlexCAN_D

200 0x0C80 0x0B20 FLEXCAN_D Error

201 0x0C90 0x0B24 Reserved for FLEXCAN_D Wake
Up

202 0x0CA0 0x0B28 FLEXCAN_D Buffer 0

203 0x0CB0 0x0B2C FLEXCAN_D Buffer 1

204 0x0CC0 0x0B30 FLEXCAN_D Buffer 2

205 0x0CD0 0x0B34 FLEXCAN_D Buffer 3

206 0x0CE0 0x0B38 FLEXCAN_D Buffer 4

207 0x0CF0 0x0B3C FLEXCAN_D Buffer 5

208 0x0D00 0x0B40 FLEXCAN_D Buffer 6 FlexCAN_D
(continued)

209 0x0D10 0x0B44 FLEXCAN_D Buffer 7

210 0x0D20 0x0B48 FLEXCAN_D Buffer 8

211 0x0D30 0x0B4C FLEXCAN_D Buffer 9

212 0x0D40 0x0B50 FLEXCAN_D Buffer 10

213 0x0D50 0x0B54 FLEXCAN_D Buffer 11

214 0x0D60 0x0B58 FLEXCAN_D Buffer 12

215 0x0D70 0x0B5C FLEXCAN_D Buffer 13

216 0x0D80 0x0B60 FLEXCAN_D Buffer 14

217 0x0D90 0x0B64 FLEXCAN_D Buffer 15

218 0x0DA0 0x0B68 FLEXCAN_D Buffer 16–31

219 0x0DB0 0x0B6C FLEXCAN_D Buffer 32–63

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-28 Freescale Semiconductor

220 0x0DC0 0x0B70 FLEXCAN_E Bus Off and Warning FlexCAN_E

221 0x0DD0 0x0B74 FLEXCAN_E Error

222 0x0DE0 0x0B78 Reserved for FLEXCAN_E Wake
Up

223 0x0DF0 0x0B7C FLEXCAN_E Buffer 0

224 0x0E00 0x0B80 FLEXCAN_E Buffer 1

225 0x0E10 0x0B84 FLEXCAN_E Buffer 2

226 0x0E20 0x0B88 FLEXCAN_E Buffer 3

227 0x0E30 0x0B8C FLEXCAN_E Buffer 4

228 0x0E40 0x0B90 FLEXCAN_E Buffer 5

229 0x0E50 0x0B94 FLEXCAN_E Buffer 6

230 0x0E60 0x0B98 FLEXCAN_E Buffer 7

231 0x0E70 0x0B9C FLEXCAN_E Buffer 8

232 0x0E80 0x0BA0 FLEXCAN_E Buffer 9

233 0x0E90 0x0BA4 FLEXCAN_E Buffer 10

234 0x0EA0 0x0BA8 FLEXCAN_E Buffer 11

235 0x0EB0 0x0BAC FLEXCAN_E Buffer 12 FlexCAN_E
(continued)

236 0x0EC0 0x0BB0 FLEXCAN_E Buffer 13

237 0x0ED0 0x0BB4 FLEXCAN_E Buffer 14

238 0x0EE0 0x0BB8 FLEXCAN_E Buffer 15

239 0x0EF0 0x0BBC FLEXCAN_E Buffer 16–31

240 0x0F00 0x0BC0 FLEXCAN_E Buffer 32–63

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-29

241 0x0F10 0x0BC4 FLEXCAN_F Bus Off and Warning FlexCAN_F

242 0x0F20 0x0BC8 FLEXCAN_F Error

243 0x0F30 0x0BCC Reserved for FLEXCAN_F Wake
Up

244 0x0F40 0x0BD0 FLEXCAN_F Buffer 0

245 0x0F50 0x0BD4 FLEXCAN_F Buffer 1

246 0x0F60 0x0BD8 FLEXCAN_F Buffer 2

247 0x0F70 0x0BDC FLEXCAN_F Buffer 3

248 0x0F80 0x0BE0 FLEXCAN_F Buffer 4

249 0x0F90 0x0BE4 FLEXCAN_F Buffer 5

250 0x0FA0 0x0BE8 FLEXCAN_F Buffer 6

251 0x0FB0 0x0BEC FLEXCAN_F Buffer 7

252 0x0FC0 0x0BF0 FLEXCAN_F Buffer 8

253 0x0FD0 0x0BF4 FLEXCAN_F Buffer 9

254 0x0FE0 0x0BF8 FLEXCAN_F Buffer 10

255 0x0FF0 0x0BFC FLEXCAN_F Buffer 11

256 0x1000 0x0C00 FLEXCAN_F Buffer 12

257 0x1010 0x0C04 FLEXCAN_F Buffer 13

258 0x1020 0x0C08 FLEXCAN_F Buffer 14

259 0x1030 0x0C0C FLEXCAN_F Buffer 15

260 0x1040 0x0C10 FLEXCAN_F Buffer 16–31

261 0x1050 0x0C14 FLEXCAN_F Buffer 32–63

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-30 Freescale Semiconductor

262 0x1060 0x0C18 EMIOS_24 EMIOS channels 24 to 31
(see Interrupt vectors

58–81)263 0x1070 0x0C1C EMIOS_25

264 0x1080 0x0C20 EMIOS_26

265 0x1090 0x0C24 EMIOS_27

266 0x10A0 0x0C28 EMIOS_28

267 0x10B0 0x0C2C EMIOS_29

268 0x10C0 0x0C30 EMIOS_30

269 0x10D0 0x0C34 EMIOS_31

270 0x10E0 0x0C38 SCI_E SCI_E to SCI_H
(see Interrupt vectors

113–116 and 306–313)271 0x10F0 0x0C3C SCI_F

272 0x1100 0x0C40 SCI_G

273 0x1110 0x0C44 SCI_H

274 0x1120 0x0C48 DSPI_C FIFO Overflow/Underflow DSPI_C
(see Interrupt vectors

117–126)275 0x1130 0x0C4C DSPI_C End Of Queue

276 0x1140 0x0C50 DSPI_C Tx FIFO Fill Request

277 0x1150 0x0C54 DSPI_C Transfer complete

278 0x1160 0x0C58 DSPI_C Rx FIFO Drain Request

279 0x1170 0x0C5C DSPI_D FIFO Overflow/Underflow DSPI_D
(see Interrupt vectors

117–126)280 0x1180 0x0C60 DSPI_D End Of Queue

281 0x1190 0x0C64 DSPI_D Tx FIFO Fill Request

282 0x11A0 0x0C68 DSPI_D Transfer complete

283 0x11B0 0x0C6C DSPI_D Rx FIFO Drain Request

284 0x11C0 0x0C70 FlexRay_MIF FlexRay

285 0x11D0 0x0C74 FlexRay_PRIF

286 0x11E0 0x0C78 FlexRay_CHIF

287 0x11F0 0x0C7C FlexRay_WUP_IF

288 0x1200 0x0C80 FlexRay_FBNE_F

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-31

289 0x1210 0x0C84 FlexRay_FANE_F FlexRay
(continued)

290 0x1220 0x0C88 FlexRay_RBIF

291 0x1230 0x0C8C FlexRay_TBIF

292 0x1240 0x0C90 Reserved Soft MediaLB

293 0x1250 0x0C94 Reserved

294 0x1260 0x0C98 Match on Channel 0 STM

295 0x1270 0x0C9C Match on Channel 1

296 0x1280 0x0CA0 Match on Channel 2

297 0x1290 0x0CA4 Match on Channel 3

298 0x12A0 0x0CA8 FEC Transmit FEC

299 0x12B0 0x0CAC FEC Receive

300 0x12C0 0x0CB0 FEC Everything else

301 0x12D0 0x0CB4 Reserved Reserved for On Platform

302 0x12E0 0x0CB8 Reserved

303 0x12F0 0x0CBC Reserved

304 0x1300 0x0CC0 Reserved

305 0x1310 0x0CC4 Reserved

306 0x1320 0x0CC8 SCI_J SCI_J to SCI_M
(see Interrupt vectors

113–116 and 270–273) 307 0x1330 0x0CCC SCI_K

308 0x1340 0x0CD0 SCI_L

309 0x1350 0x0CD4 SCI_M

310 0x1360 0x0CD8 Reserved for SCI_N SCI_N and SCI_P to
SCI_R

(see Interrupt vectors
113–116 and 270–273)

311 0x1370 0x0CDC Reserved for SCI_P

312 0x1380 0x0CE0 Reserved for SCI_Q

313 0x1390 0x0CE4 Reserved for SCI_R

314 0x13A0 0x0CE8 I2C_C I2C
(see Interrupt vectors

48–49) 315 0x13B0 0x0CEC I2C_D

Table 9-12. MPC5668x External Interrupt Requests (continued)

Vector
Number

e200z6 Hardware
Vector Mode Offset

e200z0 Hardware
Vector Mode Offset

MPC5668x Vector Vector Type

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-32 Freescale Semiconductor

NOTE
The peripheral or software settable interrupt request asserts when the PRIn
value in the interrupt priority select register (INTC_PSRn) is greater than
the PRIn value in interrupt current priority register (INTC_CPR).

If an asserted peripheral or software settable interrupt request negates before
the processor acknowledges its request, the interrupt request can reassert
and remain asserted. If this occurs, the processor uses the INTC_PSRn value
to locate the IRQ vector, and updates the PRIn value in the INTC_CPR with
the PRIn value in INTC_PSRn.

Clearing the peripheral interrupt request enable bit for the peripheral
initiating the request, or setting the IRQ mask bit has the same consequences
as clearing its flag bit. Setting its enable bit or clearing its mask bit while its
flag bit is asserted has the same effect on the INTC as an interrupt event
setting the flag bit.

9.4.1.1 Peripheral Interrupt Requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

Interrupt requests from devices external to the MPC5668x are classified as peripheral interrupt requests in
this reference manual. These type of external peripheral interrupts are handled by the SIU (see
Section 9.4.1, “External Interrupt Request Sources”).

9.4.1.2 Software Settable Interrupt Requests

The software set/clear interrupt registers (INTC_SSCIRx) support the setting or clearing of
software-settable interrupt requests. These registers contain eight independent sets of bits to set and clear
a corresponding flag bit by software. With the exception of being set by software, this flag bit behaves the
same as a flag bit set within a peripheral. This flag bit generates an interrupt request within the INTC just
like a peripheral interrupt request.

An interrupt request is triggered by software by writing a 1 to a SETn bit in
INTC_SSCIR0–INTC_SSCIR7. This write sets a CLRn flag bit that generates an interrupt request. The
interrupt request is cleared by writing a 1 to the CLRn bit. Specific behavior includes the following:

• Writing a 1 to SETn leaves SETn unchanged at 0 but sets the flag bit (CLRn bit).

• Writing a 0 to SETn has no effect.

• Writing a 1 to CLRn clears the flag (CLRn) bit.

• Writing a 0 to CLRn has no effect.

• If a 1 is written to a pair of SETn and CLRn bits at the same time, the flag (CLRn) is set, regardless
of whether CLRn was asserted before the write.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-33

The time from the write to the SETn bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

9.4.1.3 Unique Vector for Each Interrupt Request Source

Each peripheral and software settable interrupt request is assigned a hardwired unique 9-bit vector.
Software settable interrupts 0–7 are assigned vectors 0–7 respectively. The peripheral interrupt requests
are assigned vectors 8 to as high as needed to include all the peripheral interrupt requests.

9.4.2 Priority Management

The asserted interrupt requests are compared to each other based on their PRIn and PRC_SELn values set
in the INTC priority select registers (INTC_PSR0 –INTC_PSR315). The result of that comparison is
compared to PRI in the associated current priority register (INTC_CPR_PRC0 or INTC_CPR_PRC1). The
results of those comparisons are used to manage the priority of the ISR being executed by the associated
processor. The associated LIFO also assists in managing that priority.

9.4.2.1 Current Priority and Preemption

The priority arbitrator, selector, encoder, and comparator submodules shown in Figure 9-1 are used to
compare the priority of the asserted interrupt requests to the current priority. If the priority of any asserted
peripheral or software settable interrupt request is higher than the current priority for a given processor,
then the interrupt request to the processor is asserted. Also, a unique vector for the preempting peripheral
or software settable interrupt request is generated for the associated INTC interrupt acknowledge register
(INTC_IACKR_PRC0 or INTC_IACKR_PRC1) and, if in hardware vector mode, for the interrupt vector
provided to the processor.

9.4.2.1.1 Priority Arbitrator Submodule

The priority arbitrator submodule for each processor compares all the priorities of all of the asserted
interrupt requests assigned to that processor, both peripheral and software settable. The output of the
priority arbitrator submodule is the highest of those priorities assigned to a given processor. Also, any
interrupt requests which have this highest priority are output as asserted interrupt requests to the associated
request selector submodule.

9.4.2.1.2 Request Selector Submodule

If only one interrupt request from the associated priority arbitrator submodule is asserted, then it is passed
as asserted to the associated vector encoder submodule. If multiple interrupt requests from the associated
priority arbitrator submodule are asserted, only the one with the lowest vector passes as asserted to the
associated vector encoder submodule. The lower vector is chosen regardless of the time order of the
assertions of the peripheral or software settable interrupt requests.

9.4.2.1.3 Vector Encoder Submodule

The vector encoder submodule generates the unique 9-bit vector for the asserted interrupt request from the
request selector submodule for the associated processor.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-34 Freescale Semiconductor

9.4.2.1.4 Priority Comparator Submodule

The priority comparator submodule compares the highest priority output from the associated priority
arbitrator submodule with PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1. If the priority
comparator submodule detects that the highest priority is higher than the current priority, then it asserts the
interrupt request to the associated processor. This interrupt request to the processor asserts whether this
highest priority is raised above the value of PRI in the associated INTC_CPR_PRC0 or
INTC_CPR_PRC1, or the PRI value in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 is lowered
below this highest priority. This highest priority becomes the new priority which is written to PRI in the
associated INTC_CPR_PRC0 or INTC_CPR_PRC1 when the interrupt request to the processor is
acknowledged. Interrupt requests whose PRIn in INTC_PSRn_n are 0 will not cause a preemption because
their PRIn will not be higher than PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1.

Another function of the priority comparator subblock is to signal an update of the INTC_IACKR_PRC0
and INTC_IACKR_PRC1 with the vector number of the first interrupt that arrives that has a priority higher
than the current priority. Once the vector number and priority are captured, they cannot be superseded by
a higher priority interrupt until an update of the INTC_CPR_PRC0 or INTC_CPR_PRC1 occurs.

9.4.2.2 Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the associated INTC_CPR_PRC0 or INTC_CPR_PRC1.
Therefore, because these priorities are stacked within the INTC, if interrupts need to be enabled during the
ISR, at the beginning of the interrupt exception handler the PRI value in the associated INTC_CPR_PRC0
or INTC_CPR_PRC1 does not need to be loaded from the associated INTC_CPR_PRC0 or
INTC_CPR_PRC1 and stored onto the context stack. Likewise, at the end of the interrupt exception
handler, the priority does not need to be loaded from the context stack and stored into the associated
INTC_CPR_PRC0 or INTC_CPR_PRC1.

The PRI value in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 is pushed onto the LIFO when
the associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is read in software vector mode or when the
interrupt acknowledge signal from the associated processor is asserted in hardware vector mode. The
priority is popped into PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1 when the associated
INTC_EOIR_PRC0 or INTC_EOIR_PRC1 is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR_PRC0 or
INTC_CPR_PRC1 equal to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15
priorities. However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because of
how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is pushed 15 or more
times than it is popped, the first priorities pushed are overwritten. A priority of 0 would be an overwritten
priority. However, the LIFO will pop 0s if it is popped more times than pushed. Therefore, although a
priority of 0 was overwritten, it is regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-35

9.4.3 Details on Handshaking with Processor

9.4.3.1 Software Vector Mode Handshaking

9.4.3.1.1 Acknowledging Interrupt Request to Processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode, along
with the handshake near the end of the interrupt exception handler, is shown in Figure 9-20. The INTC
examines the peripheral and software settable interrupt requests. When it finds an asserted peripheral or
software settable interrupt request with a higher priority than PRI in the associated INTC current priority
register (INTC_CPR_PRC0 or INTC_CPR_PRC1), it asserts the interrupt request to the associated
processor. The INTVEC field in the associated INTC current priority register (INTC_IACKR_PRC0 or
INTC_IACKR_PRC1) is updated with the preempting interrupt request’s vector when the interrupt request
to the processor is asserted. The INTVEC field retains that value until the next time the interrupt request
to the processor is asserted. The handshaking process is described in Section 9.1.3.1, “Software Vector
Mode.”

9.4.3.1.2 End of Interrupt Exception Handler

Before the interrupt exception handling completes, INTC end-of-interrupt register (INTC_EOIR_PRC0 or
INTC_EOIR_PRC1) must be written. When written, the associated LIFO is popped so the preempted
priority is restored into PRI of the associated INTC_CPR_PRC0 or INTC_CPR_PRC1. Before it is
written, the peripheral or software settable flag bit must be cleared so that the peripheral or software
settable interrupt request is negated.

NOTE
To ensure proper operation across all Power Architecture MCUs, execute an
mbar or msync instruction between the access to clear the flag bit and the
write to the INTC_EOIR_PRCn.

When returning from the preemption, the INTC does not search for the peripheral or software settable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request may no longer be asserted. When PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1
is lowered to the priority of the preempted ISR, the interrupt request for the preempted ISR or other
asserted peripherals or software settable interrupt requests at or below that priority will not cause a
preemption. Instead, after the restoration of the preempted context, the processor returns to the next
instruction address it was about to execute before it was preempted. This next instruction is part of the
preempted ISR or the interrupt exception handler’s prolog or epilog.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-36 Freescale Semiconductor

Figure 9-20. Software Vector Mode Handshaking Timing Diagram

9.4.3.2 Hardware Vector Mode Handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode and
handshaking near the end of the interrupt exception handler is shown in Figure 9-21. As in software vector
mode, the INTC examines the peripheral and software settable interrupt requests and, when it finds one
asserted with a higher priority than PRI in the associated INTC_CPR_PRC0 or INTC_CPR_PRC1, it
asserts the interrupt request to the associated processor. The INTVEC field in the associated
INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is updated with the preempting peripheral or software
settable interrupt request’s vector when the interrupt request to the processor is asserted. The INTVEC
field retains that value until the next time the interrupt request to the associated processor is asserted. In
addition, the value of the interrupt vector to the associated processor also matches the value of the
INTVEC field in the associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1. The rest of the
handshaking process is described in Section 9.1.3.2, “Hardware Vector Mode.”

The handshaking near the end of the interrupt exception handler, that is written to the associated
INTC_EOIR_PRC0 or INTC_EOIR_PRC1, is the same as in software vector mode (see Section 9.4.3.1.2,
“End of Interrupt Exception Handler”).

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR_PCRn

Write
INTC_EOIR_PCRn

INTVEC in
INTC_IACKR_PCRn

PRI in
INTC_CPR_PCRn

Peripheral Interrupt
Request 100

0

0

0

108

1 0

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-37

Figure 9-21. Hardware Vector Mode Handshaking Timing Diagram

9.5 Initialization/Application Information

9.5.1 Initialization Flow

After exiting reset, all of the PRIn and PRC_SELn fields in the INTC priority select registers
(INTC_PSR0–INTC_PSR315) are cleared (set to 0), and PRI in both INTC_CPR_PRC0 and
INTC_CPR_PRC1 is set to 0xF (0b1111). These reset values prevent the INTC from asserting interrupt
requests to the processors. The enable or mask bits in the peripherals are reset such that the peripheral
interrupt requests are negated.

An initialization sequence for allowing the peripheral and software settable interrupt requests to cause an
interrupt request to the processor is:

interrupt_request_initialization:
configure VTES_PRC0,VTES_PRC1,HVEN_PRC0 and HVEN_PRC1 in INTC_MCR
configure VTBA_PRCn in INTC_IACKR_PRCn
raise the PRIn fields and set the PRC_SELx fields to the desired processor in INTC_PSRn_n
set the enable bits or clear the mask bits for the peripheral interrupt requests
lower PRI in INTC_CPR_PRCn to zero
enable processor(s) recognition of interrupts

9.5.2 Interrupt Exception Handler

These example interrupt exception handlers use Power Architecture assembly code.

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR_PCRn

Write
INTC_EOIR_PCRn

INTVEC in
INTC_IACKR_PCRn

PRI in
INTC_CPR_PCRn

Peripheral Interrupt
Request 100

0

0 108

0

108

0 1

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-38 Freescale Semiconductor

9.5.2.1 Software Vector Mode
interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1

lis r3,INTC_IACKR_PRCn@ha # form adjusted upper half of INTC_IACKR_PRCn address
lwz r3,INTC_IACKR_PRCn@l(r3) # load INTC_IACKR_PRCn, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move address of ISR into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR_PRCn@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR_PRCn
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR_PRCn@l(r3) # store to INTC_EOIR_PRCn, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1

.

.

.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

9.5.2.2 Hardware Vector Mode

This interrupt exception handler is useful with processor and system bus implementations which support
a hardware vector. This example assumes that each interrupt_exception_handlerx only has space for four
instructions, and therefore a branch to interrupt_exception_handler_continuedx is needed.
interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch to continue

interrupt_exception_handler_continuedx:

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-39

code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR_PRCn@ha # form adjusted upper half of INTC_EOIR_PRCn address
li r4,0x0 # form 0 to write to INTC_EOIR_PRCn
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR_PRCn@l(r3) # store to INTC_EOIR_PRCn, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

9.5.3 ISR, RTOS, and Task Hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current priority register
(INTC_CPR_PRC0 or INTC_CPR_PRC1) having a value of 0. The RTOS executes the tasks according
to whatever priority scheme it may have, but that priority scheme is independent and has a lower priority
of execution than the priority scheme of the INTC. In other words, the ISRs execute above
INTC_CPR_PRCn priority 0 and outside the control of the RTOS, the RTOS executes at
INTC_CPR_PRCn priority 0, and while the tasks execute at different priorities under the control of the
RTOS, they also execute at INTC_CPR_PRCn priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR_PRCn while the shared resource is being accessed.

An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR315) has a value of 0 does
not cause an interrupt request to the selected processor, even if its peripheral or software settable interrupt
request is asserted. For a peripheral interrupt request, not setting its enable bit or disabling the mask bit
causes it to remain negated, which consequently also does not cause an interrupt request to the processor.
Since the ISRs are outside the control of the RTOS, this ISR does not run unless called by another ISR or
the interrupt exception handler, perhaps after executing another ISR.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-40 Freescale Semiconductor

9.5.4 Order of Execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software settable interrupt requests. However, if multiple
peripheral or software settable interrupt requests are asserted, more than one has the highest priority, and
that priority is high enough to cause preemption, the INTC selects the one with the lowest unique vector
regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
settable interrupt requests asserted.

The example in Table 9-13 shows the order of execution of both ISRs with different priorities and the same
priority.

Table 9-13. Order of ISR Execution Example

Step# Step Description

Code Executing at End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software settable interrupt requests.

ISR208 ISR308 ISR408
Interrupt

Exception
Handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at priority 1
asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at priority 4 is
asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at priority 3 is
asserts.

X 4

5 Peripheral interrupt request 200 at priority 3 is
asserts.

X 4

6 ISR408 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

7 Interrupt taken. ISR208 starts to execute,
even though peripheral interrupt request 300
asserted first.

X 3

8 ISR208 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

9 Interrupt taken. ISR308 starts to execute. X 3

10 ISR308 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 1

11 ISR108 completes. Interrupt exception
handler writes to INTC_EOIR_PRCn.

X 0

12 RTOS continues execution. X 0

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-41

9.5.5 Priority Ceiling Protocol

9.5.5.1 Elevating Priority

The PRI field in INTC current priority register (INTC_CPR_PRC0 or INTC_CPR_PRC1) is elevated in
the OSEK PCP to the ceiling of all of the priorities of the ISRs that share a resource. This protocol allows
coherent accesses of the ISRs to that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They all share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR_PRCn to 3, the ceiling of all of the ISR priorities. After they release the resource, the PRI
value in INTC_CPR_PRCn can be lowered. If they do not raise their priority, ISR2 can preempt ISR1, and
ISR3 can preempt ISR1 or ISR2, possibly corrupting the shared resource. Another possible failure
mechanism is deadlock if the higher priority ISR needs the lower priority ISR to release the resource before
it can continue, but the lower priority ISR cannot release the resource until the higher priority ISR
completes and execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time when
accessing a shared resource that all higher priority interrupts are blocked. For example, while ISR3 cannot
preempt ISR1 while it is accessing the shared resource, all of the ISRs with a priority higher than 3 can
preempt ISR1.

9.5.5.2 Ensuring Coherency

Non-coherent accesses to a shared resource can occur. As an example, ISR1 and ISR2 both share a
resource. ISR1 has a lower priority, therefore it executes and then writes the new PRI value to the current
priority register (INTC_CPR_PRCn). The next instruction writes a value to a shared coherent data block.

If INTC asserts the ISR2 interrupt request to the processor just before or at the same time as the first ISR1
write, it is possible for both the ISR1 and ISR2 writes to execute while the processor responds to the INTC
request, discards the transactions, and flushes the processing pipeline. However, ISR2 cannot access the
data block coherently because the data block is now corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corrupting a coherent data block, use the following code to modify the PRI in
INTC_CPR_PRCn. Interrupts must be disabled before executing the following GetResource code
sequence:

disable processor recognition of interrupts
PRI modification
enable processor recognition of interrupts

9.5.5.2.1 Raised Priority Preserved

Before the instruction after the GetResource system service executes, all pending transactions have
completed. These pending transactions can include an ISR for a peripheral or software settable interrupt
request whose priority was equal to or lower than the raised priority. Also, during the epilog of the interrupt
exception handler for this preempting ISR, the raised priority has been restored from the LIFO to PRI in
INTC_CPR. The shared coherent data block now can be accessed coherently. Figure 9-22 shows the

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-42 Freescale Semiconductor

timing diagram for this scenario, and Table 9-14 explains the events. The example is for software vector
mode, but except for the method of retrieving the vector and acknowledging the interrupt request to the
processor, hardware vector mode is identical.

Figure 9-22. Raised Priority Preserved Timing Diagram

Table 9-14. Raised Priority Preserved Events

Event Description

A Peripheral interrupt request 200 asserts during execution of ISR108 running at priority 1.

B Interrupt request to processor asserts. INTVEC in INTC_IACKR updates with vector for that peripheral interrupt
request.

C ISR108 writes to INTC_CPR to raise priority to 3 before accessing shared coherent data block.

D PRI in INTC_CPR now at 3, reflecting the write. This write, just before accessing data block, is the last instruction the
processor executes before being interrupted.

E Interrupt exception handler prolog acknowledges interrupt by reading INTC_IACKR.

F PRI of 3 pushed onto LIFO. PRI in INTC_CPR updates to 2, the priority of ISR208.

G ISR208 clears its flag bit, deasserting its peripheral interrupt request.

Last In / First Out
Entry in LIFO

Write
INTC_CPR

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

108

1

208

2 3

Peripheral Interrupt
Request 200

0 3 0

3

A

B

C

D

E

F

G

H

I

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-43

9.5.6 Selecting Priorities According to Request Rates and Deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling (RMS) or a
superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which have higher request rates
have higher priorities. In DMS, if the deadline is before the next time the ISR is requested, then the ISR is
assigned a priority according to the time from the request for the ISR to the deadline, not from the time of
the request for the ISR to the next request for it.

For example, ISR1 executes every 100 s, ISR2 executes every 200 s, and ISR3 executes every 300 s.
ISR1 has a higher priority than ISR2 which has a higher priority than ISR3; however, if ISR3 has a
deadline of 150 s, then it has a higher priority than ISR2.

The INTC has 16 priorities, which can be significantly fewer than the number of ISRs. In this case, group
the ISRs with other ISRs that have similar deadlines. For example, when a priority is allocated for every
time the request rate doubles, ISRs with request rates around 1 ms would share a priority, ISRs with request
rates around 500 s would share a priority, ISRs with request rates around 250 s would share a priority,
etc. With this approach, a range of ISR request rates of 216 could be covered, regardless of the number of
ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines. However, it also
allows easier management of ISRs with similar deadlines that share a resource. They do not need to use
the PCP to access the shared resource.

9.5.7 Software Settable Interrupt Requests

The software settable interrupt requests can be used in two ways. They can be used to schedule a lower
priority portion of an ISR and for processors to interrupt other processors in a multiple processor system.

9.5.7.1 Scheduling a Lower Priority Portion of an ISR

A portion of an ISR needs to be executed at the PRIn value in INTC priority select registers
(INTC_PSR0–INTC_PSR315), which becomes the PRI value in INTC current priority register
(INTC_CPR_PRC0 or INTC_CPR_PRC1) with the interrupt acknowledge. The ISR, however, can have
a portion of it which does not need to be executed at this higher priority. Therefore, executing this later
portion that does not need to be executed at this higher priority can prevent the execution of ISRs that do
not have a higher priority than the earlier portion of the ISR but do have a higher priority than what the
later portion of the ISR needs. This preemptive scheduling inefficiency reduces the processor’s ability to
meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount

H Interrupt exception handler epilog writes to INTC_EOIR.

I LIFO pops 3, restoring the raised priority onto PRI in INTC_CPR. Next value to pop from LIFO is the priority from
before peripheral interrupt request 100 interrupted. ISR108 now can access data block coherently after interrupt
exception handler executes rfi instruction.

Event Description

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-44 Freescale Semiconductor

of time for an ISR to schedule a task. Therefore, a second option is for the ISR, after completing the higher
priority portion, to set a SETn bit in INTC software set/clear interrupt registers
(INTC_SSCIR0–INTC_SSCIR7). Writing a 1 to SETn causes a software settable interrupt request. This
software settable interrupt request usually has a lower PRIn value in the INTC_PSRn, and therefore does
not cause preemptive scheduling inefficiencies.

After generating a software settable interrupt request, the higher priority ISR completes. The lower priority
ISR is scheduled according to its priority. Execution of the higher priority ISR is not resumed after the
completion of the lower priority ISR.

9.5.7.2 Scheduling an ISR on Another Processor

Since the SETn bits in the INTC_SSCIRn are memory mapped, processors in multiple-processor systems
can schedule ISRs on the other processors. One application is that one processor wants to command
another processor to perform a piece of work and the initiating processor does not need to use the results
of that work. If the initiating processor is concerned that the processor executing the software settable ISR
has not completed the work before asking it to again execute the ISR, it can check if the corresponding
CLRn bit in INTC_SSCIRn is asserted before again writing a 1 to the SETn bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second
processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. The procedure is that the first processor writes a 1
to a SETn bit on the second processor. The second processor, after accessing the block of data, clears the
corresponding CLRn bit and then writes 1 to a SETn bit on the first processor, informing it that it now can
access the block of data.

9.5.8 Lowering Priority Within an ISR

In implementations without the software-settable interrupt requests in the INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7), one way — besides scheduling a task through an
RTOS — to prevent preemptive scheduling inefficiencies with an ISR whose work spans multiple
priorities is to lower the current priority (see Section 9.5.7.1, “Scheduling a Lower Priority Portion of an
ISR”). However, the INTC has a LIFO whose depth is determined by the number of priorities.

NOTE
Lowering the PRI value in either INTC_CPR_PRC0 or INTC_CPR_PRC1
within an ISR to below the ISR’s corresponding PRI value in
INTC_PSR0–INTC_PSR315 allows more preemptions than the LIFO
depth can support.

Therefore, through its use of the LIFO, the INTC does not support lowering the current priority within an
ISR as a way to avoid preemptive scheduling inefficiencies.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-45

9.5.9 Negating an Interrupt Request Outside of its ISR

9.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits and consequentially their
corresponding interrupt requests too. This clearing as a side effect of servicing a peripheral interrupt
request can cause the negation of other peripheral interrupt requests besides the peripheral interrupt request
whose ISR presently is executing. This negating of a peripheral interrupt request outside of its ISR can be
a desired effect.

9.5.9.2 Negating Multiple Interrupt Requests in One ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag bits is because
it serviced those flag bits, and therefore the ISRs for these flag bits do not need to be executed.

9.5.9.3 Proper Setting of Interrupt Request Priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR execution or the
intentional clearing a flag bit, the priorities of the peripheral or software settable interrupt requests for these
other flag bits must be selected properly. Their PRIn values in INTC priority select registers
(INTC_PSR0–INTC_PSR315) must be selected to be at or lower than the priority of the ISR that cleared
their flag bits. Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to the writing to
INTC end-of-interrupt register (INTC_EOIR_PRCn) as the clearing of the flag bit that caused the present
ISR to be executed (see Section 9.4.3.1.2, “End of Interrupt Exception Handler”).

A flag bit whose enable bit or mask bit is negating its peripheral interrupt request can be cleared at any
time, regardless of the peripheral interrupt request’s PRIn value in INTC_PSRx.

9.5.10 Examining LIFO Contents

Normally you do not need to know the contents of the LIFO, or even how deep the LIFO is nested.
Although the LIFO contents are not memory mapped, you can read the contents by popping the LIFO and
reading the PRI field in the INTC current priority register (INTC_CPR_PRC0 or INTC_CPR_PRC1).
Disabling processor recognition of interrupts while examining the LIFO contents provides a coherent view
of the preempted priorities.

The code sequence is:
pop_lifo:
store to INTC_EOIR_PRCn
load INTC_CPR_PRCn, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When you are finished examining the LIFO contents, you can restore it in software vector mode using the
following code sequence:

push_lifo:
load stacked PRI value and store to INTC_CPR_PRCn

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-46 Freescale Semiconductor

load INTC_IACKR_PRCn
if stacked PRI values are not depleted, branch to push_lifo

NOTE
Reading the INTC_IACKR_PRCn acknowledges the interrupt request to
the processor and updates the INTC_CPR_PRCn[PRI] with the priority of
the preempting interrupt request. If the processor recognition of interrupts is
disabled during the LIFO restoration, interrupt requests to the processor can
go undetected. However, since the peripheral or software settable interrupt
requests are not cleared, the peripheral interrupt request to the processor
re-asserts when INTC_CPR_PRCn[PRI] is lower than the priorities of those
peripheral or software settable interrupt requests.

9.6 Non-Maskable Interrupt (NMI)
The MPC5668x can be configured to use the PC6 and PC5 pins as non-maskable interrupts (NMI) by
providing a path to the critical interrupt input of the e200z6 and e200z0 cores, respectively.

After the SIU is configured by user code, an NMI cannot be prevented from reaching the assigned core.
The only possible way of disabling the critical interrupt is by clearing the critical interrupt enable (CE) bit
in the core’s machine state register (MSR). The NMI has a higher priority than any interrupt request
generated by the INTC, and is not blocked or preempted by any other INTC interrupt request.

After the SIU is properly configured, the operation of the NMI always generates an interrupt request when
the programmed edge transition occurs on the pin, regardless of the selected muxing on that pin. It is the
user’s responsibility to assign pin multiplexing correctly for use with an NMI, which would normally mean
selecting it as a port pin rather than a peripheral function.

Figure 9-23 shows the various system level connections needed to create the NMI.

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 9-47

Figure 9-23. NMI Connections

9.7 Dynamic Interrupt Priority Elevation

9.7.1 e200z6 Dynamic Priority Elevation

Dynamic priority elevation is not supported by the e200z6 core since the appropriate control bits are not
implemented in the HID1 register.

9.7.2 e200z0 Dynamic Priority Elevation

The e200z0 processor can be configured to support critical and/or external interrupts. Furthermore, the
processor can be configured to employ priority elevation on critical and/or external interrupt events.
Critical interrupts come from outside the platform, and are routed directly to the processor’s critical
interrupt input. External interrupts are routed through the interrupt controller. In addition to the interrupt
notification signals, various processor specific configuration flags from the e200z0 processor’s Machine
Check Register (MCR[ee,ce]) and the Hardware Implementation register (HID1) are sent to the ECSM to
determine when interrupt servicing is enabled and when high-priority elevation should be enabled. If the
e200z0 processor is configured to allow high-priority elevation on critical interrupt events, the ECSM
generates the high-priority signal upon critical interrupt detection and holds it active for the duration of
interrupt servicing, until a return from critical interrupt (rfci) is detected. If the e200z0 processor is
configured to allow high-priority elevation on external interrupt events, the ECSM generates the
high-priority signal upon external interrupt detection and holds it active for the duration of interrupt
servicing, until a return from interrupt (rfi) is detected.

••••
Interrupt
controller

D
M

A
/In

te
rr

up
t

S
e

le
ct

EIF0

EIF1

EIF2

EIF3

EIF4

EIF15

IMUX

DMA
request

eDMA

OVF0

OVF1

OVF15

SIU_OSR

SIU_EISR

External
IRQ pins or

internal
sources

••
•

•
•

SIU_DIRSR
SIU

NMI1

NMI0

PC6

PC5

•••

Secondary
CPU

Primary
CPU

••

Overrun
request Critical

interrupt

EIF4–EIF15

DIRS0

DIRS1

DIRS0

DIRS1

DIRS0
DIRS1

Interrupts and Interrupt Controller (INTC)

MPC5668x Microcontroller Reference Manual, Rev. 4

9-48 Freescale Semiconductor

Great care must be taken when using the priority elevation as it can enable a master to starve the rest of
the masters in the system. For more information, see Chapter 18, “Error Correction Status Module
(ECSM).”

9.7.3 eDMA Dynamic Interrupt Priority Elevation

The eDMA can handle dynamic priority elevation via the Bandwidth Control (BWC) field of the transfer
control descriptor (TCD). For more information, see Section 23.3.2.17, “Transfer Control Descriptor
(TCD).” The MPC5668x DMA multiplexing source allocation is shown in Table 22-4.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 10-1

Chapter 10
General-Purpose Static RAM (SRAM)

10.1 Introduction
This chapter describes the general-purpose static RAM (SRAM) for the MPC5668x. The MPC5668G
provides 592 KB of SRAM. The MPC5668E provides 128 KB of SRAM.

10.1.1 Block Diagram

Figure 10-1. Crossbar Arrangement Showing Embedded Memories (MPC5668G)

AHB Crossbar Switch

PFlash Controller

4 x 128
Page Buffer

SRAM4 x 128
Page Buffer Controller

SRAM
Controller

Peripheral
Bridge A

Peripheral
Bridge B

512 KB2 MB Flash
(with small blocks)

S0

64

S1

64

S2

64

S3

64

S4

64

S5

64

SRAM
(with ECC)

80 KB
SRAM

(with ECC)

64 64128

(ECC)

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

10-2 Freescale Semiconductor

Figure 10-2. Crossbar Arrangement Showing Embedded Memories (MPC5668E)

10.1.2 Features

Main features of the SRAM module are:

• MPC5668G

— Two separate RAM arrays implemented (592 KB total)

– 1 x 80 KB

– 1 x 512 KB

• MPC5668E

— One 128 KB RAM array implemented

• 64-bit RAM organization with ECC

• Available for data and program storage

• 64-bit ECC with single-bit correction, double-bit detection on a 32-bit boundary for data integrity

• Supports byte (8-bit), half word (16-bit), word (32-bit) and long word (64-bit) writes for optimal
use of memory

• User transparent ECC encoding and decoding for byte, half word, and word accesses

• Separate internal power domains applied RAM block Sleep modes to retain contents during low
power mode

• The device can boot from the RAM for fast recovery from low power mode without the need to
wait for the Flash to be available.

AHB Crossbar Switch

PFlash Controller

4 x 128
Page Buffer

SRAM

4 x 128
Page Buffer

Controller
SRAM

Controller
Peripheral
Bridge A

Peripheral
Bridge B

128 KB

2 MB Flash
(with small blocks)

S0

64

S1

64
S2

64

S3

64

S4

64

S5

64

SRAM
(with ECC)

64

128

(ECC)

Memory Protection Unit

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 10-3

10.1.3 Modes of Operation

There are two main operating modes of DSPI: normal mode and sleep mode. These modes are briefly
described in this section.

10.1.3.1 Normal (Functional) Mode

Normal mode allows for reads and writes of the SRAM memory arrays.

10.1.3.2 Sleep Mode

The size of RAM retained during Sleep mode is controlled in the CRP, in CRP_PSCR[RAMSEL[2:0]].
Sleep mode preserves the contents of the portion of the memory during low-power sleep mode. See
Chapter 5, “Clocks, Reset, and Power (CRP).”

10.2 External Signal Description
There are no external signals associated with the SRAM.

10.3 Memory Map and Registers
There are no control or status registers directly associated with the SRAM module, although
error-correcting code (ECC) registers are provided in the error correction status module (ECSM). See
Chapter 18, “Error Correction Status Module (ECSM),” for more information.

The RAM is implemented in two blocks to allow the many masters on the device to access this memory
without significantly blocking between the masters. This is necessary since some masters such as the MLB
DIM and the FlexRay controller perform significant number of RAM accesses while still allowing the
main CPU and IOP to access RAM space.

10.4 Functional Description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) operation, and
ECC calculations are performed during the write portion of a read/write (R/W) operation. Because the
ECC bits can contain random data after the device is powered on, you must initialize the SRAM by
executing 64-bit write instructions to the entire SRAM. For more information, refer to Section 10.8,
“Initialization and Application Information.”

10.5 SRAM ECC Mechanism
The SRAM ECC detects the following conditions and produces the following results:

• Detects and corrects all 1-bit errors

• Detects and flags all 2-bit errors as non-correctable errors

• Detects 72-bit reads (64-bit data bus plus the 8-bit ECC) that return all zeros or all ones, asserts an
error indicator on the bus cycle, and sets the error flag

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

10-4 Freescale Semiconductor

The intent of this is to detect all odd-bit failures, all two-bit failures, some three-bit failures, and some
multi-bit failures, with regard to IEC 61508-7 A.5.6.

NOTE
The SRAM does not detect all errors greater than 2 bits.

Internal SRAM write operations are performed on the following byte boundaries:

• 1 byte (0:7 bits)

• 2 bytes (0:15 bits)

• 4 bytes or 1 word (0:31 bits)

• 8 bytes or 2 words (0:63 bits)

If the entire 64 data bits are written to SRAM, no read operation is performed and the ECC is calculated
across the 64-bit data bus. The 8-bit ECC is appended to the data segment and written to SRAM.

If the write operation is less than the entire 64-bit data width (1-, 2-, or 4-byte segment), the following
occurs:

1. The ECC mechanism checks the entire 64-bit data bus for errors, detecting and either correcting or
flagging errors.

2. The write data bytes (1-, 2-, or 4-byte segment) are merged with the corrected 64 bits on the data
bus.

3. The ECC is then calculated on the resulting 64 bits formed in the previous step.

4. The 8-bit ECC result is appended to the 64 bits from the data bus, and the 72-bit value is then
written to SRAM.

10.5.1 Access Timing

The system bus is a two-stage pipelined bus, which makes the timing of any access dependent on the access
during the previous clock. Table 14-3 lists the various combinations of read and write operations to SRAM
and the number of wait states used for the each operation. The table columns contain the following
information:

Current operation Lists the type of SRAM operation executing currently

Previous operation Lists the valid types of SRAM operations that can precede the current SRAM
operation (valid operation during the preceding clock)

Wait states Lists the number of wait states (bus clocks) the operation requires which depends
on the combination of the current and previous operation

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 10-5

10.5.2 Reset Operation

A destructive reset is associated with an event after which critical register or memory content can no longer
be guaranteed, if a write operation occurred during the event.

Destructive resets are as follows.

Table 10-1. Number of Wait States Required for SRAM Operations

Current Operation Previous Operation Number of Wait States Required

R
ea

d
 O

p
er

at
io

n

Read

Idle

1Pipelined read

Burst read

64-bit write 2

8-, 16-, or 32-bit write

0
(read from the same address)

1
(read from a different address)

Pipelined read Read 0

Burst read

Idle

1,0,0,0Pipelined read

Burst read

64-bit write 2,0,0,0

8-, 16-, or 32-bit write

0,0,0,0
(read from the same address)

1,0,0,0
(read from a different address)

W
ri

te
 O

p
er

at
io

n

8-, 16-, or 32-bit write

Idle
1

Read

Pipelined 8-, 16-, or 32-bit write
2

64-bit write

8-, 16-, or 32-bit write 0
(write to the same address)

Pipelined 8-, 16-, or 32-bit write 8-, 16-, or 32-bit write 0

64-bit write

Idle

064-bit write

Read

64-bit burst write

Idle

0,0,0,064-bit write

Read

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

10-6 Freescale Semiconductor

• Power-on reset

• Low-voltage inhibit (LVI) reset

• External reset

• PLL loss of clock (if enabled)

• PLL loss of lock (if enabled)

The user code must re-initialize the RAM after any of the above resets; otherwise, an ECC event might
occur.

10.6 DMA Requests
There are no DMA requests associated with the system SRAM.

10.7 Interrupt Requests
There are no interrupt requests associated with the system SRAM, except for the ECC reporting through
the MCM module.

10.8 Initialization and Application Information
To use the SRAM, the ECC must check all bits that require initialization after power on. Use a 64-bit
cache-inhibited write to each SRAM location to initialize the SRAM array as part of the application
initialization code. All writes must specify an even number of registers performed on 64-bit word-aligned
boundaries. If the write is not the entire 64 bits (e.g., 8, 16, or 32 bits), a read / modify / write operation is
generated that checks the ECC value upon the read. Refer to Section 10.5, “SRAM ECC Mechanism.”

NOTE
You must initialize SRAM, even if the application does not use ECC
reporting.

10.8.1 Example Code

To initialize SRAM correctly, use a store multiple word (stmw) instruction to implement 64-bit writes to
all SRAM locations. The stmw instruction concatenates two 32-bit registers to implement a single 64-bit
write. To ensure the writes are 64-bits, specify an even number of registers and write on 64-bit
word-aligned boundaries.

The following example code illustrates the use of the stmw instruction to initialize the SRAM ECC bits.

Example 10-1. Initializing SRAM ECC Bits

init_RAM:
lis r11,0x4000 # base address of the SRAM, 64-bit word aligned
ori r11,r11,0 # not needed for this address but could be for others
li r12,640 # loop counter to get all of SRAM;

80k/4 bytes/32 GPRs = 640
mtctr r12
init_ram_loop:
stmw r0,0(r11) # write all 32 GPRs to SRAM

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 10-7

addi r11,r11,128 # inc the ram ptr; 32 GPRs * 4 bytes = 128?
bdnz init_ram_loop # loop for 80k of SRAM

General-Purpose Static RAM (SRAM)

MPC5668x Microcontroller Reference Manual, Rev. 4

10-8 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-1

Chapter 11
Flash Memory Array and Control

11.1 Introduction
This section presents information about the following components on this device:

• The flash memory block

• The platform flash memory controller

The primary function of the flash memory module is to serve as electrically programmable and erasable
non-volatile memory. The NVM memory can be used for instruction and data storage. The block is a
non-volatile solid-state silicon memory device consisting of blocks of single-transistor storage elements,
an electrical means for selectively adding (programming) and removing (erasing) charge from these
elements, and a means of selectively sensing (reading) the charge stored in these elements. The flash is
addressable by word (32 bits) and page (128 bits).

The flash block is arranged as two functional units. The first functional unit is the flash core (FC). The FC
is composed of arrayed non-volatile storage elements, sense amplifiers, row selects, column selects, charge
pumps, and redundancy logic. The arrayed storage elements in the FC are sub-divided into physically
separate units referred to as blocks.

The second functional unit of the flash is the memory interface (MI). The MI contains the registers and
logic which control the operation of the FC. The MI is also the interface to the flash bus interface unit
(FBIU).

The flash core has three address spaces. The low-address space is 256 KB. The mid-address space is also
256 KB. The high-address space is 1.5 MB. The 256 KB of low memory is implemented using eight
16 KB blocks and two 64 KB blocks. The mid-address memory is implemented using two 128 KB blocks.
The high memory is implemented using three 512 KB blocks.

Figure 11-1 shows the segmentation for the flash on MPC5668x.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-2 Freescale Semiconductor

Figure 11-1. Flash Segmentation

11.1.1 Block Diagram

Figure 11-2 shows a block diagram of the flash memory module. The FBIU is addressed through the
system bus while the flash control and status registers are addressed through the slave (peripheral) bus.

Figure 11-2. Flash System Block Diagram

Low-address space

High-address space

Mid-address space

Flash array blocks

Low-address space—256 KB

Mid-address space—256 KB

High-address space—1.5 MB

8 x 16 KB + 2 x 64 KB

2 x 128 KB

2 x 256 KB

2 x 256 KB

2 x 256 KB

Flash bus
interface

unit
(FBIU)

Flash memory

Flash memory module

Flash core

Control/status
registers

interface
(MI)

VFLASHVSS VDD

Slave
bus

System
bus

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-3

11.1.2 Features

The flash memory module has these major features:

• Support for a 64-bit data bus for instruction fetch.

• Support for a 32-bit data bus for CPU loads and DMA access. Byte, halfword, word and
doubleword reads are supported. Only aligned word and doubleword writes are supported.

• Configurable read buffering and line prefetch support. Four line read buffers (128 bits wide) and a
prefetch controller are used to support single-cycle read responses for hits in the buffers.

• Hardware and software configurable read and write access protections on a per-master basis.

• Interface to the flash array controller is pipelined with a depth of 1, allowing overlapped accesses
to proceed in parallel for interleaved or pipelined flash array designs.

• Configurable access timing allowing use in a wide range of system frequencies.

• Multiple-mapping support and mapping-based block access timing (0-31 additional cycles)
allowing use for emulation of other memory types.

• Software programmable block program/erase restriction control for low, mid and high address
spaces.

• Erase of selected block(s).

• Read page size of 128 bits (4 words).

• ECC with single-bit correction, double-bit detection.

• Minimum program size is 2 consecutive 32 bit words, aligned on a 0-modulo-8 byte address, due
to ECC.

• Embedded hardware program and erase algorithm.

• Read While Write (RWW) with multiple partitions.

• Sleep mode for low power stand-by.

• Erase suspend, program suspend and erase-suspended program.

• Automotive flash which meets automotive endurance and reliability requirements.

• Shadow information stored in non-volatile shadow block.

• Independent program/erase of the shadow block.

11.1.3 Modes of Operation

11.1.3.1 Flash User Mode

User mode is the default operating mode of the flash module. In this mode, it is possible to read and write,
program and erase the flash module.

11.1.3.2 Sleep Mode

Sleep mode turns off most DC current sources within the module. The module is not accessible for read or
write once put to sleep.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-4 Freescale Semiconductor

11.1.3.3 User Test Mode (UTest)

User test mode (UTest) provides a limited set of tests to end users.

11.2 External Signal Description
VDD is the only externally visible power supply that is necessary for programming and erasing the flash
array. The other flash supplies are tied to the appropriate supply pads in the package. Refer to
Section 2.4.15, “Power / Ground Signals,” and the MPC5668x Microcontroller Family Data Sheet.

11.3 Memory Map and Registers
This section provides a detailed description of all flash memory registers.

11.3.1 Module Memory Map

The flash memory map is shown in Table 11-1. The addresses are given as an offset to the flash memory
base address.

The flash register memory map is shown in Table 11-2. There are no program-visible registers that
physically reside inside the flash. The flash receives control and configuration information from the flash
array controller to determine operating configurations. These are part of the flash array controller’s
configuration registers mapped into the IPS address space but are described herein. These registers should
only be referenced with 32-bit accesses.

Table 11-1. Flash Memory Map

Offset from FLASH_BASE
(0x0000_0000)

Use Block1 Partition

0x0000_0000 Low-address space L0 1

0x0000_4000 L1

0x0000_8000 L2

0x0000_C000 L3

0x0001_0000 L4 2

0x0001_4000 L5

0x0001_8000 L6

0x0001_C000 L7

0x0002_0000 L8 3

0x0003_0000 L9

0x0004_0000 Mid-address space M0 4

0x0006_0000 M1

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-5

0x0008_0000 High-address space H0 5

0x000C_0000 H1

0x0010_0000 H2 6

0x0014_0000 H3

0x0018_0000 H4 7

0x001C_0000 H5

0x0020_0000–0x00FF_BFFF Reserved

0x00FF_C000–0x00FF_FDD7 General use S All2

0x00FF_FDD8 Serial passcode (0xFEED_FACE_CAFE_BEEF)

0x00FF_FDE0 Censorship control word (0x55AA_55AA)

0x00FF_FDE4 General use

0x00FF_FDE8 LML reset configuration (0x0010_0000)

0x00FF_FDEC General use

0x00FF_FDF0 HBL reset configuration (0x0FFF_FFFF)

0x00FF_FDF4 General use

0x00FF_FDF8 SLL reset configuration (0x000F_FFFF)

0x00FF_FDFC–0x00FF_FFFF General use

1 Ln = Low Address Space, Mn = Mid Address Space, Hn = High Address Space, S = Shadow Block.
2 For read while write operations, the shadow row behaves as if it is in all partitions.

Table 11-2. Flash Configuration Register Memory Map

Offset from
FLASH_REGS_BASE

(0xFFFF_8000)
Register Access Reset Value Section/Page

0x0000 MCR—Module configuration register R/W1 0x0540_0600 11.3.2.1/11-6

0x0004 LML—Low-/Mid-address space block locking register R/W1 0x0013_03FF 11.3.2.2/11-10

0x0008 HBL—High-address space block locking register R/W1 0x0000_003F 11.3.2.3/11-12

0x000C SLL—Secondary low-/mid-address space block locking
register

R/W1 0x0013_03FF 11.3.2.4/11-13

0x0010 LMS—Low-/mid-address space block select register R/W1 0x0000_0000 11.3.2.5/11-14

0x0014 HBS—High-address space block select register R/W1 0x0000_0000 11.3.2.6/11-15

0x0018 ADR—Address register R/W1 0x0000_0000 11.3.2.7/11-16

0x001C PFCRP0—Platform flash configuration register for port 0 R/W1 0x0800_FF00 11.3.2.8/11-17

0x0020 PFCRP1—Platform flash configuration register for port 1 R/W1 0x3000_FF00 11.3.2.8/11-17

0x0024 PFAPR—Platform flash access protection register R/W 0x00FF_FE00 11.3.2.9/11-20

Table 11-1. Flash Memory Map (continued)

Offset from FLASH_BASE
(0x0000_0000)

Use Block1 Partition

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-6 Freescale Semiconductor

11.3.2 Register Descriptions

This section lists the flash memory registers in address order and describes the registers and their bit fields.

11.3.2.1 Module Configuration Register (MCR)

The MCR register is shown in Figure 11-3 and Table 11-3.

0x0028 PFSACC—Platform flash supervisor access control
register

R/W1 0x00FF_FE08 11.3.2.10/11-21

0x002C PFDACC—Platform flash data access control register R/W1 0x00FF_FE10 11.3.2.11/11-23

0x0030 – 0x0038 Reserved

0x003C UT0—UTest register 0 R/W1 0x0000_0001 11.3.2.12/11-23

0x0040 UT0—UTest register 1 R/W 0x0000_0000 11.3.2.13/11-25

0x0044 UT0—UTest register 2 R/W 0x0000_0000 11.3.2.14/11-26

0x0048 UM0—User multiple input signature register 0 R/W 0x0000_0000 11.3.2.15/11-26

0x004C UM1—User multiple input signature register 1 R/W 0x0000_0000 11.3.2.15/11-26

0x0050 UM2—User multiple input signature register 2 R/W 0x0000_0000 11.3.2.15/11-26

0x0054 UM3—User multiple input signature register 3 R/W 0x0000_0000 11.3.2.15/11-26

0x0058 UM4—User multiple input signature register 4 R/W 0x0000_0000 11.3.2.15/11-26

0x0048 – 0x3FFF Reserved

1 Some bits are read-only.

Offset: FLASH_REGS_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W

Reset 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE SBC 0 PEAS DONE PEG 0 0 0 0
PGM PSUS ERS ESUS EHV

W w1c w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 11-3. Module Configuration Register (MCR)

Table 11-2. Flash Configuration Register Memory Map (continued)

Offset from
FLASH_REGS_BASE

(0xFFFF_8000)
Register Access Reset Value Section/Page

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-7

Table 11-3. MCR Field Descriptions

Field Description

SIZE Array Space Size. The value of the SIZE field depends on the size of the flash module. For MPC5668x, this bit field
is 0b101, indicating a 2.0 MB array size (with 1.5 MB in high-address space). SIZE is read only.

LAS Low Address Space. The value of the LAS field corresponds to the configuration of the Low Address Space. For
MPC5668x, this bit field is 0b100, indicating eight 16 KB blocks and two 64 KB blocks. LAS is read only.

MAS Mid Address Space. The value of the MAS field corresponds to the configuration of the Mid Address Space. The
value of the MAS field depends on the size of the flash module. For MPC5668x, this bit field is 0b0, indicating two
128 KB blocks. MAS is read only.

EER ECC Event Error. EER provides information on previous reads. If a double bit detection occurred, the EER bit is set
to a 1. This bit must then be cleared, or a reset must occur before this bit returns to a 0 state. This bit may not be
set by the user. In the event of a single bit detection and correction, this bit is not be set. If EER is not set, or remains
0, this indicates that all previous reads (from the last reset, or clearing of EER) are correct. Since this bit is an error
flag, it must be cleared to a 0 by writing a 1 to the register location. A write of 0 has no effect.
0 Reads are occurring normally.
1 An ECC Error occurred during a previous read.

RWE Read While Write Event Error. RWE provides information on previous RWW reads. If a Read While Write error
occurs, this bit is set to 1. This bit must then be cleared, or a reset must occur before this bit returns to a 0 state.
This bit may not be written to a 1 by the user. If RWE is not set, or remains 0, this indicates that all previous RWW
reads (from the last reset, or clearing of RWE) are correct. Since this bit is an error flag, it must be cleared to a 0 by
writing a 1 to the register location. A write of 0 has no effect.
0 Reads are occurring normally.
1 A Read While Write Error occurred during a previous read.

SBC Single Bit Correction. SBC provides information on previous reads provided the UT0[SPCE] is set. If a single bit
correction occurred, the SBC bit is set to a 1. This bit must then be cleared, or a reset must occur before this bit
returns to a 0 state. If SBC is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of SBC) did not require a correction. Since this bit is an error flag, it must be cleared to a 0 by writing a 1
to the register location. A write of 0 has no effect.
0 Reads are occurring without corrections.
1 A Single Bit Correction occurred during a previous read.

PEAS Program/Erase Access Space. PEAS is used to indicate which space is valid for program and erase operations,
either main array space or shadow space. PEAS = 0 indicates that the main address space is active for all FC
program and erase operations. PEAS = 1 indicates the shadow address space is active for program/erase. The
value in PEAS is captured and held when the shadow block is enabled with the first interlock write done for program
or erase operations. The value of PEAS is retained between sampling events (i.e.,subsequent first interlock writes).
The value in PEAS may be changed during erase-suspended program, and reverts back to its’ original state once
the erase-suspended program is completed. PEAS is read only.
0 Shadow address space is disabled for program/erase and main address space enabled.
1 Shadow address space is enabled for program/erase and main address space disabled.

DONE State Machine Status. Indicates if the flash module is performing a high-voltage operation. DONE is set to a 1 on
termination of the flash module reset, at the end of program and erase high-voltage sequences and after a
successful abort of a high voltage operation. DONE is cleared upon commencement of a high voltage operation or
on the resumption of a suspended operation.
0 Flash is executing a high-voltage operation
1 Flash is not executing a high-voltage operation

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-8 Freescale Semiconductor

PEG Program/Erase Good. The PEG bit indicates the completion status of the last flash program or erase sequence for
which high voltage operations were initiated. The value of PEG is updated automatically during the program and
erase high voltage operations. Aborting a program/erase high voltage operation causes PEG to be cleared,
indicating the sequence failed. PEG is set to a 1 when the module is reset. PEG is read only.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions from 0 to 1 due to an abort
or the completion of a program/erase operation. PEG is valid until PGM/ERS makes a 1 to 0 transition or EHV makes
a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE caused by PSUS or ESUS being
set to logic 1. If PGM and ERS are both 1 when DONE makes a qualifying 0 to 1 transition the value of PEG indicates
the completion status of the PGM sequence. This happens in an erase-suspended program operation.
0 Program or erase operation failed.
1 Program or erase operation successful.

Note: If program or erases are attempted on blocks that are locked, the response from flash is PEG = 1, indicating
that the operation was successful, and the contents of the block are properly protected from the program or
erase operation.

PGM Program. PGM is used to set up flash for a program operation. A 0 to 1 transition of PGM initiates a program
sequence. A 1 to 0 transition of PGM ends the program sequence. PGM can be set only under one of the following
conditions:
 • User mode read (ERS is low and UTE is low).
 • Erase suspend (ERS and ESUS are 1) with EHV low.
PGM can be cleared by the user only when PSUS and EHV are low and DONE is high. PGM is cleared on reset.
0 Flash is not executing a program sequence.
1 Flash is executing a program sequence.

Note: In an erase-suspended program, programming Flash locations in blocks which were being operated on in the
erase may corrupt FC data. This should be avoided due to reliability implications.

PSUS Program Suspend. PSUS is used to indicate the flash module is in program suspend or in the process of entering
a suspend state. The module is in program suspend when PSUS = 1 and DONE = 1. PSUS can be set high only
when PGM and EHV are high. A 0 to 1 transition of PSUS starts the sequence which sets DONE and places the
flash module in program suspend.
PSUS can be cleared only when DONE and EHV are high. A 1 to 0 transition of PSUS with EHV = 1 starts the
sequence which clears DONE and returns the flash module to program. The module cannot exit program suspend
and clear DONE while EHV is low. PSUS is cleared on reset.
0 Program sequence is not suspended.
1 Program sequence is suspended.

ERS Erase. ERS is used to set up flash for an erase operation. A 0 to 1 transition of ERS initiates an erase sequence. A
1 to 0 transition of ERS ends the erase sequence. ERS can only be set only in user mode read (PGM is low and
UTE is low). ERS can be cleared by the user only when ESUS and EHV are low and DONE is high. ERS is cleared
on reset.
0 Flash is not executing an erase sequence.
1 Flash is executing an erase sequence.

Table 11-3. MCR Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-9

NOTE
The program and erase sequence of the flash may be suspended to allow
read and program access to the flash core. A suspend operation is initiated
by setting the Erase Suspend (ESUS) bit or Program Suspend (PSUS) bit in
the flash Module Configuration Register (MCR). Setting a suspend bit
causes the flash module to start the sequence, which places it in the
suspended state. The user must then wait until the MCR[DONE] bit is set
before a read or program to the flash is initiated, as the high voltage
operation needs to be complete to avoid errors. However, during normal
read to the same partition, following a suspend sequence, (setting MCR bit
and waiting for MCR[DONE] bit to be set) can result in read fails that will
return multiple bit ECC errors. The error is due to the MCR[DONE] bit
being set before the internal high voltage operation is complete.

ESUS Erase Suspend. ESUS is used to indicate that the flash module is in erase suspend or in the process of entering a
suspend state. The module is in erase suspend when ESUS = 1 and DONE = 1. ESUS can be set high only when
ERS and EHV are high and PGM is low. A 0 to 1 transition of ESUS starts the sequence which sets DONE and
places the flash in erase suspend.
ESUS can be cleared only when DONE and EHV are high and PGM is low. A 1 to 0 transition of ESUS with EHV = 1
starts the sequence which clears DONE and returns the module to erase. The flash module cannot exit erase
suspend and clear DONE while EHV is low. ESUS is cleared on reset.
0 Erase sequence is not suspended.
1 Erase sequence is suspended.

EHV Enable High Voltage. The EHV bit enables the flash module for a high voltage program/erase operation. EHV is
cleared on reset. EHV must be set after an interlock write to start a program/erase sequence. EHV may be set,
initiating a program/erase, after an interlock under one of the following conditions:
 • Erase (ERS = 1, ESUS = 0).
 • Program (ERS = 0, ESUS = 0, PGM = 1, PSUS = 0).
 • Erase-suspended program (ERS = 1, ESUS = 1, PGM = 1, PSUS = 0).
If a program operation is to be initiated while an erase is suspended the user must clear EHV while in erase suspend
before setting PGM.
In normal operation, a 1 to 0 transition of EHV with DONE high, PSUS and ESUS low terminates the current
program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the suspend bit for the current
program/erase sequence low. An abort causes the value of PEG to be cleared, indicating a failed program/erase;
address locations being operated on by the aborted operation contain indeterminate data after an abort.
A suspended operation cannot be aborted. EHV may be written during suspend. EHV must be high for the flash
module to exit suspend. EHV may not be written after a suspend bit is set high and before DONE transitions high.
EHV may not be set low after the current suspend bit is set low and before DONE transitions low.
0 Flash is not enabled to perform a high voltage operation.
1 Flash is enabled to perform a high voltage operation.

Note: Aborting a high voltage operation leaves FC addresses in an indeterminate data state. This may be
recovered by executing an erase on the affected blocks.

Table 11-3. MCR Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-10 Freescale Semiconductor

Because the MCR[DONE] flag can be set too soon, a delay needs to be
inserted between setting the MCR[ESUS] or MCR[PSUS] and reading the
same flash partition. The minimum duration of the delay should be 40 us to
guarantee correct operation.

11.3.2.1.1 MCR Simultaneous Register Writes

A number of MCR bits are protected against write when another bit, or set of bits, is in a specific state.
These write locks are covered on a bit by bit basis in the preceding section. The write locks detailed in the
previous section do not consider the effects of trying to write two or more bits simultaneously. The effects
of writing bits simultaneously which put the module in an illegal state are detailed here.

The flash module does not allow the user to write bits simultaneously which put the device into an illegal
state. This is implemented through a priority mechanism among the bits. The bit changing priorities are
detailed in Table 11-4.

If the user attempts to write two or more MCR bits simultaneously then only the bit with the lowest priority
level is written. Setting two bits with the same priority level is prevented by existing write locks or do not
put the flash in an illegal state.

For example, setting ERS and PGM simultaneously results in only ERS being set. Attempting to clear
EHV while setting PSUS results in EHV being cleared, while PSUS is unaffected.

11.3.2.2 Low/Mid Address Space Block Locking Register (LML)

The Low/Mid Address Block Locking Register (LML) provides a means to protect blocks from being
modified. These bits, along with bits in the Secondary LLOCK (SLL), determine if the block is locked
from program or erase. An “OR” of LML and SLL determine the final lock status.

NOTE
A reset value of 1* in Figure 11-4 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

The LML register is shown in Figure 11-4 and Table 11-5.

Table 11-4. MCR Bit Set/Clear Priority Levels

Priority Level MCR Bit(s)

1 ERS

2 PGM

3 EHV

4 ESUS, PSUS

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-11

Offset: FLASH_REGS_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
SLOCK

0 0
MLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1* 0 0 1* 1*

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
LLOCK

W

Reset 0 0 0 0 0 0 1* 1* 1* 1* 1* 1* 1* 1* 1* 1*

Figure 11-4. Low/Mid Address Block Locking Register (LML)

Table 11-5. LML Field Descriptions

Field Description

LME Low/Mid Address Lock Enable. This bit is used to enable the Lock registers (SLOCK, MLOCK and LLOCK)
to be set or cleared by register writes. This bit is a status bit only, and may not be written or cleared, and the
reset value is 0. The method to set this bit is to write a password, and if the password matches, the LME bit
is set to reflect the status of enabled, and is enabled until a reset operation occurs. For LME, the password
0xA1A1_1111 must be written to the LML register.
0 Low/Mid Address Locks are disabled, and cannot be modified.
1 Low/Mid Address Locks are enabled to be written.

SLOCK Shadow Lock. This bit is used to lock the shadow block from programs and erases. The SLOCK register is
not writable once an interlock write is completed until MCR[DONE] is set at the completion of the requested
operation. Likewise, SLOCK register is not writable if a high voltage operation is suspended. SLOCK is also
not writeable during UTest operations, when AIE is high.
Upon reset, information from the shadow block is loaded into the SLOCK register. The SLOCK bit may be
written as a register. Reset causes the bits to go back to their shadow block value. The default value of the
SLOCK bits (assuming erased shadow location) is locked. SLOCK is not writable unless LME is high.
0 The shadow block can receive program and erase pulses.
1 The shadow block is locked for program and erase.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-12 Freescale Semiconductor

11.3.2.3 High Address Space Block Locking Register (HBL)

The High Address Space Block Locking Register (HBL) provides a means to protect blocks from being
modified.

NOTE
A reset value of 1* in Figure 11-5 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

The HBL register is shown in Figure 11-5 and Table 11-6.

MLOCK[1:0] Mid Address Space Block Lock. A value of 1 in a bit of the lock register signifies that the corresponding block
is locked for program and erase. A value of 0 in the lock register signifies that the corresponding block is
available to receive program and erase pulses. The block numbering for Mid Address Space starts with
MLOCK[0] and continues until all blocks are accounted.

The lock register is not writable once an interlock write is completed until MCR[DONE] is set at the completion
of the requested operation. Likewise, the lock register is not writable if a high voltage operation is suspended.
MLOCK is also not writeable during UTest operations, when AIE is high.
Upon reset, information from the shadow block is loaded into the block registers. The LOCK bits may be
written as a register. Reset causes the bits to go back to their shadow block value. The default value of the
LOCK bits (assuming erased shadow location) is locked.
In the event that blocks are not present (due to configuration or total memory size), the LOCK bits default to
be locked, and are not writable. The reset value is always 1 (independent of the shadow block), and register
writes have no effect.

MLOCK is not writable unless LME is high.

LLOCK[9:0] Low Address Space Block Lock. A value of 1 in a bit of the lock register signifies that the corresponding block
is locked for program and erase. A value of 0 in the lock register signifies that the corresponding block is
available to receive program and erase pulses. The block numbering for Low Address Space starts with
LLOCK[0] and continues until all blocks are accounted.

For more details on LLOCK, please see MLOCK bit description.

LLOCK is not writable unless LME is high.

Table 11-5. LML Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-13

11.3.2.4 Secondary Low/Mid Address Space Block Locking Register (SLL)

The Secondary Low/Mid Address Block Locking Register (SLL) provides an alternative means to protect
blocks from being modified. This has the effect of creating a “tiered” locking scheme to enable different
flash users to provide different default locking on blocks. These bits, along with bits in the LLOCK (LML),
determine if the block is locked from program or erase. An “OR” of LML and SLL determine the final
lock status.

NOTE
A reset value of 1* in Figure 11-6 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

The SLL register is shown in Figure 11-6 and Table 11-7.

Offset: FLASH_REGS_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HBE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
HLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 1* 1* 1* 1* 1* 1*

Figure 11-5. High Address Space Block Locking Register (HBL)

Table 11-6. HBL Field Descriptions

Field Description

HBE High Address Lock Enable This bit is used to enable the Lock registers (HLOCK) to be set or cleared by
register writes. This bit is a status bit only, and may not be written or cleared, and the reset value is 0. The
method to set this bit is to provide a password, and if the password matches, the HBE bit is set to reflect the
status of enabled, and is enabled until a reset operation occurs. For HBE, the password 0xB2B2_2222 must
be written to the HBL register.
0 High Address Locks are disabled, and cannot be modified.
1 High Address Locks are enabled to be written.

HLOCK[5:0] High Address Space Block Lock. HLOCK has the same characteristics as LLOCK. Please see this description
for more information. The block numbering for High Address Space starts with HLOCK[0] and continues until
all blocks are accounted.
HLOCK is not writable unless HBE is high.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-14 Freescale Semiconductor

11.3.2.5 Low/Mid Address Space Block Select Register (LMS)

The Low/Mid Address Space Block Select Register (LMS) provides a means to select blocks to be
operated on during erase.

The LMS register is shown in Figure 11-7 and Table 11-8.

Offset: FLASH_REGS_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0 SS
LOCK

0 0 SM
LOCKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1* 0 0 1* 1*

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
SLLOCK

W

Reset 0 0 0 0 0 0 1* 1* 1* 1* 1* 1* 1* 1* 1* 1*

Figure 11-6. Secondary Low/Mid Address Block Locking Register (SLL)

Table 11-7. SLL Field Descriptions

Field Description

SLE Secondary Low/Mid Address Lock Enable. This bit is used to enable the Lock registers (SSLOCK,
SMLOCK, and SLLOCK) to be set or cleared by register writes. This bit is a status bit only, and may not
be written or cleared, and the reset value is 0. The method to set this bit is to provide a password, and
if the password matches, the SLE bit is set to reflect the status of enabled, and is enabled until a reset
operation occurs. For SLE, the password 0xC3C3_3333 must be written to the SLL register
0 Secondary Low/Mid Address Locks are disabled, and cannot be modified.
1 Secondary Low/Mid Address Locks are enabled to be written.

SSLOCK Secondary Shadow Lock. This bit is an alternative method that may be used to lock the shadow block
from programs and erases. SSLOCK has the same description as SLOCK. SSLOCK is not writable
unless SLE is high.

SMLOCK[1:0] Secondary Mid Address Block Lock. This bit is an alternative method that may be used to lock the Mid
Address Space blocks from programs and erases. SMLOCK has the same description as MLOCK.
SMLOCK is not writable unless SLE is high.

SLLOCK[9:0] Secondary Low Address Block Lock. This bit is an alternative method that may be used to lock the Low
Address Space blocks from programs and erases. SLLOCK has the same description as LLOCK.
SLLOCK is not writable unless SLE is high.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-15

11.3.2.6 High Address Space Block Select Register (HBS)

The High Address Space Block Select Register (HBS) provides a means to select blocks to be operated on
during erase.

The HBS register is shown in Figure 11-8 and Table 11-9.

Offset: FLASH_REGS_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
LSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-7. Low/Mid Address Space Block Select Register (LMS)

Table 11-8. LMS Field Descriptions

Field Description

MSEL[1:0] Mid Address Space Block Select. A value of 1 in the select register signifies that the block is selected for
erase. A value of 0 in the select register signifies that the block is not selected. The reset value for the select
registers is 0, or un-selected.
The blocks must be selected (or un-selected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed until MCR[DONE] is set at
the completion of the requested operation, or if a high voltage operation is suspended. MSEL is also not
writeable during UTest operations, when AIE is high.
In the event that blocks are not present (due to configuration or total memory size), the corresponding select
bits default to un-selected, and are not writable. The reset value is always 0, and register writes have no
effect.

LSEL[9:0] Low Address Space Block Select. A value of 1 in the select register signifies that the block is selected for
erase. A value of 0 in the select register signifies that the block is not selected. The reset value for the select
registers is 0, or un-selected.
The blocks must be selected (or un-selected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed until MCR[DONE] is set at
the completion of the requested operation, or if a high voltage operation is suspended. LSEL is also not
writeable during UTest operations, when AIE is high.
In the event that blocks are not present (due to configuration or total memory size), the corresponding select
bits default to un-selected, and are not writable. The reset value is always 0, and register writes have no
effect.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-16 Freescale Semiconductor

11.3.2.7 Address Register (ADR)

The Address register (ADR) provides the first failing address in the event module failures (ECC or
PGM/Erase state machine)

The ADR register is shown in Figure 11-9 and Table 11-10.

Offset: FLASH_REGS_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
HSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-8. High Address Space Block Select Register (HBS)

Table 11-9. HBS Field Descriptions

Field Description

HSEL[5:0] High Address Space Block Select. High Address Block Select has the same characteristics as LSEL.

Offset: FLASH_REGS_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SAD 0 0 0 0 0 0 0 0 0 0 ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ADDR 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-9. Address Register (ADR)

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-17

11.3.2.8 Platform Flash Configuration Register for Port n (PFCRPn)

The PFLASH configuration register for port 0 (PFCRP0) is used to specify operation of port p0 of the flash
memory module. This register also has two bits (ARB and PRI) to control arbitration between the p0/p1
ports.

The PFLASH configuration register for port 1 (PFCRP1) is used to specify operation of port p1 of the flash
memory module.

The PFCRPn register is shown in Figure 11-10 and Table 11-11.

Table 11-10. ADR Field Descriptions

Field Description

SAD Shadow Address. The SAD bit qualifies the address captured during an ECC Event Error, Single Bit Correction,
or State Machine operation.
The SAD register is not writable.
0 Address Captured is from Main Array Space.
1 Address Captured is from Shadow Array Space.

ADDR[20:3] Address. The ADR register provides the first failing address in the event of ECC event error (MCR[EER] set),
single bit correction (MCR[SBC] set), as well as providing the address of a failure that may have occurred in a
state machine operation (MCR[PEG] cleared). ECC event errors take priority over single bit corrections, which
take priority over state machine errors. This is especially valuable in the event of a RWW operation, where the
read senses an ECC error or single bit correction, and the state machine fails simultaneously. This address is
always a Double Word address that selects 64 bits.
The ADR register is writable, and can be used in the UTest ECC Logic Check. If the ECC logic check is enabled
(UT0[EIE] = 1) then the ADR register will not update for ECC event error, single bit correction, or state machine
errors.
 If MCR[EER] or MCR[SBC] are set, the ADR register is locked from writing. MCR[PEG] does not affect the
writability of the ADR register.

Offset: FLASH_REGS_BASE + 0x001C (PFCRP0)
FLASH_REGS_BASE + 0x0020 (PFCRP1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LBCFG ARB PRI

0
M8PFE

0
M6PFE M5PFE M4PFE

0
M2PFE M1PFE M0PFE

W

Reset1 0 0 —2 —2 —3 —3 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APC WWSC RWSC

0 DPF
EN

0
IPFEN

0
PFLIM BFEN

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 Reset value for PFCRP0 = 0x0800_FF00, PFCRP1 = 0x3000_FF00.
2 Reset value for port 0 is LBCFG = 0b0000, port 1 is LBCFG = 0b0011.
3 ARB and PRI are only available in PFCRP0. ARB is reset to 1 and PRI is reset to 0. For PFCRP1, ARB and PRI

are both reserved, with a reset value of 0.

Figure 11-10. Platform Flash Configuration Register for Port n (PFCRPn)

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-18 Freescale Semiconductor

Table 11-11. PFCRP0 and PFCRP1 Field Descriptions

Field Description

LBCFG[3:0] Line Buffer Configuration. Controls the configuration of the four line buffers in the PFLASH controller. The buffers
can be organized as a pool of available resources or with a fixed partition between instruction and data buffers.
In all cases, when a buffer miss occurs, it is allocated to the least recently used buffer within the group and the
just-fetched entry then marked as most recently used. If the flash access is for the next sequential line, the buffer
is not marked as most recently used until the given address produces a buffer hit.
For PFCRP0, this field is set to 0b0000 by hardware reset. For PFCRP1, this field is set to 0b0011 by hardware
reset.
xx00 All four buffers are available for any flash access, i.e., there is no partitioning of the buffers based on the

access type.
xx01 Reserved.
xx10 The buffers are partitioned into two groups: buffers 0 and 1 allocated for instruction fetches and buffers 2

and 3 for data accesses.
xx11 The buffers are partitioned into two groups: buffers 0,1, 2 allocated for instruction fetches and buffer 3 for

data accesses.

ARB Arbitration Mode. This field controls which arbitration mode is used. In both fixed priority or round-robin modes,
write requests are prioritized higher than read requests, and read requests are prioritized higher than speculative
prefetch requests whenever both ports issue concurrent requests. This bit is set to 1 by hardware reset.
0 Fixed-priority arbitration is used; the port specified in PRI has highest fixed priority.
1 Round-robin arbitration is used.
Note: This bit is only available in PFCRP0. For PFCRP1, treat this bit as reserved with a reset value of 0.

PRI Fixed Priority. Controls which port has highest fixed priority when fixed priority arbitration is selected. This field
has no effect when operating in round-robin mode. This bit is cleared by hardware reset.
0 Port p0 is given highest fixed priority.
1 Port p1 is given highest fixed priority.
Note: This bit is only available in PFCRP0. For PFCRP1, treat this bit as reserved with a reset value of 0.

MnPFE
n = 0:2, 4:6

Master n Prefetch Enable. Used to control whether prefetching may be triggered based on the AHB hmaster
attribute. For example, M0PFE enables prefetching for accesses where hmaster[3:0] = 0b0000. Likewise,
M4PFE enables prefetching only when hmaster[3:0] == 0b0100. Note that hmaster[3] is ignored when
determining which MnPFE to use for a given access. These bits are cleared by hardware reset.
0 No prefetching may be triggered by this master.
1 Prefetching may be triggered by this master.
Note: These bits refer to the master ID, not the AMBA port number, as shown in the following:

Master ID Master Name

0 Z6 Core

1 Z0 Core

2 eDMA

3 – reserved –

4 FEC

5 MLB

6 FlexRay

7 – reserved –

8 Z6 Nexus

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-19

APC[2:0] Address Pipelining Control. Used to control the number of cycles between pipelined access requests.
This field must be set to a value corresponding to the operating frequency of the PFLASH. The settings are
documented in the MPC5668x Microcontroller Family Data Sheet. Higher operating frequencies require non-zero
settings for this field for proper flash operation. This field is set to 0b111 by hardware reset.
000 Accesses may be pipelined back-to-back.
001 Access requests require one additional hold cycle.
010 Access requests require two additional hold cycles.
...
110 Access requests require six additional hold cycles.
111 No address pipelining.

Note: The settings for APC and RWSC should be the same.

WWSC[1:0] Write Wait State Control. Used to control the number of wait states to be added to the best case flash array
access time for writes. This field must be set to a value corresponding to the operating frequency of the PFLASH.
Higher operating frequencies require non-zero settings for this field for proper flash operation. This field is set to
0b11 by hardware reset.
00 No additional wait-states are added.
01 One additional wait-state is added.
10 Two additional wait-states are added.
11 Three additional wait-states are added.

RWSC[2:0] Read Wait State Control. Used to control the number of wait states to be added to the best case flash array
access time for reads. This field must be set to a value corresponding to the operating frequency of the PFLASH
and the actual read access time of the PFLASH. This field is set to 0b111 by hardware reset.
000 No additional wait states are added.
001 One additional wait state is added.
...
111 Seven additional wait states are added.

Note: The settings for APC and RWSC should be the same.

DPFEN Data Prefetch Enable. Enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset.
0 No prefetching is triggered by a data read access.
1 Prefetching may be triggered by any data read access.

IPFEN Instruction Prefetch Enable. Enables or disables prefetching initiated by an instruction read access. This field is
cleared by hardware reset.
0 No prefetching is triggered by an instruction read access.
1 Prefetching may be triggered by any instruction read access.

Table 11-11. PFCRP0 and PFCRP1 Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-20 Freescale Semiconductor

11.3.2.9 Platform Flash Access Protection Register (PFAPR)

PFLIM[1:0] PFLASH Prefetch Limit. Controls the prefetch algorithm used by the PFLASH prefetch controller. This field
defines a limit on the maximum number of sequential prefetches that are attempted between buffer misses. In all
situations when enabled, only a single prefetch is initiated on each buffer miss or hit. This field is cleared by
hardware reset.
00 No prefetching or buffering is performed.
01 The referenced line is prefetched on a buffer miss, i.e., prefetch on miss.
1x the referenced line is prefetched on a buffer miss, or the next sequential line is prefetched on a buffer hit (if

not already present), i.e., prefetch on miss or hit.

BFEN PFLASH Line Read Buffers Enable. Enables or disables line read buffer hits. It is also used to invalidate the
buffers. This bit is cleared by hardware reset.
0 The line read buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1 The line read buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when the buffers

are successfully filled.

Offset: FLASH_REGS_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M7AP M6AP M5AP M4AP M3AP M2AP M1AP M0AP

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SHSACC

0 0 0 0
SHDACC

0 0 0 0

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-11. PFlash Access Protection Register (PFAPR)

Table 11-12. PFlash Access Protection Register (PFAPR) Field Descriptions

Field Description

M7AP
...

M0AP

Master X Access Protection. These fields are used to control whether read and write accesses to the flash are
allowed based on the master ID of a requesting master.
00 No accesses may be performed by this master.
01 Only read accesses may be performed by this master.
10 Only write accesses may be performed by this master.
11 Both read and write accesses may be performed by this master.

Table 11-11. PFCRP0 and PFCRP1 Field Descriptions (continued)

Field Description

Bit Bus Master Bit Bus Master

M0AP 0 — Z6 Core M4AP 4 — FEC

M1AP 1 — Z0 Core M5AP 5 — MLB

M2AP 2 — eDMA M6AP 6 — FlexRay

M3AP 3 — reserved M7AP 7 — reserved

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-21

11.3.2.10 PFlash Supervisor Access Control Register (PFSACC)

SHSACC[7:4] Shadow Block Supervisor Access Control. This bit field defines supervisor/user mode access control for each
4 KB sector within the shadow block region of the flash array.
0 Shadow block sector n can be accessed in both user and supervisor mode.
1 Shadow block sector n can be accessed only in supervisor mode. An attempted user mode access is

terminated with an AHB error response. If the requesting bus master is the processor core, the ERROR
response typically generates an instruction abort or data abort exception.

This field is mapped into the shadow block (shadow_block = 0x00FF_C000) with sector base addresses of:
SHSACC[4] = shadow_block + 0x0000
SHSACC[5] = shadow_block + 0x1000
SHSACC[6] = shadow_block + 0x2000
SHSACC[7] = shadow_block + 0x3000

This field is initialized by hardware reset to the value contained in address 0x3E00 of the shadow block of the
flash array. An erased or unprogrammed flash sets this field to 0xFF. The contents of the PFAPR are combined
with the SHSACC field to determine the final flash attributes.

SHDACC[7:4] Shadow Block Data Access Control. This bit field defines code/data access control for each 4 KByte sector
within the shadow block region of the flash array.

0 Shadow block sector n can only be accessed as data. An attempted instruction fetch access is terminated
with an AHB error response. If the requesting bus master is the processor core, the ERROR response
typically generates an instruction abort or data abort exception.

1 Shadow block sector n can be accessed as either code or data.

This field is mapped into the shadow block using the same definition as the SHSACC field above.

This field is initialized by hardware reset to the value contained in address 0x3E00 of the shadow block of the
flash array. An erased or unprogrammed flash sets this field to 0xFF.

The contents of the PFAPR are combined with the SHDACC field to determine the final flash attributes.

Offset: FLASH_REGS_BASE + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SACC[30:16]

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SACC[15:0]

W

Reset 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0

Figure 11-12. PFlash Supervisor Access Control Register (PFSACC)

Table 11-12. PFlash Access Protection Register (PFAPR) Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-22 Freescale Semiconductor

Table 11-13. PFlash Supervisor Access Control Register (PFSACC) Field Descriptions

Field Description

SACC[30:0] Supervisor Access Control. This bit field defines supervisor/user mode access control for each sector within
the main flash array.
0 Flash array sector n can be accessed in both user and supervisor mode.
1 Flash array sector n can be accessed only in supervisor mode. An attempted user mode access is

terminated with an AHB error response. If the requesting bus master is the processor core, the ERROR
response typically generates an instruction abort or data abort exception.

The mapping of this bit field to the main flash array is defined in Table 11-14
This field is initialized by hardware reset to the value contained in address 0x3E08 of the shadow block of the
flash array. An erased or unprogrammed flash sets this field to 0xFFFF_FFFF.

Table 11-14. {S,D}ACC Register to Flash Array Mapping

Register Bit Starting Flash
Array Address

 Sector Size

xACC[0] 0x00_0000 16 KB

xACC[1] 0x00_4000 16 KB

xACC[2] 0x00_8000 16 KB

xACC[3] 0x00_C000 16 KB

xACC[4] 0x01_0000 16 KB

xACC[5] 0x01_4000 16 KB

xACC[6] 0x01_8000 16 KB

xACC[7] 0x01_C000 16 KB

xACC[8] 0x02_0000 16 KB

xACC[9] 0x02_4000 16 KB

xACC[10] 0x02_8000 16 KB

xACC[11] 0x02_C000 16 KB

xACC[12] 0x03_0000 16 KB

xACC[13] 0x03_4000 16 KB

xACC[14] 0x03_8000 16 KB

xACC[15] 0x03_C000 16 KB

xACC[16] 0x04_0000 256 KB

xACC[17] 0x08_0000 256 KB

xACC[18] 0x0C_0000 256 KB

xACC[19] 0x10_0000 256 KB

xACC[20] 0x14_0000 256 KB

xACC[21] 0x18_0000 256 KB

xACC[22] 0x1C_0000 256 KB

xACC[23] 0x20_0000 256 KB

xACC[24] 0x24_0000 256 KB

xACC[25] 0x28_0000 256 KB

xACC[26] 0x2C_0000 256 KB

xACC[27] 0x30_0000 256 KB

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-23

11.3.2.11 PFlash Data Access Control Register (PFDACC)

11.3.2.12 User Test Register 0 (UT0)

The User Test Register 0 (UT0) provides a means to control UTest. The UTest mode gives the users of the
flash module the ability to perform test features on the flash. This register is only writable when the flash
is put into UTest mode by writing a passcode.

xACC[28] 0x34_0000 256 KB

xACC[29] 0x38_0000 256 KB

xACC[30] 0x3C_0000 256 KB

xACC[31] Reserved

Offset: FLASH_REGS_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
DACC[30:16]

W

Reset 0 0 — — 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DACC[15:0]

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure 11-13. PFlash Data Access Control Register (PFSACC)

Table 11-15. PFlash Data Access Control Register (PFDACC) Field Descriptions

Field Description

DACC[31:0] Data Access Control. This bit field defines code/data access control for each sector within the main flash
array.

0 Flash array sector n can be accessed only by a data reference. An attempted instruction fetch is terminated
with an AHB error response. If the requesting bus master is the processor core, the ERROR response
typically generates an instruction abort or data abort exception.

1 Flash array sector n can be accessed either as an instruction or data reference.
The mapping of this bit field to the main flash array is defined in Table 11-14.
This field is initialized by hardware reset to the value contained in address 0x3E10 of the shadow block of the
flash array. An erased or unprogrammed flash sets this field to 0xFFFF_FFFF.

Table 11-14. {S,D}ACC Register to Flash Array Mapping

Register Bit Starting Flash
Array Address

 Sector Size

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-24 Freescale Semiconductor

Offset: FLASH_REGS_BASE + 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
UTE SCBE

0 0 0 0 0 0
DSI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 11-14. User Test Register 0 (UT0)

Table 11-16. UT0 Field Descriptions

Field Description

UTE UTest Enable. This status bit gives indication when UTest is enabled. All bits in UT0, UT1, UT2, UM0, UM1, UM2,
UM3, and UM4 are locked when this bit is 0. This bit is not writeable to a 1, but may be cleared. The reset value
is 0. The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to reflect
the status of enabled, and is enabled until it is cleared by a register write. The UTE password will only be
accepted if MCR[PGM] = 0 and MCR [ERS] = 0 (program and erase are not being requested). UTE can only be
cleared if UT0[AID] = 1, UT0[AIE] and UT0[EIE] = 0. While clearing UTE, writes to set AIE or set EIE will be
ignored. For UTE, the password 0xF9F9_9999 must be written to the UT0 register.

SCBE Single Bit Correction Enable. SBC enables Single Bit Correction results to be observed in MCR[SBC]. Also is
used as an enable for interrupt signals created by the c90fl module (see c90fl Integration Guide). ECC corrections
that occur when SBCE is cleared will not be logged.
0 Single Bit Corrections observation is disabled.
1 Single Bit Correction observation is enabled.

DSI Data Syndrome Input. These bits enable checks of ECC logic by allowing check bits to be input into the ECC
logic and then read out by doing array reads or array integrity checks. The DSI[7:0] correspond to the 8 ECC
check bits on a double word.

MRE Margin Read Enable. MRE combined with MRV enables Factory Margin Reads to be done. Margin reads are only
active during Array Integrity Checks. Normal user reads are not affected by MRE. MRE is not writable if AID is low.
0 Margin reads are not enabled.
1 Margin reads are enabled during Array Integrity Checks.

MRV Margin Read Value. MRV selects the margin level that is being checked. Margin can be checked to an erased
level (MRV = 1) or to a programmed level (MRV = 0). In order for this value to be valid, MRE must also be set.
MRV is not writable if AID is low.
0 Zero’s margin reads are requested.
1 One’s margin reads are requested.

EIE ECC Data Input Enable. EIE enables the input registers (DSI and DAI) to be the source of data for the array. This
is useful in the ECC logic check. If this bit is set, data read through a BIU read request will be from the DSI and
DAI registers when an address match is achieved to the ADR register. EIE is not simultaneously writable to a 1
as UTI is being cleared to a 0.
0 Data read is from the flash array.
1 Data read is from the DSI and DAI registers.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-25

11.3.2.13 User Test Register 1 (UT1)

The User Test Register 1 (UT1) provides added controllability to UTest.

AIS Array Integrity Sequence. AIS determines the address sequence to be used during array integrity checks. The
default sequence (AIS = 0) is meant to replicate sequences normal “user” code follows, and thoroughly checks
the read propagation paths. This sequence is proprietary. The alternative sequence (AIS = 1) is just logically
sequential.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run the
proprietary sequence. If MRE is set, AIS has no effect.
0 Array integrity sequence is proprietary sequence.
1 Array integrity sequence is sequential.

AIE Array Integrity Enable. AIE set to one starts the array integrity check done on all selected and unlocked blocks.
The address sequence selected is determined by AIS, and the MISR (UM0 through UM4) can be checked after
the operation is complete, to determine if a correct signature is obtained. Once an Array Integrity operation is
requested (AIE = 1), it may be terminated by clearing AIE if the operation has finished (AID = 1) or aborted by
clearing AIE if the operation is ongoing (AID = 0). AIE is not simultaneously writable to a 1 as UTI is being cleared
to a 0.
0 Array integrity checks are not enabled.
1 Array integrity checks are enabled.

AID Array Integrity Done. AID is cleared upon an Array integrity check being enabled (to signify the operation is
ongoing). Once completed, AID is set to indicate that the array integrity check is complete. At this time the MISR
(UMR registers) can be checked. AID can not be written, and is status only.
0 Array integrity check is ongoing.
1 Array integrity check is done.

Offset: FLASH_REGS_BASE + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-15. User Test Register 1 (UT1)

Table 11-17. UT1 Field Descriptions

Field Description

DAI
[31:0]

Data Array Input. These bits enable checks of ECC logic by allowing data bits to be input into the ECC logic
and then read out by doing array reads or array integrity checks. The DAI[31:0] correspond to the 32 Array bits
representing Word 0 of the double word selected in the ADR register.

Table 11-16. UT0 Field Descriptions (continued)

Field Description

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-26 Freescale Semiconductor

11.3.2.14 User Test Register 2 (UT2)

11.3.2.15 User Multiple Input Signature Register [0:4] (UMn)

The User Multiple Input Signature Registers (UMn) provide a means to evaluate array integrity.

Offset: FLASH_REGS_BASE + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-16. User Test Register 2 (UT2)

Table 11-18. UT2 Field Descriptions

Field Description

DAI
[63:32]

Data Array Input. These bits enable checks of ECC logic by allowing data bits to be input into the ECC logic
and then read out by doing array reads or array integrity checks. The DAI[63:32] correspond to the 32 Array
bits representing Word 1of the double word selected in the ADR register.

Offset FLASH_REGS_BASE + 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MISR[31:0]

W

Reset 0

Figure 11-17. User Multiple Input Signature Register 0 (UM0)

Offset FLASH_REGS_BASE + 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MISR[63:32]

W

Reset 0

Figure 11-18. User Multiple Input Signature Register 1 (UM1)

Offset FLASH_REGS_BASE + 0x0050 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MISR[95:64]

W

Reset 0

Figure 11-19. User Multiple Input Signature Register 2 (UM2)

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-27

11.4 Functional Description

11.4.1 Flash User Mode

In user mode the flash module can be read and written (register writes and interlock writes), programmed
or erased. The following sub-sections define all actions that can be performed in user mode.

11.4.1.1 Flash Read and Write

The default state of the flash module is read. The main and shadow address space can be read only in the
read state. The module configuration register (MCR) is always available for read. The flash module enters
the read state on reset. The flash module is in the read state under four sets of conditions:

• The read state is active when the module is enabled.

Offset FLASH_REGS_BASE + 0x0054 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MISR[127:96]

W

Reset 0

Figure 11-20. User Multiple Input Signature Register 3 (UM3)

Offset FLASH_REGS_BASE + 0x0058 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MISR[143:128]

W

Reset 0

Figure 11-21. User Multiple Input Signature Register 4 (UM4)

Table 11-19. UMn Field Descriptions

Field Description

MISR Multiple Input Signature Register bits. The MISR bitfields accumulate a signature from an array integrity event. The
MISR captures all data fields, as well as ECC fields, and the read transfer error signal. The MISR can be seeded to
any value by writing the MISR registers.

The MISR register provides a means to calculate a MISR during Array Integrity operations.

The MISR can be represented by the following polynomial:
x145 + x6 + x5 + x1 + 1
The MISR is calculated by taking the previous MISR value and then “exclusive ORing” the new data. In addition the
most significant bit (in this case it is MISR[144]), is then “exclusive ORed” into input of MISR[6], MISR[5], MISR[1],
and MISR[0]. The result of the “exclusive OR” is shifted left on each read.

The MISR register is used in Array Integrity operations.
If during address sequencing, reads extend into an invalid address location (i.e. greater than the maximum address
for a given array size) or locked/un-selected blocks. Reads are still executed to the array, but the results from the
array read are not deterministic. In this instance, the MISR registers is not re-calculated, and the previous value is
retained.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-28 Freescale Semiconductor

• The read state is active when PGM = 1 or ERS = 1 in the MCR and high-voltage operation is
ongoing (read-while-write).

NOTE
Reads done to the partition(s) being operated on (either erased or
programmed) result in an error and the RWE bit in the MCR is set.

• The read state is active when PGM = 1 and PSUS = 1 in the MCR (program suspend).

• The read state is active when ERS = 1 and ESUS = 1 and PGM = 0 in the MCR (erase suspend).

NOTE
FC reads are done through the BIU. In many cases the BIU will do page
buffering to allow sequential reads to be done with higher performance. This
can create a data coherency issue that must be handled with software. Data
coherency can be an issue after a program, erase, or shadow row operations.

In flash user mode, registers can be written. Array can be written to do interlock writes.

Reads attempted to invalid locations result in indeterminate data. Invalid locations occur when addressing
is done to blocks that do not exist in non 2n array sizes.

Interlock writes attempted to invalid locations (due to blocks that do not exist in non 2n array sizes) will
result in an interlock occurring, but attempts to program or erase these blocks will not occur since they are
forced to be locked.

11.4.1.2 Read While Write (RWW)

The flash core is divided into partitions. Partitions are always comprised of two or more blocks. Partitions
are used to determine read-while-write (RWW) groupings. While a write (program or erase) is being done
within a given partition, a read can be simultaneously executed to any other partition. Partitions are listed
in Table 11-1. Each partition in high address space comprises of two 256 KB blocks. The shadow block
has unique RWW restrictions described in Section 11.4.3, “Flash Shadow Block.”

The FC is also divided into blocks to implement independent erase or program protection. The shadow
block exists outside the normal address space and is programmed, erased, and read independently of the
other blocks. The shadow block is included to support systems that require NVM for security or system
initialization information.

A software mechanism is provided to independently lock or unlock each block in high-, mid-, and
low-address space against program and erase. Two hardware locks are also provided to enable/disable the
FC for program/erase. See Section 11.4.1.3.1, “Software Locking,” for more information.

11.4.1.3 Flash Programming

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1. Addresses in locked/disabled blocks cannot be programmed. The user
can program the values in any or all of four words within a page in a single program sequence. Word
addresses are selected using bits 3:2 of the page-bound word.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-29

Whenever a program operation occurs, ECC bits are programmed. ECC is handled on a 64-bit boundary.
Thus, if only one word in any given 64-bit ECC segment is programmed, the adjoining word (in that
segment) should not be programmed because ECC calculation has already completed for that 64-bit
segment. Attempts to program the adjoining word will probably result in an operation failure. It is
recommended that all programming operations be from 64 bits to 128 bits, and be 64-bit aligned. The
programming operation should completely fill selected ECC segments within the page.

The program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from a 0 to a 1.

NOTE
Ensure the block that contains the address to be programmed is unlocked.
See Section 11.3.2.2, “Low/Mid Address Space Block Locking Register
(LML),” Section 11.3.2.3, “High Address Space Block Locking Register
(HBL),” and Section 11.3.2.4, “Secondary Low/Mid Address Space Block
Locking Register (SLL),” for more information.

2. Write the first address to be programmed in the flash module with the program data. This write is
referred to as a program data interlock write. An interlock write may be either be an aligned word
or doubleword.

3. If more than one word or doubleword is to be programmed, write each additional address in the
page with data to be programmed. This is referred to as a program data write. All unwritten data
words default to 0xFFFF_FFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program sequence.

The program sequence is presented graphically in Figure 11-22. The program suspend operation detailed
in Figure 11-22 is discussed in Section 11.4.1.3.2, “Flash Program Suspend/Resume.”

The first write after a program is initiated determines the page address to be programmed. Program may
be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the MCR[EHV] bit at the end
of a previous program. This first write is referred to as an interlock write. If the program is not an
erase-suspended program, the interlock write determines if the shadow or normal array space will be
programmed and causes MCR[PEAS] to be set/cleared.

In the case of an erase-suspended program, the value in MCR[PEAS], is retained from the erase.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a program
sequence by clearing MCR[PGM] prior to setting MCR[EHV].

If multiple writes are done to the same location the data for the last write is used in programming.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-30 Freescale Semiconductor

While MCR[DONE] is low, MCR[EHV] is high, and MCR[PSUS] is low, the user may clear MCR[EHV],
resulting in a program abort. A program abort forces the module to step 8 of the program sequence. An
aborted program results in MCR[PEG] being set low, indicating a failed operation. The data space being
operated on before the abort will contain indeterminate data. The user may not abort a program sequence
while in program suspend.

CAUTION
Aborting a program operation leaves the flash core addresses being
programmed in an indeterminate data state. This may be recovered by
executing an erase on the affected blocks.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-31

Figure 11-22. Program Sequence

Erase suspendUser mode read state

Write MCR

PGM = 1

Program write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE

Step 4

WRITE
PSUS = 1

Read MCR
DONE = 1

Program suspend

PGM = 0 User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

PSUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

PGM
more words

Step 8

?

No

Yes

Write MCR

PGM = 0

User mode read state

Step 9

Go to Step 2

Note: PEG remains valid under this
condition until EHV is set high or
PGM is cleared.

Note: PSUS cannot be cleared while
EHV = 0. PSUS and EHV cannot
both be changed in a single
write operation.

PEG valid period

Last write
?

Yes

No

ESUS
?

0 1

Erase suspend

or erase suspend

?

value
?

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-32 Freescale Semiconductor

11.4.1.3.1 Software Locking

A software mechanism is provided to independently lock/unlock each high-, mid-, and low-address space
against program and erase.

Software locking is done through the LML (low-/mid-address space block locking register), SLL
(secondary low-/mid-address space block locking register), or HBL (high-address space block locking
register). These can be written through register writes and read through register reads.

When the program/erase operations are enabled through hardware, software locks are enforced through
doing register writes.

11.4.1.3.2 Flash Program Suspend/Resume

The program sequence may be suspended to allow read access to the flash core. It is not possible to erase
or program during a program suspend. Interlock writes should not be attempted during program suspend.

A program suspend can be initiated by changing the value of the MCR[PSUS] bit from a 0 to a 1.
MCR[PSUS] can be set high at any time when MCR[PGM] and MCR[EHV] are high. A 0 to 1 transition
of MCR[PSUS] causes the flash module to start the sequence to enter program suspend, which is a read
state. The module is not suspended until MCR[DONE] = 1. At this time flash core reads may be attempted.
After it is suspended, the flash core may be read only. Reads to the blocks being programmed/erased return
indeterminate data.

The program sequence is resumed by writing a logic 0 to MCR[PSUS]. MCR[EHV] must be set to a 1
before clearing MCR[PSUS] to resume operation. When the operation resumes, the flash module
continues the program sequence from one of a set of predefined points. This may extend the time required
for the program operation.

11.4.1.4 Flash Erase

Erase changes the value stored in all bits of the selected blocks to logic 1. Locked or disabled blocks cannot
be erased. If multiple blocks are selected for erase during an erase sequence, the blocks are erased
sequentially starting with the lowest numbered block and terminating with the highest. Aborting an erase
operation leaves the flash core blocks being erased in an indeterminate data state. This can be recovered
by executing an erase on the affected blocks.

The erase sequence consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to a 1.

2. Select the block, or blocks, to be erased by writing 1s to the appropriate registers in LMS or HBS.
If the shadow row is to be erased, this step may be skipped, and LMS and HBS are ignored. For
shadow row erase, see section Section 11.4.3, “Flash Shadow Block,” for more information.

NOTE
Lock and select are independent. If a block is selected and locked, no erase
can occur. See Section 11.3.2.2, “Low/Mid Address Space Block Locking
Register (LML),” Section 11.3.2.3, “High Address Space Block Locking
Register (HBL),” and Section 11.3.2.4, “Secondary Low/Mid Address
Space Block Locking Register (SLL),” for more information.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-33

3. Write to any address in flash. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR[EHV] bit to start an internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase.

The erase sequence is presented graphically in Figure 11-23. The erase suspend operation detailed in
Figure 11-23 is discussed in section Section 11.4.1.5, “Flash Erase Suspend/Resume.”

After setting MCR[ERS], one write (referred to as an interlock write) must be performed before
MCR[EHV] can be set to a 1. Data words written during erase sequence interlock writes are ignored. The
user may terminate the erase sequence by clearing MCR[ERS] before setting MCR[EHV].

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low, MCR[EHV]
is high, and MCR[ESUS] is low. An erase abort forces the module to step 8 of the erase sequence. An
aborted erase results in MCR[PEG] being set low, indicating a failed operation. The blocks being operated
on before the abort contain indeterminate data. The user may not abort an erase sequence while in erase
suspend.

CAUTION
Aborting an erase operation leaves the flash core blocks being erased in an
indeterminate data state. This may be recovered by executing an erase on the
affected blocks.

11.4.1.5 Flash Erase Suspend/Resume

The erase sequence may be suspended to allow read access to the flash core. The erase sequence may also
be suspended to program (erase-suspended program) the flash core. A program started during erase
suspend can be suspended. One erase suspend and one program suspend are allowed at a time during an
operation. It is not possible to erase during an erase suspend, or program during a program suspend. During
suspend, all reads to flash core locations targeted for program and blocks targeted for erase return
indeterminate data. Programming locations in blocks targeted for erase during erase-suspended program
may result in corrupted data.

An erase suspend operation is initiated by setting the MCR[ESUS] bit. MCR[ESUS] can be set to a 1 at
any time when MCR[ERS] and MCR[EHV] are high and MCR[PGM] is low. A 0 to 1 transition of
MCR[ESUS] causes the flash module to start the sequence which places it in erase suspend. The user must
wait until MCR[DONE] = 1 before the module is suspended and further actions are attempted. After it is
suspended, the array may be read or a program sequence may be initiated (erase-suspended program).
Before initiating a program sequence the user must first clear MCR[EHV]. If a program sequence is
initiated, the value of the MCR[PEAS] is not reset. These values are fixed at the time of the first interlock
of the erase. Flash core reads from the blocks being erased while MCR[ESUS] = 1 return indeterminate
data.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-34 Freescale Semiconductor

The erase operation is resumed by clearing the MCR[ESUS] bit. The flash continues the erase sequence
from one of a set of predefined points. This can extend the time required for the erase operation.

CAUTION
In an erase-suspended program, programming flash locations in blocks
which were being operated on in the erase may corrupt flash core data.

Figure 11-23. Erase Sequence

User mode read state

Write MCR

ERS = 1

Select blocks

Erase interlock write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE
?

Step 4

WRITE
ESUS = 1

Read MCR
DONE = 1

Erase suspend

ERS = 0
User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

ESUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
?

Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

Erase
more blocks

Step 8

?

No

Yes

Write MCR

ERS = 0

User mode read state

Step 9

EHV = 0

Write MCR

PGM = 1

Program, Step 2

Go to Step 2

Note: PEG remains valid under this
condition until EHV is set high or
ERS is cleared.

Note: ESUS cannot be cleared while
EHV = 0. ESUS and EHV cannot
be changed in a single
write operation.

PEG Valid Period

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-35

11.4.2 UTest Mode

UTest mode is a mode that customers can put the flash module in to do specific tests to check the integrity
of the Flash module.

11.4.2.1 Array Integrity Self Check

Array integrity is checked using a pre-defined address sequence (based on UT0[AIS]), and this operation
is executed on selected and unlocked blocks. The data to be read is customer-specific. Thus, a customer
can provide user code into the flash and the correct MISR value is calculated. The customer is free to
provide any random or non-random code, and a valid MISR signature is calculated. Once the operation is
completed, the result of the reads can be checked by reading the MISR value to determine if an incorrect
read or ECC detection was noted. Array integrity is controlled by the system clock, and it is required that
the Read Wait States and Address Pipeline control registers in the BIU be set to match the user-defined
frequency being used.

The array integrity check consists of the following sequence of events:

1. Enable UTest mode.

2. Select the block, or blocks to be receive array integrity check by writing ones to the appropriate
registers in LMS or HBS registers.

NOTE
Locked Blocks can be tested with array integrity if selected in LMS and
HBS.

NOTE
It is not possible to do UTest operations on the shadow block.

3. If desired, Set the UT0[AIS] bit to 1 for sequential addressing only.

NOTE
For normal integrity checks of the flash memory, sequential addressing is
recommended. If sequential addressing is selected, BIU read requests can be
done and will interrupt the array integrity sequence. Upon resuming the
Array Integrity operation will continue from where it left off. The
suspending and resuming of the array integrity operation is handled
internally by the BIU.

NOTE
If it is required to more fully check the read path (in a diagnostic mode), it
is recommend that AIS be left at 0, to use the address sequence that checks
the read path more fully, and examine read transitions. This sequence takes
more time. If this sequence is selected, it is recommended to not allow BIU
read request interruptions, as this will diminish the effectiveness of the array
integrity test, and the results will be non-deterministic.

4. Seed the MISR fields in UM0 through UM4 with the desired values.

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-36 Freescale Semiconductor

5. Set the UT0[AIE] bit.

If desired, the Array Integrity operation may be aborted prior to UT0[AID] going high. This may
be done by clearing the UT0[AIE] bit and then continuing to the next step. It should be noted that
in the event of an aborted array integrity check the MISR registers will contain a signature for the
portion of the operation that was completed prior to the abort, and will not be deterministic. Prior
to doing another array integrity operation, the UM0, UM1, UM2 and UM3 registers may need to
be initialized to the desired seed value by doing register writes.

6. Wait until the UT0[AID] bit goes high.

7. Read values in the MISR registers (UM0 through UM4) to ensure correct signature.

8. Write a logic 0 to the UT0[AIE] bit.

11.4.2.2 Factory Margin Read

Factory margin read must be done following “Initial Factory Conditions” (see note 2 in Table A-1). One
factory margin read is allowed per erase.

Factory margin read may be done to selected and unlocked blocks by combining UT0[MRE] and
UT0[MRV] with the array integrity check. If UT0[MRE] is set, UT0[AIS] has no effect, and the reads will
be done sequentially.

The data to be read is customer-specific. Thus, a customer can provide user code into the flash and the
correct MISR value is calculated. The customer is free to provide any random or non-random code, and a
valid MISR signature is calculated. Once the operation is completed, the result of the reads can be checked
by reading the MISR value. Factory margin read is a self-timed event, and is independent of system clocks
or wait states selected. Margin ECC corrections or detections are not done during the factory margin read
test.

1. Enable UTest mode.

2. Select the block, or blocks to be receive margin read check by writing ones to the appropriate
registers in LMS or HBS/EHS registers. Make sure that selected blocks are also unlocked.

NOTE
It is not possible to do UTest operations on the shadow block.

NOTE
It is possible to do User Mode array reads during the factory margin read
test, if desired, but the partition rules for Read While Write used during
program and erase are in effect during factory margin reads.

3. Set the UT0[MRE] bit.

4. Set the UT0[MRV] bit to the desired value to perform One’s margin or Zero’s margin.

5. Seed the MISR fields in UM0 through UM4 with the desired values.

6. Set the UT0[AIE] bit.

If desired, the margin read operation may be aborted prior to UT0[AID] going high. This may be

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 11-37

done by clearing the UT0[AIE] bit and then continuing to the next step. It should be noted that in
the event of an aborted margin read, the MISR registers contain a signature for the portion of the
operation that was completed prior to the abort, but it is not deterministic.

7. Wait until the UT0[AID] bit goes high.

8. Read values in the MISR registers (UM0 through UM4) to ensure correct signature.

9. Write a logic 0 to the UT0[AIE] bit.

11.4.2.3 ECC Logic Check

ECC logic can be checked by providing data to be read in the UT0[DSI], UT1[DAI] and/or UT2[DAI]
registers. Then array reads can be done, ensuring expected results. The ECC logic check consists of the
following sequence of events:

1. Enable UTest mode.

2. Write UT0[EIE] to 1.

3. Write UT0[DSI], UT1[DAI], and/or UT2[DAI] bits to provide data and check bit values to be read.
Single- or double-bit detections/corrections can be simulated by properly choosing data and check
bit combinations.

4. Write double word address to receive the data input in step 3 into the ADR register.

11.4.3 Flash Shadow Block

The flash shadow block is a memory-mapped block in the flash memory map. Program and erase of the
shadow block are enabled when MCR[PEAS] = 1 only. After the user has begun an erase operation on the
shadow block, the operation cannot be suspended to program the main address space and vice-versa. The
user must terminate the shadow erase operation to program or erase the main address space.

NOTE
If an erase of user space is requested, and a suspend is done with attempts
to erase suspend program shadow space, this attempted program is directed
to user space as dictated by the state of MCR[PEAS]. Likewise an attempted
erase suspended program of user space, while the shadow space is being
erased, is directed to shadow space as dictated by the state of MCR[PEAS].

The shadow block cannot use the RWW feature. After an operation is started in the shadow block, a read
cannot be done to the shadow block, or any other block. Likewise, after an operation is started in a block
in low-/mid-/high-address space, a read cannot be done in the shadow block.

The shadow block contains information about how the lock registers are reset. The first and second words
can be used for reset configuration words. All other words can be used for user-defined functions or other
configuration words.

The shadow block may be locked/unlocked against program or erase by using the LML or SLL discussed
in Section 11.3.2, “Register Descriptions.”

Programming the shadow row has similar restrictions to programming the array in terms of how ECC is
calculated. See Section 11.4.1.3, “Flash Programming,” for more information. Only one program is

Flash Memory Array and Control

MPC5668x Microcontroller Reference Manual, Rev. 4

11-38 Freescale Semiconductor

allowed per 64 bit ECC segment between erases. Erase of the shadow row is done similarly as an array
erase. See section Section 11.4.1.4, “Flash Erase,” for more information.

11.4.4 Flash Sleep Mode

Flash sleep mode is entered by setting the FDIS bit in the CPR_SOCSC register. See Section 5.2.2.12,
“SoC Status and Control Register (CRP_SOCSC),” for more information. Once sleep mode is requested,
the flash module turns off most current sources, although logic/charge pumps to enable quick recovery to
read are enabled for faster wake up time than disable mode.

When in sleep mode, register access is prevented. FC accesses are also prevented until sleep mode is
exited. FC reads and writes may occur as soon as sleep mode is exited.

The flash module returns to its pre-sleep state when enabled in all cases unless in the process of executing
a program or erase high voltage operation at the time of sleep. If the flash module is put to sleep during a
program or erase high voltage operation, the appropriate suspend bit is set to a 1. The user may resume the
program or erase operation at the time the module is enabled by clearing the appropriate suspend bit. EHV
must be high for the module to resume operation. If both the ESUS and PSUS bits are set to a 1 the user
must clear PSUS to resume the program. The erase may be resumed after the program ends.

11.4.5 Flash Reset

A reset is the highest priority operation for the flash and terminates all other operations.

The flash uses reset to initialize register and status bits to their default reset values. If the flash is executing
a program or erase operation and a reset is issued, the operation is aborted and the flash disables the high
voltage logic without damage to the high-voltage circuits. Reset aborts all operations and forces the flash
into user mode ready to receive accesses.

After reset is negated, register accesses can be performed, although it should be noted that registers that
require updating from shadow information, or other inputs, cannot read updated until flash exits reset.

11.4.6 DMA Requests

The flash has no DMA requests.

11.4.7 Interrupt Requests

The flash has no interrupt requests.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-1

Chapter 12
e200z6 Core (Z6)

12.1 Introduction
The core complex of the MPC5668x device consists of the following:

• e200z650n3e core described in this chapter

• 32 KB unified cache memory

• 32-entry memory management unit (MMU)

• Nexus class 3 block

• Bus interface unit (BIU)

The e200z6 core is the central processing unit (CPU) in the device. The core is part of the family of CPU
cores that implement versions built on the Power Architecture embedded category.

The core is 100% user mode compatible with the original Power PC user instruction set architecture
(UISA). However, in the Power Architecture definition, the original floating-point resources (used by a
SIMD design supporting single-precision vector and single-precision scalar operations) are provided that
share the GPRs defined for integer instructions.

Throughout this book, the e200z650n3e core may also be referred to as the Z6 or the e200z6. In the context
of the MPC5668x device, these terms are interchangeable. Refer to the e200z6 PowerPCTM Core
Reference Manual for more information on the e200z6 core.

The e200z0 core, used on this device as an I/O processor, is described in Chapter 13, “e200z0 Core (Z0).”

12.1.1 Block Diagram

Figure 12-1 shows a block diagram of the e200z6 core complex.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-2 Freescale Semiconductor

Figure 12-1. e200z6 Block Diagram

12.1.2 Overview

The e200z6 core integrates the following:

• Integer execution unit

• Branch control unit

• Instruction fetch and load/store units

• Multi-ported register file capable of sustaining three read and two write operations per clock.

CPU

Control Logic

Load/

32 KB

Cache

Data

Memory

Management

Unit

Address

Store
Unit

Control Instruction Unit

Address

Branch
Unit

PC
Unit

Instruction Buffer

GPRsCRSPR

Multiply
Unit

Bus Interface Unit

Control

32 64

Data Out

64

64

Signal
Processing

OnCE/NEXUS 1/

Control Logic
Engine

(SPE APU)

Unified

Integer
Execution

Unit

Data In

64

CTR
XER

LR

(64-bit)

NEXUS 3

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-3

Most integer instructions execute in a single-clock cycle. Branch target prefetching is performed by the
branch target address cache to allow single-cycle branches in many cases.

The e200z6 core complex is built on a single-issue, 32-bit Power Architecture design with 64-bit
general-purpose registers (GPRs). Power Architecture floating-point instructions are not supported in
hardware, but are trapped and may be emulated by software. A signal processing extension (SPE) auxiliary
processing unit (APU) is provided to support real-time fixed point and single-precision floating point
operations using the general-purpose registers. All arithmetic instructions that execute in the core operate
on data in the GPRs. The registers have been extended to 64-bits to support vector instructions defined by
the SPE APU. These instructions operate on 16-bit or 32-bit data types, and produce vector or scalar
results.

In addition to the base Power Architecture instruction set, the e200z6 core also implements the VLE
(Variable Length Encoding) APU, providing improved code density.

12.1.3 Features

The following is a list of some key features of the e200z6:

• Single issue, 32-bit CPU built on the Power Architecture embedded category

• Implements the VLE APU for reduced code footprint. Refer to EREF: A Programmer's Reference
Manual for Freescale Book E Processors and to VLEPIM: Variable Length Encoding (VLE)
Extension Programming Interface Manual.

• In-order execution and retirement

• Precise exception handling

• Branch target address cache

— Dedicated branch address calculation adder

— Branch target prefetching

— Branch lookahead buffers of depth 2

• Load/store unit: Pipelined operation supports throughput of one load or store operation per cycle

• 64-bit general-purpose register file

• Memory management unit (MMU) with 32-entry fully-associative TLB and multiple page size
support

• 32 KB, 4- or 8-way set associative unified cache

• Periodic timer and watchdog functions

• Periodic system integrity can be monitored through parallel signature checks

• Signal processing extension APU supporting fixed-point and single-precision floating-point
operations, using the 64-bit general-purpose register file

• Nexus class 3 real-time development unit

• Power management

— Low-power design

— Dynamic power management of execution units, caches, and MMUs

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-4 Freescale Semiconductor

— Support for the wait instruction to halt synchronous activity and/or signal intent to enter low
power mode to the CRP.

12.1.3.1 Instruction Unit Features

The features of the instruction unit are the following:

• 64-bit path to cache supports fetching of two 32-bit instructions per clock, or as many as four 16-bit
VLE APU instructions per clock

• Instruction buffer holds as many as six sequential instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch target address cache with dedicated branch address adder, and branch lookahead logic
supporting single cycle execution of successful lookahead branches

12.1.3.2 Integer Unit Features

The integer unit supports single-cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zeros function

• 32-bit single cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divides in 6–16 clocks with minimized execution timing

• Pipelined 32x32 hardware multiplier array supports 32x32->32 multiply with three clock latency,
one clock throughput

12.1.3.3 Load/Store Unit Features

The load/store unit supports load, store, and the load multiple/store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring as many as two registers per
cycle for load multiple and store multiple word instructions

12.1.3.4 MMU Features

The features of the MMU are as follows:

• Virtual memory support

• 32-bit virtual and physical addresses

• Eight-bit process identifier

• 32-entry fully associative TLB

• Support for nine page sizes (4, 16, 64, and 256 KB; 1, 4, 16, 64, and 256 MB)

• Entry flush protection

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-5

12.1.3.5 L1 Cache Features

The features of the cache are as follows:

• 32 KB, 4- or 8-way set associative unified cache

• Copyback and writethrough support

• Eight-entry store buffer

• Push buffer

• Linefill buffer

• 32-bit address bus plus attributes and control

• Separate unidirectional 64-bit read data bus and 64-bit write data bus

• Supports cache line locking

• Supports way allocation

• Cache power usage can be minimized

12.1.3.6 BIU Features

The features of the e200z6 BIU are as follows:

• 32-bit address bus plus attributes and control

• Separate unidirectional 64-bit read data bus and 64-bit write data bus

• Overlapped, in-order accesses

12.1.4 Microarchitecture Summary

The e200z6 processor utilizes a seven stage pipeline for instruction execution. The instruction fetch 1,
instruction fetch 2, instruction decode/register file read, execute1, execute2/memory access1,
execute3/memory access2, and register writeback stages operate in an overlapped fashion, allowing single
clock instruction execution for most instructions.

The integer execution unit consists of a 32-bit arithmetic unit (AU), a logic unit (LU), a 32-bit barrel shifter
(shifter), a mask-insertion unit (MIU), a condition register manipulation unit (CRU), a count-leading-zeros
unit (CLZ), a 32 x 32 hardware multiplier array, result feed-forward hardware, and support hardware for
division.

Most arithmetic and logical operations are executed in a single cycle with the exception of multiply, which
is implemented with a pipelined hardware array, and the divide instructions. A count-leading-zeros unit
operates in a single clock cycle.

The instruction unit contains a PC incrementer and a dedicated branch address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching is performed to accelerate taken branches.
Prefetched instructions are placed into an instruction buffer capable of holding six sequential instructions.

Branch target addresses are calculated in parallel with branch instruction decode, resulting in execution
time of three clocks. Conditional branches which are not taken execute in a single clock. Branches with
successful lookahead and target prefetching have an effective execution time of one clock.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-6 Freescale Semiconductor

Memory load and store operations are provided for byte, halfword, word (32-bit), and doubleword data
with automatic zero or sign extension of byte and halfword load data as well as optional byte reversal of
data. These instructions can be pipelined to allow effective single cycle throughput. Load and store
multiple word instructions allow low overhead context save and restore operations. The load/store unit
contains a dedicated effective address adder to allow effective address generation to be optimized.

The condition register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture embedded category. The condition register consists of eight 4-bit fields that
reflect the results of certain operations, such as move, integer and floating-point compare, arithmetic, and
logical instructions, and provide a mechanism for testing and branching.

Vectored and auto-vectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

The SPE APU supports vector instructions operating on 16- and 32-bit fixed-point data types, as well as
32-bit IEEE 754 single-precision floating-point formats, and supports single-precision floating-point
operations in a pipelined fashion. The 64-bit general-purpose register file is used for source and destination
operands, and there is a unified storage model for single-precision floating-point data types of 32-bits and
the normal integer type. Low latency fixed-point and floating-point add, subtract, multiply, divide,
compare, and conversion operations are provided, and most operations can be pipelined.

12.2 Core Registers and Programmer’s Model
This section describes the registers implemented in the e200z6 core. It includes an overview of registers
defined by the Power Architecture embedded category, highlighting differences in how these registers are
implemented in the e200z6 core, and provides a detailed description of core-specific registers. Full
descriptions of the architecture-defined register set are provided in the Power Architecture embedded
category.

The Power Architecture embedded category defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or are provided as
immediate values embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

e200z6 extends the general-purpose registers to 64-bits for supporting SPE APU operations. Power
Architecture instructions operate on the lower 32 bits of the GPRs only, and the upper 32 bits are
unaffected by these instructions. SPE vector instructions operate on the entire 64-bit register. The SPE
APU defines load and store instructions for transferring 64-bit values to/from memory.

Figure 12-2 and Figure 12-3 show the complete e200z6 register set. Figure 12-2 shows the registers that
are accessible while in supervisor mode, and Figure 12-3 shows the set of registers that are accessible
while in user mode. The number to the right of the special-purpose registers (SPRs) is the decimal number
used in the instruction syntax to access the register (for example, the integer exception register (XER) is
SPR 1).

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-7

Figure 12-2. Supervisor Mode Programmer’s Model

ESR SPR 62

Exception Syndrome

Data Exception Address

SPR General

Exception Handling/Control Registers
Save and Restore

MMU Assist1

Memory Management Registers

Machine State
MSR

PVR

Processor Control Registers

Decrementer

Timers
Time Base (writeonly)

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

DEAR SPR 61

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

TBL SPR 284

TBU SPR 285

DEC SPR 22

Process ID

PID0 SPR 48

Processor ID

PIR SPR 286

DECAR SPR 54

IVOR0

IVOR1

IVOR15

SPR 400

SPR 401

SPR 415

Interrupt Vector Prefix

IVPR SPR 63

Interrupt Vector Offset

Debug Registers2

Context Control1

Debug Control

DBCR0

DBCR1

DBCR2

 DBCR31

SPR 308

SPR 309

SPR 310

SPR 561

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200z6--specific registers may not be
supported by other Power Architecture
processors

2 - Optional registers defined by the Power
Architecture embedded category

3 - Read-only registers

Control and Status

TCR SPR 340

TSR SPR 336

SPR 528

SPR 530

IVOR321

IVOR341

Processor Version

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

Cache Control1

SPR 1010L1CSR0

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG

Cache Registers

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 1

XER

XER

General Registers

SPR 256

User SPR

USPRG0

SP E APU Status
and
Control Register

SPR 512SPEFSCR

APU Registers

SPR 287

Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562

CTXCR

ALTCTXCR

SPR 560

SPR 568

SPR 1016L1FINV0

System Version1

SVR SPR 1023

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-8 Freescale Semiconductor

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-9

USER Mode Programmer’s Model

GPR0

GPR1

GPR31

General Purpose Registers

General Registers

Condition Register

CR

Count Register

SPR 9CTR

Link Register

SPR 8LR

XER

SPR 1XER

Timers

Time Base (read-only)

TBL SPR 268

TBU SPR 269

SPRG4

SPRG5

SPRG6

SPRG7

SPR 260

SPR 261

SPR 262

SPR 263

SPR General (read-only)

User SPR

USPRG0 SPR 256

Control Registers

Cache Registers

Cache Configuration
(read-only)

L1CFG0 SPR 515

APU Registers

SPE APU Status
and Control Register

SPEFSCR SPR 512

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-10 Freescale Semiconductor

Figure 12-3. User Mode Programmer’s Model

12.2.1 Power Architecture Registers

The e200z6 core supports most of the registers defined by the Power Architecture embedded category.
Notable exceptions are the floating point registers FPR0–FPR31 and FPSCR. The e200z6 does not support
the Power Architecture floating point architecture in hardware. The supported Power Architecture
embedded category registers are described as follows:

12.2.1.1 User-Level Registers

The user-level registers can be accessed by all software with user or supervisor privileges. They include
the following:

• General-purpose registers (GPRs). The thirty-two 64-bit GPRs (GPR0–GPR31) serve as data
source or destination registers for integer and SPE APU instructions and provide data for
generating addresses. Power Architecture Book E instructions affect only the lower 32 bits of the
GPRs.
SPE APU instructions are provided which operate on the entire 64-bit register.

• Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results
of certain arithmetic operations and provide a mechanism for testing and branching.

• The remaining user-level registers are SPRs. Note that the Power Architecture provides the mtspr
and mfspr instructions for accessing SPRs.

• Integer exception register (XER). The XER indicates overflow and carries for integer operations.

• Link register (LR). The LR provides the branch target address for the branch conditional to link
register (bclr, bclrl) instructions, and is used to hold the address of the instruction that follows a
branch and link instruction, typically used for linking to subroutines.

• Count register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR also provides the branch target address for the
branch conditional to count register (bcctr, bcctrl) instructions.

• The time-base facility (TB) consists of two 32-bit registers: time-base upper (TBU) and time-base
lower (TBL). These two registers are accessible in a read-only fashion to user-level software.

• SPRG–SPRG7. The Power Architecture Book E architecture defines software-use special purpose
registers (SPRGs). SPRG4–SPRG7 are accessible as read-only by user-level software. The e200z6
does not allow user mode access to the SPRG3 register (defined as implementation dependent by
Book E).

• USPRG0. The Power Architecture Book E architecture defines user software-use special purpose
register USPRG0 which is accessible in a read-write fashion by user-level software.

12.2.1.2 Supervisor-Level Only Registers

In addition to the registers accessible in user mode, supervisor-level software has access to additional
control and status registers an operating system used for configuration, exception handling, and other
operating system functions. The Power Architecture embedded category defines the following
supervisor-level registers:

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-11

• Processor control registers

— Machine state register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the move to machine state register (mtmsr), system call (sc), and return from
exception (rfi, rfci, rfdi) instructions. It can be read by the move from machine state register
(mfmsr) instruction. When an interrupt occurs, the contents of the MSR are saved to one of the
machine state save/restore registers (SRR1, CSRR1, DSRR1).

— Processor version register (PVR). This register is a read-only register that identifies the version
(model) and revision level of the processor built on the Power Architecture.

— Processor identification register (PIR). This read-only register is provided to distinguish the
processor from other processors in the system.

• Storage control register

— Process ID register (PID, also referred to as PID0). This register is provided to indicate the
current process or task identifier. It is used by the MMU as an extension to the effective address,
and by external Nexus 2/3/4 modules for ownership trace message generation. The Power
Architecture embedded category allows for multiple PIDs; e200z6 implements only one.

• Interrupt registers

— Data exception address register (DEAR). After a data storage interrupt (DSI), alignment
interrupt, or data TLB miss interrupt, the DEAR is set to the effective address (EA) generated
by the faulting instruction.

— Software-use special purpose registers (SPRGs). The SPRG0–SPRG7 registers are provided
for operating system use.

— Exception syndrome register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions which can generate the same interrupt.

— Interrupt vector prefix register (IVPR) and the interrupt vector offset registers
(IVOR1–IVOR15). These registers together provide the address of the interrupt handler for
different classes of interrupts.

— Save/restore registers (SRR0, SRR1). SRR0 holds the effective address for the instruction at
which execution resumes when an rfi instruction is executed at the end of a non-critical class
interrupt handler routine. SRR1 is used to save machine state on a non-critical interrupt, and
stores the MSR register contents. The MSR value is restored when an rfi instruction is executed
at the end of a non-critical class interrupt handler routine.

— Critical save/restore registers (CSRR0, CSRR1). CSRR0 holds the effective address for the
instruction at which execution resumes when an rfci instruction is executed at the end of a
critical class interrupt handler routine. CSRR1 is used to save machine state on a critical
interrupt, and stores the MSR register contents. The MSR value is restored when an rfci
instruction is executed at the end of a critical class interrupt routine.

• Debug facility registers

Table 12-1. PVR Values, and Processor Type and Version Numbers

Device Core PVR Value Type Version

MPC5668x e200z6 0x8112_0000 0x11 0x2

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-12 Freescale Semiconductor

— Debug control registers (DBCR0–DBCR2). These registers provide control for enabling and
configuring debug events.

— Debug status register (DBSR). This register contains debug event status.

— Instruction address compare registers (IAC1–IAC4). These registers contain addresses and/or
masks which are used to specify instruction address compare debug events.

— Data address compare registers (DAC1, DAC2). These registers contain addresses and/or
masks which are used to specify data address compare debug events.

— e200z6 does not implement the data value compare registers (DVC1, DVC2).

• Timer registers

— The clock inputs for the timers are connected to the internal system clock.

— Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day and
operating interval timers. The TB consists of two 32-bit registers, time-base upper (TBU) and
time-base lower (TBL). The time-base registers can be written to by supervisor-level software
only, but can be read by both user and supervisor-level software.

— Decrementer register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

— Decrementer auto-reload (DECAR). This register is provided to support the auto-reload feature
of the decrementer.

— Timer control register (TCR). This register controls decrementer, fixed-interval timer, and
watchdog timer options.

— Timer status register (TSR). This register contains status on timer events and the most recent
watchdog timer-initiated processor reset.

For more details about these registers, refer to the Power Architecture embedded category specifications.

12.2.2 Core-Specific Registers

The Power Architecture embedded category allows implementation-specific registers.
Implementation-specific registers incorporated in the e200z6 core are described in this section.

12.2.2.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• Signal processing extension APU status and control register (SPEFSCR). The SPEFSCR contains
all fixed-point and floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754 standard.

• The L1 cache configuration register (L1CFG0). This read-only register allows software to query
the configuration of the L1 unified cache.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-13

12.2.2.2 Supervisor-Level Registers

The following supervisor-level registers are defined in the e200z6 core in addition to the Power
Architecture embedded category registers described previously:

• Configuration registers

— Hardware implementation-dependent 0 (HID0) controls processor and system functions.

— Hardware implementation-dependent 1 (HID1) controls processor and system functions.

• Exception handling and control registers

— Debug save and restore registers (DSRR0, DSRR1). DSRR0 holds the effective address for the
instruction at which execution resumes when an rfdi instruction is executed at the end of a
debug interrupt handler routine. DSRR1 is used to save machine state on a debug interrupt, and
stores the MSR register contents. The MSR value is restored when an rfdi instruction is
executed at the end of a debug interrupt handler routine.

— When enabled, the DSRR0 register is used to save the address of the instruction at which
execution continues when rfdi executes at the end of a debug interrupt handler routine.

— Interrupt vector offset registers (IVOR32–IVOR34). These registers provide the address of the
interrupt handler for different classes of interrupts.

• Debug facility registers

— Debug control register 3 (DBCR3) controls for debug functions not described in the
Power Architecture embedded category.

— Debug counter register (DBCNT) provides counter capability for debug functions.

• Cache registers

— L1 cache configuration register (L1CFG0) is a read-only register that allows software to query
the configuration of the L1 cache.

— L1 cache control and status register (L1CSR0) controls the operation of the L1 unified cache
such as cache enabling, cache invalidation, cache locking, or 8 etc.

— L1 cache flush and invalidate register (L1FINV0) controls software flushing and invalidation
of the L1 unified cache.

• Memory management unit registers

— MMU configuration register (MMUCFG) is a read-only register that allows software to query
the configuration of the MMU.

— MMU assist (MAS0–MAS4, MAS6) registers provide the interface to the core from the
memory management unit.

— MMU control and status register (MMUCSR0) controls invalidation of the MMU.

— TLB configuration registers (TLBCFG0, TLBCFG1) are read-only registers that allow
software to query the configuration of the TLBs.

• System version register (SVR) is a read-only and identifies the version (model) and revision level
of the system with an e200z6 processor built on the Power Architecture embedded category.

For more details about these registers, refer to the e200z6 core reference documentation.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-14 Freescale Semiconductor

12.2.3 e200z6 Core Complex Features Not Supported in the Device

The device implements a subset of the e200z6 core complex features. The e200z6 core complex features
that are not supported in the device are described in Table 12-2.

12.3 Functional Description
The following sections describe the functions of the e200z6 core blocks.

12.3.1 Memory Management Unit (MMU)

The memory management unit (MMU) is an implementation built on the Power Architecture embedded
category with a 32-entry fully associative translation lookaside buffer (TLB). The Power Architecture
embedded category divides the effective and real address space into pages. The page represents the
granularity of effective address translation, permission control, and memory/cache attributes. The e200z6
MMU supports the following nine page sizes: (4, 16, 64, and 256 KB, 1, 4, 16, 64, and 256 MB).

Table 12-2. e200z6 Features Not Supported in the Device Core

Function / Category Description

Disabled events The unconditional debug event (UDE) is not supported.

Power management e200z6 core halted state and stopped state are not supported.

Power management The following low-power modes are not supported:
Doze mode
Nap mode
Sleep mode
Time-base interrupt wake-up from low-power mode is not supported.

Power management Core wake up is not supported.
MSR[WE] bit in the machine state register is not supported.
The OCR[WKUP] bit in the e200z6 OnCE control register (OCR) has no effect.

Machine check The machine check input pin is not supported. HID0 [EMCP] has no effect, and MCSR[MCP]
always reads a negated value.

PVR value Least significant halfword of processor version register (PVR) is 0x 0000, that contains the
following bitfields:
MBG Use = 0x00
MBG Rev = 0x0
MBG ID = 0x0
The PVR register has two bitfields in the device.

Reservation management Reservation management logic external to the e200z6 is not implemented.

Verification The system version register (SVR) of the e200z6 is 0x 0000_0000.

Time base The decrement counters are always enabled in the e200z6.

Time Base The timer external clock is not connected to a clock; Do not select the timer external clock.

Context control The CTXCR and ALTCXTCR registers are not supported.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-15

12.3.1.1 Translation Lookaside Buffer (TLB)

The TLB consists of a 32-entry, fully associative content addressable memory (CAM) array. To perform a
lookup, the CAM is searched in parallel for a matching TLB entry. The contents of this TLB entry are then
concatenated with the page offset of the original effective address. The result constitutes the physical
address of the access. Table 12-3 shows the TLB entry bit definitions.

The TLB is accessed indirectly through several MMU assist (MAS) registers. Software can read and write
to the MMU assist registers with mtspr (move to SPR) and mfspr (move from SPR) instructions. The
MMU registers contain information related to reading and writing an entry in the TLB. Data is read from
the TLB into the MAS registers with a tlbre (TLB read entry) instruction. Data is written to the TLB from
the MAS registers with a tlbwe (TLB write entry) instruction.

Refer to Section 12.3.1.5, “MMU Assist Registers (MAS[0:4], MAS[6]),” and the
e200z6 PowerPCTM Core Reference Manual for more details.

12.3.1.2 Translation Flow

The effective address, concatenated with the address space value of the MSR bit (MSR[IS] or MSR[DS]),
is compared to the number of bits of the EPN field and the TS field of TLB entries. If the contents of the
effective address plus the address space bit matches the EPN field and TS bit of the TLB entry, that TLB
entry is a candidate for a possible translation match. In addition to a match in the EPN field and TS, a
matching TLB entry must match with the current process ID of the access (in PID0), or have a TID value
of 0, indicating the entry is globally shared among all processes.

Figure 12-4 shows the translation match logic for the effective address plus its attributes, collectively
called the virtual address, and how it is compared with the corresponding fields in the TLB entries.

Table 12-3. TLB Entry Bit Definitions

Field Comments

V Valid bit for entry

TS Translation address space (compared against AS bit)

TID[0:7] Translation ID (compared against PID0 or ‘0’)

EPN[0:19] Effective page number (compared against effective address)

RPN[0:19] Real page number (translated address)

SIZE[0:3] Page size = 4 KB,16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, 256 MB

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

WIMGE Translation attributes (Write-through required, cache-inhibited, memory coherence required, guarded, endian)

U0–U3 User bits—used by software only

IPROT Invalidation protect

VLE VLE page indicator

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-16 Freescale Semiconductor

Figure 12-4. Virtual Address and TLB-Entry Compare Process

12.3.1.3 Effective to Real Address Translation

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow
(branches and interrupts). Data accesses are generated by load, store, and cache management instructions.
The instruction fetch, branch, and load/store units generate 32-bit effective addresses. The MMU translates
this effective address to a 32-bit real address which is then used for memory accesses. Figure 12-5 shows
the effective to real address translation flow.

Figure 12-5. Effective to Real Address Translation Flow

12.3.1.4 Permissions

The application software can restrict access to virtual pages by selectively granting permissions for user
mode read, write, and execute, and supervisor mode read, write, and execute on a per-page basis. For

TLB entry Hit

=0?

private page

shared page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID

TLB_entry[TID]

TLB_entry[EPN]
EA page number bits

=?

32-bit effective address

32-bit real address

Virtual Address

PID Effective page address Offset

0 31

TLB
multiple-entry

MSR[IS] for instruction fetch

AS

MSR[DS] for data access

RPN field of matching entry

n–1 n

Real page number Offset

0 31

NOTE: n = 32–log2 (page size)
n 20
n = 20 for 4 KB page size

n–1 n

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-17

example, program code might be execute-only and data structures can be mapped as
read/write/no-execute.

The UX, SX, UW, SW, UR, and SR access control bits support selective permissions for access control:

• SR—Supervisor read permission. Allows loads and load-type cache management instructions to
access the page while in supervisor mode.

• SW—Supervisor write permission. Allows stores and store-type cache management instructions to
access the page while in supervisor mode.

• SX—Supervisor execute permission. Allows instruction fetches to access the page and instructions
to be executed from the page while in supervisor mode.

• UR—User read permission. Allows loads and load-type cache management instructions to access
the page while in user mode.

• UW—User write permission. Allows stores and store-type cache management instructions to
access the page while in user mode.

• UX—User execute permission. Allows instruction fetches to access the page and instructions to be
executed from the page while in user mode.

If the translation match was successful, the permission bits are checked as shown in Figure 12-6. If the
access is not allowed by the access permission mechanism, the processor generates an instruction or data
storage interrupt (ISI or DSI).

Figure 12-6. Granting of Access Permission

12.3.1.5 MMU Assist Registers (MAS[0:4], MAS[6])

The e200z6 uses six special purpose registers (MAS[0], MAS[1], MAS[2], MAS[3], MAS[4], and
MAS[6]) to facilitate reading, writing, and searching the TLBs. The MAS registers can be read or written
using the mfspr and mtspr instructions. The e200z6 does not implement the MAS5 register, present in
other Freescale EIS designs, because the tlbsx instruction only searches based on a single SPID value.

For more information on the MASn registers is available in the e200z6 PowerPCTM Core Reference
Manual.

Access Granted

Instruction Fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

Load-class Data Access
TLB_entry[UR]

TLB_entry[SR]

Store-class Data Access
TLB_entry[UW]

TLB_entry[SW]

TLB

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-18 Freescale Semiconductor

12.3.1.5.1 MAS[0] Register

The MAS[0] register is shown in Figure 12-7.

MAS[0] fields are defined in Table 12-4.

12.3.1.5.2 MAS[1] Register

The MAS[1] register is shown in Figure 12-8.

MAS[1] fields are defined in Table 12-5.

SPR: 624 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
— TLBSEL — ESEL — NV

W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-7. MAS Register 0 Format—MAS[0]

Table 12-4. MAS[0]—MMU Read/Write and Replacement Control

Field Description

TLBSEL Selects TLB for access.
01 TLB1 (ignored by the e200z6, write to 01 for future compatibility)

ESEL Entry select for TLB1.

NV Next replacement victim for TLB1 (software managed). Software updates this field; it is copied to the ESEL field on
a TLB error.

SPR: 625 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VALID IPROT — TD — TS TSIZE —

W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-8. MMU Assist Register 1—MAS[1]

Table 12-5. MAS[1]—Descriptor Context and Configuration Control

Field Description

VALID TLB entry valid.
0 This TLB entry is invalid.
1 This TLB entry is valid.

IPROT Invalidation protect
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation.
Protects TLB entry from invalidation by tlbivax (TLB1 only), or flash invalidates through MMUCSR0[TLB1_FI].

TID Translation ID bits.
This field is compared with the current process IDs of the effective address to be translated. A TID value of 0 defines
an entry as global and matches with all process IDs.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-19

12.3.1.5.3 MAS[2] Register

The MAS[2] register is shown in Figure 12-9.

MAS[2] fields are defined in Table 12-6.

TS Translation address space.
This bit is compared with the IS or DS fields of the MSR (depending on the type of access) to determine if this TLB
entry can be used for translation.

TSIZE Entry page size.
Supported page sizes are:
0001 4 KB 0110 4 MB
0010 16 KB 0111 16 MB
0011 64 KB 1000 64 MB
0100 256 KB 1001 256 MB
0101 1 MB
All other values are undefined.

SPR: 626 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EPN —

VL
E

W I M G E
W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-9. MMU Assist Register 2—MAS[2]

Table 12-6. MAS[2]—EPN and Page Attributes

Field Description

EPN Effective page number [0:19].

VLE Power Architecture VLE.
0 This page is a standard Book E page.
1 This page is a Power Architecture VLE page.

W Write-through required.
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through to main memory.

I Cache inhibited.
0 This page is considered cacheable.
1 This page is considered cache-inhibited.

M Memory coherence required.The e200z6 does not support the memory coherence required attribute, and thus it is
ignored.
0 Memory coherence is not required.
1 Memory coherence is required.

Table 12-5. MAS[1]—Descriptor Context and Configuration Control (continued)

Field Description

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-20 Freescale Semiconductor

12.3.1.5.4 MAS[3] Register

The MAS[3] register is shown in Figure 12-10.

MAS[3] fields are defined in Table 12-7.

12.3.1.5.5 MAS[4] Register

The MAS[4] register is shown in Figure 12-11.

MAS[4] fields are defined in Table 12-8.

G Guarded. The e200z6 ignores the guarded attribute because no speculative or out-of-order processing is performed.
0 Access to this page are not guarded, and can be performed before it is known if they are required by the sequential

execution model.
1 All loads and stores to this page are performed without speculation (that is, they are known to be required).

E Endianness. Determines endianness for the corresponding page.
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order.

SPR: 627 Access: Read/write

Permission Bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RPN — U0 U1 U2 U3 UX SX UW SW UR SR

W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-10. MMU Assist Register 3—MAS[3]

Table 12-7. MAS[3]—RPN and Access Control

Field Description

RPN Real page number. Only bits that correspond to a page number are valid. Bits that represent offsets within a page
are ignored and must be zero.

U0–U3 User bits.

PERMIS Permission bits (UX, SX, UW, SW, UR, SR).

SPR: 628 Access: Read/write

Default WIMGE values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
— TLBSELD — TIDSELD — TSIZED —

VL
ED

WD ID MD GD ED
W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-11. MMU Assist Register 4 MAS[4]

Table 12-6. MAS[2]—EPN and Page Attributes (continued)

Field Description

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-21

12.3.1.5.6 MAS[6] Register

The MAS[6] register is shown in Figure 12-12.

MAS[6] fields are defined in Table 12-9.

12.3.2 L1 Cache

The e200z6 processor supports a 32 KB, 4- or 8-way set-associative, unified (instruction and data) cache
with a 32-byte line size. The cache improves system performance by providing low-latency data to the
e200z6 instruction and data pipelines, which decouples processor performance from system memory
performance. The cache is virtually indexed and physically tagged. The e200z6 does not provide hardware
support for cache coherency in a multi-master environment. Software must be used to maintain cache
coherency with other possible bus masters.

Both instruction and data accesses are performed using a single bus connected to the cache. Addresses
from the processor to the cache are virtual addresses used to index the cache array. The MMU provides the
virtual to physical translation for use in performing the cache tag compare. If the physical address matches
a valid cache tag entry, the access hits in the cache. For a read operation, the cache supplies the data to the
processor, and for a write operation, the data from the processor updates the cache. If the access does not

Table 12-8. MAS[4]—Hardware Replacement Assist Configuration Register

Field Description

TLBSELD Default TLB selected
01 TLB1 (ignored by the e200z6, write as 01 for future compatibility)

TIDSELD Default PID# to load TID from
00 PID0
01 Reserved, do not use
10 Reserved, do not use
11 TIDZ (0x00)) (Use all zeros, the globally shared value)

TSIZED Default TSIZE value

VLED Default VLED value

DWIMGE Default WIMGE values

SPR: 630 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
— SPID — SAS

W

Reset Undefined on Power Up Unchanged on Reset

Figure 12-12. MMU Assist Register 6—MAS[6]

Table 12-9. MAS[6]—TLB Search Context Register 0

Field Description

SPID PID value for searches

SAS AS value for searches

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-22 Freescale Semiconductor

match a valid cache tag entry (misses in the cache) or a write access must be written through to memory,
the cache performs a bus cycle on the system bus. Figure 12-13 shows a block diagram of the unified cache
in the e200z6.

Figure 12-13. e200z6 Unified Cache Block Diagram

12.3.2.1 Cache Organization

The e200z6 cache is organized as 4 or 8 ways of 128 sets with each line containing 32 bytes (four
doublewords) plus parity of storage. Figure 12-14 illustrates the cache organization, terminology used, the
cache line format, and cache tag formats.

Bus
Interface

Unit

Address/

Control

Cache

Control Logic

Tag Array

Data Array

Data Path

Processor
Core

Address Path

Control

Data

Address

Bus

Data

Control

Data

Memory

Unit

Address

System

Management

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-23

Figure 12-14. Cache Organization and Line Format

12.3.2.2 Cache Lookup

After it is enabled, the unified cache is searched for a tag match on all instruction fetches and data accesses
from the CPU. If a match is found, the cached data is forwarded on a read access to the instruction fetch
unit or the load/store unit (data access), or is updated on a write access, and can also be written-through to
memory if required.

When a read miss occurs, if there is a TLB hit and the cache inhibit bit (WIMGE = 0bx0xxx) of the hitting
TLB entry is clear, the translated physical address is used to fetch a four doubleword cache line beginning
with the requested doubleword (critical doubleword first). The line is fetched and placed into the
appropriate cache block and the critical doubleword is forwarded to the CPU. Subsequent doublewords
can be streamed to the CPU if they have been requested and streaming is enabled via the DSTRM bit in
the L1CSR0 register.

During a cache line fill, doublewords received from the bus are placed into a cache linefill buffer, and can
be forwarded (streamed) to the CPU if such a request is pending. Accesses from the CPU following
delivery of the critical doubleword can be satisfied from the cache (hit under fill, non-blocking) or from
the linefill buffer if the requested information has been already received.

The cache always fills an entire line, thereby providing validity on a line-by-line basis. A cache line is
always in one of the following states: invalid, valid, or dirty (and valid). For invalid lines, the V bit is clear,
causing the cache line to be ignored during lookups. Valid lines have their V bit set and D bit cleared,
indicating the line contains valid data consistent with memory. Dirty cache lines have the D and V bits set,
indicating that the line has valid entries that have not been written to memory. In addition, a cache line can
be locked (L bit set) indicating the line is not available for replacement.

Way 0 Way 1 Way 2 Way 7

Line

•
•
•

•
•
•

•
•
•

•
•
•

VDTag

Cache line format

Doubleword 3Doubleword 2Doubleword 1Doubleword 0

Set 0
Set 1

Set 126
Set 127

•
•
•

L

A[0:19]

Tag address Tag

VD

valid

L

Line
lock

Line
dirty

• • • •

Cache tag format

P

Parity
bits

P

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-24 Freescale Semiconductor

The cache must be invalidated after a hardware reset; a hardware reset does not invalidate the cache lines.
Following initial power-up, the cache contents are undefined. If the L, D, or V bits are set on any lines, the
software must invalidate cache before the cache is enabled.

Figure 12-15 illustrates the general flow of cache operation.

Figure 12-15. Cache Lookup Flow

To determine if the address is already allocated in the cache the following steps are taken:

1. The cache set index, virtual address bits A[20:26] are used to select one cache set. A set is defined
as the grouping of four or eight lines (one from each way), corresponding to the same index into
the cache array.

2. The higher order physical address bits A[0:19] are used as a tag reference or used to update the
cache line tag field.

3. The four or eight tags from the selected cache set are compared with the tag reference. If any one
of the tags matches the tag reference and the tag status is valid, a cache hit has occurred.

31 272620190

IndexTag data / tag reference

MUX

Comparator
0

1

2

7

Logical OR

HIT 7

HIT 2

HIT 1

HIT 0

Hit

 Select

Set 0

Set 1

Set 127

•
•
•

Tag
Reference

A[0:19]

Way 0
Way 1

Way 2
Way 7

Data or
instruction

Status DW0 DW1 DW2 DW3

Tag Status DW0 DW1 DW2 DW3

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Virtual address

Set
Select

A[20:26]

Tag

Physical address

•••
••

••

••••

••

••

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-25

4. Virtual address bits A[27:28] are used to select one of the four doublewords in each line. A cache
hit indicates that the selected doubleword in that cache line contains valid data (for a read access),
or can be written with new data depending on the status of the W access control bit from the MMU
(for a write access).

12.3.2.3 Cache Line Replacement Algorithm

On a cache read miss, the cache controller uses a pseudo-round-robin replacement algorithm to determine
which cache line is selected to be replaced. There is a single replacement counter for the entire cache. The
replacement algorithm acts as follows: on a miss, if the replacement pointer is pointing to a way which is
not enabled for replacement by the type of the miss access (the selected line or way is locked), it is
incremented until an available way is selected (if any). After a cache line is successfully filled without
error, the replacement pointer increments to point to the next cache way.

12.3.2.4 Cache Power Reduction

The device provides additional user control over cache power utilization via the L1CSR0[WID], [AWID],
[WDD], and [AWDD] way disable bits and the L1CSR0[WAM] control bit. When WAM is set to 1, ways
that are disabled for allocation on miss by a particular access type (instruction or data) via the
L1CSR0[WID], [AWID], [WDD], and [AWDD] way disable bits are also disabled (not selected) during
normal cache lookup operations, thus avoiding the power associated with reading tag and data information
for a disabled way. This provides the capability of disabling some ways for instruction accesses and some
ways for data accesses to reduce power. In doing so however, certain restrictions must be followed, and
the ability to lock by way is no longer functional, since a locked way would never be accessed.

When setting WAM to 1, restrictions are required to avoid coherency issues between instruction and data
accesses, and to avoid multiple ways hitting on a given access. The restriction on coherency is due to the
fact that a given line could possibly be present twice in the cache; a copy in a way disabled for instruction
access which can be read and written by data accesses, and a second copy in a way disabled for data access
which can be executed via an instruction fetch. A data write to the line results in the possibility of
instruction fetches obtaining stale data, in the same manner as exists in a non-unified cache. Another
restriction is that multiple hits to the same line must be avoided on any given instruction or data access.
This must be avoided by controlling the ways via the L1CSR0[WID,] [WDD], [AWID], and [AWDD] bits
such that no common way exists that can be accessed by both instructions and data, or by ensuring that
MMU permissions are set so that no cacheable page has X (execute) permission which also has R (read)
or W (write) permission, i.e.,can be cacheable and accessed with both instruction and data accesses.

When WAM is set to 1, ways disabled for instruction access are not affected by the icbt, icblc, icbtls, and
icbi instructions. Ways disabled for data accesses are not affected by the dcba, dcbf, dcbi, dcblc, dcbst,
dcbt, dcbtls, dcbtst, dcbtstls, and dcbz instructions. Cache control operations using L1CSR0[CINV] and
L1FINV0 operations are not affected by the WAM setting and proceed normally.

12.3.2.5 L1 Cache Control and Status Register 0 (L1CSR0)

The L1 cache control and status register 0 (L1CSR0) is a 32-bit register. The L1CSR0 register is accessed
using a mfspr or mtspr instruction. The SPR number for L1CSR0 is 1010 in decimal. The L1CSR0
register is shown in Figure 12-16.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-26 Freescale Semiconductor

The correct sequence necessary to change the value of LSCSR0 is as follows:

1. msync

2. isync

3. mtspr L1CSR0

The L1CSR0 bits are described in Table 12-10.

W
ID

W
D

D

A
W

ID

A
W

D
D

W
A

M

C
W

M

D
P

B

D
S

B

D
S

T
R

C
P

E

0

C
U

L

C
LO

C
LF

C

0

C
O

R
G

0

C
A

B
T

C
IN

V

C
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1010; Read/Write; Reset - 0x0

Figure 12-16. L1 Cache Control and Status Register 0 (L1CSR0)

Table 12-10. L1CSR0 Field Descriptions

Bits Name Description

0:3
WID

Way instruction disable.
0 The corresponding way is available for replacement by instruction miss line fills.
1 The corresponding way is not available for replacement by instruction miss line fills.

Bit 0 corresponds to way 0.
Bit 1 corresponds to way 1.
Bit 2 corresponds to way 2.
Bit 3 corresponds to way 3.

The WID and WDD bits can be used for locking ways of the cache, and also are used in
determining the replacement policy of the cache.

4:7
WDD

Way data disable.
0 The corresponding way is available for replacement by data miss line fills.
1 The corresponding way is not available for replacement by data miss line fills.

Bit 4 corresponds to way 0.
Bit 5 corresponds to way 1.
Bit 6 corresponds to way 2.
Bit 7 corresponds to way 3.

The WID and WDD bits can be used for locking ways of the cache, and also are used in
determining the replacement policy of the cache.

8 AWID

Additional ways instruction disable.
0 Additional ways beyond 0–3 are available for replacement by instruction miss line fills.
1 Additional ways beyond 0–3 are not available for replacement by instruction miss line fills.
For the 32KB 8-way cache, ways 4–7 are considered additional ways. When configured as a
4-way cache, this bit is ignored.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-27

9 AWDD

Additional ways data disable.
0 Additional ways beyond 0–3 are available for replacement by data miss line fills.
1 Additional ways beyond 0–3 are not available for replacement by data miss line fills.
For the 32KB 8-way cache, ways 4–7 are considered additional ways. When configured as a
4-way cache, this bit is ignored.

10 WAM

Way access mode
0 Disable way access is checked not enabled for replacement on an access type are still

checked for a cache hit for accesses of that type but are not replaced by an access miss of
that type.

1 Ways not enabled for replacement on a particular access type (instruction vs. data) via the
AWID, WID, AWDD, and WDD fields are disabled and no lookup is performed for accesses
of that type. Selecting WAM = 1 helps minimize power consumption.

Software must ensure that the instruction to data coherency is maintained when using the
power-saving feature of the WAM control. Cache must be invalidated prior to changing the
value of this bit. Use of a dcbf followed by an icbi, msync, isync for modified lines which can be
executed is required to maintain proper operation.

11 CWM

Cache write mode
0 Cache operates in writethrough mode
1 Cache operates in copyback mode
When set to writethrough mode, the “W” page attribute from an optional MMU is ignored and
all writes are treated as writethrough required. When set, write accesses are performed in
copyback mode unless the “W” page attribute from an optional MMU is set.

12 DPB
Disable push buffer
0 Push buffer enabled
1 Push buffer disabled

13 DSB
Disable store buffer
0 store buffer enabled
1 store buffer disabled

14 DSTRM
Disable streaming
0 streaming is enabled
1 streaming is disabled

15 CPE
Cache parity enable
0 parity checking is disabled
1 parity checking is enabled

16–20 — Reserved

21 CUL
Cache unable to lock. Indicates a lock set instruction was not effective in locking a cache line.
This bit is set by hardware on an “unable to lock” condition (other than lock overflows), and
remains set until cleared by software writing 0 to this bit location.

22 CLO
Cache lock overflow Indicates a lock overflow (overlocking) condition occurred. This bit is set
by hardware on an “overlocking” condition, and remains set until cleared by software writing 0
to this bit location.

23 CLFC

Cache lock bits flash clear. When written to a 1, a cache lock bits flash clear operation is
initiated by hardware. After this is complete, this bit is reset to 0. Writing a 1 while a flash clear
operation is in progress results in an undefined operation. Writing a 0 to this bit while a flash
clear operation is in progress is ignored. Cache lock bits flash clear operations require
approximately cycles to complete. Clearing occurs regardless of the enable (CE) value.

Table 12-10. L1CSR0 Field Descriptions (continued)

Bits Name Description

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-28 Freescale Semiconductor

12.3.2.6 L1 Cache Configuration Register 0 (L1CFG0)

The L1 cache configuration register 0 (L1CFG0) is a 32-bit read-only register. L1CFG0 provides
information about the configuration of the Zen Z650n3e L1 cache design. The contents of the L1CFG0
register can be read using a mfspr instruction. The SPR number for L1CFG0 is 515 in decimal. The
L1CFG0 register is shown in Figure 12-17.

The L1CFG0 bits are described in Table 12-11.

24–26 — Reserved

27 CORG

Cache organization
0 The cache is organized as 128 sets and 8 ways
1 The cache is organized as 256 sets and 4 ways.

Selecting CORG = 1 helps minimize power consumption.

28 — Reserved

29 CABT
Cache operation aborted. Indicates a cache invalidate or a cache lock bits flash clear operation
was aborted prior to completion. This bit is set by hardware on an aborted condition, and
remains set until cleared by software writing 0 to this bit location.

30 CINV

Cache invalidate
0 No cache invalidate
1 Cache invalidation operation
When written to a 1, a cache invalidation operation is initiated by hardware. After this is
complete, this bit is reset to 0. Writing a 1 while an invalidation operation is in progress results
in an undefined operation. Writing a 0 to this bit while an invalidation operation is in progress is
ignored. Cache invalidation operations require approximately cycles to complete. Invalidation
occurs regardless of the enable (CE) value.

31 CE

Cache Enable
0 Cache is disabled
1 Cache is enabled.
When disabled, cache lookups are not performed for normal load or store accesses.
Other L1CSR0 cache control operations are still available. Also, operation of the store buffer is
not affected by CE.

C
A

R
C

H

C
W

PA

C
FA

H
A

C
F

IS
W

A

0

C
B

S
IZ

E

C
R

E
P

L

C
LA

C
PA

C
N

W
AY

C
S

IZ
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01 1 0 1 0 0 00 10 1 1
00000111 (8 way) /
00000011 (4 way)

00000100000 (32 KB)

SPR - 515; Read-only

Figure 12-17. L1 Cache Configuration Register 0 (L1CFG0)

Table 12-10. L1CSR0 Field Descriptions (continued)

Bits Name Description

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-29

12.3.3 Interrupt Types

The interrupts implemented in the device and the exception conditions that cause them are listed in
Table 12-12.

Table 12-11. L1CFG0 Field Descriptions

Bits Name Description

0–1 CARCH
Cache architecture
01 The cache architecture is unified

2 CWPA
Cache way partitioning available
1 The cache supports partitioning of way availability for I/D accesses

3 CFAHA
Cache flush all by hardware available
0 The cache does not support flush all in hardware

4 CFISWA
Cache flush/invalidate by set and way available
1 The cache supports flushing/invalidation by set and way via the L1FINV0 spr

5–6 — Reserved—read as zeros

7–8 CBSIZE
Cache block size
00 The cache implements a block size of 32 bytes

9–10 CREPL
Cache replacement policy
10 The cache implements a pseudo-round-robin replacement policy

11 CLA
Cache locking APU available
1 The cache implements the line locking APU

12 CPA
Cache parity available
1 The cache implements parity

13:20 CNWAY

Number of ways in the data cache

0x03 - The cache is 4-way set-associative
0x07 - The cache is 8-way set-associative

21:31 CSIZE
Cache size

0x020 - The size of the cache is 32 KB

Table 12-12. Interrupts and Conditions

Interrupt Type
Interrupt

Vector Offset
Register

Enables1

Core Register
in Which

State
Information is

Saved

Causing Conditions

System reset none,
vector to

0xFFFF_FFFC

 • Reset by assertion of RESET
 • Watchdog timer reset control
 • Debug reset control

Critical input IVOR02 CE = 1 • Non-maskable interrupt request

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-30 Freescale Semiconductor

Machine check IVOR 1 ME CSSR[0:1] • Machine check exception and MSR[ME] = 1
 • ISI, ITLB error on first instruction fetch for an exception

handler
 • Parity error signaled on cache access
 • Write bus error on buffered store or cache line push

Data storage IVOR 2 — SRR[0:1] • Access control
 • Byte ordering due to misaligned access across page

boundary to pages with mismatched E bits
 • Cache locking exception
 • Precise external termination error

Instruction
storage

IVOR 3 — SRR[0:1] • Access control.
 • Precise external termination error.

External input IVOR 42 EE, src SRR[0:1] External interrupt is asserted and MSR[EE] = 1

Alignment IVOR 5 — SRR[0:1] • lmw, stmw not word aligned
 • lwarx or stwcx. not word aligned
 • dcbz with disabled cache or no cache present, or to W or I

storage
 • SPE ld and st instructions not properly aligned

Program IVOR 6 — SRR[0:1] Illegal, privileged, trap, FP enabled, AP enabled,
unimplemented operation

Floating-point
unavailable

IVOR 7 — SRR[0:1] MSR[FP] = 0 and attempt to execute a Book E floating point
operation

System call IVOR 8 — SRR[0:1] Execution of the system call (sc) instruction

AP unavailable IVOR 9 — SRR[0:1] Unused by e200z6

Decrementer IVOR 10 EE, DIE SRR[0:1] Decrementer timeout, and as specified in Book E: Enhanced
PowerPCTMArchitecture, Rev 1.0, Ch. 8, pg. 194–195 and in
the e200z6 PowerPCtm Core Reference Manual, Rev 0.

Fixed interval
timer

IVOR 11 EE, FIE SRR[0:1] Fixed-interval timer timeout and as specified in Book E:
Enhanced PowerPCTMArchitecture, Rev 1.0, Ch. 8, pg.
195–196 and in the e200z6 PowerPCtm Core Reference
Manual, Rev 0.

Watchdog
timer

IVOR 12 CE, WIE CSRR[0:1] Watchdog timeout: as specified in Book E: Enhanced
PowerPCTMArchitecture, Rev 1.0, Ch. 8, pg. 196–197 and in
the e200z6 PowerPCTM Core Reference Manual, Rev 0.

Data TLB error IVOR 13 — SRR[0:1] Data translation lookup did not match a valid entry in the TLB

Instruction TLB
error

IVOR 14 — SRR[0:1] Instruction translation lookup did not match a valid TLB entry

Table 12-12. Interrupts and Conditions (continued)

Interrupt Type
Interrupt

Vector Offset
Register

Enables1

Core Register
in Which

State
Information is

Saved

Causing Conditions

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-31

12.3.4 Bus Interface Unit (BIU)

The BIU encompasses control and data signals supporting instruction and data transfers. A data bus width
of 64 bits is implemented. The memory interface supports read and write transfers of 8, 16, 24, 32, and 64
bits, supports burst transfers of four doublewords, and operates in a pipelined fashion.

Single-beat transfers are supported for cache-inhibited read and write cycles, and write-buffer writes. Burst
transfers of four doublewords are supported for cache linefill and copyback operations.

12.3.5 Timer Facilities

The core provides a set of registers to provide fixed interval timing and watchdog functions for the system.
All of these must be initialized during start-up. The registers associated with fixed interval timer and
watchdog functions are the following:

• Timer control register (TCR)—provides control of the timer and watchdog facilities.

• Timer status register (TSR)—provides status of the timer facilities.

• Time base registers (TBU and TBL)—two 32-bit registers (upper and lower) that are concatenated
to provide a long-period, 64-bit counter.

Debug IVOR 15 DE, IDM CSSR[0:1] Debugger when HIDO[DAPUEN] = 0. Caused by trap,
instruction address compare, data address compare,
instruction complete, branch taken, return from interrupt,
interrupt taken, debug counter, external debug event,
unconditional debug event

DE, IDM DSRR[0:1] Debugger when HIDO[DAPUEN] = 1, and caused by same
conditions as above.

Reserved IVOR 16–31

SPE
unavailable
exception

IVOR 32 — SRR[0:1] SPE APU instruction when MSR[SPE] = 0, and see Section
5.6.18 “SPE APU Unavailable Interrupt” in the e200z6
PowerPCTM Core Reference Manual, Rev 0.

SPE data
exception

IVOR 33 — SRR[0:1] SPE FP data exception and see Section 5.6.19 “SPE
Floating-Point Data Interrupt” in the e200z6 PowerPCTM Core
Reference Manual, Rev 0.

SPE round
exception

IVOR 34 — SRR[0:1] Inexact result from floating-point instruction. See Section
5.6.20 “SPE Floating-Point Round Interrupt” in the e200z6
PowerPCTM Core Reference Manual, Rev 0.

1 CE, ME, EE, DE are in the MSR. DIE, FIE, and WIE are in the TCR. “src” signifies the individual enable for each INTC source.
The debug interrupt, IVOR 15, also requires EDM = 0 (EDM and IDM are in the DBCR0 register).

2 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset

directly.

Table 12-12. Interrupts and Conditions (continued)

Interrupt Type
Interrupt

Vector Offset
Register

Enables1

Core Register
in Which

State
Information is

Saved

Causing Conditions

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-32 Freescale Semiconductor

• Decrementer register (DEC)—a decrementing counter that is updated at the same rate as the time
base. The DEC provides a means of signaling an exception after a specified amount of time. The
DEC is typically used as a general-purpose software timer. Note that the decrementer always runs
when the system is clocked, and can be written to by software at any time.

• Decrementer auto reload register (DECAR)—provides a value that is automatically reloaded (if
enabled) into the decrementer register when the decrementer reaches 0.

For more information on the fixed-interval timer, watchdog timer, and timer and counter registers, refer to
the e200z6 PowerPCTM Core Reference Manual and EREF: A Programmer's Reference Manual for
Freescale Book E Processors.

12.3.6 Signal Processing Extension APU (SPE APU)

12.3.6.1 Overview

The Power Architecture embedded category 32-bit instructions operate on the lower (least significant) 32
bits of the 64-bit GPRs. New SPE instructions are defined that view the 64-bit register as being composed
of a vector of two 32-bit elements, and some of the instructions also read or write 16-bit elements. These
new instructions can also be used to perform scalar operations by ignoring the results of the upper 32-bit
half of the register file.

Some instructions are defined that produce a 64-bit scalar result. Vector fixed-point instructions operate
on a vector of two 32-bit or four 16-bit fixed-point numbers resident in the 64-bit GPRs. Vector
floating-point instructions operate on a vector of two 32-bit single-precision floating-point numbers
resident in the 64-bit GPRs. Scalar floating-point instructions operate on the lower half of GPRs. These
single-precision floating-point instructions do not have a separate register file; there is a single shared
register file for all instructions. Figure 12-18 shows two different representations of the 64-bit GPRs. The
shaded half is the only region operated on by the 32-bit Power Architecture embedded category
instructions.

Figure 12-18. 64-bit General-Purpose Registers

12.3.7 SPE Programming Model

Not all SPE instructions record events such as overflow, saturation, and negative/positive result. See the
description of the individual SPE instruction in the e200z6 core reference for information on which
conditions are recorded and where they are recorded. Most SPE instructions record conditions to the
SPEFSCR. Vector compare instructions store the result of the comparison into the condition register (CR).

0 31 32 63

GPRx Lower-least significant wordUpper-most significant word

15 16 47 480 31 32 63

GPRx

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 12-33

The e200z6 core has a 64-bit architectural accumulator register that holds the results of the SPE multiply
accumulate (MAC) fixed-point instructions. The accumulator allows back-to-back execution of dependent
fixed-point MAC instructions, something that is found in the inner loops of DSP code such as filters. The
accumulator is partially visible to the programmer in that its results do not have to be explicitly read to use
them. Instead, they are always copied into a 64-bit destination GPR specified as part of the instruction. The
accumulator however, has to be explicitly cleared when starting a new MAC loop. Based on the type of
instruction, the accumulator can hold either a single 64-bit value or a vector of two 32-bit elements.

12.3.8 12.3.8 Wait Instruction

The z650n3e implements support for the wait instruction. Executing the wait instruction stops
synchronous processor activity. Executing a wait instruction ensures that all instructions have completed
before the wait instruction completes, causes processor instruction fetching to cease, and ensures that no
subsequent instructions are initiated until an interrupt or a debug interrupt occurs. Once the wait instruction
has completed, the program counter will point to the next sequential instruction. The saved value in xSRR0
when the processor re-initiates activity will point to the instruction following the wait instruction.

Execution of a wait instruction places the e200z6 in the “waiting” state. It can be used for power reduction
in a interrupt based system when the core has no processing tasks. An internal output signal from the core
indicates this to the CRP module that the core has entered the waiting state. This is used by the CRP to
place the SOC into low power mode if it has been requested by the user.

When in the “waiting” state, the clock to the core continues to run only if other crossbar masters are active.

12.4 Power Architecture Instruction Extensions – VLE
The variable length encoding (VLE) provides an extension to 32-bit Power Architecture. There are
additional operations defined using an alternate instruction encoding to enable reduced code footprint.
This alternate encoding set is selected on an instruction page basis. A single page attribute bit selects
between standard Power Architecture instruction encodings and VLE instructions for that page of memory.
This page attribute is an extension to the Power Architecture page attributes. Pages can be freely
intermixed, allowing for a mixture of code using both types of encodings.

Instruction encodings in pages marked as using the VLE extension are either 16 or 32 bits long, and are
aligned on 16-bit boundaries. Therefore, all instruction pages marked as VLE are required to use
big-endian byte ordering.

This section describes the various extensions to the Power Architecture instructions that support the VLE
extension.

rfci, rfdi, rfiNot the mask bit 62 of CSRR0, DSRR0, or SRR0 respectively.
The destination address is [D,C]SRR0[32:62] || 0b0.

bclr, bclrl, bcctr, bcctrlNot the mask bit 62 of the LR or CTR respectively.
The destination address is [LR,CTR][32:62] || 0b0.

e200z6 Core (Z6)

MPC5668x Microcontroller Reference Manual, Rev. 4

12-34 Freescale Semiconductor

12.5 External References
In addition to the Power Architecture instructions, the device supports e200z6 core-specific instructions
and SPE APU instructions and VLE instructions. For further information see the following documents:

• e200z6 PowerPCTM Core Reference Manual

• PowerPCTM Microprocessor Family: The Programming Environment for 32-bit Microprocessors

• Book E: Enhanced PowerPCTM Architecture

• EREF: A Programmer's Reference Manual for Freescale Book E Processors

• VLEPIM: Variable Length Encoding (VLE) Extension Programming Interface Manual

• Addendum to e200z6 PowerPCTM Core Reference Manual: e200z6 with VLE

• Errata to e200z6 PowerPCTM Core Reference Manual, Rev. 0

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-1

Chapter 13
e200z0 Core (Z0)

13.1 Introduction
The e200 processor family is a set of CPU cores that implement low-cost versions of the Power
Architecture Book E architecture. e200 processors are designed for deeply embedded control applications
that require low cost solutions rather than maximum performance.

The e200z0 processors integrate an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle.

The e200z0 core is a single-issue, 32-bit Power Architecture Book E VLE-only design with 32-bit general
purpose registers (GPRs). All arithmetic instructions that execute in the core operate on data in the general
purpose registers (GPRs).

NOTE
On the MPC5668x family, the e200z0 core runs at half the system clock
frequency. Unless otherwise noted in this chapter, all stated clock delays are
relative to the e200z0 core clock, not the system clock.

Instead of the base Power Architecture Book E instruction set support, the e200z0 core implements only
the VLE (variable-length encoding) APU, providing improved code density. The VLE APU is further
described in PowerPC VLE APU Definition, Version 1.01, a separate document.

In the remainder of this document, the e200z0 core is also referred to as the “e200z0” core or “e200 core.”

13.1.1 Features

The following is a list of some of the key features of the e200z0 core:

• 32-bit Power Architecture Book E VLE-only programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

• Supports instruction and data access via a unified 32-bit Instruction/Data BIU (e200z0 only).

• Load/store unit

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-2 Freescale Semiconductor

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

— Power saving modes: doze, nap, sleep, and wait

— Dynamic power management of execution units

NOTE
The MPC5668x does not use the core’s HID0[DOZE,NAP,SLEEP] bits to
enter/exit low-power modes. Entry to and exit from low-power modes is
managed by the CRP module.

13.2 Microarchitecture Summary
The execution pipeline four stages operate in an overlapped fashion, allowing single-clock instruction
execution for most instructions. These stages are as follows:

1. The instruction fetch

2. Instruction decode/register file read/effective address calculation

3. Execute/memory access

4. Register writeback

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result feed-forward hardware, and
a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and
multiply instructions. A count-leading-zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Prefetched instructions are placed into an instruction buffer with 2 entries, each
capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. All taken branches have an execution
time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-3

dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

Figure 13-1. e200z0 Block Diagram

13.2.1 Instruction Unit Features

The features of the e200 Instruction unit are:

• 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or as many as
two 16-bit VLE instructions per clock.

• Instruction buffer with two entries, each holding a single 32-bit instruction, or a pair of 16-bit
instructions

CPU
control logic

Load/
store
unit

Instruction Unit

Branch
unit

PC
unit

Instruction Buffer

GPRCRSPR

Multiply
unit

OnCE/Nexus

control logic

interface

Control

Data

(mtspr/mfspr)

Integer
execution

unit

External
SPR

CTR
XER

LR

DataAddress

Instruction bus interface unit

Control

32 64 N

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-4 Freescale Semiconductor

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder supporting single cycle of execution of certain
branches, two cycles for all others

13.2.2 Integer Unit Features

The e200 integer unit supports single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing

• 8x32 hardware multiplier array supports 1 to 4 cycle 32x3232 multiply (early out)

13.2.3 Load/Store Unit Features

The e200 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• 32-bit interface to memory

13.2.4 e200z0 System Bus Features

The features of the e200z0 System Bus interface are as follows:

• Unified Instruction/Data Bus

• 32-bit address bus plus attributes and control

• Separate uni-directional 32-bit read data bus and 32-bit write data bus

• Overlapped, in-order accesses

13.2.5 Nexus 2+ Features

The Nexus 2+ module is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with additional
Class 3 and Class 4 features available. The following features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus, static code may be traced.

• Ownership trace via ownership trace messaging. (OTM facilitates ownership trace by providing
visibility of which process ID or operating system task is activated. An ownership trace message
is transmitted when a new process/task is activated, allowing the development tool to trace
ownership flow.)

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-5

• Run-time access to the processor memory map via the JTAG port. This allows for enhanced
download/upload capabilities.

• Watchpoint messaging through the auxiliary interface.

• Watchpoint trigger enable of program trace messaging.

• Auxiliary interface for higher data input/output (Nexus interface shared with Z6 core).

— 12 message data out pins (MDO[11:0])

— Two message start/end out pins (MSEO[1:0])

— One watchpoint event pin (EVTO)

— One event in pin (EVTI)

— One message clock out (MCKO) pin

• Registers for program trace, ownership trace, and watchpoint trigger control.

• All features controllable and configurable via the JTAG port.

13.3 Core Registers and Programmer’s Model
This section describes the registers implemented in the e200z0 core. It includes an overview of registers
defined by the Power Architecture Book E architecture, highlighting differences in how these registers are
implemented in the e200 core, and provides a detailed description of e200-specific registers. Full
descriptions of the architecture-defined register set are provided in Power Architecture Book E
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided as immediate
values embedded in the opcode. The three-register instruction format allows specification of a target
register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

Figure 13-2 and Figure 13-3 show the e200 register set including the registers which are accessible while
in supervisor mode, and the registers which are accessible in user mode. The number to the right of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to access the register
(for example, the integer exception register (XER) is SPR 1).

NOTE
e200z0 is a 32-bit implementation of the Power Architecture Book E
specification. In this document, register bits are sometimes numbered from
bit 0 (Most Significant Bit) to 31 (Least Significant Bit), rather than the
Book E numbering scheme of 32:63, thus register bit numbers for some
registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-6 Freescale Semiconductor

Figure 13-2. e200z0 Supervisor Mode Programmer’s Model

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR0

DSRR1

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2 -

Debug Control

DBCR0

DBCR1

DBCR2

SPR 308

SPR 309

SPR 310

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be
supported by other Power Architecture
processors

2 - Optional registers defined by the Power
Architecture Book E

3 - Read-only registers

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

Memory Management Registers

Process ID

PID0 SPR 48

Configuration (Read-only

MMUCFG SPR 1015

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-7

Figure 13-3. e200 User Mode Program Model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

13.3.1 Power Architecture Book E Registers

e200 supports a subset of the registers defined by Power Architecture™ Book E Specification. Notable
exceptions are the Floating Point registers FPR0-FPR31 and FPSCR. e200z0 does not support the Book E
floating-point architecture. The e200-supported Power Architecture Book E registers are described as
follows (e200-specific registers are described in the Section 13.3.2, “e200-Specific Special Purpose
Registers”):

13.3.1.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• General-purpose registers (GPRs). The thirty-two 32-bit GPRs (GPR0–GPR31) serve as data
source or destination registers for integer instructions and provide data for generating addresses.

• Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results
of certain arithmetic operations and provide a mechanism for testing and branching. See
“Condition Register (CR),” in Chapter 3, “Branch and Condition Register Operations, Power
Architecture Book E Specification.

The remaining user-level registers are SPRs. Note that the Power Architecture Book E provides the
mtspr and mfspr instructions for accessing SPRs.

USER Mode Programmer Model

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-8 Freescale Semiconductor

Integer exception register (XER). The XER indicates overflow and carries for integer operations.
See “XER Register (XER),” in Chapter 4, “Integer Operations” of Power Architecture Book E
Specification for more information.

• Link register (LR). The LR provides the branch target address for the Branch to Link Register
(se_blr, se_blrl) instructions, and is used to hold the address of the instruction that follows a branch
and link instruction, typically used for linking to subroutines. See “Link Register (LR)”, in
Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E
Specification.

• Count register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR also provides the branch target address for the
Branch to Count Register (se_bctr, se_bctrl) instructions. See “Count Register (CTR)”, in
Chapter 3, “Branch and Condition Register Operations” of Power Architecture Book E
Specification.

13.3.1.2 Supervisor-Level Registers

In addition to the registers accessible in user mode, Supervisor-level software has access to additional
control and status registers used for configuration, exception handling, and other operating system
functions. The Power Architecture Book E defines the following supervisor-level registers:

• Processor Control Registers

— Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move to Machine State Register (mtmsr), System Call (se_sc), and Return from
Exception (se_rfi, se_rfci, se_rfdi) instructions. It can be read by the Move from Machine State
Register (mfmsr) instruction. When an interrupt occurs, the contents of the MSR are saved to
one of the machine state save/restore registers (SRR1, CSRR1, DSRR1).

— Processor version register (PVR). This register is a read-only register that identifies the
processor type and version (model) and the revision level of the processor. Table 13-1 shows
the PVR values and the corresponding processor type and version numbers for the cores used
on the MPC5668x Family.

— Processor Identification Register (PIR). This read-only register is provided to distinguish the
processor from other processors in the system.

• Storage Control Register

— Process ID Register (PID, also referred to as PID0). This register is provided to indicate the
current process or task identifier. It is used by the Nexus2 module for Ownership Trace message
generation. Although the Power Architecture Book E allows for multiple PIDs, e200z0
implements only one.

• Interrupt Registers

Table 13-1. PVR Values, and Processor Type and Version Numbers

Device Core PVR Value Type Version

MPC5668x e200z0 0x8171_0000 0x17 0x1

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-9

— Data Exception Address Register (DEAR). After most Data Storage Interrupts (DSI), or on an
Alignment Interrupt, the DEAR is set to the effective address (EA) generated by the faulting
instruction.

— SPRG0–SPRG1. The SPRG0–SPRG1 registers are provided for operating system or interrupt
handler use.

— Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions which can generate the same interrupt.

— Interrupt Vector Prefix Register (IVPR). This register together with hardwired offsets which
replace the IVOR0-15 registers provide the address of the interrupt handler for different classes
of interrupts.

— Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an se_rfi instruction is executed at the end of a non-critical class interrupt handler routine.

— Critical Save/Restore Register 0 (CSRR0). The CSRR0 register is used to save machine state
on a critical interrupt, and contains the address of the instruction at which execution resumes
when an se_rfci instruction is executed at the end of a critical class interrupt handler routine.

— Save/Restore Register 1 (SRR1). The SRR1 register is used to save machine state from the
MSR on non-critical interrupts, and to restore machine state when se_rfi executes.

— Critical Save/Restore Register 1 (CSRR1). The CSRR1 register is used to save machine state
from the MSR on critical interrupts, and to restore machine state when se_rfci executes.

• Debug Facility Registers

— Debug Control Registers (DBCR0–DBCR2). These registers provide control for enabling and
configuring debug events.

— Debug Status Register (DBSR). This register contains debug event status.

— Instruction Address Compare registers (IAC1–IAC4). These registers contain addresses and/or
masks which are used to specify Instruction Address Compare debug events.

— Data Address Compare registers (DAC1–2). These registers contain addresses and/or masks
which are used to specify Data Address Compare debug events.

— e200 does not implement the Data Value Compare registers (DVC1 and DVC2).

13.3.2 e200-Specific Special Purpose Registers

The Power Architecture Book E architecture allows implementation-specific special purpose registers.
Those incorporated in the e200 core are as follows:

13.3.2.1 User-Level Registers

The user-level registers can be accessed by all software with either user or supervisor privileges. They
include the following:

• The L1 Cache Configuration register (L1CFG0). This read-only register allows software to query
the configuration of the L1 Cache. For the e200z0, this register returns all zeros indicating no cache
is present.

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-10 Freescale Semiconductor

13.3.2.2 Supervisor-Level Registers

The following supervisor-level registers are defined in e200 in addition to the Power Architecture Book E
registers described above:

• Configuration Registers

— Hardware implementation-dependent register 0 (HID0). This register controls various
processor and system functions.

— Hardware implementation-dependent register 1 (HID1). This register controls various
processor and system functions.

• Exception Handling and Control Registers

— Machine Check Syndrome register (MCSR). This register provides a syndrome to differentiate
between the different kinds of conditions which can generate a Machine Check.

— Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save
the address of the instruction at which execution continues when se_rfdi executes at the end of
a debug interrupt handler routine.

— Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save
machine status on debug interrupts and to restore machine status when se_rfdi executes.

• L1 Cache Configuration Register (L1CFG0) is a read-only register that allows software to query
the configuration of the L1 Cache. For the e200z0, this register returns all zeros.

• System version register (SVR). This register is a read-only register that identifies the version
(model) and revision level of the device which includes an e200 Power Architecture processor.

Note that it is not guaranteed that the implementation of e200 core-specific registers is consistent among
Power Architecture processors, although other processors may implement similar or identical registers. All
e200 SPR definitions are compliant with the Freescale EIS specification definitions.

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-11

13.3.3 e200z0 Core Complex Features not Supported on the MPC5668x

The MPC5668x implements a subset of the e200z0 core complex features. The e200z0 core complex
features that are not supported in the MPC5668x are described in Table 13-2.

13.4 Interrupt Types
The interrupts implemented on the MPC5668x and the exception conditions that cause them are listed in
Table 13-3.

Table 13-2. e200z0 Features Not Supported on the MPC5668x

Description Function/Category

The less significant halfword of the Processor Version Register (PVR) provides the revision
level which is comprised of the following three bit fields:
Reserved = 0x00
Revision = 0x0
ID = 0x0
The more significant halfword of the Processor Version Register (PVR) provides the
processor type and version number (see Table 13-1).

PVR Value

Nexus registers are not accessible by code running in User or Supervisor mode. Nexus
registers can be accessed only by external tools via the Nexus port.

Debug

Table 13-3. Exceptions and Conditions

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

System reset
none, vector to
address determined
by CRP_Z0VEC

1. Reset.

2. Debug Reset Control.

Critical Input IVOR 01 Non-maskable interrupt request and MSR[CE] = 1.

Machine check IVOR 1
1. Machine check error and MSR[ME] = 1.
2. Bus error (XTE) with MSR[EE] = 0 and current MSR[ME] = 1

Data Storage IVOR 2
1. Access control. (unused on e200z0)
2. Precise external termination error and MSR[EE] = 1.

Instruction
Storage

IVOR 3
1. Access control. (unused on e200z0)
2. Precise external termination error and MSR[EE] = 1.

External Input IVOR 41 Interrupt request and MSR[EE] = 1.

Alignment IVOR 5
1. lmw, stmw not word aligned.

2. lwarx or stwcx. not word aligned.

Program IVOR 6 Illegal, Privileged, Trap, Unimplemented Operation.

Floating-point
unavailable

IVOR 7 Unused

System call IVOR 8 Execution of the System Call (se_sc) instruction

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-12 Freescale Semiconductor

Table 13-4 summarizes the e200z0 interrupts. Each ISR begins at a fixed offset as defined below.

AP unavailable IVOR 9 Unused

Decrementer IVOR 10 Unused

Fixed Interval
Timer

IVOR 11 Unused

Watchdog Timer IVOR 12 Unused

Data TLB Error IVOR 13 Unused

Instruction TLB
Error

IVOR 14 Unused

Debug IVOR 15
Trap, Instruction Address Compare, Data Address Compare, Instruction
Complete, Branch Taken, Return from Interrupt, Interrupt Taken, External
Debug Event, Unconditional Debug Event

Reserved IVOR 16-31 —

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector offset directly.

Table 13-4. e200z0 Interrupts

IRQ # Offset Size [Byte] Resource

— 0x0000 16 Critical Input (NMI)

— 0x0010 16 Machine check

— 0x0020 16 Data Storage

— 0x0030 16 Instruction Storage

— 0x0040 16 External Input (INTC software vector mode)

— 0x0050 16 Alignment

— 0x0060 16 Program

— 0x0070 16 Reserved

— 0x0080 16 System call

— 0x0090 96 Unused

— 0x00F0 16 Debug

— 0x0100 1792 Unused

Table 13-3. Exceptions and Conditions (continued)

Interrupt Type
 Interrupt Vector
Offset Register

Causing Conditions

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 13-13

13.5 Bus Interface Unit (BIU)
The BIU encompasses control and data signals supporting instruction and data transfers, support for
interrupts, including vectored interrupt logic, reset support, power management interface signals, debug
event signals, processor state information, Nexus /OnCE / JTAG interface signals, and a test interface.

The memory portion of the e200 core interface is comprised of a 32-bit wide system bus and a unified bus.
The memory interface supports read and write transfers of 8, 16, 24, and 32 bits, supports misaligned
transfers, and operates in a pipelined fashion.

Single-beat and misaligned transfers are supported for read and write cycles. Incrementing burst transfers
are supported for instruction prefetch operations.

e200z0 Core (Z0)

MPC5668x Microcontroller Reference Manual, Rev. 4

13-14 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-1

Chapter 14
Semaphores

14.1 Introduction
In a dual processor chip, semaphores are used to let each processor know who has control of common
memory. Before a core can update or read memory coherently, it has to check the semaphore to see if the
other core is not already updating the memory. If the semaphore is clear, it can write common memory, but
if it is set, it has to wait for the other core to finish and clear the semaphore.

The semaphores module provides the hardware support needed in multi-core systems for implementing
semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access.
This approach eliminates architecture-specific implementations like atomic (indivisible)
read-modify-write instructions or reservation mechanisms. The result is an architecture-neutral solution
that provides hardware-enforced gates as well as other useful system functions related to the gating
mechanisms.

14.1.1 Block Diagram

Figure 14-1 is a simplified block diagram of the semaphores module that illustrates the functionality and
interdependence of major blocks. In the diagram, the register blocks named gate0, gate1, ..., gate 15
include the finite state machines implementing the semaphore gates plus the interrupt notification logic.

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-2 Freescale Semiconductor

Figure 14-1. Semaphores Block Diagram

14.1.2 Features

The semaphores module implements hardware-enforced semaphores as a peripheral device and has these
major features:

• Support for 16 hardware-enforced gates in a dual-processor configuration

— Each hardware gate appears as a three-state, 2-bit state machine, with all 16 gates mapped as
an array of bytes

– Three-state implementation

if gate = 0b00, then state = unlocked

ips_wdata

ips_addr
decode

mux

IPS Bus

31

0

control

ips_rdata

31

0

aips_master

2

0

= =
master_eq_cp{0,1}

gate0 gate1 gate2 gate3

gate12 gate13 gate14 gate15

= =
wdata_eq_{unlock, cp[0-1]_lock}

=

cp0_semaphore_int cp1_semaphore_int

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-3

if gate = 0b01, then state = locked by e200z6 (master ID = 0)

if gate = 0b10, then state = locked by e200z0 (master ID = 1)

– Uses the bus master ID number as a reference attribute plus the specified data patterns to
validate all write operations

– After it is locked, the gate must be unlocked by a write of zeroes from the locking processor

— Optionally enabled interrupt notification after a failed lock write provides a mechanism to
indicate the gate is unlocked

— Secure reset mechanisms are supported to clear the contents of individual semaphore gates or
notification logic, and clear_all capability

NOTE
Semaphore gates that are locked when entering sleep mode are cleared by
the internal reset generated when exiting sleep mode.

14.1.3 Modes of Operation

The semaphores module does not support any special modes of operation.

14.2 Signal Description
The semaphores module does not include any external signals.

14.3 Memory Map and Registers
This section provides a detailed description of all semaphores registers.

14.3.1 Module Memory Map

The semaphores programming model map is shown in Table 14-1. The address of each register is given as
an offset to the semaphore base address. Registers are listed in address order, identified by complete name
and mnemonic, and list the type of accesses allowed.

Table 14-1. Semaphores Memory Map

Offset from
SEMA4_BASE
(0xFFF1_0000)

Register Access Reset Value
Section/

Page

0x0000 SEMA4_Gate00—Semaphores gate 0 R/W 0x00 14.3.2.1/14-4

0x0001 SEMA4_Gate01—Semaphores gate 1 R/W 0x00 14.3.2.1/14-4

0x0002 SEMA4_Gate02—Semaphores gate 2 R/W 0x00 14.3.2.1/14-4

0x0003 SEMA4_Gate03—Semaphores gate 3 R/W 0x00 14.3.2.1/14-4

0x0004 SEMA4_Gate04—Semaphores gate 4 R/W 0x00 14.3.2.1/14-4

0x0005 SEMA4_Gate05—Semaphores gate 5 R/W 0x00 14.3.2.1/14-4

0x0006 SEMA4_Gate06—Semaphores gate 6 R/W 0x00 14.3.2.1/14-4

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-4 Freescale Semiconductor

14.3.2 Register Descriptions

This section lists the semaphores registers in address order and describes the registers and their bit fields.

14.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)

Each semaphore gate is implemented in a 2-bit finite state machine, right-justified in a byte data structure.
The hardware uses the bus master number in conjunction with the data patterns to validate all attempted
write operations. Only processor bus masters can modify the gate registers. After it is locked, a gate must
be opened (unlocked) by the locking processor core.

0x0007 SEMA4_Gate07—Semaphores gate 7 R/W 0x00 14.3.2.1/14-4

0x0008 SEMA4_Gate08—Semaphores gate 8 R/W 0x00 14.3.2.1/14-4

0x0009 SEMA4_Gate09—Semaphores gate 9 R/W 0x00 14.3.2.1/14-4

0x000A SEMA4_Gate10—Semaphores gate 10 R/W 0x00 14.3.2.1/14-4

0x000B SEMA4_Gate11—Semaphores gate 11 R/W 0x00 14.3.2.1/14-4

0x000C SEMA4_Gate12—Semaphores gate 12 R/W 0x00 14.3.2.1/14-4

0x000D SEMA4_Gate13—Semaphores gate 13 R/W 0x00 14.3.2.1/14-4

0x000E SEMA4_Gate14—Semaphores gate 14 R/W 0x00 14.3.2.1/14-4

0x000F SEMA4_Gate15—Semaphores gate 15 R/W 0x00 14.3.2.1/14-4

0x0010–0x003F Reserved

00x040 SEMA4_CP0INE—Semaphores CP0 IRQ notification enable R/W 0x0000 14.3.2.2/14-5

0x0042–0x0047 Reserved

0x0048 SEMA4_CP1INE—Semaphores CP1 IRQ notification enable R/W 0x0000 14.3.2.2/14-5

0x004A–0x07F Reserved

0x0080 SEMA4_CP0NTF—Semaphores CP0 IRQ notification R 0x0000 14.3.2.3/14-6

0x008 2–00x087 Reserved

0x0088 SEMA4_CP1NTF—Semaphores CP1 IRQ notification R 0x0000 14.3.2.2/14-5

0x008A–0x00FF Reserved

0x0100 SEMA4_RSTGT—Semaphores reset gate R/W 0x0000 14.3.2.4/14-6

0x0102 Reserved

0x0104 SEMA4_RSTNTF—Semaphores reset IRQ notification R/W 0x00000 14.3.2.5/14-8

0x0106–0x3FFF Reserved

Table 14-1. Semaphores Memory Map (continued)

Offset from
SEMA4_BASE
(0xFFF1_0000)

Register Access Reset Value
Section/

Page

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-5

Multiple gate values can be read in a single access, but only a single gate at a time can be updated via a
write operation. 16- and 32-bit writes to multiple gates are allowed, but the write data operand must update
the state of a single gate only. A byte write data value of 0x03 is defined as no operation and does not affect
the state of the corresponding gate register. Attempts to write multiple gates in a single-aligned access with
a size larger than an 8-bit (byte) reference generate an error termination and do not allow any gate state
changes.

Figure 14-2. SEMA4 Gate n Register (SEMA4_GATEn)

14.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

The application of a hardware semaphore module provides an opportunity for implementation of helpful
system-level features. An example is an optional mechanism to generate a processor interrupt after a failed
lock attempt. Traditional software gate functions execute a spin-wait loop in an effort to obtain and lock
the referenced gate. With this module, the processor that fails in the lock attempt could continue with other
tasks and allow a properly-enabled notification interrupt to return its execution to the original lock
function.

The optional notification interrupt function consists of two registers for each processor: an interrupt
notification enable register (SEMA4_CPnINE) and the interrupt request register (SEMA4_CPnNTF). To
support implementations with more than 16 gates, these registers can be referenced with aligned 16- or
32-bit accesses. For the SEMA4_CPnINE registers, unimplemented bits read as zeroes and writes are
ignored.

Figure 14-3. Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

Offset: SEMA4_BASE + n (n = 0, 1, 2,..., 15) Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0
GTFSM

W

Reset 0 0 0 0 0 0 0 0

Table 14-2. SEMA4_GATEn Field Descriptions

Field Description

GTFSM Gate Finite State Machine. The hardware gate is maintained in a three-state implementation, defined as:
00 The gate is unlocked (free).
01 The gate has been locked by processor 0.
10 The gate has been locked by processor 1.
11 This state encoding is never used and therefore reserved. Attempted writes of 0x03 are treated as no operation

and do not affect the gate state machine.
Note: The state of the gate reflects the last processor that locked it, which can be useful during system debug.

Offset: SEMA4_BASE + 0x0040 (SEMA4_CP0INE)
SEMA4_BASE + 0x0048 (SEMA4_CP1INE)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INE0 INE1 INE2 INE3 INE4 INE5 INE6 INE7 INE8 INE9 INE10 INE11 INE12 INE13 INE14 INE15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-6 Freescale Semiconductor

14.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

The notification interrupt is generated via a unique finite state machine, one per hardware gate. This
machine operates in the following manner:

• When an attempted lock fails, the FSM enters a first state where it waits until the gate is unlocked.

• After it is unlocked, the FSM enters a second state where it generates an interrupt request to the
failed lock processor.

• When the failed lock processor succeeds in locking the gate, the IRQ is automatically negated and
the FSM returns to the idle state. However, if the other processor locks the gate again, the FSM
returns to the first state, negates the interrupt request, and waits for the gate to be unlocked again.

The notification interrupt request is implemented in a 3-bit, five-state machine, where two specific states
are encoded and program-visible as SEMA4_CP0NTF[GNn] and SEMA4_CP1NTF[GNn].

Figure 14-4. Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

14.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Although the intent of the hardware gate implementation specifies a protocol where the locking processor
must unlock the gate, it is recognized that system operation may require a reset function to re-initialize the
state of any gate(s) without requiring a system-level reset.

To support this special gate reset requirement, the semaphores module implements a secure reset
mechanism which allows a hardware gate (or all the gates) to be initialized by following a specific
dual-write access pattern. Using a technique similar to that required for the servicing of a software

Table 14-3. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

INEn Interrupt Request Notification Enable n. This field is a bitmap to enable the generation of an interrupt notification
from a failed attempt to lock gate n.
0 The generation of the notification interrupt is disabled.
1 The generation of the notification interrupt is enabled.

Offset: SEMA4_BASE + 0x0080 (SEMA4_CP0NTF)
SEMA4_BASE + 0x0088 (SEMA4_CP1NTF)

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R GN0 GN1 GN2 GN3 GN4 GN5 GN6 GN7 GN8 GN9 GN10 GN11 GN12 GN13 GN14 GN15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 14-4. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

GNn Gate n Notification. This read-only field is a bitmap of the interrupt request notification from a failed attempt to lock
gate n.
0 No notification interrupt generated.
1 Notification interrupt generated.

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-7

watchdog timer, the secure gate reset requires two consecutive writes with predefined data patterns from
the same processor to force the clearing of the specified gate(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTGT memory location. The most significant
byte (SEMA4_RSTGT[RSTGDP]) must be 0xE2; the least significant byte is a “don’t care” for this
reference.

2. The same processor then performs a second 16-bit write to the SEMA4_RSTGT location. For this
write, the upper byte (SEMA4_RSTGT[RSTGDP]) is the logical complement of the first data
pattern (0x1D) and the lower byte (SEMA4_RSTGT[RSTGTN]) specifies the gate(s) to be reset.
This gate field can specify a single gate be cleared or that all gates are cleared.

3. Reads of the SEMA4_RSTGT location return information on the 2-bit state machine
(SEMA4_RSTGT[RSTGSM]) which implements this function, the bus master performing the
reset (SEMA4_RSTGT[RSTGMS]) and the gate number(s) last cleared
(SEMA4_RSTGT[RSTGTN]). Reads of the SEMA4_RSTGT register do not affect the secure reset
finite state machine in any manner.

Figure 14-5. Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Offset: SEMA4_BASE + 0x0100 (SEMA4_RSTGT) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTGSM 0 RSTGMS
RSTGTN

W RSTGDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-8 Freescale Semiconductor

14.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

As with the case of the secure reset function and the hardware gates, it is recognized that system operation
may require a reset function to re-initialize the state of the IRQ notification logic without requiring a
system-level reset.

To support this special notification reset requirement, the semaphores module implements a secure reset
mechanism which allows an IRQ notification (or all the notifications) to be initialized by following a
specific dual-write access pattern. When successful, the specified IRQ notification state machine(s) are
reset. Using a technique similar to that required for the servicing of a software watchdog timer, the secure

Table 14-5. SEMA4_RSTGT Field Descriptions

Field Description

RSTGSM Reset Gate Finite State Machine. The reset state machine is maintained in a 2-bit, three-state implementation,
defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The 2-write sequence has completed. Generate the specified gate reset(s). After the reset is performed, this

machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTGT register return the encoded state machine value. Note the RSTGSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTGMS Reset Gate Bus Master. This 3-bit read-only field records the logical number of the bus master performing the
gate reset function. The reset function requires that the two consecutive writes to this register be initiated by the
same bus master to succeed. This field is updated each time a write to this register occurs.

RSTGTN Reset Gate Number. This 8-bit field specifies the specific hardware gate to be reset. This field is updated by the
second write.
If RSTGTN < 64, then reset the single gate defined by RSTGTN, else reset all the gates. The corresponding
secure IRQ notification state machine(s) are also reset.

RSTGDP Reset Gate Data Pattern. This write-only field is accessed with the specified data patterns on the two consecutive
writes to enable the gate reset mechanism. For the first write, RSTGDP = 0xe2 while the second write requires
RSTGDP = 0x1d.

Master Master ID

e200z6 0

e200z0 1

eDMA 2

— 3

FEC 4

MLB 5

FlexRay 6

— 7

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-9

reset mechanism requires two consecutive writes with predefined data patterns from the same processor
to force the clearing of the IRQ notification(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTNTF memory location. The most
significant byte (SEMA4_RSTNTF[RSTNDP]) must be 0x47; the least significant byte is a “don’t
care” for this reference.

2. The same processor performs a second 16-bit write to the SEMA4_RSTNTF location. For this
write, the upper byte (SEMA4_RSTNTF[RSTNDP]) is the logical complement of the first data
pattern (0xb8) and the lower byte (SEMA4_RSTNTF[RSTNTN]) specifies the notification(s) to
be reset. This field can specify a single notification be cleared or that all notifications are cleared.

3. Reads of the SEMA4_RSTNTF location return information on the 2-bit state machine
(SEMA4_RSTNTF[RSTNSM]) that implements this function, the bus master performing the reset
(SEMA4_RSTNTF[RSTNMS]) and the notification number(s) last cleared
(SEMA4_RSTNTF[RSTNTN]). Reads of the SEMA4_RSTNTF register do not affect the secure
reset finite state machine in any manner.

Figure 14-6. Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

Offset: SEMA4_BASE + 0x0104 (SEMA4_RSTNTF) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTNSM 0 RSTNMS
RSTNTN

W RSTNDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-10 Freescale Semiconductor

14.4 Functional Description
Multi-processor systems require a function that can be used to safely and easily provide a locking
mechanism that is then used by system software to control access to shared data structures, shared
hardware resources, and etc. These gating mechanisms are used by the software to serialize (and
synchronize) writes to shared data and/or resources to prevent race conditions and preserve memory
coherency between processes and processors.

For example, if processor X enters a section of code where shared data values are to be updated or read
coherently, it must first acquire a semaphore. This locks, or closes, a software gate. After the gate has been
locked, a properly architected software system does not allow other processes (or processors) to execute
the same code segment or modify the shared data structure protected by the gate, that is, other

Table 14-6. SEMA4_RSTGT Field Descriptions

Field Description

RSTNSM Reset Notification Finite State Machine. The reset state machine is maintained in a 2-bit, three-state
implementation, defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The two-write sequence has completed. Generate the specified notification reset(s). After the reset is

performed, this machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTNTF register return the encoded state machine value. Note the RSTNSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTNMS Reset Notification Bus Master. This 3-bit read-only field records the logical number of the bus master performing
the notification reset function. The reset function requires that the two consecutive writes to this register be
initiated by the same bus master to succeed. This field is updated each time a write to this register occurs.

RSTNTN Reset Notification Number. This 8-bit field specifies the specific IRQ notification state machine to be reset. This
field is updated by the second write.
If RSTNTN < 64, then reset the single IRQ notification machine defined by RSTNTN, else reset all the
notifications.

RSTNDP Reset Notification Data Pattern. This write-only field is accessed with the specified data patterns on the two
consecutive writes to enable the notification reset mechanism. For the first write, RSTNDP = 0x47 while the
second write requires RSTNDP = 0xb8.

Master Master ID

e200z6 0

e200z0 1

eDMA 2

— 3

FEC 4

MLB 5

FlexRAY 6

— 7

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-11

processes/processors are locked out. Many software implementations include a spin-wait loop within the
lock function until the locking of the gate is accomplished. After the lock has been obtained, processor X
continues execution and updates the data values protected by the particular lock. After the updates are
complete, processor X unlocks (or opens) the software gate, allowing other processes/processors access to
the updated data values.

There are three important rules that must be followed for a correctly implemented system solution:

• All writes to shared data values or shared hardware resources must be protected by a gate variable.

• After a processor locks a gate, accesses to the shared data or resources by other
processes/processors must be blocked. This is enforced by software conventions.

• The processor that locks a particular gate is the only processor that can unlock, or open, that gate.

Information in the hardware gate identifying the locking processor can be useful for system-level
debugging.

The Hennessy/Patterson text on computer architecture offers this description of software gating:

“One of the major requirements of a shared-memory architecture multiprocessor is being able to
coordinate processes that are working on a common task. Typically, a programmer will use lock
variables to synchronize the processes.

The difficulty for the architect of a multiprocessor is to provide a mechanism to decide which
processor gets the lock and to provide the operation that locks a variable. Arbitration is easy for
shared-bus multiprocessors, since the bus is the only path to memory. The processor that gets the
bus locks out all the other processors from memory. If the CPU and bus provide an atomic swap
operation, programmers can create locks with the proper semantics. The adjective atomic is key,
for it means that a processor can both read a location and set it to the locked value in the same bus
operation, preventing any other processor from reading or writing memory.” [Hennessy/Patterson,
Computer Architecture: A Quantitative Approach, ppg. 471-472]

The classic text continues with a description of the steps required to lock/unlock a variable using an atomic
swap instruction.

“Assume that 0 means unlocked and 1 means locked. A processor first reads the lock variable to
test its state. A processor keeps reading and testing until the value indicates that the lock is
unlocked. The processor then races against all other processes that were similarly “spin waiting”
to see who can lock the variable first. All processes use a swap instruction that reads the old value
and stores a 1 into the lock variable. The single winner will see the 0, and the losers will see a 1
that was placed there by the winner. (The losers will continue to set the variable to the locked value,
but that doesn’t matter.) The winning processor executes the code after the lock and then stores a
0 into the lock when it exits, starting the race all over again. Testing the old value and then setting
to a new value is why the atomic swap instruction is called test and set in some instruction sets.”
[Hennessy/Patterson, Computer Architecture: A Quantitative Approach, ppg. 472-473]

The sole drawback to a hardware-based semaphore module is the limited number of semaphores versus
the infinite number that can be supported with Power Architecture reservation instructions.

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-12 Freescale Semiconductor

14.4.1 Semaphore Usage

Example 1: Inter-processor communication done with software interrupts and semaphores...

• The Z0 uses software interrupts to tell the Z6 that new data is available, or the Z6 does the same to
tell the Z0 that there is new data available for transmission.

• Because only eight software interrupts are available, the user may need RAM locations or
general-purpose registers in the SIU to refine the meaning of the software interrupt.

• Messages are passed between cores in a defined section of system RAM.

• Before a core updates a message, it must check the associated semaphore to see if the other core is
in the process of updating the same message. If the RAM not being updated, then the semaphore
must first be locked, then the message can be updated. A software interrupt can be sent to the other
core and the semaphore can be unlocked. If the RAM is being updated, the CPU must wait for the
other core to unlock the semaphore before proceeding with update.

• Using the same memory location for bidirectional communication might be difficult, so two
one-way message areas might work better.

— For example, if both cores want to update the same location, then the following sequence may
occur.

1. The Z0 locks the semaphore, updates the memory, unlocks the semaphore, and generates a
software interrupt to the Z6.

2. Before the Z6 takes the software interrupt request, it finds the semaphore to be unlocked, so
it writes new data to the memory.

3. The Z6 software interrupt ISR reads the data sent to the Z0, not the data sent from the Z0,
and performs an incorrect operation.

— Semaphores do not prevent this situation from occurring.

Example 2: Coherent read done with semaphores...

• The Z6 wants to coherently read a section of shared memory.

• The Z6 should check that the semaphore for the shared memory is not currently set.

• The Z6 should set the semaphore for the shared memory to prevent the Z0 from updating the shared
memory.

• The Z6 reads the required data, then unlock the semaphore.

14.5 Initialization Information
The reset state of the semaphores module allows it to begin operation without the need for any further
initialization. All the internal state machines are cleared by any reset event, allowing the module to
immediately begin operation.

14.6 Application Information
In an operational multi-core system, most interactions involving the semaphores module involves reads
and writes to the SEMA4_GATEn registers for implementation of the hardware-enforced software gate
functions. Typical code segments for gate functions perform the following operations:

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 14-13

• To lock (close) a gate

— The processor performs a byte write of logical_processor_number + 1 to gate[i]

— The processor reads back gate[i] and checks for a value of logical_processor_number + 1

If the compare indicates the expected value

then the gate is locked; proceed with the protected code segment

else

lock operation failed;

repeat process beginning with byte write to gate[i] in spin-wait loop, or

proceed with another execution path and wait for failed lock interrupt notification

A simple C-language example of a gatelock function is shown in Example 14-1. This function follows the
Hennessy/Patterson example.

Example 14-1. Sample Gatelock Function

#define UNLOCK 0
#define CP0_LOCK 1
#define CP2_LOCK 2

void gateLock (n)
int n; /* gate number to lock */
{
 int i;
 int current_value;
 int locked_value;

 i = processor_number(); /* obtain logical CPU number */

 if (i == 0)
 locked_value = CP0_LOCK;
 else
 locked_value = CP1_LOCK;

 /* read the current value of the gate and wait until the state == UNLOCK */
 do {
 current_value = gate[n];
 } while (current_value != UNLOCK);

 /* the current value of the gate == UNLOCK. attempt to lock the gate for this
 processor. spin-wait in this loop until gate ownership is obtained */
 do {
 gate[n] = locked_value; /* write gate with processor_number + 1 */
 current_value = gate[n]; /* read gate to verify ownership was obtained */
 } while (current_value != locked_value);
}

• To unlock (open) a gate

— After completing the protected code segment, the locking processor performs a byte write of
zeroes to gate[i], unlocking (opening) the gate

In this example, a reference to processor_number() is used to retrieve this hardware configuration
value. Typically, the logical processor numbers are defined by a hardwired input vector to the individual

Semaphores

MPC5668x Microcontroller Reference Manual, Rev. 4

14-14 Freescale Semiconductor

cores. The exact method for accessing the logical processor number varies by architecture. For Power
Architecture cores, there is a processor ID register (PIR) which is SPR 286 and contains this value. A
single instruction can be used to move the contents of the PIR into a general-purpose register: mfspr rx,286
where rx is the destination GPRn. Other architectures may support a specific instruction to move the
contents of the logical processor number into a general-purpose register, e.g., rdcpn rx for a read CPU
number instruction.

If the optional failed lock IRQ notification mechanisms are used, then accesses to the related registers
(SEMA4_CPnINE, SEMA4_ CPnNTF) are required. There is no required negation of the failed lock write
notification interrupt as the request is automatically negated by the semaphores module once the gate has
been successfully locked by the failing processor.

Finally, in the event a system state requires a software-controlled reset of a gate or IRQ notification
register(s), accesses to the secure reset control registers (SEMA4_RSTGT, SEMA4_RSTNTF) are
required. For these situations, it is recommended that the appropriate IRQ notification enable(s)
(SEMA4_CPnINE) bits be disabled before initiating the secure reset 2-write sequence to avoid any race
conditions involving spurious notification interrupt requests.

14.7 DMA Requests
There are no DMA requests associated with the IPS_Semaphore block.

14.8 Interrupt Requests
The semaphore interrupt requests are connected to the interrupt controller as described in Chapter 9,
“Interrupts and Interrupt Controller (INTC).”

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-1

Chapter 15
AMBA Crossbar Switch (AXBS)

15.1 Introduction
This chapter describes the multi-port crossbar switch (AXBS), which supports simultaneous connections
between six master ports and six slave ports. The AXBS supports a 32-bit address bus width and a 64-bit
data bus width at all master and slave ports.

15.1.1 Block Diagram

Figure 15-1 shows a block diagram of the crossbar switch.

Figure 15-1. AXBS Block Diagram

15.1.2 AXBS Controller Configuration

The AMBA Crossbar Switch (AXBS) supports six masters running at system frequency. The master data
bus width is 64 bits. Table 15-1 summarizes the crossbar master port assignments and the Master IDs.

Table 15-1. Master Assignments and Master IDs

AXBS Port AXBS Module Master ID

M0 Z6 Core 0

Z6 Nexus 8

M1 eDMA 2

M2 Off Platform (MLB) 5

M3 FEC 4

Master

Crossbar Switch

Slave

Master modules

Slave modules

Master Master

Slave Slave

. . . .

. . . .

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-2 Freescale Semiconductor

The AXBS supports six slaves running at system frequency. The slave data bus width is 64 bits. Table 15-2
summarizes the crossbar slave port assignments.

15.1.3 Overview

The AXBS allows for concurrent transactions to occur from any master port to any slave port. It is possible
for all master ports and slave ports to be in use at the same time as a result of independent master requests.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grant it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions.

By default, requesting masters are granted access based on a fixed priority. A round-robin priority mode
also is available. In this mode, requesting masters are treated with equal priority and are granted access to
a slave port in round-robin fashion, based on the ID of the last master to be granted access. A block diagram
of the AXBS is shown in Figure 15-1.

The AXBS can place a slave port in a low-power park mode to avoid dissipating any power transitional
address, control or data signals when the master port is not actively accessing the slave port. There is a
one-cycle arbitration overhead for exiting low-power park mode.

15.1.4 Features
• Six master ports:

— Z6 core/Nexus

— eDMA

— Media Local Bus (MLB)

— Fast Ethernet Controller (FEC)

— FlexRay

— Z0 core

M6 Off Platform (FlexRay) 6

M7 Z0 Core 1

Table 15-2. Slave Port Assignments

AXBS Port AXBS Module

S0 Flash port dedicated to Z6

S1 Flash port for all other masters

S2 512K SRAM at address 0x4000_0000

S3 80K SRAM at address 0x4008_0000

S6 AIPS A

S7 AIPS B

Table 15-1. Master Assignments and Master IDs

AXBS Port AXBS Module Master ID

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-3

• Six slave ports

— Flash port dedicated to Z6 core

— Flash port for all other masters (refer to Chapter 11, “Flash Memory Array and Control,” for
information on accessing flash memory)

— 512K SRAM at address 0x4000_0000

— 80K SRAM at address 0x4008_0000

— AIPS A

— AIPS B

• 32-bit address, 64-bit data paths

• Fully concurrent transfers between independent master and slave ports

15.1.5 Modes of Operation

15.1.5.1 Normal Mode

In normal mode, the AXBS provides the register interface and logic that controls crossbar switch
configuration.

15.1.5.2 Debug Mode

The AXBS operation in debug mode is identical to operation in normal mode.

15.2 Memory Map and Register Definition
The memory map for the AXBS program-visible registers is shown in Table 15-3.

Table 15-3. AXBS Register Memory Map

Offset from
AXBS_BASE

(0xFFF0_4000)
Register Access Reset Value Section/Page

0x0000 XBAR_MPR0—Master Priority Register, Slave Port 0 R/W 0x5400_3210 15.2.1.1/15-4

0x0004–0x000F Reserved

0x0010 XBAR_SGPCR0—General-Purpose Control Register, Slave
Port 0

R/W 0x0000_0000 15.2.1.2/15-6

0x0014–0x00FF Reserved

0x0100 XBAR_MPR1—Master Priority Register, Slave Port 1 R/W 0x5400_3210 15.2.1.1/15-4

0x0104–0x010F Reserved

0x0110 XBAR_SGPCR1—General-Purpose Control Register, Slave
Port 1

R/W 0x0000_0000 15.2.1.2/15-6

0x0114–0x01FF Reserved

0x0200 XBAR_MPR2—Master Priority Register, Slave Port 2 R/W 0x5400_3210 15.2.1.1/15-4

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-4 Freescale Semiconductor

15.2.1 Register Descriptions

There are two registers for each slave port of the AXBS. The registers can only be accessed in supervisor
mode using 32-bit accesses.

The slave SGPCR also features a bit (RO), which when written with a 1, prevents all slave registers for
that port from being written to again until a reset occurs. The registers remain readable, but future write
attempts have no effect on the registers and are terminated with an error response.

15.2.1.1 Master Priority Registers (XBAR_MPRn)

The XBAR_MPR for a slave port sets the priority of each master port when operating in fixed priority
mode. They are ignored in round-robin priority mode unless more than one master has been assigned high
priority by a slave.

0x0204–0x020F Reserved

0x0210 XBAR_SGPCR2—General-Purpose Control Register, Slave
Port 2

R/W 0x0000_0000 15.2.1.2/15-6

0x0214–0x02FF Reserved

0x0300 XBAR_MPR3—Master Priority Register, Slave Port 3 R/W 0x5400_3210 15.2.1.1/15-4

0x0304–0x030F Reserved

0x0310 XBAR_SGPCR3—General-Purpose Control Register, Slave
Port 3

R/W 0x0000_0000 15.2.1.2/15-6

0x0314–0x05FF Reserved

0x0600 XBAR_MPR6—Master Priority Register, Slave Port 6 R/W 0x5400_3210 15.2.1.1/15-4

0x0604–0x060F Reserved

0x0610 XBAR_SGPCR6—General-Purpose Control Register, Slave
Port 6

R/W 0x0000_0000 15.2.1.2/15-6

0x0614–0x06FF Reserved

 0x0700 XBAR_MPR7—Master Priority Register, Slave Port 7 R/W 0x5400_3210 15.2.1.1/15-4

 0x0704–0x070F Reserved

0x0710 XBAR_SGPCR7— General-Purpose Control Register, Slave
Port 7

R/W 0x0000_0000 15.2.1.2/15-6

0x0714–0x0EFF Reserved

 0x0F00 XBAR_MGPCR7—Master General Purpose Register, Master
Port 7

R/W 0x0000_0000 15.2.1.3/15-8

0x0F04–0x3FFF Reserved

Table 15-3. AXBS Register Memory Map (continued)

Offset from
AXBS_BASE

(0xFFF0_4000)
Register Access Reset Value Section/Page

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-5

NOTE
Masters must be assigned unique priority levels.

The master priority register can only be accessed in supervisor mode with 32-bit accesses. After the read
only (RO) bit is set in the slave general-purpose control register, the master priority register can only be
read. Attempts to write to it have no effect on the MPR and result in an error.

NOTE
XBAR_MPR must be written with a read/modify/write for code
compatibility.

Address: AXBS_BASE + 0x0000 (XBAR_MPR0)
AXBS_BASE + 0x0100 (XBAR_MPR1)
AXBS_BASE + 0x0200 (XBAR_MPR2)

AXBS_BASE + 0x0300 (XBAR_MPR3)
AXBS_BASE + 0x0600 (XBAR_MPR6)
AXBS_BASE + 0x0700 (XBAR_MPR7) Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MSTR7

0
MSTR6

0 0 0 0 0 0 0 0

W

Reset 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
MSTR3

0
MSTR2

0
MSTR1

0
MSTR0

W

Reset 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

Figure 15-2. Master Priority Registers (XBAR_MPRn)

Table 15-4. XBAR_MPRn Descriptions

Field Description

MSTR7 Master 7 priority. Set the arbitration priority for master port 6 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

MSTR6 Master 6 priority. Set the arbitration priority for master port 6 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

MSTR3 Master 3 priority. Set the arbitration priority for master port 3 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

....
....

....

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-6 Freescale Semiconductor

15.2.1.2 Slave General-Purpose Control Registers (XBAR_SGPCRn)

The XBAR_SGPCRn of a slave port controls several features of the slave port, including the following:

• Round-robin or fixed arbitration policy for a particular slave port

• Write protection of any slave port registers

• Parking algorithm used for a slave port

The PARK field indicates which master port this slave port parks on when no active access attempts are
being made to the slave and the parking control field is set to park on a specific master.
XBAR_SGPCRn[PARK] must only be programmed to select master ports that are actually available on
the device, otherwise undefined behavior results. The low-power park feature can result in an overall
power savings if the slave port is not saturated; however, an extra clock of latency results whenever any
master tries to access a slave (not being accessed by another master) because it is not parked on any master.

The XBAR_SGPCR can only be accessed in supervisor mode with 32-bit accesses. After the RO (read
only) bit is set in the XBAR_SGPCR, the XBAR_SGPCR and the XBAR_MPR can only be read.
Attempts to write to them have no effect and results in an error.

NOTE
Some of the unused bits in the SGPCRn registers are writeable and readable,
but they serve no function. Setting any of these bits has no effect on the
operation of this module.

MSTR2 Master 2 priority. Set the arbitration priority for master port 2 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

MSTR1 Master 1 priority. Set the arbitration priority for master port 1 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

MSTR0 Master 0 priority. Set the arbitration priority for master port 0 on the associated slave port.
000 This master has the highest priority when accessing the slave port.

101 This master has the lowest priority when accessing the slave port.
110–111 Invalid values

Table 15-4. XBAR_MPRn Descriptions (continued)

Field Description

....
....

....

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-7

Address: AXBS_BASE + 0x0010 (XBAR_SGPCR0)
AXBS_BASE + 0x0110 (XBAR_SGPCR1)
AXBS_BASE + 0x0210 (XBAR_SGPCR2)

AXBS_BASE + 0x0310 (XBAR_SGPCR3)
AXBS_BASE + 0x0610 (XBAR_SGPCR6)
AXBS_BASE + 0x0710 (XBAR_SGPCR7) Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
RO1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
ARB

0 0
PCTL

0
PARK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 After this bit is set, only a hardware reset clears it.

Figure 15-3. Slave General-Purpose Control Registers (XBAR_SGPCRn)

Table 15-5. XBAR_SGPCRn Field Descriptions

Field Description

RO Read only. Used to force all of a slave port’s registers to be read-only. After written to 1, it can only be cleared by
hardware reset.
0 All this slave port’s registers can be written.
1 All this slave port’s registers are read-only and cannot be written (attempted writes have no effect and result

in an error response).

ARB Arbitration mode. Used to select the arbitration policy for the slave port. This field is initialized by hardware reset.
00 Fixed priority using MPR
01 Round-robin priority
10 Invalid value
11 Invalid value

PCTL Parking control. Used to select the parking algorithm used by the slave port. This field is initialized by hardware
reset.
00 When no master is making a request, the arbiter parks the slave port on the master port defined by the PARK

control field.
01 POL—Park on last. When no master is making a request, the arbiter parks the slave port on the last master

to own the slave port.
10 LPP—Low-power park. When no master is making a request, the arbiter parks the slave port on no master

and drives all slave port outputs to a safe state.
11 Invalid value

PARK Park. Used to determine which master port this slave port parks on when no masters are actively making
requests. PCTL must be set to 00.
000 Park on master port 0
001 Park on master port 1
010 Park on master port 2
011 Park on master port 3
100 Invalid value
101 Invalid value
110 Park on master port 6
111 Park on master port 7

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-8 Freescale Semiconductor

15.2.1.3 Master General Purpose Control Registers (XBAR_MGPCRn)

The Master General Purpose Control Register (XBAR_MGPCR) controls the arbitration policy during
undefined length burst accesses. The AULB (Arbitrate on Undefined Length Bursts) field determines
whether or not arbitration occurs for the slave port the master owns when the master is performing
undefined length burst accesses.

The MGPCR can only be accessed in supervisor mode with 32-bit access.

15.3 Functional Description
This section describes the functionality of the AXBS in more detail.

15.3.1 Overview

The main goal of the AXBS is to increase overall system performance by allowing multiple masters to
communicate concurrently with multiple slaves. To maximize data throughput, it is essential to keep
arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves, detailing when the
AXBS stalls masters, or inserts bubbles on the slave side.

Address AXBS_BASE + 0x0F00 (XBAR_MGPCR7) Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0
AULB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-4. Master General-Purpose Control Registers (XBAR_MGPCRn)

Table 15-6. XBAR_MGPCRn Field Descriptions

Field Description

AULB Arbitration on Undefined Length Bursts. This field is used to select the arbitration policy during undefined length
bursts by this master.
This field is cleared by hardware reset.
000 No arbitration during undefined length bursts
001 Arbitration allowed on every beat of an undefined length burst
010 Arbitration allowed after four beats of an undefined length burst
011 Arbitration allowed after eight beats of an undefined length burst
100 Arbitration allowed after sixteen beats of an undefined length burst
101–111 Reserved

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-9

15.3.2 General Operation

When a master makes an access to the AXBS from an idle master state, the access is taken immediately
by the AXBS. If the targeted slave port of the access is available (that is, the requesting master is currently
granted ownership of the slave port), the access is immediately presented on the slave port. It is possible
to make single clock (zero wait state) accesses through the AXBS by a granted master. If the targeted slave
port of the access is busy or parked on a different master port, the requesting master receives wait states
until the targeted slave port can service the master request. The latency in servicing the request depends
on each master’s priority level and the responding slave’s access time.

Because the AXBS appears to be simply another slave to the master device, the master device has no
indication that it owns the slave port it is targeting. While the master does not have control of the slave port
it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different slave port has
completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has the following conditions:

• Outstanding request to slave port A that has a long response time

• Pending access to a different slave port B

• Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle of arbitration,
assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of that slave port
until it gives up the slave port by running an IDLE cycle, leaves that slave port for its next access, or loses
control of the slave port to a higher priority master with a request to the same slave port. However, because
all masters run a fixed-length burst transfer to a slave port, it retains control of the slave port until that
transfer sequence is completed. In round-robin arbitration mode, the current master is forced to hand off
bus ownership to an alternately requesting master at the end of its current transfer sequence.

When a slave bus is idled by the AXBS, it can be parked on the master port using the PARK bits in the
XBAR_SGPCR (slave general-purpose control register), or on the last master to have control of the slave
port. This can avoid the initial clock of the arbitration delay if the master must arbitrate to gain control of
the slave port. The slave port can also be put into low-power park mode to save power.

15.3.3 Master Ports

The AXBS terminates an access and it is not allowed to pass through the AXBS unless the master currently
is granted access to the slave port to which the access is targeted. A master access is taken if the slave port
to which the access decodes is either currently servicing the master or is parked on the master. In this case,
the AXBS is completely transparent and the master access is immediately transmitted on the slave bus and
no arbitration delays are incurred. A master access stall if the access decodes to a slave port that is busy
serving another master, parked on another master or is in low-power park mode.

If the slave port is currently parked on another master or is in low-power park mode, and no other master
is requesting access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than all other

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-10 Freescale Semiconductor

requesting masters, then the master gains control over the slave port as soon as the data phase of the current
access is completed. If the slave port is currently servicing another master of a higher priority, then the
master gains control of the slave port after the other master releases control of the slave port if no other
higher priority master is also waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not occupied by a slave
port. This is the only time the AXBS directly responds with an error response. All other error responses
received by the master are the result of error responses on the slave ports being passed through the AXBS.

15.3.4 Slave Ports

The goal of the AXBS with respect to the slave ports is to keep them 100% saturated when masters are
actively making requests. To do this the AXBS must not insert any bubbles onto the slave bus unless
absolutely necessary.

There is only one instance when the AXBS forces a bubble onto the slave bus when a master is actively
making a request. This occurs when a handoff of bus ownership occurs and there are no wait states from
the slave port. A requesting master which does not own the slave port is granted access after a one clock
delay.

The only other time the AXBS has control of the slave port is when no masters are making access requests
to the slave port and the AXBS is forced to either park the slave port on a specific master, or place the slave
port into low-power park mode. In these cases, the AXBS forces IDLE for the transfer type.

15.3.5 Priority Assignment

Each master port must be assigned a unique 2-bit priority level in fixed priority mode. If multiple master
ports are assigned the same priority level within a register (XBAR_MPR) undefined behavior results.

15.3.6 Arbitration

The AXBS supports two arbitration schemes; a simple fixed-priority comparison algorithm, and a
round-robin fairness algorithm. The arbitration scheme is independently programmable for each slave
port.

15.3.6.1 Fixed Priority Operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority level in the
XBAR_MPR. If two masters both request access to a slave port, the master with the highest priority in the
selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new requesting
master’s priority level is higher than that of the master that currently has control over the slave port (if any).
The slave port does an arbitration check at every clock edge to ensure that the proper master (if any) has
control of the slave port.

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 15-11

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port, the higher priority master is granted control at the termination of any currently pending
access, assuming the pending transfer is not part of a burst transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is granted
control of the slave port. But if the new requesting master’s priority level is lower than that of the master
that currently has control of the slave port, the new requesting master is forced to wait until the master that
currently has control of the slave port is finished accessing the current slave port.

15.3.6.2 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port
number. This relative priority is compared to the port number of the last master to perform a transfer on
the slave bus. The highest priority requesting master becomes the owner of the slave bus at the next transfer
boundary (accounting for fixed-length burst transfers). Priority is based on how far ahead the port number
of the requesting master is to the port number of the last master.

After granted access to a slave port, a master may perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line is granted access to the slave
port when the current transfer is completed, or possibly on the next clock cycle if the current master has
no pending access request.

As an example of arbitration in round-robin mode, assume the three masters have ID’s 0, 1, and 2. If the
last master of the slave port was master 1, and masters 0 and 2 make simultaneous requests, they are
serviced in the order 2 and then 0 assuming no further requests are made.

As another example, if master 1 is waiting on a response from a slow slave and has no further pending
access to that slave, no other masters are requesting, and master 0 then makes a request, master 0’s request
is granted on the next clock (assuming that master 1’s transfer is not a burst transfer), and the request
information for master 0 is driven to the slave as a pending access. If master 2 were to make a request after
master 0 has been granted access, but prior to master 0’s access being accepted by the slave, master 0
maintains the grant on the slave port, and master 2 is delayed until the next arbitration boundary, which
occurs after the transfer is complete. The round-robin pointer is reset to 0, so if master 1 has another request
that occurs before master 0’s transfer completes, master 1 is the granted the bus. This implies a worst case
latency of N transfers for a system with N masters.

Parking may continue to be used in round-robin mode, but affects the round-robin pointer unless the
parked master actually performs a transfer. Handoff to the next master in line occurs after one cycle of
arbitration.

The slave port does an arbitration check at every clock edge to ensure that the proper master (if any) has
control of the slave port.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is granted
control of the slave port. If the new requesting master’s priority level is lower than that of the master that
currently has control of the slave port, the new requesting master is forced to wait until the master that
currently has control of the slave port completes its access.

AMBA Crossbar Switch (AXBS)

MPC5668x Microcontroller Reference Manual, Rev. 4

15-12 Freescale Semiconductor

15.3.6.2.1 Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port parks in one of
three places, indicated by the value of the PCTL field in the XBAR_SGPCR.

• If park-on-specific master mode is selected, the slave port parks on the master designated by the
PARK field. When the master accesses the slave port again, a one clock arbitration penalty is
incurred only for an access request made by another master port to the slave port. No other
arbitration penalties are incurred. All other masters pay a one clock penalty.

• If park-on-last (POL) mode is selected, then the slave port parks on the last master to access it,
passing that master’s signals through to the slave bus. When the master accesses the slave port
again, no other arbitration penalties are incurred except that a one clock arbitration penalty is
incurred for each access request to the slave port made by another master port. All other masters
pay a one clock penalty.

• If the low-power-park (LPP) mode is selected, then the slave port enters low-power park mode. It
is not under control by any master and does not transmit any master signals to the slave bus. All
slave bus activity halts because all slave bus signals are not toggling. This saves power if the slave
port is not used for some time. However, when a master does make a request to a slave port parked
in low-power-park, a one clock arbitration delay is incurred to get ownership of the slave port.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 16-1

Chapter 16
Peripheral Bridge (AIPS-lite)

16.1 Introduction
The AIPS-lite acts as an interface between the system bus and lower bandwidth peripherals.

16.1.1 Block Diagram

A simplified block diagram of the AIPS-lite illustrates the functionality and interdependence of major
blocks (see Figure 16-1).

Figure 16-1. AIPS-lite Block Diagram

16.1.2 Features

The AIPS-lite has these major features:

• AIPS-lite supports the IPS slave interface signals. This interface is meant for slave peripherals
only.

• AIPS-lite supports 32-bit IPS peripherals. (Byte, halfword, and word reads and write are supported
to each.)

• Read and write accesses of 32 bits or less require two clocks, provided they do not cross a 32-bit
boundary.

— Read and write accesses that cross a 32-bit boundary are not supported.

• The peripherals connected to the AIPS-lite may be configured in groups to run at less than the
system clock frequency. See Section 4.3, “Clock Dividers,” in Chapter 4, “System Clock
Description,” for a description of these groups.

On-Chip Peripherals

32

AMBA AHB

AMBA AHB

AMBA AHB

MUX Logic

AXBS

32

32

32
Peripheral

Bridge
(AIPS-lite)

Peripheral Bridge (AIPS-lite)

MPC5668x Microcontroller Reference Manual, Rev. 4

16-2 Freescale Semiconductor

16.1.3 Modes of Operation

The AIPS-lite has only one operating mode.

16.2 External Signal Description
The AIPS-lite has no external signals.

16.3 Memory Map and Register Description
The AIPS-lite does not contain any user-programmable registers.

16.4 Functional Description
The AIPS-lite serves as an interface between an AHB 2.v6 system bus and the peripheral interface bus. It
functions as a protocol translator.

Accesses that fall within the address space of the AIPS-lite are decoded to provide individual module
selects for peripheral devices on the peripheral bus interface.

See the peripherals section of Table 1-3 for a description of which peripherals are allocated to which
16 KB memory space in the AIPS-lite address map.

16.4.1 Read Cycles

Two-clock read accesses are possible with the AIPS-Lite when the reference size is 32 bits or smaller. This
module does not support any type of misaligned read accesses crossing a 32-bit boundary.

16.4.2 Write Cycles

Two-clock write accesses are possible with the AIPS-Lite when the reference size is 32 bits or smaller.
This module does not support any type of misaligned write accesses crossing a 32-bit boundary.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-1

Chapter 17
Memory Protection Unit (MPU)

17.1 Introduction
The memory protection unit (MPU) provides hardware access control for all memory references generated
in a device. Using pre-programmed region descriptors that define memory spaces and their associated
access rights, the MPU concurrently monitors all system bus transactions and evaluates the
appropriateness of each transfer. Memory references with sufficient access control rights are allowed to
complete, but references that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response.

The MPU implements a set of program-visible region descriptors that monitor all system bus addresses.
The result is a hardware structure with a two-dimensional connection matrix, where the region descriptors
represent one dimension and the individual system bus addresses and attributes are the second dimension.

NOTE
The MPU module is not implemented on the MPC5668G.

17.1.1 Block Diagram

A simplified block diagram illustrates how the MPU block is connected to the four AXBS-lite MPU ports
and the shared port splitter (see Figure 17-1).

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-2 Freescale Semiconductor

Figure 17-1. MPU Connections to AXBS-lite

Figure 17-2.

17.1.2 Features

The MPU has these major features:

Support for 16 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 GB

— MPU is invalid at reset, thus no access restrictions are enforced

Table 17-1. Master Assignments and Master IDs

AXBS Port AXBS Module Master ID

M0 Z6 Core 0

Z6 Nexus 8

M1 eDMA 2

M2 Off Platform (MLB) 5

M3 FEC 4

M6 Off Platform (FlexRay) 6

M7 Z0 Core 1

AXBS

512K SRAM

AIPS_A

Flash Port 1

MLB

FEC

e200z6

e200z0

FlexRay

Flash Port 0 (e200z6)

MPU

Master ID 1

Master ID 0 (8 for Nexus)

Master ID 2

Master ID 5

Master ID 6

Master ID 4

m7

m1

m3

m0

m6

m2

MPU0

s3

s0

s1

s2

s6

s7

80K SRAM

MPU1 MPU2 MPU3

AIPS_B

(Master ID 3, 7 not used)

ports
Master Slave

Note: AXBS Master port numbers
do not correspond to Master ID numbers.

eDMA

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-3

— Two types of access control definitions: two processor core bus masters (e200z6 and e200z0)
support the traditional {read, write, execute} permissions with independent definitions for
supervisor and user mode accesses; the remaining three non-core bus masters (DMA, FlexRay,
and AIPS) support {read, write} attributes

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter the access rights of a descriptor only

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software

• Support for four AHB MPU port connections

— AIPS_A, AIPS_B, SRAM_A, SRAM_B

— MPU hardware monitors every AHB MPU port access using the pre-programmed memory
region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit; in the event of an
access error, the AHB reference is terminated with an error response and the MPU inhibits the
bus cycle being sent to the targeted slave device

— 64-bit error registers, one for each AHB MPU port, capture the last faulting address, attributes,
and detail information

17.1.3 Modes of Operation

The MPU does not support any special modes of operation.

17.2 Signal Description
The MPU does not include any external signals.

17.3 Memory Map and Registers
This section provides a detailed description of all MPU registers.

17.3.1 Module Memory Map

The MPU memory map is shown in Table 17-2. The address of each register is given as an offset to the
MPU base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed.

The MPU registers can be referenced using 32-bit (word) accesses only. Attempted references using
different access sizes, to undefined (reserved) addresses, or with a non-supported access type (for example,
a write to a read-only register or a read of a write-only register) generate an error termination.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-4 Freescale Semiconductor

Table 17-2. MPU Memory Map

Offset from
MPU_BASE

(0xFFF1_4000)
Register Access Reset Value Section/Page

0x0000 MPU_CESR—MPU control/error status register R/W 0x0080_4200 17.3.2.1/17-5

0x0004–0x000F Reserved

0x0010 MPU_EAR0—MPU error address register, MPU port 0 RO —1 17.3.2.2/17-6

0x0014 MPU_EDR0—MPU error detail register, MPU port 0 RO —1 17.3.2.3/17-7

0x0018 MPU_EAR1—MPU error address register, MPU port 1 RO —1 17.3.2.2/17-6

0x001C MPU_EDR1—MPU error detail register, MPU port 1 RO —1 17.3.2.3/17-7

0x0020 MPU_EAR2—MPU error address register, MPU port 2 RO —1 17.3.2.2/17-6

0x0024 MPU_EDR2—MPU error detail register, MPU port 2 RO —1 17.3.2.3/17-7

0x0028 MPU_EAR3— MPU error address register, MPU port 3 RO —1 17.3.2.3/17-7

0x002C MPU_EDR3—MPU error detail register, MPU port 3 RO —1 17.3.2.3/17-7

0x0030–0x03FF Reserved

0x0400 MPU_RGD0—MPU region descriptor 0 R/W —1 17.3.2.4/17-8

0x0410 MPU_RGD1—MPU region descriptor 1 R/W —1 17.3.2.4/17-8

0x0420 MPU_RGD2—MPU region descriptor 2 R/W —1 17.3.2.4/17-8

0x0430 MPU_RGD3—MPU region descriptor 3 R/W —1 17.3.2.4/17-8

0x0440 MPU_RGD4—MPU region descriptor 4 R/W —1 17.3.2.4/17-8

0x0450 MPU_RGD5—MPU region descriptor 5 R/W —1 17.3.2.4/17-8

0x0460 MPU_RGD6—MPU region descriptor 6 R/W —1 17.3.2.4/17-8

0x0470 MPU_RGD7—MPU region descriptor 7 R/W —1 17.3.2.4/17-8

0x0480 MPU_RGD8—MPU region descriptor 8 R/W —1 17.3.2.4/17-8

0x0490 MPU_RGD9—MPU region descriptor 9 R/W —1 17.3.2.4/17-8

0x04A0 MPU_RGD10—MPU region descriptor 10 R/W —1 17.3.2.4/17-8

0x04B0 MPU_RGD11—MPU region descriptor 11 R/W —1 17.3.2.4/17-8

0x04C0 MPU_RGD12—MPU region descriptor 12 R/W —1 17.3.2.4/17-8

0x04D0 MPU_RGD13—MPU region descriptor 13 R/W —1 17.3.2.4/17-8

0x04E0 MPU_RGD14—MPU region descriptor 14 R/W —1 17.3.2.4/17-8

0x04F0 MPU_RGD15—MPU region descriptor 15 R/W —1 17.3.2.4/17-8

0x00500–0x07FF Reserved

0x0800 MPU_RGDAAC0—MPU RGD alternate access control 0 W —1 17.3.2.5/17-13

0x0804 MPU_RGDAAC1—MPU RGD alternate access control 1 W —1 17.3.2.5/17-13

0x0808 MPU_RGDAAC2—MPU RGD alternate access control 2 W —1 17.3.2.5/17-13

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-5

17.3.2 Register Descriptions

This section lists the MPU registers in address order and describes the registers and their bit fields.

17.3.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status and three bytes of configuration information. A global
MPU enable/disable bit is also included in this register.

0x080C MPU_RGDAAC3—MPU RGD alternate access control 3 W —1 17.3.2.5/17-13

0x0810 MPU_RGDAAC4—MPU RGD alternate access control 4 W —1 17.3.2.5/17-13

0x0814 MPU_RGDAAC5—MPU RGD alternate access control 5 W —1 17.3.2.5/17-13

0x0818 MPU_RGDAAC6—MPU RGD alternate access control 6 W —1 17.3.2.5/17-13

0x081C MPU_RGDAAC7—MPU RGD alternate access control 7 W —1 17.3.2.5/17-13

0x0820 MPU_RGDAAC8—MPU RGD alternate access control 8 W —1 17.3.2.5/17-13

0x0824 MPU_RGDAAC9—MPU RGD alternate access control 9 W —1 17.3.2.5/17-13

0x0828 MPU_RGDAAC10—MPU RGD alternate access control 10 W —1 17.3.2.5/17-13

0x082C MPU_RGDAAC11—MPU RGD alternate access control 11 W —1 17.3.2.5/17-13

0x0830 MPU_RGDAAC12—MPU RGD alternate access control 12 W —1 17.3.2.5/17-13

0x0834 MPU_RGDAAC13—MPU RGD alternate access control 13 W —1 17.3.2.5/17-13

0x0838 MPU_RGDAAC14—MPU RGD alternate access control 14 W —1 17.3.2.5/17-13

0x083C MPU_RGDAAC15—MPU RGD alternate access control 15 W —1 17.3.2.5/17-13

0x0840–0x08FF Reserved

1 See register definition.

Offset: MPU_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MPERR1 1 0 0 0 HRL

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NSP NRGD 0 0 0 0 0 0 0
VLD

W

Reset 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 17-3. MPU Control/Error Status Register (MPU_CESR)

Table 17-2. MPU Memory Map (continued)

Offset from
MPU_BASE

(0xFFF1_4000)
Register Access Reset Value Section/Page

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-6 Freescale Semiconductor

17.3.2.2 MPU Error Address Register, MPU Port 0 to 3 (MPU_EARn)

When the MPU detects an access error on MPU port n, the 32-bit reference address is captured in this
read-only register and the corresponding bit in the MPU_CESR[MPERR] field set. Additional information
about the faulting access is captured in the corresponding MPU_EDRn register at the same time.

1 Each MPERR bit can be cleared by writing a one to the bit location.

Table 17-3. MPU_CESR Field Descriptions

Field Description

MPERR MPU Port n Error, where the MPU port number matches the bit number. Each bit in this read-only field represents a
flag maintained by the MPU for signaling the presence of a captured error contained in the MPU_EARn and
MPU_EDRn registers. The individual bit is set when the hardware detects an error and records the faulting address
and attributes. It is cleared when the corresponding bit is written to a logical one. If another error is captured at the
exact same cycle as a write of a logical one, this flag remains set. A find-first-one instruction (or equivalent) can be
used to detect the presence of a captured error.
0 The corresponding MPU_EARn/MPU_EDRn registers do not contain an unread captured error
1 The corresponding MPU_EARn/MPU_EDRn registers do contain an unread captured error

Note: Bit 0 indicates a 512 KB RAM access protection error, bit 1 represents an 80 KB RAM access protection error,
bit 2 represents an AIPS_A access protection error, and bit 3 represents an AIPS_B access protection error.

HRL Hardware Revision Level. This 4-bit read-only field specifies the MPU’s hardware and definition revision level. It can
be read by software to determine the functional definition of the module. This field reads as 0 on MPC5668x.

NSP Number of MPU Ports. This 4-bit read-only field specifies the number of MPU ports [1–8] connected to the MPU.
This field reads as 0b0011 on MPC5668x.

NRGD Number of Region Descriptors. This 4-bit read-only field specifies the number of region descriptors implemented in
the MPU. The defined encodings include:
0000 8 region descriptors.
0010 16 region descriptors.
This field reads as 0b0010 on MPC5668x.

VLD Valid. This bit provides a global enable/disable for the MPU.
0 The MPU is disabled.
1 The MPU is enabled.
While the MPU is disabled, all accesses from all bus masters are allowed.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-7

17.3.2.3 MPU Error Detail Register, MPU Port 0 to 3 (MPU_EDRn)

When the MPU detects an access error on MPU port n, 32 bits of error detail are captured in this read-only
register and the corresponding bit in the MPU_CESR[MPERR] field set. Information on the faulting
address is captured in the corresponding MPU_EARn register at the same time.

Offset: MPU_BASE + 0x0010 (MPU_EAR0)

MPU_BASE + 0x0018 (MPU_EAR1)

MPU_BASE + 0x0020 (MPU_EAR2)
MPU_BASE + 0x0028 (MPU_EAR3)

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EADDR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EADDR

W

Reset – – – – – – – – – – – – – – – –

Figure 17-4. MPU Error Address Register, MPU Port n (MPU_EARn)

Table 17-4. MPU_EARn Field Descriptions

Field Description

EADDR Error Address. This read-only field is the reference address from MPU port n that generated the access error.

Offset: MPU_BASE + 0x00014 (MPU_EDR0)
MPU_BASE + 0x001C (MPU_EDR1)

MPU_BASE + 0x0024 (MPU_EDR2)
MPU_BASE + 0x002C (MPU_EDR3)

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EACD

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EPID EMN EATTR ERW

W

Reset – – – – – – – – – – – – – – – –

Figure 17-5. MPU Error Detail Register, MPU Port 0 to 3 (MPU_EDRn)

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-8 Freescale Semiconductor

17.3.2.4 MPU Region Descriptor n (MPU_RGDn)

Each 128-bit (16 byte) region descriptor specifies a given memory space and the access attributes
associated with that space. The descriptor definition is fundamental to the operation of the MPU.

The region descriptors are organized sequentially in the MPU’s programming model and each of the four
32-bit words are detailed in the subsequent sections.

17.3.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

Table 17-5. MPU_EDRn Field Descriptions

Field Description

EACD Error Access Control Detail. This 16-bit read-only field implements one bit per region descriptor and is an indication
of the region descriptor hit logically-ANDed with the access error indication. The MPU performs a
reference-by-reference evaluation to determine the presence/absence of an access error. When an error is detected,
the hit-qualified access control vector is captured in this field.
If the MPU_EDRn register contains a captured error and the EACD field is all zeroes, this signals an access that did
not hit in any region descriptor. All non-zero EACD values signal references that hit in a region descriptor(s), but failed
due to a protection error as defined by the specific set bits.

EPID Error Process Identification. This 8-bit read-only field records the process identifier of the faulting reference. The
process identifier is typically driven by processor cores only; for other bus masters, this field is cleared.

EMN Error Master Number. This 4-bit read-only field records the logical master number of the faulting reference. This field
is used to determine the bus master that generated the access error.

EATTR Error Attributes. This 3-bit read-only field records attribute information about the faulting reference. The supported
encodings are defined as:
000 User mode, instruction access.
001 User mode, data access.
010 Supervisor mode, instruction access.
011 Supervisor mode, data access.
All other encodings are reserved. For non-core bus masters, the access attribute information is typically wired to
supervisor, data (0b011).

ERW Error Read/Write. This 1-bit read-only field signals the access type (read, write) of the faulting reference.
0 Read.
1 Write.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-9

17.3.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

17.3.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory region. The
access control privileges are dependent on two broad classifications of bus masters. Bus masters 0–3 are

Offset: MPU_BASE + 0x400 + (16*n) + 0x0 (MPU_RGDn.Word0) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SRTADDR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SRTADDR 0 0 0 0 0

W

Reset – – – – – – – – – – – – – – – –

Figure 17-6. MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0)

Table 17-6. MPU_RGDn.Word0 Field Descriptions

Field Description

SRTADDR Start Address. This field defines the most significant bits of the 0-modulo-32 byte start address of the memory
region.

Offset: MPU_BASE + 0x400 + (16*n) + 0x4 (MPU_RGDn.Word1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ENDADDR

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ENDADDR 1 1 1 1 1

W

Reset – – – – – – – – – – – 1 1 1 1 1

Figure 17-7. MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)

Table 17-7. MPU_RGDn.Word1 Field Descriptions

Field Description

ENDADDR End Address. This field defines the most significant bits of the 31-modulo-32 byte end address of the memory
region. There are no hardware checks to verify that ENDADDR > SRTADDR; the software must properly load these
region descriptor fields.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-10 Freescale Semiconductor

typically reserved for processor cores. The corresponding access control is a 6-bit field defining separate
privilege rights for user and supervisor mode accesses as well as the optional inclusion of a process
identification field within the definition. Bus masters 4–7 are typically reserved for data movement
engines and their capabilities are limited to separate read and write permissions. For these fields, the bus
master number refers to the logical master number defined as the AHB hmaster[3:0]signal.

For the processor privilege rights, there are three flags associated with this function: {read, write, execute}.
In this context, these flags follow the traditional definition:

• Read (r) permission refers to the ability to access the referenced memory address using an operand
(data) fetch.

• Write (w) permission refers to the ability to update the referenced memory address using a store
(data) instruction.

• Execute (x) permission refers to the ability to read the referenced memory address using an
instruction fetch.

The evaluation logic defines the processor access type based on multiple AHB signals: read or write as
specified by the hwrite signal and the low-order two bits of hprot[1:0], which identify a data reference
versus an instruction fetch and the operating mode (supervisor, user) of the requesting processor.

For non-processor data movement engines (bus masters 4–7), the evaluation logic simply uses hwrite to
determine if the access is a read or write. The hprot[1:0] signal is ignored for these masters.

Writes to this word clear the region descriptor’s valid bit. Because it is also expected that system software
may adjust only the access controls within a region descriptor (MPU_RGDn.Word2) as different tasks
execute, an alternate programming view of this 32-bit entity is provided. If only the access controls are
being updated, this operation should be performed by writing to MPU_RGDAACn (alternate access
control n) as stores to these locations do not affect the descriptor’s valid bit.

Offset: MPU_BASE + 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
M6RE M6WE M5RE M5WE M4RE M4WE

0 0 0 0 0 0
M2PE

M2S
MW

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R M2S
M

M2UM
M1PE M1SM

M1UM
M0PE M0SM

M0UM

W r w x r w x r w x

Reset – – – – – – – – – – – – – – – –

Note: Refer to Figure 17-1 to see the Master ID assignments.

Figure 17-8. MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)

Table 17-8. MPU_RGDn.Word2 Field Descriptions

Field Description

M6RE Bus Master ID 6 Read Enable. If set, this flag allows bus master ID 6 (FlexRay) to perform read operations. If cleared,
any attempted read by bus master ID 6 terminates with an access error and the read is not performed.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-11

M6WE Bus Master ID 6 Write Enable. If set, this flag allows bus master ID 6 (FlexRay) to perform write operations. If cleared,
any attempted write by bus master ID 6 terminates with an access error and the write is not performed.

M5RE Bus Master ID 5 Read Enable. If set, this flag allows bus master ID (Media Local Bus) 5 to perform read operations.
If cleared, any attempted read by bus master ID 5 terminates with an access error and the read is not performed.

M5WE Bus Master ID 5 Write Enable. If set, this flag allows bus master ID 5 (Media Local Bus) to perform write operations.
If cleared, any attempted write by bus master ID 5 terminates with an access error and the write is not performed.

M4RE Bus Master ID 4 Read Enable. If set, this flag allows bus master ID (FEC) 4 to perform read operations. If cleared,
any attempted read by bus master ID 4 terminates with an access error and the read is not performed.

M4WE Bus Master ID 4 Write Enable. If set, this flag allows bus master ID (FEC) 4 to perform write operations. If cleared,
any attempted write by bus master ID 4 terminates with an access error and the write is not performed.

M2PE This bit can be read and written to either a 0 or 1, but the MPU behaves as if this bit was permanently tied to 0, so
that the PID is not part of the region hit evaluation.

M2SM Bus Master ID 2 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 2
(eDMA) when operating in supervisor mode. The M2SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M2UM for user mode.

M2UM Bus Master ID 2 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 2 (eDMA)
when operating in user mode. The M2UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus Master ID 1 Process Identifier Enable. If set, this flag specifies that the process identifier and mask defined in
MPU_RGDn.Word3 are to be included in the region hit evaluation. If cleared, then the region hit evaluation does not
include the process identifier.

M1SM Bus Master ID 1 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 1
(e200z0) when operating in supervisor mode. The M1SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M1UM for user mode.

M1UM Bus Master ID 1 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 1 (e200z0)
when operating in user mode. The M1UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus Master ID 0 Process Identifier Enable. If set, this flag specifies that the process identifier and mask defined in
MPU_RGDn.Word3 are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

M0SM Bus Master ID 0 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 0
(e200z6) when operating in supervisor mode. The M0SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M0UM for user mode.

Table 17-8. MPU_RGDn.Word2 Field Descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-12 Freescale Semiconductor

17.3.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and mask, plus the
region descriptor’s valid bit.

Because the region descriptor is a 128-bit entity, there are potential coherency issues as this structure is
being updated because multiple writes are required to update the entire descriptor. Accordingly, the MPU
hardware assists in the operation of the descriptor valid bit to prevent incoherent region descriptors from
generating spurious access errors. In particular, it is expected that a complete update of a region descriptor
is typically done with sequential writes to MPU_RGDn.Word0, then MPU_RGDn.Word1, ... and
MPU_RGDn.Word3. The MPU hardware automatically clears the valid bit on any writes to words {0,1,2}
of the descriptor. Writes to this word set/clear the valid bit in a normal manner.

Because it is also expected that system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is provided. If only the access controls are being updated, this operation must be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

M0UM Bus Master ID 0 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 0 (e200z6)
when operating in user mode. The M0UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

Offset: MPU_BASE + 0x400 + (16*n) + 0xc (MPU_RGDn.Word3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PID PIDMASK

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-9. MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3)

Table 17-8. MPU_RGDn.Word2 Field Descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-13

17.3.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

As noted in Section 17.3.2.4.3, “MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2),” it is expected
that because system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is desired. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

The memory address therefore provides an alternate location for updating MPU_RGDn.Word2.

Because the MPU_RGDAACn register is another memory mapping for MPU_RGDn.Word2, the field
definitions shown in Table 17-10 are identical to those presented in Table 17-8.

Table 17-9. MPU_RGDn.Word3 Field Descriptions

Field Description

PID Process Identifier. This 8-bit field specifies that the optional process identifier is to be included in the determination
of whether the current access hits in the region descriptor. This field is combined with the PIDMASK and included
in the region hit determination if MPU_RGDn.Word2[MxPE] is set.
Note: Master ID 0 is only able to drive the process identifier of 0.

PIDMASK Process Identifier Mask. This 8-bit field provides a masking capability so that multiple process identifiers can be
included as part of the region hit determination. If a bit in the PIDMASK is set, the corresponding bit of the PID is
ignored in the comparison. This field is combined with the PID and included in the region hit determination if
MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID and PIDMASK, see
Section 17.4.1.1, “Access Evaluation—Hit Determination.”

VLD Valid. This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit, but a write
to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid.
1 Region descriptor is valid.

Offset: MPU_BASE + 0x800 + (4*n) (MPU_RGDAACn) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
M6RE M6WE M5RE

M5W
E

M4RE
M4W

E
0 0 0 0 0 0

M2PE
M2S

MW

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R M2S
M

M2UM
M1PE M1SM

M1UM
M0PE M0SM

M0UM

W r w x r w x r w x

Reset – – – – – – – – – – – – – – – –

Figure 17-10. MPU RGD Alternate Access Control n (MPU_RGDAACn)

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-14 Freescale Semiconductor

Table 17-10. MPU_RGDAACn Field Descriptions

Field Description

M6RE Bus Master ID 6 Read Enable. If set, this flag allows bus master ID (FlexRay) 6 to perform read operations. If cleared,
any attempted read by bus master ID 6 terminates with an access error and the read is not performed.

M6WE Bus Master ID 6 Write Enable. If set, this flag allows bus master ID 6 (FlexRay) to perform write operations. If cleared,
any attempted write by bus master ID 6 terminates with an access error and the write is not performed.

M5RE Bus Master ID 5 Read Enable. If set, this flag allows bus master ID 5 (Media Local Bus) to perform read operations.
If cleared, any attempted read by bus master ID 5 terminates with an access error and the read is not performed.

M5WE Bus Master ID 5 Write Enable. If set, this flag allows bus master ID 5 (Media Local Bus) to perform write operations.
If cleared, any attempted write by bus master ID 5 terminates with an access error and the write is not performed.

M4RE Bus Master ID 4 Read Enable. If set, this flag allows bus master ID (FEC) 4 to perform read operations. If cleared,
any attempted read by bus master ID 4 terminates with an access error and the read is not performed.

M4WE Bus Master ID 4 Write Enable. If set, this flag allows bus master ID 4 (FEC) to perform write operations. If cleared,
any attempted write by bus master ID 4 terminates with an access error and the write is not performed.

M2PE This bit can be read and written to either a 0 or 1, but the MPU behaves as if this bit was permanently tied to 0, so
that the PID is not part of the region hit evaluation.

M2SM Bus Master 2 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 2
(eDMA) when operating in supervisor mode. The M2SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M2UM for user mode.

M2UM Bus Master 2 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 2 (eDMA)
when operating in user mode. The M2UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus Master 1 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, the region hit evaluation does not
include the process identifier.

M1SM Bus Master 1 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 1
(e200z0) when operating in supervisor mode. The M1SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M1UM for user mode.

M1UM Bus Master 1 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 1 (e200z0)
when operating in user mode. The M1UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus Master 0 Process Identifier Enable. If set, this flag specifies that the process identifier and mask (defined in
MPU_RGDn.Word3) are to be included in the region hit evaluation. If cleared, then the region hit evaluation does not
include the process identifier.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-15

17.4 Functional Description
In this section, the functional operation of the MPU is detailed. In particular, subsequent sections discuss
the operation of the access evaluation macro as well as the handling of error-terminated AHB bus cycles.

17.4.1 Access Evaluation Macro

As discussed, the basic operation of the MPU is performed in the access evaluation macro, a hardware
structure replicated in the two-dimensional connection matrix. As shown in Figure 17-11, the access
evaluation macro inputs the AHB system bus address phase signals (AHB_ap) and the contents of a region
descriptor (RGDn) and performs two major functions: region hit determination (hit_b) and detection of
an access protection violation (error).

Figure 17-11. MPU Access Evaluation Macro

Figure 17-11 is not a schematic of the actual access evaluation macro, but a generalized block diagram
showing the major functions included in this logic block.

M0SM Bus Master 0 Supervisor Mode Access Control. This 2-bit field defines the access controls for bus master ID 0
(e200z6) when operating in supervisor mode. The M0SM field is defined as:
00 r, w, x = read, write and execute allowed.
01 r, –, x = read and execute allowed, but no write.
10 r, w, – = read and write allowed, but no execute.
11 Same access controls as that defined by M0UM for user mode.

M0UM Bus Master 0 User Mode Access Control. This 3-bit field defines the access controls for bus master ID 0 (e200z6)
when operating in user mode. The M0UM field consists of three independent bits, enabling read, write, and execute
permissions: {r,w,x}. If set, the bit allows the given access type to occur; if cleared, an attempted access of that
mode may be terminated with an access error (if not allowed by any other descriptor) and the access not performed.

Table 17-10. MPU_RGDAACn Field Descriptions (continued)

Field Description

hit_b

start end

error

> >

RGDn
AHB_ap

hit & error hit_b | error

>= <=

r,w,x

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-16 Freescale Semiconductor

17.4.1.1 Access Evaluation—Hit Determination

To determine if the current AHB reference hits in the given region, two magnitude comparators are used
with the region’s start and end addresses. The boolean equation for this portion of the hit determination is
defined as:
region_hit =

((haddr[0:26] >= rgdn.srtaddr[0:26]) & (haddr[0:26] <= rgdn.endaddr[0:26]))
& rgdn.vld

where haddr[*] is the current AHB reference address, rgdn.srtaddr[*] and rgdn.endaddr[*] are the start
and end addresses, and rgdn.vld is the valid bit, all from region descriptor n. There are no hardware checks
to verify that rgdn.endaddr rgdn.srtaddr, and the software must properly load appropriate values into
these fields of the region descriptor.

In addition to the algebraic comparison of the AHB reference address versus the region descriptor’s start
and end addresses, the optional process identifier is examined against the region descriptor’s PID and
PIDMASK fields. Using the hmaster[*] number to select the appropriate MxPE field from the region
descriptor, a process identifier hit term is formed as:
pid_hit = ~rgdn.mxpe

| ((current_pid[0:7] | rgdn.pidmask[0:7]) == (rgdn.pid[0:7] | rgdn.pidmask[0:7]))

where the current_pid[*] is the selected process identifier from the current bus master, and rgdn.pid[*]
and rgdn.pidmask[*] are the appropriate process identifier fields from the region descriptor n. For AHB
bus masters that do not output a process identifier, the MPU forces the pid_hit term to be asserted.

As shown in Figure 17-11, the access evaluation macro forms the logical complement (hit_b) of the
combined region_hit and pid_hit boolean equations.

17.4.1.2 Access Evaluation—Privilege Violation Determination

While the access evaluation macro is making the region hit determination, the logic is also evaluating if
the current access is allowed by the permissions defined in the region descriptor. Using the AHB
hmaster[*] and hprot[1] (supervisor/user mode) signals, a set of effective permissions (eff_rgd[r,w,x])
is generated from the appropriate fields in the region descriptor. The protection violation logic then
evaluates the access against the effective permissions using the specification shown in Table 17-11.

Table 17-11. Protection Violation Definition

Description

Inputs Output

hwrite hprot[0] eff_rgd[r] eff_rgd[w] eff_rgd[x]
Protection
Violation?

inst fetch read 0 0 — — 0 yes, no x permission

inst fetch read 0 0 — — 1 no, access is allowed

data read 0 1 0 — — yes, no r permission

data read 0 1 1 — — no, access is allowed

data write 1 — — 0 — yes, no w permission

data write 1 — — 1 — no, access is allowed

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-17

The resulting boolean equation for the processor protection violations is:
cpu_protection_violation
 = ~hwrite & ~hprot[0] & ~eff_rgdn[x] // ifetch & no x
 | ~hwrite & hprot[0] & ~eff_rgdn[r] // data_read & no r
 | hwrite & ~eff_rgdn[w] // data_write & no w

The resulting boolean equation for the non-processor protection violations is:
protection_violation
 = ~hwrite & ~eff_rgdn[r] // data_read & no r
 | hwrite & ~eff_rgdn[w] // data_write & no w

As shown in Figure 17-11, the output of the protection violation logic is the error signal, that is,
error = protection_violation.

The access evaluation macro then uses the hit_b and error signals to form two outputs. The combined
(hit_b | error) signal is used to signal the current access is not allowed and (~hit_b & error) is used as
the input to MPU_EDRn (error detail register) in the event of an error.

17.4.2 Putting It All Together and AHB Error Terminations

For each AHB MPU port being monitored, the MPU performs a reduction-AND of all the individual
(hit_b | error) terms from each access evaluation macro. This expression then terminates the bus cycle
with an error and reports a protection error for three conditions:

1. If the access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection violation, a
protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection violations, then
a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying for
overlapping regions as this approach provides more flexibility to system software in region descriptor
assignments. For an example of the use of overlapping region descriptors, see Section 17.6, “Application
Information.”

When the MPU causes a termination error to occur, the effect on the system depends on the bus master
requesting the access. If the error was caused by a core access, a machine check is taken. If the error was
caused by an eDMA access, an eDMA source or destination error occurs in the eDMA controller, which
can be enabled to provide an interrupt request through the INTC. If the error was caused by a FlexRay
access, a controller host interface (CHI) illegal system memory access error occurs in the FlexRay
controller, which can be enabled to provide an interrupt request to the INTC.

17.5 Initialization Information
The reset state of MPU_CESR[VLD] disables the entire module. While the MPU is disabled, all accesses
from all bus masters are allowed. This state also minimizes the power dissipation of the MPU. The power
dissipation of each access evaluation macro is minimized when the associated region descriptor is marked
as invalid or when MPU_CESR[VLD] = 0.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-18 Freescale Semiconductor

Typically the appropriate number of region descriptors (MPU_RGDn) are loaded at system startup,
including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD] is set, enabling the
module. This approach allows all the loaded region descriptors to be enabled simultaneously. If a memory
reference does not hit in any region descriptor, the attempted access is terminated with an error.

17.6 Application Information
In an application’s system, interfacing with the MPU can generally be classified into the following
activities:

1. Creation of a new memory region requires loading the appropriate region descriptor into an
available register location. When a new descriptor is loaded into a RGDn, it would typically be
performed using four 32-bit word writes. As discussed in Section 17.3.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3),” the hardware assists in the maintenance of the valid
bit, so if this approach is followed, there are no coherency issues associated with the multi-cycle
descriptor writes. Deletion/removal of an existing memory region is performed by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write to the
alternate version of the access control word (MPU_RGDAACn) would typically be performed.
Writes to the region descriptor using this alternate access control location do not affect the valid
bit, so there are, by definition, no coherency issues involved with the update. The access rights
associated with the memory region switch instantaneously to the new value as the IPS write
completes.

3. If the region’s start and end addresses are to be changed, this would typically be performed by
writing a minimum of three words of the region descriptor: MPU_RGDn.Word{0,1,3}, where the
writes to Word0 and Word1 redefine the start and end addresses respectively and the write to
Word3 re-enables the region descriptor valid bit. In many situations, all four words of the region
descriptor would be rewritten.

4. Typically, references to the MPU’s programming model would be restricted to supervisor mode
accesses from a specific processor(s), so a region descriptor would be specifically allocated for this
purpose with attempted accesses from other masters or while in user mode terminated with an error.

5. When the MPU detects an access error, the current AHB bus cycle is terminated with an error
response and information on the faulting reference captured in the MPU_EARn and MPU_EDRn
registers. The error-terminated AHB bus cycle typically initiates some type of error response in the
originating bus master. For example, a processor core may respond with a bus error exception,
while a data movement bus master may respond with an error interrupt. In any event, the processor
can retrieve the captured error address and detail information simply be reading the
MPU_E{A,D}Rn registers. Information on which error registers contain captured fault data is
signaled by MPU_CESR[MPERR].

6. The process identifier seen by the MPU for master ID 0 (z6) is fixed at a value of 0. Regardless of
the actual value loaded into the z6 PID0 register, the MPU always uses a value of 0 when making
the optional process identifier region hit determination. This must be taken into account when
configuring the associated MPU_RGDn.Word3[PID] and MPU.RGDn.Word3[PIDMASK]
descriptor fields.

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 17-19

7. Finally, consider the use of overlapping region descriptors. Application of overlapping regions can
reduce the number of descriptors required for a given set of access controls. In the overlapping
memory space, the protection rights of the corresponding region descriptors are logically summed
together (the boolean OR operator). In the following example of a dual-core system, there are four
bus masters: the two processors (CP0, CP1) and two DMA engines (eDMA, a traditional data
movement engine transferring data between RAM and peripherals, and FlexRay, a second engine
transferring data to/from the RAM only). Consider the following region descriptor assignments:

In this example, there are eight descriptors used to span nine regions in the three main spaces of
the system memory map (flash, RAM, and IPS peripheral space). Each region indicates the specific
permissions for each of the four bus masters and this definition provides an appropriate set of
shared, private and executable memory spaces.

Of particular interest are the two overlapping spaces: region descriptors 2 and 3, and 3 and 4.

The space defined by RGD2 with no overlap is a private data and stack area that provides
read/write access to CP0 only. The overlapping space between RGD2 and RGD3 defines a shared
data space for passing data from CP0 to CP1 and the access controls are defined by the logical OR
of the two region descriptors. Thus, CP0 has (rw- | r--) = (rw-) permissions, while CP1 has
(--- | r--) = (r--) permission in this space. Both DMA engines are excluded from this shared
processor data region. The overlapping spaces between RGD3 and RGD4 defines another shared
data space, this one for passing data from CP1 to CP0. For this overlapping space, CP0 has (r--
| ---) = (r--) permission, while CP1 has (rw- | r--) = (rw-) permission. The
non-overlapped space of RGD4 defines a private data and stack area for CP1 only.

The space defined by RGD5 is a shared data region, accessible by all four bus masters. Finally, the
slave peripheral space mapped onto the peripheral bus is partitioned into two regions: one (RGD6)
containing the MPU’s programming model accessible only to the two processor cores, and the
remaining peripheral region (RGD7) accessible to both processors and the traditional eDMA
master.

This example is intended to show one possible application of the capabilities of the memory
protection unit in a typical system.

Region Description RGDn CP0 CP1 eDMA FlexRay

CP0 Code 0 rwx r-- -- --
Flash

CP1 Code 1 r-- rwx -- --

CP0 Data & Stack 2 rw- --- -- --

RAM

CP0 CP1 Shared Data
3 r-- r-- -- --

CP1 CP0 Shared Data

CP0 Data & Stack 4 --- rw- -- --

Shared DMA Data 5 rw- rw- rw rw

MPU 6 rw- rw- -- --
IPS

Peripherals 7 rw- rw- rw --

Figure 17-12. Overlapping Region Descriptor Example

Memory Protection Unit (MPU)

MPC5668x Microcontroller Reference Manual, Rev. 4

17-20 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-1

Chapter 18
Error Correction Status Module (ECSM)

18.1 Introduction
The error correction status module (ECSM) provides a set of registers that configure and report ECC errors
for the device including accesses to RAM and flash memory. The application may configure the device for
the types of memory errors to be reported, and then query a set of read-only status and information registers
to identify any errors that have been signaled.

There are two types of ECC errors: correctable and non-correctable. A correctable ECC error is generated
when only one bit is wrong in a 64-bit doubleword. In this case, it is corrected automatically by hardware
and no flags or other indication is set that the error occurred. A non-correctable ECC error is generated
when two or more bits in a 64-bit doubleword are incorrect. Non-correctable ECC errors cause an
interrupt, and if enabled, additional error details are available in the ECSM.

Error correction is implemented on 64 bits of data at a time, using eight bits for ECC for every 64-bit
doubleword. ECC is checked on reads and calculated on writes per the following:

1. 64 bits containing the desired byte / halfword / word or doubleword in memory is read and ECC
checked.

2. If the access is a write, then

— The new byte / halfword / word / doubleword is merged into the 64 bits.

— New ECC bits are calculated.

— The 64 bits and the new ECC bits are written back.

NOTE
To use ECC with SRAM, the SRAM memory must be written to before ECC
is enabled.

18.1.1 Features

The ECSM has this major feature:

• Registers for capturing information on platform memory errors if error-correcting codes (ECC) are
implemented.

18.2 Memory Map and Registers
This section provides a detailed description of all ECSM registers.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-2 Freescale Semiconductor

18.2.1 Module Memory Map

The ECSM memory map is shown in Table 18-1 (a graphical layout of the registers is shown in Table 18-2
to better see Reserved areas in the memory map). The address of each register is given as an offset to the
ECSM base address. Registers are listed in address order, identified by complete name and mnemonic, and
lists the type of accesses allowed.

Table 18-1. ECSM Memory Map

Offset from
ECSM_BASE_ADDR

(0xFFF4_0000)
Register Access Reset Value1

1 Please refer to the register definition. U = undefined at reset.

Section/Page Size

0x0000–0x0023 Reserved

0x0024 FBOMCR—FEC burst optimization master control register R/W 0x0000_0000 18.2.2.1/18-3 32

0x0028–0x0042 Reserved

0x0043 ECR—ECC configuration register R/W 0x00 18.2.2.2/18-5 8

0x0047 ESR—ECC status register R/W 0x00 18.2.2.3/18-6 8

0x004A EEGR—ECC error generation register R/W 0x0000 18.2.2.4/18-7 16

0x0050 PFEAR—PFlash ECC address register RO U 18.2.2.5/18-9 32

0x0056 PFEMR—PFlash ECC master register RO 0x0U 18.2.2.6/18-10 8

0x0057 PFEAT—PFlash ECC attributes register RO U 18.2.2.7/18-10 8

0x0058 PFEDRH—PFlash ECC data register high RO U 18.2.2.8/18-11 32

0x005C PFEDRL—PFlash ECC data register low RO U 18.2.2.8/18-11 32

0x0060 PREAR—PRAM ECC address register RO U 18.2.2.9/18-12 32

0x0065 PRESR—PRAM ECC syndrome register RO U 18.2.2.10/18-13 8

0x0066 PREMR—PRAM ECC master register RO 0x0U 18.2.2.11/18-14 8

0x0067 PREAT—PRAM ECC attributes register RO U 18.2.2.12/18-15 8

0x0068 PREDRH—PRAM ECC data register high RO U 18.2.2.13/18-16 32

0x006C PREDRL—PRAM ECC data register low RO U 18.2.2.13/18-16 32

0x0007–0x3FFF Reserved

Table 18-2. ECSM Graphical Memory Map

ECSM Offset Register

0x0000–0x0023 Reserved

0x0024 FEC burst optimization master control register (FBOMCR)

0x0028–0x003F Reserved

0x0040 Reserved ECC configuration (ECR)

0x0044 Reserved ECC status register (ESR)

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-3

18.2.2 Register Descriptions

This section lists the ECSM registers in address order and describes the registers and their bit fields.
Attempted accesses to reserved addresses result in an error termination; however, attempted writes to
read-only registers are ignored and do not terminate with an error.

NOTE
Unless noted otherwise, writes to the programming model must match the
size of the register, e.g., an n-bit register only supports n-bit writes, etc.
Attempted writes of a different size than the register width produce an error
termination of the bus cycle and no change to the targeted register.

18.2.2.1 FEC Burst Optimization Master Control Register (FBOMCR)

The FEC burst optimization master control register (FBOMCR) controls FEC burst optimization behavior
on the system bus. Other FEC registers are described in Section 24.3.4.3 Ethernet Interrupt Mask Register
(EIMR),” through Section 24.3.4.24, “Receive Buffer Size Register (EMRBR).”

In order to increase throughput, the FEC interface to the system bus can accumulate read requests or writes
to burst those transfers on the system bus. The FBOMCR determines the XBAR ports for which this
bursting is enabled, as well as whether the bursting is for reads, writes, or both. FBOMCR also controls
how errors for writes are handled.

0x000048 Reserved ECC error generation register (EEGR)

0x004C Reserved

0x0050 PFlash ECC address register (PFEAR)

0x0054 Reserved
PFlash ECC master
register (PFEMR)

PFlash ECC attributes
register (PFEAT)

0x0058 Reserved

0x005C PFlash ECC Data register (PFEDR)

0x0060 PRAM ECC address register (PREAR)

0x0064 Reserved
PRAM ECC master
register (PREMR)

PRAM ECC attributes
register (PREAT)

0x0068 Reserved

0x006C PRAM ECC data register (PREDR)

Table 18-2. ECSM Graphical Memory Map

ECSM Offset Register

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-4 Freescale Semiconductor

Offset: ECSM_BASE_ADDR + 0x0024 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FXS
BE0

FXS
BE1

FXS
BE2

FXS
BE3

0 0 FXS
BE6

FXS
BE7

RBEN WBEN ACC
ERR

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-1. FEC Burst Optimization Master Control Register (FBOMCR)

Table 18-3. FBOMCR Field Descriptions

Field Description

FXSBEn
[0:7]

FEC XBAR slave burst enable. FXSBEn enables bursting by the FEC interface to the XBAR slave port
controlled by that respective FXSBEn bit. If FXSBEn is asserted, then that XBAR slave port enabled by
the bit can accept the bursts allowed by RBEN and WBEN. Otherwise, the FEC interface will not burst to
the XBAR slave port controlled by that respective FXSBEn bit. Read bursts from that XBAR slave port are
enabled by RBEN. Write bursts to that XBAR slave port are enabled by WBEN.

FXSBE0 = Burst enable for haddr[31:29] = 3'h0
FXSBE1 = Burst enable for haddr[31:29] = 3'h1
FXSBE2 = Burst enable for haddr[31:29] = 3'h2
FXSBE3 = Burst enable for haddr[31:29] = 3'h3
FXSBE4 = Burst enable for haddr[31:29] = 3'h4
FXSBE5 = Burst enable for haddr[31:29] = 3'h5
FXSBE6 = Burst enable for haddr[31:29] = 3'h6
FXSBE7 = Burst enable for haddr[31:29] = 3'h7

RBEN Global read burst enable from XBAR slave port designated by FXSBEn
0 Read bursting from all XBAR slave ports is disabled.
1 Read bursting is enabled from any XBAR slave port whose FXSBEn bit is asserted.

WBEN Global write burst enable to XBAR slave port designated by FXSBEn
0 Write bursting to all XBAR slave ports is disabled.
1 Write bursting is enabled to any XBAR slave port whose FXSBEn bit is asserted.

ACCERR Accumulate error - This bit determines whether an error response for the first half of the write burst is
accumulated to the second half of the write burst or discarded. In order to complete the burst, the FEC
interface to the system bus responds by indicating that the first half of the burst completed without error
before it actually writes the data so that it can fetch the second half of the write data from the FIFO. When
actually written onto the system bus, the first half of the write burst can have an error. Because this half
initially responded without an error to the FIFO, the error is discarded or accumulated with the error
response for the second half of the burst.

0 Any error to the first half of the write burst is discarded.
1 Any actual error response to the first half of the write burst is accumulated in the second half's response.

In other words, an error response to the first half will be seen in the response to the second half, even
if the second half does not error.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-5

18.2.2.2 ECC Configuration Register (ECR)

The ECC configuration register is an 8-bit control register for specifying which types of memory errors
are reported. In all systems with ECC, the occurrence of a non-correctable error causes the current access
to be terminated with an error condition. In many cases, this error termination is reported directly by the
initiating bus master. However, there are certain situations where the occurrence of this type of
non-correctable error is not reported by the master. Examples include speculative instruction fetches that
are discarded due to a change-of-flow operation and buffered operand writes. The ECC reporting logic in
the ECSM provides an optional error interrupt mechanism to signal all non-correctable memory errors. In
addition to the interrupt generation, the ECSM captures specific information (memory address, attributes
and data, bus master number, etc.) that may be useful for subsequent failure analysis.

See Figure 18-2 and Table 18-4 for the ECC configuration register definition.

Offset: ECSM_BASE_ADDR + 0x0043 Access: User read/write

0 1 2 3 4 5 6 7

R 0 0
EPR1BR EPF1BR

0 0
EPRNCR EPFNCR

W

Reset 0 0 0 0 0 0 0 0

Figure 18-2. ECC Configuration (ECR) Register

Table 18-4. ECR Field Descriptions

Field Description

EPR1BR Enable Platform RAM 1-bit Reporting. The occurrence of a single-bit RAM correction generates an ECSM ECC
interrupt request as signalled by the assertion of ESR[PR1BC]. The address, attributes and data are also captured
in the PREAR, PRESR, PREMR, PREAT, and PREDR registers.
0 Reporting of single-bit platform RAM corrections is disabled.
1 Reporting of single-bit platform RAM corrections is enabled.

EPF1BR Enable Platform Flash 1-bit Reporting. The occurrence of a single-bit flash correction generates an ECSM ECC
interrupt request as signalled by the assertion of ESR[PF1BC]. The address, attributes, and data are also captured
in the PFEAR, PFEMR, PFEAT, and PFEDR registers.
0 Reporting of single-bit platform flash corrections is disabled.
1 Reporting of single-bit platform flash corrections is enabled.

EPRNCR Enable Platform RAM Non-Correctable Reporting. The occurrence of a non-correctable multi-bit RAM error
generates an ECSM ECC interrupt request as signaled by the assertion of ESR[PRNCE]. The faulting address,
attributes, and data in either the 512 KB or 80 KB array are also captured in the PREAR, PRESR, PREMR, PREAT,
and PREDR registers.
0 Reporting of non-correctable platform RAM errors is disabled.
1 Reporting of non-correctable platform RAM errors is enabled.

EPFNCR Enable Platform Flash Non-Correctable Reporting. The occurrence of a non-correctable multi-bit flash error
generates an ECSM ECC interrupt request as signaled by the assertion of ESR[PFNCE]. The faulting address,
attributes, and data are also captured in the PFEAR, PFEMR, PFEAT, and PFEDR registers.
0 Reporting of non-correctable platform flash errors is disabled.
1 Reporting of non-correctable platform flash errors is enabled.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-6 Freescale Semiconductor

18.2.2.3 ECC Status Register (ESR)

The ECC status register is an 8-bit control register for signaling which types of properly enabled ECC
events have been detected. The ESR signals the last properly enabled memory event to be detected. An
ECC interrupt request is asserted if any flag bit is asserted and its corresponding enable bit is asserted.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This preserves the
association between the ESR and the corresponding address and attribute registers, which are loaded on
each occurrence of an properly enabled ECC event. If there is a pending ECC interrupt and another
properly enabled ECC event occurs, the ECSM hardware automatically handles the ESR reporting,
clearing the previous data and loading the new state and thus guaranteeing that only a single flag is
asserted.

To maintain the coherent software view of the reported event, the following sequence in the ECSM error
interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the two values
are different, repeat from step one.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt request.

See Figure 18-3 and Table 18-5 for the ECC status register definition.

Offset: ECSM_BASE_ADDR + 0x0047 Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 PR1BC PF1BC 0 0 PRNCE PFNCE

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0

Figure 18-3. ECC Status (ESR) Register

Table 18-5. ESR Field Descriptions

Field Description

PR1BC Platform RAM 1-bit Correction. This bit can only be set when ECR[EPR1BR] is asserted. The occurrence of a
properly-enabled single-bit RAM correction generates an ECSM ECC interrupt request. The address, attributes and
data are also captured in the PREAR, PRESR, PREMR, PREAT, and PREDR registers. To clear this interrupt flag,
write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit platform RAM correction has been detected.
1 A reportable single-bit platform RAM correction has been detected.

PF1BC Platform Flash 1-bit Correction. This bit can only be set when ECR[EPF1BR] is asserted. The occurrence of a
properly-enabled single-bit flash correction generates an ECSM ECC interrupt request. The address, attributes and
data are also captured in the PFEAR, PFEMR, PFEAT, and PFEDR registers. To clear this interrupt flag, write a 1
to this bit. Writing a 0 has no effect.
0 No reportable single-bit platform flash correction has been detected.
1 A reportable single-bit platform flash correction has been detected.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-7

If both a flash and RAM non-correctable error occur at the same time, the ECSM records the event with
the PR1BC as highest priority, then PF1BC, then, PRNCE, and finally PFNCE. If both a 512 KB and an
80 KB RAM non-correctable error occur at the same time, the ECSM records the event with the 512 KB
array.

18.2.2.4 ECC Error Generation Register (EEGR)

The ECC error generation register is a 16-bit control register used to force the generation of single- and
double-bit data inversions in the platform memories with ECC, most notably the platform RAM. This
capability is provided for two purposes:

• It provides a software-controlled mechanism for injecting errors into the platform memories during
data writes to verify the integrity of the ECC logic.

• It provides a mechanism to allow testing of the software service routines associated with memory
error logging.

The intent is to generate errors during data write cycles, such that subsequent reads of the corrupted
address locations generate ECC events, either single-bit corrections or double-bit noncorrectable errors
that are terminated with an error response.

See Figure 18-4 and Table 18-6 for the ECC error generation register definition.

PRNCE Platform RAM Non-Correctable Error. The occurrence of a properly enabled non-correctable RAM error generates
an ECSM ECC interrupt request. The faulting address, attributes, and data in either the 512K or 80K array are also
captured in the PREAR, PRESR, PREMR, PREAT, and PREDR registers. To clear this interrupt flag, write a 1 to
this bit. Writing a 0 has no effect.
0 No reportable non-correctable platform RAM error has been detected.
1 A reportable non-correctable platform RAM error has been detected.

PFNCE Platform Flash Non-Correctable Error. The occurrence of a properly enabled non-correctable flash error generates
an ECSM ECC interrupt request. The faulting address, attributes and data are also captured in the PFEAR,
PFEMR, PFEAT, and PFEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable platform flash error has been detected.
1 A reportable non-correctable platform flash error has been detected.

Offset: ECSM_BASE_ADDR + 0x004A Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
FRC1BI FR11BI

0 0
FRCNCI FR1NCI

PREI
_SEL

ERRBIT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-4. ECC Error Generation (EEGR) Register

Table 18-5. ESR Field Descriptions (continued)

Field Description

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-8 Freescale Semiconductor

Table 18-6. EEGR Field Descriptions

Field Description

FRC1BI Force Platform RAM Continuous 1-Bit Data Inversions. The assertion of this bit forces the platform RAM controller
to create 1-bit data inversions, as defined by the bit position specified in ERRBIT[6:0], continuously on every write
operation.
The normal ECC generation takes place in the PRAM controller, but then the polarity of the bit position defined by
ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.
After this bit has been enabled to generate another continuous 1-bit data inversion, it must be cleared before being
set again to properly re-enable the error generation logic.
0 No platform RAM continuous 1-bit data inversions are generated.
1 1-bit data inversions in the platform RAM are continuously generated.

FR11BI Force Platform RAM One 1-bit Data Inversion. The assertion of this bit forces the platform RAM controller to create
one 1-bit data inversion, as defined by the bit position specified in ERRBIT[6:0], on the first write operation after this
bit is set. The normal ECC generation takes place in the PRAM controller, but then the polarity of the bit position
defined by ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.
After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before being set again
to properly re-enable the error generation logic.
0 No platform RAM single 1-bit data inversion is generated.
1 One 1-bit data inversion in the platform RAM is generated.

FRCNCI Force Platform RAM Continuous Noncorrectable Data Inversions. The assertion of this bit forces the platform RAM
controller to create 2-bit data inversions, as defined by the bit position specified in ERRBIT and the overall odd
parity bit, continuously on every write operation.
After this bit has been enabled to generate another continuous noncorrectable data inversion, it must be cleared
before being set again to properly re-enable the error generation logic.
The normal ECC generation takes place in the PRAM controller, but then the polarity of the bit position defined by
ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.
0 No platform RAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the platform RAM are continuously generated.

FR1NCI Force Platform RAM One Noncorrectable Data Inversions. The assertion of this bit forces the platform RAM
controller to create one 2-bit data inversion, as defined by the bit position specified in ERRBIT and the overall odd
parity bit, on the first write operation after this bit is set.
The normal ECC generation takes place in the PRAM controller, but then the polarity of the bit position defined by
ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the RAM.
After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set again to properly
re-enable the error generation logic.
0 No platform RAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the platform RAM is generated.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-9

NOTE
If an attempt to force a non-correctable inversion by asserting
EEGR[FRCNCI] or EEGR[FRC1NCI], and EEGR[ERRBIT] equals 64, no
data inversion is generated.

The only allowable values for the 4 control bit enables {FR11BI, FRC1BI,
FRCNCI, FR1NCI} are {0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and
{0,0,0,1}. All other values result in undefined behavior.

18.2.2.5 Platform Flash ECC Address Register (PFEAR)

The PFEAR is a 32-bit register for capturing the address of the last properly enabled ECC event in the
platform flash memory. Depending on the state of the ECC configuration register, an ECC event in the
platform flash causes the address, attributes and data associated with the access to be loaded into the
PFEAR, PFEMR, PFEAT, and PFEDR registers and also the appropriate flag (PF1BC or PFNCE) in the
ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-5 and Table 18-7 for the platform
flash ECC address register definition.

PREI_SEL Platform RAM Error Injection Select. Platform RAM Error Injection Select. The platform contains two platform RAM
blocks with ECC. This bit selects which RAM is injected.
0 PRAM0 is injected.
1 PRAM1 is injected.

ERRBIT Error Bit Position. The vector defines the bit position, which is complemented to create the data inversion on the
write operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity bit of the
ECC code are inverted.
The platform RAM controller follows a vector bit ordering scheme where LSB = 0. Errors in the ECC syndrome bits
can be generated by setting this field to a value greater than the RAM width. For example, consider a 32-bit RAM
implementation.
The 32-bit ECC approach requires seven code bits for a 32-bit word. For PRAM data width of 32 bits, the actual
SRAM (32b data + 7b for ECC = 39 bits. The following association between the ERRBIT field and the corrupted
memory bit is defined:

if ERRBIT = 0, then RAM[0] is inverted
if ERRBIT = 1, then RAM[1] is inverted
...
if ERRBIT = 31, then RAM[31] is inverted
if ERRBIT = 64,then ECC Parity[0] is inverted
if ERRBIT = 65,then ECC Parity[1] is inverted
...
if ERRBIT = 70,then ECC Parity[6] is inverted

Note: For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.

Table 18-6. EEGR Field Descriptions (continued)

Field Description

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-10 Freescale Semiconductor

18.2.2.6 Platform Flash ECC Master Number Register (PFEMR)

The PFEMR is a 4-bit register for capturing the AXBS bus master number of the last properly enabled
ECC event in the platform flash memory. Depending on the state of the ECC configuration register, an
ECC event in the platform flash causes the address, attributes and data associated with the access to be
loaded into the PFEAR, PFEMR, PFEAT, and PFEDR registers and also the appropriate flag (PF1BC or
PFNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-6 and Table 18-8 for the platform
flash ECC master number register definition.

18.2.2.7 Platform Flash ECC Attributes Register (PFEAT)

The PFEAT is an 8-bit register for capturing the AXBS bus master attributes of the last properly enabled
ECC event in the platform flash memory. Depending on the state of the ECC configuration register, an

Offset: ECSM_BASE_ADDR + 0x0050 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PFEAR

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PFEAR

W

Reset U U U U U U U U U U U U U U U U

Figure 18-5. Platform Flash ECC Address (PFEAR) Register

Table 18-7. PFEAR Field Descriptions

Field Description

PFEAR Platform Flash ECC Address Register. Contains the faulting access address of the last properly enabled platform
flash ECC event.

Offset: ECSM_BASE_ADDR + 0x0056 Access: User read-only

0 1 2 3 4 5 6 7

R 0 0 0 0 PFEMR

W

Reset 0 0 0 0 U U U U

Figure 18-6. Platform Flash ECC Master Number (PFEMR) Register

Table 18-8. PFEMR Field Descriptions

Field Description

PFEMR Platform Flash CC Master Number Register. Contains the AXBS bus master number of the faulting access of the
last properly enabled platform flash ECC event.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-11

ECC event in the platform flash causes the address, attributes and data associated with the access to be
loaded into the PFEAR, PFEMR, PFEAT, and PFEDR registers and also the appropriate flag (PF1BC or
PFNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-7 and Table 18-9 for the platform
flash ECC attributes register definition.

18.2.2.8 Platform Flash ECC Data Register (PFEDR)

The PFEDR is a 64-bit register for capturing the data associated with the last properly enabled ECC event
in the platform flash memory. Depending on the state of the ECC configuration register, an ECC event in
the platform flash causes the address, attributes and data associated with the access to be loaded into the
PFEAR, PFEMR, PFEAT, and PFEDR registers and also the appropriate flag (PF1BC or PFNCE) in the
ECC status register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register is read-only; any attempted write is ignored. See Figure 18-9 and Table 18-10 for the platform
flash ECC data register definition.

Offset: ECSM_BASE_ADDR + 0x0057 Access: User read-only

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset U U U U U U U U

Figure 18-7. Platform Flash ECC Attributes (PFEAT) Register

Table 18-9. PFEAT Field Descriptions

Field Description

WRITE 0 Read access.
1 Write access.

SIZE 000 8-bit access
001 16-bit access
010 32-bit access
011 64-bit access
1xx Reserved

PROTEC
TION

Cache:
0xxx Non-cacheable
1xxx Cacheable
Buffer:
x0xx Non-bufferable
x1xx Bufferable
Mode:
xx0x User mode
xx1x Supervisor mode
Type:
xxx0 I-Fetch
xxx1 Data

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-12 Freescale Semiconductor

18.2.2.9 Platform RAM ECC Address Register (PREAR)

The PREAR is a 32-bit register for capturing the address of the last properly enabled ECC event in the
platform RAM memory. Depending on the state of the ECC configuration register, an ECC event in the
platform RAM causes the address, attributes and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT, and PREDR registers and also the appropriate flag (PR1BC or
PRNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-10 and Table 18-11 for the
PREAR definition.

Offset: ECSM_BASE_ADDR + 0x0058 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PFEDR[0:15]

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PFEDR[16:31]

W

Reset U U U U U U U U U U U U U U U U

Figure 18-8. Platform Flash ECC Data High (PFEDRH) Register

Offset: ECSM_BASE_ADDR + 0x005C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PFEDR[32:47]

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PFEDR[48:63]

W

Reset U U U U U U U U U U U U U U U U

Figure 18-9. Platform Flash ECC Data Low (PFEDRL) Register

Table 18-10. PFEDR Field Descriptions

Field Description

PFEDR Platform Flash ECC Data Register. Contains the data associated with the faulting access of the last properly
enabled platform flash ECC event. The register contains the data value taken directly from the platform data bus.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-13

18.2.2.10 Platform RAM ECC Syndrome Register (PRESR)

The PRESR is an 8-bit register for capturing the error syndrome of the last properly enabled ECC event in
the platform RAM memory. Depending on the state of the ECC configuration register, an ECC event in
the platform RAM causes the address, attributes, and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (PR1BC or PRNCE)
in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-11 and Table 18-12 for the
Platform RAM ECC syndrome register definition.

Offset: ECSM_BASE_ADDR + 0x0060 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PREAR

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PREAR

W

Reset U U U U U U U U U U U U U U U U

Figure 18-10. Platform RAM ECC Address (PREAR) Register

Table 18-11. PREAR Field Descriptions

Field Description

PREAR Platform RAM ECC Address Register. Contains the faulting access address of the last properly enabled platform
RAM ECC event.

Offset: ECSM_BASE_ADDR + 0x0065 Access: User read-only

0 1 2 3 4 5 6 7

R PRESR[0:7]

W

Reset U U U U U U U U

Figure 18-11. Platform RAM ECC Syndrome (PRESR) Register

Table 18-12. PRESR Field Descriptions

Field Description

PRESR Platform RAM ECC Syndrome Register. This 8-bit syndrome field includes 7 bits of Hamming decoded parity plus
an odd-parity bit for the entire 72-bit (64-bit data + 8 ECC) code word. The upper 7 bits of the syndrome specify the
exact bit position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit syndrome
plus overall incorrect parity bit signal a multi-bit, non-correctable error.
For correctable single-bit errors, the mapping shown in Table 18-13 associates the upper 7 bits of the syndrome
with the data bit in error.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-14 Freescale Semiconductor

18.2.2.11 Platform RAM ECC Master Number Register (PREMR)

The PREMR is a 4-bit register for capturing the AXBS bus master number of the last properly enabled
ECC event in the platform RAM memory. Depending on the state of the ECC configuration register, an
ECC event in the platform RAM causes the address, attributes, and data associated with the access to be
loaded into the PREAR, PRESR, PREMR, PREAT, and PREDR registers and also the appropriate flag
(PR1BC or PRNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-12 and Table 18-14 for the
Platform RAM ECC master number register definition.

Table 18-13. Platform RAM Syndrome Mapping for Single-Bit Correctable Errors

PRESR[0:7] Data Bit in Error PRESR[0:7] Data Bit in Error PRESR[0:7] Data Bit in Error

0x00 No Error 0x4F DATA[32] 0xA4 DATA[41]

0x01 ECC[0] 0x52 DATA[34] 0xA7 DATA[42]

0x02 ECC[1] 0x54 DATA[35] 0xA8 DATA[43]

0x04 ECC[2] 0x57 DATA[36] 0xAB DATA[44]

0x08 ECC[3] 0x58 DATA[37] 0xAD DATA[45]

0x0B DATA[17] 0x5B DATA[38] 0xB0 DATA[46]

0x0E DATA[16] 0x5D DATA[39] 0xB5 DATA[47]

0x10 ECC[4] 0x62 DATA[56] 0xCB DATA[1]

0x13 DATA[18] 0x64 DATA[57] 0xCE DATA[0]

0x15 DATA[19] 0x67 DATA[58] 0xD3 DATA[2]

0x16 DATA[20] 0x68 DATA[59] 0xD5 DATA[3]

0x19 DATA[21] 0x6B DATA[60] 0xD6 DATA[4]

0x1A DATA[22] 0x6D DATA[61] 0xD9 DATA[5]

0x1C DATA[23] 0x70 DATA[62] 0xDA DATA[6]

0x20 ECC[5] 0x75 DATA[63] 0xDC DATA[7]

0x23 DATA[8] 0x80 ECC[7] 0xE3 DATA[24]

0x25 DATA[9] 0x8A DATA[49] 0xE5 DATA[25]

0x26 DATA[10] 0x8F DATA[48] 0xE6 DATA[26]

0x29 DATA[11] 0x92 DATA[50] 0xE9 DATA[27]

0x2A DATA[12] 0x94 DATA[51] 0xEA DATA[28]

0x2C DATA[13] 0x97 DATA[52] 0xEC DATA[29]

0x31 DATA[14] 0x98 DATA[53] 0xF1 DATA[30]

0x34 DATA[15] 0x9B DATA[54] 0xF4 DATA[31]

0x40 ECC[6] 0x9D DATA[55] Other values Multiple bit error

0x4A DATA[33] 0xA2 DATA[40]

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-15

18.2.2.12 Platform RAM ECC Attributes Register (PREAT)

The PREAT is an 8-bit register for capturing the AXBS bus master attributes of the last properly enabled
ECC event in the platform RAM memory. Depending on the state of the ECC configuration register, an
ECC event in the platform RAM causes the address, attributes, and data associated with the access to be
loaded into the PREAR, PRESR, PREMR, PREAT, and PREDR registers and also the appropriate flag
(PR1BC or PRNCE) in the ECC status register to be asserted.

This register is read-only; any attempted write is ignored. See Figure 18-13 and Table 18-15 for the
platform RAM ECC attributes register definition.

Offset: ECSM_BASE_ADDR + 0x0066 Access: User read-only

0 1 2 3 4 5 6 7

R 0 0 0 0 PREMR

W

Reset 0 0 0 0 U U U U

Figure 18-12. Platform RAM ECC Master Number (PREMR) Register

Table 18-14. PREMR Field Descriptions

Field Description

PREMR Platform RAM ECC Master Number Register. Contains the AXBS bus master number of the faulting access of the
last properly enabled platform RAM ECC event.

Offset: ECSM_BASE_ADDR + 0x0067 Access: User read-only

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset U U U U U U U U

Figure 18-13. Platform RAM ECC Attributes (PREAT) Register

Table 18-15. PREAT Field Descriptions

Field Description

WRITE 0 Read access.
1 Write access.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-16 Freescale Semiconductor

18.2.2.13 Platform RAM ECC Data Register (PREDR)

The PREDR is a 64-bit register for capturing the data associated with the last properly enabled ECC event
in the platform RAM memory. Depending on the state of the ECC configuration register, an ECC event in
the platform RAM causes the address, attributes, and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT, and PREDR registers and also the appropriate flag (PR1BC or
PRNCE) in the ECC status register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined. This register is read-only; any
attempted write is ignored. See Figure 18-15 and Table 18-16 for the platform RAM ECC data register
definition.

SIZE 000 8-bit access.
001 16-bit access.
010 32-bit access.
011 64-bit access.
1xx Reserved.

PROTEC
TION

Cache:
0xxx Non-cacheable.
1xxx Cacheable.
Buffer:
x0xx Non-bufferable.
x1xx Bufferable.
Mode:
xx0x User mode.
xx1x Supervisor mode.
Type:
xxx0 I-Fetch.
xxx1 Data.

Offset: ECSM_BASE_ADDR + 0x0068 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PREDR[0:15]

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PREDR[16:31]

W

Reset U U U U U U U U U U U U U U U U

Figure 18-14. Platform RAM ECC Data High (PREDRH) Register

Table 18-15. PREAT Field Descriptions (continued)

Field Description

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 18-17

Offset: ECSM_BASE_ADDR + 0x006C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PREDR[32:47

W

Reset U U U U U U U U U U U U U U U U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PREDR48:63]

W

Reset U U U U U U U U U U U U U U U U

Figure 18-15. Platform RAM ECC Data Low (PREDRL) Register

Table 18-16. PREDR Field Descriptions

Field Description

PREDR Platform RAM ECC Data Register. Contains the data associated with the faulting access of the last properly
enabled platform RAM ECC event. The register contains the data value taken directly from the platform data bus.

Error Correction Status Module (ECSM)

MPC5668x Microcontroller Reference Manual, Rev. 4

18-18 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 19-1

Chapter 19
Software Watchdog Timer (SWT)

19.1 Introduction
The Software Watchdog Timer (SWT) is a peripheral module that can prevent system lockup in situations
such as software getting trapped in a loop or if a bus transaction fails to terminate. When enabled, the SWT
requires periodic execution of a watchdog servicing operation. The servicing operation resets the timer to
a specified time-out period. If this servicing action does not occur before the timer expires, the SWT
generates an interrupt or hardware reset. The SWT can be configured to generate a reset or interrupt on an
initial time-out. A reset is always generated on a second consecutive time-out.

The SWT is clocked only from the 16 MHz IRC clock. This clock source is independent from the other
system clocks and hence offers an improved level of safety, since supporting only a single clock source
eliminates any risk of incorrect clock selection.

The SWT is reset in Sleep mode. The user can select whether the SWT runs in other modes with the
SIU_HLT1 register.

19.1.1 Features

The SWT has the following features:

• 32-bit time-out register to set the time-out period

• Programmable selection of window mode or regular servicing

• Programmable selection of reset or interrupt on an initial time-out

• Programmable selection of fixed or keyed servicing

• Master access protection

• Hard and soft configuration lock bits

19.1.2 Modes of Operation

The SWT supports two device modes of operation: normal and debug. When the SWT is enabled in normal
mode, its counter runs continuously. In debug mode, operation of the counter is controlled by the FRZ bit
in the SWT_CR. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it continues to run.

19.2 External Signal Description
The SWT module does not have any external interface signals.

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

19-2 Freescale Semiconductor

19.3 Memory Map and Register Definition
The SWT programming model has seven 32-bit registers. The programming model can only be accessed
using 32-bit (word) accesses. References using a different size are invalid. Other types of invalid accesses
include: writes to read-only registers, incorrect values written to the service register when enabled,
accesses to reserved addresses and accesses by masters without permission. If the RIA bit in the SWT_CR
is set, then the SWT generates a system reset on an invalid access. Otherwise, a bus error is generated. If
either the HLK or SLK bits in the SWT_CR are set, then the SWT_CR, SWT_TO, SWT_WN, and
SWT_SK registers are read-only.

19.3.1 Memory Map

The SWT memory map is shown in Table 19-1.

19.3.2 Register Descriptions

The following sections detail the individual registers within the SWT.

19.3.2.1 SWT Control Register (SWT_CR)

The SWT_CR contains fields for configuring and controlling the SWT. This register is read-only if either
the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

Table 19-1. SWT Memory Map

Offset from
SWT_BASE

(0xFFF3_8000)
Register Access Reset Value Section/Page

0x0000 SWT_CR – SWT control register R/W 0xFF00_0103 19.3.2.1/19-2

0x0004 SWT_IR – SWT interrupt register R/W 0x0000_0000 19.3.2.2/19-4

0x0008 SWT_TO – SWT time-out register R/W 0x0002_7100 19.3.2.3/19-4

0x000C SWT_WN – SWT window register R/W 0x0000_0000 19.3.2.4/19-5

0x0010 SWT_SR – SWT service register R/W 0x0000_0000 19.3.2.5/19-6

0x0014 SWT_CO – SWT counter output register R 0x0000_0000 19.3.2.6/19-6

0x0018 SWT_SK – SWT service key register R/W 0x0000_0000 19.3.2.7/19-7

0x001C– 0x3FFF Reserved

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 19-3

Offset: SWT_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP
0

MAP
1

MAP
2

MAP
3

MAP
4

MAP
5

MAP
6

MAP
7

0 0 0 0 0 0 0 0

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
KEY RIA WND ITR HLK SLK

0 0
FRZ WEN

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

Figure 19-1. SWT Control Register (SWT_CR)

Table 19-2. SWT_CR Field Descriptions

Field Description

MAPn Master Access Protection for Master n. The MPC5668x bus master assignments are shown in the following
table.
0 Access for the master is not enabled
1 Access for the master is enabled.

KEY Keyed Service Mode.
0 Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog.
1 Keyed Service Mode, two pseudorandom key values are used to service the watchdog.

RIA Reset on Invalid Access.
0 Invalid access to the SWT generates a bus error.
1 Invalid access to the SWT causes a system reset if WEN = 1.

WND Window Mode.
0 Regular mode, service sequence can be done at any time.
1 Windowed mode, the service sequence is only valid when the down counter is less than the value in the

SWT_WN register.

ITR Interrupt Then Reset.
0 Generate a reset on a time-out.
1 Generate an interrupt on an initial time-out, reset on a second consecutive time-out.

HLK Hard Lock. This bit is only cleared at reset.
0 SWT_CR, SWT_TO, SWT_WN and SWT_SK are read/write registers if SLK = 0.
1 SWT_CR, SWT_TO, SWT_WN and SWT_SK are read-only registers.

Bit Bus Master Bit Bus Master

MAP0 0 — Z6 Core MAP4 4 — FEC

MAP1 1 — Z0 Core MAP5 5 — MLB

MAP2 2 — eDMA MAP6 6 — FlexRay

MAP3 3 — not used MAP7 7 — not used

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

19-4 Freescale Semiconductor

19.3.2.2 SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

19.3.2.3 SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. This register is read-only if
either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

SLK Soft Lock. This bit is cleared by writing the unlock sequence to the service register.
0 SWT_CR, SWT_TO SWT_WN and SWT_SK are read/write registers if HLK = 0.
1 SWT_CR, SWT_TO, SWT_WN and SWT_SK are read-only registers.

FRZ Debug Mode Control. Allows the watchdog timer to be stopped when the device enters debug mode.
0 SWT counter continues to run in debug mode.
1 SWT counter is stopped in debug mode.

WEN Watchdog Enabled.
0 SWT is disabled.
1 SWT is enabled.

Offset: SWT_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-2. SWT Interrupt Register (SWT_IR)

Table 19-3. SWT_IR Field Descriptions

Field Description

TIF Time-out Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has no effect.
0 No interrupt request.
1 Interrupt request due to an initial time-out.

Table 19-2. SWT_CR Field Descriptions

Field Description

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 19-5

19.3.2.4 SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register is cleared on
reset. This register is read-only if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

Offset: SWT_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WTO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WTO

W

Reset 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

Figure 19-3. SWT Time-Out Register (SWT_TO)

Table 19-4. SWT_TO Register Field Descriptions

Field Description

WTO Watchdog time-out period in clock cycles. An internal 32-bit down counter is loaded with this value or 0x0100,
whichever is greater, when the service sequence is written or when the SWT is enabled.

Offset: SWT_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R WST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-4. SWT Window Register (SWT_WN)

Table 19-5. SWT_WN Register Field Descriptions

Field Description

WST Window start value. When window mode is enabled, the service sequence can only be written when the internal
down counter is less than this value.

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

19-6 Freescale Semiconductor

19.3.2.5 SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service operation writes used to reset the
watchdog timer.

19.3.2.6 SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read-only register that shows the value of the internal
down counter when the SWT is disabled.

Offset: SWT_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W WSC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-5. SWT Service Register (SWT_SR)

Table 19-6. SWT_SR Field Descriptions

Field Description

WSC Watchdog Service Code.This field is used to service the watchdog and to clear the soft lock bit (SWT_CR[SLK]). If
the SWT_CR[KEY] bit is set, two pseudorandom key values are written to service the watchdog, see Section
Section 19.4, “Functional Description,” for details. Otherwise, the sequence 0xA602 followed by 0xB480 is written to
the WSC field. To clear the soft lock bit (SWT_CR[SLK]), the value 0xC520 followed by 0xD928 is written to the WSC
field.

Offset: SWT_BASE + 0x0014 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-6. SWT Counter Output Register (SWT_CO)

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 19-7

19.3.2.7 SWT Service Key Register (SWT_SK)

The SWT Service Key (SWT_SK) register holds the previous (or initial) service key value. This register
is read-only if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

19.4 Functional Description
The SWT is a 32-bit timer designed to enable the system to recover in situations such as software getting
trapped in a loop or if a bus transaction fails to terminate. It includes a a control register (SWT_CR), an
interrupt register (SWT_IR), time-out register (SWT_TO), a window register (SWT_WN), a service
register (SWT_SR), a counter output register (SWT_CO), and a service key register (SWT_SK).

The SWT_CR includes bits to enable the timer, set configuration options, and lock configuration of the
module. The watchdog is enabled by setting the SWT_CR[WEN] bit. The reset value of the
SWT_CR[WEN] bit is 1. Since the reset value of this bit is 1, the watchdog starts operation automatically
after reset is released. Some devices can be configured to clear this bit automatically during the boot
process.

Table 19-7. SWT_CO Register Field Descriptions

Field Description

CNT Watchdog Count. When the watchdog is disabled (SWT_CR[WEN] = 0) this field shows the value of the internal
down counter. When the watchdog is enabled the value of this field is 0x0000_0000. Values in this field can lag
behind the internal counter value for as many as 6 system plus 8 counter clock cycles. Therefore, the value read from
this field immediately after disabling the watchdog may be higher than the actual value of the internal counter.

Offset: SWT_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W SK

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-7. SWT Service Register (SWT_SR)

Table 19-8. SWT_SR Field Descriptions

Field Description

SK Service Key.This field is the previous (or initial) service key value used in keyed service mode. If SWT_CR[KEY] is
set, the next key value to be written to the SWT_SR is (17*SK+3) mod 216.

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

19-8 Freescale Semiconductor

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is less than
0x100, in which case the time-out period is set to 0x100. This time-out period is loaded into an internal
32-bit down counter when the SWT is enabled and each time a valid service operation is performed. The
SWT_CR[CSL] bit selects which clock (system or oscillator) is used to drive the down counter.

NOTE
The default value of SWT_TO is updated by the BAM code during the serial
download routine. See Section 8.3.3.2, “Serial-Boot Mode Features,” for
more details.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock. In either case,
when locked the SWT_CR, SWT_TO, SWT_WN, and SWT_SK registers are read-only. The hard lock is
enabled by setting the SWT_CR[HLK] bit which can only be cleared by a reset. The soft lock is enabled
by setting the SWT_CR[SLK] bit and is cleared by writing the unlock sequence to the service register. The
unlock sequence is a write of 0xC520 followed by a write of 0xD928 to the SWT_SR[WSC] field. There
is no timing requirement between the two writes. The unlock sequence logic ignores service sequence
writes and recognizes the 0xC520, 0xD928 sequence regardless of previous writes. The unlock sequence
can be written at any time and does not require the SWT_CR[WEN] bit to be set.

When enabled, the SWT requires periodic execution of a servicing operation which consists of writing two
values to the SWT_SR. Writing the proper sequence of values loads the internal down counter with the
time-out period. There is no timing requirement between the two writes and the service sequence logic
ignores unlock sequence writes. If the SWT_CR[KEY] bit is zero, the fixed sequence 0xA602, 0xB480 is
written to the SWT_SR[WSC] field to service the watchdog. If the SWT_CR[KEY] bit is set, then two
pseudorandom keys are written to the SWT_SR[WSC] field to service the watchdog. The key values are
determined by the pseudorandom key generator defined in Equation 19-1. This algorithm generates a
sequence of 216 different key values before repeating. The state of the key generator is held in the
SWT_SK register. For example, if SWT_SK[SK] is 0x0100 then the service sequence keys are 0x1103,
0x2136. In this mode, each time a valid key is written to the SWT_SR register, the SWT_SK register is
updated. So, after servicing the watchdog by writing 0x1103 and then 0x2136 to the SWT_SR[WSC] field,
SWT_SK[SK] is 0x2136 and the next key sequence is 0x3499, 0x7E2C.

Pseudorandom Key Generator Eqn. 19-1

Accesses to SWT registers occur with no peripheral bus wait states. However, due to synchronization logic
in the SWT design, recognition of the service sequence or configuration changes may require as many as
3 system plus 7 counter clock cycles.

If window mode is enabled (SWT_CR[WND] bit is set), the service sequence must be performed in the
last part of the time-out period defined by the window register. The window is open when the down counter
is less than the value in the SWT_WN register. Outside of this window, service sequence writes are invalid
accesses and generate a bus error or reset depending on the value of the SWT_CR[RIA] bit. For example,
if the SWT_TO register is set to 5000 and SWT_WN register is set to 1000 then the service sequence must
be performed in the last 20% of the time-out period. There is a short lag in the time it takes for the window

SKn+1 = (17*SKn+3) mod 2
16

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 19-9

to open due to synchronization logic in the watchdog design. This delay could be as many as 3 system plus
4 counter clock cycles.

The interrupt then reset bit (SWT_CR[ITR]) controls the action taken when a time-out occurs. If the
SWT_CR[ITR] bit is not set, a reset is generated immediately on a time-out. If the SWT_CR[ITR] bit is
set, an initial time-out causes the SWT to generate an interrupt and load the down counter with the time-out
period. If the service sequence is not written before the second consecutive time-out, the SWT generates
a system reset. The interrupt is indicated by the time-out interrupt flag (SWT_IR[TIF]). The interrupt
request is cleared by writing a one to the SWT_IR[TIF] bit.

The SWT_CO register shows the value of the down counter when the watchdog is disabled. When the
watchdog is enabled this register is cleared. The value shown in this register can lag behind the value in
the internal counter for as many as 6 system plus 8 counter clock cycles.

The SWT_CO can be used during a software self test of the SWT. For example, the SWT can be enabled
and not serviced for a fixed period of time less than the time-out value. Then the SWT can be disabled
(SWT_CR[WEN] cleared) and the value of the SWT_CO read to determine if the internal down counter
is working properly.

Software Watchdog Timer (SWT)

MPC5668x Microcontroller Reference Manual, Rev. 4

19-10 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 20-1

Chapter 20
System Timer Module (STM)

20.1 Overview
The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel. The counter is driven by the system clock
divided by an 8-bit prescale value (1 to 256).

20.1.1 Features

The STM has the following features:

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels

• Independent interrupt source for each channel

• Counter can be stopped in debug mode

20.1.2 Modes of Operation

The STM supports two device modes of operation: normal and debug. When the STM is enabled in normal
mode, its counter runs continuously. In debug mode, operation of the counter is controlled by the FRZ bit
in the STM_CR. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it continues to run.

20.1.3 Clocking

The STM is clocked by the system clock. It can be frozen during debug by asserting the FREEZE signal.

20.1.4 Interrupts

The STM has four independent interrupt sources that are connected to the interrupt controller.

20.2 External Signal Description
The STM does not have any external interface signals.

System Timer Module (STM)

MPC5668x Microcontroller Reference Manual, Rev. 4

20-2 Freescale Semiconductor

20.3 Memory Map and Register Definition
The STM has 14 32-bit read and write access registers. The STM registers can only be accessed using
32-bit (word) accesses. Attempted references using a different size or to a reserved address generates a bus
error termination.

20.3.1 Memory Map

The STM memory map is shown in Table 20-1.

20.3.2 Register Descriptions

The following sections detail the individual registers within the STM.

Table 20-1. STM Memory Map

Offset from
STM_BASE

(0xFFF3_C000)
Register Access

Reset
Value1

1 See register definition.

Section/Page

Base + 0x0000 STM_CR – STM Control Register R/W 0x0000_0000 20.3.2.1/20-3

Base + 0x0004 STM_CNT – STM Counter Value R/W 0x0000_0000 20.3.2.2/20-3

Base + 0x0008 Reserved

Base + 0x000C Reserved

Base + 0x0010 STM_CCR0 – STM Channel 0 Control Register R/W 0x0000_0000 20.3.2.3/20-4

Base + 0x0014 STM_CIR0 – STM Channel 0 Interrupt Register R/W 0x0000_0000 20.3.2.4/20-4

Base + 0x0018 STM_CMP0 – STM Channel 0 Compare Register R/W 0x0000_0000 20.3.2.5/20-5

Base + 0x001C Reserved

Base + 0x0020 STM_CCR1 – STM Channel 1 Control Register R/W 0x0000_0000 20.3.2.3/20-4

Base + 0x0024 STM_CIR1 – STM Channel 1 Interrupt Register R/W 0x0000_0000 20.3.2.4/20-4

Base + 0x0028 STM_CMP1 – STM Channel 1 Compare Register R/W 0x0000_0000 20.3.2.5/20-5

Base + 0x002C Reserved

Base + 0x0030 STM_CCR2 – STM Channel 2 Control Register R/W 0x0000_0000 20.3.2.3/20-4

Base + 0x0034 STM_CIR2 – STM Channel 2 Interrupt Register R/W 0x0000_0000 20.3.2.4/20-4

Base + 0x0038 STM_CMP2 – STM Channel 2 Compare Register R/W 0x0000_0000 20.3.2.5/20-5

Base + 0x003C Reserved

Base + 0x0040 STM_CCR3 – STM Channel 3 Control Register R/W 0x0000_0000 20.3.2.3/20-4

Base + 0x0044 STM_CIR3 – STM Channel 3 Interrupt Register R/W 0x0000_0000 20.3.2.4/20-4

Base + 0x0048 STM_CMP3 – STM Channel 3 Compare Register R/W 0x0000_0000 20.3.2.5/20-5

Base + 0x004C–0x3FFF Reserved

System Timer Module (STM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 20-3

20.3.2.1 STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control, and timer enable bits.

20.3.2.2 STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

Offset: STM_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-1. STM Control Register (STM_CR)

Table 20-2. STM_CR Field Descriptions

Field Description

CPS Counter Prescaler. Selects the clock divide value for the prescaler (1–256).
0x00 Divide system clock by 1.
0x01 Divide system clock by 2.
...
0xFF Divide system clock by 256.

FRZ Freeze. Allows the timer counter to be stopped when the device enters debug mode.
0 STM counter continues to run in debug mode.
1 STM counter is stopped in debug mode.

TEN Timer Counter Enabled.
0 Counter is disabled.
1 Counter is enabled.

Offset STM_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0

Figure 20-2. STM Count Register (STM_CNT)

Table 20-3. STM_CNT Field Descriptions

Field Description

CNT Timer count value used as the time base for all channels. When enabled, the counter increments at the rate of the
system clock divided by the prescale value.

System Timer Module (STM)

MPC5668x Microcontroller Reference Manual, Rev. 4

20-4 Freescale Semiconductor

20.3.2.3 STM Channel Control Register (STM_CCRn)

The STM Channel Control Register (STM_CCRn) is used to enable and service channel n of the timer.

20.3.2.4 STM Channel Interrupt Register (STM_CIRn)

The STM Channel Interrupt Register (STM_CIRn) is used to enable and service channel n of the timer.

Offset STM_CCR0: STM_BASE + 0x0010
STM_CCR1: STM_BASE + 0x0020
STM_CCR2: STM_BASE + 0x0030
STM_CCR3: STM_BASE + 0x0040

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-3. STM Channel Status and Control Register (STM_CCRn)

Table 20-4. STM_CCRn Field Descriptions

Field Description

CEN Channel Enable.
0 The channel is disabled.
1 The channel is enabled.

Offset: STM_CIR0: STM_BASE + 0x0014
STM_CIR1: STM_BASE + 0x0024
STM_CIR2: STM_BASE + 0x0034
STM_CIR3: STM_BASE + 0x0044

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-4. STM Channel Interrupt Register (STM_CIRn)

System Timer Module (STM)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 20-5

20.3.2.5 STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

20.4 Functional Description
The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all channels. When
enabled, the counter increments at the system clock frequency divided by a prescale value. The
STM_CR[CPS] field sets the divider to any value in the range from 1 to 256. The counter is enabled with
the STM_CR[TEN] bit. When enabled in normal mode the counter continuously increments. When
enabled in debug mode the counter operation is controlled by the STM_CR[FRZ] bit. When the
STM_CR[FRZ] bit is set, the counter is stopped in debug mode, otherwise it continues to run in debug
mode. The counter rolls over at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control register
(STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare register (STM_CMPn).
The channel is enabled by setting the STM_CCRn[CEN] bit. When enabled, the channel sets the
STM_CIRn[CIF] bit and generate an interrupt request when the channel compare register matches the
timer counter. The interrupt request is cleared by writing a 1 to the STM_CIRn[CIF] bit. A write of 0 to
the STM_CIRn[CIF] bit has no effect.

Table 20-5. STM_CIRn Field Descriptions

Field Description

CIF Channel Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has no effect.
0 No interrupt request.
1 Interrupt request due to a match on the channel.

Offset: STM_CMP0: STM_BASE + 0x0018
STM_CMP1: STM_BASE + 0x0028
STM_CMP2: STM_BASE + 0x0038
STM_CMP3: STM_BASE + 0x0048

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0

Figure 20-5. STM Channel Compare Register (STM_CMPn)

Table 20-6. STM_CMPn Register Field Descriptions

Field Description

CMP Compare value for channel n. If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches the
STM_CNTn register, a channel interrupt request is generated and the STM_CIRn[CIF] bit is set.

System Timer Module (STM)

MPC5668x Microcontroller Reference Manual, Rev. 4

20-6 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 21-1

Chapter 21
Periodic Interrupt Timer (PIT)

21.1 Introduction
The Periodic Interrupt Timer (PIT) is an array of timers that can be used to initiate interrupts and trigger
DMA channels.

21.1.1 Block Diagram

A simplified block diagram of the PIT illustrates the functionality and interdependence of major blocks
(see Figure 21-1).

Figure 21-1. PIT Block Diagram

Timer 1

Timer 8

Timer 2

.

.

.

PIT
Registers

Peripheral

interrupts

timeout

load_value

Peripheral

PIT

.

.

.

triggers

bus

bus clock

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

21-2 Freescale Semiconductor

21.1.2 Features

The PIT has these major features:

• Eight 32-bit timers generating DMA trigger pulses

• All timers can be configured to generate interrupts instead of triggers

• Timer 3 can be the source of an ADC trigger input via SIU configuration

• Timers share one common core clock

• Independent timeout periods for each timer

21.1.3 Modes of Operation

There are two main operating modes of PIT: run mode and halt mode. In run mode, bit 7 = 0 in the
SIU_HLT0 register and all functional parts of the PIT module are running. In halt mode, bit 7 = 1 in the
SIU_HLT0 register, and the clock to the PIT module is disabled, halting the module.

21.2 Signal Description

21.2.1 External Signal Description

The PIT module has no external signals.

21.3 Memory Map and Registers
This section provides a detailed description of all PIT registers.

21.3.1 Module Memory Map

The PIT memory map is shown in Table 21-2. The address of each register is given as an offset to the PIT
base address. Registers are listed in address order, identified by complete name and mnemonic, with the
type of accesses allowed.

Table 21-1. Timer Features

Timer
Interrupt

Vector Number
DMA Trigger ADC Trigger CTU Trigger

1 149 X

2 150 X

3 151 X X

4 152 X X

5 153 X

6 154 X

7 155 X

8 156 X

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 21-3

Table 21-2. PIT Memory Map

Offset from
PIT_BASE

(0xFFFE_0000)
Register Access Reset Value Section/Page

0x0000 PITMCR—PIT Module Control Register R/W1 0x0000_0000 21.3.2.1/21-4

0x0004–0x00FF Reserved

Timer Channel 1

0x0100 LDVAL1—Timer 1 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0104 CVAL1—Timer 1 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0108 TCTRL1—Timer 1 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x010C TFLG1—Timer 1 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 2

0x0110 LDVAL2—Timer 2 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0114 CVAL2—Timer 2 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0118 TCTRL2—Timer 2 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x011C TFLG2—Timer 2 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 3

0x0120 LDVAL3—Timer 3 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0124 CVAL3—Timer 3 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0128 TCTRL3—Timer 3 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x012C TFLG3—Timer 3 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 4

0x0130 LDVAL4—Timer 4 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0134 CVAL4—Timer 4 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0138 TCTRL4—Timer 4 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x013C TFLG4—Timer 4 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 5

0x0140 LDVAL5—Timer 5 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0144 CVAL5—Timer 5 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0148 TCTRL5—Timer 5 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x014C TFLG5—Timer 5 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 6

0x0150 LDVAL6—Timer 6 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0154 CVAL6—Timer 6 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0158 TCTRL6—Timer 6 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x015C TFLG6—Timer 6 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

21-4 Freescale Semiconductor

21.3.2 Register Descriptions

This section lists the PIT registers and describes the registers and their bit fields.

21.3.2.1 PIT Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers should run in
debug mode.

Timer Channel 7

0x0160 LDVAL7—Timer 7 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0164 CVAL7—Timer 7 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0168 TCTRL7—Timer 7 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x016C TFLG7—Timer 7 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

Timer Channel 8

0x0170 LDVAL8—Timer 8 Load Value Register R/W 0x0000_0000 21.3.2.2/21-5

0x0174 CVAL8—Timer 8 Current Value Register R/W 0x0000_0000 21.3.2.3/21-5

0x0178 TCTRL8—Timer 8 Control Register R/W1 0x0000_0000 21.3.2.4/21-6

0x017C TFLG8—Timer 8 Flag Register R/W1 0x0000_0000 21.3.2.5/21-7

0x0180–0x03FF Reserved

1 Some bits are read-only.

Offset: PIT_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MDIS FRZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 21-2. PIT Module Control Register (PITMCR)

Table 21-2. PIT Memory Map (continued)

Offset from
PIT_BASE

(0xFFFE_0000)
Register Access Reset Value Section/Page

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 21-5

21.3.2.2 Timer n Load Value Register (LDVALn)

These registers select the timeout period for the timer interrupts. Changes to this value are visible
immediately.

21.3.2.3 Timer n Current Value Register (CVALn)

These registers indicate the current timer position.

Table 21-3. PITMCR Field Descriptions

Field Description

MDIS Module Disable. This is used to disable the module clock. This bit should be enabled before any other setup is
done.
0 Clock for PIT Timers is enabled.
1 Clock for PIT Timers is disabled (default).

FRZ Freeze. Allows the timers to be stopped when the device enters debug mode.
0 Timers continue to run in debug mode.
1 Timers are stopped in debug mode.

Offset: Channel_base + 0x0000
LDVAL1 = 0x0100
LDVAL2 = 0x0110
LDVAL3 = 0x0120
LDVAL4 = 0x0130

LDVAL5 = 0x0140
LDVAL6 = 0x0150
LDVAL7 = 0x0160
LDVAL8 = 0x0170

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV31 TSV30 TSV29 TSV28 TSV27 TSV26 TSV25 TSV24 TSV23 TSV22 TSV21 TSV20 TSV19 TSV18 TSV17 TSV16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV15 TSV14 TSV13 TSV12 TSV11 TSV10 TSV9 TSV8 TSV7 TSV6 TSV5 TSV4 TSV3 TSV2 TSV1 TSV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-3. Timer n Load Value Register (LDVALn)

Table 21-4. LDVALn Field Descriptions

Field Description

TSVn Time Start Value Bits. These bits set the timer start value. The timer counts down until it reaches 0. Then it
generates an interrupt and loads this register value again. Writing a new value to this register does not restart
the timer. Instead, the value is reloaded once the timer expires. To stop the current cycle and start a timer
period with the new value, the timer must be disabled and enabled again (see Figure 21-8).

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

21-6 Freescale Semiconductor

21.3.2.4 Timer n Control Register (TCTRLn)

These registers contain the control bits for each timer.

Offset: Channel_base + 0x0004
LDVAL1 = 0x0104
LDVAL2 = 0x0114
LDVAL3 = 0x0124
LDVAL4 = 0x0134

LDVAL5 = 0x0144
LDVAL6 = 0x0154
LDVAL7 = 0x0164
LDVAL8 = 0x0174

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TVL31 TVL30 TVL29 TVL28 TVL27 TVL26 TVL25 TVL24 TVL23 TVL22 TVL21 TVL20 TVL19 TVL18 TVL17 TVL16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TVL15 TVL14 TVL13 TVL12 TVL11 TVL10 TVL9 TVL8 TVL7 TVL6 TVL5 TVL4 TVL3 TVL2 TVL1 TVL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-4. Timer n Current Value Register (CVALn)

Table 21-5. CVALn Field Descriptions

Field Description

TVLn Current Timer Value. These bits represent the current timer value. Note that the timer uses a down counter.
Note: The timer values are frozen in Debug mode if the FRZ bit is set in the PIT Module Control Register (see

Figure 21-2).

Offset: Channel_base + 0x0008
LDVAL1 = 0x0108
LDVAL2 = 0x0118
LDVAL3 = 0x0128
LDVAL4 = 0x0138

LDVAL5 = 0x0148
LDVAL6 = 0x0158
LDVAL7 = 0x0168
LDVAL8 = 0x0178

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-5. Timer n Control Register (TCTRLn)

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 21-7

21.3.2.5 Timer n Flag Register (TFLGn)

These registers hold the PIT interrupt flags.

Table 21-6. TCTRLn Field Descriptions

Field Description

TIE Timer Interrupt Enable Bit.
0 Interrupt requests from Timer n are disabled.
1 Interrupt will be requested whenever TIF is set.
When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event. To
avoid this, the associated TIF flag must be cleared first.

TEN Timer Enable Bit.
0 Timer is disabled.
1 Timer is active.

Offset: Channel_base + 0x000C
LDVAL1 = 0x010C
LDVAL2 = 0x011C
LDVAL3 = 0x012C
LDVAL4 = 0x013C

LDVAL5 = 0x014C
LDVAL6 = 0x015C
LDVAL7 = 0x016C
LDVAL8 = 0x017C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 21-6. Timer n Flag Register (TFLGn)

Table 21-7. TFLGn Field Descriptions

Field Description

TIF Time Interrupt Flag. TIF is set to 1 at the end of the timer period.This flag can be cleared only by writing it with
a 1. Writing a 0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.
0 Time-out has not yet occurred.
1 Time-out has occurred.

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

21-8 Freescale Semiconductor

21.4 Functional Description
The PIT block has eight timers for general-purpose use. Each timer can be used to generate trigger pulses
as well as to generate interrupts. Each interrupt is available on a separate interrupt line.

21.4.1 Timers

The timers generate triggers at periodic intervals, when enabled. They load their start values, as specified
in their LDVALn registers, then count down until they reach 0. Then they load their respective start value
again. Each time a timer reaches 0, it will generate a trigger pulse, and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRLn registers). A new interrupt
can be generated only after the previous one is cleared.

If desired, the current counter value of the timer can be read via the CVALn registers.

The counter period can be restarted by first disabling and then re-enabling the timer, using the TEN bit (see
Figure 21-7).

The counter period of a running timer can be modified, by first disabling the timer, setting a new load value
and then enabling the timer again (see Figure 21-8).

It is also possible to change the counter period without restarting the timer by writing the LDVALn register
with the new load value. This value will then be loaded after the next trigger event (see Figure 21-9).

Figure 21-7. Stopping and Starting a Timer

Figure 21-8. Modifying Running Timer Period

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Start Value

p2 p2 p2

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 21-9

Figure 21-9. Dynamically Setting a New Load Value

21.4.2 Debug Mode

In debug mode, the timers are frozen. This is intended to aid software development, allowing the developer
to halt the processor, investigate the current state of the system (e.g., the timer values), and then continue
the operation.

21.4.3 Interrupts

All of the timers support interrupt generation. SeeChapter 9, “Interrupts and Interrupt Controller (INTC),”
for related vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to 0. The timer interrupt flags (TIF) are set to 1
when a timeout occurs on the associated timer, and are cleared to 0 by writing a 1 to that TIF bit.

21.5 Initialization and Application Information

21.5.1 Example Configuration

In the example configuration:

• The PIT clock has a frequency of 50 MHz

• Timer 1 creates an interrupt every 5.12 ms

• Timer 8 creates a trigger event every 30 ms.

First the PIT module needs to be activated by writing a 0 to the MDIS bit in the PITMCR register.

The 50 MHz clock frequency equates to a clock period of 20 ns and the 10 MHz frequency equates to a
clock period of 100 ns. Timer 1 needs to trigger every 5.12 ms/20 ns = 256,000 cycles, and Timer 8 needs
to trigger every 30 ms/20 ns = 1,500,000 cycles. The value for the LDVALn register trigger would be
calculated as (period / clock period) – 1.

This means that LDVAL1 will be written with 0x0003_E7FF, and LDVAL8 with 0x0016_E35F.

Enable the interrupt for Timer 1 is doing the following:

1. Clear TIF in TFLG1. (If TIF is set, an interrupt occurs immediately when Timer 1 is enabled.)

2. Set TIE in the TCTRL1 register.

3. Start the timer by writing a 1 to bit TEN in the TCTRL1 register.

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event

Periodic Interrupt Timer (PIT)

MPC5668x Microcontroller Reference Manual, Rev. 4

21-10 Freescale Semiconductor

Timer 8 is used for triggering only. Timer 8 is started by writing a 1 to bit TEN in the TCTRL8 register.

The following example code matches the described setup:
// turn on PIT
PIT_REG_P->pit_CTRL = 0x00;

// Timer 1
PIT_REG_P->pit_LDVAL1 = 0x0003E7FF; // setup Timer 1 for 256000 cycles
PIT_REG_P->pit_TCTRL1 |= 1<<1; // enable Timer 1 interrupts
PIT_REG_P->pit_EN |= 1<<1; // start timer 1

// Timer 8
PIT_REG_P->pit_LDVAL8 = 0x0016E35F; // setup timer 8 for 1500000 cycles
// timer 8 can’t generate interrupts -> no settings needed for trigger
PIT_REG_P->pit_EN |= 1<<8; // start timer 8

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-1

Chapter 22
DMA Channel Multiplexer (DMA_MUX)

22.1 Introduction
The DMA channel multiplexer (DMA_MUX) module allows for software selection of 32 out of 59
possible DMA sources. As many as 55 of these DMA sources are requests from peripherals, but four of
the peripheral sources are reserved and behave as always disabled sources. Four sources are always
enabled and generate a DMA request as soon as that source is selected. One source (the default for all
channels) is always disabled.

22.1.1 Block Diagram

A simplified block diagram of the DMA_MUX is shown in Figure 22-1.

Figure 22-1. DMA_MUX Block Diagram

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #1

DMA Channel #2

DMA Channel #3

DMA Channel #4

DMA Channel #5

DMA Channel #6

DMA Channel #7

DMA Channel #8

DMA Channel #9

DMA Channel #10

DMA Channel #11

DMA Channel #30

DMA Channel #31

DMA Channel #0

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-2 Freescale Semiconductor

22.1.2 Features

The DMA_MUX has these major features:

• 32 independently selectable DMA channel routers

— Four channels with normal or periodic triggering capability

— 24 channels with normal operation only

— Each channel router can be assigned to 1 of 55 possible peripheral DMA sources, eight always
enabled sources, or one always disabled source.

22.1.3 Modes of Operation

DMA channels 0–7 may be used in the following modes, but channels 8–31 may only be configured to
disabled or normal mode.

• Disabled mode

In this mode, the DMA channel is disabled. Because disabling and enabling of DMA channels is
done primarily via the DMA registers, this mode is used mainly as the reset state for a DMA
channel in the DMA channel mux. It may also be used to temporarily suspend a DMA channel
while reconfiguration of the system takes place (changing the period of a DMA trigger, for
example).

• Normal mode

In this mode, a DMA source (such as SCI transmit or SCI receive for example) is routed directly
to the specified DMA channel. The operation of the DMA_MUX in this mode is completely
transparent to the system.

• Periodic trigger mode

In this mode, a DMA source may only request a DMA transfer (such as when a transmit buffer
becomes empty or a receive buffer becomes full) periodically. Configuration of the period is done
in the registers of the periodic interrupt timer.

22.2 External Signal Description
The DMA_MUX has no external signals.

22.3 Memory Map and Registers
This section provides a detailed description of all DMA_MUX registers.

22.3.1 Module Memory Map

The DMA_MUX memory map is shown in Table 22-1. The address of each register is given as an offset
to the DMA_MUX base address. Registers are listed in address order, identified by complete name and
mnemonic, and list the type of accesses allowed.

All registers are accessible via 8-bit, 16-bit, or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries and 32-bit accesses must be aligned to 32-bit boundaries. As an example,

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-3

CHCONFIG0 through CHCONFIG4 are accessible by a 32-bit READ/WRITE to address
DMA_MUX_BASE + 0x00, but performing a 32-bit access to address DMA_MUX_BASE + 0x01 is
illegal.

Table 22-1. DMA_MUX Memory Map

Offset from
DMA_MUX_BASE
(0xFFFD_C000)

Register Access Reset Value Section/Page

0x0000 CHCONFIG0—Channel #0 configuration R/W 0x00 22.3.2.1/22-4

0x0001 CHCONFIG1—Channel #1 configuration R/W 0x00 22.3.2.1/22-4

0x0002 CHCONFIG2—Channel #2 configuration R/W 0x00 22.3.2.1/22-4

0x0003 CHCONFIG3—Channel #3 configuration R/W 0x00 22.3.2.1/22-4

0x0004 CHCONFIG4—Channel #4 configuration R/W 0x00 22.3.2.1/22-4

0x0005 CHCONFIG5—Channel #5 configuration R/W 0x00 22.3.2.1/22-4

0x0006 CHCONFIG6—Channel #6 configuration R/W 0x00 22.3.2.1/22-4

0x0007 CHCONFIG7—Channel #7 configuration R/W 0x00 22.3.2.1/22-4

0x0008 CHCONFIG8—Channel #8 configuration R/W 0x00 22.3.2.1/22-4

0x0009 CHCONFIG9—Channel #9 configuration R/W 0x00 22.3.2.1/22-4

0x000A CHCONFIG10—Channel #10 configuration R/W 0x00 22.3.2.1/22-4

0x000B CHCONFIG11—Channel #11 configuration R/W 0x00 22.3.2.1/22-4

0x000C CHCONFIG12—Channel #12 configuration R/W 0x00 22.3.2.1/22-4

0x000D CHCONFIG13—Channel #13 configuration R/W 0x00 22.3.2.1/22-4

0x000E CHCONFIG14—Channel #14 configuration R/W 0x00 22.3.2.1/22-4

0x000F CHCONFIG15—Channel #15 configuration R/W 0x00 22.3.2.1/22-4

0x0010 CHCONFIG16—Channel #16 configuration R/W 0x00 22.3.2.1/22-4

0x0011 CHCONFIG17—Channel #17 configuration R/W 0x00 22.3.2.1/22-4

0x0012 CHCONFIG18—Channel #18 configuration R/W 0x00 22.3.2.1/22-4

0x0013 CHCONFIG19—Channel #19 configuration R/W 0x00 22.3.2.1/22-4

0x0014 CHCONFIG20—Channel #20 configuration R/W 0x00 22.3.2.1/22-4

0x0015 CHCONFIG21—Channel #21 configuration R/W 0x00 22.3.2.1/22-4

0x0016 CHCONFIG22—Channel #22 configuration R/W 0x00 22.3.2.1/22-4

0x0017 CHCONFIG23—Channel #23 configuration R/W 0x00 22.3.2.1/22-4

0x0018 CHCONFIG24—Channel #24 configuration R/W 0x00 22.3.2.1/22-4

0x0019 CHCONFIG25—Channel #25 configuration R/W 0x00 22.3.2.1/22-4

0x001A CHCONFIG26—Channel #26 configuration R/W 0x00 22.3.2.1/22-4

0x001B CHCONFIG27—Channel #27 configuration R/W 0x00 22.3.2.1/22-4

0x001C CHCONFIG28—Channel #28 configuration R/W 0x00 22.3.2.1/22-4

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-4 Freescale Semiconductor

22.3.2 Register Descriptions

This section lists the DMA_MUX registers in address order and describes the registers and their bit fields.

22.3.2.1 Channel Configuration Registers (CHCONFIGx)

Each of the 32 DMA channels can be independently enabled/disabled and associated with one of the 59
DMA sources in the system.

0x001D CHCONFIG29—Channel #29 configuration R/W 0x00 22.3.2.1/22-4

0x001E CHCONFIG30—Channel #30 configuration R/W 0x00 22.3.2.1/22-4

0x001F CHCONFIG31—Channel #31 configuration R/W 0x00 22.3.2.1/22-4

Offset: DMA_MUX_BASE + x – 1 Access: User read/write

0 1 2 3 4 5 6 7

R
ENBL TRIG SOURCE

W

Reset 0 0 0 0 0 0 0 0

Figure 22-2. Channel Configuration Registers (CHCONFIGx)

Table 22-2. CHCONFIGx Field Descriptions

Field Description

ENBL DMA Channel Enable. ENBL enables the DMA channel.
0 DMA channel is disabled. This mode is primarily used during configuration of the DMA_MUX. The DMA has

separate channel enables/disables, which should be used to disable or re-configure a DMA channel.
1 DMA channel is enabled.

TRIG DMA Channel Trigger Enable (channels 0–7 only). TRIG enables the periodic trigger capability for the DMA channel
0 Triggering is disabled. If triggering is disabled and the ENBL bit is set, the DMA channel routes the specified

source to the DMA channel.
1 Triggering is enabled.

SOURCE DMA Channel Source. SOURCE specifies which DMA source, if any, is routed to a particular DMA channel,
according to Table 22-4.

Table 22-3. Channel and Trigger Enabling

ENBL TRIG Function Mode

0 X DMA channel is disabled Disabled mode

1 0 DMA channel is enabled with no triggering (transparent) Normal mode

1 1 DMA channel is enabled with triggering Periodic trigger mode

Table 22-1. DMA_MUX Memory Map (continued)

Offset from
DMA_MUX_BASE
(0xFFFD_C000)

Register Access Reset Value Section/Page

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-5

NOTE
Setting multiple CHCONFIG registers with the same DMA source value
results in unpredictable behavior.

Table 22-4. DMA Source Configuration

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

Channel disabled1 0x00 Channel disabled Channel disabled

Reserved 0x01 Reserved Reserved

SCI_A_COMBTX 0x02 SCI_A.SCISR1[TDRE] ||
SCI_A.SCISR1[TC] ||

SCI_A.LINSTAT1[TXRDY]

SCI_A combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_A_COMBRX 0x03 SCI_A.SCISR1[RDRF] ||
SCI_A.LINSTAT1[RXRDY]

SCI_A combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_B_COMBTX 0x04 SCI_B.SCISR1[TDRE] ||
SCI_B.SCISR1[TC] ||

SCI_B.LINSTAT1[TXRDY]

SCI_B combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_B_COMBRX 0x05 SCI_B.SCISR1[RDRF] ||
SCI_B.LINSTAT1[RXRDY]

SCI_B combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_C_COMBTX 0x06 SCI_C.SCISR1[TDRE] ||
SCI_C.SCISR1[TC] ||

SCI_C.LINSTAT1[TXRDY]

SCI_C combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_C_COMBRX 0x07 SCI_C.SCISR1[RDRF] ||
SCI_C.LINSTAT1[RXRDY]

SCI_C combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_D_COMBTX 0x08 SCI_D.SCISR1[TDRE] ||
SCI_D.SCISR1[TC] ||

SCI_D.LINSTAT1[TXRDY]

SCI_D combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_D_COMBRX 0x09 SCI_D.SCISR1[RDRF] ||
SCI_D.LINSTAT1[RXRDY]

SCI_D combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_E_COMBTX 0x0A SCI_E.SCISR1[TDRE] ||
SCI_E.E.SCISR1[TC] ||

SCI_E.LINSTAT1[TXRDY]

SCI_E combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_E_COMBRX 0x0B SCI_E.SCISR1[RDRF] ||
SCI_E.LINSTAT1[RXRDY]

SCI_E combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_F_COMBTX 0x0C SCI_F.SCISR1[TDRE] ||
SCI_F.SCISR1[TC] ||

SCI_F.LINSTAT1[TXRDY]

SCI_F combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_F_COMBRX 0x0D SCI_F.SCISR1[RDRF] ||
SCI_F.LINSTAT1[RXRDY]

SCI_F combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-6 Freescale Semiconductor

SCI_G_COMBTX 0x0E SCI_G.SCISR1[TDRE] ||
SCI_G.SCISR1[TC] ||

SCI_G.LINSTAT1[TXRDY]

SCI_G combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_G_COMBRX 0x0F SCI_G.SCISR1[RDRF] ||
SCI_G.LINSTAT1[RXRDY]

SCI_G combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_H_COMBTX 0x10 SCI_H.SCISR1[TDRE] ||
SCI_H.SCISR1[TC] ||

SCI_H.LINSTAT1[TXRDY]

SCI_H combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_H_COMBRX 0x11 SCI_H.SCISR1[RDRF] ||
SCI_H.LINSTAT1[RXRDY]

SCI_H combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

DSPI_A_SR_TFFF 0x12 DSPI_A.DSPI_SR[TFFF] DSPI_A transmit FIFO fill flag

DSPI_A_SR_RFDF 0x13 DSPI_A.DSPI_SR[RFDF] DSPI_A receive FIFO drain flag

DSPI_B_SR_TFFF 0x14 DSPI_B.DSPI_SR[TFFF] DSPI_B transmit FIFO fill flag

DSPI_B_SR_RFDF 0x15 DSPI_B.DSPI_SR[RFDF] DSPI_B receive FIFO drain flag

DSPI_E_SR_TFFF 0x16 DSPI_C.DSPI_SR[TFFF] DSPI_C transmit FIFO fill flag

DSPI_E_SR_RFDF 0x17 DSPI_C.DSPI_SR[RFDF] DSPI_C receive FIFO drain flag

DSPI_F_SR_TFFF 0x18 DSPI_D.DSPI_SR[TFFF] DSPI_D transmit FIFO fill flag

DSPI_F_SR_RFDF 0x19 DSPI_D.DSPI_SR[RFDF] DSPI_D receive FIFO drain flag

eMIOS200_FLAG_F0 0x1A eMIOS200.eMIOS200FLAG[F0] eMIOS200 channel 0 flag

eMIOS200_FLAG_F1 0x1B eMIOS200.eMIOS200FLAG[F1] eMIOS200 channel 1 flag

eMIOS200_FLAG_F2 0x1C eMIOS200.eMIOS200FLAG[F2] eMIOS200 channel 2 fag

eMIOS200_FLAG_F3 0x1D eMIOS200.eMIOS200FLAG[F3] eMIOS200 channel 3 flag

eMIOS200_FLAG_F4 0x1E eMIOS200.eMIOS200FLAG[F4] eMIOS200 channel 4 flag

eMIOS200_FLAG_F5 0x1F eMIOS200.eMIOS200FLAG[F5] eMIOS200 channel 5 flag

eMIOS200_FLAG_F6 0x20 eMIOS200.eMIOS200FLAG[F6] eMIOS200 channel 6 flag

eMIOS200_FLAG_F7 0x21 eMIOS200.eMIOS200FLAG[F7] eMIOS200 channel 7 flag

eMIOS200_FLAG_F8 0x22 eMIOS200.eMIOS200FLAG[F8] eMIOS200 channel 8 flag

eMIOS200_FLAG_F9 0x23 eMIOS200.eMIOS200FLAG[F9] eMIOS200 channel 9 flag

eMIOS200_FLAG_F10 0x24 eMIOS200.eMIOS200FLAG[F10] eMIOS200 channel 10 flag

eMIOS200_FLAG_F11 0x25 eMIOS200.eMIOS200FLAG[F11] eMIOS200 channel 11 flag

eMIOS200_FLAG_F12 0x26 eMIOS200.eMIOS200FLAG[F12] eMIOS200 channel 12 flag

eMIOS200_FLAG_F13 0x27 eMIOS200.eMIOS200FLAG[F13] eMIOS200 channel 13 flag

eMIOS200_FLAG_F14 0x28 eMIOS200.eMIOS200FLAG[F14] eMIOS200 channel 14 flag

Table 22-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-7

eMIOS200_FLAG_F15 0x29 eMIOS200.eMIOS200FLAG[F15] eMIOS200 channel 15 flag

I2C_A_TX 0x2A I2C_A.TX_REQ I2C_A transmit

I2C_A_RX 0x2B I2C_A.RX_REQ I2C_A receive

I2C_B_TX 0x2C I2C_B.TX_REQ I2C_B transmit

I2C_B_RX 0x2D I2C_B.RX_REQ I2C_B receive

SIU_EISR_EIF0 0x2E SIU.SIU_EISR[EIF0] SIU external interrupt flag 0

SIU_EISR_EIF1 0x2F SIU.SIU_EISR[EIF1] SIU external interrupt flag 1

I2C_C_TX 0x30 I2C_C.TX_REQ I2C_C transmit

I2C_C_RX 0x31 I2C_C.RX_REQ I2C_C receive

ADC_A 0x32

I2C_D_TX 0x33 I2C_D.TX_REQ I2C_D transmit

I2C_D_RX 0x34 I2C_D.RX_REQ I2C_D receive

SCI_J_COMBTX 0x35 SCI_J.SCISR1[TDRE] ||
SCI_J.SCISR1[TC] ||

SCI_J.LINSTAT1[TXRDY]

SCI_J combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_J_COMBRX 0x36 SCI_J.SCISR1[RDRF] ||
SCI_J.LINSTAT1[RXRDY]

SCI_J combined DMA request of the receive data
register full and LIN receive data ready DMA
requests

SCI_K_COMBTX 0x37 SCI_K.SCISR1[TDRE] ||
SCI_K.SCISR1[TC] ||

SCI_K.LINSTAT1[TXRDY]

SCI_K combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_K_COMBRX 0x38 SCI_K.SCISR1[RDRF] ||
SCI_K.LINSTAT1[RXRDY]

SCI_K combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

SCI_L_COMBTX 0x39 SCI_L.SCISR1[TDRE] ||
SCI_L.SCISR1[TC] ||

SCI_L.LINSTAT1[TXRDY]

SCI_L combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_L_COMBRX 0x3A SCI_L.SCISR1[RDRF] ||
SCI_L.LINSTAT1[RXRDY]

SCI_L combined DMA request of the receive data
register full and LIN receive data ready DMA
requests

SCI_M_COMBTX 0x3B SCI_M.SCISR1[TDRE] ||
SCI_M.SCISR1[TC] ||

SCI_M.LINSTAT1[TXRDY]

SCI_M combined DMA request of the transmit
data register empty, transmit complete, and LIN
transmit data ready DMA requests

SCI_M_COMBRX 0x3C SCI_M.SCISR1[RDRF] ||
SCI_M.LINSTAT1[RXRDY]

SCI_M combined DMA request of the receive
data register full and LIN receive data ready DMA
requests

Always enabled 0x3D Always enabled Always enabled

Table 22-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-8 Freescale Semiconductor

22.4 Functional Description
The primary purpose of the DMA_MUX is to provide flexibility in the system’s use of the available DMA
channels. As such, configuration of the DMA_MUX is intended to be a static procedure done during
execution of the system boot code. However, if the procedure outlined in Section 22.5.2, “Enabling and
Configuring Sources,” is followed, the configuration of the DMA_MUX may be changed during the
normal operation of the system.

Functionally, the DMA_MUX channels may be divided into two classes: channels 0–7, which implement
the normal routing functionality and periodic triggering capability, and channels 8–31, which implement
only the normal routing functionality.

22.4.1 DMA Channels 0–7

In addition to the normal routing functionality, channels 0–7 of the DMA_MUX provide a special periodic
triggering capability that can be used to provide an automatic mechanism to transmit bytes, frames, or
packets at fixed intervals without the need for processor intervention. The trigger is generated by the
periodic interrupt timer (PIT); as such, the configuration of the periodic triggering interval is done via
configuration registers in the PIT. Please refer to the periodic interrupt timer block guide for more
information on this topic.

NOTE
Because of the dynamic nature of the system (i.e.,DMA channel priorities,
bus arbitration, interrupt service routine lengths, etc.), the number of clock
cycles between a trigger and the actual DMA transfer cannot be guaranteed.

Always enabled 0x3E Always enabled Always enabled

Always enabled 0x3F Always enabled Always enabled

1 Configuring a DMA channel to select source 0 or any of the reserved sources will disable that DMA channel.

Table 22-4. DMA Source Configuration (continued)

DMA Request
DMA_MUX

Source Input
Number

DMA Source Description

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-9

Figure 22-3. DMA_MUX Channel 0–7 Block Diagram

The DMA channel triggering capability allows the system to schedule regular DMA transfers, usually on
the transmit side of certain peripherals, without the intervention of the processor. This trigger works by
gating the request from the peripheral to the DMA until a trigger event has been seen. This is illustrated in
Figure 22-4.

Figure 22-4. DMA_MUX Channel Triggering: Normal Operation

After the DMA request has been serviced, the peripheral negates its request, effectively resetting the gating
mechanism until the peripheral re-asserts its request AND the next trigger event is seen. This means that
if a trigger is seen, but the peripheral is not requesting a transfer, that triggered is ignored. This situation
is illustrated in Figure 22-5.

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #n

Always Disabled

Always Enabled

CHCONFIGn[SOURCE]

PIT Trigger #n+1

1

0

CHCONFIGn[TRIG]

Source #60

Always Enabled
Source #63

n = 0 to 7

Source #0

Peripheral Request

Trigger

DMA Request

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-10 Freescale Semiconductor

Figure 22-5. DMA_MUX Channel Triggering: Ignored Trigger

This triggering capability may be used with any peripheral that supports DMA transfers and is most useful
for two types of situations:

• Periodically polling external devices on a particular bus. As an example, the transmit side of an SPI
is assigned to a DMA channel with a trigger, as described above. After setup, the SPI requests
DMA transfers (presumably from memory) as long as its transmit buffer is empty. By using a
trigger on this channel, the SPI transfers can be automatically performed every 5 s (as an
example). On the receive side of the SPI, the SPI and DMA can be configured to transfer receive
data into memory, effectively implementing a method to periodically read data from external
devices and transfer the results into memory without processor intervention.

• Using the GPIO ports to drive or sample waveforms. By configuring the DMA to transfer data to
one or more GPIO ports, it is possible to create complex waveforms using tabular data stored in
on-chip memory. Conversely, using the DMA to periodically transfer data from one or more GPIO
ports, it is possible to sample complex waveforms and store the results in tabular form in on-chip
memory.

A more detailed description of the capability of each trigger (e.g., resolution, range of values, etc.) may be
found in Chapter 20, “Periodic Interrupt Timer (PIT).”

22.4.2 DMA Channels 8–31

Channels 8–31 of the DMA_MUX provide the normal routing functionality as described in Section 22.1.3,
“Modes of Operation.”

Peripheral Request

Trigger

DMA Request

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-11

Figure 22-6. DMA_MUX Channel 8–31 Block Diagram

22.4.3 Always Enabled DMA Sources

In addition to the 55 peripherals that can be used as DMA sources, there are four additional DMA sources
that are always enabled. Unlike the peripheral DMA sources, where the peripheral controls the flow of data
during DMA transfers, the always enabled sources provide no such throttling of the data transfers. These
sources are most useful in the following cases:

• Doing DMA transfers to/from GPIO—Moving data from/to one or more GPIO pins, either
un-throttled (i.e.,as fast as possible), or periodically (using the DMA triggering capability).

• Doing DMA transfers from memory to memory—Moving data from memory to memory, typically
as fast as possible, sometimes with software activation.

• Doing DMA transfers from memory to the external bus (or vice-versa)—Similar to memory to
memory transfers, this is typically done as quickly as possible.

• Any DMA transfer that requires software activation—Any DMA transfer that should be explicitly
started by software.

In cases where software should initiate the start of a DMA transfer, an always enabled DMA source can
be used to provide maximum flexibility. When activating a DMA channel via software, subsequent

Peripheral Source #1

Peripheral Source #2

Peripheral Source #3

Peripheral Source #55

DMA Channel #n

Always Disabled

Always Enabled

CHCONFIGn[SOURCE]

Source #60

Always Enabled
Source #63

n = 8 to 31

Source #0

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-12 Freescale Semiconductor

executions of the minor loop require a new start event be sent. This can either be a new software activation
or a transfer request from the DMA channel mux. The options for doing this are:

• Transfer all data in a single minor loop. By configuring the DMA to transfer all of the data in a
single minor loop (i.e.,major loop counter = 1), no re-activation of the channel is necessary. The
disadvantage to this option is the reduced granularity in determining the load that the DMA transfer
will incur on the system. For this option, the DMA channel should be disabled in the DMA channel
mux.

• Use explicit software re-activation. In this option, the DMA is configured to transfer the data using
both minor and major loops, but the processor is required to re-activate the channel (by writing to
the DMA registers) after every minor loop. For this option, the DMA channel should be disabled
in the DMA channel mux.

• Use an always enabled DMA source. In this option, the DMA is configured to transfer the data
using both minor and major loops, and the DMA channel mux does the channel re-activation. For
this option, the DMA channel should be enabled and pointing to an always enabled source. Note
that the re-activation of the channel can be continuous (DMA triggering is disabled) or can use the
DMA triggering capability. In this manner, it is possible to execute periodic transfers of packets of
data from one source to another without processor intervention.

22.5 Initialization/Application Information

22.5.1 Reset

The reset state of each individual bit is shown within the register description section (Section 22.3.2,
“Register Descriptions”). After reset, all channels are disabled and must be explicitly enabled before use.

22.5.2 Enabling and Configuring Sources

22.5.2.1 Enabling a Source with Periodic Triggering

1. Determine with which DMA channel the source will be associated. Only DMA channels 0–7 have
periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point.

4. In the PIT, configure the corresponding timer.

5. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set.

Example 22-1. Configure DSPI_B Transmit for use with DMA Channel 2, with periodic triggering capability

1. Write 0x00 to CHCONFIG2 (base address + 0x02).

2. Configure channel 2 in the DMA, including enabling the channel.

3. Configure timer 3 in the periodic interrupt timer (PIT) for the desired trigger interval.

4. Write 0xD3 to CHCONFIG2 (base address + 0x02).

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-13

The following code example illustrates steps #1 and #4 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFFFDC000 /* Base addr for MPC5668X */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
volatile unsigned char *CHCONFIG16= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0010);
volatile unsigned char *CHCONFIG17= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0011);
volatile unsigned char *CHCONFIG18= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0012);
volatile unsigned char *CHCONFIG19= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0013);
volatile unsigned char *CHCONFIG20= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0014);
volatile unsigned char *CHCONFIG21= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0015);
volatile unsigned char *CHCONFIG22= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0016);
volatile unsigned char *CHCONFIG23= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0017);
volatile unsigned char *CHCONFIG24= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0018);
volatile unsigned char *CHCONFIG25= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0019);
volatile unsigned char *CHCONFIG26= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001A);
volatile unsigned char *CHCONFIG27= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001B);
volatile unsigned char *CHCONFIG28= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001C);
volatile unsigned char *CHCONFIG29= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001D);
volatile unsigned char *CHCONFIG30= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001E);
volatile unsigned char *CHCONFIG31= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0xD3;

22.5.2.2 Enabling a Source without Periodic Triggering

1. Determine with which DMA channel the source will be associated. Only DMA channels 0–7 have
periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point.

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-14 Freescale Semiconductor

4. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL is set and the TRIG bit is cleared.

Example 22-2. Configure DSPI_B Transmit for use with DMA Channel 2, with no periodic triggering
capability.

1. Write 0x00 to CHCONFIG2 (base address + 0x02).

2. Configure channel 2 in the DMA, including enabling the channel.

3. Write 0x93 to CHCONFIG2 (base address + 0x02).

The following code example illustrates steps #1 and #3 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFFFDC000/* Base addr for MPC5668X */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
volatile unsigned char *CHCONFIG16= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0010);
volatile unsigned char *CHCONFIG17= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0011);
volatile unsigned char *CHCONFIG18= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0012);
volatile unsigned char *CHCONFIG19= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0013);
volatile unsigned char *CHCONFIG20= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0014);
volatile unsigned char *CHCONFIG21= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0015);
volatile unsigned char *CHCONFIG22= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0016);
volatile unsigned char *CHCONFIG23= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0017);
volatile unsigned char *CHCONFIG24= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0018);
volatile unsigned char *CHCONFIG25= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0019);
volatile unsigned char *CHCONFIG26= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001A);
volatile unsigned char *CHCONFIG27= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001B);
volatile unsigned char *CHCONFIG28= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001C);
volatile unsigned char *CHCONFIG29= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001D);
volatile unsigned char *CHCONFIG30= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001E);
volatile unsigned char *CHCONFIG31= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0x93;

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 22-15

22.5.2.3 Disabling a Source

A particular DMA source may be disabled by not writing the corresponding source value into any of the
CHCONFIG registers. Some module specific configuration may also be necessary. Refer to the
appropriate section for more details.

22.5.2.4 Switching the Source of a DMA Channel

1. Disable the DMA channel in the DMA and re-configure the channel for the new source.

2. Clear the ENBL and TRIG bits of the DMA channel.

3. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set.

Example 22-3. Switch DMA Channel 8 from DSPI_A transmit to ESCI_A transmit

1. In the DMA configuration registers, disable DMA channel 8 and re-configure it to handle the
DSPI_A transmits.

2. Write 0x00 to CHCONFIG8 (base address + 0x08).

3. Write 0x82 to CHCONFIG8 (base address + 0x08). In this case, setting the TRIG bit has no effect
because channels 8–31 do not support the periodic triggering functionality.

The following code example illustrates steps #2 and #3 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFFFDC000/* Base addr for MPC5668X */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
volatile unsigned char *CHCONFIG16= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0010);
volatile unsigned char *CHCONFIG17= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0011);
volatile unsigned char *CHCONFIG18= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0012);
volatile unsigned char *CHCONFIG19= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0013);
volatile unsigned char *CHCONFIG20= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0014);
volatile unsigned char *CHCONFIG21= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0015);
volatile unsigned char *CHCONFIG22= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0016);
volatile unsigned char *CHCONFIG23= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0017);
volatile unsigned char *CHCONFIG24= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0018);
volatile unsigned char *CHCONFIG25= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0019);
volatile unsigned char *CHCONFIG26= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001A);
volatile unsigned char *CHCONFIG27= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001B);

DMA Channel Multiplexer (DMA_MUX)

MPC5668x Microcontroller Reference Manual, Rev. 4

22-16 Freescale Semiconductor

volatile unsigned char *CHCONFIG28= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001C);
volatile unsigned char *CHCONFIG29= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001D);
volatile unsigned char *CHCONFIG30= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001E);
volatile unsigned char *CHCONFIG31= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x001F);

In File main.c:
#include “registers.h”

:
:

*CHCONFIG8 = 0x00;
*CHCONFIG8 = 0x82;

22.6 Interrupts
The DMA channel mux does not generate interrupts.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-1

Chapter 23
Enhanced Direct Memory Access Controller (eDMA)

23.1 Introduction
The enhanced direct memory access controller (eDMA) is a second-generation platform block capable of
performing complex data movements through 32 programmable channels, with minimal intervention from
the host processor. The hardware microarchitecture includes a DMA engine that performs source and
destination address calculations, and the actual data movement operations, along with an SRAM-based
memory containing the transfer control descriptors (TCD) for the channels. This implementation
minimizes the overall block size.

23.1.1 Block Diagram

Figure 23-1 shows a simplified block diagram of the eDMA.

Figure 23-1. eDMA Block Diagram

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA Done

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA Peripheral Request

Bus read data

channel arbitration

path

SRAM
transfer control descriptor

(TCD)

SRAM

*n = 32 channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-2 Freescale Semiconductor

23.1.2 Features

The eDMA has these major features:

• All data movement via dual-address transfers: read from source, write to destination

— Programmable source, destination addresses, transfer size, and support for enhanced
addressing modes

• Transfer control descriptor organized to support two-deep, nested transfer operations

— An inner data transfer loop defined by a minor byte transfer count

— An outer data transfer loop defined by a major iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers

— Peripheral-paced hardware requests (one per channel)

All three methods require one activation per execution of the minor loop

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are optionally enabled per channel and logically summed together to form
a single error interrupt.

• Support for scatter-gather DMA processing

• Support for complex data structures

• Support to cancel transfers via software or hardware

• Any channel can be programmed to be suspended by a higher priority channel’s activation, before
completion of a minor loop.

NOTE
eDMA channels 16–31 are not implemented on the MPC5668G.

23.1.3 Modes of Operation

There are two main operating modes of eDMA: normal mode and debug mode. These modes are briefly
described in this section.

23.1.3.1 Normal Mode

In normal mode, the eDMA is used to transfer data between a source and a destination. The source and
destination can be a memory block or an I/O block capable of operation with the eDMA.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-3

23.1.3.2 Debug Mode

In debug mode, the eDMA does not accept new transfer requests when its debug input signal is asserted.
If the signal is asserted during transfer of a block of data described by a minor loop in the current active
channel’s TCD, the eDMA continues operation until completion of the minor loop.

23.2 External Signal Description
The eDMA has no external signals.

23.3 Memory Map and Registers
This section provides a detailed description of all eDMA registers.

23.3.1 Module Memory Map

The eDMA memory map is shown in Table 23-1. The address of each register is given as an offset to the
eDMA base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed. Table 23-2 shows a graphical representation of the same memory map.

The eDMA’s programming model is partitioned into two regions: the first region defines a number of
registers providing control functions; however, the second region corresponds to the local transfer control
descriptor memory.

Some registers are implemented as two 32-bit registers, and include H and L suffixes, signaling the high
and low portions of the control function.

Table 23-1. eDMA Memory Map

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

0x0000 EDMA_CR—eDMA control register R/W 0x0000_0400 23.3.2.1/23-8 32

0x0004 EDMA_ESR—eDMA error status register R 0x0000_0000 23.3.2.2/23-10 32

0x0008 Reserved

0x000C EDMA_ERQRL—eDMA enable request register
(channels 31–00)

R/W 0x0000_0000 23.3.2.3/23-12 32

0x0010 Reserved

0x0014 EDMA_EEIRL—eDMA enable error interrupt register
(channels 31–00)

R/W 0x0000_0000 23.3.2.4/23-13 32

0x0018 EDMA_SERQR—eDMA set enable request register W 0x00 23.3.2.5/23-14 8

0x0019 EDMA_CERQR—eDMA clear enable request register W 0x00 23.3.2.6/23-15 8

0x001A EDMA_SEEIR—eDMA set enable error interrupt register W 0x00 23.3.2.7/23-15 8

0x001B EDMA_CEEIR—eDMA clear enable error interrupt register W 0x00 23.3.2.8/23-16 8

0x001C EDMA_CIRQR—eDMA clear interrupt request register W 0x00 23.3.2.9/23-17 8

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-4 Freescale Semiconductor

0x001D EDMA_CER—eDMA clear error register W 0x00 23.3.2.10/23-18 8

0x001E EDMA_SSBR—eDMA set start bit register W 0x00 23.3.2.11/23-18 8

0x001F EDMA_CDSBR—eDMA clear done status bit register W 0x00 23.3.2.12/23-19 8

0x0020 Reserved

0x0024 EDMA_IRQRL—eDMA interrupt request register (channels
31–00)

R/W 0x0000_0000 23.3.2.13/23-19 32

0x0028 Reserved

0x002C EDMA_ERL—eDMA error register (channels 31–00) R/W 0x0000_0000 23.3.2.14/23-20 32

0x0030 Reserved

0x0034 EDMA_HRSL—eDMA hardware request status register
(channels 31–00)

R 0x0000_0000 23.3.2.15/23-21 32

0x0038–0x00FF Reserved

0x0100 EDMA_CPR0—eDMA channel 0 priority register R/W 0x00 23.3.2.16/23-22 8

0x0101 EDMA_CPR1—eDMA channel 1 priority register R/W 0x01 23.3.2.16/23-22 8

0x0102 EDMA_CPR2—eDMA channel 2 priority register R/W 0x02 23.3.2.16/23-22 8

0x0103 EDMA_CPR3—eDMA channel 3 priority register R/W 0x03 23.3.2.16/23-22 8

0x0104 EDMA_CPR4—eDMA channel 4 priority register R/W 0x04 23.3.2.16/23-22 8

0x0105 EDMA_CPR5—eDMA channel 5 priority register R/W 0x05 23.3.2.16/23-22 8

0x0106 EDMA_CPR6—eDMA channel 6 priority register R/W 0x06 23.3.2.16/23-22 8

0x0107 EDMA_CPR7—eDMA channel 7 priority register R/W 0x07 23.3.2.16/23-22 8

0x0108 EDMA_CPR8—eDMA channel 8 priority register R/W 0x08 23.3.2.16/23-22 8

0x0109 EDMA_CPR9—eDMA channel 9 priority register R/W 0x09 23.3.2.16/23-22 8

0x010A EDMA_CPR10—eDMA channel 10 priority register R/W 0x0A 23.3.2.16/23-22 8

0x010B EDMA_CPR11—eDMA channel 11 priority register R/W 0x0B 23.3.2.16/23-22 8

0x010C EDMA_CPR12—eDMA channel 12 priority register R/W 0x0C 23.3.2.16/23-22 8

0x010D EDMA_CPR13—eDMA channel 13 priority register R/W 0x0D 23.3.2.16/23-22 8

0x010E EDMA_CPR14—eDMA channel 14 priority register R/W 0x0E 23.3.2.16/23-22 8

0x010F EDMA_CPR15—eDMA channel 15 priority register R/W 0x0F 23.3.2.16/23-22 8

0x0110 EDMA_CPR16—eDMA channel 16 priority register R/W 0x10 23.3.2.16/23-22 8

0x0111 EDMA_CPR17—eDMA channel 17 priority register R/W 0x11 23.3.2.16/23-22 8

0x0112 EDMA_CPR18—eDMA channel 18 priority register R/W 0x12 23.3.2.16/23-22 8

0x0113 EDMA_CPR19—eDMA channel 19 priority register R/W 0x13 23.3.2.16/23-22 8

Table 23-1. eDMA Memory Map (continued)

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-5

0x0114 EDMA_CPR20—eDMA channel 20 priority register R/W 0x14 23.3.2.16/23-22 8

0x0115 EDMA_CPR21—eDMA channel 21 priority register R/W 0x15 23.3.2.16/23-22 8

0x0116 EDMA_CPR22—eDMA channel 22 priority register R/W 0x16 23.3.2.16/23-22 8

0x0117 EDMA_CPR23—eDMA channel 23 priority register R/W 0x17 23.3.2.16/23-22 8

0x0118 EDMA_CPR24—eDMA channel 24 priority register R/W 0x18 23.3.2.16/23-22 8

0x0119 EDMA_CPR25—eDMA channel 25 priority register R/W 0x19 23.3.2.16/23-22 8

0x011A EDMA_CPR26—eDMA channel 26 priority register R/W 0x1A 23.3.2.16/23-22 8

0x011B EDMA_CPR27—eDMA channel 27 priority register R/W 0x1B 23.3.2.16/23-22 8

0x011C EDMA_CPR28—eDMA channel 28 priority register R/W 0x1C 23.3.2.16/23-22 8

0x011D EDMA_CPR29—eDMA channel 29 priority register R/W 0x1D 23.3.2.16/23-22 8

0x011E EDMA_CPR30—eDMA channel 30 priority register R/W 0x1E 23.3.2.16/23-22 8

0x011F EDMA_CPR31—eDMA channel 31 priority register R/W 0x1F 23.3.2.16/23-22 8

0x0120–0x0FFF Reserved

0x1000 TCD00—eDMA transfer control descriptor 00 R/W —1 23.3.2.17/23-23 256

0x1020 TCD01—eDMA transfer control descriptor 01 R/W —1 23.3.2.17/23-23 256

0x1040 TCD02—eDMA transfer control descriptor 02 R/W —1 23.3.2.17/23-23 256

0x1060 TCD03—eDMA transfer control descriptor 03 R/W —1 23.3.2.17/23-23 256

0x1080 TCD04—eDMA transfer control descriptor 04 R/W —1 23.3.2.17/23-23 256

0x10A0 TCD05—eDMA transfer control descriptor 05 R/W —1 23.3.2.17/23-23 256

0x10C0 TCD06—eDMA transfer control descriptor 06 R/W —1 23.3.2.17/23-23 256

0x10E0 TCD07—eDMA transfer control descriptor 07 R/W —1 23.3.2.17/23-23 256

0x1100 TCD08—eDMA transfer control descriptor 08 R/W —1 23.3.2.17/23-23 256

0x1120 TCD09—eDMA transfer control descriptor 09 R/W —1 23.3.2.17/23-23 256

0x1140 TCD10—eDMA transfer control descriptor 10 R/W —1 23.3.2.17/23-23 256

0x1160 TCD11—eDMA transfer control descriptor 11 R/W —1 23.3.2.17/23-23 256

0x1180 TCD12—eDMA transfer control descriptor 12 R/W —1 23.3.2.17/23-23 256

0x11A0 TCD13—eDMA transfer control descriptor 13 R/W —1 23.3.2.17/23-23 256

0x11C0 TCD14—eDMA transfer control descriptor 14 R/W —1 23.3.2.17/23-23 256

0x11E0 TCD15—eDMA transfer control descriptor 15 R/W —1 23.3.2.17/23-23 256

0x1200 TCD16—eDMA transfer control descriptor 16 R/W —1 23.3.2.17/23-23 256

0x1220 TCD17—eDMA transfer control descriptor 17 R/W —1 23.3.2.17/23-23 256

Table 23-1. eDMA Memory Map (continued)

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-6 Freescale Semiconductor

0x1240 TCD18—eDMA transfer control descriptor 18 R/W —1 23.3.2.17/23-23 256

0x1260 TCD19—eDMA transfer control descriptor 19 R/W —1 23.3.2.17/23-23 256

0x1280 TCD20—eDMA transfer control descriptor 20 R/W —1 23.3.2.17/23-23 256

0x12A0 TCD21—eDMA transfer control descriptor 21 R/W —1 23.3.2.17/23-23 256

0x12C0 TCD22—eDMA transfer control descriptor 22 R/W —1 23.3.2.17/23-23 256

0x12E0 TCD23—eDMA transfer control descriptor 23 R/W —1 23.3.2.17/23-23 256

0x1300 TCD24—eDMA transfer control descriptor 24 R/W —1 23.3.2.17/23-23 256

0x1320 TCD25—eDMA transfer control descriptor 25 R/W —1 23.3.2.17/23-23 256

0x1340 TCD26—eDMA transfer control descriptor 26 R/W —1 23.3.2.17/23-23 256

0x1360 TCD27—eDMA transfer control descriptor 27 R/W —1 23.3.2.17/23-23 256

0x1380 TCD28—eDMA transfer control descriptor 28 R/W —1 23.3.2.17/23-23 256

0x13A0 TCD29—eDMA transfer control descriptor 29 R/W —1 23.3.2.17/23-23 256

0x13C0 TCD30—eDMA transfer control descriptor 30 R/W —1 23.3.2.17/23-23 256

0x13E0 TCD31—eDMA transfer control descriptor 31 R/W —1 23.3.2.17/23-23 256

0x1400–0x17FF Reserved

1 See specific register description.

Table 23-2. eDMA 32-bit Memory Map—Graphical View

Address Register

0xFFF4_4000 eDMA Control Register (EDMA_CR)

0xFFF4_4004 eDMA Error Status (EDMA_ESR)

0xFFF4_4008 Reserved

0xFFF4_400C eDMA Enable Request
(EDMA_ERQRL, channels 31–16)

eDMA Enable Request
(EDMA_ERQRL, channels 15–00)

0xFFF4_4010 Reserved

0xFFF4_4014 eDMA Enable Error Interrupt Low
(EDMA_EEIRL, channels 31–16)

eDMA Enable Error Interrupt Low
(EDMA_EEIRL, Channels 15–00)

0xFFF4_4018 eDMA Set Enable
Request

(EDMA_SERQR)

eDMA Clear Enable
Request

(EDMA_CERQR)

eDMA Set Enable Error
Interrupt

(EDMA_SEEIR)

eDMA Clear Enable Error
Interrupt

 (EDMA_CEEIR)

0xFFF4_401C eDMA Clear Interrupt
Request

(EDMA_CIRQR)

eDMA Clear
 Error

(EDMA_CER)

eDMA Set Start Bit,
Activate Channel
(EDMA_SSBR)

eDMA Clear Done
Status Bit

(EDMA_CDSBR)

0xFFF4_4020 Reserved

Table 23-1. eDMA Memory Map (continued)

Offset from
EDMA_BASE

(0xFFF4_4000)
Register Access Reset Value Section/Page Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-7

23.3.2 Register Descriptions

This section lists the eDMA registers in address order and describes the registers and their bit fields.

Reading reserved bits in a register returns the value of zero. Writes to reserved bits in a register are ignored.
Reading or writing to a reserved memory location generates a bus error.

Many of the control registers have a bit width that matches the number of channels implemented in the
module, or 32 bits in size.

0xFFF4_4024 eDMA Interrupt Request
(EDMA_IRQRL, channels 31–16)

eDMA Interrupt Request
(EDMA_IRQRL, Channels 15–00)

0xFFF4_4028 Reserved

0xFFF4_402C eDMA Error
(EDMA_ERL, channels 31–16)

eDMA Error
(EDMA_ERL, Channels 15–00)

0xFFF4_4030 Reserved

0xFFF4_4034 eDMA Hardware Request Status
(EDMA_HRSL, channels 31–16)

eDMA Hardware Request Status
(EDMA_HRSL, Channels 15–00)

0xFFF4_4038 –
0xFFF4_40FC

Reserved

0xFFF4_4100 eDMA Channel 0
 Priority (EDMA_CPR0)

eDMA Channel 1
 Priority (EDMA_CPR1)

eDMA Channel 2
 Priority (EDMA_CPR2)

eDMA Channel 3
Priority (EDMA_CPR3)

0xFFF4_4104 eDMA Channel 4
 Priority (EDMA_CPR4)

eDMA Channel 5
 Priority (EDMA_CPR5)

eDMA Channel 6
 Priority (EDMA_CPR6)

eDMA Channel 7
 Priority EDMA_CPR7)

0xFFF4_4108 eDMA Channel 8
 Priority (EDMA_CPR8)

eDMA Channel 9
 Priority (EDMA_CPR9)

eDMA Channel 10
 Priority (EDMA_CPR10)

eDMA Channel 11
Priority (EDMA_CPR11)

0xFFF4_410C eDMA Channel 12
 Priority (EDMA_CPR12)

eDMA Channel 13
 Priority (EDMA_CPR13)

eDMA Channel 14
 Priority (EDMA_CPR14)

eDMA Channel 15
 Priority (EDMA_CPR15)

0xFFF4_4110 eDMA Channel 16
 Priority (EDMA_CPR16)

eDMA Channel 17
 Priority (EDMA_CPR17)

eDMA Channel 18
 Priority (EDMA_CPR18)

eDMA Channel 19
 Priority (EDMA_CPR19)

0xFFF4_4114 eDMA Channel 20
 Priority (EDMA_CPR16)

eDMA Channel 21
 Priority (EDMA_CPR17)

eDMA Channel 22
 Priority (EDMA_CPR18)

eDMA Channel 23
Priority (EDMA_CPR19)

0xFFF4_4118 eDMA Channel 24
 Priority (EDMA_CPR16)

eDMA Channel 25
 Priority (EDMA_CPR17)

eDMA Channel 26
 Priority (EDMA_CPR18)

eDMA Channel 27
 Priority (EDMA_CPR19)

0xFFF4_411C eDMA Channel 28
 Priority (EDMA_CPR16)

eDMA Channel 29
 Priority (EDMA_CPR17)

eDMA Channel 30
 Priority (EDMA_CPR18)

eDMA Channel 31
 Priority (EDMA_CPR19)

0xFFF4_5000 –
0xFFF4_51FC

TCD00–TCD15

0xFFF4_5200 –
0xFFF4_53FC

TCD16–TCD31

0xFFF4_5400 Reserved

Table 23-2. eDMA 32-bit Memory Map—Graphical View (continued)

Address Register

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-8 Freescale Semiconductor

23.3.2.1 eDMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

Arbitration among the channels can be configured to use a fixed priority or a round robin. In fixed-priority
arbitration, the highest priority channel requesting service is selected to execute. The priorities are
assigned by the channel priority registers. See Section 23.3.2.16, “eDMA Channel n Priority Registers
(EDMA_CPRn).” In round-robin arbitration mode, the channel priorities are ignored and the channels
within each group are cycled through, from channel 31 down to channel 0,without regard to priority.

Minor loop offsets are address offset values added to the final source address (SADDR) or destination
address (DADDR) upon minor loop completion. When minor loop offsets are enabled, the minor loop
offset (MLOFF) is added to the final source address (SADDR) or to the final destination address
(DADDR) or to both addresses prior to the addresses being written back into the TCD. If the major loop
is complete, the minor loop offset is ignored and the major loop address offsets (SLAST and
DLAST_SGA) are used to compute the next TCR.SADDR and TCR.DADDR values.

When minor loop mapping is enabled (EDMA_CR[EMLM] = 1), TCDn word2 is redefined. A portion of
TCDn word2 is used to specify multiple fields: a source enable bit (SMLOE) to specify that the minor loop
offset should be applied to the source address (SADDR) upon minor loop completion, a destination enable
bit (DMLOE) to specify the minor loop offset should be applied to the destination address (DADDR) upon
minor loop completion, and the sign extended minor loop offset value (MLOFF). The same offset value
(MLOFF) is used for both source and destination minor loop offsets.

When either of the minor loop offsets is enabled (SMLOE is set or DMLOE is set), the NBYTES field is
reduced to 8 bits. When both minor loop offsets are disabled (SMLOE is cleared and DMLOE is cleared),
the NBYTES field becomes a 30-bit vector.

When minor loop mapping is disabled (EDMA_CR[EMLM] = 0), all 32 bits of TCDn word2 are assigned
to the NBYTES field. See Section 23.3.2.17, “Transfer Control Descriptor (TCD),” for more details.

Offset: EDMA_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CXFR ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 GRP1
PRI

0 GRP0
PRI

EMLM CLM HALT HOE ERGA ERCA EDBG
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 23-2. eDMA Control Register (EDMA_CR)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-9

Table 23-3. EDMA_CR Field Descriptions

Field Description

CXFR Cancel Transfer.
0 Normal operation.
1 Cancel the remaining data transfer. Stop the executing channel and force the minor loop to be finished. The

cancel takes effect after the last write of the current read/write sequence. The CXFR bit clears itself after
the cancel has been honored. This cancel retires the channel normally as if the minor loop was completed.

ECX Error cancel transfer.
0 Normal operation.
1 Cancel the remaining data transfer in the same fashion as the CXFR cancel transfer. Stop the executing

channel and force the minor loop to be finished. The cancel takes effect after the last write of the current
read/write sequence. The ECX bit clears itself after the cancel has been honored. In addition to cancelling
the transfer, the ECX treats the cancel as an error condition; thus updating the EDMA_ESR register and
generating an optional error interrupt. See Section 23.3.2.2, “eDMA Error Status Register (EDMA_ESR).”

GRP1PRI Channel group 1 priority. Group 1 priority level when fixed priority group arbitration is enabled.

GRP0PRI Channel group 0 priority. Group 0 priority level when fixed priority group arbitration is enabled.

EMLM Enable minor loop mapping.
0 Minor loop mapping disabled. TCD Word 2 is defined as a 32-bit nbytes field.
1 Minor loop mapping enabled. When set, TCDn Word 2 is redefined to include individual enable fields, an

offset field and the NBYTES field. The individual enable fields allow the minor loop offset to be applied to
the source address, the destination address, or both. The NBYTES field is reduced when either offset is
enabled.

CLM Continuous link mode.
0 A minor loop channel link made to itself goes through channel arbitration before being activated again.
1 A minor loop channel link made to itself does not go through channel arbitration before being activated

again. Upon minor loop completion, the channel is active again if that channel has a minor loop channel link
enabled and the link channel is itself. This effectively applies the minor loop offsets and restarts the next
minor loop.

HALT Halt DMA operations.
0 Normal operation.
1 Stall the start of any new channels. Executing channels are allowed to complete. Channel execution

resumes when the HALT bit is cleared.

HOE Halt on error.
0 Normal operation.
1 Any error causes the HALT bit to be set. Subsequently, all service requests are ignored until the HALT bit is

cleared.

ERGA Enable round-robin group arbitration.
0 Fixed-priority arbitration is used for selection among the groups.
1 Round-robin arbitration is used for selection among the groups.

ERCA Enable Round-Robin Channel Arbitration.
0 Fixed-priority arbitration is used for channel selection within each group.
1 Round-robin arbitration is used for channel selection within each group.

EDBG Enable Debug.
0 The assertion of the system debug control input is ignored.
1 The assertion of the system debug control input causes the eDMA to stall the start of a new channel.

Executing channels are allowed to complete. Channel execution resumes when either the system debug
control input is negated or the EDBG bit is cleared.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-10 Freescale Semiconductor

23.3.2.2 eDMA Error Status Register (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors can be caused
by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority register
setting in fixed-arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination
offsets, minor loop byte count, and the transfer size represent an inconsistent state. The addresses and
offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count must be a
multiple of the source and destination transfer sizes. All source reads and destination writes must be
configured to the natural boundary of the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority levels are equal
and any channel is activated. The ERRCHN field is undefined for this type of error. All channel priority
levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is reported if the
scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking
is enabled on channel completion, a configuration error is reported when the link is attempted if the
TCD.CITER.E_LINK bit is not equal to the TCD.BITER.E_LINK bit. All configuration error conditions
except scatter-gather and minor loop link error are reported as the channel is activated and assert an error
interrupt request if enabled. When properly enabled, a scatter-gather configuration error is reported when
the scatter-gather operation begins at major loop completion. A minor loop channel link configuration
error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately stopped and the
appropriate bus error flag is set. In this case, the state of the channel’s transfer control descriptor is updated
by the DMA engine with the current source address, destination address, and minor loop byte count at the
point of the fault. If a bus error occurs on the last read prior to beginning the write sequence, the write is
executed using the data captured during the bus error. If a bus error occurs on the last write prior to
switching to the next read sequence, the read sequence is executed before the channel is terminated due to
the destination bus error.

A transfer may be cancelled by software via the EDMA_CR[CX] bit. When a cancel transfer request is
recognized, the eDMA engine stops processing the channel. The current read-write sequence is allowed to
finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is
discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the DMAES register is updated with the
cancelled channel number and error cancel bit is set. The TCD of a cancelled channel has the source
address and destination address of the last transfer saved in the TCD. It is the responsibility of the user to
initialize the TCD again should the channel need to be restarted because the aforementioned fields have
been modified by the eDMA engine and no longer represent the original parameters. When a transfer is
cancelled via the error cancel transfer mechanism (setting the EDMA_CR[ECX]), the channel number is
loaded into the EDMA_ESR[ERRCHN] field and the EDMA_ESR[ECX] and EDMA_ESR[VLD] bits
are set. In addition, an error interrupt may be generated if enabled. Refer to Section 23.3.2.14, “eDMA
Error Register (EDMA_ERL).”

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-11

The occurrence of any type of error causes the DMA engine to stop the active channel and the appropriate
channel bit in the eDMA error register to be asserted. At the same time, the details of the error condition
are loaded into the EDMA_ESR. The major loop complete indicators, setting the transfer control
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is
detected. After the error status has been updated, the DMA engine continues to operate by servicing the
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a
channel is terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Offset: EDMA_BASE + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R GPE CPE ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. eDMA Error Status Register (EDMA_ESR)

Table 23-4. EDMA_ESR Field Descriptions

Field Description

VLD Valid Bit. Logical OR of all EDMA_ERL status bits.
0 No EDMA_ER bits are set.
1 At least one EDMA_ER bit is set indicating a valid error exists that has not been cleared.

ECX Transfer canceled.
0 No canceled transfers.
1 The last recorded entry was a canceled transfer via the error cancel transfer input.

GPE Group-priority error.
0 No group-priority error.
1 The last recorded error was a configuration error among the group priorities indicating not all group priorities

are unique.

CPE Channel-Priority Error.
0 No channel-priority error.
1 The last recorded error was a configuration error in the channel priorities within a group, indicating not all

channel priorities within a group are unique.

ERRCHN Error Channel Number or Canceled Channel Number. Channel number of the last recorded error (excluding
GPE and CPE errors) or last recorded transfer that was error cancelled.
Note: Do not rely on the number in the ERRCHN field group for channel-priority errors. Group- and

Channel-priority errors must be resolved by inspection. The application code must interrogate the priority
registers to find groups or channels with duplicate priority level.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-12 Freescale Semiconductor

23.3.2.3 eDMA Enable Request Register (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 32 channels to enable the request signal for each channel.
EDMA_ERQRL maps to channels 31–0.

The state of any given channel enable is directly affected by writes to this register; the state is also affected
by writes to the EDMA_SERQR and EDMA_CERQR. The EDMA_CERQR and EDMA_SERQR are
provided so that the request enable for a single channel can be modified without performing a
read-modify-write sequence to the EDMA_ERQRL.

SAE Source Address Error.
0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCD.SADDR field, indicating TCD.SADDR

is inconsistent with TCD.SSIZE.

SOE Source Offset Error.
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.SOFF field, indicating TCD.SOFF is

inconsistent with TCD.SSIZE.

DAE Destination Address Error.
0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCD.DADDR field, indicating TCD.DADDR

is inconsistent with TCD.DSIZE.

DOE Destination Offset Error.
0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.DOFF field, indicating TCD.DOFF is

inconsistent with TCD.DSIZE.

NCE NBYTES/CITER Configuration Error.
0 No NBYTES/CITER configuration error.
1 The last recorded error was a configuration error detected in the TCD.NBYTES or TCD.CITER fields,

indicating the following conditions exist:
 • TCD.NBYTES is not a multiple of TCD.SSIZE and TCD.DSIZE, or
 • TCD.CITER is equal to zero, or
 • TCD.CITER.E_LINK is not equal to TCD.BITER.E_LINK.

SGE Scatter-Gather Configuration Error.
0 No scatter-gather configuration error.
1 The last recorded error was a configuration error detected in the TCD.DLAST_SGA field, indicating

TCD.DLAST_SGA is not on a 32-byte boundary. This field is checked at the beginning of a scatter-gather
operation after major loop completion if TCD.E_SG is enabled.

SBE Source Bus Error.
0 No source bus error.
1 The last recorded error was a bus error on a source read.

DBE Destination Bus Error.
0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

Table 23-4. EDMA_ESR Field Descriptions (continued)

Field Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-13

Both the eDMA request input signal and this enable request flag must be asserted before a channel’s
hardware service request is accepted. The state of the eDMA enable request flag does not effect a channel
service request made through software or a linked channel request.

As a given channel completes processing its major iteration count, there is a flag in the transfer control
descriptor that may affect the ending state of the EDMA_ERQR bit for that channel. If the TCD.D_REQ
bit is set, then the corresponding EDMA_ERQR bit is cleared after the major loop is complete, disabling
the eDMA hardware request. Otherwise if the D_REQ bit is cleared, the state of the EDMA_ERQR bit is
unaffected.

23.3.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 32 channels to enable the error interrupt signal for each
channel. EDMA_EEIRL maps to channels 31–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these registers; it is
also affected by writes to the EDMA_SEEIR and EDMA_CEEIR. The EDMA_SEEIR and
EDMA_CEEIR are provided so that the error interrupt enable for a single channel can be modified without
the performing a read-modify-write sequence to the EDMA_EEIRL.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before an error
interrupt request for a given channel is asserted.

Offset: EDMA_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERQ
31

ERQ
30

ERQ
29

ERQ
28

ERQ
27

ERQ
26

ERQ
25

ERQ
24

ERQ
23

ERQ
22

ERQ
21

ERQ
20

ERQ
19

ERQ
18

ERQ
17

ERQ
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31

R ERQ
15

ERQ
14

ERQ
13

ERQ
12

ERQ
11

ERQ
10

ERQ
09

ERQ
08

ERQ
07

ERQ
06

ERQ
05

ERQ
04

ERQ
03

ERQ
02

ERQ
01

ERQ
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-4. eDMA Enable Request Register (EDMA_ERQRL)

Table 23-5. EDMA_ERQRL Field Descriptions

Field Description

ERQn Enable eDMA Hardware Service Request n.
0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-14 Freescale Semiconductor

23.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1 (SERQ[0]) provides a global set
function, forcing the entire contents of EDMA_ERQRL to be asserted. Reads of this register return all
zeroes.

If bit 0 is set, the SERQ command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EEI31 EEI30 EEI29 EEI28 EEI27 EEI26 EEI25 EEI24 EEI23 EEI22 EEI21 EEI20 EEI19 EEI18 EEI17 EEI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EEI15 EEI14 EEI13 EEI12 EEI11 EEI10 EEI09 EEI08 EEI07 EEI06 EEI05 EEI04 EEI03 EEI02 EEI01 EEI00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-5. eDMA Enable Error Interrupt Register (EDMA_EEIRL)

Table 23-6. EDMA_EEIRL Field Descriptions

Field Description

EEIn Enable Error Interrupt n.
0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

Offset: EDMA_BASE + 0x0018 Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-6. eDMA Set Enable Request Register (EDMA_SERQR)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-15

23.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a register write
causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1 (CERQ[0]) provides a
global clear function, forcing the entire contents of the EDMA_ERQRL to be zeroed, disabling all eDMA
request inputs. Reads of this register return all zeroes.

If bit 0 is set, the CERQ command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

23.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the EDMA_EEIRL to
enable the error interrupt for a given channel. The data value on a register write causes the corresponding

Table 23-7. EDMA_SERQR Field Descriptions

Field Descriptions

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

SERQ[0:6] Set Enable Request.
0–31 Set corresponding bit in EDMA_ERQRL.
32–63 Reserved.
64–127 Set all bits in EDMA_ERQRL.

Note: Bits 2 and 3(SERQR[1:2]) are not used.

Offset: EDMA_BASE + 0x0019 Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-7. eDMA Clear Enable Request Register (EDMA_CERQR)

Table 23-8. EDMA_CERQR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

CERQ[0:6] Clear Enable Request.
0–31 Clear corresponding bit in EDMA_ERQRL.
32–63 Reserved.
64–127 Clear all bits in EDMA_ERQRL.

Note: Bits 2 and 3 (CERQR[1:2]) are not used.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-16 Freescale Semiconductor

bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0]) provides a global set function, forcing the entire
contents of EDMA_EEIRL to be asserted. Reads of this register return all zeroes.

If bit 0 is set, the SEEI command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

23.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the EDMA_EEIRL to
disable the error interrupt for a given channel. The data value on a register write causes the corresponding
bit in the EDMA_EEIRL to be cleared. Setting bit 1 (CEEI[0]) provides a global clear function, forcing
the entire contents of the EDMA_EEIRL to be zeroed, disabling error interrupts for all channels. Reads of
this register return all zeroes.

If bit 0 is set, the CEEI command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001A Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-8. eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

Table 23-9. EDMA_SEEIR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

SEEI[0:6] Set Enable Error Interrupt.
0–31 Set corresponding bit in EDMA_EIRRL.
32–63 Reserved.
64–127 Set all bits in EDMA_EEIRL.

Note: Bits 2 and 3 (SEEIR[1:2]) are not used.

Offset: EDMA_BASE + 0x001B Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-9. eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-17

23.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the EDMA_IRQRL to
disable the interrupt request for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1 (CINT[0]) provides a global clear
function, forcing the entire contents of the EDMA_IRQRL to be zeroed, disabling all eDMA interrupt
requests. Reads of this register return all zeroes.

If bit 0 is set, the CINT command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Table 23-10. EDMA_CEEIR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

CEEI[0:6] Clear Enable Error Interrupt.
0–31 Clear corresponding bit in EDMA_EEIRL.
32–63 Reserved.
64–127 Clear all bits in EDMA_EEIRL.

Note: Bits 2 and 3 (CEEIR[1:2]) are not used.

Offset: EDMA_BASE + 0X001C Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CINT[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-10. eDMA Clear Interrupt Request (EDMA_CIRQR)

Table 23-11. EDMA_CIRQR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1-7.

CINT[0:6] Clear Interrupt Request.
0–31 Clear corresponding bit in EDMA_IRQRL.
32–63 Reserved.
64–127 Clear all bits in EDMA_IRQRL.

Note: Bits 2 and 3(CIRQR[1:2]) are not used.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-18 Freescale Semiconductor

23.3.2.10 eDMA Clear Error Register (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the EDMA_ERL to
disable the error condition flag for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_ERL to be cleared. Setting bit 1 (CERR[0]) provides a global clear
function, forcing the entire contents of the EDMA_ERL to be zeroed, clearing all channel error indicators.
Reads of this register return all zeroes.

If bit 0 is set, the CERR command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

23.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD of the given
channel. The data value on a register write causes the START bit in the corresponding transfer control
descriptor to be set. Setting bit 1 (SSB[0]) provides a global set function, forcing all START bits to be set.
Reads of this register return all zeroes.

If bit 0 is set, the SSB command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001D Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CERR[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-11. eDMA Clear Error Register (EDMA_CER)

Table 23-12. EDMA_CER Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

CERR[0:6] Clear Error Indicator.
0–31 Clear corresponding bit in EDMA_ERL.
32–63 Reserved.
64–127 Clear all bits in EDMA_ERL.

Note: Bits 2 and 3 (CER[1:2]) are not used.

Offset: EDMA_BASE + 0x001E Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-12. eDMA Set START Bit Register (EDMA_SSBR)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-19

23.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the TCD of the
given channel. The data value on a register write causes the DONE bit in the corresponding transfer control
descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a global clear function, forcing all DONE bits
to be cleared.

If bit 0 is set, the CDSB command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

23.3.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 32 channels signaling the presence of an interrupt request
for each channel. EDMA_IRQRL maps to channels 31–0.

Table 23-13. EDMA_SSBR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

SSB[0:6] Set START Bit (channel service request).
0–31 Set the corresponding channel’s TCD START bit.
32–63 Reserved.
64–127 Set all TCD START bits.

Note: Bits 2 and 3 (SSBR[1:2]) are not used.

Offset: EDMA_BASE + 0x001F Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CDSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 23-13. eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

Table 23-14. EDMA_CDSBR Field Descriptions

Field Description

NOP No operation.
0 Normal operation.
1 No operation, ignore bits 1–7.

CDSB[0:6] Clear DONE Status Bit.
0–31 Clear the corresponding channel’s DONE bit.
32–63 Reserved.
64–127 Clear all TCD DONE bits.

Note: Bits 2 and 3 (CDSBR[1:2]) are not used.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-20 Freescale Semiconductor

The DMA engine signals the occurrence of a programmed interrupt on the completion of a data transfer
as defined in the transfer control descriptor by setting the appropriate bit in this register. The outputs of
this register are directly routed to the interrupt controller (INTC). During the execution of the interrupt
service routine associated with any given channel, software must clear the appropriate bit, negating the
interrupt request. Typically, a write to the EDMA_CIRQR in the interrupt service routine is used for this
purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also
affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a 1 in any bit position clears
the corresponding channel’s interrupt request. A 0 in any bit position has no effect on the corresponding
channel’s current interrupt status. The EDMA_CIRQR is provided so the interrupt request for a single
channel can be cleared without performing a read-modify-write sequence to the EDMA_IRQRL.

23.3.2.14 eDMA Error Register (EDMA_ERL)

The EDMA_ERL provides a bit map for the 32 channels signaling the presence of an error for each
channel. EDMA_ERL maps to channels 31–0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in this register.
The outputs of this register are enabled by the contents of the EDMA_EEIR, then logically summed across
32 channels to form an error interrupt request, which is then routed to the interrupt controller. During the
execution of the interrupt service routine associated with any eDMA errors, it is software’s responsibility
to clear the appropriate bit, negating the error interrupt request. Typically, a write to the EDMA_CER in
the interrupt service routine is used for this purpose. The normal eDMA channel completion indicators,
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not
affected when an error is detected.

Offset: EDMA_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R INT
31

INT
30

INT
29

INT
28

INT
27

INT
26

INT
25

INT
24

INT
23

INT
22

INT
21

INT
20

INT
19

INT
18

INT
17

INT
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31

R INT
15

INT
14

INT
13

INT
12

INT
11

INT
10

INT
09

INT
08

INT
07

INT
06

INT
05

INT
04

INT
03

INT
02

INT
01

INT
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-14. eDMA Interrupt Request Register (EDMA_IRQRL)

Table 23-15. EDMA_IRQRL Field Descriptions

Field Description

INTn eDMA Interrupt Request n.
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-21

The contents of this register can also be polled and a non-zero value indicates the presence of a channel
error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a logical OR of all bits in
this register and it provides a single bit indication of any errors. The state of any given channel’s error
indicators is affected by writes to this register; it is also affected by writes to the EDMA_CER. On writes
to EDMA_ERL, a 1 in any bit position clears the corresponding channel’s error status. A 0 in any bit
position has no effect on the corresponding channel’s current error status. The EDMA_CER is provided
so the error indicator for a single channel can be cleared.

23.3.2.15 DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL registers provide a bit map for the implemented channels (32) to show the current
hardware request status for each channel. EDMA_HRSL covers channels 31–00.

See Table 23-17 for the EDMA_HRSL definition.

Offset: EDMA_BASE + 0x002C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERR
31

ERR
30

ERR
29

ERR
28

ERR
27

ERR
26

ERR
25

ERR
24

ERR
23

ERR
22

ERR
21

ERR
20

ERR
19

ERR
18

ERR
17

ERR
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ERR
15

ERR
14

ERR
13

ERR
12

ERR
11

ERR
10

ERR
09

ERR
08

ERR
07

ERR
06

ERR
05

ERR
04

ERR
03

ERR
02

ERR
01

ERR
00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-15. eDMA Error Register (EDMA_ERL)

Table 23-16. EDMA_ERL Field Descriptions

Field Description

ERRn eDMA Error n.
0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-22 Freescale Semiconductor

Figure 23-16. EDMA Hardware Request Status Register Low (EDMA_HRSL)

23.3.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of
these registers define the unique priorities associated with each channel. The channel priorities are
evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. If
software modifies channel priority values, then the software must ensure that the channel priorities contain
unique values. Otherwise, a configuration error is reported. The range of the priority value is limited to the
values of 0 through 31. When read, the GRPPRI bits of the EDMA_CPRn register reflect the current
priority level of the group of channels in which the corresponding channel resides. GRPPRI bits are not
affected by writes to the EDMA_CPRn registers. The group priority is assigned in the EDMA_CR. See
Figure 23-2 and Table 23-3 for the EDMA_CR definition.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the EDMA_CPRn register.
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in favor of
starting a higher priority channel. After the preempting channel has completed all its minor loop data
transfers, the preempted channel is restored and resumes execution. After the restored channel completes
one read/write sequence, it is again eligible for preemption. If any higher priority channel requests service,
the restored channel is suspended and the higher priority channel is serviced. Nested preemption
(attempting to preempt a preempting channel) is not supported. After a preempting channel begins
execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected for both
group and channel arbitration modes.

Address: EDMA_BASE + 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HRS
31

HRS
30

HRS
29

HRS
28

HRS
27

HRS
26

HRS
25

HRS
24

HRS
23

HRS
22

HRS
21

HRS
20

HRS
19

HRS
18

HRS
17

HRS
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R HRS
15

HRS
14

HRS
13

HRS
12

HRS
11

HRS
10

HRS
09

HRS
08

HRS
07

HRS
06

HRS
05

HRS
04

HRS
03

HRS
02

HRS
01

HRS
00W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-17. EDMA_HRSL Field Descriptions

Field Description

HRSn DMA Hardware Request Status
0 A hardware service request for channel n is not present.
1 A hardware service request for channel n is present.
Note: The hardware request status reflects the state of the request as seen by the arbitration logic. Therefore,

this status is affected by the EDMA_ERQRL[ERQn] bit.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-23

A channel’s ability to preempt another channel can be disabled by setting EDMA_CPR[DPA]. When a
channel’s preempt ability is disabled, that channel cannot suspend a lower priority channel’s data transfer;
regardless of the lower priority channel’s ECP setting. This allows for a pool of low priority, large data
moving channels to be defined. These low priority channels can be configured to not preempt each other,
thus preventing a low priority channel from consuming the preempt slot normally available a true, high
priority channel.

23.3.2.17 Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement
operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel
1,... channel 31. The definitions of the TCD are presented as eight 32-bit values. Table 23-19 is a field list
of the basic TCD structure.

Offset: EDMA_BASE + 0x0100 + n Access: User read/write

0 1 2 3 4 5 6 7

R
ECP DPA

GRPPRI
CHPRI

W

Reset 0 0 0 0 — 1

1 The reset value for the channel priority field, CHPRI[0–3], is equal to the corresponding channel number for each priority
register; that is, EDMA_CPRI0[CHPRI] = 0b0000 and EDMA_CPR15[CHPRI] = 0b1111.

Figure 23-17. eDMA Channel n Priority Register (EDMA_CPRn)

Table 23-18. EDMA_CPRn Field Descriptions

Field Description

ECP Enable Channel Preemption.
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

DPA Disable preempt ability.
0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless of channel priority.

GRPPRI[0:1] Channel n current group priority. Group priority assigned to this channel group when fixed-priority arbitration
is enabled. These two bits are read-only; writes are ignored. The reset value for the group priority fields is equal
to the corresponding channel number for each priority register; that is, EDMA_CPR31[GRPPRI] = 0b01.

CHPRI[0:3] Channel n Arbitration Priority. Channel priority when fixed-priority arbitration is enabled. The reset value for the
channel priority fields CHPRI[0–3], is equal to the corresponding channel number for each priority register; that
is, EDMA_CPR31[CHPRI] = 0b1111.

Table 23-19. TCDn 32-bit Memory Structure

eDMA Offset TCDn Field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-24 Freescale Semiconductor

Figure 23-18 and Table 23-20 define the fields of the TCDn structure.

NOTE
The TCD structures for the eDMA channels shown in Figure 23-18 are
implemented in internal SRAM. These structures are not initialized at reset;
therefore, all channel TCD parameters must be initialized by the application
code before activating that channel.

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES1

1 The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 23-3.

0x8

S
M

LO
E

1

D
M

LO
E

1

MLOFF or NBYTES 1 NBYTES1

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER or
CITER.LINKCH

CITER DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

LI
N

K

BITER or
BITER.LINKCH

BITER BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 23-18. TCD Structure

Table 23-19. TCDn 32-bit Memory Structure (continued)

eDMA Offset TCDn Field

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-25

Table 23-20. TCDn Field Descriptions

Bits /
Word Offset

[n:n]
Name Description

0–31 /
0x0 [0:31]

SADDR
[0:31]

Source address. Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD
[0:4]

Source address modulo.
0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the value after

SADDR + SOFF calculation is performed or the original register value. The setting
of this field provides the ability to easily implement a circular data queue. For data
queues requiring power-of-2 size bytes, the queue should start at a 0-modulo-size
address and the SMOD field should be set to the appropriate value for the queue,
freezing the desired number of upper address bits. The value programmed into
this field specifies the number of lower address bits that are allowed to change. For
this circular queue application, the SOFF is typically set to the transfer size to
implement post-increment addressing with the SMOD function constraining the
addresses to a 0-modulo-size range.

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
011 64-bit
100 Reserved
101 32-byte (4-beat 64-bit burst)
110 Reserved
111 Reserved
The attempted specification of a reserved encoding causes a configuration error.

40–44 /
0x4 [8:12]

DMOD
[0:4]

Destination address modulo. See the SMOD[0:5] definition.

45–47 /
0x4 [13:15]

DSIZE
[0:2]

Destination data transfer size. See the SSIZE[0:2] definition.

48–63 /
0x4 [16:31]

SOFF
[0:15]

Source address signed offset. Sign-extended offset applied to the current source
address to form the next-state value as each source read is completed.

64
0x8 [0]

SMLOE 1

0
Source minor loop offset enable
This flag selects whether the minor loop offset is applied to the source address upon
minor loop completion.

0 The minor loop offset is not applied to the source address.
1 The minor loop offset is applied to the source address.

65
0x8 [1]

DMLOE 1

1
Destination minor loop offset enable
This flag selects whether the minor loop offset is applied to the destination address upon
minor loop completion.

0 The minor loop offset is not applied to the destination address.
1 The minor loop offset is applied to the destination address.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-26 Freescale Semiconductor

66–85
0x8 [2-21]

MLOFF or
NBYTES 1

[0:19]

Inner “minor” byte transfer count or Minor loop offset
If both SMLOE and DMLOE are cleared, this field is part of the byte transfer count.

If either SMLOE or DMLOE are set, this field represents a sign-extended offset applied
to the source or destination address to form the next-state value after the minor loop is
completed.

86–95 /
0x8 [22:31]

NBYTES 1 Inner “minor” byte transfer count. Number of bytes to be transferred in each service
request of the channel. As a channel is activated, the contents of the appropriate TCD is
loaded into the eDMA engine, and the appropriate reads and writes performed until the
complete byte transfer count has been transferred. This is an indivisible operation and
cannot be stalled or halted. Once the minor count is exhausted, the current values of the
SADDR and DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count is completed,
additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as 0x1_0000_0000, thus

specifying a 4 GB transfer.

96–127 /
0xC [0:31]

SLAST
[0:31]

Last source address adjustment. Adjustment value added to the source address at the
completion of the outer major iteration count. This value can be applied to “restore” the
source address to the initial value, or adjust the address to reference the next data
structure.

128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160 /
0x14 [0]

CITER.E_LINK Enable channel-to-channel linking on minor loop completion. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
CITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the CITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit. Otherwise, a configuration error
is reported.

161–166 /
0x14 [1:6]

CITER
[0:5]
or

CITER.LINKCH
[0:5]

Current major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [161:175] are used to form a 15-bit CITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service request

at the channel defined by CITER.LINKCH[0:5] by setting that channel’s TCD.START
bit.

Table 23-20. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-27

167–175 /
0x14 [7:15]

CITER
[6:14]

Current major iteration count. This 9 or 15-bit count represents the current major loop
count for the channel. It is decremented each time the minor loop is completed and
updated in the transfer control descriptor memory. After the major iteration count is
exhausted, the channel performs a number of operations (for example, final source and
destination address calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration count (BITER)
field.
Note: When the CITER field is initially loaded by software, it must be set to the same

value as that contained in the BITER field.

Note: If the channel is configured to execute a single service request, the initial values
of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the current
destination address to form the next-state value as each destination write is completed.

192–223 /
0x18 [0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next transfer control
descriptor to be loaded into this channel (scatter-gather).
If scatter-gather processing for the channel is disabled (TCD.E_SG = 0) then
 • Adjustment value added to the destination address at the completion of the outer

major iteration count.
This value can be applied to restore the destination address to the initial value, or adjust
the address to reference the next data structure.
Otherwise,
 • This address points to the beginning of a 0-modulo-32 byte region containing the next

transfer control descriptor to be loaded into this channel. This channel reload is
performed as the major iteration count completes. The scatter-gather address must
be 0-modulo-32 byte, otherwise a configuration error is reported.

224 /
0x1C [0]

BITER.E_LINK Enables channel-to-channel linking on minor loop complete. As the channel completes
the inner minor loop, this flag enables the linking to another channel, defined by
BITER.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel. If channel
linking is disabled, the BITER value is extended to 15 bits in place of a link channel
number. If the major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set equal to the

corresponding CITER field. Otherwise, a configuration error is reported. As the
major iteration count is exhausted, the contents of this field is reloaded into the
CITER field.

Table 23-20. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-28 Freescale Semiconductor

225–230 /
0x1C [1:6]

BITER
[0:5]
or

BITER.LINKCH[0:5]

Starting major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner minor loop is

exhausted. TCD bits [225:239] are used to form a 15-bit BITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service request

at the channel, defined by BITER.LINKCH[0:5], by setting that channel’s TCD.START
bit.

Note: When the TCD is first loaded by software, this field must be set equal to the
corresponding CITER field. Otherwise, a configuration error is reported. As the
major iteration count is exhausted, the contents of this field is reloaded into the
CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first loaded by
software, this field must be equal to the value in the CITER field. As the major iteration
count is exhausted, the contents of this field are reloaded into the CITER field.
Note: If the channel is configured to execute a single service request, the initial values

of BITER and CITER should be 0x0001.

240–241 /
0x1C [16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively throttle the
amount of bus bandwidth consumed by the eDMA. In general, as the eDMA processes
the inner minor loop, it continuously generates read/write sequences until the minor
count is exhausted. This field forces the eDMA to stall after the completion of each
read/write access to control the bus request bandwidth seen by the system bus crossbar
switch (XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /
0x1C [18:23]

MAJOR.LINKCH
[0:5]

Link channel number.
If channel-to-channel linking on major loop complete is disabled
(TCD.MAJOR.E_LINK = 0) then,
 • No channel-to-channel linking (or chaining) is performed after the outer major loop

counter is exhausted.
Otherwise
 • After the major loop counter is exhausted, the DMA engine initiates a channel service

request at the channel defined by MAJOR.LINKCH[0:5] by setting that channel’s
TCD.START bit.

248 /
0x1C [24]

DONE Channel done. This flag indicates the eDMA has completed the outer major loop. It is set
by the DMA engine as the CITER count reaches zero; it is cleared by software or
hardware when the channel is activated (when the DMA engine has begun processing
the channel, not when the first data transfer occurs).
Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /
0x1C [25]

ACTIVE Channel active. This flag signals the channel is currently in execution. It is set when
channel service begins, and is cleared by the DMA engine as the inner minor loop
completes or if any error condition is detected.

Table 23-20. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-29

23.4 Functional Description
This section provides an overview of the microarchitecture and functional operation of the eDMA block.

250 /
0x1C [26]

MAJOR.E_LINK Enable channel-to-channel linking on major loop completion. As the channel completes
the outer major loop, this flag enables the linking to another channel, defined by
MAJOR.LINKCH[0:5]. The link target channel initiates a channel service request via an
internal mechanism that sets the TCD.START bit of the specified channel.
Note: To support the dynamic linking coherency model, this field is forced to zero when

written to while the TCD.DONE bit is set.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

251 /
0x1C [27]

E_SG Enable scatter-gather processing. As the channel completes the outer major loop, this
flag enables scatter-gather processing in the current channel. If enabled, the DMA
engine uses DLAST_SGA as a memory pointer to a 0-modulo-32 address containing a
32-byte data structure which is loaded as the transfer control descriptor into the local
memory.
Note: To support the dynamic scatter-gather coherency model, this field is forced to zero

when written to while the TCD.DONE bit is set.

0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The DLAST_SGA field

provides a memory pointer to the next TCD to be loaded into this channel after the
outer major loop completes its execution.

252 /
0x1C [28]

D_REQ Disable hardware request. If this flag is set, the eDMA hardware automatically clears the
corresponding EDMA_ERQL bit when the current major iteration count reaches zero.
0 The channel’s EDMA_ERQL bit is not affected.
1 The channel’s EDMA_ERQL bit is cleared when the outer major loop is complete.

253 /
0x1C [29]

INT_HALF Enable an interrupt when major counter is half complete. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the EDMA_IRQRL when
the current major iteration count reaches the halfway point. Specifically, the comparison
performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point interrupt
request is provided to support double-buffered (aka ping-pong) schemes, or other types
of data movement where the processor needs an early indication of the transfer’s
progress. CITER = BITER = 1 with INT_HALF enabled will generate an interrupt as it
satisfies the equation (CITER == (BITER >> 1)) after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254 /
0x1C [30]

INT_MAJ Enable an interrupt when major iteration count completes. If this flag is set, the channel
generates an interrupt request by setting the appropriate bit in the EDMA_ERQL when
the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /
0x1C [31]

START Channel start. If this flag is set the channel is requesting service. The eDMA hardware
automatically clears this flag after the channel begins execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

Table 23-20. TCDn Field Descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-30 Freescale Semiconductor

The eDMA module is partitioned into two major modules: the DMA engine and the transfer control
descriptor local memory. The DMA engine is further partitioned into four submodules, which are detailed
below.

• DMA engine

— Address path: This module implements registered versions of two channel transfer control
descriptors: channel x and channel y, and is responsible for all the master bus address
calculations. All the implemented channels provide the same functionality. This hardware
structure allows the data transfers associated with one channel to be preempted after the
completion of a read/write sequence if a higher priority channel service request is asserted
while the first channel is active. After a channel is activated, it runs until the minor loop is
completed unless preempted by a higher priority channel. This capability provides a
mechanism (optionally enabled by EDMA_CPRn[ECP]) where a large data move operation
can be preempted to minimize the time another channel is blocked from execution.

— When another channel is activated, the contents of its transfer control descriptor is read from
the local memory and loaded into the registers of the other address path channel{x,y}. After
the inner minor loop completes execution, the address path hardware writes the new values for
the TCDn.{SADDR, DADDR, CITER} back into the local memory. If the major iteration
count is exhausted, additional processing is performed, including the final address pointer
updates, reloading the TCDn.CITER field, and a possible fetch of the next TCDn from memory
as part of a scatter-gather operation.

— Data path: This module implements the actual bus master read/write datapath. It includes 32
bytes of register storage (matching the maximum transfer size) and the necessary mux logic to
support any required data alignment. The system read data bus is the primary input, and the
system write data bus is the primary output.

— The address and data path modules directly support the two-stage pipelined system bus. The
address path module represents the 1st stage of the bus pipeline (the address phase), while the
data path module implements the second stage of the pipeline (the data phase).

— Program model/channel arbitration: This module implements the first section of eDMA’s
programming model and also the channel arbitration logic. The programming model registers
are connected to the slave bus (not shown). The eDMA peripheral request inputs and eDMA
interrupt request outputs are also connected to this module (via the control logic).

— Control: This module provides all the control functions for the DMA engine. For data transfers
where the source and destination sizes are equal, the DMA engine performs a series of source
read, destination write operations until the number of bytes specified in the inner minor loop
byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes) divided by the
transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-31

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, DADDR,
BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, SLAST, CITER,
BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size data are
required for each reference of the larger size. For example, if the source size references 16-bit
data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

• TCD local memory

— Memory controller: This logic implements the required dual-ported controller, handling
accesses from both the DMA engine as well as references from the slave bus. As noted earlier,
in the event of simultaneous accesses, the DMA engine is given priority and the slave
transaction is stalled.

— Memory array: The TCD is implemented using a single-ported, synchronous compiled RAM
memory array.

23.4.1 eDMA Basic Data Flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data transfer can be
partitioned into three segments. As shown in Figure 23-19, the first segment involves the channel service
request. In the diagram, this example uses the assertion of the eDMA peripheral request signal to request
service for channel n. Channel service request via software and the TCDn.START bit follows the same
basic flow as an eDMA peripheral request. The eDMA peripheral request input signal is registered
internally and then routed to through the DMA engine, first through the control module, then into the
program model/channel arbitration module. In the next cycle, the channel arbitration is performed using
the fixed-priority or round-robin algorithm. After the arbitration is complete, the activated channel number
is sent through the address path and converted into the required address to access the TCD local memory.
Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded
into the DMA engine address path channel{x,y} registers. The TCD memory is organized 64-bits in width
to minimize the time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-32 Freescale Semiconductor

Figure 23-19. eDMA Operation, Part 1

In the second part of the basic data flow as shown in Figure 23-20, the modules associated with the data
transfer (address path, data path, and control) sequence through the required source reads and destination
writes to perform the actual data movement. The source reads are initiated and the fetched data is
temporarily stored in the data path module until it is gated onto the system bus during the destination write.
This source read/destination write processing continues until the inner minor byte count has been
transferred. The eDMA done handshake signal is asserted at the end of the minor byte count transfer.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA interrupt request

Bus read data

channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 32 channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-33

Figure 23-20. eDMA Operation, Part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is performed. In
this segment, the address path logic performs the required updates to certain fields in the channel’s TCD;
for example, SADDR, DADDR, CITER. If the outer major iteration count is exhausted, then there are
additional operations performed. These include the final address adjustments and reloading of the BITER
field into the CITER. Additionally, assertion of an optional interrupt request occurs at this time, as does a
possible fetch of a new TCD from memory using the scatter-gather address pointer included in the
descriptor. The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 23-21.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA interrupt request

S
ys

te
m

 b
us

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

channel arbitration

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Control
Address

path

eDMA done handshake

*n = 32 channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-34 Freescale Semiconductor

Figure 23-21. eDMA Operation, Part 3

23.5 Initialization / Application Information

23.5.1 eDMA Initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other than the
default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware (slave device
asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the arbitration and priority
levels written into the programmer's model. The DMA engine reads the entire TCD, including the primary

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA done

S
ys

te
m

 b
us

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Address
path

Control

Program model/
channel arbitration

*n = 32 channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-35

transfer control parameter shown in Table 23-21, for the selected channel into its internal address path
module. As the TCD is being read, the first transfer is initiated on the system bus unless a configuration
error is detected. Transfers from the source (as defined by the source address, TCD.SADDR) to the
destination (as defined by the destination address, TCD.DADDR) continue until the specified number of
bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA engine's local
TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main TCD memory and any minor
loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing is
executed; for example, interrupts, major loop channel linking, and scatter-gather operations, if enabled.

Figure 23-22 shows how each DMA request initiates one minor loop transfer (iteration) without CPU
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA
preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration
count (biter).

Table 23-21. TCD Primary Control and Status Fields

TCD Field Name Description

START Control bit to start channel when using a software initiated DMA
service (Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (cleared by software
when using a software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop
completion when using a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-36 Freescale Semiconductor

Figure 23-22. Example of Multiple Loop Iterations

Figure 23-23 lists the memory array terms and how the TCD settings interrelate.

Figure 23-23. Memory Array Terms

23.5.2 DMA Programming Errors

The DMA performs various tests on the transfer control descriptor to verify consistency in the descriptor
data. Most programming errors are reported on a per-channel basis with the exception of two errors:
group-priority error and channel-priority error, or EDMA_ESR[GPE] and EDMA_ESR[CPE],
respectively.

For all error types other than group- or channel-priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of the problem
channel, the error is detected and recorded again.

DMA request

Minor loop 3

Current major loop
iteration count

(CITER)
Example memory array

•
•
•

DMA request

Minor loop 2•
•
•

DMA request

Minor loop 1•
•
•

Major loop

xADDR:
(Starting address)

xSIZE:
(Size of one data

Minor loop
(NBYTES in

minor loop, often
the same value

as xSIZE)

Offset (xOFF): Number of
bytes added to current

address after each transfer
(Often the same value

as xSIZE)

•
Minor loop

Each DMA source (S) and
destination (D) has its own:

• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically
have size and offset
equal to NBYTES

•
•

after major loop
(typically used to

loop back)

transfer)

•
•
•

•
•
•

Last minor loop

• Modulo (xMOD)
• Last address adjustment
(xLAST) where x = S or D

•
•
•

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-37

Channel-priority errors are identified within a group after that group has been selected as the active group.
For the example, all of the channel priorities in group 1 are unique, but some of the channel priorities in
group 0 are the same:

1. The DMA is configured for fixed-group and fixed-channel arbitration modes.

2. Group 1 is the highest priority and all channels are unique in that group.

3. Group 0 is the next highest priority and has two channels with the same priority level.

4. If group 1 has any service requests, those requests are executed.

5. After all of group 1 requests have completed, group 0 becomes the next active group.

6. If group 0 has a service request, then an undefined channel in group 0 is selected and a
channel-priority error will occur.

7. This repeats until the all of group 0 requests have been removed or a higher priority group 1 request
comes in.

In this sequence, for item 2, the DMA acknowledge lines assert only if the selected channel is requesting
service via the DMA peripheral request signal. If interrupts are enabled for all channels, the user receives
an error interrupt, but the channel number for the EDMA_ER and the error interrupt request line are
undetermined because they reflect the undefined channel. A group-priority error is global and any request
in any group causes a group-priority error.

If priority levels are not unique, the highest (channel/group) priority that has an active request is selected,
but the lowest numbered (channel/group) with that priority is selected by arbitration and executed by the
DMA engine. The hardware service request handshake signals, error interrupts, and error reporting are
associated with the selected channel.

23.5.3 DMA Request Assignments

The assignments between the DMA requests from the modules to the channels of the eDMA are shown in
Table 23-22. The source column is written in C language syntax. The syntax is
module_instance.register[bit].

Table 23-22. DMA Request Summary for eDMA

DMA Request Channel Source Description

DMA_MUX_CHCONFIG0_SOURCE 0 DMA_MUX.CHCONFIG0[SOURCE] DMA MUX channel 0 source

DMA_MUX_CHCONFIG1_SOURCE 1 DMA_MUX.CHCONFIG1[SOURCE] DMA MUX channel 1 source

DMA_MUX_CHCONFIG2_SOURCE 2 DMA_MUX.CHCONFIG2[SOURCE] DMA MUX channel 2 source

DMA_MUX_CHCONFIG3_SOURCE 3 DMA_MUX.CHCONFIG3[SOURCE] DMA MUX channel 3 source

DMA_MUX_CHCONFIG4_SOURCE 4 DMA_MUX.CHCONFIG4[SOURCE] DMA MUX channel 4 source

DMA_MUX_CHCONFIG5_SOURCE 5 DMA_MUX.CHCONFIG5[SOURCE] DMA MUX channel 5 source

DMA_MUX_CHCONFIG6_SOURCE 6 DMA_MUX.CHCONFIG6[SOURCE] DMA MUX channel 6 source

DMA_MUX_CHCONFIG7_SOURCE 7 DMA_MUX.CHCONFIG7[SOURCE] DMA MUX channel 7 source

DMA_MUX_CHCONFIG8_SOURCE 8 DMA_MUX.CHCONFIG8[SOURCE] DMA MUX channel 8 source

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-38 Freescale Semiconductor

23.5.4 DMA Arbitration Mode Considerations

23.5.4.1 Fixed-Group Arbitration, Fixed-Channel Arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is
selected to execute. If the eDMA is programmed so the channels within one group use fixed priorities, and
that group is assigned the highest fixed priority of all groups, it is possible for that group to take all the
bandwidth of the eDMA controller. That is, no other groups can be serviced if there is always at least one
DMA request pending on a channel in the highest priority group when the controller arbitrates the next
DMA request. The advantage of this scenario is that latency can be small for channels that need to be
serviced quickly. Preemption is available in this scenario only.

DMA_MUX_CHCONFIG9_SOURCE 9 DMA_MUX.CHCONFIG9[SOURCE] DMA MUX channel 9 source

DMA_MUX_CHCONFIG10_SOURCE 10 DMA_MUX.CHCONFIG10[SOURCE] DMA MUX channel 10 source

DMA_MUX_CHCONFIG11_SOURCE 11 DMA_MUX.CHCONFIG11[SOURCE] DMA MUX channel 11 source

DMA_MUX_CHCONFIG12_SOURCE 12 DMA_MUX.CHCONFIG12[SOURCE] DMA MUX channel 12 source

DMA_MUX_CHCONFIG13_SOURCE 13 DMA_MUX.CHCONFIG13[SOURCE] DMA MUX channel 13 source

DMA_MUX_CHCONFIG14_SOURCE 14 DMA_MUX.CHCONFIG14[SOURCE] DMA MUX channel 14 source

DMA_MUX_CHCONFIG15_SOURCE 15 DMA_MUX.CHCONFIG15[SOURCE] DMA MUX channel 15 source

DMA_MUX_CHCONFIG16_SOURCE 16 DMA_MUX.CHCONFIG16[SOURCE] DMA MUX channel 16 source

DMA_MUX_CHCONFIG17_SOURCE 17 DMA_MUX.CHCONFIG17[SOURCE] DMA MUX channel 17 source

DMA_MUX_CHCONFIG18_SOURCE 18 DMA_MUX.CHCONFIG18[SOURCE] DMA MUX channel 18 source

DMA_MUX_CHCONFIG19_SOURCE 19 DMA_MUX.CHCONFIG19[SOURCE] DMA MUX channel 19 source

DMA_MUX_CHCONFIG20_SOURCE 20 DMA_MUX.CHCONFIG20[SOURCE] DMA MUX channel 20 source

DMA_MUX_CHCONFIG21_SOURCE 21 DMA_MUX.CHCONFIG21[SOURCE] DMA MUX channel 21 source

DMA_MUX_CHCONFIG22_SOURCE 22 DMA_MUX.CHCONFIG22[SOURCE] DMA MUX channel 22 source

DMA_MUX_CHCONFIG23_SOURCE 23 DMA_MUX.CHCONFIG23[SOURCE] DMA MUX channel 23 source

DMA_MUX_CHCONFIG24_SOURCE 24 DMA_MUX.CHCONFIG24[SOURCE] DMA MUX channel 24 source

DMA_MUX_CHCONFIG25_SOURCE 25 DMA_MUX.CHCONFIG25[SOURCE] DMA MUX channel 25 source

DMA_MUX_CHCONFIG26_SOURCE 26 DMA_MUX.CHCONFIG26[SOURCE] DMA MUX channel 26 source

DMA_MUX_CHCONFIG27_SOURCE 27 DMA_MUX.CHCONFIG27[SOURCE] DMA MUX channel 27 source

DMA_MUX_CHCONFIG28_SOURCE 28 DMA_MUX.CHCONFIG28[SOURCE] DMA MUX channel 28 source

DMA_MUX_CHCONFIG29_SOURCE 29 DMA_MUX.CHCONFIG29[SOURCE] DMA MUX channel 29 source

DMA_MUX_CHCONFIG30_SOURCE 30 DMA_MUX.CHCONFIG30[SOURCE] DMA MUX channel 30 source

DMA_MUX_CHCONFIG31_SOURCE 31 DMA_MUX.CHCONFIG31[SOURCE] DMA MUX channel 31 source

Table 23-22. DMA Request Summary for eDMA (continued)

DMA Request Channel Source Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-39

23.5.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration

When one or more DMA requests arrive from one or more groups, the channel with the highest priority
from a specific group is serviced first. Groups are serviced starting with the highest group number with a
service request and rotating through to the lowest group number containing a service request.

After the channel request is serviced, the group round robin algorithm selects the highest pending request
from the next group in the round-robin sequence. Servicing continues round robin, always servicing the
highest priority channel in the next group in the sequence, or skipping a group if it has no pending requests.

If a channel requests service at a rate that equals or exceeds the round robin service rate, then that channel
is always serviced before lower priority channels in the same group, and the lower priority channels are
never serviced. The advantage of this scenario is that no one group can consume all the eDMA bandwidth.
The highest priority channel selection latency is potentially greater than fixed/fixed arbitration. Excessive
request rates on high-priority channels can prevent the servicing of lower priority channels in the same
group.

23.5.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration

Groups are serviced as described in Section 23.5.4.2, “Round-Robin Group Arbitration, Fixed-Channel
Arbitration,” but this time channels are serviced in channel number order. One channel only is serviced
from each requesting group for each round robin pass through the groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to channel priority levels.

Because channels are serviced in round-robin manner, any channel that generates DMA requests faster
than a combination of the group round-robin service rate and the channel service rate for its group does
not prevent the servicing of other channels in its group. Any DMA requests that are not serviced are simply
lost, but at least one channel gets serviced.

This scenario ensures that all channels are guaranteed service at some point, regardless of the request rates.
However, the potential latency could be high. All channels are treated equally. Priority levels are not used
in round-robin/round-robin mode.

23.5.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

The highest priority group with a request is serviced. Lower priority groups are serviced if no pending
requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to the channel priority levels assigned within the group.

This scenario could cause the same bandwidth consumption problem as indicated in Section 23.5.4.1,
“Fixed-Group Arbitration, Fixed-Channel Arbitration,” but all the channels in the highest priority group
get serviced. Service latency is short on the highest priority group, but could potentially get longer and
longer as the group priority decreases.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-40 Freescale Semiconductor

23.5.5 DMA Transfer

23.5.5.1 Single Request

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer begins after the channel service request is
acknowledged and the channel is selected to execute. After the transfer is complete, the TCD.DONE bit is
set and an interrupt is generated if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has
a byte wide memory port located at 0x1000. The destination memory has a word wide port located at
0x2000. The address offsets are programmed in increments to match the size of the transfer; one byte for
the source and four bytes for the destination. The final source and destination addresses are adjusted to
return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= -16

TCD.INT_MAJ = 1

TCD.START = 1 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This would generate the following sequence of events:

1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000) first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004) second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008) third iteration of the minor loop

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-41

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c) last iteration of the minor loop major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

23.5.5.2 Multiple Requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware requests. The
only fields that change are the major loop iteration count and the final address offsets. The eDMA is
programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s
hardware requests are enabled in the EDMA_ERQR, channel service requests are initiated by the slave
device (ERQR should be set after TCD). Note that TCD.START = 0.

TCD.CITER = TCD.BITER = 2

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –32

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –32

TCD.INT_MAJ = 1

TCD.START = 0 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This generates the following sequence of events:

1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000) first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004) second iteration of the minor loop

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-42 Freescale Semiconductor

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008) third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c) last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)

b) write_word(0x2010) first iteration of the minor loop

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)

d) write_word(0x2014) second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)

f) write_word(0x2018) third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)

h) write_word(0x201c) last iteration of the minor loop major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2
(TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires major loop complete.

The eDMA goes idle or services the next channel.

23.5.5.3 Modulo Feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size
of the queue is a power of two. MOD is a 5-bit bitfield for both the source and destination in the TCD and
specifies which lower address bits are allowed to increment from their original value after the
address + offset calculation. All upper address bits remain the same as in the original value. A setting of 0
for this field disables the modulo feature.

Table 23-23 shows how the transfer addresses are specified based on the setting of the MOD field. Here a
circular buffer is created where the address wraps to the original value while the 28 upper address bits
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the
offset is set to 4 bytes and the mod field is set to 4, allowing for a 24 byte (16-byte) size queue.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-43

23.5.6 TCD Status

23.5.6.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests.
The first method is to read the TCD.CITER field and test for a change. Another method may be extracted
from the sequence below. The second method is to test the TCD.START bit AND the TCD.ACTIVE bit.
The minor loop complete condition is indicated by both bits reading zero after the TCD.START was
written to a 1. Polling the TCD.ACTIVE bit may be inconclusive because the active status may be missed
if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via software).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

The best method to test for minor loop completion when using hardware initiated service requests is to
read the TCD.CITER field and test for a change. The hardware request and acknowledge handshakes
signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

For both activation types, the major loop complete status is explicitly indicated via the TCD.DONE bit.

Table 23-23. Modulo Feature Example

Transfer
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-44 Freescale Semiconductor

The TCD.START bit is cleared automatically when the channel begins execution, regardless of how the
channel was activated.

23.5.6.2 Active Channel TCD Reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if read while
a channel is executing. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA
engine is currently using in its internal register file and not the values in the TCD local memory for that
channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer
progresses) can give an indication of the progress of the transfer. All other values are read back from the
TCD local memory.

23.5.6.3 Preemption Status

Preemption is available only when fixed arbitration is selected for both group- and channel-arbitration
modes. A preempt-able situation is one in which a preempt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed group, fixed-channel
arbitration mode, the determination of the relative priority of the actively running and the outstanding
requests become undefined. Channel and group priorities are treated as equal (or more exactly, constantly
rotating) when round-robin arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the preemption. The
preempted channel is temporarily suspended while the preempting channel executes one iteration of the
major loop. Two TCD.ACTIVE bits set at the same time in the overall TCD map indicates a higher priority
channel is actively preempting a lower priority channel.

23.5.7 Channel Linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit of another
channel (or itself), thus initiating a service request for that channel. This operation is automatically
performed by the eDMA engine at the conclusion of the major or minor loop when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major
loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop link is requested. When
enabled, the channel link is made after each iteration of the minor loop except for the last. When the major
loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be
made. For example, with the initial fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

will execute as:

1. Minor loop done set channel 12 TCD.START bit

2. Minor loop done set channel 12 TCD.START bit

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 23-45

3. Minor loop done set channel 12 TCD.START bit

4. Minor loop done, major loop done set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a nine bit
vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 15-bit
vector to form the current iteration count. The bits associated with the TCD.CITER.LINKCH field are
concatenated onto the CITER value to increase the range of the CITER.

NOTE
After configuration, the TCD.CITER.E_LINK bit and the
TCD.BITER.E_LINK bit must be equal or a configuration error is reported.
The CITER and BITER vector widths must be equal to calculate the major
loop, halfway done interrupt point.

Table 23-24 summarizes how a DMA channel can link to another DMA channel, i.e, use another channel’s
TCD, at the end of a loop.

23.5.8 Dynamic Programming

This section provides recommended methods to change the programming model during channel execution.

23.5.8.1 Dynamic Channel Linking and Dynamic Scatter-Gather Operation

Dynamic channel linking and dynamic scatter-gather operation is the process of changing the
TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read from the TCD
local memory at the end of channel execution thus allowing the user to enable either feature during channel
execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed.
Consider a scenario where the user attempts to execute a dynamic channel link by enabling the
TCD.MAJOR.E_LINK bit at the same time the eDMA engine is retiring the channel. The
TCD.MAJOR.E_LINK would be set in the programmer’s model, but it would be unclear whether the
actual link was made before the channel retired.

Table 23-24. Channel Linking Parameters

Desired Link
Behavior

TCD Control Field Name Description

Link at end of
minor loop

citer.e_link Enable channel-to-channel linking on minor loop
completion (current iteration).

citer.linkch Link channel number when linking at end of minor
loop (current iteration).

Link at end of
major loop

major.e_link Enable channel-to-channel linking on major loop
completion.

major.linkch Link channel number when linking at end of major
loop.

Enhanced Direct Memory Access Controller (eDMA)

MPC5668x Microcontroller Reference Manual, Rev. 4

23-46 Freescale Semiconductor

The following coherency model is recommended when executing a dynamic channel link or dynamic
scatter-gather request:

1. Set the TCD.MAJOR.E_LINK bit.

2. Read back the TCD.MAJOR.E_LINK bit

3. Test the TCD.MAJOR.E_LINK request status:

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was already
retiring.

This same coherency model is true for dynamic scatter-gather operations. For both dynamic requests, the
TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG bits to zero on any writes
to a channel’s TCD after that channel’s TCD.DONE bit is set indicating the major loop is complete.

NOTE
The user must clear the TCD.DONE bit before writing the
TCD.MAJOR.E_LINK or TCD.E_SG bits. The TCD.DONE bit is cleared
automatically by the eDMA engine after a channel begins execution.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-1

Chapter 24
Fast Ethernet Controller (FEC)

24.1 Introduction
This fast ethernet control chapter of the device Reference Manual provides a feature-set overview, a
functional block diagram, and transceiver connection information for both the 10 and 100 Mbps MII
(media independent interface), as well as the 7-wire serial interface. Additionally, detailed descriptions of
operation and the programming model are included.

NOTE
The FEC block is not implemented on the MPC5668E.

24.1.1 Block Diagram

The block diagram of the FEC is shown below. The FEC is implemented with a combination of hardware
and microcode. The off-chip (Ethernet) interfaces are compliant with industry and IEEE 802.3 standards.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-2 Freescale Semiconductor

Figure 24-1. FEC Block Diagram

24.1.2 Overview

The Ethernet media access controller (MAC) is designed to support both 10 and 100 Mbps Ethernet/IEEE
802.3 networks. An external transceiver interface and transceiver function are required to complete the
interface to the media. The FEC supports three different standard MAC-PHY (physical) interfaces for
connection to an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII and the 10
Mbps-only 7-wire interface, which uses a subset of the MII signals.

The descriptor controller is a RISC-based controller that provides the following functions in the FEC:

Slave Interface

CSR
FIFO DMA

Descriptor
Controller

MII
ReceiveTransmit

Bus

Controller

Controller

FEC_MDCFEC_MDIO

FEC_RX_CLK
FEC_RX_DV
FEC_RXD[3:0]
FEC_RX_ER

FEC_TX_CLKFEC_TX_EN
FEC_TXD[3:0]
FEC_TX_ER

FEC_CRS

MIB

(RISC +
microcode)

I/O
PAD

Counters

MII/7-WIRE DATA
OPTION

RAM

RAM I/F

FEC Bus

System Bus Crossbar Switch (XBAR)PBRIDGE_B

M
as

te
r

FEC Block

MDO
MDEN

MDI

FEC_COL

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-3

• Initialization (those internal registers not initialized by the user or hardware)

• High level control of the DMA channels (initiating DMA transfers)

• Interpreting buffer descriptors

• Address recognition for receive frames

• Random number generation for transmit collision backoff timer

NOTE
DMA references in this section refer to the FEC’s DMA engine. This DMA
engine is for the transfer of FEC data only, and is not related to the DMA
controller described in Chapter 23, “Enhanced Direct Memory Access
Controller (eDMA).”

The RAM is the focal point of all data flow in the fast Ethernet controller and is divided into transmit and
receive FIFOs. The FIFO boundaries are programmable using the FRSR register. User data flows to/from
the DMA block from/to the receive/transmit FIFOs. Transmit data flows from the transmit FIFO into the
transmit block and receive data flows from the receive block into the receive FIFO.

The user controls the FEC by writing, through the slave interface module, into control registers located in
each block. The CSR (control and status register) block provides global control (e.g., Ethernet reset and
enable) and interrupt handling registers.

The MII block provides a serial channel for control/status communication with the external physical layer
device (transceiver). This serial channel consists of the MDC (management data clock) and MDIO
(management data input/output) lines of the MII interface.

The DMA block provides multiple channels allowing transmit data, transmit descriptor, receive data, and
receive descriptor accesses to run independently.

The transmit and receive blocks provide the Ethernet MAC functionality (with some assist from
microcode).

The message information block (MIB) maintains counters for a variety of network events and statistics. It
is not necessary for operation of the FEC but provides valuable counters for network management. The
counters supported are the RMON (RFC 1757) Ethernet Statistics group and some of the IEEE802.3
counters.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-4 Freescale Semiconductor

24.1.3 Features

The FEC incorporates the following features:

• Support for three different Ethernet physical interfaces:

— 100-Mbps IEEE 802.3 MII

— 10-Mbps IEEE802.3 MII

— 10-Mbps 7-wire interface (industry standard)

• Built-in FIFO and DMA controller

• IEEE 802.3 MAC (compliant with IEEE 802.3 1998 edition)

• Programmable max frame length supports IEEE 802.1 VLAN tags and priority

• IEEE 802.3 full duplex flow control

• Support for full-duplex operation (200 Mbps throughput) with a system clock rate of 100 MHz
using the external FEC_TX_CLK or FEC_RX_CLK

• Support for half-duplex operation (100 Mbps throughput) with a system clock rate of 50 MHz
using the external FEC_TX_CLK or FEC_RX_CLK

• Retransmission from transmit FIFO following a collision (no system bus utilization)

• Automatic internal flushing of the receive FIFO for runts (collision fragments) and address
recognition rejects (no system bus utilization)

• Address recognition

— Frames with broadcast address may be always accepted or always rejected

— Exact match for single 48-bit individual (unicast) address

— Hash (64-bit hash) check of individual (unicast) addresses

— Hash (64-bit hash) check of group (multicast) addresses

— Promiscuous mode

• RMON and IEEE statistics

• Interrupts for network activity and error conditions

24.2 Modes of Operation
The primary operational modes are described in this section.

24.2.1 Full and Half Duplex Operation

Full duplex mode is intended for use on point-to-point links between switches or end node to switch. Half
duplex mode is used in connections between an end node and a repeater or between repeaters. Selection
of the duplex mode is controlled by TCR[FDEN].

When configured for full duplex mode, flow control may be enabled. Refer to the TCR[RFC_PAUSE] and
TCR[TFC_PAUSE] bits, the RCR[FCE] bit, and Section 24.4.10, “Full Duplex Flow Control,” for more
details.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-5

Throughputs of 200 Mbps in full duplex operations and 100 Mbps in half-duplex operations can be
attained.

24.2.2 Interface Options

The following interface options are supported. A detailed discussion of the interface configurations is
provided in Section 24.4.5, “Network Interface Options.”

24.2.2.1 10 Mbps and 100 Mbps MII Interface

MII is the media-independent interface defined by the IEEE 802.3 standard for 10/100 Mbps operation.
The MAC-PHY interface may be configured to operate in MII mode by asserting RCR[MII_MODE].

The speed of operation is determined by the FEC_TX_CLK and FEC_RX_CLK signals, which are driven
by the external transceiver. The transceiver can auto-negotiate the speed, or it can be controlled by
software via the serial management interface (FEC_MDC/FEC_MDIO signals) to the transceiver. Refer
to the MMFR and MSCR register descriptions as well as the section on the MII for a description of how
to read and write registers in the transceiver via this interface.

24.2.2.2 10 Mbps 7-Wire Interface Operation

The FEC supports a 7-wire interface as used by many 10 Mbps ethernet transceivers. The
RCR[MII_MODE] bit controls this functionality. If this bit is deasserted, the MII mode is disabled and the
10 Mbps, 7-wire mode is enabled.

24.2.3 Address Recognition Options

The address options supported are promiscuous, broadcast reject, individual address (hash or exact match),
and multicast hash match. Address recognition options are discussed in detail in Section 24.4.8, “Ethernet
Address Recognition.”

24.2.4 Internal Loopback

Internal loopback mode is selected via RCR[LOOP]. Loopback mode is discussed in detail in
Section 24.4.13, “Internal and External Loopback.”

24.3 Programming Model
This section gives an overview of the registers, followed by a description of the buffers.

The FEC is programmed by a combination of control/status registers (CSRs) and buffer descriptors. The
CSRs are used for mode control and to extract global status information. The descriptors are used to pass
data buffers and related buffer information between the hardware and software.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-6 Freescale Semiconductor

24.3.1 Top Level Module Memory Map

The FEC implementation requires a 1 KB memory map space. This is divided into two sections of 512
bytes each. The first is used for control/status registers. The second contains event/statistic counters held
in the MIB block. Table 24-1 defines the top level memory map. All accesses to and from the FEC memory
map must be via 32-bit accesses. There is no support for accesses other than 32-bit.

24.3.2 Detailed Memory Map (Control/Status Registers)

Table 24-2 shows the FEC register memory map with each register address, name, and a brief description.
The base address of the FEC registers is 0xFFF4_C000.

NOTE
Some memory locations are not documented. The actual FEC memory map
is from 0xFFF4_C000 to 0xFFF4_C5FF. Also, some bits in otherwise
documented registers are not documented. These memory locations and bits
are not needed for the FEC software driver. They are used mainly by the
FEC subblocks for the FEC operation and happen to be visible through the
slave interface.

Errant writes to these locations can corrupt FEC operation. Because the FEC
is a system bus master, errant writes also can result in the corruption of any
memory mapped location in the system. However, even errant writes to
documented FEC memory locations can cause the same corruption.

Table 24-1. FEC Module Memory Map

Address Function

FFF4_C000 (Base Address) –
FFF4_C1FF

Control/Status Registers

FFF4_C200 – FFF4_C3FF MIB Block Counters

Table 24-2. FEC Register Memory Map

 Offset from
FEC_BASE

(0xFFF4_C000)
Register Access1 Reset Value Section/Page

0x0000–0x0003 Reserved

0x0004 EIR—Interrupt Event Register R/W 0x0000_0000 24.3.4.2/24-10

0x0008 EIMR—Interrupt Mask Register R/W 0x0000_0000 24.3.4.3/24-12

0x000C–0x000F Reserved

0x0010 RDAR—Receive Descriptor Active Register R/W 0x0000_0000 24.3.4.4/24-12

0x0014 TDAR—Transmit Descriptor Active Register R/W 0x0000_0000 24.3.4.5/24-13

0x0018–0x0023 Reserved

0x0024 ECR—Ethernet Control Register R/W 0xF000_0000 24.3.4.6/24-14

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-7

0x0028–0x003F Reserved

0x0040 MMFR—MII Management Frame Register R/W U 24.3.4.7/24-15

0x0044 MSCR—MII Speed Control Register R/W 0x0000_0000 24.3.4.8/24-16

0x0048–0x0063 Reserved

0x0064 MIBC—MIB Control/Status Register R/W 0xC000_0000 24.3.4.9/24-18

0x0068–0x0083 Reserved

0x0084 RCR—Receive Control Register R/W 0x05EE_0001 24.3.4.10/24-18

0x0088–0x00C3 Reserved

0x00C4 TCR—Transmit Control Register R/W 0x0000_0000 24.3.4.11/24-20

0x00C8–0x00E3 Reserved

0x00E4 PALR—MAC Address Low Register R/W U 24.3.4.12/24-21

0x00E8 PAUR—MAC Address Upper Register + Type Field R/W 0xUUUU_8808 24.3.4.13/24-21

0x00EC OPD—Opcode + Pause Duration Fields R/W 0x0001_UUUU 24.3.4.14/24-22

0x00F0–0x0117 Reserved

0x0118 IAUR—Upper 32 bits of Individual Hash Table R/W U 24.3.4.15/24-23

0x011C IALR—Lower 32 Bits of Individual Hash Table R/W U 24.3.4.16/24-23

0x0120 GAUR—Upper 32 bits of Group Hash Table R/W U 24.3.4.17/24-24

0x0124 GALR—Lower 32 bits of Group Hash Table R/W U 24.3.4.18/24-25

0x0128–0x0143 Reserved

0x0144 TFWR—Transmit FIFO Watermark R/W 0x0000_0000 24.3.4.19/24-25

0x0148–0x014B Reserved

0x014C FRBR—FIFO Receive Bound Register R/W 0x0000_0600 24.3.4.20/24-26

0x0150 FRSR—FIFO Receive FIFO Start Registers R/W 0x0000_0500 24.3.4.21/24-27

0x0154–0x017F Reserved

0x0180 ERDSR—Pointer to Receive Descriptor Ring R/W U 24.3.4.22/24-27

0x0184 ETDSR—Transmit Buffer Descriptor Ring Start Register R/W U 24.3.4.23/24-28

0x0188 EMRBR—Receive Buffer Size Register R/W U 24.3.4.24/24-29

0x018C–0x3FFF Reserved

1 All accesses to and from the FEC memory map must be via 32-bit accesses. There is no support for accesses other than 32-bit.

Table 24-2. FEC Register Memory Map (continued)

 Offset from
FEC_BASE

(0xFFF4_C000)
Register Access1 Reset Value Section/Page

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-8 Freescale Semiconductor

24.3.3 MIB Block Counters Memory Map

Table 24-3 defines the MIB Counters memory map which defines the locations in the MIB RAM space
where hardware-maintained counters reside. These fall in the 0xFFF4_C200 – 0xFFF4_C3FF address
offset range. The counters are divided into two groups.

• RMON counters are included which cover the Ethernet Statistics counters defined in RFC 1757. In
addition to the counters defined in the Ethernet Statistics group, a counter is included to count
truncated frames as the FEC only supports frame lengths up to a maximum of 2047 bytes. The
RMON counters are implemented independently for transmit and receive to ensure accurate
network statistics when operating in full duplex mode.

• IEEEcounters are included which support the Mandatory and Recommended counter packages
defined in section 5 of ANSI/IEEE Std. 802.3 (1998 edition). The IEEE Basic Package objects are
supported by the FEC but do not require counters in the MIB block. In addition, some of the
recommended package objects which are supported do not require MIB counters. Counters for
transmit and receive full duplex flow control frames are included as well.

Table 24-3. MIB Counters Memory Map

 Offset from
FEC_BASE

(0xFFF4_C000)1
Mnemonic Description

0x0200 RMON_T_DROP Count of frames not counted correctly

0x0204 RMON_T_PACKETS RMON Tx packet count

0x0208 RMON_T_BC_PKT RMON Tx Broadcast Packets

0x020C RMON_T_MC_PKT RMON Tx Multicast Packets

0x0210 RMON_T_CRC_ALIGN RMON Tx Packets w CRC/Align error

0x0214 RMON_T_UNDERSIZE RMON Tx Packets < 64 bytes, good crc

0x0218 RMON_T_OVERSIZE RMON Tx Packets > MAX_FL bytes, good crc

0x021C RMON_T_FRAG RMON Tx Packets < 64 bytes, bad crc

0x0220 RMON_T_JAB RMON Tx Packets > MAX_FL bytes, bad crc

0x0224 RMON_T_COL RMON Tx collision count

0x0228 RMON_T_P64 RMON Tx 64 byte packets

0x022C RMON_T_P65TO127 RMON Tx 65 to 127 byte packets

0x0230 RMON_T_P128TO255 RMON Tx 128 to 255 byte packets

0x0234 RMON_T_P256TO511 RMON Tx 256 to 511 byte packets

0x0238 RMON_T_P512TO1023 RMON Tx 512 to 1023 byte packets

0x023C RMON_T_P1024TO2047 RMON Tx 1024 to 2047 byte packets

0x0240 RMON_T_P_GTE2048 RMON Tx packets w > 2048 bytes

0x0244 RMON_T_OCTETS RMON Tx Octets

0x0248 IEEE_T_DROP Count of frames not counted correctly

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-9

0x024C IEEE_T_FRAME_OK Frames Transmitted OK

0x0250 IEEE_T_1COL Frames Transmitted with Single Collision

0x0254 IEEE_T_MCOL Frames Transmitted with Multiple Collisions

0x0258 IEEE_T_DEF Frames Transmitted after Deferral Delay

0x025C IEEE_T_LCOL Frames Transmitted with Late Collision

0x0260 IEEE_T_EXCOL Frames Transmitted with Excessive Collisions

0x0264 IEEE_T_MACERR Frames Transmitted with Tx FIFO Underrun

0x0268 IEEE_T_CSERR Frames Transmitted with Carrier Sense Error

0x026C IEEE_T_SQE Frames Transmitted with SQE Error

0x0270 IEEE_T_FDXFC Flow Control Pause frames transmitted

0x0274 IEEE_T_OCTETS_OK Octet count for Frames Transmitted w/o Error

0x0280 RMON_R_DROP Count of frames not counted correctly

0x0284 RMON_R_PACKETS RMON Rx packet count

0x0288 RMON_R_BC_PKT RMON Rx Broadcast Packets

0x028C RMON_R_MC_PKT RMON Rx Multicast Packets

0x0290 RMON_R_CRC_ALIGN RMON Rx Packets w CRC/Align error

0x0294 RMON_R_UNDERSIZE RMON Rx Packets < 64 bytes, good crc

0x0298 RMON_R_OVERSIZE RMON Rx Packets > MAX_FL bytes, good crc

0x029C RMON_R_FRAG RMON Rx Packets < 64 bytes, bad crc

0x02A0 RMON_R_JAB RMON Rx Packets > MAX_FL bytes, bad crc

0x02A4 — Reserved

0x02A8 RMON_R_P64 RMON Rx 64 byte packets

0x02AC RMON_R_P65TO127 RMON Rx 65 to 127 byte packets

0x02B0 RMON_R_P128TO255 RMON Rx 128 to 255 byte packets

0x02B4 RMON_R_P256TO511 RMON Rx 256 to 511 byte packets

0x02B8 RMON_R_P512TO1023 RMON Rx 512 to 1023 byte packets

0x02BC RMON_R_P1024TO2047 RMON Rx 1024 to 2047 byte packets

0x02C0 RMON_R_P_GTE2048 RMON Rx packets w > 2048 bytes

0x02C4 RMON_R_OCTETS RMON Rx Octets

0x02C8 IEEE_R_DROP Count of frames not counted correctly

0x02CC IEEE_R_FRAME_OK Frames Received OK

Table 24-3. MIB Counters Memory Map (continued)

 Offset from
FEC_BASE

(0xFFF4_C000)1
Mnemonic Description

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-10 Freescale Semiconductor

24.3.4 Registers

24.3.4.1 FEC Burst Optimization Master Control Register (FBOMCR)

Although not an FEC register, the FEC burst optimization master control register (FBOMCR) controls
FEC burst optimization behavior on the system bus, hence it is mentioned here. Full details are provided
in Section 18.2.2.1, “FEC Burst Optimization Master Control Register (FBOMCR).” FEC registers are
described in Section 24.3.4.21, “FIFO Receive Start Register (FRSR),” through Section 24.3.4.24,
“Receive Buffer Size Register (EMRBR).”

In order to increase throughput, the FEC interface to the system bus can accumulate read requests or writes
to burst those transfers on the system bus. The FBOMCR determines the XBAR ports for which this
bursting is enabled, as well as whether the bursting is for reads, writes, or both. FBOMCR also controls
how errors for writes are handled. The FBOMCR address is 0xFFF4_0024, which is the ECSM base
address 0xFFF4_0000 plus the offset of 0x0024.

24.3.4.2 Ethernet Interrupt Event Register (EIR)

When an event occurs that sets a bit in the EIR, an interrupt is generated if the corresponding bit in the
interrupt mask register (EIMR) is also set. The bit in the EIR is cleared if a one is written to that bit
position; writing zero has no effect. This register is cleared on hardware reset.

These interrupts can be divided into operational interrupts, transceiver/network error interrupts, and
internal error interrupts. Interrupts which may occur in normal operation are GRA, TXF, TXB, RXF, RXB,
and MII. Interrupts resulting from errors/problems detected in the network or transceiver are HBERR,
BABR, BABT, LC, and RL. Interrupts resulting from internal errors are HBERR and UN.

Some of the error interrupts are independently counted in the MIB block counters. Software may choose
to mask off these interrupts, since these errors are visible to network management via the MIB counters:

• HBERR – IEEE_T_SQE

• BABR – RMON_R_OVERSIZE (good CRC), RMON_R_JAB (bad CRC)

• BABT – RMON_T_OVERSIZE (good CRC), RMON_T_JAB (bad CRC)

0x02D0 IEEE_R_CRC Frames Received with CRC Error

0x02D4 IEEE_R_ALIGN Frames Received with Alignment Error

0x02D8 IEEE_R_MACERR Receive Fifo Overflow count

0x02DC IEEE_R_FDXFC Flow Control Pause frames received

0x02E0 IEEE_R_OCTETS_OK Octet count for Frames Rcvd w/o Error

1 All accesses to and from the FEC memory map must be via 32-bit accesses. There is no support for
accesses other than 32-bit.

Table 24-3. MIB Counters Memory Map (continued)

 Offset from
FEC_BASE

(0xFFF4_C000)1
Mnemonic Description

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-11

• LATE_COL – IEEE_T_LCOL

• COL_RETRY_LIM – IEEE_T_EXCOL

• XFIFO_UN – IEEET_MACERR

Offset: FEC_BASE + 0x0004 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HB
ERR

BABR BABT GRA TXF TXB RXF RXB MII
EB

ERR
LC RL UN 0 0 0

W w1c1

1 “w1c” signifies the bit is cleared by writing 1 to it.

w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-2. Ethernet Interrupt Event Register (EIR)

Table 24-4. EIR Field Descriptions

Field Description

HBERR Heartbeat error. This interrupt indicates that HBC is set in the TCR register and that the COL input was not
asserted within the Heartbeat window following a transmission.

BABR Babbling receive error. This bit indicates a frame was received with length in excess of RCR[MAX_FL] bytes.

BABT Babbling transmit error. This bit indicates that the transmitted frame length has exceeded RCR[MAX_FL]
bytes. This condition is usually caused by a frame that is too long being placed into the transmit data buffers.
Truncation does not occur.

GRA Graceful stop complete. This interrupt is asserted for one of three reasons. Graceful stop means that the
transmitter is put into a pause state after completion of the frame currently being transmitted.
 • A graceful stop, which was initiated by the setting of the TCR[GTS] bit is now complete.
 • A graceful stop, which was initiated by the setting of the TCR[TFC_PAUSE] bit is now complete.
 • A graceful stop, which was initiated by the reception of a valid full duplex flow control “pause” frame is

now complete.

TXF Transmit frame interrupt. This bit indicates that a frame has been transmitted and that the last corresponding
buffer descriptor has been updated.

TXB Transmit buffer interrupt. This bit indicates that a transmit buffer descriptor has been updated.

RXF Receive frame interrupt. This bit indicates that a frame has been received and that the last corresponding
buffer descriptor has been updated.

RXB Receive buffer interrupt. This bit indicates that a receive buffer descriptor has been updated that was not the
last in the frame.

MII MII interrupt. This bit indicates that the MII has completed the data transfer requested.

EBERR Ethernet bus error. This bit indicates that a system bus error occurred when a DMA transaction was
underway. When the EBERR bit is set, ECR[ETHER_EN] is cleared, halting frame processing by the FEC.
When this occurs, software must ensure that the FIFO controller and DMA are also soft reset.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-12 Freescale Semiconductor

24.3.4.3 Ethernet Interrupt Mask Register (EIMR)

The EIMR register controls which interrupt events are allowed to generate actual interrupts. All
implemented bits in this CSR are read/write. This register is cleared on a hardware reset. If the
corresponding bits in both the EIR and EIMR registers are set, the interrupt is signalled to the CPU. The
interrupt signal remains asserted until a 1 is written to the EIR bit (write 1 to clear) or a 0 is written to the
EIMR bit.

24.3.4.4 Receive Descriptor Active Register (RDAR)

RDAR is a command register, written by the user, that indicates that the receive descriptor ring has been
updated (empty receive buffers have been produced by the driver with the empty bit set).

Whenever the register is written, the R_DES_ACTIVE bit is set. This is independent of the data actually
written by the user. When set, the FEC polls the receive descriptor ring and processes receive frames

LC Late collision. This bit indicates that a collision occurred beyond the collision window (slot time) in half duplex
mode. The frame is truncated with a bad CRC and the remainder of the frame is discarded.

RL Collision retry limit. This bit indicates that a collision occurred on each of 16 successive attempts to transmit
the frame. The frame is discarded without being transmitted, and transmission of the next frame begins. Can
only occur in half duplex mode.

UN Transmit FIFO underrun. This bit indicates that the transmit FIFO became empty before the complete frame
was transmitted. A bad CRC is appended to the frame fragment and the remainder of the frame is discarded.

Offset: FEC_BASE + 0x0008 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HB
ERR

BABR BABT GRA TXF TXB RXF RXB MII
EB

ERR
LC RL UN 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-3. Interrupt Mask Register (EIMR)

Table 24-5. EIMR Field Descriptions

Field Description

See Figure 24-2
and Table 24-4

Interrupt mask. Each bit corresponds to an interrupt source defined by the EIR register. The corresponding
EIMR bit determines whether an interrupt condition can generate an interrupt.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is not masked.
Write 1 to clear.

Table 24-4. EIR Field Descriptions (continued)

Field Description

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-13

(provided ECR[ETHER_EN] is also set). Once the FEC polls a receive descriptor whose empty bit is not
set, the FEC clears R_DES_ACTIVE and ceases receive descriptor ring polling until the user sets the bit
again, signifying that additional descriptors have been placed into the receive descriptor ring.

The RDAR register is cleared at reset and when ECR[ETHER_EN] is cleared.

24.3.4.5 Transmit Descriptor Active Register (TDAR)

The TDAR is a command register that should be written by the user to indicate that the transmit descriptor
ring has been updated (transmit buffers have been produced by the driver with the ready bit set in the buffer
descriptor).

Whenever the register is written, the X_DES_ACTIVE bit is set. This value is independent of the data
actually written by the user. When set, the FEC polls the transmit descriptor ring and processes transmit
frames (provided ECR[ETHER_EN] is also set). Once the FEC polls a transmit descriptor whose ready bit
is not set, the FEC clears X_DES_ACTIVE and ceases transmit descriptor ring polling until the user sets
the bit again, signifying additional descriptors have been placed into the transmit descriptor ring.

The TDAR register is cleared at reset, when ECR[ETHER_EN] is cleared, or when ECR[RESET] is set.

Offset: FEC_BASE + 0x0010 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 R_DES_ACTIVE 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-4. Receive Descriptor Active Register (RDAR)

Table 24-6. RDAR Field Descriptions

Field Description

0–6 Reserved, should be cleared.

R_DES_ACTIVE Set to one when this register is written, regardless of the value written. Cleared by the FEC device whenever
no additional “empty” descriptors remain in the receive ring. Also cleared when ECR[ETHER_EN] is
cleared.

8–31 Reserved, should be cleared.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-14 Freescale Semiconductor

24.3.4.6 Ethernet Control Register (ECR)

ECR is a read/write user register, though both fields in this register may be altered by hardware as well.
The ECR is used to enable/disable the FEC.

Offset: FEC_BASE + 0x0014 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 X_DES_ACTIVE 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-5. Transmit Descriptor Active Register (TDAR)

Table 24-7. TDAR Field Descriptions

Field Description

0–6 Reserved, should be cleared.

X_DES_ACTIVE Set to one when this register is written, regardless of the value written. Cleared by the FEC device whenever
no additional “ready” descriptors remain in the transmit ring. Also cleared when ECR[ETHER_EN] is
cleared.

8–31 Reserved, should be cleared.

Offset: FEC_BASE + 0x0024 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETHER_EN RESET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-6. Ethernet Control Register (ECR)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-15

24.3.4.7 MII Management Frame Register (MMFR)

The MMFR is accessed by the user and does not reset to a defined value. The MMFR register is used to
communicate with the attached MII compatible PHY devices, providing read/write access to their MII
registers. Performing a write to the MMFR causes a management frame to be sourced unless the MSCR
has been programmed to 0. In the case of writing to MMFR when MSCR = 0, if the MSCR register is then
written to a non-zero value, an MII frame is generated with the data previously written to the MMFR. This
allows MMFR and MSCR to be programmed in either order if MSCR is currently zero.

Table 24-8. ECR Field Descriptions

Bits Description

ETHER_EN When this bit is set, the FEC is enabled, and reception and transmission are possible. When this bit is
cleared, reception is immediately stopped and transmission is stopped after a bad CRC is appended to any
currently transmitted frame. The buffer descriptors for an aborted transmit frame are not updated after
clearing this bit. When ETHER_EN is deasserted, the DMA, buffer descriptor, and FIFO control logic are
reset, including the buffer descriptor and FIFO pointers. The ETHER_EN bit is altered by hardware under
the following conditions:
 • ECR[RESET] is set by software, in which case ETHER_EN is cleared
 • An error condition causes the EIR[EBERR] bit to set, in which case ETHER_EN is cleared

RESET When this bit is set, the equivalent of a hardware reset is performed but it is local to the FEC. ETHER_EN
is cleared and all other FEC registers take their reset values. Also, any transmission/reception currently in
progress is abruptly aborted. This bit is automatically cleared by hardware during the reset sequence. The
reset sequence takes approximately 8 system clock cycles after RESET is written with a 1.

Offset: FEC_BASE + 0x0040 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ST OP PA RA TA

W

Reset U1

1 “U” signifies a bit that is uninitialized.

U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DATA

W

Reset U U U U U U U U U U U U U U U U

Figure 24-7. MII Management Frame Register (MMFR)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-16 Freescale Semiconductor

To perform a read or write operation on the MII management interface, the MMFR register must be written
by the user. To generate a valid read or write management frame, the ST field must be written with a 01
pattern, and the TA field must be written with a 10. If other patterns are written to these fields, a frame is
generated that does not comply with the IEEE 802.3 MII definition.

To generate an IEEE802.3-compliant MII management interface write frame (write to a PHY register),
the user must write {01 01 PHYAD REGAD 10 DATA} to the MMFR register. Writing this pattern causes
the control logic to shift out the data in the MMFR register following a preamble generated by the control
state machine. During this time, the contents of the MMFR register are altered as the contents are serially
shifted and are unpredictable if read by the user. Once the write management frame operation has
completed, the MII interrupt is generated. At this time the contents of the MMFR register match the
original value written.

To generate an MII management interface read frame (read a PHY register) the user must write {01 10
PHYAD REGAD 10 XXXX} to the MMFR register (the content of the DATA field is a “don’t care”).
Writing this pattern causes the control logic to shift out the data in the MMFR register following a
preamble generated by the control state machine. During this time, the contents of the MMFR register are
altered as the contents are serially shifted, and are unpredictable if read by the user. Once the read
management frame operation has completed, the MII interrupt is generated. At this time, the contents of
the MMFR register match the original value written, except for the DATA field, whose contents have been
replaced by the value read from the PHY register.

If the MMFR register is written while frame generation is in progress, the frame contents are altered.
Software should software should poll the EIR[MII] bit or use the EIR[MII] bit to generate an interrupt to
avoid writing to the MMFR register while frame generation is in progress.

24.3.4.8 MII Speed Control Register (MSCR)

The MSCR provides control of the MII clock (FEC_MDC signal) frequency, allows a preamble drop on
the MII management frame, and provides observability (intended for manufacturing test) of an internal
counter used in generating the FEC_MDC clock signal.

Table 24-9. MMFR Field Descriptions

Field Description

ST Start of frame delimiter. These bits must be programmed to 01 for a valid MII management frame.

OP Operation code. This field must be programmed to 10 (read) or 01 (write) to generate a valid MII management
frame. A value of 11 produces “read” frame operation. A value of 00 produces “write” frame operation, but
these frames are not MII compliant.

PA PHY address. This field specifies one of as many as 32 attached PHY devices.

RA Register address. This field specifies one of as many as 32 registers within the specified PHY device.

TA Turn around. This field must be programmed to 10 to generate a valid MII management frame.

DATA Management frame data. This is the field for data to be written to or read from the PHY register.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-17

The MII_SPEED field must be programmed with a value to provide an MDC frequency of less than or
equal to 2.5 MHz to be compliant with the IEEE 802.3 MII specification. The MII_SPEED must be set to
a non-zero value in order to source a read or write management frame. After the management frame is
complete the MSCR register may optionally be set to zero to turn off the MDC. The MDC generated has
a 50% duty cycle except when MII_SPEED is changed during operation (change takes effect following
either a rising or falling edge of MDC).

If the system clock is 50 MHz, programming this register to 0x0000_0005 results in an MDC frequency
of 50 MHz × 1/20 = 2.5 MHz. A table showing optimum values for MII_SPEED as a function of system
clock frequency is provided in Table 24-11.

Offset: FEC_BASE + 0x0044 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 DIS_
PREA
MBLE

MII_SPEED
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-8. MII Speed Control Register (MSCR)

Table 24-10. MSCR Field Descriptions

Field Description

0–23 Reserved, should be cleared.

DIS_PREAMBLE Asserting this bit causes preamble (32 1’s) not to be prepended to the MII management frame. The MII
standard allows the preamble to be dropped if the attached PHY devices does not require it.

MII_SPEED MII_SPEED controls the frequency of the MII management interface clock (FEC_MDC) relative to the
system clock. A value of 0 in this field “turns off” the MDC and leaves it in low voltage state. Any non-zero
value results in the MDC frequency of 1/(MII_SPEED * 4) of the system clock frequency.

31 Reserved, should be cleared.

Table 24-11. Programming Examples for MSCR

System Clock Frequency MII_SPEED (field in reg) MDC frequency

50 MHz 0x5 2.5 MHz

66 MHz 0x7 2.36 MHz

80 MHz 0x8 2.5 MHz

100 MHz 0xA 2.5 MHz

132 MHz1 0xD 2.5 MHz

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-18 Freescale Semiconductor

24.3.4.9 MIB Control Register (MIBC)

The MIBC is a read/write register used to provide control of and to observe the state of the MIB block.
This register is accessed by user software if there is a need to disable the MIB block operation. For
example, in order to clear all MIB counters in RAM the user should disable the MIB block, then clear all
the MIB RAM locations, then enable the MIB block. The MIB_DISABLE bit is reset to 1. See Table 24-3
for the locations of the MIB counters.

24.3.4.10 Receive Control Register (RCR)

The RCR is programmed by the user. The RCR controls the operational mode of the receive block and

1 Note: Observe maximum system clock frequency when programming MII_SPEED.

Offset: FEC_BASE + 0x0064 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MIB_
DISA
BLE

MIB_
IDLE

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-9. MIB Control Register (MIBC)

Table 24-12. MIBC Field Descriptions

Field Description

MIB_DISABLE A read/write control bit. If set, the MIB logic halts and does not update any MIB counters.

MIB_IDLE A read-only status bit. If set, the MIB block is not currently updating any MIB counters.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-19

should be written only when ECR[ETHER_EN] = 0 (initialization time).
Offset: FEC_BASE + 0x0084 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
MAX_FL

W

Reset 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
FCE

BC_
REJ

PROM
MII_

MODE
DRT LOOP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-10. Receive Control Register (RCR)

Table 24-13. RCR Field Descriptions

Field Description

0–4 Reserved, should be cleared.

MAX_FL Maximum frame length. Resets to decimal 1518. Length is measured starting at DA and includes the CRC
at the end of the frame. Transmit frames longer than MAX_FL cause the BABT interrupt to occur. Receive
frames longer than MAX_FL cause a BABR interrupt and sets the LG bit in the end-of-frame receive buffer
descriptor. You can program the default value to 1518 or 1522 (if VLAN tags are supported).

16–25 Reserved, should be cleared.

FCE Flow control enable. If asserted, the receiver detects PAUSE frames. Upon PAUSE frame detection, the
transmitter stops transmitting data frames for a given duration.

BC_REJ Broadcast frame reject. If asserted, frames with DA (destination address) = FF_FF_FF_FF_FF_FF is
rejected unless the PROM bit is set. If both BC_REJ and PROM = 1, then frames with broadcast DA is
accepted and the M (MISS) bit is set in the receive buffer descriptor.

PROM Promiscuous mode. All frames are accepted regardless of address matching.

MII_MODE Media independent interface mode. Selects external interface mode. Setting this bit to one selects MII mode,
setting this bit equal to zero selects 7-wire mode (used only for serial 10 Mbps). This bit controls the interface
mode for both transmit and receive blocks.

DRT Disable receive on transmit.
0 Receive path operates independently of transmit (use for full duplex or to monitor transmit activity in half

duplex mode).
1 Disable reception of frames while transmitting (normally used for half duplex mode).

LOOP Internal loopback. If set, transmitted frames are looped back internal to the device and the transmit output
signals are not asserted. The system clock is substituted for the FEC_TX_CLK when LOOP is asserted. DRT
must be set to zero when asserting LOOP.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-20 Freescale Semiconductor

24.3.4.11 Transmit Control Register (TCR)

The TCR is read/write and is written by the user to configure the transmit block. This register is cleared at
system reset. Bits 29 and 30 should be modified only when ECR[ETHER_EN] = 0.

Offset: FEC_BASE + 0x00C4 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0

RFC_
PAUSE

TFC_
PAUSE

FDEN HBC GTS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-11. Transmit Control Register (TCR)

Table 24-14. TCR Field Descriptions

Field Description

0–26 Reserved, should be cleared.

RFC_PAUSE Receive frame control pause. This read-only status bit is asserted when a full duplex flow control pause
frame has been received and the transmitter is paused for the duration defined in this pause frame. This bit
is automatically cleared when the pause duration is complete.

TFC_PAUSE Transmit frame control pause. Transmits a PAUSE frame when asserted. When this bit is set, the MAC stops
transmitting data frames after the current transmission is complete. At this time, the GRA interrupt in the EIR
register is asserted. With transmission of data frames stopped, the MAC transmits a MAC Control PAUSE
frame. Next, the MAC clears the TFC_PAUSE bit and resumes transmitting data frames. Note that if the
transmitter is paused due to user assertion of GTS or reception of a PAUSE frame, the MAC may still transmit
a MAC Control PAUSE frame.

FDEN Full duplex enable. If set, frames are transmitted independent of carrier sense and collision inputs. This bit
should only be modified when ETHER_EN is deasserted.

HBC Heartbeat control. If set, the heartbeat check is performed following end of transmission and the HB bit in
the status register is set if the collision input does not assert within the heartbeat window. This bit should only
be modified when ETHER_EN is deasserted.

GTS Graceful transmit stop. When this bit is set, the MAC stops transmission after any frame that is currently being
transmitted is complete and the GRA interrupt in the EIR register is asserted. If frame transmission is not
currently underway, the GRA interrupt is asserted immediately. Once transmission has completed, a “restart”
can be accomplished by clearing the GTS bit. The next frame in the transmit FIFO is then transmitted. If an
early collision occurs during transmission when GTS = 1, transmission stops after the collision. The frame is
transmitted again once GTS is cleared. Note that there may be old frames in the transmit FIFO that are
transmitted when GTS is reasserted. To avoid this deassert ECR[ETHER_EN] following the GRA interrupt.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-21

24.3.4.12 Physical Address Low Register (PALR)

The PALR is written by the user. This register contains the lower 32 bits (bytes 0,1,2,3) of the 48-bit MAC
address used in the address recognition process to compare with the DA (destination address) field of
receive frames with an individual DA. In addition, this register is used in bytes 0 through 3 of the 6-byte
source address field when transmitting PAUSE frames. This register is not reset and must be initialized by
the user.

24.3.4.13 Physical Address Upper Register (PAUR)

The PAUR is written by the user. This register contains the upper 16 bits (bytes 4 and 5) of the 48-bit MAC
address used in the address recognition process to compare with the DA (destination address) field of
receive frames with an individual DA. In addition, this register is used in bytes 4 and 5 of the 6-byte Source
Address field when transmitting PAUSE frames. Bits 16:31 of PAUR contain a constant TYPE field
(0x8808) used for transmission of PAUSE frames.This register is not reset, and bits 0:15 must be initialized
by the user. Refer to Section 24.4.10, “Full Duplex Flow Control,” for information on using the TYPE
field.

Offset: FEC_BASE + 0x00E4 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PADDR1

W

Reset U1

1 “U” signifies a bit that is uninitialized. Refer to the Preface of the book.

U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PADDR1

W

Reset U U U U U U U U U U U U U U U U

Figure 24-12. Physical Address Low Register (PALR)

Table 24-15. PALR Field Descriptions

Field Description

PADDR1 Bytes 0 (bits 0:7), 1 (bits 8:15), 2 (bits 16:23) and 3 (bits 24:31) of the 6-byte individual address to be used
for exact match, and the Source Address field in PAUSE frames.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-22 Freescale Semiconductor

24.3.4.14 Opcode/Pause Duration Register (OPD)

The OPD is read/write accessible. This register contains the 16-bit OPCODE and 16-bit pause duration
(PAUSE_DUR) fields used in transmission of a PAUSE frame. The OPCODE field is a constant value,
0x0001. When another node detects a PAUSE frame, that node pauses transmission for the duration
specified in the pause duration field. This register is not reset and must be initialized by the user. Refer to
Section 24.4.10, “Full Duplex Flow Control,” for information on using the OPD register.

Offset: FEC_BASE + 0x00E8 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PADDR2

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TYPE

W

Reset 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Figure 24-13. Physical Address Upper Register (PAUR)

Table 24-16. PAUR Field Descriptions

Field Description

PADDR2 Bytes 4 (bits 0:7) and 5 (bits 8:15) of the 6-byte individual address to be used for exact match, and the
Source Address field in PAUSE frames.

TYPE The type field is used in PAUSE frames. These bits are a constant, 0x8808.

Offset: FEC_BASE + 0x00EC Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OPCODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PAUSE_DUR

W

Reset U U U U U U U U U U U U U U U U

Figure 24-14. Opcode/Pause Duration Register (OPD)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-23

24.3.4.15 Descriptor Individual Upper Address Register (IAUR)

The IAUR is written by the user. This register contains the upper 32 bits of the 64-bit individual address
hash table used in the address recognition process to check for possible match with the DA field of receive
frames with an individual DA. This register is not reset and must be initialized by the user.

24.3.4.16 Descriptor Individual Lower Address (IALR)

The IALR register is written by the user. This register contains the lower 32 bits of the 64-bit individual
address hash table used in the address recognition process to check for possible match with the DA field
of receive frames with an individual DA. This register is not reset and must be initialized by the user.

Table 24-17. OPD Field Descriptions

Field Description

OPCODE Opcode field used in PAUSE frames.
These bits are a constant, 0x0001.

PAUSE_DUR Pause duration field used in PAUSE frames.

Offset: FEC_BASE + 0x0118 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IADDR1

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IADDR1

W

Reset U U U U U U U U U U U U U U U U

Figure 24-16. Descriptor Individual Upper Address Register (IAUR)

Table 24-18. IAUR Field Descriptions

Field Descriptions

IADDR1 The upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a
unicast address. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of IADDR1 contains hash index bit 32.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-24 Freescale Semiconductor

24.3.4.17 Descriptor Group Upper Address (GAUR)

The GAUR is written by the user. This register contains the upper 32 bits of the 64-bit hash table used in
the address recognition process for receive frames with a multicast address. This register must be
initialized by the user.

Offset: FEC_BASE + 0x011C Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IADDR2

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IADDR2

W

Reset U U U U U U U U U U U U U U U U

Figure 24-17. Descriptor Individual Lower Address (IALR)

Table 24-19. IALR Field Descriptions

Field Description

IADDR2 The lower 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a
unicast address. Bit 31 of IADDR2 contains hash index bit 31. Bit 0 of IADDR2 contains hash index bit 0.

Offset: FEC_BASE + 0x0120 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
GADDR1

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GADDR1

W

Reset U U U U U U U U U U U U U U U U

Figure 24-18. Descriptor Group Upper Address Register (GAUR)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-25

24.3.4.18 Descriptor Group Lower Address (GALR)

The GALR register is written by the user. This register contains the lower 32 bits of the 64-bit hash table
used in the address recognition process for receive frames with a multicast address. This register must be
initialized by the user.

24.3.4.19 FIFO Transmit FIFO Watermark Register (TFWR)

The TFWR is a 32-bit read/write register with one 2-bit field programmed by the user to control the
amount of data required in the transmit FIFO before transmission of a frame can begin. This allows the
user to minimize transmit latency (TFWR = 0x) or allow for larger bus access latency (TFWR = 11) due
to contention for the system bus. Setting the watermark to a high value minimizes the risk of transmit FIFO
underrun due to contention for the system bus. The byte counts associated with the TFWR field may need
to be modified to match a given system requirement (worst case bus access latency by the transmit data
DMA channel).

Table 24-20. GAUR Field Descriptions

Field Description

GADDR1 The GADDR1 register contains the upper 32 bits of the 64-bit hash table used in the address recognition
process for receive frames with a multicast address. Bit 31 of GADDR1 contains hash index bit 63. Bit 0 of
GADDR1 contains hash index bit 32.

Offset: FEC_BASE + 0x0124 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
GADDR2

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GADDR2

W

Reset U U U U U U U U U U U U U U U U

Figure 24-19. Descriptor Group Lower Address Register (GALR)

Table 24-21. GALR Field Descriptions

Field Description

GADDR2 The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address recognition
process for receive frames with a multicast address. Bit 31 of GADDR2 contains hash index bit 31. Bit 0 of
GADDR2 contains hash index bit 0.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-26 Freescale Semiconductor

24.3.4.20 FIFO Receive Bound Register (FRBR)

The FRBR is a 32-bit register with one 8-bit field that the user can read to determine the upper address
bound of the FIFO RAM. Drivers can use this value, along with the FRSR register, to appropriately divide
the available FIFO RAM between the transmit and receive data paths.

Offset: FEC_BASE + 0x0144 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X_WMRK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-20. FIFO Transmit FIFO Watermark Register (TFWR)

Table 24-22. TFWR Field Descriptions

Field Descriptions

0–29 Reserved, should be cleared.

X_WMRK Number of bytes written to transmit FIFO before transmission of a frame begins
0x 64 bytes written
10 128 bytes written
11 192 bytes written

Offset: FEC_BASE + 0x014C Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 R_BOUND 0 0

W

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 24-21. FIFO Receive Bound Register (FRBR)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-27

24.3.4.21 FIFO Receive Start Register (FRSR)

The FRSR is a 32-bit register with one 8-bit field programmed by the user to indicate the starting address
of the receive FIFO. FRSR marks the boundary between the transmit and receive FIFOs. The transmit
FIFO uses addresses from the start of the FIFO to the location four bytes before the address programmed
into the FRSR. The receive FIFO uses addresses from FRSR to FRBR inclusive.

The FRSR register is initialized by hardware at reset. FRSR only needs to be written to change the default
value.

24.3.4.22 Receive Descriptor Ring Start (ERDSR)

The ERDSR is written by the user. It provides a pointer to the start of the circular receive buffer descriptor
queue in external memory. This pointer must be 32-bit aligned; however, it is recommended it be made
128-bit aligned (evenly divisible by 16).

This register is not reset and must be initialized by the user prior to operation.

Table 24-23. FRBR Field Descriptions

Field Descriptions

0–21 Reserved, read as 0 (except bit 21, which is read as 1).

R_BOUND Read-only. Highest valid FIFO RAM address.

30–31 Reserved, should be cleared.

Offset: FEC_BASE + 0x0150 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 R_FSTART 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Figure 24-22. FIFO Receive Start Register (FRSR)

Table 24-24. FRSR Field Descriptions

Field Descriptions

0–21 Reserved, read as 0 (except bit 21, which is read as 1).

R_FSTART Address of first receive FIFO location. Acts as delimiter between receive and transmit FIFOs.

30–31 Reserved, read as 0.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-28 Freescale Semiconductor

24.3.4.23 Transmit Buffer Descriptor Ring Start Register (ETDSR)

The ETDSR is written by the user. It provides a pointer to the start of the circular transmit buffer descriptor
queue in external memory. This pointer must be 32-bit aligned; however, it is recommended it be made
128-bit aligned (evenly divisible by 16). Bits 30 and 31 should be written to 0 by the user. Non-zero values
in these two bit positions are ignored by the hardware.

This register is not reset and must be initialized by the user prior to operation.

Offset: FEC_BASE + 0x0180 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R_DES_START

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
R_DES_START

0 0

W

Reset U U U U U U U U U U U U U U U U

Figure 24-23. Receive Descriptor Ring Start Register (ERDSR)

Table 24-25. ERDSR Field Descriptions

Field Descriptions

R_DES_START Pointer to start of receive buffer descriptor queue.

30–31 Reserved, should be cleared.

Offset: FEC_BASE + 0x0184 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
X_DES_START

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
X_DES_START

0 0

W

Reset U U U U U U U U U U U U U U U U

Figure 24-24. Transmit Buffer Descriptor Ring Start Register (ETDSR)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-29

24.3.4.24 Receive Buffer Size Register (EMRBR)

The EMRBR is a 32-bit register with one 7-bit field programmed by the user. The EMRBR register dictates
the maximum size of all receive buffers. Note that because receive frames are truncated at 2 KB – 1 bytes,
only bits 21–27 are used. This value should take into consideration that the receive CRC is always written
into the last receive buffer. To allow one maximum size frame per buffer, EMRBR must be set to
RCR[MAX_FL] or larger. The EMRBR must be evenly divisible by 16. To ensure this, bits 28-31 are
forced low. To minimize bus utilization (descriptor fetches) it is recommended that EMRBR be greater
than or equal to 256 bytes.

The EMRBR register does not reset, and must be initialized by the user.

24.4 Functional Description
This section describes the operation of the FEC, beginning with the hardware and software initialization
sequence, then the software (Ethernet driver) interface for transmitting and receiving frames.

Following the software initialization and operation sections are sections providing a detailed description
of the functions of the FEC.

Table 24-26. ETDSR Field Descriptions

Field Descriptions

X_DES_START Pointer to start of transmit buffer descriptor queue.

30–31 Reserved, should be cleared.

Offset: FEC_BASE + 0x0188 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset U U U U U U U U U U U U U U U U

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
R_BUF_SIZE

0 0 0 0

W

Reset U U U U U U U U U U U U U U U U

Figure 24-25. Receive Buffer Size Register (EMRBR)

Table 24-27. EMRBR Field Descriptions

Field Descriptions

0–20 Reserved, should be written to 0 by the host processor.

R_BUF_SIZE Receive buffer size.

28–31 Reserved, should be written to 0 by the host processor.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-30 Freescale Semiconductor

24.4.1 Initialization Sequence

This section describes which registers are reset due to hardware reset, which are reset by the FEC RISC,
and what locations the user must initialize prior to enabling the FEC.

24.4.1.1 Hardware Controlled Initialization

In the FEC, registers and control logic that generate interrupts are reset by hardware. A hardware reset
deasserts output signals and resets general configuration bits.

Other registers reset when the ECR[ETHER_EN] bit is cleared. ECR[ETHER_EN] is deasserted by a hard
reset or may be deasserted by software to halt operation. By deasserting ECR[ETHER_EN], the
configuration control registers such as the TCR and RCR are not reset, but the entire data path is reset.

24.4.2 User Initialization (Prior to Asserting ECR[ETHER_EN])

The user needs to initialize portions of the FEC prior to setting the ECR[ETHER_EN] bit. The exact values
depend on the particular application. The sequence is not important.

Ethernet MAC registers requiring initialization are defined in Table 24-29.

FEC FIFO/DMA registers that require initialization are defined in Table 24-30.

Table 24-28. ECR[ETHER_EN] De-Assertion Effect on FEC

Register/Machine Reset Value

XMIT block Transmission is aborted (bad CRC appended)

RECV block Receive activity is aborted

DMA block All DMA activity is terminated

RDAR Cleared

TDAR Cleared

Descriptor Controller block Halt operation

Table 24-29. User Initialization (Before ECR[ETHER_EN])

Description

Initialize EIMR

Clear EIR (write 0xFFFF_FFFF)

TFWR (optional)

IALR / IAUR

GAUR / GALR

PALR / PAUR (only needed for full duplex flow control)

OPD (only needed for full duplex flow control)

RCR

TCR

MSCR (optional)

Clear MIB_RAM (locations Base + 0x0200 – 0x02FC)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-31

24.4.3 Microcontroller Initialization

In the FEC, the descriptor control RISC initializes some registers after ECR[ETHER_EN] is asserted.
After the microcontroller initialization sequence is complete, the hardware is ready for operation.

Table 24-31 shows microcontroller initialization operations.

24.4.4 User Initialization (After Asserting ECR[ETHER_EN])

After asserting ECR[ETHER_EN], the user can set up the buffer/frame descriptors and write to the TDAR
and RDAR. Refer to Section 24.5, “Buffer Descriptors,” for more details.

24.4.5 Network Interface Options

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a 7-wire serial interface for 10
Mbps Ethernet. The interface mode is selected by the RCR[MII_MODE] bit. In MII mode
(RCR[MII_MODE] = 1), there are 18 signals defined by the IEEE 802.3 standard and supported by the
EMAC. These signals are shown in Table 24-32 below.

Table 24-30. FEC User Initialization (Before ECR[ETHER_EN])

Description

Initialize FRSR (optional)

Initialize EMRBR

Initialize ERDSR

Initialize ETDSR

Initialize (Empty) Transmit Descriptor ring

Initialize (Empty) Receive Descriptor ring

Table 24-31. Microcontroller Initialization

Description

Initialize BackOff Random Number Seed

Activate Receiver

Activate Transmitter

Clear Transmit FIFO

Clear Receive FIFO

Initialize Transmit Ring Pointer

Initialize Receive Ring Pointer

Initialize FIFO Count Registers

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-32 Freescale Semiconductor

The 7-wire serial mode interface (RCR[MII_MODE] = 0) operates in what is generally referred to as the
“AMD” mode. 7-wire mode connections to the external transceiver are shown in Table 24-33.

24.4.6 FEC Frame Transmission

The Ethernet transmitter is designed to work with almost no intervention from software. Once
ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet MAC is able to transmit
onto the network.

When the transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic asserts
FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start frame delimiter (SFD), and
then the frame information from the FIFO. However, the controller defers the transmission if the network

Table 24-32. MII Mode

Signal Description EMAC Signal

Transmit Clock FEC_TX_CLK

Transmit Enable FEC_TX_EN

Transmit Data FEC_TXD[3:0]

Transmit Error FEC_TX_ER

Collision FEC_COL

Carrier Sense FEC_CRS

Receive Clock FEC_RX_CLK

Receive Data Valid FEC_RX_DV

Receive Data FEC_RXD[3:0]

Receive Error FEC_RX_ER

Management Data Clock FEC_MDC

Management Data
Input/Output

FEC_MDIO

Table 24-33. 7-Wire Mode Configuration

Signal Description FEC Signal

Transmit Clock FEC_TX_CLK

Transmit Enable FEC_TX_EN

Transmit Data FEC_TXD0

Collision FEC_COL

Receive Clock FEC_RX_CLK

Receive Data Valid FEC_RX_DV

Receive Data FEC_RXD0

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-33

is busy (FEC_CRS asserts). Before transmitting, the controller waits for carrier sense to become inactive,
then determines if carrier sense stays inactive for 60 bit times. If so, the transmission begins after waiting
an additional 36 bit times (96 bit times after carrier sense originally became inactive). See
Section 24.4.14.1, “Transmission Errors,” for more details.

If a collision occurs during transmission of the frame (half duplex mode), the Ethernet controller follows
the specified backoff procedures and attempts to retransmit the frame until the retry limit is reached. The
transmit FIFO stores at least the first 64 bytes of the transmit frame, so that they do not have to be retrieved
from system memory in case of a collision. This improves bus utilization and latency in case immediate
retransmission is necessary.

When all the frame data has been transmitted, the FCS (frame check sequence or 32-bit cyclic redundancy
check, CRC) bytes are appended if the TC bit is set in the transmit frame control word. If the ABC bit is
set in the transmit frame control word, a bad CRC is appended to the frame data regardless of the TC bit
value. Following the transmission of the CRC, the Ethernet controller writes the frame status information
to the MIB block. Short frames are automatically padded by the transmit logic (if the TC bit in the transmit
buffer descriptor for the end of frame buffer = 1).

Both buffer (TXB) and frame (TFINT) interrupts may be generated as determined by the settings in the
EIMR.

The transmit error interrupts are HBERR, BABT, LATE_COL, COL_RETRY_LIM, and XFIFO_UN. If
the transmit frame length exceeds MAX_FL bytes, the BABT interrupt is asserted but the entire frame is
transmitted (no truncation).

To pause transmission, set the GTS (graceful transmit stop) bit in the TCR register. When the TCR[GTS]
is set, the FEC transmitter stops immediately if transmission is not in progress; otherwise, it continues
transmission until the current frame either finishes or terminates with a collision. After the transmitter has
stopped, the GRA (graceful stop complete) interrupt is asserted. If TCR[GTS] is cleared, the FEC resumes
transmission with the next frame.

The Ethernet controller transmits bytes least significant bit first.

NOTE
At certain cases, the Fast Ethernet Controller (FEC) will transmit single
frames more than once. The FEC fetches the transmit buffer descriptors
(TxBDs) and the corresponding Tx data continuously until the Tx FIFO is
full. It does not determine whether the TxBD to be fetched is already being
processed internally (as a result of a wrap). As the FEC nears the end of the
transmission of one frame, it begins to DMA the data for the next frame. To
remain one BD ahead of the DMA, it also fetches the TxBD for the next
frame. The FEC may fetch a BD from memory that has already been
processed but not yet written back (it is read a second time with the R bit
still set). In this case, the data is fetched and transmitted again. Using at least
three TxBDs fixes this problem for large frames, but not for small frames.
To ensure correct operation for large or small frames, one of the following
must be true:

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-34 Freescale Semiconductor

• The FEC software driver ensures that the Ready bit cleared in at least
one TxBD.

• Every frame uses more than one TxBD and every TxBD but the last is
written back immediately after the data is fetched.

• The FEC software driver ensures a minimum frame size, n. The
minimum number of TxBDs is then rounded up to the nearest integer
(although the result cannot be less than 3). The default Tx FIFO size is
192 Bytes; this size is programmable.

24.4.7 FEC Frame Reception

The FEC receiver is designed to work with almost no intervention from the host and can perform address
recognition, CRC checking, short frame checking, and maximum frame length checking.

When the driver enables the FEC receiver by asserting ECR[ETHER_EN], it starts processing receive
frames immediately. When FEC_RX_DV asserts, the receiver first checks for a valid PA/SFD header. If
the PA/SFD is valid, it is stripped and the frame processed by the receiver. If a valid PA/SFD is not found,
the frame is ignored.

In serial mode, the first 16 bit times of FEC_RXD0 following assertion of FEC_RX_DV are ignored.
Following the first 16 bit times the data sequence is checked for alternating 1/0s. If a 11 or 00 data sequence
is detected during bit times 17 to 21, the remainder of the frame is ignored. After bit time 21, the data
sequence is monitored for a valid SFD (11). If a 00 is detected, the frame is rejected. When a 11 is detected,
the PA/SFD sequence is complete.

In MII mode, the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur,
but if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored.

After the first 6 bytes of the frame have been received, the FEC performs address recognition on the frame.

Once a collision window (64 bytes) of data has been received and if address recognition has not rejected
the frame, the receive FIFO is signalled that the frame is “accepted” and may be passed on to the DMA.
If the frame is a runt (due to collision) or is rejected by address recognition, the receive FIFO is notified
to “reject” the frame. Thus, no collision fragments are presented to the user except late collisions, which
indicate serious LAN problems.

During reception, the Ethernet controller checks for various error conditions and once the entire frame is
written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains the
M, BC, MC, LG, NO, CR, OV and TR status bits, and the frame length. See Section 24.4.14.2, “Reception
Errors,” for more details.

Receive buffer (RXB) and frame interrupts (RFINT) may be generated if enabled by the EIMR register. A
receive error interrupt is babbling receiver error (BABR). Receive frames are not truncated if they exceed
the max frame length (MAX_FL); however, the BABR interrupt occurs and the LG bit in the receive buffer
descriptor (RxBD) is set. See Section 24.5.2, “Ethernet Receive Buffer Descriptor (RxBD),” for more
details.

When the receive frame is complete, the FEC sets the L-bit in the RxBD, writes the other frame status bits
into the RxBD, and clears the E-bit. The Ethernet controller next generates a maskable interrupt (RFINT

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-35

bit in EIR, maskable by RFIEN bit in EIMR), indicating that a frame has been received and is in memory.
The Ethernet controller then waits for a new frame.

The Ethernet controller receives serial data LSB first.

24.4.8 Ethernet Address Recognition

The FEC filters the received frames based on the type of destination address (DA)—individual (unicast),
group (multicast), or broadcast (all-ones group address). The difference between an individual address and
a group address is determined by the I/G bit (bit 40) in the destination address field. A flowchart for
address recognition on received frames is illustrated in the figures below.

Address recognition is accomplished through the use of the receive block and microcode running on the
microcontroller. The flowchart shown in Figure 24-26 illustrates the address recognition decisions made
by the receive block, while Figure 24-27 illustrates the decisions made by the microcontroller.

If the DA is a broadcast address and broadcast reject (RCR[BC_REJ]) is deasserted, then the frame is
accepted unconditionally, as shown in Figure 24-26. Otherwise, if the DA is not a broadcast address, then
the microcontroller runs the address recognition subroutine, as shown in Figure 24-27.

If the DA is a group (multicast) address and flow control is disabled, then the microcontroller performs a
group hash table lookup using the 64-entry hash table programmed in GAUR and GALR. If a hash match
occurs, the receiver accepts the frame.

If flow control is enabled, the microcontroller does an exact address match check between the DA and the
designated PAUSE DA (01:80:C2:00:00:01). If the receive block determines that the received frame is a
valid PAUSE frame, then the frame is rejected. Note the receiver detects a PAUSE frame with the DA field
set to either the designated PAUSE DA or to the unicast physical address.

If the DA is the individual (unicast) address, the microcontroller performs an individual exact match
comparison between the DA and 48-bit physical address that the user programs in the PALR and PAUR
registers. If an exact match occurs, the frame is accepted; otherwise, the microcontroller does an individual
hash table lookup using the 64-entry hash table programmed in registers, IAUR and IALR. In the case of
an individual hash match, the frame is accepted. Again, the receiver accepts or rejects the frame based on
PAUSE frame detection, shown in Figure 24-26.

If neither a hash match (group or individual), nor an exact match (group or individual) occur, then if
promiscuous mode is enabled (RCR[PROM] = 1), then the frame is accepted and the MISS bit in the
receive buffer descriptor is set; otherwise, the frame is rejected.

Similarly, if the DA is a broadcast address, broadcast reject (RCR[BC_REJ]) is asserted, and promiscuous
mode is enabled, then the frame is accepted and the MISS bit in the receive buffer descriptor is set;
otherwise, the frame is rejected.

In general, when a frame is rejected, it is flushed from the FIFO.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-36 Freescale Semiconductor

Figure 24-26. Ethernet Address Recognition—Receive Block Decisions

Accept/Reject

Broadcast Addr
?

?

PROM = 1
?

Receive
Address

True

NOTES:
BC_REJ - field in RCR register (BroadCast REJect)

FalseTrue

 False BC_REJ = 1
?

Frame

Hash Match

?
Exact Match

?
Pause Frame

False

False

False

False

True

True

True

True

Receive Frame Receive Frame

Receive Frame Receive Frame

Reject Frame

Reject Frame

PROM - field in RCR register (PROMiscuous mode)
Pause Frame - valid Pause frame received

Set BC bit in RxBD Set MC bit in RxBD if multicast

Set M (Miss) bit in RxBD
Set MC bit in RxBD if multicast
Set BC bit in RxBD if broadcast

Flush from FIFO

Flush from FIFO

Recognition

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-37

Figure 24-27. Ethernet Address Recognition—Microcode Decisions

24.4.9 Hash Algorithm

The hash table algorithm used in the group and individual hash filtering operates as follows. The 48-bit
destination address is mapped into one of 64 bits, which are represented by 64 bits stored in GAUR, GALR
(group address hash match) or IAUR, IALR (individual address hash match). This mapping is performed
by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting the 6 most
significant bits of the CRC-encoded result to generate a number between 0 and 63. The MSB of the CRC
result selects GAUR (MSB = 1) or GALR (MSB = 0). The least significant 5 bits of the hash result select
the bit within the selected register. If the CRC generator selects a bit that is set in the hash table, the frame
is accepted; otherwise, it is rejected.

For example, if eight group addresses are stored in the hash table and random group addresses are received,
the hash table prevents roughly 56/64 (or 87.5%) of the group address frames from reaching memory.
Those that do reach memory must be further filtered by the processor to determine if they truly contain
one of the eight desired addresses.

The effectiveness of the hash table declines as the number of addresses increases.

Receive Address

I/G Address
?

Exact Match
?

Hash Search
Group Table

Match
?

Hash Search
Individual Table

False

Match
?

False False

True True

True

NOTES:
FCE - field in RCR register (Flow Control Enable)
I/G - Individual/Group bit in Destination Address (least significant bit in first byte received in MAC frame)

IndividualGroup

TrueFalse

True

False

?
Pause Address

FCE
?

Recognition

Reject Frame
Flush from FIFO

Reject Frame
Flush from FIFO

Receive Frame

Receive Frame

Receive Frame

Receive Frame

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-38 Freescale Semiconductor

The hash table registers must be initialized by the user. The CRC32 polynomial to use in computing the
hash is:

A table of example Destination Addresses and corresponding hash values is included below for reference.

Table 24-34. Destination Address to 6-Bit Hash

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

65:ff:ff:ff:ff:ff 0x0 0

55:ff:ff:ff:ff:ff 0x1 1

15:ff:ff:ff:ff:ff 0x2 2

35:ff:ff:ff:ff:ff 0x3 3

B5:ff:ff:ff:ff:ff 0x4 4

95:ff:ff:ff:ff:ff 0x5 5

D5:ff:ff:ff:ff:ff 0x6 6

F5:ff:ff:ff:ff:ff 0x7 7

DB:ff:ff:ff:ff:ff 0x8 8

FB:ff:ff:ff:ff:ff 0x9 9

BB:ff:ff:ff:ff:ff 0xA 10

8B:ff:ff:ff:ff:ff 0xB 11

0B:ff:ff:ff:ff:ff 0xC 12

3B:ff:ff:ff:ff:ff 0xD 13

7B:ff:ff:ff:ff:ff 0xE 14

5B:ff:ff:ff:ff:ff 0xF 15

27:ff:ff:ff:ff:ff 0x10 16

07:ff:ff:ff:ff:ff 0x11 17

57:ff:ff:ff:ff:ff 0x12 18

77:ff:ff:ff:ff:ff 0x13 19

F7:ff:ff:ff:ff:ff 0x14 20

C7:ff:ff:ff:ff:ff 0x15 21

97:ff:ff:ff:ff:ff 0x16 22

A7:ff:ff:ff:ff:ff 0x17 23

99:ff:ff:ff:ff:ff 0x18 24

B9:ff:ff:ff:ff:ff 0x19 25

F9:ff:ff:ff:ff:ff 0x1A 26

X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X 1+ + + + + + + + + + + + + +

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-39

C9:ff:ff:ff:ff:ff 0x1B 27

59:ff:ff:ff:ff:ff 0x1C 28

79:ff:ff:ff:ff:ff 0x1D 29

29:ff:ff:ff:ff:ff 0x1E 30

19:ff:ff:ff:ff:ff 0x1F 31

D1:ff:ff:ff:ff:ff 0x20 32

F1:ff:ff:ff:ff:ff 0x21 33

B1:ff:ff:ff:ff:ff 0x22 34

91:ff:ff:ff:ff:ff 0x23 35

11:ff:ff:ff:ff:ff 0x24 36

31:ff:ff:ff:ff:ff 0x25 37

71:ff:ff:ff:ff:ff 0x26 38

51:ff:ff:ff:ff:ff 0x27 39

7F:ff:ff:ff:ff:ff 0x28 40

4F:ff:ff:ff:ff:ff 0x29 41

1F:ff:ff:ff:ff:ff 0x2A 42

3F:ff:ff:ff:ff:ff 0x2B 43

BF:ff:ff:ff:ff:ff 0x2C 44

9F:ff:ff:ff:ff:ff 0x2D 45

DF:ff:ff:ff:ff:ff 0x2E 46

EF:ff:ff:ff:ff:ff 0x2F 47

93:ff:ff:ff:ff:ff 0x30 48

B3:ff:ff:ff:ff:ff 0x31 49

F3:ff:ff:ff:ff:ff 0x32 50

D3:ff:ff:ff:ff:ff 0x33 51

53:ff:ff:ff:ff:ff 0x34 52

73:ff:ff:ff:ff:ff 0x35 53

23:ff:ff:ff:ff:ff 0x36 54

13:ff:ff:ff:ff:ff 0x37 55

3D:ff:ff:ff:ff:ff 0x38 56

0D:ff:ff:ff:ff:ff 0x39 57

5D:ff:ff:ff:ff:ff 0x3A 58

Table 24-34. Destination Address to 6-Bit Hash (continued)

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-40 Freescale Semiconductor

24.4.10 Full Duplex Flow Control

Full-duplex flow control allows the user to transmit pause frames and to detect received pause frames.
Upon detection of a pause frame, MAC data frame transmission stops for a given pause duration.

To enable pause frame detection, the FEC must operate in full-duplex mode (TCR[FDEN] asserted) and
flow control enable (RCR[FCE]) must be asserted. The FEC detects a pause frame when the fields of the
incoming frame match the pause frame specifications, as shown in the table below. In addition, the receive
status associated with the frame should indicate that the frame is valid.

Pause frame detection is performed by the receiver and microcontroller modules. The microcontroller runs
an address recognition subroutine to detect the specified pause frame destination address, while the
receiver detects the TYPE and OPCODE pause frame fields. On detection of a pause frame, TCR[GTS] is
asserted by the FEC internally. When transmission has paused, the EIR[GRA] interrupt is asserted and the
pause timer begins to increment. Note that the pause timer makes use of the transmit backoff timer
hardware, which is used for tracking the appropriate collision backoff time in half-duplex mode. The pause
timer increments once every slot time, until OPD[PAUSE_DUR] slot times have expired. On
OPD[PAUSE_DUR] expiration, TCR[GTS] is deasserted allowing MAC data frame transmission to
resume. Note that the receive flow control pause (TCR[RFC_PAUSE]) status bit is asserted while the
transmitter is paused due to reception of a pause frame.

To transmit a pause frame, the FEC must operate in full-duplex mode and the user must assert flow control
pause (TCR[TFC_PAUSE]). On assertion of transmit flow control pause (TCR[TFC_PAUSE]), the
transmitter asserts TCR[GTS] internally. When the transmission of data frames stops, the EIR[GRA]
(graceful stop complete) interrupt asserts. Following EIR[GRA] assertion, the pause frame is transmitted.
On completion of pause frame transmission, flow control pause (TCR[TFC_PAUSE]) and TCR[GTS] are
deasserted internally.

7D:ff:ff:ff:ff:ff 0x3B 59

FD:ff:ff:ff:ff:ff 0x3C 60

DD:ff:ff:ff:ff:ff 0x3D 61

9D:ff:ff:ff:ff:ff 0x3E 62

BD:ff:ff:ff:ff:ff 0x3F 63

Table 24-35. PAUSE Frame Field Specification

48-bit Destination Address 0x0180_C200_0001 or Physical Address

48-bit Source Address Any

16-bit TYPE 0x8808

16-bit OPCODE 0x0001

16-bit PAUSE_DUR 0x0000 to 0xFFFF

Table 24-34. Destination Address to 6-Bit Hash (continued)

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-41

The user must specify the desired pause duration in the OPD register.

Note that when the transmitter is paused due to receiver/microcontroller pause frame detection, transmit
flow control pause (TCR[TFC_PAUSE]) may still be asserted and causes the transmission of a single
pause frame. In this case, the EIR[GRA] interrupt is not asserted.

24.4.11 Inter-Packet Gap (IPG) Time

The minimum inter-packet gap time for back-to-back transmission is 96 bit times. After completing a
transmission or after the backoff algorithm completes, the transmitter waits for carrier sense to be negated
before starting its 96 bit time IPG counter. Frame transmission may begin 96 bit times after carrier sense
is negated if it stays negated for at least 60 bit times. If carrier sense asserts during the last 36 bit times, it
is ignored and a collision occurs.

The receiver receives back-to-back frames with a minimum spacing of at least 28 bit times. If an
inter-packet gap between receive frames is less than 28 bit times, the following frame may be discarded
by the receiver.

24.4.12 Collision Handling

If a collision occurs during frame transmission, the Ethernet controller continues the transmission for at
least 32 bit times, transmitting a JAM pattern consisting of 32 ones. If the collision occurs during the
preamble sequence, the JAM pattern is sent after the end of the preamble sequence.

If a collision occurs within 512 bit times, the retry process is initiated. The transmitter waits a random
number of slot times. A slot time is 512 bit times. If a collision occurs after 512 bit times, then no
retransmission is performed and the end of frame buffer is closed with a late collision (LC) error indication.

24.4.13 Internal and External Loopback

Both internal and external loopback are supported by the Ethernet controller. In loopback mode, both of
the FIFOs are used and the FEC actually operates in a full-duplex fashion. Both internal and external
loopback are configured using combinations of the LOOP and DRT bits in the RCR register and the FDEN
bit in the TCR register.

For both internal and external loopback set FDEN = 1.

For internal loopback, set RCR[LOOP] = 1 and RCR[DRT] = 0. FEC_TX_EN and FEC_TX_ER do not
assert during internal loopback. During internal loopback, the transmit/receive data rate is higher than in
normal operation because the internal system clock is used by the transmit and receive blocks instead of
the clocks from the external transceiver. This causes an increase in the required system bus bandwidth for
transmit and receive data being DMA’d to/from external memory. It may be necessary to pace the frames
on the transmit side and/or limit the size of the frames to prevent transmit FIFO underrun and receive FIFO
overflow.

For external loopback set RCR[LOOP] = 0, RCR[DRT] = 0 and configure the external transceiver for
loopback.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-42 Freescale Semiconductor

24.4.14 Ethernet Error-Handling Procedure

The Ethernet controller reports frame reception and transmission error conditions using the FEC RxBDs,
the EIR register, and the MIB block counters.

24.4.14.1 Transmission Errors

24.4.14.1.1 Transmitter Underrun

If this error occurs, the FEC sends 32 bits that ensure a CRC error and stops transmitting. All remaining
buffers for that frame are then flushed and closed. The UN bit is set in the EIR. The FEC then continues
to the next transmit buffer descriptor and begins transmitting the next frame.

The “UN” interrupt is asserted if enabled in the EIMR register.

24.4.14.1.2 Retransmission Attempts Limit Expired

When this error occurs, the FEC terminates transmission. All remaining buffers for that frame are flushed
and closed, and the RL bit is set in the EIR. The FEC then continues to the next transmit buffer descriptor
and begins transmitting the next frame.

The “RL” interrupt is asserted if enabled in the EIMR register.

24.4.14.1.3 Late Collision

When a collision occurs after the slot time (512 bits starting at the preamble), the FEC terminates
transmission. All remaining buffers for that frame are flushed and closed, and the LC bit is set in the EIR
register. The FEC then continues to the next transmit buffer descriptor and begins transmitting the next
frame.

The “LC” interrupt is asserted if enabled in the EIMR register.

24.4.14.1.4 Heartbeat

Some transceivers have a self-test feature called ‘heartbeat’ or ‘signal quality error.’ To signify a good
self-test, the transceiver indicates a collision to the FEC within 4 microseconds after completion of a frame
transmitted by the Ethernet controller. This indication of a collision does not imply a real collision error
on the network, but is rather an indication that the transceiver still seems to be functioning properly. This
is called the heartbeat condition.

If the HBC bit is set in the TCR register and the heartbeat condition is not detected by the FEC after a frame
transmission, then a heartbeat error occurs. When this error occurs, the FEC closes the buffer, sets the HB
bit in the EIR register, and generates the HBERR interrupt if it is enabled.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-43

24.4.14.2 Reception Errors

24.4.14.2.1 Overrun Error

If the receive block has data to put into the receive FIFO and the receive FIFO is full, the FEC sets the OV
bit in the RxBD. All subsequent data in the frame is discarded. Subsequent frames may also be discarded
until the receive FIFO is serviced by the DMA and space is made available. At this point the receive
frame/status word is written into the FIFO with the OV bit set. This frame must be discarded by the driver.

24.4.14.2.2 Non-Octet Error (Dribbling Bits)

The Ethernet controller handles as many as 7 dribbling bits when the receive frame terminates past an
non-octet aligned boundary. Dribbling bits are not used in the CRC calculation. If there is a CRC error,
then the frame non-octet aligned (NO) error is reported in the RxBD. If there is no CRC error, then no error
is reported.

24.4.14.2.3 CRC Error

When a CRC error occurs with no dribble bits, the FEC closes the buffer and sets the CR bit in the RxBD.
CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.

24.4.14.2.4 Frame Length Violation

When the receive frame length exceeds MAX_FL bytes, the BABR interrupt is generated, and the LG bit
in the end of frame RxBD is set. The frame is not truncated unless the frame length exceeds 2047 bytes).

24.4.14.2.5 Truncation

When the receive frame length exceeds 2047 bytes the frame is truncated, and the TR bit is set in the
RxBD.

24.5 Buffer Descriptors
This section provides a description of the operation of the driver/DMA via the buffer descriptors. It is
followed by a detailed description of the receive and transmit descriptor fields.

24.5.1 Driver/DMA Operation with Buffer Descriptors

The data for the FEC frames must reside in memory external to the FEC. The data for a frame is placed in
one or more buffers. Associated with each buffer is a buffer descriptor (BD) which contains a starting
address (pointer), data length, and status/control information (which contains the current state for the
buffer). To permit maximum user flexibility, the BDs are also located in external memory and are read in
by the FEC DMA engine.

Software “produces” buffers by allocating/initializing memory and initializing buffer descriptors. Setting
the RxBD[E] or TxBD[R] bit “produces” the buffer. Software writing to either the TDAR or RDAR tells
the FEC that a buffer has been placed in external memory for the transmit or receive data traffic,
respectively. The hardware reads the BDs and “consumes” the buffers after they have been produced. After

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-44 Freescale Semiconductor

the data DMA is complete and the buffer descriptor status bits have been written by the DMA engine, the
RxBD[E] or TxBD[R] bit is cleared by hardware to signal that the buffer has been “consumed.” Software
may poll the BDs to detect when the buffers have been consumed or may rely on the buffer/frame
interrupts. These buffers may then be processed by the driver and returned to the free list.

The ECR[ETHER_EN] signal operates as a reset to the BD/DMA logic. When ECR[ETHER_EN] is
deasserted the DMA engine BD pointers are reset to point to the starting transmit and receive BDs. The
buffer descriptors are not initialized by hardware during reset. At least one transmit and receive buffer
descriptor must be initialized by software before the ECR[ETHER_EN] bit is set.

The buffer descriptors operate as two separate rings. ERDSR defines the starting address for receive BDs
and ETDSR defines the starting address for transmit BDs. The last buffer descriptor in each ring is defined
by the wrap (W) bit. When set, W indicates that the next descriptor in the ring is at the location pointed to
by ERDSR and ETDSR for the receive and transmit rings, respectively. Buffer descriptor rings must start
on a 32-bit boundary; however, it is recommended they are made 128-bit aligned.

24.5.1.1 Driver/DMA Operation with Transmit BDs

Typically a transmit frame is divided between multiple buffers. An example is to have an application
payload in one buffer, TCP header in a second buffer, IP header in a third buffer, Ethernet/IEEE 802.3
header in a fourth buffer. The Ethernet MAC does not prepend the Ethernet header (destination address,
source address, length/type fields), so this must be provided by the driver in one of the transmit buffers.
The Ethernet MAC can append the Ethernet CRC to the frame. Whether the CRC is appended by the MAC
or by the driver is determined by the TC bit in the transmit BD which must be set by the driver.

The driver (TxBD software producer) should set up Tx BDs in such a way that a complete transmit frame
is given to the hardware at once. If a transmit frame consists of three buffers, the BDs should be initialized
with pointer, length and control (W, L, TC, ABC) and then the TxBD[R] bits should be set = 1 in reverse
order (3rd, 2nd, 1st BD) to ensure that the complete frame is ready in memory before the DMA begins. If
the TxBDs are set up in order, the DMA Controller could DMA the first BD before the 2nd was made
available, potentially causing a transmit FIFO underrun.

In the FEC, the DMA is notified by the driver that new transmit frames are available by writing to the
TDAR register. When this register is written to (data value is not significant) the FEC RISC tells the DMA
to read the next transmit BD in the ring. Once started, the RISC + DMA continues to read and interpret
transmit BDs in order and DMA the associated buffers, until a transmit BD is encountered with the R
bit = 0. At this point, the FEC polls this BD one more time. If the R bit = 0 the second time, then the RISC
stops the transmit descriptor read process until software sets up another transmit frame and writes to
TDAR.

When the DMA of each transmit buffer is complete, the DMA writes back to the BD to clear the R bit,
indicating that the hardware consumer is finished with the buffer.

24.5.1.2 Driver/DMA Operation with Receive BDs

Unlike transmit, the length of the receive frame is unknown by the driver ahead of time. Therefore the
driver must set a variable to define the length of all receive buffers. In the FEC, this variable is written to
the EMRBR register.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-45

The driver (RxBD software producer) should set up some number of “empty” buffers for the Ethernet by
initializing the address field and the E and W bits of the associated receive BDs. The hardware (receive
DMA) consumes these buffers by filling them with data as frames are received and clearing the E bit and
writing to the L (1 indicates last buffer in frame) bit, the frame status bits (if L = 1), and the length field.

If a receive frame spans multiple receive buffers, the L bit is only set for the last buffer in the frame. For
non-last buffers, the length field in the receive BD is written by the DMA (at the same time the E bit is
cleared) with the default receive buffer length value. For end of frame buffers, the receive BD is written
with L = 1 and information written to the status bits (M, BC, MC, LG, NO, CR, OV, TR). Some of the
status bits are error indicators which, if set, indicate the receive frame should be discarded and not given
to higher layers. The frame status/length information is written into the receive FIFO following the end of
the frame (as a single 32-bit word) by the receive logic. The length field for the end of frame buffer is
written with the length of the entire frame, not just the length of the last buffer.

For simplicity the driver may assign the default receive buffer length to be large enough to contain an entire
frame, keeping in mind that a malfunction on the network or out of spec implementation could result in
giant frames. Frames of 2KB (2048) bytes or larger are truncated by the FEC at 2047 bytes so software is
guaranteed never to see a receive frame larger than 2047 bytes.

Similar to transmit, the FEC polls the receive descriptor ring after the driver sets up receive BDs and writes
to the RDAR register. As frames are received, the FEC fills receive buffers and updates the associated BDs,
then reads the next BD in the receive descriptor ring. If the FEC reads a receive BD and finds the E bit = 0,
it polls this BD once more. If the BD = 0 a second time, the FEC stops reading receive BDs until the driver
writes to RDAR.

24.5.2 Ethernet Receive Buffer Descriptor (RxBD)

In the RxBD, the user initializes the E and W bits in the first word and the pointer in second word. When
the buffer has been DMA’d, the Ethernet controller modifies the E, L, M, BC, MC, LG, NO, CR, OV, and
TR bits and writes the length of the used portion of the buffer in the first word. The M, BC, MC, LG, NO,
CR, OV and TR bits in the first word of the buffer descriptor are only modified by the Ethernet controller
when the L bit is set.

.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 E RO1 W RO2 L — — M BC MC LG NO — CR OV TR

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer - A [0:15]

Offset + 6 Tx Data Buffer Pointer - A [16:31]

Figure 24-28. Receive Buffer Descriptor (RxBD)

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-46 Freescale Semiconductor

Table 24-36. Receive Buffer Descriptor Field Definitions

Halfword Location Field Name Description

Offset + 0 Bit 0 E Empty. Written by the FEC (=0) and user (=1).
0 The data buffer associated with this BD has been filled with received data, or data

reception has been aborted due to an error condition. The status and length fields
have been updated as required.

1 The data buffer associated with this BD is empty, or reception is currently in
progress.

Offset + 0 Bit 1 RO1 Receive software ownership.
This field is reserved for use by software. This read/write bit is not modified by
hardware, and its value does not affect hardware.

Offset + 0 Bit 2 W Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in ERDSR.

Offset + 0 Bit 3 RO2 Receive software ownership.
This field is reserved for use by software. This read/write bit is not modified by
hardware, and its value does not affect hardware.

Offset + 0 Bit 4 L Last in frame. Written by the FEC.
0 The buffer is not the last in a frame.
1 The buffer is the last in a frame.

Offset + 0 Bits 5-6 — Reserved.

Offset + 0 Bit 7 M Miss. Written by the FEC. This bit is set by the FEC for frames that were accepted in
promiscuous mode, but were flagged as a “miss” by the internal address recognition.
Thus, while in promiscuous mode, the user can use the M-bit to quickly determine
whether the frame was destined to this station. This bit is valid only if the L-bit is set
and the PROM bit is set.
0 The frame was received because of an address recognition hit.
1 The frame was received because of promiscuous mode.

Offset + 0 Bit 8 BC Set if the DA is broadcast (FF-FF-FF-FF-FF-FF).

Offset + 0 Bit 9 MC Set if the DA is multicast and not BC.

Offset + 0 Bit 10 LG Rx frame length violation. Written by the FEC. A frame length greater than
RCR[MAX_FL] was recognized. This bit is valid only if the L-bit is set. The receive
data is not altered in any way unless the length exceeds 2047 bytes.

Offset + 0 Bit 11 NO Receive non-octet aligned frame. Written by the FEC. A frame that contained a
number of bits not divisible by 8 was received, and the CRC check that occurred at
the preceding byte boundary generated an error. This bit is valid only if the L-bit is
set. When this bit is set, the CR bit will not be set.

Offset + 0 Bit 12 — Reserved.

Offset + 0 Bit 13 CR Receive CRC error. Written by the FEC. This frame contains a CRC error and is an
integral number of octets in length. This bit is valid only if the L-bit is set.

Offset + 0 Bit 14 OV Overrun. Written by the FEC. A receive FIFO overrun occurred during frame
reception. If this bit is set, the other status bits, M, LG, NO, CR, and CL lose their
normal meaning and will be zero. This bit is valid only if the L-bit is set.

Offset + 0 Bit 15 TR Set if the receive frame is truncated (frame length > 2047 bytes). If the TR bit is set
the frame should be discarded and the other error bits should be ignored as they may
be incorrect.

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 24-47

NOTE
Whenever the software driver sets an E bit in one or more receive
descriptors, the driver should follow that with a write to RDAR.

24.5.3 Ethernet Transmit Buffer Descriptor (TxBD)

Data is presented to the FEC for transmission by arranging it in buffers referenced by the channel’s TxBDs.
The Ethernet controller confirms transmission by clearing the ready bit (R bit) when DMA of the buffer is
complete. In the TxBD the user initializes the R, W, L, and TC bits and the length (in bytes) in the first
word, and the buffer pointer in the second word.

The FEC sets the R bit = 0 in the first word of the BD when the buffer has been DMA’d. Status bits for the
buffer/frame are not included in the transmit buffer descriptors. Transmit frame status is indicated via
individual interrupt bits (error conditions) and in statistic counters in the MIB block. See Section 24.3.3,
“MIB Block Counters Memory Map,” for more details.

.

Offset + 2 Bits [0:15] Data Length Data length. Written by the FEC. Data length is the number of 8-bit data groups
(octets) written by the FEC into this BD’s data buffer if L = 0 (the value is equal to
EMRBR), or the length of the frame including CRC if L = 1. It is written by the FEC
once as the BD is closed.

0ffset + 4 Bits [0:15] A[0:15]] RX data buffer pointer, bits [0:15]1

Offset + 6 Bits [0:15] A[16:31] RX data buffer pointer, bits [16:31]

1 The receive buffer pointer, which contains the address of the associated data buffer, must always be evenly divisible by 16.
The buffer must reside in memory external to the FEC. This value is never modified by the Ethernet controller.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Offset + 0 R TO1 W TO2 L TC ABC — — — — — — — — —

Offset + 2 Data Length

Offset + 4 Tx Data Buffer Pointer - A [0:15]

Offset + 6 Tx Data Buffer Pointer - A [16:31]

Figure 24-29. Transmit Buffer Descriptor (TxBD)

Table 24-36. Receive Buffer Descriptor Field Definitions (continued)

Halfword Location Field Name Description

Fast Ethernet Controller (FEC)

MPC5668x Microcontroller Reference Manual, Rev. 4

24-48 Freescale Semiconductor

NOTE
Once the software driver has set up the buffers for a frame, it should set up
the corresponding BDs. The last step in setting up the BDs for a transmit
frame should be to set the R bit in the first BD for the frame. The driver
should follow that with a write to TDAR, which triggers the FEC to poll the
next BD in the ring.

Table 24-37. Transmit Buffer Descriptor Field Definitions

Halfword Location Field Name Description

Offset + 0 Bit 0 R Ready. Written by the FEC and the user.
0 The data buffer associated with this BD is not ready for transmission. The user is free

to manipulate this BD or its associated data buffer. The FEC clears this bit after the
buffer has been transmitted or after an error condition is encountered.

1 The data buffer, which has been prepared for transmission by the user, has not been
transmitted or is currently being transmitted. No fields of this BD may be written by the
user once this bit is set.

Offset + 0 Bit 1 TO1 Transmit software ownership. This field is reserved for software use. This read/write bit
is not modified by hardware, and its value does not affect hardware.

Offset + 0 Bit 2 W Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in ETDSR.

Offset + 0 Bit 3 TO2 Transmit software ownership. This field is reserved for use by software. This read/write
bit is not modified by hardware, and its value does not affect hardware.

Offset + 0 Bit 4 L Last in frame. Written by user.
0 The buffer is not the last in the transmit frame.
1 The buffer is the last in the transmit frame.

Offset + 0 Bit 5 TC Tx CRC. Written by user (only valid if L = 1).
0 End transmission immediately after the last data byte.
1 Transmit the CRC sequence after the last data byte.

Offset + 0 Bit 6 ABC Append bad CRC. Written by user (only valid if L = 1).
0 No effect
1 Transmit the CRC sequence inverted after the last data byte (regardless of TC value).

Offset + 0 Bits [7:15] — Reserved.

Offset + 2 Bits [0:15] Data
Length

Data length, written by user.
Data length is the number of octets the FEC should transmit from this BD’s data buffer.
It is never modified by the FEC. Bits [0:10] are used by the DMA engine, bits[11:15] are
ignored.

Offset + 4 Bits [0:15] A[0:15] Tx data buffer pointer, bits [0:15]1

1 The transmit buffer pointer, which contains the address of the associated data buffer, must always be evenly divisible by 4. The
buffer must reside in memory external to the FEC. This value is never modified by the Ethernet controller.

Offset + 6 Bits [0:15] A[16:31] Tx data buffer pointer, bits [16:31].

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-1

Chapter 25
FlexRay Communication Controller (FlexRAY)

25.1 Introduction

25.1.1 Reference

The following documents are referenced.

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A

25.1.2 Glossary

This section provides a list of terms used in the description of the controller.

Table 25-1. List of Terms

Term Definition

BCU Buffer Control Unit. Handles message buffer access.

BMIF Bus Master Interface. Provides master access to FlexRay Memory block.

CC Communication Controller

CDC Clock Domain Crosser

CHI Controller Host Interface

Cycle length in T The actual length of a cycle in T for the ideal controller (+/- 0 ppm)

EBI External Bus Interface

FlexRay Memory Memory Window to store message buffer payload, header, status, and synchronization frame
related tables.

System Memory Memory that is contains the FlexRay Memory

System Bus Bus that connects the controller and System Memory

FSS Frame Start Sequence

HIF Host Interface. Provides host access to controller.

Host The FlexRay CC host MCU

LUT Look Up Table. Stores message buffer header index value.

MB Message Buffer

MBIDX Message Buffer Index: the position of a header field entry within the header area. If the header area
is accessed as an array, this is the same as the array index of the entry.

MBNum Message Buffer Number: Position of message buffer configuration registers within the register map.
For example, Message Buffer Number 5 corresponds to the MBCCS5 register.

MCU Microcontroller Unit

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-2 Freescale Semiconductor

25.1.3 Color Coding

Throughout this chapter types of items are highlighted through the use of an italicized color font.

FlexRay protocol parameters, constants and variables are highlighted with blue italics. An example is the
parameter gdActionPointOffset.

FlexRay protocol states are highlighted in green italics. An example is the state POC:normal active.

25.1.4 Overview

The controller is a FlexRay communication controller that implements the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

The controller has three main components:

• Controller host interface (CHI)

• Protocol engine (PE)

• Clock domain crossing unit (CDC)

A block diagram of the controller with its surrounding modules is given in Figure 25-1.

NOTE
The FlexRay block is not implemented on the MPC5668e.

T Microtick

MT Macrotick

MTS Media Access Test Symbol

NIT Network Idle Time

PE Protocol Engine

POC Protocol Operation Control. Each state of the POC is denoted by POC:state

Rx Reception

SEQ Sequencer Engine

TCU Time Control Unit

Tx Transmission

sync frame null frame or message frame with Sync Frame Indicator set to 1

startup frame null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator set to 1

normal frame null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator set to 0

null frame frame with Null Frame Indicator set to 0

message frame frame with Null Frame Indicator set to 1

Table 25-1. List of Terms (continued)

Term Definition

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-3

Figure 25-1. FlexRay Block Diagram

The protocol engine has two transmitter units TxA and TxB and two receiver units RxA and RxB for
sending and receiving frames through the two FlexRay channels. The time control unit (TCU) is
responsible for maintaining global clock synchronization to the FlexRay network. The overall activity of
the PE is controlled by the sequencer engine (SEQ).

The controller host interface provides host access to the module’s configuration, control, and status
registers, as well as to the message buffer configuration, control, and status registers. The message buffers
themselves, which contain the frame header and payload data received or to be transmitted, and the slot
status information, are stored in the FlexRay memory.

The clock domain crossing unit implements signal crossing from the CHI clock domain to the PE clock
domain and vice versa, to allow for asynchronous PE and CHI clock domains.

The controller stores the frame header and payload data of frames received or of frames to be transmitted
in the FlexRay memory. The application accesses the FlexRay memory to retrieve and provide the frames
to be processed by the controller. In addition to the frame header and payload data, the controller stores
the synchronization frame related tables in the FlexRay memory for application processing.

The FlexRay memory is located in the system memory of the MCU. The controller has access to the
FlexRay memory via its bus master interface (BMIF). The host provides the start address of the FlexRay
memory window within the system memory by programming the System Memory Base Address Register
(SYMBADR). All FlexRay memory related offsets are stored in offset registers. The physical address
pointer into the FlexRay memory window of the MCU system memory is calculated using the offset values
the FlexRay memory base address.

C
lo

ck
 D

om
ai

n
C

ro
ss

in
g

PE

TxA

RxA

TCU

config
SEQ

CHI

HIF

SEARCH

LUT

BCU

FR_A_RX

FR_B_RX

FR_DBG[0]

FR_A_TX

FR_A_TX_EN

FR_B_TX

FR_B_TX_EN

FR_DBG[1]

FR_DBG[2]

FR_DBG[3]

FlexRay

Peripheral
Bridge B

System
Memory

BMIF
System Bus

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-4 Freescale Semiconductor

NOTE
The controller does not provide a memory protection scheme for the
FlexRay memory.

25.1.5 Features

The controller provides the following features:

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A compliant protocol
implementation

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A
compliant bus driver interface

• Single channel support

— FlexRay Port A can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B.

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported

• 128 configurable message buffers with

— Individual frame ID filtering

— Individual channel ID filtering

— Individual cycle counter filtering

• Message buffer header, status and payload data stored in dedicated FlexRay memory

— Allows for flexible and efficient message buffer implementation

— Consistent data access ensured by means of buffer locking scheme

— Application can lock multiple buffers at the same time

• Size of message buffer payload data section configurable from 0 to 254 bytes

• Two independent message buffer segments with configurable size of payload data section

— Each segment can contain message buffers assigned to the static segment and message buffers
assigned to the dynamic segment at the same time

• Zero padding for transmit message buffers in static segment

— Applied when the frame payload length exceeds the size of the message buffer data section

• Transmit message buffers configurable with state/event semantics

• Message buffers can be configured as

— Receive message buffer

— Single buffered transmit message buffer

— Double buffered transmit message buffer (combines two single buffered message buffer)

• Individual message buffer reconfiguration supported

— Means provided to safely disable individual message buffers

— Disabled message buffers can be reconfigured

• Two independent receive FIFOs

— One receive FIFO per channel

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-5

— As many as 255 entries for each FIFO

— Global frame ID filtering, based on both value/mask filters and range filters

— Global channel ID filtering

— Global message ID filtering for the dynamic segment

• Four configurable slot error counters

• Four dedicated slot status indicators

— Used to observe slots without using receive message buffers

• Measured value indicators for the clock synchronization

— Internal synchronization frame ID and synchronization frame measurement tables can be
copied into the FlexRay memory

• Fractional macroticks are supported for clock correction

• Maskable interrupt sources provided via individual and combined interrupt lines

• One absolute timer

• One timer that can be configured to absolute or relative

25.1.6 Modes of Operation

This section describes the basic operational power modes of the controller.

25.1.6.1 Disabled Mode

The controller enters the Disabled Mode during hard reset. The controller indicates that it is in the Disabled
Mode by negating the module enable bit MEN in the Module Configuration Register (MCR).

No communication is performed on the FlexRay bus.

All registers with the write access conditions Any Time and Disabled Mode can be accessed for writing as
stated in Section 25.5.2, “Register Descriptions.”

The application configures the controller by accessing the configuration bits and fields in the Module
Configuration Register (MCR).

25.1.6.1.1 Leave Disabled Mode

The controller leaves the Disabled Mode and enters the Normal Mode, when the application writes 1 to
the module enable bit MEN in the Module Configuration Register (MCR).

NOTE
When the controller was enabled, it cannot be disabled later on.

25.1.6.2 Normal Mode

In this mode the controller is fully functional. The controller indicates that it is in Normal Mode by
asserting the module enable bit MEN in the Module Configuration Register (MCR).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-6 Freescale Semiconductor

25.1.6.2.1 Enter Normal Mode

This mode is entered when the application requests the controller to leave the Disabled Mode. If the
Normal Mode was entered by leaving the Disabled Mode, the application has to perform the protocol
initialization described in 25.7.1.2, “Protocol Initialization,” to achieve full FlexRay functionality.

Depending on the values of the SCM, CHA, and CHB bits in the Module Configuration Register (MCR),
the corresponding FlexRay bus driver ports are enabled and driven.

25.2 External Signal Description
This section lists and describes the controller signals, connected to external pins. These signals are
summarized in Table 25-2 and described in detail in Section 25.2.1, “Detailed Signal Descriptions.”

NOTE
The off chip signals FR_A_RX, FR_A_TX, and FR_A_TX_EN are
available on each package option. The availability of the other off chip
signals depends on the package option.

25.2.1 Detailed Signal Descriptions

This section provides a detailed description of the controller signals, connected to external pins.

25.2.1.1 FR_A_RX — Receive Data Channel A

The FR_A_RX signal carries the receive data for channel A from the corresponding FlexRay bus driver.

25.2.1.2 FR_A_TX — Transmit Data Channel A

The FR_A_TX signal carries the transmit data for channel A to the corresponding FlexRay bus driver.

Table 25-2. External Signal Properties

Name Direction Active Reset Function

FR_A_RX Input — — Receive Data Channel A

FR_A_TX Output — 1 Transmit Data Channel A

FR_A_TX_EN Output Low 1 Transmit Enable Channel A

FR_B_RX Input — — Receive Data Channel B

FR_B_TX Output — 1 Transmit Data Channel B

FR_B_TX_EN Output Low 1 Transmit Enable Channel B

FR_DBG[0] Output — 0 Debug Strobe Signal 0

FR_DBG[1] Output — 0 Debug Strobe Signal 1

FR_DBG[2] Output — 0 Debug Strobe Signal 2

FR_DBG[3] Output — 0 Debug Strobe Signal 3

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-7

25.2.1.3 FR_A_TX_EN — Transmit Enable Channel A

The FR_A_TX_EN signal indicates to the FlexRay bus driver that the controller is attempting to transmit
data on channel A.

25.2.1.4 FR_B_RX — Receive Data Channel B

The FR_B_RX signal carries the receive data for channel B from the corresponding FlexRay bus driver.

25.2.1.5 FR_B_TX — Transmit Data Channel B

The FR_B_TX signal carries the transmit data for channel B to the corresponding FlexRay bus driver

25.2.1.6 FR_B_TX_EN — Transmit Enable Channel B

The FR_B_TX_EN signal indicates to the FlexRay bus driver that the controller is attempting to transmit
data on channel B.

25.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1] — , FR_DBG[0] — Strobe Signals

These signals provide the selected debug strobe signals. For details on the debug strobe signal selection
refer to Section 25.6.16, “Strobe Signal Support.”

25.3 Controller Host Interface Clocking
The clock for the CHI is derived from the system bus clock and has the same phase and frequency as the
system bus clock. Since the FlexRay protocol requires data delivery at fixed points in time, the memory
read cycles from the FlexRay memory must be finished after a fixed amount of time. To ensure this, a
minimum frequency fchi of the CHI clock is required, which is given in Equation 25-1.

Eqn. 25-1

Additional requirements for the minimum frequency of the CHI clock result from the number of message
buffers. These requirements are provided in Section 25.7.3, “Number of Usable Message Buffers.”

NOTE
If a complete message was transmitted from a transmit message buffer or
received into a message buffer and the controller host interface (CHI)
command FREEZE is issued by the application before the end of the current
slot, then this message buffer cannot be disabled and locked until the
module has entered the protocol state normal active. Consequently, this
message buffer cannot be disabled and locked by the application in the
protocol configuration state, which prevents the application from clearing
the commit bit CMT and the module from clearing the status bits. The
configuration bits in the Message Buffer Configuration, Control, Status
Registers (MBCCSRn) and the message buffer configuration registers
MBCCFRn, MBFIDRn, and MBIDXRn are not affected. At most one
message buffer per channel is affected.

fchi 32MHz

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-8 Freescale Semiconductor

To avoid this,

• The application should not send the CHI command FREEZE and use the
CHI command HALT instead.

• Before sending the CHI command FREEZE the application should
repeatedly disable all message buffers until all message buffers are
disabled. This maximum duration of this task is three static or three
dynamic slots.

25.4 Protocol Engine Clocking
The clock for the protocol engine can be generated by two sources. The first source is the internal crystal
oscillator and the second source is an internal PLL. The clock source to be used is selected by the clock
source select bit CLKSEL in the Module Configuration Register (MCR).

25.4.1 Oscillator Clocking

If the protocol engine is clocked by the internal crystal oscillator, a 40 MHz crystal or CMOS compatible
clock must be connected to the oscillator pins. The crystal or clock must fulfill the requirements given by
the FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

25.4.2 PLL Clocking

25.5 Memory Map and Register Description
The controller occupies 1280 bytes of address space starting at the controller’s base address defined by the
memory map of the MCU.

25.5.1 Memory Map

The complete memory map of the controller is shown in Table 25-3. The addresses presented here are the
offsets relative to the controller base address which is defined by the MCU address map.

Table 25-3. FlexRay Memory Map

Offset Register Access

Module Configuration and Control

0x0000 Module Version Register (MVR) R

0x0002 Module Configuration Register (MCR) R/W

0x0004 System Memory Base Address High Register (SYMBADHR) R/W

0x0006 System Memory Base Address Low Register (SYMBADLR) R/W

0x0008 Strobe Signal Control Register (STBSCR) R/W

0x000A Reserved R

0x000C Message Buffer Data Size Register (MBDSR) R/W

0x000E Message Buffer Segment Size and Utilization Register (MBSSUTR) R/W

Test Registers

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-9

0x0010 Reserved R

0x0012 Reserved R

Interrupt and Error Handling

0x0014 Protocol Operation Control Register (POCR) R/W

0x0016 Global Interrupt Flag and Enable Register (GIFER) R/W

0x0018 Protocol Interrupt Flag Register 0 (PIFR0) R/W

0x001A Protocol Interrupt Flag Register 1 (PIFR1) R/W

0x001C Protocol Interrupt Enable Register 0 (PIER0) R/W

0x001E Protocol Interrupt Enable Register 1 (PIER1) R/W

0x0020 CHI Error Flag Register (CHIERFR) R/W

0x0022 Message Buffer Interrupt Vector Register (MBIVEC) R

0x0024 Channel A Status Error Counter Register (CASERCR) R

0x0026 Channel B Status Error Counter Register (CBSERCR) R

Protocol Status

0x0028 Protocol Status Register 0 (PSR0) R

0x002A Protocol Status Register 1 (PSR1) R

0x002C Protocol Status Register 2 (PSR2) R

0x002E Protocol Status Register 3 (PSR3) R/W

0x0030 Macrotick Counter Register (MTCTR) R

0x0032 Cycle Counter Register (CYCTR) R

0x0034 Slot Counter Channel A Register (SLTCTAR) R

0x0036 Slot Counter Channel B Register (SLTCTBR) R

0x0038 Rate Correction Value Register (RTCORVR) R

0x003A Offset Correction Value Register (OFCORVR) R

0x003C Combined Interrupt Flag Register (CIFRR) R

0x003E System Memory Access Time-Out Register (SYMATOR) R/W

Sync Frame Counter and Tables

0x0040 Sync Frame Counter Register (SFCNTR) R

0x0042 Sync Frame Table Offset Register (SFTOR) R/W

0x0044 Sync Frame Table Configuration, Control, Status Register (SFTCCSR) R/W

Sync Frame Filter

0x0046 Sync Frame ID Rejection Filter Register (SFIDRFR) R/W

0x0048 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR) R/W

0x004A Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR) R/W

Network Management Vector

0x004C Network Management Vector Register 0 (NMVR0) R

0x004E Network Management Vector Register 1 (NMVR1) R

0x0050 Network Management Vector Register 2 (NMVR2) R

0x0052 Network Management Vector Register 3 (NMVR3) R

0x0054 Network Management Vector Register 4 (NMVR4) R

0x0056 Network Management Vector Register 5 (NMVR5) R

Table 25-3. FlexRay Memory Map (continued)

Offset Register Access

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-10 Freescale Semiconductor

0x0058 Network Management Vector Length Register (NMVLR) R/W

Timer Configuration

0x005A Timer Configuration and Control Register (TICCR) R/W

0x005C Timer 1 Cycle Set Register (TI1CYSR) R/W

0x005E Timer 1 Macrotick Offset Register (TI1MTOR) R/W

0x0060 Timer 2 Configuration Register 0 (TI2CR0) R/W

0x0062 Timer 2 Configuration Register 1 (TI2CR1) R/W

Slot Status Configuration

0x0064 Slot Status Selection Register (SSSR) R/W

0x0066 Slot Status Counter Condition Register (SSCCR) R/W

Slot Status

0x0068 Slot Status Register 0 (SSR0) R

0x006A Slot Status Register 1 (SSR1) R

0x006C Slot Status Register 2 (SSR2) R

0x006E Slot Status Register 3 (SSR3) R

0x0070 Slot Status Register 4 (SSR4) R

0x0072 Slot Status Register 5 (SSR5) R

0x0074 Slot Status Register 6 (SSR6) R

0x0076 Slot Status Register 7 (SSR7) R

0x0078 Slot Status Counter Register 0 (SSCR0) R

0x007A Slot Status Counter Register 1 (SSCR1) R

0x007C Slot Status Counter Register 2 (SSCR2) R

0x007E Slot Status Counter Register 3 (SSCR3) R

MTS Generation

0x0080 MTS A Configuration Register (MTSACFR) R/W

0x0082 MTS B Configuration Register (MTSBCFR) R/W

Shadow Buffer Configuration

0x0084 Receive Shadow Buffer Index Register (RSBIR) R/W

Receive FIFO—Configuration

0x0086 Receive FIFO Watermark and Selection Register (RFWMSR) R/W

0x0088 Receive FIFO Start Index Register (RFSIR) R/W

0x008A Receive FIFO Depth and Size Register (RFDSR) R/W

Receive FIFO—Control

0x008C Receive FIFO A Read Index Register (RFARIR) R

0x008E Receive FIFO B Read Index Register (RFBRIR) R

Receive FIFO—Filter

0x0090 Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR) R/W

0x0092 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR) R/W

0x0094 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR) R/W

0x0096 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR) R/W

Table 25-3. FlexRay Memory Map (continued)

Offset Register Access

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-11

25.5.2 Register Descriptions

This section provides detailed descriptions of all registers in ascending address order, presented as 16-bit
wide entities

Table 25-4 provides a key for the register figures and register tables.

0x0098 Receive FIFO Range Filter Configuration Register (RFRFCFR) R/W

0x009A Receive FIFO Range Filter Control Register (RFRFCTR) R/W

Dynamic Segment Status

0x009C Last Dynamic Transmit Slot Channel A Register (LDTXSLAR) R

0x009E Last Dynamic Transmit Slot Channel B Register (LDTXSLBR) R

Protocol Configuration

0x00A0
...

0x00DC

Protocol Configuration Register 0 (PCR0)
...

Protocol Configuration Register 30 (PCR30)

R/W
–

R/W

0x00DE
...

0x00E6
Reserved R

Receive FIFO—Configuration (continued)

0x00E8 Receive FIFO System Memory Base Address High Register (RFSYMBADHR) R/W

0x00EA Receive FIFO System Memory Base Address Low Register (RFSYMBADLR) R/W

0x00EC Receive FIFO Periodic Timer Register (RFPTR) R/W

Receive FIFO—Control (continued)

0x00EE Receive FIFO Fill Level and POP Count Register (RFFLPCR) R/W

0x00F0
...

0x00FE
Reserved R

Message Buffers Configuration, Control, Status

0x0100 Message Buffer Configuration, Control, Status Register 0 (MBCCSR0) R/W

0x0102 Message Buffer Cycle Counter Filter Register 0 (MBCCFR0) R/W

0x0104 Message Buffer Frame ID Register 0 (MBFIDR0) R/W

0x0106 Message Buffer Index Register 0 (MBIDXR0) R/W

...

0x04F8 Message Buffer Configuration, Control, Status Register 127 (MBCCSR127) R/W

0x04FA Message Buffer Cycle Counter Filter Register 127 (MBCCFR127) R/W

0x04FC Message Buffer Frame ID Register 127 (MBFIDR127) R/W

0x04FE Message Buffer Index Register 127 (MBIDXR127) R/W

Table 25-3. FlexRay Memory Map (continued)

Offset Register Access

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-12 Freescale Semiconductor

25.5.2.1 Register Reset

All registers except the Message Buffer Cycle Counter Filter Registers (MBCCFRn), Message Buffer
Frame ID Registers (MBFIDRn), and Message Buffer Index Registers (MBIDXRn) are reset to their reset
value on system reset. The registers mentioned above are located in physical memory blocks and, thus,
they are not affected by reset. For some register fields, additional reset conditions exist. These additional
reset conditions are mentioned in the detailed description of the register. The additional reset conditions
are explained in Table 25-5.

25.5.2.2 Register Write Access

This section describes the write access restriction terms that apply to all registers.

25.5.2.2.1 Register Write Access Restriction

For each register bit and register field, the write access conditions are specified in the detailed register
description. A description of the write access conditions is given in Table 25-6. If, for a specific register
bit or field, none of the given write access conditions is fulfilled, any write attempt to this register bit or
field is ignored without any notification. The values of the bits or fields are not changed. The condition
term [A or B] indicates that the register or field can be written to if at least one of the conditions is fulfilled.

Table 25-4. Register Access Conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not writeable.

R* Reserved bit or field, will not be changed. Application must not write any value different from the reset value.

FIELDNAME Identifies the field. Its presence in the read or write row indicates that it can be read or written.

Register Field Types

rwm A read/write bit that may be modified by a hardware in some fashion other than by a reset.

w1c Write one to clear. A flag bit that can be read, is cleared by writing a one, writing 0 has no effect.

Reset Value

0 Resets to zero.

1 Resets to one.

– Not defined after reset and not affected by reset.

Table 25-5. Additional Register Reset Conditions

Condition Description

Protocol RUN Command The register field is reset when the application writes to RUN command “0101” to the
POCCMD field in the Protocol Operation Control Register (POCR).

Message Buffer Disable The register field is reset when the application has disabled the message buffer.

This happens when the application writes 1 to the message buffer disable trigger bit
MBCCSRn[EDT] while the message buffer is enabled (MBCCSRn[EDS] = 1) and the
controller grants the disable to the application by clearing the MBCCSRn[EDS] bit.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-13

25.5.2.2.2 Register Write Access Requirements

All registers can be accessed with 8-bit, 16-bit and 32-bit wide operations. For some of the registers, at
least a 16-bit wide write access is required to ensure correct operation. This write access requirement is
stated in the detailed register description for each register affected

25.5.2.2.3 Internal Register Access

The following memory mapped registers are used to access multiple internal registers.

• Strobe Signal Control Register (STBSCR)

• Slot Status Selection Register (SSSR)

• Slot Status Counter Condition Register (SSCCR)

• Receive Shadow Buffer Index Register (RSBIR)

Each of these memory mapped registers provides a SEL field and a WMD bit. The SEL field is used to
select the internal register. The WMD bit controls the write mode. If the WMD bit is set to 0 during the
write access, all fields of the internal register are updated. If the WMD bit set to 1, only the SEL field is
changed. All other fields of the internal register remain unchanged. This allows for reading back the values
of the selected internal register in a subsequent read access.

25.5.2.3 Module Version Register (MVR)

This register provides the controller version number. The module version number is derived from the CHI
version number and the PE version number.

Table 25-6. Register Write Access Restrictions

Condition Indication Description

Any Time — No write access restriction.

Disabled Mode MCR[MEN] = 0 Write access only when the controller is in Disabled Mode.

Normal Mode MCR[MEN] = 1 Write access only when the controller is in Normal Mode.

POC:config PSR0[PROTSTATE] = POC:config Write access only when the Protocol is in the POC:config state.

MB_DIS MBCCSRn[EDS] = 0 Write access only when the related Message Buffer is disabled.

MB_LCK MBCCSRn[LCKS] = 1 Write access only when the related Message Buffer is locked.

Base + 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CHIVER PEVER

W

Reset 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0

Figure 25-2. Module Version Register (MVR)

Table 25-7. MVR Field Descriptions

Field Description

CHIVER CHI Version Number—This field provides the version number of the controller host interface.

PEVER PE Version Number—This field provides the version number of the protocol engine.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-14 Freescale Semiconductor

25.5.2.4 Module Configuration Register (MCR)

This register defines the global configuration of the controller.

Base + 0x0002 Write: MEN, SBFF, SCM, CHB, CHA, FUM, FAM, CLKSEL, BITRATE: Disabled Mode
 SFFE: Disabled Mode or POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MEN SBFF SCM CHB CHA SFFE

0
0 FUM FAM

0 CLK
SEL

BITRATE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-3. Module Configuration Register (MCR)

Table 25-8. MCR Field Descriptions

Field Description

MEN Module Enable — This bit indicates whether or not the controller is in the Disabled Mode. The application
requests the controller to leave the Disabled Mode by writing 1 to this bit Before leaving the Disabled Mode, the
application must configure the SCM, SBFF, CHB, CHA, TMODE, BITRATE values. For details see
Section 25.1.6, “Modes of Operation.”
0 Write: ignored, controller disable not possible.

Read: controller disabled.
1 Write: enable controller.

Read: controller enabled.
Note: If the controller is enabled it cannot be disabled.

SBFF System Bus Failure Freeze — This bit controls the behavior of the controller in case of a system bus failure.
0 Continue normal operation.
1 Transition to freeze mode.

SCM Single Channel Device Mode — This control bit defines the channel device mode of the controller as described
in Section 25.6.10, “Channel Device Modes.”
0 controller works in dual channel device mode.
1 controller works in single channel device mode.

CHB
CHA

Channel Enable — protocol related parameter: pChannels
The semantic of these control bits depends on the channel device mode controlled by the SCM bit and is given
Table 25-9.

SFFE Synchronization Frame Filter Enable — This bit controls the filtering for received synchronization frames. For
details see Section 25.6.15, “Sync Frame Filtering.”
0 Synchronization frame filtering disabled.
1 Synchronization frame filtering enabled.

FUM FIFO Update Mode — This bit controls the FIFO update behavior when the interrupt flags GIFER[FAFAIF] and
DIFER[FAFBIF] are written by the application (see Section 25.6.9.8, “FIFO Update”).
0 FIFOA (FIFOB) is updated on writing 1 to GIFER[FAFAIF] (GIFER[FAFBIF]).
1 FIFOA (FIFOB) is not updated on writing 1 to GIFER[FAFAIF] (GIFER[FAFBIF]).

FAM FIFO Address Mode — This bit controls the location of the system memory base address for the FIFOs (see
Section 25.6.9.2, “FIFO Configuration”).
0 FIFO Base Address located in System Memory Base Address Register (SYMBADR).
1 FIFO Base Address located in Receive FIFO System Memory Base Address Register (RFSYMBADR).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-15

25.5.2.5 System Memory Base Address Register (SYMBADR)

CLKSEL Protocol Engine Clock Source Select — This bit is used to select the clock source for the protocol engine.
0 PE clock source is generated by on-chip crystal oscillator.
1 PE clock source is generated by on-chip PLL.

BITRATE FlexRay Bus Bit Rate — This bit field defines the FlexRay Bus Bit Rate.00010.0 Mbit/sec
000 10.0 Mbit/sec
001 5.0 Mbit/sec
010 2.5 Mbit/sec
011 8.0 Mbit/sec
100 reserved
101 reserved
110 reserved
111 reserved

Table 25-9. FlexRay Channel Selection

SCM CHB CHA Description

Dual Channel Device Modes

0

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by controller

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by controller

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel A

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by controller

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by controller

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel B

1 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel A

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel B

Single Channel Device Mode

1

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by controller

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by controller

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel A

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by controller

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by controller - connected to FlexRay channel B

ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by controller

1 1 reserved

Base + 0x0004 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-4. System Memory Base Address High Register (SYMBADHR)

Table 25-8. MCR Field Descriptions

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-16 Freescale Semiconductor

NOTE
The system memory base address must be set before the controller is
enabled.

The system memory base address registers define the base address of the FlexRay memory within the
system memory. The base address is used by the BMIF to calculate the physical memory address for
system memory accesses.

25.5.2.6 Strobe Signal Control Register (STBSCR)

This register is used to assign the individual protocol timing related strobe signals given in Table 25-12 to
the external strobe ports. Each strobe signal can be assigned to at most one strobe port. Each write access
to registers overwrites the previously written ENB and STBPSEL values for the signal indicated by SEL.
If more than one strobe signal is assigned to one strobe port, the current values of the strobe signals are
combined with a binary OR and presented at the strobe port. If no strobe signal is assigned to a strobe port,
the strobe port carries logic 0. For more detailed and timing information refer to Section 25.6.16, “Strobe
Signal Support.”

NOTE
In single channel device mode, channel B related strobe signals are
undefined and should not be assigned to the strobe ports.

Base + 0x0006 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-5. System Memory Base Address Low Register (SYMBADLR)

Table 25-10. SYMBADR Field Descriptions

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the individual
message buffers and sync frame table. This is the value of the system memory base address for the receive
FIFO if the FIFO address mode bit MCR[FAM] is set to 1. It is defines as a byte address.

Base + 0x0008 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
SEL

0 0 0
ENB

0 0
STBPSEL

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-6. Strobe Signal Control Register (STBSCR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-17

.;

Table 25-11. STBSCR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Strobe Signal Select — This control field selects one of the strobe signals given in Table 25-12 to be enabled
or disabled and assigned to one of the four strobe ports given in Table 25-12.

ENB Strobe Signal Enable — The control bit is used to enable and to disable the strobe signal selected by
STBSSEL.
0 Strobe signal is disabled and not assigned to any strobe port.
1 Strobe signal is enabled and assigned to the strobe port selected by STBPSEL.

STBPSEL Strobe Port Select — This field selects the strobe port that the strobe signal selected by the SEL is assigned
to. All strobe signals that are enabled and assigned to the same strobe port are combined with a binary OR
operation.
00 assign selected signal to FR_DBG[0].
01 assign selected signal to FR_DBG[1].
10 assign selected signal to FR_DBG[2].
11 assign selected signal to FR_DBG[3].

Table 25-12. Strobe Signal Mapping

SEL
Description Channel Type Offset1

1 Given in PE clock cycles

Reference
dec hex

0 0x0 arm - value +1 MT start

1 0x1 mt - value +1 MT start

2 0x2 cycle start - pulse 0 MT start

3 0x3 minislot start - pulse 0 MT start

4 0x4 slot start A
pulse 0 MT start

5 0x5 B

6 0x6 receive data after glitch filtering A
value +4

FR_A_RX

7 0x7 B FR_B_RX

8 0x8 channel idle indicator A
level +5

FR_A_RX

9 0x9 B FR_B_RX

10 0xA syntax error detected A
pulse +4

FR_A_RX

11 0xB B FR_B_RX

12 0xC content error detected A
level +4

FR_A_RX

13 0xD B FR_B_RX

14 0xE receive FIFO almost-full interrupt flag A
value n.a.

FAFAIF

15 0xF B FAFBIF

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-18 Freescale Semiconductor

25.5.2.7 Message Buffer Data Size Register (MBDSR)

This register defines the size of the message buffer data section for the two message buffer segments in a
number of two-byte entities.

The controller provides two independent segments for the individual message buffers. All individual
message buffers within one segment have to have the same size for the message buffer data section. This
size can be different for the two message buffer segments.

25.5.2.8 Message Buffer Segment Size and Utilization Register (MBSSUTR)

This register is used to define the last individual message buffer that belongs to the first message buffer
segment and the number of the last used individual message buffer.

Base + 0x000C Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MBSEG2DS

0
MBSEG1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-7. Message Buffer Data Size Register (MBDSR)

Table 25-13. MBDSR Field Descriptions

Field Description

MBSEG2DS Message Buffer Segment 2 Data Size — The field defines the size of the message buffer data section in
two-byte entities for message buffers within the second message buffer segment.

MBSEG1DS Message Buffer Segment 1 Data Size — The field defines the size of the message buffer data section in
two-byte entities for message buffers within the first message buffer segment.

Base + 0x000E Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
LAST_MB_SEG1

0
LAST_MB_UTIL

W

Reset 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 25-8. Message Buffer Segment Size and Utilization Register (MBSSUTR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-19

25.5.2.9 Protocol Operation Control Register (POCR)

The application uses this register to issue

• protocol control commands

• external clock correction commands

Protocol control commands are issued by writing to the POCCMD field. For more information on protocol
control commands, see Section 25.7.4, “Protocol Control Command Execution.”

External clock correction commands are issued by writing to the EOC_AP and ERC_AP fields. For more
information on external clock correction, refer to Section 25.6.11, “External Clock Synchronization.”

Table 25-14. MBSSUTR Field Descriptions

Field Description

LAST_MB_SEG1 Last Message Buffer In Segment 1 — This field defines the message buffer number of the last individual
message buffer that is assigned to the first message buffer segment. The individual message buffers in the
first segment correspond to the message buffer control registers MBCCSRn, MBCCFRn, MBFIDRn,
MBIDXRn with n < LAST_MB_SEG1. The first message buffer segment contains LAST_MB_SEG + 1
individual message buffers.
Note: The first message buffer segment contains at least one individual message buffer.

The individual message buffers in the second message buffer segment correspond to the message buffer
control registers MBCCSRn, MBCCFRn, MBFIDRn, MBIDXRn with LAST_MB_SEG1 < n < 128.
Note: If LAST_MB_SEG = 127 all individual message buffers belong to the first message buffer segment

and the second message buffer segment is empty.

LAST_MB_UTIL Last Message Buffer Utilized — This field defines the message buffer number of last utilized individual
message buffer. The message buffer search engine examines all individual message buffer with a message
buffer number n < LAST_MB_UTIL.
Note: If LAST_MB_UTIL = LAST_MB_SEG1 all individual message buffers belong to the first message

buffer segment and the second message buffer segment is empty.

Base + 0x0014 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
EOC_AP ERC_AP

BSY 0 0 0
POCCMD

W WME WMC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-9. Protocol Operation Control Register (POCR)

Table 25-15. POCR Field Descriptions

Field Description

WME Write Mode External Correction — This bit controls the write mode of the EOC_AP and ERC_AP fields.
0 Write to EOC_AP and ERC_AP fields on register write.
1 No write to EOC_AP and ERC_AP fields on register write.

EOC_AP External Offset Correction Application — This field is used to trigger the application of the external offset
correction value defined in the Protocol Configuration Register 29 (PCR29).
00 do not apply external offset correction value
01 reserved
10 Subtract external offset correction value.
11 Add external offset correction value.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-20 Freescale Semiconductor

25.5.2.10 Global Interrupt Flag and Enable Register (GIFER)

ERC_AP External Rate Correction Application — This field is used to trigger application of the external rate correction
value defined in the Protocol Configuration Register 21 (PCR21)
00 do not apply external rate correction value
01 reserved
10 Subtract external rate correction value.
11 Add external rate correction value.

BSY

WMC

Protocol Control Command Write Busy — This status bit indicates the acceptance of the protocol control
command issued by the application via the POCCMD field. The controller sets this status bit when the application
has issued a protocol control command via the POCCMD field. The controller clears this status bit when protocol
control command was accepted by the PE.When the application issues a protocol control command while the
BSY bit is asserted, the controller ignores this command, sets the protocol command ignored error flag
PCMI_EF in the CHI Error Flag Register (CHIERFR), and will not change the value of the POCCMD field.

0 Command write idle, command accepted and ready to receive new protocol command.

1 Command write busy, command not yet accepted, not ready to receive new protocol command.
Write Mode Command — This bit controls the write mode of the POCCMD field.
0 Write to POCCMD field on register write.
1 Do not write to POCCMD field on register write.

POCCMD Protocol Control Command — The application writes to this field to issue a protocol control command to the
PE. The controller sends the protocol command to the PE immediately. While the transfer is running, the BSY
bit is set.
0000 ALLOW_COLDSTART — Immediately activate capability of node to cold start cluster.
0001 ALL_SLOTS — Delayed1 transition to the all slots transmission mode.
0010 CONFIG — Immediately transition to the POC:config state.
0011 FREEZE — Immediately transition to the POC:halt state.
0100 READY, CONFIG_COMPLETE — Immediately transition to the POC:ready state.
0101 RUN — Immediately transition to the POC:startup start state.
0110 DEFAULT_CONFIG — Immediately transition to the POC:default config state.
0111 HALT — Delayed transition to the POC:halt state
1000 WAKEUP — Immediately initiate the wakeup procedure.
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

1 Delayed means on completion of current communication cycle.

Base + 0x0016 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIF PRIF CHIF

WUP
IF

FAFB
IF

FAFA
IF

RBIF TBIF
MIE PRIE CHIE

WUP
IE

FAFB
IE

FAFA
IE

RBIE TBIE
W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-10. Global Interrupt Flag and Enable Register (GIFER)

Table 25-15. POCR Field Descriptions

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-21

This register provides the means to control some of the interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags MIF, PRIF, CHIF, RBIF, and TBIF are the outcome of a
binary OR of the related individual interrupt flags and interrupt enables. The generation scheme for these
flags is depicted in Figure 25-150. For more details on interrupt generation, see Section 25.6.20, “Interrupt
Support.” These flags are cleared automatically when all of the corresponding interrupt flags or interrupt
enables in the related interrupt flag and enable registers are cleared by the application.

Table 25-16. GIFER Field Descriptions

Field Description

MIF Module Interrupt Flag — This flag is set if at least one of the other interrupt flags is in this register is asserted
and the related interrupt enable is asserted, too. The controller generates the module interrupt request if MIE is
asserted.
0 No interrupt flag is asserted or no interrupt enable is set.
1 At least one of the other interrupt flags in this register is asserted and the related interrupt bit is asserted, too.

PRIF Protocol Interrupt Flag — This flag is set if at least one of the individual protocol interrupt flags in the Protocol
Interrupt Flag Register 0 (PIFR0) and Protocol Interrupt Flag Register 1 (PIFR1) is asserted and the related
interrupt enable flag is asserted, too. The controller generates the combined protocol interrupt request if the
PRIE flag is asserted.
0 All individual protocol interrupt flags are equal to 0 or no interrupt enable bit is set.
1 At least one of the individual protocol interrupt flags and the related interrupt enable is equal to 1.

CHIF CHI Interrupt Flag — This flag is set if at least one of the individual CHI error flags in the CHI Error Flag Register
(CHIERFR) is asserted and the chi error interrupt enable GIFER[CHIE] is asserted. The controller generates the
combined CHI error interrupt if the CHIE flag is asserted, too.
0 All CHI error flags are equal to 0 or the chi error interrupt is disabled.
1 At least one CHI error flag is asserted and chi error interrupt is enabled.

WUPIF Wakeup Interrupt Flag — This flag is set when the controller has received a wakeup symbol on the FlexRay
bus. The application can determine on which channel the wakeup symbol was received by reading the related
wakeup flags WUB and WUA in the Protocol Status Register 3 (PSR3). The controller generates the wakeup
interrupt request if the WUPIE flag is asserted.
0 No wakeup condition or interrupt disabled.
1 Wakeup symbol received on FlexRay bus and interrupt enabled.

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — This flag is set when one of the following events occurs

a) the current number of FIFO B entries is equal to or greater than the watermark defined by the WM field in the
Receive FIFO Watermark and Selection Register (RFWMSR), and the controller writes a received message into
the FIFO B, or

b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO Periodic
Timer Register (RFPTR) expires.
0 No such event.
1 FIFO B almost full event has occurred.

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — This flag is set when one of the following events occurs

a) the current number of FIFO A entries is equal to or greater than the watermark defined by the WM field in the
Receive FIFO Watermark and Selection Register (RFWMSR), and the controller writes a received message into
the FIFO A, or

b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO Periodic
Timer Register (RFPTR) expires.
0 No such event.
1 FIFO A almost full event has occurred.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-22 Freescale Semiconductor

RBIF Receive Message Buffer Interrupt Flag — This flag is set if for at least one of the individual receive message
buffers (MBCCSRn[MTD] = 0) both the interrupt flag MBIF and the interrupt enable bit MBIE in the
corresponding Message Buffer Configuration, Control, Status Registers (MBCCSRn) are asserted. The
application cannot clear this RBIF flag directly. This flag is cleared by the controller when all of the interrupt flags
MBIF of the individual receive message buffers are cleared by the application or if the application has cleared
the interrupt enables bit MBIE.
0 None of the individual receive message buffers has the MBIF and MBIE flag asserted.
1 At least one individual receive message buffer has the MBIF and MBIE flag asserted.

TBIF Transmit Buffer Interrupt Flag — This flag is set if for at least one of the individual single or double transmit
message buffers (MBCCSRn[MTD] = 0) both the interrupt flag MBIF and the interrupt enable bit MBIE in the
corresponding Message Buffer Configuration, Control, Status Registers (MBCCSRn) are equal to 1. The
application cannot clear this TBIF flag directly. This flag is cleared by the controller when either all of the
individual interrupt flags MBIF of the individual transmit message buffers are cleared by the application or the
host has cleared the interrupt enables bit MBIE.
0 None of the individual transmit message buffers has the MBIF and MBIE flag asserted.
1 At least one individual transmit message buffer has the MBIF and MBIE flag asserted.

MIE Module Interrupt Enable — This flag controls if the module interrupt line is asserted when the MIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

PRIE Protocol Interrupt Enable — This flag controls if the protocol interrupt line is asserted when the PRIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

CHIE CHI Interrupt Enable — This flag controls if the CHI interrupt line is asserted when the CHIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

WUPIE Wakeup Interrupt Enable — This flag controls if the wakeup interrupt line is asserted when the WUPIF flag is
set.
0 Disable interrupt line.
1 Enable interrupt line.

FAFBIE Receive FIFO Channel B Almost Full Interrupt Enable — This flag controls if the FIFO B interrupt line is
asserted when the FAFBIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

FAFAIE Receive FIFO Channel A Almost Full Interrupt Enable — This flag controls if the FIFO A interrupt line is
asserted when the FAFAIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

RBIE Receive Buffer Interrupt Enable — This flag controls if the receive buffer interrupt line is asserted when the
RBIF flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

TBIE Transmit Interrupt Enable — This flag controls if the transmit buffer interrupt line is asserted when the TBIF
flag is set.
0 Disable interrupt line.
1 Enable interrupt line.

Table 25-16. GIFER Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-23

25.5.2.11 Protocol Interrupt Flag Register 0 (PIFR0)

The register holds one set of the protocol-related individual interrupt flags.

Base + 0x0018 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IF

INTL
_IF

ILCF
_IF

CSA
_IF

MRC
_IF

MOC
_IF

CCL
_IF

MXS
_IF

MTX
_IF

LTXB
_IF

LTXA
_IF

TBVB
_IF

TBVA
_IF

TI2
_IF

TI1
_IF

CYS
_IF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-11. Protocol Interrupt Flag Register 0 (PIFR0)

Table 25-17. PIFR0 Field Descriptions

Field Description

FATL_IF Fatal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected a fatal protocol
error. In this case, the protocol engine goes into the POC:halt state immediately. The fatal protocol errors are:

1) pLatestTx violation, as described in the MAC process of the FlexRay protocol
2) transmission across slot boundary violation, as described in the FSP process of the FlexRay protocol
0 No such event.
1 Fatal protocol error detected.

INTL_IF Internal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected an internal
protocol error. In this case, the protocol engine goes into the POC:halt state immediately. An internal protocol
error occurs when the protocol engine has not finished a calculation and a new calculation is requested. This
can be caused by a hardware error.
0 No such event.
1 Internal protocol error detected.

ILCF_IF Illegal Protocol Configuration Interrupt Flag — This flag is set when the protocol engine has detected an
illegal protocol configuration parameter setting. In this case, the protocol engine goes into the POC:halt state
immediately.

The protocol engine checks the listen_timeout value programmed into the Protocol Configuration Register 14
(PCR14) and Protocol Configuration Register 15 (PCR15) when the CONFIG_COMPLETE command was sent
by the application via the Protocol Operation Control Register (POCR). If the value of listen_timeout is equal to
zero, the protocol configuration setting is considered as illegal.
0 No such event.
1 Illegal protocol configuration detected.

CSA_IF Cold Start Abort Interrupt Flag — This flag is set when the configured number of allowed cold start attempts
is reached and none of these attempts was successful. The number of allowed cold start attempts is configured
by the coldstart_attempts field in the Protocol Configuration Register 3 (PCR3).
0 No such event.
1 Cold start aborted and no more coldstart attempts allowed.

MRC_IF Missing Rate Correction Interrupt Flag — This flag is set when an insufficient number of measurements is
available for rate correction at the end of the communication cycle.
0 No such event.
1 Insufficient number of measurements for rate correction detected.

MOC_IF Missing Offset Correction Interrupt Flag — This flag is set when an insufficient number of measurements is
available for offset correction. This is related to the MISSING_TERM event in the CSP process for offset
correction in the FlexRay protocol.
0 No such event.
1 Insufficient number of measurements for offset correction detected.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-24 Freescale Semiconductor

CCL_IF Clock Correction Limit Reached Interrupt Flag — This flag is set when the internal calculated offset or rate
calculation values have reached or exceeded its configured thresholds as given by the offset_coorection_out
field in the Protocol Configuration Register 9 (PCR9) and the rate_correction_out field in the Protocol
Configuration Register 14 (PCR14).
0 No such event.
1 Offset or rate correction limit reached.

MXS_IF Max Sync Frames Detected Interrupt Flag — This flag is set when the number of synchronization frames
detected in the current communication cycle exceeds the value of the node_sync_max field in the Protocol
Configuration Register 30 (PCR30).
0 No such event.
1 More than node_sync_max sync frames detected.
Note: Only synchronization frames that have passed the synchronization frame acceptance and rejection filters

are taken into account.

MTX_IF Media Access Test Symbol Received Interrupt Flag — This flag is set when the MTS symbol was received
on channel A or channel B.
0 No such event.
1 MTS symbol received.

LTXB_IF pLatestTx Violation on Channel B Interrupt Flag — This flag is set when the frame transmission on channel B
in the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation, as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel B.

LTXA_IF pLatestTx Violation on Channel A Interrupt Flag — This flag is set when the frame transmission on channel A
in the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel A.

TBVB_IF Transmission across boundary on channel B Interrupt Flag — This flag is set when the frame transmission
on channel B crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel B.

TBVA_IF Transmission across boundary on channel A Interrupt Flag — This flag is set when the frame transmission
on channel A crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel A.

TI2_IF Timer 2 Expired Interrupt Flag — This flag is set whenever timer 2 expires.
0 No such event.
1 Timer 2 has reached its time limit.

TI1_IF Timer 1 Expired Interrupt Flag — This flag is set whenever timer 1 expires.
0 No such event
1 Timer 1 has reached its time limit

CYS_IF Cycle Start Interrupt Flag — This flag is set when a communication cycle starts.
0 No such event
1 Communication cycle started.

Table 25-17. PIFR0 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-25

25.5.2.12 Protocol Interrupt Flag Register 1 (PIFR1)

The register holds one set of the protocol-related individual interrupt flags.

Base + 0x001A Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IF

IPC
_IF

PECF
_IF

PSC
_IF

SSI3
_IF

SSI2
_IF

SSI1
_IF

SSI0
_IF

0 0
EVT
_IF

ODT
_IF

0 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-12. Protocol Interrupt Flag Register 1 (PIFR1)

Table 25-18. PIFR1 Field Descriptions

Field Description

EMC_IF Error Mode Changed Interrupt Flag — This flag is set when the value of the ERRMODE bit field in the Protocol
Status Register 0 (PSR0) is changed by the controller.
0 No such event.
1 ERRMODE field changed.

IPC_IF Illegal Protocol Control Command Interrupt Flag — This flag is set when the PE tries to execute a protocol
control command, which was issued via the POCCMD field of the Protocol Operation Control Register (POCR),
and detects that this protocol control command is not allowed in the current protocol state. In this case the
command is not executed. For more details, see Section 25.7.4, “Protocol Control Command Execution.”
0 No such event.
1 Illegal protocol control command detected.

PECF_IF Protocol Engine Communication Failure Interrupt Flag — This flag is set if the controller has detected a
communication failure between the protocol engine and the controller host interface
0 No such event.
1 Protocol Engine Communication Failure detected.

PSC_IF Protocol State Changed Interrupt Flag — This flag is set when the protocol state in the PROTSTATE field in
the Protocol Status Register 0 (PSR0) has changed.
0 No such event.
1 Protocol state changed.

SSI3_IF
SSI2_IF
SSI1_IF
SSI0_IF

Slot Status Counter Incremented Interrupt Flag — Each of these flags is set when the SLOTSTATUSCNT
field in the corresponding Slot Status Counter Registers (SSCR0–SSCR3) is incremented.
0 No such event.
1 The corresponding slot status counter has incremented.

EVT_IF Even Cycle Table Written Interrupt Flag — This flag is set if the controller has written the sync frame
measurement / ID tables into the FlexRay memory for the even cycle.
0 No such event.
1 Sync frame measurement table written.

ODT_IF Odd Cycle Table Written Interrupt Flag — This flag is set if the controller has written the sync frame
measurement / ID tables into the FlexRay memory for the odd cycle.
0 No such event..
1 Sync frame measurement table written

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-26 Freescale Semiconductor

25.5.2.13 Protocol Interrupt Enable Register 0 (PIER0)

This register defines whether or not the individual interrupt flags defined in the Protocol Interrupt Flag
Register 0 (PIFR0) can generate a protocol interrupt request.

Base + 0x001C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IE

INTL
_IE

ILCF
_IE

CSA
_IE

MRC
_IE

MOC
_IE

CCL
_IE

MXS
_IE

MTX
_IE

LTXB
_IE

LTXA
_IE

TBVB
_IE

TBVA
_IE

TI2
_IE

TI1
_IE

CYS
_IEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-13. Protocol Interrupt Enable Register 0 (PIER0)

Table 25-19. PIER0 Field Descriptions

Field Description

FATL_IE Fatal Protocol Error Interrupt Enable — This bit controls FATL_IF interrupt request generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

INTL_IE Internal Protocol Error Interrupt Enable — This bit controls INTL_IF interrupt request generation.

0 interrupt request generation disabled.
1 interrupt request generation enabled.

ILCF_IE Illegal Protocol Configuration Interrupt Enable — This bit controls ILCF_IF interrupt request generation.

0 interrupt request generation disabled.

1 interrupt request generation enabled.

CSA_IE Cold Start Abort Interrupt Enable — This bit controls CSA_IF interrupt request generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

MRC_IE Missing Rate Correction Interrupt Enable — This bit controls MRC_IF interrupt request generation.

0 interrupt request generation disabled
1 interrupt request generation enabled.

MOC_IE Missing Offset Correction Interrupt Enable — This bit controls MOC_IF interrupt request generation.

0 interrupt request generation disabled.

1 interrupt request generation enabled.

CCL_IE Clock Correction Limit Reached Interrupt Enable — This bit controls CCL_IF interrupt request generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

MXS_IE Max Sync Frames Detected Interrupt Enable — This bit controls MXS_IF interrupt request generation.

0 interrupt request generation disabled.
1 interrupt request generation enabled.

MTX_IE Media Access Test Symbol Received Interrupt Enable — This bit controls MTX_IF interrupt request
generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

LTXB_IE pLatestTx Violation on Channel B Interrupt Enable — This bit controls LTXB_IF interrupt request generation.

0 interrupt request generation disabled.

1 interrupt request generation enabled.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-27

25.5.2.14 Protocol Interrupt Enable Register 1 (PIER1)

This register defines whether or not the individual interrupt flags defined in Protocol Interrupt Flag
Register 1 (PIFR1) can generate a protocol interrupt request.

LTXA_IE pLatestTx Violation on Channel A Interrupt Enable — This bit controls LTXA_IF interrupt request generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

TBVB_IE Transmission across boundary on channel B Interrupt Enable — This bit controls TBVB_IF interrupt request
generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

TBVA_IE Transmission across boundary on channel A Interrupt Enable — This bit controls TBVA_IF interrupt request
generation.

0 interrupt request generation disabled.

1 interrupt request generation enabled.

TI2_IE Timer 2 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled.

1 interrupt request generation enabled.

TI1_IE Timer 1 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.

0 interrupt request generation disabled.
1 interrupt request generation enabled.

CYS_IE Cycle Start Interrupt Enable — This bit controls CYC_IF interrupt request generation.

0 interrupt request generation disabled.

1 interrupt request generation enabled.

Base + 0x001E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IE

IPC
_IE

PECF
_IE

PSC
_IE

SSI3
_IE

SSI2
_IE

SSI1
_IE

SSI0
_IE

0 0 EVT
_IE

ODT
_IE

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-14. Protocol Interrupt Enable Register 1 (PIER1)

Table 25-20. PIER1 Field Descriptions

Field Description

EMC_IE Error Mode Changed Interrupt Enable — This bit controls EMC_IF interrupt request generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

IPC_IE Illegal Protocol Control Command Interrupt Enable — This bit controls IPC_IF interrupt request generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

Table 25-19. PIER0 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-28 Freescale Semiconductor

25.5.2.15 CHI Error Flag Register (CHIERFR)

This register holds the CHI related error flags. The interrupt generation for each of these error flags is
controlled by the CHI interrupt enable bit CHIE in the Global Interrupt Flag and Enable Register (GIFER).

PECF_IE Protocol Engine Communication Failure Interrupt Enable — This bit controls PECF_IF interrupt request
generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

PSC_IE Protocol State Changed Interrupt Enable — This bit controls PSC_IF interrupt request generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

SSI3_IE
SSI2_IE
SSI1_IE
SSI0_IE

Slot Status Counter Incremented Interrupt Enable — This bit controls SSI[3:0]_IF interrupt request
generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

EVT_IE Even Cycle Table Written Interrupt Enable — This bit controls EVT_IF interrupt request generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

ODT_IE Odd Cycle Table Written Interrupt Enable — This bit controls ODT_IF interrupt request generation.
0 interrupt request generation disabled.
1 interrupt request generation enabled.

Base + 0x0020 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FRLB
_EF

FRLA
_EF

PCMI
_EF

FOVB
_EF

FOVA
_EF

MBS
_EF

MBU
_EF

LCK
_EF

DBL
_EF

SBCF
_EF

FID
_EF

DPL
_EF

SPL
_EF

NML
_EF

NMF
_EF

ILSA
_EF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-15. CHI Error Flag Register (CHIERFR)

Table 25-21. CHIERFR Field Descriptions

Field Description

FRLB_EF Frame Lost Channel B Error Flag — This flag is set if a complete frame was received on channel B but could
not be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such event.
1 Frame lost on channel B detected.

FRLA_EF Frame Lost Channel A Error Flag — This flag is set if a complete frame was received on channel A but could
not be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such error.
1 Frame lost on channel A detected.

Table 25-20. PIER1 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-29

PCMI_EF Protocol Command Ignored Error Flag — This flag is set if the application has issued a POC command by
writing to the POCCMD field in the Protocol Operation Control Register (POCR) while the BSY flag is equal to
1. In this case the command is ignored by the controller and is lost.
0 No such error.
1 POC command ignored.

FOVB_EF Receive FIFO Overrun Channel B Error Flag — This flag is set when an overrun of the FIFO for channel B
occurred. This error occurs if a semantically valid frame was received on channel B and matches the all criteria
to be appended to the FIFO for channel B but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error.
1 FIFO overrun on channel B has been detected.

FOVA_EF Receive FIFO Overrun Channel A Error Flag — This flag is set when an overrun of the FIFO for channel A
occurred. This error occurs if a semantically valid frame was received on channel A and matches the all criteria
to be appended to the FIFO for channel A but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error.
1 FIFO overrun on channel B has been detected.

MSB_EF Message Buffer Search Error Flag — This flag is set if the message buffer search engine is still running while
the next search cycle must be started due to the FlexRay protocol timing. In this case, not all message buffers
are considered while searching.
0 No such event.
1 Search engine active while search start appears.

MBU_EF Message Buffer Utilization Error Flag — This flag is asserted if the application writes to a message buffer
control field that is beyond the number of utilized message buffers programmed in the Message Buffer Segment
Size and Utilization Register (MBSSUTR).
If the application writes to a MBCCSRn register with n > LAST_MB_UTIL, the controller ignores the write attempt
and asserts the message buffer utilization error flag MBU_EF in the CHI Error Flag Register (CHIERFR).
0 No such event.
1 Non-utilized message buffer enabled.

LCK_EF Lock Error Flag — This flag is set if the application tries to lock a message buffer that is already locked by the
controller due to internal operations. In that case, the controller does not grant the lock to the application. The
application must issue the lock request again.
0 No such error.
1 Lock error detected.

DBL_EF Double Transmit Message Buffer Lock Error Flag — This flag is set if the application tries to lock the transmit
side of a double transmit message buffer. In this case, the controller does not grant the lock to the transmit side
of a double transmit message buffer.
0 No such event.
1 Double transmit buffer lock error occurred.

SBCF_EF System Bus Communication Failure Error Flag — This flag is set if a system bus access was not finished
within the required amount of time (see Section 25.6.19.2, “System Bus Access Timeout”).
0 No such event.
1 System bus access not finished in time.

FID_EF Frame ID Error Flag — This flag is set if the frame ID stored in the message buffer header area differs from the
frame ID stored in the message buffer control register.
0 No such error occurred.
1 Frame ID error occurred.

Table 25-21. CHIERFR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-30 Freescale Semiconductor

25.5.2.16 Message Buffer Interrupt Vector Register (MBIVEC)

This register indicates the lowest numbered receive message buffer and the lowest numbered transmit
message buffer that have their interrupt status flag MBIF and interrupt enable MBIE bits asserted. This
means that message buffers with lower message buffer numbers have higher priority.

DPL_EF Dynamic Payload Length Error Flag — This flag is set if the payload length written into the message buffer
header field of a single or double transmit message buffer assigned to the dynamic segment is greater than the
maximum payload length for the dynamic segment as it is configured in the corresponding protocol configuration
register field max_payload_length_dynamic in the Protocol Configuration Register 24 (PCR24).
0 No such error occurred.
1 Dynamic payload length error occurred.

SPL_EF Static Payload Length Error Flag — This flag is set if the payload length written into the message buffer header
field of a single or double transmit message buffer assigned to the static segment is different from the payload
length for the static segment as it is configured in the corresponding protocol configuration register field
payload_length_static in the Protocol Configuration Register 19 (PCR19).
0 No such error occurred.
1 Static payload length error occurred.

NML_EF Network Management Length Error Flag — This flag is set if the payload length written into the header
structure of a receive message buffer assigned to the static segment is less than the configured length of the
Network Management Vector as configured in the Network Management Vector Length Register (NMVLR). In
this case the received part of the Network Management Vector will be used to update the Network Management
Vector.
0 No such error occurred.
1 Network management length error occurred.

NMF_EF Network Management Frame Error Flag — This flag is set if a received message in the static segment with a
Preamble Indicator flag PP asserted has its Null Frame indicator flag NF asserted as well. In this case, the Global
Network Management Registers (see Network Management Vector Registers (NMVR0–NMVR5)) are not
updated.
0 No such error occurred.
1 Network management frame error occurred.

ILSA_EF Illegal System Bus Address Error Flag — This flag is set if the external system bus subsystem has detected
an access to an illegal system bus address from the controller (see Section 25.6.19.1, “System Bus Illegal
Address Access”).
0 No such event.
1 Illegal system bus address accessed.

Base + 0x0022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 TBIVEC 0 RBIVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-16. Message Buffer Interrupt Vector Register (MBIVEC)

Table 25-21. CHIERFR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-31

25.5.2.17 Channel A Status Error Counter Register (CASERCR)

This register provides the channel status error counter for channel A. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The controller increments the status error counter by 1 if, for a slot or segment, at least
one error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For
more information on slot status monitoring, see Section 25.6.18, “Slot Status Monitoring.”

25.5.2.18 Channel B Status Error Counter Register (CBSERCR)

This register provides the channel status error counter for channel B. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The controller increments the status error counter by 1 if, for a slot or segment, at least

Table 25-22. MBIVEC Field Descriptions

Field Description

TBIVEC Transmit Buffer Interrupt Vector — This field provides the number of the lowest numbered enabled transmit
message buffer that has its interrupt status flag MBIF and its interrupt enable bit MBIE set. If there is no transmit
message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the value in this
field is set to 0.

RBIVEC Receive Buffer Interrupt Vector — This field provides the message buffer number of the lowest numbered
receive message buffer which has its interrupt flag MBIF and its interrupt enable bit MBIE asserted. If there is
no receive message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the
value in this field is set to 0.

Base + 0x0024 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-17. Channel A Status Error Counter Register (CASERCR)

Table 25-23. CASERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current value channel status error counter. The
counter value is updated within the first macrotick of the following slot or segment.

Base + 0x0026 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-18. Channel B Status Error Counter Register (CBSERCR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-32 Freescale Semiconductor

one error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For
more information on slot status monitoring see Section 25.6.18, “Slot Status Monitoring.”

25.5.2.19 Protocol Status Register 0 (PSR0)

This register provides information about the current protocol status.

Table 25-24. CBSERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current channel status error count. The counter
value is updated within the first macrotick of the following slot or segment.

Base + 0x0028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERRMODE SLOTMODE 0 PROTSTATE STARTUPSTATE 0 WAKEUPSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-19. Protocol Status Register 0 (PSR0)

Table 25-25. PSR0 Field Descriptions

Field Description

ERRMODE Error Mode — protocol related variable: vPOC!ErrorMode. This field indicates the error mode of the protocol.
00 ACTIVE
01 PASSIVE
10 COMM_HALT
11 reserved

SLOTMODE Slot Mode — protocol related variable: vPOC!SlotMode. This field indicates the slot mode of the protocol.
00 SINGLE
01 ALL_PENDING
10 ALL
11 reserved

PROTSTATE Protocol State — protocol related variable: vPOC!State. This field indicates the state of the protocol.
000 POC:default config
001 POC:config
010 POC:wakeup
011 POC:ready
100 POC:normal passive
101 POC:normal active
110 POC:halt
111 POC:startup

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-33

25.5.2.20 Protocol Status Register 1 (PSR1)

STARTUP
STATE

Startup State — protocol related variable: vPOC!StartupState. This field indicates the current sub-state of the
startup procedure.
0000 reserved
0001 reserved
0010 POC:coldstart collision resolution
0011 POC:coldstart listen
0100 POC:integration consistency check
0101 POC:integrationi listen
0110 reserved
0111 POC:initialize schedule
1000 reserved
1001 reserved
1010 POC:coldstart consistency check
1011 reserved
1100 reserved
1101 POC:integration coldstart check
1110 POC:coldstart gap
1111 POC:coldstart join

WAKEUP
STATUS

Wakeup Status — protocol related variable: vPOC!WakeupStatus. This field provides the outcome of the
execution of the wakeup mechanism.
000 UNDEFINED
001 RECEIVED_HEADER
010 RECEIVED_WUP
011 COLLISION_HEADER
100 COLLISION_WUP
101 COLLISION_UNKNOWN
110 TRANSMITTED
111 reserved

Base + 0x002A Additional Reset: CSAA, CSP, CPN: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CSAA CSP 0 REMCSAT CPN HHR FRZ APTAC

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-20. Protocol Status Register 1 (PSR1)

Table 25-26. PSR1 Field Descriptions

Field Description

CSAA Cold Start Attempt Aborted Flag — protocol related event: ‘set coldstart abort indicator in CHI’
This flag is set when the controller has aborted a cold start attempt.
0 No such event.
1 Cold start attempt aborted.

CSP Leading Cold Start Path — This status bit is set when the controller has reached the POC:normal active state
via the leading cold start path. This indicates that this node has started the network
0 No such event.
1 POC:normal active reached from POC:startup state via leading cold start path.

Table 25-25. PSR0 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-34 Freescale Semiconductor

25.5.2.21 Protocol Status Register 2 (PSR2)

This register provides a snapshot of status information about the Network Idle Time NIT, the Symbol
Window and the clock synchronization. The NIT related status bits NBVB, NSEB, NBVA, and NSEA are
updated by the controller after the end of the NIT and before the end of the first slot of the next
communication cycle. The Symbol Window related status bits STCB, SBVB, SSEB, MTB, STCA, SBVA,
SSEB, and MTA are updated by the controller after the end of the symbol window and before the end of
the current communication cycle. If no symbol window is configured, the symbol window related status
bits remain in their reset state. The clock synchronization related CLKCORRFAILCNT is updated by the
controller after the end of the static segment and before the end of the current communication cycle.

REMCSAT Remaining Coldstart Attempts — protocol related variable: vRemainingColdstartAttempts
This field provides the number of remaining cold start attempts that the controller will execute.

CPN Leading Cold Start Path Noise — protocol related variable: vPOC!ColdstartNoise
This status bit is set if the controller has reached the POC:normal active state via the leading cold start path
under noise conditions. This indicates there was some activity on the FlexRay bus while the controller was
starting up the cluster.
0 No such event.
1 POC:normal active state was reached from POC:startup state via noisy leading cold start path.

HHR Host Halt Request Pending — protocol related variable: vPOC!CHIHaltRequest
This status bit is set when controller receives the HALT command from the application via the Protocol Operation
Control Register (POCR). The controller clears this status bit after a hard reset condition or when the protocol
is in the POC:default config state.
0 No such event.
1 HALT command received.

FRZ Freeze Occurred — protocol related variable: vPOC!Freeze
This status bit is set when the controller has reached the POC:halt state due to the host FREEZE command or
due to an internal error condition requiring immediate halt. The controller clears this status bit after a hard reset
condition or when the protocol is in the POC:default config state.
0 No such event.
1 Immediate halt due to FREEZE or internal error condition.

APTAC Allow Passive to Active Counter — protocol related variable: vPOC!vAllowPassivetoActive

This field provides the number of consecutive even/odd communication cycle pairs that have passed with valid
rate and offset correction terms, but the protocol is still in the POC:normal passive state due to an application
configured delay to enter POC:normal active state. This delay is defined by the allow_passive_to_active field in
the Protocol Configuration Register 12 (PCR12).

Base + 0x002C Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NBVB NSEB STCB SBVB SSEB MTB NBVA NSEA STCA SBVA SSEA MTA CLKCORRFAILCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-21. Protocol Status Register 2 (PSR2)

Table 25-26. PSR1 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-35

Table 25-27. PSR2 Field Descriptions

Field Description

NBVB NIT Boundary Violation on Channel B — protocol related variable: vSS!BViolation for NIT on channel B.
This status bit is set when there was some media activity on the FlexRay bus channel B at the end of the NIT.
0 No such event.
1 Media activity at boundaries detected.

NSEB NIT Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for NIT on channel B.
This status bit is set when a syntax error was detected during NIT on channel B.
0 No such event.
1 Syntax error detected.

STCB Symbol Window Transmit Conflict on Channel B — protocol related variable: vSS!TxConflict for symbol
window on channel B.
This status bit is set if there was a transmission conflict during the symbol window on channel B.
0 No such event.
1 Transmission conflict detected.

SBVB Symbol Window Boundary Violation on Channel B — protocol related variable: vSS!BViolation for symbol
window on channel B.
This status bit is set if there was some media activity on the FlexRay bus channel B at the start or at the end of
the symbol window.
0 No such event.
1 Media activity at boundaries detected.

SSEB Symbol Window Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for symbol window
on channel B.
This status bit is set when a syntax error was detected during the symbol window on channel B.
0 No such event.
1 Syntax error detected.

MTB Media Access Test Symbol MTS Received on Channel B — protocol related variable: vSS!ValidMTS for
Symbol Window on channel B.
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel B.
0 No such event.
1 MTS symbol received.

NBVA NIT Boundary Violation on Channel A — protocol related variable: vSS!BViolation for NIT on channel A
This status bit is set when there was some media activity on the FlexRay bus channel A at the end of the NIT.
0 No such event.
1 Media activity at boundaries detected.

NSEA NIT Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for NIT on channel A.
This status bit is set when a syntax error was detected during NIT on channel A.
0 No such event.
1 Syntax error detected.

STCA Symbol Window Transmit Conflict on Channel A — protocol related variable: vSS!TxConflict for symbol
window on channel A.
This status bit is set if there was a transmission conflicts during the symbol window on channel A.
0 No such event.
1 Transmission conflict detected.

SBVA Symbol Window Boundary Violation on Channel A — protocol related variable: vSS!BViolation for symbol
window on channel A.
This status bit is set if there was some media activity on the FlexRay bus channel A at the start or at the end of
the symbol window.
0 No such event.
1 Media activity at boundaries detected.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-36 Freescale Semiconductor

25.5.2.22 Protocol Status Register 3 (PSR3)

This register provides aggregated channel status information as an accrued status of channel activity for
all communication slots, regardless of whether they are assigned for transmission or subscribed for
reception. It provides accrued information for the symbol window, the NIT, and the wakeup status.

SSEA Symbol Window Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for symbol window
on channel A.
This status bit is set when a syntax error was detected during the symbol window on channel A.
0 No such event.
1 Syntax error detected.

MTA Media Access Test Symbol MTS Received on Channel A — protocol related variable: vSS!ValidMTS for
symbol window on channel A.
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel A.
1 MTS symbol received.
0 No such event.

CLKCORR-
FAILCNT

Clock Correction Failed Counter — protocol related variable: vClockCorrectionFailed
This field provides the number of consecutive even/odd communication cycle pairs that have passed without
clock synchronization having performed an offset or a rate correction due to lack of synchronization frames. It is
not incremented when it has reached the configured value of either max_without_clock_correction_fatal or
max_without_clock_correction_passive as defined in the Protocol Configuration Register 8 (PCR8). The
controller resets this counter on a hard reset condition, when the protocol enters the POC:normal active state,
or when both the rate and offset correction terms have been calculated successfully.

Base + 0x002E Additional Reset: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 WUB ABVB AACB ACEB ASEB AVFB 0 0 WUA ABVA AACA ACEA ASEA AVFA

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-22. Protocol Status Register 3 (PSR3)

Table 25-28. PSR3 Field Descriptions

Field Description

WUB Wakeup Symbol Received on Channel B — This flag is set when a wakeup symbol was received on
channel B.
0 No wakeup symbol received.
1 Wakeup symbol received.

ABVB Aggregated Boundary Violation on Channel B — This flag is set when a boundary violation has been
detected on channel B. Boundary violations are detected in the communication slots, the symbol window, and
the NIT.
0 No boundary violation detected.
1 Boundary violation detected.

AACB Aggregated Additional Communication on Channel B — This flag is set when at least one valid frame was
received on channel B in a slot that also contained an additional communication with either syntax error, content
error, or boundary violations.
0 No additional communication detected.
1 Additional communication detected.

Table 25-27. PSR2 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-37

25.5.2.23 Macrotick Counter Register (MTCTR)

ACEB Aggregated Content Error on Channel B — This flag is set when a content error has been detected on
channel B. Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected.
1 Content error detected.

ASEB Aggregated Syntax Error on Channel B — This flag is set when a syntax error has been detected on
channel B. Syntax errors are detected in the communication slots, the symbol window and the NIT.
0 No syntax error detected.
1 Syntax errors detected.

AVFB Aggregated Valid Frame on Channel B — This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel B.
1 At least one syntactically valid frame received.
0 No syntactically valid frames received.

WUA Wakeup Symbol Received on Channel A — This flag is set when a wakeup symbol was received on
channel A.
0 No wakeup symbol received.
1 Wakeup symbol received.

ABVA Aggregated Boundary Violation on Channel A — This flag is set when a boundary violation has been
detected on channel A. Boundary violations are detected in the communication slots, the symbol window, and
the NIT.
0 No boundary violation detected.
1 Boundary violation detected.

AACA Aggregated Additional Communication on Channel A — This flag is set when a valid frame was received in
a slot on channel A that also contained an additional communication with either syntax error, content error, or
boundary violations.
0 No additional communication detected.
1 Additional communication detected.

ACEA Aggregated Content Error on Channel A — This flag is set when a content error has been detected on
channel A. Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected.
1 Content error detected.

ASEA Aggregated Syntax Error on Channel A — This flag is set when a syntax error has been detected on channel
A. Syntax errors are detected in the communication slots, the symbol window, and the NIT.
0 No syntax error detected.
1 Syntax errors detected.

AVFA Aggregated Valid Frame on Channel A — This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel A.
0 No syntactically valid frames received.
1 At least one syntactically valid frame received.

Base + 0x0030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 MTCT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-23. Macrotick Counter Register (MTCTR)

Table 25-28. PSR3 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-38 Freescale Semiconductor

This register provides the macrotick count of the current communication cycle.

25.5.2.24 Cycle Counter Register (CYCTR)

This register provides the number of the current communication cycle.

25.5.2.25 Slot Counter Channel A Register (SLTCTAR)

This register provides the number of the current slot in the current communication cycle for channel A.

Table 25-29. MTCTR Field Descriptions

Field Description

MTCT Macrotick Counter — protocol related variable: vMacrotick
This field provides the macrotick count of the current communication cycle.

Base + 0x0032

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 CYCCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-24. Cycle Counter Register (CYCTR)

Table 25-30. CYCTR Field Descriptions

Field Description

CYCCNT Cycle Counter — protocol related variable: vCycleCounter
This field provides the number of the current communication cycle. If the counter reaches the maximum value of
63, the counter wraps and starts from zero again.

Base + 0x0034

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-25. Slot Counter Channel A Register (SLTCTAR)

Table 25-31. SLTCTAR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel A — protocol related variable: vSlotCounter for channel A
This field provides the number of the current slot in the current communication cycle.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-39

25.5.2.26 Slot Counter Channel B Register (SLTCTBR)

This register provides the number of the current slot in the current communication cycle for channel B.

25.5.2.27 Rate Correction Value Register (RTCORVR)

This register provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The controller updates this register during the NIT of each odd numbered
communication cycle.

Base + 0x0036

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-26. Slot Counter Channel B Register (SLTCTBR)

Table 25-32. SLTCTBR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel B — protocol related variable: vSlotCounter for channel B
This field provides the number of the current slot in the current communication cycle.

Base + 0x0038 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RATECORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-27. Rate Correction Value Register (RTCORVR)

Table 25-33. RTCORVR Field Descriptions

Field Description

RATECORR Rate Correction Value — protocol related variable: vRateCorrection (before value limitation and external rate
correction).
This field provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external rate correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by rate_correction_out in the Protocol Configuration Register 13
(PCR13), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag Register 0
(PIFR0).
Note: If the controller was not able to calculate a new rate correction term due to a lack of synchronization

frames, the RATECORR value is not updated.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-40 Freescale Semiconductor

25.5.2.28 Offset Correction Value Register (OFCORVR)

This register provides the sign extended offset correction value in microticks as it was calculated by the
clock synchronization algorithm. The controller updates this register during the NIT.

25.5.2.29 Combined Interrupt Flag Register (CIFRR)

This register provides five combined interrupt flags and a copy of three individual interrupt flags. The
combined interrupt flags are the result of a binary OR of the values of other interrupt flags regardless of
the state of the interrupt enable bits. The generation scheme for the combined interrupt flags is depicted in
Figure 25-152. The individual interrupt flags WUPIF, FAFBIF, and FAFAIF are copies of corresponding
flags in the Global Interrupt Flag and Enable Register (GIFER) and are provided here to simplify the
application interrupt flag check. To clear the individual interrupt flags, the application must use the Global
Interrupt Flag and Enable Register (GIFER).

NOTE
The meanings of the combined status bits MIF, PRIF, CHIF, RBIF, and
TBIF are different from those mentioned in the Global Interrupt Flag and
Enable Register (GIFER).

Base + 0x003A Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OFFSETCORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-28. Offset Correction Value Register (OFCORVR)

Table 25-34. OFCORVR Field Descriptions

Field Description

OFFSET
CORR

Offset Correction Value — protocol related variable: vOffsetCorrection (before value limitation and external
offset correction).
This field provides the sign extended offset correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external offset correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by offset_correction_out field in the Protocol Configuration Register
29 (PCR29), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag Register
0 (PIFR0).
Note: If the controller was not able to calculate an new offset correction term due to a lack of synchronization

frames, the OFFSETCORR value is not updated.

Base + 0x003C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 MIF PRIF CHIF

WUP
IF

FAFB
IF

FAFA
IF

RBIF TBIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-29. Combined Interrupt Flag Register (CIFRR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-41

25.5.2.30 System Memory Access Time-Out Register (SYMATOR)

Table 25-35. CIFRR Field Descriptions

Field Description

MIF Module Interrupt Flag — This flag is set if there is at least one interrupt source that has its interrupt flag
asserted.
0 No interrupt source has its interrupt flag asserted.
1 At least one interrupt source has its interrupt flag asserted.

PRIF Protocol Interrupt Flag — This flag is set if at least one of the individual protocol interrupt flags in the Protocol
Interrupt Flag Register 0 (PIFR0) or Protocol Interrupt Flag Register 1 (PIFR1) is equal to 1.
0 All individual protocol interrupt flags are equal to 0.
1 At least one of the individual protocol interrupt flags is equal to 1.

CHIF CHI Interrupt Flag — This flag is set if at least one of the individual CHI error flags in the CHI Error Flag Register
(CHIERFR) is equal to 1.
0 All CHI error flags are equal to 0.
1 At least one CHI error flag is equal to 1.

WUPIF Wakeup Interrupt Flag — Provides the same value as GIFER[WUPIF].

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — Provides the same value as GIFER[FAFBIF].

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — Provides the same value as GIFER[FAFAIF].

RBIF Receive Message Buffer Interrupt Flag — This flag is set if for at least one of the individual receive message
buffers (MBCCSRn[MTD] = 0) the interrupt flag MBIF in the corresponding Message Buffer Configuration,
Control, Status Registers (MBCCSRn) is equal to 1.
0 None of the individual receive message buffers has the MBIF flag asserted.
1 At least one individual receive message buffers has the MBIF flag asserted.

TBIF Transmit Message Buffer Interrupt Flag — This flag is set if for at least one of the individual single or double
transmit message buffers (MBCCSRn[MTD] = 1) the interrupt flag MBIF in the corresponding Message Buffer
Configuration, Control, Status Registers (MBCCSRn) is equal to 1.
0 None of the individual transmit message buffers has the MBIF flag asserted.
1 At least one individual transmit message buffers has the MBIF flag asserted.

Base + 0x003E Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
TIMEOUT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 25-30. System Memory Access Time-Out Register (SYMATOR)

Table 25-36. SYMATOR Field Descriptions

Field Description

TIMEOUT System Memory Access Time-Out — This value defines the maximum amount of time to finish a system bus
access in order to ensure correct frame transmission and reception (see Section 25.6.19.2, “System Bus Access
Timeout”).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-42 Freescale Semiconductor

25.5.2.31 Sync Frame Counter Register (SFCNTR)

This register provides the number of synchronization frames that are used for clock synchronization in the
last even and in the last odd numbered communication cycle. This register is updated after the start of the
NIT and before 10 MT after offset correction start.

NOTE
If the application has locked the even synchronization table at the end of the
static segment of an even communication cycle, the controller will not
update the fields SFEVB and SFEVA.

If the application has locked the odd synchronization table at the end of the
static segment of an odd communication cycle, the controller will not update
the values SFODB and SFODA.

25.5.2.32 Sync Frame Table Offset Register (SFTOR)

This register defines the Flexray Memory related offset for sync frame tables. For more details, see
Section 25.6.12, “Sync Frame ID and Sync Frame Deviation Tables.”

Base + 0x0040 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SFEVB SFEVA SFODB SFODA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-31. Sync Frame Counter Register (SFCNTR)

Table 25-37. SFCNTR Field Descriptions

Field Description

SFEVB Sync Frames Channel B, even cycle — protocol related variable: size of (vsSyncIdListB for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFEVB Sync Frames Channel A, even cycle — protocol related variable: size of (vsSyncIdListA for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFODB Sync Frames Channel B, odd cycle — protocol related variable: size of (vsSyncIdListB for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFODA Sync Frames Channel A, odd cycle — protocol related variable: size of (vsSyncIdListA for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

Base + 0x0042 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SFT_OFFSET[15:1]

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-32. Sync Frame Table Offset Register (SFTOR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-43

25.5.2.33 Sync Frame Table Configuration, Control, Status Register (SFTCCSR)

This register provides configuration, control, and status information related to the generation and access
of the clock sync ID tables and clock sync measurement tables. For a detailed description, see
Section 25.6.12, “Sync Frame ID and Sync Frame Deviation Tables.”

Table 25-38. SFTOR Field Description

Field Description

SFTOR Sync Frame Table Offset — The offset of the Sync Frame Tables in the Flexray Memory. This offset is required
to be 16-bit aligned. Thus STF_OFFSET[0] is always 0.

Base + 0x0044 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 CYCNUM ELKS OLKS EVAL OVAL 0 0 SDV
EN

SID
ENW ELKT OLKT OPT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-33. Sync Frame Table Configuration, Control, Status Register (SFTCCSR)

Table 25-39. SFTCCSR Field Descriptions

Field Description

ELKT Even Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the even cycle tables.
0 No effect.
1 Triggers lock/unlock of the even cycle tables.

OLKT Odd Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the odd cycle tables.
0 No effect.
1 Triggers lock/unlock of the odd cycle tables.

CYCNUM Cycle Number — This field provides the number of the cycle in which the currently locked table was
recorded. If none or both tables are locked, this value is related to the even cycle table.

ELKS Even Cycle Tables Lock Status — This status bit indicates whether the application has locked the even
cycle tables.
0 Application has not locked the even cycle tables.
1 Application has locked the even cycle tables.

OLKS Odd Cycle Tables Lock Status — This status bit indicates whether the application has locked the odd cycle
tables.
0 Application has not locked the odd cycle tables.
1 Application has locked the odd cycle tables.

EVAL Even Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the even cycle are valid. The controller clears this status bit when it starts updating the tables, and
sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing).
1 Tables are valid (consistent).

OVAL Odd Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the odd cycle are valid. The controller clears this status bit when it starts updating the tables, and
sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing).
1 Tables are valid (consistent).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-44 Freescale Semiconductor

25.5.2.34 Sync Frame ID Rejection Filter Register (SFIDRFR)

This register defines the Sync Frame Rejection Filter ID. The application must update this register outside
of the static segment. If the application updates this register in the static segment, it can appear that the
controller accepts the sync frame in the current cycle.

OPT One Pair Trigger — This trigger bit controls whether the controller writes continuously or only one pair of
Sync Frame Tables into the FlexRay memory.

If this trigger is set to 1 while SDVEN or SIDEN is set to 1, the controller writes only one pair of the enabled
Sync Frame Tables corresponding to the next even-odd-cycle pair into the FlexRay memory. In this case, the
controller clears the SDVEN or SIDEN bits immediately.
If this trigger is set to 0 while SDVEN or SIDEN is set to 1, the controller writes continuously the enabled Sync
Frame Tables into the FlexRay memory.
0 Write continuously pairs of enabled Sync Frame Tables into FlexRay memory.
1 Write only one pair of enabled Sync Frame Tables into FlexRay memory.

SDVEN Sync Frame Deviation Table Enable — This bit controls the generation of the Sync Frame Deviation Tables.
The application must set this bit to request the controller to write the Sync Frame Deviation Tables into the
FlexRay memory.
0 Do not write Sync Frame Deviation Tables.
1 Write Sync Frame Deviation Tables into FlexRay memory.
Note: If SDVEN is set to 1, then SIDEN must also be set to 1.

SIDEN Sync Frame ID Table Enable — This bit controls the generation of the Sync Frame ID Tables. The
application must set this bit to 1 to request the controller to write the Sync Frame ID Tables into the FlexRay
memory.
0 Do not write Sync Frame ID Tables.
1 Write Sync Frame ID Tables into FlexRay memory.

Base + 0x0046 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SYNFRID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-34. Sync Frame ID Rejection Filter Register (SFIDRFR)

Table 25-40. SFIDRFR Field Descriptions

Field Description

SYNFRID Sync Frame Rejection ID — This field defines the frame ID of a frame that must not be used for clock
synchronization. For details see Section 25.6.15.2, “Sync Frame Rejection Filtering.”

Table 25-39. SFTCCSR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-45

25.5.2.35 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)

This register defines the sync frame acceptance filter value. For details on filtering, see Section 25.6.15,
“Sync Frame Filtering.”

25.5.2.36 Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)

This register defines the sync frame acceptance filter mask. For details on filtering see Section 25.6.15.1,
“Sync Frame Acceptance Filtering.”

25.5.2.37 Network Management Vector Registers (NMVR0–NMVR5)

Base + 0x0048 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-35. Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)

Table 25-41. SFIDAFVR Field Descriptions

Field Description

FVAL Filter Value — This field defines the value for the sync frame acceptance filtering.

Base + 0x004A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-36. Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)

Table 25-42. SFIDAFMR Field Descriptions

Field Description

FMSK Filter Mask — This field defines the mask for the sync frame acceptance filtering.

Base + 0x004C (NMVR0)

Base + 0x004E (NMVR1)

Base + 0x0050 (NMVR2)
Base + 0x0052 (NMVR3)

Base + 0x0054 (NMVR4)

Base + 0x0056 (NMVR5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMVP[15:8] NMVP[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-37. Network Management Vector Registers (NMVR0–NMVR5)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-46 Freescale Semiconductor

Each of these six registers holds one part of the Network Management Vector. The length of the Network
Management Vector is configured in the Network Management Vector Length Register (NMVLR). If
NMVLR is programmed with a value that is less than 12 bytes, the remaining bytes of the Network
Management Vector Registers (NMVR0–NMVR5), which are not used for the Network Management
Vector accumulating, will remain 0.

The NMVR provides accrued information over all received NMVs in the last communication cycle. All
NMVs received in one cycle are ORed into the NMVR. The NMVR is updated at the end of the
communication cycle.

25.5.2.38 Network Management Vector Length Register (NMVLR)

This register defines the length of the network management vector in bytes.

Table 25-43. NMVR[0:5] Field Descriptions

Field Description

NMVP Network Management Vector Part — The mapping between the Network Management Vector Registers
(NMVR0–NMVR5) and the receive message buffer payload bytes in NMV[0:11] is depicted in Table 25-44.

Table 25-44. Mapping of NMVRn to the Received Payload Bytes NMVn

NMVRn Register NMVn Received Payload

NMVR0[NMVP[15:8]] NMV0

NMVR0[NMVP[7:0]] NMV1

NMVR1[NMVP[15:8]] NMV2

NMVR1[NMVP[7:0]] NMV3

...

NMVR5[NMVP[15:8]] NMV10

NMVR5[NMVP[7:0]] NMV11

Base + 0x0058 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
NMVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-38. Network Management Vector Length Register (NMVLR)

Table 25-45. NMVLR Field Descriptions

Field Description

NMVL Network Management Vector Length — protocol related variable: gNetworkManagementVectorLength
This field defines the length of the Network Management Vector in bytes. Legal values are between 0 and 12.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-47

25.5.2.39 Timer Configuration and Control Register (TICCR)

This register is used to configure and control the two timers T1 and T2. For timer details, see
Section 25.6.17, “Timer Support.” The Timer T1 is an absolute timer. The Timer T2 can be configured as
an absolute or relative timer.

NOTE
Both timers are deactivated immediately when the protocol enters a state
different from POC:normal active or POC:normal passive.

Base + 0x005A Write: T2_CFG: POC:config
 T2_REP, T1_REP, T1SP, T2SP, T1TR, T2TR: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 T2_
CFG

T2_
REP

0 0 0 T2ST 0 0 0 T1_
REP

0 0 0 T1ST

W T2SP T2TR T1SP T1TR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-39. Timer Configuration and Control Register (TICCR)

Table 25-46. TICCR Field Descriptions

Field Description

T2_CFG Timer T2 Configuration — This bit configures the timebase mode of Timer T2.
0 Timer T2 is absolute timer.
1 Timer T2 is relative timer.

T2_REP Timer T2 Repetitive Mode — This bit configures the repetition mode of Timer T2.
0 Timer T2 is non repetitive.
1 Timer T2 is repetitive.

T2SP Timer T2 Stop — This trigger bit is used to stop timer T2.
0 No effect.
1 Stop timer T2.

T2TR Timer T2 Trigger — This trigger bit is used to start timer T2.
0 No effect.
1 Start timer T2.

T2ST Timer T2 State — This status bit provides the current state of timer T2.
0 Timer T2 is idle.
1 Timer T2 is running.

T1_REP Timer T1 Repetitive Mode — This bit configures the repetition mode of timer T1.
0 Timer T1 is non repetitive.
1 Timer T1 is repetitive.

T1SP Timer T1 Stop — This trigger bit is used to stop timer T1.
0 No effect.
1 Stop timer T1.

T1TR Timer T1 Trigger — This trigger bit is used to start timer T1.
0 No effect.
1 Start timer T1.

T1ST Timer T1 State — This status bit provides the current state of timer T1.
0 Timer T1 is idle.
1 Timer T1 is running.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-48 Freescale Semiconductor

25.5.2.40 Timer 1 Cycle Set Register (TI1CYSR)

This register defines the cycle filter value and the cycle filter mask for timer T1. For a detailed description
of timer T1, refer to Section 25.6.17.1, “Absolute Timer T1.”

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

25.5.2.41 Timer 1 Macrotick Offset Register (TI1MTOR)

This register holds the macrotick offset value for timer T1. For a detailed description of timer T1, refer to
Section 25.6.17.1, “Absolute Timer T1.”

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

Base + 0x005C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_CYC_VAL

0 0
T1_CYC_MSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-40. Timer 1 Cycle Set Register (TI1CYSR)

Table 25-47. TI1CYSR Field Descriptions

Field Description

T1_CYC_VAL Timer T1 Cycle Filter Value — This field defines the cycle filter value for timer T1.

T1_CYC_MSK Timer T1 Cycle Filter Mask — This field defines the cycle filter mask for timer T1.

Base + 0x005E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_MTOFFSET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-41. Timer 1 Macrotick Offset Register (TI1MTOR)

Table 25-48. TI1MTOR Field Descriptions

Field Description

T1_MTOFFSET Timer 1 Macrotick Offset — This field defines the macrotick offset value for timer 1.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-49

25.5.2.42 Timer 2 Configuration Register 0 (TI2CR0)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (TICCR). For a detailed description of timer T2, refer to Section 25.6.17.2, “Absolute / Relative
Timer T2.”

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

25.5.2.43 Timer 2 Configuration Register 1 (TI2CR1)

Base + 0x0060 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_CYC_VAL R* T2_CYC_MSK

W

R
T2_MTCNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-42. Timer 2 Configuration Register 0 (TI2CR0)

Table 25-49. TI2CR0 Field Descriptions

Field Description

Fields for absolute timer T2 (TICCR[T2_CFG] = 0)

T2_CYC_VAL Timer T2 Cycle Filter Value — This field defines the cycle filter value for timer T2.

T2_CYC_MSK Timer T2 Cycle Filter Mask — This field defines the cycle filter mask for timer T2.

Fields for relative timer T2 (TICCR[T2_CFG = 1)

T2_MTCNT[31:16] Timer T2 Macrotick High Word — This field defines the high word of the macrotick count for timer T2.

Base + 0x0062 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_MTOFFSET

W

R
T2_MTCNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-43. Timer 2 Configuration Register 1 (TI2CR1)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-50 Freescale Semiconductor

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (TICCR). For a detailed description of timer T2, refer to Section 25.6.17.2, “Absolute / Relative
Timer T2.”

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and the timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

25.5.2.44 Slot Status Selection Register (SSSR)

This register is used to access the four internal non memory-mapped slot status selection registers SSSR0
to SSSR3. Each internal registers selects a slot, or symbol window/NIT, whose status vector will be saved
in the corresponding Slot Status Registers (SSR0–SSR7) according to Table 25-52. For a detailed
description of slot status monitoring, refer to Section 25.6.18, “Slot Status Monitoring.”

Table 25-50. TI2CR1 Field Descriptions

Field Description

Fields for absolute timer T2 (TICCR[T2_CFG] = 0)

T2_MTOFFSET Timer T2 Macrotick Offset — This field holds the macrotick offset value for timer T2.

Fields for relative timer T2 (TICCR[T2_CFG] = 1)

T2_MTCNT[15:0] Timer T2 Macrotick Low Word — This field defines the low word of the macrotick value for timer T2.

Base + 0x0064 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
SLOTNUMBER

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-44. Slot Status Selection Register (SSSR)

Table 25-51. SSSR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-51

25.5.2.45 Slot Status Counter Condition Register (SSCCR)

This register is used to access and program the four internal non-memory mapped Slot Status Counter
Condition Registers SSCCR0 to SSCCR3. Each of these four internal slot status counter condition
registers defines the mode and the conditions for incrementing the counter in the corresponding Slot Status
Counter Registers (SSCR0–SSCR3). The correspondence is given in Table 25-54. For a detailed
description of slot status counters, refer to Section 25.6.18.4, “Slot Status Counter Registers.”

SEL Selector — This field selects one of the four internal slot status selection registers for access.
00 Select SSSR0.
01 Select SSSR1.
10 Select SSSR2.
11 Select SSSR3.

SLOTNUMBER Slot Number — This field specifies the number of the slot whose status will be saved in the corresponding
slot status registers.
Note: If this value is set to 0, the related slot status register provides the status of the symbol window after the

NIT start, and provides the status of the NIT after the cycle start.

Table 25-52. Mapping Between SSSRn and SSRn

Internal Slot
Status Selection

Register

Write the Slot Status of the Slot Selected by SSSRn for each

Even Communication Cycle Odd Communication Cycle

For Channel B
to

For Channel A
to

For Channel B
to

For Channel A
to

SSSR0 SSR0[15:8] SSR0[7:0] SSR1[15:8] SSR1[7:0]

SSSR1 SSR2[15:8] SSR2[7:0] SSR3[15:8] SSR3[7:0]

SSSR2 SSR4[15:8] SSR4[7:0] SSR5[15:8] SSR5[7:0]

SSSR3 SSR6[15:8] SSR6[7:0] SSR7[15:8] SSR7[7:0]

Base + 0x0066 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
CNTCFG MCY VFR SYF NUF SUF STATUSMASK[3:0]

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-45. Slot Status Counter Condition Register (SSCCR)

Table 25-51. SSSR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-52 Freescale Semiconductor

Table 25-53. SSCCR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector — This field selects one of the four internal slot counter condition registers for access.
00 Select SSCCR0.
01 Select SSCCR1.
10 Select SSCCR2.
11 Select SSCCR3.

CNTCFG Counter Configuration — These bit field controls the channel related incrementing of the slot status counter.
00 Increment by 1 if condition is fulfilled on channel A.
01 Increment by 1 if condition is fulfilled on channel B.
10 Increment by 1 if condition is fulfilled on at least one channel.
11 Increment by 2 if condition is fulfilled on both channels. Increment by 1 if condition is fulfilled on only one

channel.

MCY Multi Cycle Selection — This bit defines whether the slot status counter accumulates over multiple
communication cycles or provides information for the previous communication cycle only.
0 The Slot Status Counter provides information for the previous communication cycle only.
1 The Slot Status Counter accumulates over multiple communication cycles.

VFR Valid Frame Restriction — This bit is used to restrict the counter to received valid frames.
0 The counter is not restricted to valid frames only.
1 The counter is restricted to valid frames only.

SYF Sync Frame Restriction — This bit is used to restrict the counter to received frames with the sync frame
indicator bit set to 1.
0 The counter is not restricted with respect to the sync frame indicator bit.
1 The counter is restricted to frames with the sync frame indicator bit set to 1.

NUF Null Frame Restriction — This bit is used to restrict the counter to received frames with the null frame
indicator bit set to 0.
0 The counter is not restricted with respect to the null frame indicator bit.
1 The counter is restricted to frames with the null frame indicator bit set to 0.

SUF Startup Frame Restriction — This bit is used to restrict the counter to received frames with the startup frame
indicator bit set to 1.
0 The counter is not restricted with respect to the startup frame indicator bit.
1 The counter is restricted to received frames with the startup frame indicator bit set to 1.

STATUS
MASK[3:0]

Slot Status Mask — This bit field is used to enable the counter with respect to the four slot status error
indicator bits.

STATUSMASK[3] – This bit enables the counting for slots with the syntax error indicator bit set to 1.
STATUSMASK[2] – This bit enables the counting for slots with the content error indicator bit set to 1.

STATUSMASK[1] – This bit enables the counting for slots with the boundary violation indicator bit set to 1.

STATUSMASK[0] – This bit enables the counting for slots with the transmission conflict indicator bit set to 1.

Table 25-54. Mapping between internal SSCCRn and SSCRn

Condition Register Condition Defined for Register

SSCCR0 SSCR0

SSCCR1 SSCR1

SSCCR2 SSCR2

SSCCR3 SSCR3

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-53

25.5.2.46 Slot Status Registers (SSR0–SSR7)

Each of these eight registers holds the status vector of the slot specified in the corresponding internal slot
status selection register, which can be programmed using the Slot Status Selection Register (SSSR). Each
register is updated after the end of the corresponding slot as shown in Figure 25-148. The register bits are
directly related to the protocol variables and described in more detail in Section 25.6.18, “Slot Status
Monitoring.”

Base + 0x0068 (SSR0)

Base + 0x006A (SSR1)

Base + 0x006C (SSR2)
Base + 0x006E (SSR3)

Base + 0x0070 (SSR4)

Base + 0x0072 (SSR5)

Base + 0x0074 (SSR6)
Base + 0x0076 (SSR7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-46. Slot Status Registers (SSR0–SSR7)

Table 25-55. SSR0–SSR7 Field Descriptions

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0.
1 vSS!TxConflict = 1.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-54 Freescale Semiconductor

25.5.2.47 Slot Status Counter Registers (SSCR0–SSCR3)

Each of these four registers provides the slot status counter value for the previous communication cycle(s)
and is updated at the cycle start. The provided value depends on the control bits and fields in the related
internal slot status counter condition register SSCCRn, which can be programmed by using the Slot Status
Counter Condition Register (SSCCR). For more details, see Section 25.6.18.4, “Slot Status Counter
Registers.”

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0.
1 vSS!TxConflict = 1.

Base + 0x0078 (SSCR0)

Base + 0x007A (SSCR1)

Base + 0x007C (SSCR2)
Base + 0x007E (SSCR3)

Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLOTSTATUSCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-47. Slot Status Counter Registers (SSCR0–SSCR3)

Table 25-55. SSR0–SSR7 Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-55

NOTE
If the counter has reached its maximum value 0xFFFF and is in the
multicycle mode (SSCCRn[MCY] = 1), the counter is not reset to 0x0000.
The application can reset the counter by clearing the SSCCRn[MCY] bit
and waiting for the next cycle start, when the controller clears the counter.
Subsequently, the counter can be set into the multicycle mode again.

25.5.2.48 MTS A Configuration Register (MTSACFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel A. For more
details, see Section 25.6.13, “MTS Generation.”

25.5.2.49 MTS B Configuration Register (MTSBCFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel B. For more
details, see Section 25.6.13, “MTS Generation.”

Table 25-56. SSCR0–SSCR3 Field Descriptions

Field Description

SLOTSTATUSCNT Slot Status Counter — This field provides the current value of the Slot Status Counter.

Base + 0x0080 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-48. MTS A Configuration Register (MTSACFR)

Table 25-57. MTSACFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and disable the
transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled.
1 MTS transmission enabled.

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Base + 0x0082 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-49. MTS B Configuration Register (MTSBCFR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-56 Freescale Semiconductor

25.5.2.50 Receive Shadow Buffer Index Register (RSBIR)

This register is used to provide and retrieve the indices of the message buffer header fields currently
associated with the receive shadow buffers. For more details on the receive shadow buffer concept, refer
to Section 25.6.6.3.5, “Receive Shadow Buffers Concept.”

25.5.2.51 Receive FIFO System Memory Base Address Register (RFSYMBADR)

Table 25-58. MTSBCFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and disable the
transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled.
1 MTS transmission enabled.

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Base + 0x0084 16-bit write access required Write: WMD, SEL: Any Time
RSBIDX: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0 0 0 0
RSBIDX

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-50. Receive Shadow Buffer Index Register (RSBIR)

Table 25-59. RSBIR Field Descriptions

Field Description

WMD Write Mode — This bit controls the write mode for this register.
0 update SEL and RSBIDX field on register write
1 update only SEL field on register write

SEL Selector — This field is used to select the internal receive shadow buffer index register for access.
00 RSBIR_A1 — Receive shadow buffer index register for channel A, segment 1.
01 RSBIR_A2 — Receive shadow buffer index register for channel A, segment 2.
10 RSBIR_B1 — Receive shadow buffer index register for channel B, segment 1.
11 RSBIR_B2 — Receive shadow buffer index register for channel B, segment 2.

RSBIDX Receive Shadow Buffer Index — This field contains the current index of the message buffer header field of the
receive shadow message buffer selected by the SEL field. The controller uses this index to determine the
physical location of the shadow buffer header field in the FlexRay memory. The controller will update this field
during receive operation.The application provides initial message buffer header index value in the configuration
phase.
controller: Updates the message buffer header index after successful reception.

Application: Provides initial message buffer header index.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-57

These registers define the system memory base address for the receive FIFO if the FIFO address mode bit
MCR[FAM] is set to 1. The system memory base address is used by the BMIF to calculate the physical
memory address for system memory accesses for the FIFOs.

25.5.2.52 Receive FIFO Periodic Timer Register (RFPTR)

This register holds periodic timer duration for the periodic FIFO timer. The periodic timer applies to both
FIFOs (see Section 25.6.9.3, “FIFO Periodic Timer”).

Base + 0x00E8 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-51. Receive FIFO System Memory Base Address High Register (RFSYMBADHR)

Base + 0x00EA Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-52. Receive FIFO System Memory Base Address Low Register (RFSYMBADLR)

Table 25-60. RFSYMBADR Field Descriptions

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the receive FIFO
if the FIFO address mode bit MCR[FAM] is set to 1. It is defines as a byte address.

Base + 0x00EC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
PTD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-53. Receive FIFO Periodic Timer Register (RFPTR)

Table 25-61. RFPTIR Field Descriptions

Field Description

PTD Periodic Timer Duration — This value defines the periodic timer duration in terms of macroticks.
0000 Timer stays expired.
3FFF Timer never expires.
other Timer expires after specified number of macroticks, expires and is restarted at each cycle start.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-58 Freescale Semiconductor

25.5.2.53 Receive FIFO Watermark and Selection Register (RFWMSR)

This register is used to

• select a receiver FIFO for subsequent programming access through the receiver FIFO
configuration registers summarized in Table 25-62.

• to define the watermark for the selected FIFO.

25.5.2.54 Receive FIFO Start Index Register (RFSIR)

This register defines the message buffer header index of the first message buffer of the selected FIFO.

Base + 0x0086 Write: WMA/WMB: POC:config, SEL: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WMA//WMB

0 0 0 0 0 0 0
SEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-54. Receive FIFO Watermark and Selection Register (RFWMSR)

Table 25-62. SEL Controlled Receiver FIFO Registers

Register

Receive FIFO Start Index Register (RFSIR)

Receive FIFO Depth and Size Register (RFDSR)

Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

Receive FIFO Range Filter Configuration Register (RFRFCFR)

Receive FIFO Range Filter Control Register (RFRFCTR)

Table 25-63. RFSR Field Descriptions

Field Description

WMA
WMB

Watermark — This field defines the watermark value for the selected FIFO. This value is used to control the
generation of the almost full interrupt flags.

SEL Select — This control bit selects the receiver FIFO for subsequent programming.
0 Receiver FIFO for channel A selected.
1 Receiver FIFO for channel B selected.

Base + 0x0088 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SIDXA/SIDXBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-55. Receive FIFO Start Index Register (RFSIR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-59

25.5.2.55 Receive FIFO Depth and Size Register (RFDSR)

This register defines the structure of the selected FIFO, i.e.,the number of entries and the size of each entry.

25.5.2.56 Receive FIFO A Read Index Register (RFARIR)

This register provides the message buffer header index of the next available FIFO A entry that the
application can read.

Table 25-64. RFSIR Field Descriptions

Field Description

SIDXA
SIDXB

Start Index — This field defines the number of the message buffer header field of the first message buffer of the
selected FIFO. The controller uses the value of the SIDX field to determine the physical location of the receiver
FIFO’s first message buffer header field.

Base + 0x008A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FIFO_DEPTHA/FIFO_DEPTHB

0
ENTRY_SIZEA/ENTRY_SIZEBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-56. Receive FIFO Depth and Size Register (RFDSR)

Table 25-65. RFDSR Field Descriptions

Field Description

FIFO_DEPTHA
FIFO_DEPTHB

FIFO Depth — This field defines the depth of the selected FIFO, i.e.,the number of entries.

ENTRY_SIZEA
ENTRY_SIZEB

Entry Size — This field defines the size of the frame data sections for the selected FIFO in 2 byte entities.

Base + 0x008C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-57. Receive FIFO A Read Index Register (RFARIR)

Table 25-66. RFARIR Field Descriptions

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO message buffer
that the application can read.

If the old style FIFO mode is configured (MCR.FIMD = 0), the controller updates this index by 1 entry, when the
application writes to the FAFAIF flag in the Global Interrupt Flag and Enable Register (GIFER).

If the new style FIFO mode is configured (MCR.FIMD = 1), the controller updates this index by PCA entries,
when the application writes to the Receive FIFO Fill Level and POP Count Register (RFFLPCR).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-60 Freescale Semiconductor

NOTE
If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

25.5.2.57 Receive FIFO B Read Index Register (RFBRIR)

This register provides the message buffer header index of the next available FIFO B entry that the
application can read.

NOTE
If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

25.5.2.58 Receive FIFO Fill Level and POP Count Register (RFFLPCR)

This register provides the current fill level of the two receiver FIFOs and is used to pop a number of entries
from the FIFOs.

Base + 0x008E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-58. Receive FIFO B Read Index Register (RFBRIR)

Table 25-67. RFBRIR Field Descriptions

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO message buffer
that the application can read.

Base + 0x00EE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FLB FLA

W PCB PCA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-59. Receive FIFO Fill Level and POP Count Register (RFFLPCR)

Table 25-68. RFFLPCR Field Descriptions

Field Description

FLB Fill Level FIFO B — This field provides the current number of entries in the FIFO B.

FLA Fill Level FIFO A— This field provides the current number of entries in the FIFO A.

PCB Pop Count FIFO B — This field defines the number of entries to be removed from FIFO B.

PCA Pop Count FIFO A— This field defines the number of entries to be removed from FIFO A.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-61

NOTE
If the pop count value PCA/PCB is greater than the current FIFO fill level
FLB/FLA, than the FIFO is empty after the update. No notification is given
that not the required number of entries was removed.

25.5.2.59 Receive FIFO Message ID Acceptance Filter Value Register
(RFMIDAFVR)

This register defines the filter value for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 25.6.9.9, “FIFO Filtering.”

25.5.2.60 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

This register defines the filter mask for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 25.6.9.9, “FIFO Filtering.”

Base + 0x0090 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFVALA/MIDAFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-60. Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

Table 25-69. RFMIDAFVR Field Descriptions

Field Description

MIDAFVALA
MIDAFVALB

Message ID Acceptance Filter Value — Filter value for the message ID acceptance filter.

Base + 0x0092 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFMSKA/MIDAFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-61. Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

Table 25-70. RFMIAFMR Field Descriptions

Field Description

MIDAFMSKA
MIDAFMSKB

Message ID Acceptance Filter Mask — Filter mask for the message ID acceptance filter.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-62 Freescale Semiconductor

25.5.2.61 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

This register defines the filter value for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 25.6.9.9, “FIFO Filtering.”

25.5.2.62 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

This register defines the filter mask for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 25.6.9.9, “FIFO Filtering.”

25.5.2.63 Receive FIFO Range Filter Configuration Register (RFRFCFR)

This register provides access to the four internal frame ID range filter boundary registers of the selected
FIFO. For details on frame ID range filter see Section 25.6.9.9, “FIFO Filtering.”

Base + 0x0094 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFVALA/FIDRFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-62. Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

Table 25-71. RFFIDRFVR Field Descriptions

Field Description

FIDRFVALA
FIDRFVALB

Frame ID Rejection Filter Value — Filter value for the frame ID rejection filter.

Base + 0x0096 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFMSKA/FIDRFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-63. Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

Table 25-72. RFFIDRFMR Field Descriptions

Field Description

FIDRFMSK Frame ID Rejection Filter Mask — Filter mask for the frame ID rejection filter.

Base + 0x0098 16-bit write access required Write: WMD, IBD, SEL: Any Time
SID: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
IBD SEL

0
SIDA/SIDBW WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-64. Receive FIFO Range Filter Configuration Register (RFRFCFR)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-63

25.5.2.64 Receive FIFO Range Filter Control Register (RFRFCTR)

This register is used to enable and disable each frame ID range filter and to define whether it is running as
acceptance or rejection filter.

Table 25-73. RFRFCFR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL and IBD field only on write access.

IBD Interval Boundary — This control bit selects the interval boundary to be programmed with the SID value.
0 program lower interval boundary.
1 program upper interval boundary.

SEL Filter Selector — This control field selects the frame ID range filter to be accessed.
00 Select frame ID range filter 0.
01 Select frame ID range filter 1.
10 Select frame ID range filter 2.
11 Select frame ID range filter 3.

SIDA
SIDB

Slot ID — Defines the IBD-selected frame ID boundary value for the SEL-selected range filter.

Base + 0x009A Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
F3MD F2MD F1MD F0MD

0 0 0 0
F3EN F2EN F1EN F0EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-65. Receive FIFO Range Filter Control Register (RFRFCTR)

Table 25-74. RFRFCTR Field Descriptions

Field Description

F3MD Range Filter 3 Mode — This control bit defines the filter mode of the frame ID range filter 3.
0 Range filter 3 runs as acceptance filter.
1 Range filter 3 runs as rejection filter.

F2MD Range Filter 2 Mode — This control bit defines the filter mode of the frame ID range filter 2.
0 Range filter 2 runs as acceptance filter.
1 Range filter 2 runs as rejection filter.

F1MD Range Filter 1 Mode — This control bit defines the filter mode of the frame ID range filter 1.
0 Range filter 1 runs as acceptance filter.
1 Range filter 1 runs as rejection filter.

F0MD Range Filter 0 Mode — This control bit defines the filter mode of the frame ID range filter 0.
0 Range filter 0 runs as acceptance filter.
1 Range filter 0 runs as rejection filter.

F3EN Range Filter 3 Enable — This control bit is used to enable and disable the frame ID range filter 3.
0 Range filter 3 disabled.
1 Range filter 3 enabled.

F2EN Range Filter 2 Enable — This control bit is used to enable and disable the frame ID range filter 2.
0 Range filter 2 disabled.
1 Range filter 2 enabled.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-64 Freescale Semiconductor

25.5.2.65 Last Dynamic Transmit Slot Channel A Register (LDTXSLAR)

This register provides the number of the last transmission slot in the dynamic segment for channel A. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

25.5.2.66 Last Dynamic Transmit Slot Channel B Register (LDTXSLBR)

This register provides the number of the last transmission slot in the dynamic segment for channel B. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

F1EN Range Filter 1 Enable — This control bit is used to enable and disable the frame ID range filter 1.
0 Range filter 1 disabled.
1 Range filter 1 enabled.

F0EN Range Filter 0 Enable — This control bit is used to enable and disable the frame ID range filter 0.
0 Range filter 0 disabled.
1 Range filter 0 enabled.

Base + 0x009C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-66. Last Dynamic Slot Channel A Register (LDTXSLAR)

Table 25-75. LDTXSLAR Field Descriptions

Field Description

LASTDYNTX
SLOTA

Last Dynamic Transmission Slot Channel A — protocol related variable: zLastDynTxSlot channel A
Number of the last transmission slot in the dynamic segment for channel A. If no frame was transmitted during
the dynamic segment on channel A, the value of this field is set to 0.

Base + 0x009E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-67. Last Dynamic Slot Channel B Register (LDTXSLBR)

Table 25-76. LDTXSLBR Field Descriptions

Field Description

LASTDYNTX
SLOTB

Last Dynamic Transmission Slot Channel B — protocol related variable: zLastDynTxSlot channel B
Number of the last transmission slot in the dynamic segment for channel B. If no frame was transmitted during
the dynamic segment on channel B the value of this field is set to 0.

Table 25-74. RFRFCTR Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-65

25.5.2.67 Protocol Configuration Registers

The following configuration registers provide the necessary configuration information to the protocol
engine. The individual values in the registers are described in Table 25-77. For more details about the
FlexRay related configuration parameters and the allowed parameter ranges, see FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

Table 25-77. Protocol Configuration Register Fields

Name Description1 Min Max Unit PCR

coldstart_attempts gColdstartAttempts number 3

action_point_offset gdActionPointOffset - 1 MT 0

cas_rx_low_max gdCASRxLowMax - 1 gdBit 4

dynamic_slot_idle_phase gdDynamicSlotIdlePhase minislot 28

minislot_action_point_offset gdMinislotActionPointOffset - 1 MT 3

minislot_after_action_point gdMinislot - gdMinislotActionPointOffset - 1 MT 2

static_slot_length gdStaticSlot MT 0

static_slot_after_action_point gdStaticSlot - gdActionPointOffset - 1 MT 13

symbol_window_exists gdSymbolWindow!=0 0 1 bool 9

symbol_window_after_action_point gdSymbolWindow - gdActionPointOffset - 1 MT 6

tss_transmitter gdTSSTransmitter gdBit 5

wakeup_symbol_rx_idle gdWakeupSymbolRxIdle gdBit 5

wakeup_symbol_rx_low gdWakeupSymbolRxLow gdBit 3

wakeup_symbol_rx_window gdWakeupSymbolRxWindow gdBit 4

wakeup_symbol_tx_idle gdWakeupSymbolTxIdle gdBit 8

wakeup_symbol_tx_low gdWakeupSymbolTxLow gdBit 5

noise_listen_timeout (gListenNoise * pdListenTimeout) - 1 T 16/17

macro_initial_offset_a pMacroInitialOffset[A] MT 6

macro_initial_offset_b pMacroInitialOffset[B] MT 16

macro_per_cycle gMacroPerCycle MT 10

macro_after_first_static_slot gMacroPerCycle - gdStaticSlot MT 1

macro_after_offset_correction gMacroPerCycle - gOffsetCorrectionStart MT 28

max_without_clock_correction_fatal gMaxWithoutClockCorrectionFatal cyclepairs 8

max_without_clock_correction_passive gMaxWithoutClockCorrectionPassive cyclepairs 8

minislot_exists gNumberOfMinislots!=0 0 1 bool 9

minislots_max gNumberOfMinislots - 1 minislot 29

number_of_static_slots gNumberOfStaticSlots static slot 2

offset_correction_start gOffsetCorrectionStart MT 11

payload_length_static gPayloadLengthStatic 2-bytes 19

max_payload_length_dynamic pPayloadLengthDynMax 2-bytes 24

first_minislot_action_point_offset max(gdActionPointOffset,
gdMinislotActionPointOffset) - 1

MT 13

allow_halt_due_to_clock pAllowHaltDueToClock bool 26

allow_passive_to_active pAllowPassiveToActive cyclepairs 12

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-66 Freescale Semiconductor

cluster_drift_damping pClusterDriftDamping T 24

comp_accepted_startup_range_a pdAcceptedStartupRange -
pDelayCompensation[A]

T 22

comp_accepted_startup_range_b pdAcceptedStartupRange -
pDelayCompensation[B]

T 26

listen_timeout pdListenTimeout - 1 T 14/15

key_slot_id pKeySlotId number 18

key_slot_used_for_startup pKeySlotUsedForStartup bool 11

key_slot_used_for_sync pKeySlotUsedForSync bool 11

latest_tx gNumberOfMinislots - pLatestTx minislot 21

sync_node_max gSyncNodeMax number 30

micro_initial_offset_a pMicroInitialOffset[A] T 20

micro_initial_offset_b pMicroInitialOffset[B] T 20

micro_per_cycle pMicroPerCycle T 22/23

micro_per_cycle_min pMicroPerCycle - pdMaxDrift T 24/25

micro_per_cycle_max pMicroPerCycle + pdMaxDrift T 26/27

micro_per_macro_nom_half round(pMicroPerMacroNom / 2) T 7

offset_correction_out pOffsetCorrectionOut T 9

rate_correction_out pRateCorrectionOut T 14

single_slot_enabled pSingleSlotEnabled bool 10

wakeup_channel pWakeupChannel see Table 25-78 10

wakeup_pattern pWakeupPattern number 18

decoding_correction_a pDecodingCorrection +
pDelayCompensation[A] + 2

T 19

decoding_correction_b pDecodingCorrection +
pDelayCompensation[B] + 2

T 7

key_slot_header_crc header CRC for key slot 0x000 0x7FF number 12

extern_offset_correction pExternOffsetCorrection T 29

extern_rate_correction pExternRateCorrection T 21
1 See FlexRay Communications System Protocol Specification, Version 2.1 Rev A for detailed protocol parameter definitions

Table 25-78. Wakeup Channel Selection

wakeup_channel Wakeup Channel

0 A

1 B

Table 25-77. Protocol Configuration Register Fields (continued)

Name Description1 Min Max Unit PCR

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-67

25.5.2.67.1 Protocol Configuration Register 0 (PCR0)

25.5.2.67.2 Protocol Configuration Register 1 (PCR1)

25.5.2.67.3 Protocol Configuration Register 2 (PCR2)

25.5.2.67.4 Protocol Configuration Register 3 (PCR3)

25.5.2.67.5 Protocol Configuration Register 4 (PCR4)

Base + 0x00A0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
action_point_offset static_slot_length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-68. Protocol Configuration Register 0 (PCR0)

Base + 0x00A2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
macro_after_first_static_slot

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-69. Protocol Configuration Register 1 (PCR1)

Base + 0x00A4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
minislot_after_action_point number_of_static_slots

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-70. Protocol Configuration Register 2 (PCR2)

Base + 0x00A6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_symbol_rx_low minislot_action_point_offset[4:0] coldstart_attempts

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-71. Protocol Configuration Register 3 (PCR3)

Base + 0x00A8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cas_rx_low_max wakeup_symbol_rx_window

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-72. Protocol Configuration Register 4 (PCR4)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-68 Freescale Semiconductor

25.5.2.67.6 Protocol Configuration Register 5 (PCR5)

25.5.2.67.7 Protocol Configuration Register 6 (PCR6)

25.5.2.67.8 Protocol Configuration Register 7 (PCR7)

25.5.2.67.9 Protocol Configuration Register 8 (PCR8)

25.5.2.67.10 Protocol Configuration Register 9 (PCR9)

Base + 0x00AA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
tss_transmitter wakeup_symbol_tx_low wakeup_symbol_rx_idle

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-73. Protocol Configuration Register 5 (PCR5)

Base + 0x00AC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
symbol_window_after_action_point macro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-74. Protocol Configuration Register 6 (PCR6)

Base + 0x00AE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_b micro_per_macro_nom_half

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-75. Protocol Configuration Register 7 (PCR7)

Base + 0x00B0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R max_without_clock_
correction_fatal

max_without_clock_
correction_passive

wakeup_symbol_tx_idle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-76. Protocol Configuration Register 8 (PCR8)

Base + 0x00B2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
mini
slot_
exists

sym
bol_
win

dow_
exists

offset_correction_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-77. Protocol Configuration Register 9 (PCR9)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-69

25.5.2.67.11 Protocol Configuration Register 10 (PCR10)

25.5.2.67.12 Protocol Configuration Register 11 (PCR11)

25.5.2.67.13 Protocol Configuration Register 12 (PCR12)

25.5.2.67.14 Protocol Configuration Register 13 (PCR13)

Base + 0x00B4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R single
_slot
_en

abled

wake
up_
chan
nel

macro_per_cycle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-78. Protocol Configuration Register 10 (PCR10)

Base + 0x00B6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R key_
slot_

used_
for_
start
up

key_
slot_

used_
for_
sync

offset_correction_start
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-79. Protocol Configuration Register 11 (PCR11)

Base + 0x00B8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
allow_passive_to_active key_slot_header_crc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-80. Protocol Configuration Register 12 (PCR12)

Base + 0x00BA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
first_minislot_action_point_offset static_slot_after_action_point

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-81. Protocol Configuration Register 13 (PCR13)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-70 Freescale Semiconductor

25.5.2.67.15 Protocol Configuration Register 14 (PCR14)

25.5.2.67.16 Protocol Configuration Register 15 (PCR15)

25.5.2.67.17 Protocol Configuration Register 16 (PCR16)

25.5.2.67.18 Protocol Configuration Register 17 (PCR17)

25.5.2.67.19 Protocol Configuration Register 18 (PCR18)

Base + 0x00BC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
rate_correction_out listen_timeout[20:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-82. Protocol Configuration Register 14 (PCR14)

Base + 0x00BE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-83. Protocol Configuration Register 15 (PCR15)

Base + 0x00C0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
macro_initial_offset_b noise_listen_timeout[24:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-84. Protocol Configuration Register 16 (PCR16)

Base + 0x00C2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
noise_listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-85. Protocol Configuration Register 17 (PCR17)

Base + 0x00C4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_pattern key_slot_id

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-86. Protocol Configuration Register 18 (PCR18)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-71

25.5.2.67.20 Protocol Configuration Register 19 (PCR19)

25.5.2.67.21 Protocol Configuration Register 20 (PCR20)

25.5.2.67.22 Protocol Configuration Register 21 (PCR21)

25.5.2.67.23 Protocol Configuration Register 22 (PCR22)

25.5.2.67.24 Protocol Configuration Register 23 (PCR23)

Base + 0x00C6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_a payload_length_static

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-87. Protocol Configuration Register 19 (PCR19)

Base + 0x00C8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_initial_offset_b micro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-88. Protocol Configuration Register 20 (PCR20)

Base + 0x00CA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_rate_
correction

latest_tx
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-89. Protocol Configuration Register 21 (PCR21)

Base + 0x00CC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* comp_accepted_startup_range_a micro_per_cycle[19:16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-90. Protocol Configuration Register 22 (PCR22)

Base + 0x00CE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-91. Protocol Configuration Register 23 (PCR23)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-72 Freescale Semiconductor

25.5.2.67.25 Protocol Configuration Register 24 (PCR24)

25.5.2.67.26 Protocol Configuration Register 25 (PCR25)

25.5.2.67.27 Protocol Configuration Register 26 (PCR26)

25.5.2.67.28 Protocol Configuration Register 27 (PCR27)

25.5.2.67.29 Protocol Configuration Register 28 (PCR28)

Base + 0x00D0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cluster_drift_damping max_payload_length_dynamic

micro_per_cycle_min
[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-92. Protocol Configuration Register 24 (PCR24)

Base + 0x00D2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_min[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-93. Protocol Configuration Register 25 (PCR25)

Base + 0x00D4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R allow
halt
due
to
clock

comp_accepted_startup_range_b
micro_per_cycle_max

[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-94. Protocol Configuration Register 26 (PCR26)

Base + 0x00D6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_max[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-95. Protocol Configuration Register 27 (PCR27)

Base + 0x00D8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R dynamic_slot
_idle_phase

macro_after_offset_correction
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-96. Protocol Configuration Register 28 (PCR28)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-73

25.5.2.67.30 Protocol Configuration Register 29 (PCR29)

25.5.2.67.31 Protocol Configuration Register 30 (PCR30)

25.5.2.68 Message Buffer Configuration, Control, Status Registers (MBCCSRn)

The content of these registers comprises message buffer configuration data, message buffer control data,
message buffer status information, and message buffer interrupt flags. A detailed description of all flags
can be found in Section 25.6.6, “Individual Message Buffer Functional Description.”

If the application writes 1 to the EDT bit, no write access to the other register bits is performed.

If the application writes 0 to the EDT bit and 1 to the LCKT bit, no write access to the other bits is
performed.

Base + 0x00DA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_offset_
correction

minislots_max
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-97. Protocol Configuration Register 29 (PCR29)

Base + 0x00DC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
sync_node_max

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-98. Protocol Configuration Register 30 (PCR30)

Base + 0x0100 (MBCCSR0)

Base + 0x0108 (MBCCSR1)

...
Base + 0x04F8 (MBCCSR127)

Write: MCM, MBT, MTD: POC:config or MB_DIS
CMT: MB_LCK or MB_DIS

EDT, LCKT, MBIE, MBIF: Normal Mode

Additional Reset: CMT, DUP, DVAL, MBIF: Message Buffer Disable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MCM MBT MTD

CMT 0 0
MBIE

0 0 0 DUP DVAL EDS LCKS MBIF

W rwm EDT LCKT w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 25-99. Message Buffer Configuration, Control, Status Registers (MBCCSRn)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-74 Freescale Semiconductor

Table 25-79. MBCCSRn Field Descriptions

Field Description

Message Buffer Configuration

MCM Message Buffer Commit Mode — This bit configures the commit mode of a double buffered message buffer.
0 Streaming commit mode.

1 Immediate commit mode.

MBT Message Buffer Type — This bit configures the buffering type of a transmit message buffer.
0 Single buffered message buffer.
1 Double buffered message buffer.

MTD Message Buffer Transfer Direction — This bit configures the transfer direction of a message buffer.
0 Receive message buffer.
1 Transmit message buffer.

Message Buffer Control

CMT Commit for Transmission — This bit indicates if the transmit message buffer data are ready for transmission.
0 Message buffer data not ready for transmission.
1 Message buffer data ready for transmission.

EDT Enable/Disable Trigger — If the application writes 1 to this bit, a message buffer enable or disable is triggered,
depending on the current value EDS status bit is 0.
0 No effect.
1 Message buffer enable or disable is triggered.

LCKT Lock/Unlock Trigger — If the application writes 1 to this bit, a message buffer lock or unlock is triggered,
depending on the current value of the LCKS status bit.
0 No effect.
1 Message buffer lock or unlock is triggered.

MBIE Message Buffer Interrupt Enable — This control bit defines whether the message buffer will generate an
interrupt request when its MBIF flag is set.
0 Interrupt request generation disabled.
1 Interrupt request generation enabled.

Message Buffer Status

DUP Data Updated — This status bit indicates whether the frame header in the message buffer header field and the
data in the message buffer data field were updated after a frame reception.
0 Frame Header and Message buffer data field not updated.
1 Frame Header and Message buffer data field updated.

DVAL Data Valid — For receive message buffers this status bit indicates whether the message buffer data field
contains valid frame data. For transmit message buffers the status bit indicates if a message is transferred again
due to the state transmission mode of the message buffer.
0 receive message buffer contains no valid frame data / message is transmitted for the first time.
1 receive message buffer contains valid frame data / message will be transferred again.

EDS Enable/Disable Status — This status bit indicates whether the message buffer is enabled or disabled.
0 Message buffer is disabled.
1 Message buffer is enabled.

LCKS Lock Status — This status bit indicates the current lock status of the message buffer.
0 Message buffer is not locked by the application.
1 Message buffer is locked by the application.

MBIF Message Buffer Interrupt Flag — This flag is set when the slot status field of the message buffer was updated
after frame transmission or reception, or when a transmit message buffer was just enabled by the application.
0 No such event.
1 Slot status field updated or transmit message buffer just enabled.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-75

25.5.2.69 Message Buffer Cycle Counter Filter Registers (MBCCFRn)

This register contains message buffer configuration data for the transmission mode, the channel
assignment, and for the cycle counter filtering. For detailed information on cycle counter filtering, refer to
Section 25.6.7.1, “Message Buffer Cycle Counter Filtering.”

.

Base + 0x0102 (MBCCFR0)

Base + 0x010A (MBCCFR1)

...
Base + 0x04FA (MBCCFR127)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTM CHA CHB CCFE CCFMSK CCFVAL

W

Reset - - - - - - - - - - - - - - - -

Figure 25-100. Message Buffer Cycle Counter Filter Registers (MBCCFRn)

Table 25-80. MBCCFRn Field Descriptions

Field Description

MTM Message Buffer Transmission Mode — This control bit applies only to transmit message buffers and defines
the transmission mode.
0 Event transmission mode.
1 State transmission mode.

CHA
CHB

Channel Assignment — These control bits define the channel assignment and control the receive and transmit
behavior of the message buffer according to Table 25-81.

CCFE Cycle Counter Filtering Enable — This control bit is used to enable and disable the cycle counter filtering.
0 Cycle counter filtering disabled.
1 Cycle counter filtering enabled.

CCFMSK Cycle Counter Filtering Mask — This field defines the filter mask for the cycle counter filtering.

CCFVAL Cycle Counter Filtering Value — This field defines the filter value for the cycle counter filtering.

Table 25-81. Channel Assignment Description

CHA CHB
Transmit Message Buffer Receive Message Buffer

static segment dynamic segment static segment dynamic segment

1 1 transmit on both channel A
and channel B

transmit on channel A only store first valid frame
received on either
channel A or channel B

store first valid frame
received on channel A,

ignore channel B

0 1 transmit on channel B transmit on channel B store first valid frame
received on channel B

store first valid frame
received on channel B

1 0 transmit on channel A transmit on channel A store first valid frame
received on channel A

store first valid frame
received on channel A

0 0 no frame transmission no frame transmission no frame stored no frame stored

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-76 Freescale Semiconductor

NOTE
If at least one message buffer assigned to a certain slot is assigned to both
channels, then all message buffers assigned to this slot have to be assigned
to both channels. Otherwise, the message buffer configuration is illegal and
the result of the message buffer search is not defined.

25.5.2.70 Message Buffer Frame ID Registers (MBFIDRn)

25.5.2.71 Message Buffer Index Registers (MBIDXRn)

Base + 0x0104 (MBFIDR0)

Base + 0x010C (MBFIDR1)
...

Base + 0x04FC (MBFIDR127)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FID

W

Reset 0 0 0 0 0 - - - - - - - - - - -

Figure 25-101. Message Buffer Frame ID Registers (MBFIDRn)

Table 25-82. MBFIDRn Field Descriptions

Field Description

FID Frame ID — The semantic of this field depends on the message buffer transfer type.
 • Receive Message Buffer: This field is used as a filter value to determine if the message buffer is used for

reception of a message received in a slot with the slot ID equal to FID.
 • Transmit Message Buffer: This field is used to determine the slot in which the message in this message buffer

should be transmitted.

Base + 0x0106 (MBIDXR0)

Base + 0x010E (MBIDXR1)
...

Base + 0x04FE (MBIDXR127)

Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
MBIDX

W

Reset 0 0 0 0 0 0 0 0 - - - - - - - -

Figure 25-102. Message Buffer Index Registers (MBIDXRn)

Table 25-83. MBIDXRn Field Descriptions

Field Description

MBIDX Message Buffer Index — This field provides the index of the message buffer header field of the physical
message buffer that is currently associated with this message buffer.
The application writes the index of the initially associated message buffer header field into this register. The
controller updates this register after frame reception or transmission.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-77

NOTE
If a message buffer is assigned to the last slot in a FlexyRay communication
cycle and a system memory access timeout or illegal address access occurs
during the system memory access in this slot, it is possible that for all future
communication required:

• No slot status information will be written,

• The message buffer status will not be updated, and

• No message frames will be received. If this happens, several message
buffers can never be locked by the application.

However, if this occurs, either the System Bus Communication Failure
Error Flag (SBCF_EF) or the Illegal System Bus Address Error Flag
(ILSA_EF) will be set in the Controller Host Interface Error Flag Register
(CHIERFR).

The FlexRay module and the system memory subsystem should be
configured to avoid the occurrence of system memory access timeouts and
illegal address accesses. In case, one of the error flags
CHIERFR[SBCF_EF] or CHIERFR[ILSA_EF] is set, the application
should stop the FlexRay controller via a FREEZE or HALT command and
subsequently restart the controller.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-78 Freescale Semiconductor

25.6 Functional Description
This section provides a detailed description of the functionality implemented in the controller.

25.6.1 Message Buffer Concept

The controller uses a data structure called message buffer to store frame data, configuration, control, and
status data. Each message buffer consists of two parts, the message buffer control data and the physical
message buffer. The message buffer control data are located in dedicated registers. The structure of the
message buffer control data depends on the message buffer type and is described in Section 25.6.3,
“Message Buffer Types.” The physical message buffer is located in the FlexRay memory and is described
in Section 25.6.2, “Physical Message Buffer.”

25.6.2 Physical Message Buffer

All FlexRay messages and related frame and slot status information of received frames and of frames to
be transmitted to the FlexRay bus are stored in data structures called physical message buffers. The
physical message buffers are located in the FlexRay memory.The structure of a physical message buffer is
depicted in Figure 25-103.

A physical message buffer consists of two fields, the message buffer header field and the message buffer
data field. The message buffer header field contains the frame header, the data field offset, and the slot
status.The message buffer data field contains the frame data.

The connection between the two fields is established by the data field offset.

Figure 25-103. Physical Message Buffer Structure

25.6.2.1 Message Buffer Header Field

The message buffer header field is a contiguous region in the FlexRay memory and occupies ten bytes. It
contains the frame header, the data field offset, and the slot status. Its structure is shown in Figure 25-103.
The physical start address SADR_MBHF of the message buffer header field must be 16-bit aligned.

25.6.2.1.1 Frame Header

The frame header occupies the first six bytes in the message buffer header field. It contains all FlexRay
frame header related information according to the FlexRay Communications System Protocol

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-79

Specification, Version 2.1 Rev A. A detailed description of the usage and the content of the frame header
is provided in Section 25.6.5.2.1, “Frame Header Description.”

25.6.2.1.2 Data Field Offset

The data field offset follows the frame header in the message buffer data field and occupies two bytes. It
contains the offset of the corresponding message buffer data field with respect to the controller FlexRay
memory base address as provided by SMBA field in the System Memory Base Address Register
(SYMBADR). The data field offset is used to determine the start address SADR_MBDF of the corresponding
message buffer data field in the FlexRay memory according to Equation 25-2.

SADR_MBDF = [Data Field Offset] + SMBA Eqn. 25-2

25.6.2.1.3 Slot Status

The slot status occupies the last two bytes of the message buffer header field. It provides the slot and frame
status related information according to the FlexRay Communications System Protocol Specification,
Version 2.1 Rev A. A detailed description of the content and usage of the slot status is provided in
Section 25.6.5.2.3, “Slot Status Description.”

25.6.2.2 Message Buffer Data Field

The message buffer data field is a contiguous area of 2-byte entities. This field contains the frame payload
data, or a part of it, of the frame to be transmitted to or received from the FlexRay bus. The minimum
length of this field depends on the specific message buffer configuration and is specified in the message
buffer descriptions given in Section 25.6.3, “Message Buffer Types.”

25.6.3 Message Buffer Types

The controller provides three different types of message buffers.

• Individual Message Buffers

• Receive Shadow Buffers

• Receive FIFO Buffers

For each message buffer type the structure of the physical message buffer is identical. The message buffer
types differ only in the structure and content of message buffer control data, which control the related
physical message buffer. The message buffer control data are described in the following sections.

25.6.3.1 Individual Message Buffers

The individual message buffers are used for all types of frame transmission and for dedicated frame
reception based on individual filter settings for each message buffer. The controller supports three types
of individual message buffers, which are described in Section 25.6.6, “Individual Message Buffer
Functional Description.”

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-80 Freescale Semiconductor

Each individual message buffer consists of two parts, the physical message buffer, which is located in the
FlexRay memory, and the message buffer control data, which are located in dedicated registers. The
structure of an individual message buffer is given in Figure 25-104.

Each individual message buffer has a message buffer number n assigned, which determines the set of
message buffer control registers associated to this individual message buffer. The individual message
buffer with message buffer number n is controlled by the registers MBCCSRn, MBCCFRn, MBFIDRn,
and MBIDXRn.

The connection between the message buffer control registers and the physical message buffer is
established by the message buffer index field MBIDX in the Message Buffer Index Registers (MBIDXRn).
The start address SADR_MBHF of the related message buffer header field in the FlexRay memory is
determined according to Equation 25-3.

SADR_MBHF = (MBIDXRn[MBIDX] * 10) + SMBA Eqn. 25-3

Figure 25-104. Individual Message Buffer Structure

25.6.3.1.1 Individual Message Buffer Segments

The set of the individual message buffers can be split up into two message buffer segments using the
Message Buffer Segment Size and Utilization Register (MBSSUTR). All individual message buffers with
a message buffer number n < MBSSUTR[LAST_MB_SEG1] belong to the first message buffer segment.
All individual message buffers with a message buffer number n > MBSSUTR[LAST_MB_SEG1] belong
to the second message buffer segment. The following rules apply to the length of the message buffer data
field:

• all physical message buffers associated to individual message buffers that belong to the same
message buffer segment must have message buffer data fields of the same length

• the minimum length of the message buffer data field for individual message buffers in the first
message buffer segment is 2 * MBDSR[MBSEG1DS] bytes

• the minimum length of the message buffer data field for individual message buffers assigned to the
second segment is 2 * MBDSR[MBSEG2DS] bytes.

MBFIDRn

Message Buffer Control Registers

MBCCSRn MBCCFRn MBIDXRn

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-81

25.6.3.2 Receive Shadow Buffers

The receive shadow buffers are required for the frame reception process for individual message buffers.
The controller provides four receive shadow buffers, one receive shadow buffer per channel and per
message buffer segment.

Each receive shadow buffer consists of two parts, the physical message buffer located in the FlexRay
memory and the receive shadow buffer control registers located in dedicated registers. The structure of a
receive shadow buffer is shown in Figure 25-105. The four internal shadow buffer control registers can be
accessed by the Receive Shadow Buffer Index Register (RSBIR).

The connection between the receive shadow buffer control register and the physical message buffer for the
selected receive shadow buffer is established by the receive shadow buffer index field RSBIDX in the
Receive Shadow Buffer Index Register (RSBIR). The start address SADR_MBHF of the related message
buffer header field in the FlexRay memory is determined according to Equation 25-4.

SADR_MBHF = (RSBIR[RSBIDX] * 10) + SMBA Eqn. 25-4

The length required for the message buffer data field depends on the message buffer segment that the
receive shadow buffer is assigned to. For the receive shadow buffers assigned to the first message buffer
segment, the length must be the same as for the individual message buffers assigned to the first message
buffer segment. For the receive shadow buffers assigned to the second message buffer segment, the length
must be the same as for the individual message buffers assigned to the second message buffer segment.
The receive shadow buffer assignment is described in Receive Shadow Buffer Index Register (RSBIR).

Figure 25-105. Receive Shadow Buffer Structure

25.6.3.3 Receive FIFO

The receive FIFO implements a frame reception system based on the FIFO concept. The controller
provides two independent receive FIFOs, one per channel.

RSBIDX[3]
RSBIDX[2]

RSBIDX[1]
RSBIDX[0]

Receive Shadow Buffer Control Register

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-82 Freescale Semiconductor

A receive FIFO consists of a set of physical message buffers in the FlexRay memory and a set of receive
FIFO control registers located in dedicated registers. The structure of a receive FIFO is given in
Figure 25-106.

The connection between the receive FIFO control registers and the set of physical message buffers is
established by the Receive FIFO Start Index Register (RFSIR), the Receive FIFO Depth and Size Register
(RFDSR), and the Receive FIFO A Read Index Register (RFARIR) / Receive FIFO B Read Index Register
(RFBRIR). The system memory base address SMBA is defined by the system memory base address
register selected by the FIFO address mode bit MCR[FAM].

The start byte address SADR_MBHF[1] of the first message buffer header field that belongs to the receive
FIFO in the FlexRay memory is determined according to Equation 25-5.

SADR_MBHF[1] = (10 * RFSIR[SIDX]) + SMBA Eqn. 25-5

The start byte address SADR_MBHF[n] of the last message buffer header field that belongs to the receive
FIFO in the FlexRay memory is determined according to Equation 25-6.

SADR_MBHF[n] = (10 * (RFSIR[SIDX] + RFDSR[FIFO_DEPTH])) + SMBA Eqn. 25-6

NOTE
All message buffer header fields assigned to a receive FIFO must be a
contiguous region.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-83

Figure 25-106. Receive FIFO Structure

25.6.3.4 Message Buffer Configuration and Control Data

This section describes the configuration and control data for each message buffer type.

25.6.3.4.1 Individual Message Buffer Configuration Data

Before an individual message buffer can be used for transmission or reception, it must be configured.
There is a set of common configuration parameters that applies to all individual message buffers and a set
of configuration parameters that applies to each message buffer individually.

Common Configuration Data

The set of common configuration data for individual message buffers is located in the following registers.

• Message Buffer Data Size Register (MBDSR)
The MBSEG2DS and MBSEG1DS fields define the minimum length of the message buffer data
field with respect to the message buffer segment.

• Message Buffer Segment Size and Utilization Register (MBSSUTR)
The LAST_MB_SEG1 and LAST_MB_UTIL fields define the segmentation of the individual

RFBRIRRFDSR[B] RFSIR[B]
RFARIRRFDSR[A] RFSIR[A]

Frame Header[1] Slot Status[1]Data Field Offset[1]

Receive FIFO Control Register

Message Buffer Header Fields

Message Buffer Data Fields

Frame Header[n] Slot Status[n]Data Field Offset[n]

(min) RFDSR[ENTRY_SIZE] * 2 bytes

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

+

Frame Header[i] Slot Status[i]Data Field Offset[i]

Frame Data[n]

SADR_MBDF[n]

Frame Data[i]

SADR_MBDF[i]

Frame Data[1]

SADR_MBDF[1]

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

SADR_MBHF[n]

SADR_MBHF[i]

SADR_MBHF[1]

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-84 Freescale Semiconductor

message buffers and the number of individual message buffers that are used. For more details, see
Section 25.6.3.1.1, “Individual Message Buffer Segments.”

Specific Configuration Data

The set of message buffer specific configuration data for individual message buffers is located in the
following registers.

• Message Buffer Configuration, Control, Status Registers (MBCCSRn)
The MCM, MBT, MTD bits configure the message buffer type.

• Message Buffer Cycle Counter Filter Registers (MBCCFRn)
The MTM, CHA, CHB bits configure the transmission mode and the channel assignment. The
CCFE, CCFMSK, and CCFVAL bits and fields configure the cycle counter filter.

• Message Buffer Frame ID Registers (MBFIDRn)
For a transmit message buffer, the FID field is used to determine the slot in which the message in
this message buffer will be transmitted.

• Message Buffer Index Registers (MBIDXRn)
This MBIDX field provides the index of the message buffer header field of the physical message
buffer that is currently associated with this message buffer.

25.6.3.5 Individual Message Buffer Control Data

During normal operation, each individual message buffer can be controlled by the control and trigger bits
CMT, LCKT, EDT, and MBIE in the Message Buffer Configuration, Control, Status Registers
(MBCCSRn).

25.6.3.6 Receive Shadow Buffer Configuration Data

Before frame reception into the individual message buffers can be performed, the receive shadow buffers
must be configured. The configuration data are provided by the Receive Shadow Buffer Index Register
(RSBIR). For each receive shadow buffer, the application provides the message buffer header index. When
the protocol is in the POC:normal active or POC:normal passive state, the receive shadow buffers are
under full controller control.

25.6.3.7 Receive FIFO Control and Configuration Data

This section describes the configuration and control data for the two receive FIFOs.

25.6.3.7.1 Receive FIFO Configuration Data

The controller provides two functional independent receive FIFOs, one per channel. The FIFOs have a
common subset of configuration data:

• Receive FIFO System Memory Base Address Register (RFSYMBADR)

• Receive FIFO Periodic Timer Register (RFPTR)

Each FIFO has its own set of configuration data. The configuration data are located in the following
registers:

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-85

• Receive FIFO Watermark and Selection Register (RFWMSR)

• Receive FIFO Start Index Register (RFSIR)

• Receive FIFO Depth and Size Register (RFDSR)

• Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)

• Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)

• Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)

• Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)

• Receive FIFO Range Filter Configuration Register (RFRFCFR)

25.6.3.7.2 Receive FIFO Control Data

The application can access the FIFOs at any time using the control bits in the following registers:

• Global Interrupt Flag and Enable Register (GIFER)

• Receive FIFO Fill Level and POP Count Register (RFFLPCR)

25.6.3.7.3 Receive FIFO Status Data

The current status of the receive fifo is provided in the following register:

• Global Interrupt Flag and Enable Register (GIFER)

• Receive FIFO A Read Index Register (RFARIR)

• Receive FIFO B Read Index Register (RFBRIR)

• Receive FIFO Fill Level and POP Count Register (RFFLPCR)

25.6.4 FlexRay Memory Layout

The controller supports a wide range of possible layouts for the FlexRay memory. Two basic layout modes
can be selected by the FIFO address mode bit MCR[FAM].

25.6.4.1 FlexRay Memory Layout (MCR[FAM] = 0)

Figure 25-107 shows an example layout for the FIFO address mode MCR[FAM] = 0. In this mode, the
following set of rules applies to the layout of the FlexRay memory:

• The FlexRay memory is one contiguous region.

• The FlexRay memory size is maximum 64 Kbytes.

• The FlexRay memory starts at a 16 byte boundary

The FlexRay memory contains three areas: the message buffer header area, the message buffer data area,
and the sync frame table area.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-86 Freescale Semiconductor

Figure 25-107. Example of FlexRay Memory Layout (MCR[FAM] = 0)

25.6.4.2 FlexRay Memory Layout (MCR[FAM] = 1)

Figure 25-108 shows an example layout for the FIFO address mode MCR[FAM] = 1. The following set of
rules applies to the layout of the FlexRay memory:

• The FlexRay memory consists of two contiguous regions.

• The size of each region is maximum 64 Kbytes.

• Each region start at a 16 byte boundary.

M
es

sa
ge

 B
uf

fe
r

H
ea

de
r

A
re

a

F
le

xR
ay

 M
em

or
y

Message Buffer Data Area

Sync Frame Table Area

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

Data Field OffsetFrame Header Slot Status

10 bytesSYMBADR[SMBA]

System Memory

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-87

Figure 25-108. Example of FlexRay Memory Layout (MCR[FAM] = 1)

25.6.4.3 Message Buffer Header Area (MCR[FAM] = 0)

The message buffer header area contains all message buffer header fields of the physical message buffers
for all message buffer types. The following rules apply to the message buffer header fields for the three
type of message buffers.

1. The start byte address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 25-7.

SADR_MBHF = (i * 10) + SYMBADR[SMBA]; (0 < i < 256) Eqn. 25-7

2. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 25-8.

SADR_MBHF = (i * 10) + SYMDARD[SMBA]; (0 < i < 1024) Eqn. 25-8

F
IF

O
 H

ea
de

r
A

re
a

F
IF

O
 F

le
xR

ay
 M

em
or

y

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

RFSYMBADR[SMBA]

System Memory

M
es

sa
ge

 B
uf

fe
r

H
ea

de
r

A
re

a

F
le

xR
ay

 M
em

or
y

Message Buffer Data Area

Sync Frame Table Area

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Data Field OffsetFrame Header Slot Status

10 bytesSYMBADR[SMBA]

FIFO Message Buffer Data Area

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-88 Freescale Semiconductor

SADR_MBHF = (i * 10) + SYMBADR[SMBA]; (0 < i < 1024) Eqn. 25-9

3. The message buffer header fields for each FIFO have to be a contiguous area.

25.6.4.4 Message Buffer Header Area (MCR[FAM] = 1)

The message buffer header area contains all message buffer header fields of the physical message buffers
for the individual message buffers and receiver shadow buffers. The following rules apply to the message
buffer header fields for the two type of message buffers.

1. The start address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 25-10.

SADR_MBHF = (i * 10) + SYMBADR[SMBA]; (0 < i < 256) Eqn. 25-10

25.6.4.5 FIFO Message Buffer Header Area (MCR[FAM] = 1)

The FIFO message buffer header area contains all message buffer header fields of the physical message
buffers for the FIFO. The following rules apply to the FIFO message buffer header fields.

1. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 25-11.

SADR_MBHF = (i * 10) + RFSYMBADR[SMBA]; (0 < i < 1024) Eqn. 25-11

2. The message buffer header fields for each FIFO have to be a contiguous area.

25.6.4.6 Message Buffer Data Area

The message buffer data area contains all the message buffer data fields of the physical message buffers.
Each message buffer data field must start at a 16-bit boundary.

25.6.4.7 Sync Frame Table Area

The sync frame table area is used to provide a copy of the internal sync frame tables for application access.
Refer to Section 25.6.12, “Sync Frame ID and Sync Frame Deviation Tables,” for the description of the
sync frame table area.

25.6.5 Physical Message Buffer Description

This section provides a detailed description of the usage and the content of the two parts of a physical
message buffer, the message buffer header field and the message buffer data field.

25.6.5.1 Message Buffer Protection and Data Consistency

The physical message buffers are located in the FlexRay memory. The controller provides no means to
protect the FlexRay memory from uncontrolled or illegal host or other client write access. To ensure data
consistency of the physical message buffers, the application must follow the write access scheme that is
given in the description of each of the physical message buffer fields.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-89

25.6.5.2 Message Buffer Header Field Description

This section provides a detailed description of the usage and content of the message buffer header field. A
description of the structure of the message buffer header fields is given in Section 25.6.2.1, “Message
Buffer Header Field.” Each message buffer header field consists of three sections: the frame header
section, the data field offset, and the slot status section. For a detailed description of the Data Field Offset,
see Section 25.6.2.1.2, “Data Field Offset.”

25.6.5.2.1 Frame Header Description

Frame Header Content

The semantic and content of the frame header section depends on the message buffer type.

For individual receive message buffers and receive FIFOs, the frame header receives the frame header data
of the first valid frame received on the assigned channels.

For receive shadow buffers, the frame header receives the frame header data of the current frame received
regardless of whether the frame is valid or not.

For transmit message buffers, the application writes the frame header of the frame to be transmitted into
this location. The frame header will be read out when the frame is transferred to the FlexRay bus.

The structure of the frame header in the message buffer header field for receive message buffers and the
receive FIFO is given in Figure 25-109. A detailed description is given in Table 25-85.

Figure 25-109. Frame Header Structure (Receive Message Buffer and Receive FIFO)

The structure of the frame header in the message buffer header field for transmit message buffers is given
in Figure 25-110. A detailed description is given in Table 25-86. The checks that will be performed are
described in Frame Header Checks.

Figure 25-110. Frame Header Structure (Transmit Message Buffer)

The structure of the frame header in the message buffer header field for transmit message buffers assigned
to key slot is given in Figure 25-111.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 0 0 CYCCNT 0 PLDLEN
0x4 0 0 0 0 0 HDCRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 CYCCNT PLDLEN
0x4 HDCRC

= not used = checked = checked if static slot

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-90 Freescale Semiconductor

Figure 25-111. Frame Header Structure (Transmit Message Buffer for Key Slot)

Frame Header Access

The frame header is located in the FlexRay memory. To ensure data consistency, the application must
follow the write access scheme described below.

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the frame header field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 25-84. This table shows the condition under which the application can write to the frame header
entries without corrupting the FlexRay message transmission.

Frame Header Checks

As shown in Figure 25-110 and Figure 25-111 not all fields in the message buffer frame header are used
for transmission. Some fields in the message buffer frame header are ignored, some are used for
transmission, and some of them are checked for correct values. All checks that will be performed are
described below.

For message buffers assigned to the key slot, no checks will be performed.

The value of the FID field must be equal to the value of the corresponding Message Buffer Frame ID
Registers (MBFIDRn). If the controller detects a mismatch while transmitting the frame header, it will set
the frame ID error flag FID_EF in the CHI Error Flag Register (CHIERFR). The value of the FID field
will be ignored and replaced by the value provided in the Message Buffer Frame ID Registers (MBFIDRn).

For transmit message buffers assigned to the static segment, the PLDLEN value must be equal to the value
of the payload_length_static field in the Protocol Configuration Register 19 (PCR19). If this is not
fulfilled, the static payload length error flag SPL_EF in the CHI Error Flag Register (CHIERFR) is set
when the message buffer is under transmission. A syntactically and semantically correct frame is generated
with payload_length_static payload words and the payload length field in the transmitted frame header set
to payload_length_static.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 CYCCNT PLDLEN
0x4 HDCRC

= not used

Table 25-84. Frame Header Write Access Constraints (Transmit Message Buffer)

Field

Single Buffered Double Buffered

Static
Segment

Dynamic
Segment

Static Segment Dynamic Segment

Commit Side Transmit Side Commit Side Transmit Side

FID POC:config or MB_DIS

PPI,
PLDLEN,
HDCRC

POC:config or MB_DIS or

MB_LCK MB_LCK

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-91

For transmit message buffers assigned to the dynamic segment, the PLDLEN value must be less than or
equal to the value of the max_payload_length_dynamic field in the Protocol Configuration Register 24
(PCR24). If this is not fulfilled, the dynamic payload length error flag DPL_EF in the CHI Error Flag
Register (CHIERFR) is set when the message buffer is under transmission. A syntactically and
semantically correct dynamic frame is generated with PLDLEN payload words and the payload length
field in the frame header set to PLDLEN.

Table 25-85. Frame Header Field Descriptions (Receive Message Buffer and Receive FFO)

Field Description

R Reserved Bit — This is the value of the Reserved bit of the received frame stored in the message buffer

PPI Payload Preamble Indicator — This is the value of the Payload Preamble Indicator of the received frame stored
in the message buffer.

NUF Null Frame Indicator — This is the value of the Null Frame Indicator of the received frame stored in the message
buffer.

SYF Sync Frame Indicator — This is the value of the Sync Frame Indicator of the received frame stored in the
message buffer.

SUF Startup Frame Indicator — This is the value of the Startup Frame Indicator of the received frame stored in the
message buffer.

FID Frame ID — This is the value of the Frame ID field of the received frame stored in the message buffer.

CYCCNT Cycle Count — This is the number of the communication cycle in which the frame stored in the message buffer
was received.

PLDLEN Payload Length — This is the value of the Payload Length field of the received frame stored in the message
buffer.

HDCRC Header CRC — This is the value of the Header CRC field of the received frame stored in the message buffer.

Table 25-86. Frame Header Field Descriptions (Transmit Message Buffer)

Field Description

R Reserved Bit — This bit is not used, the value of the Reserved bit is generated internally according to FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

PPI Payload Preamble Indicator — This bit provides the value of the Payload Preamble Indicator for the frame
transmitted from the message buffer.

NUF Null Frame Indicator — This bit is not used, the value of the Null Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

SYF Sync Frame Indicator — This bit is not used, the value of the Sync Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

SUF Startup Frame Indicator — This bit is not used, the value of the Startup Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

FID Frame ID — This field is checked as described in Frame Header Checks.

CYCCNT Cycle Count — This field is not used, the value of the transmitted Cycle Count field is taken from the internal
communication cycle counter.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-92 Freescale Semiconductor

25.6.5.2.2 Data Field Offset Description

Data Field Offset Content

For a detailed description of the Data Field Offset, see Section 25.6.2.1.2, “Data Field Offset.”

Data Field Offset Access

The application shall program the Data Field Offset when configuring the message buffers either in the
POC:config state or when the message buffer is disabled.

25.6.5.2.3 Slot Status Description

The slot status is a read-only structure for the application and a write-only structure for the controller. The
meaning and content of the slot status in the message buffer header field depends on the message buffer
type.

Receive Message Buffer and Receive FIFO Slot Status Description

This section describes the slot status structure for the individual receive message buffers and receive
FIFOs. The content of the slot status structure for receive message buffers depends on the message buffer
type and on the channel assignment for individual receive message buffers as given by Table 25-87.

The meaning of the bits in the slot status structure is explained in Table 25-88.

PLDLEN Payload Length — This field is checked and used as described in Frame Header Checks.

HDCRC Header CRC — This field provides the value of the Header CRC field for the frame transmitted from the message
buffer.

Table 25-87. Receive Message Buffer Slot Status Content

Receive Message Buffer Type Slot Status Content

Individual Receive Message Buffer assigned to both channels
MBCCSRn[CHA] = 1 and MBCCSRn[CHB] = 1

see Figure 25-112

Individual Receive Message Buffer assigned to channel A
MBCCSRn[CHA] = 1 and MBCCSRn[CHB] = 0

see Figure 25-113

Individual Receive Message Buffer assigned to channel B
MBCCSRn[CHA] = 0 and MBCCSRn[CHB] = 1

see Figure 25-114

Receive FIFO Channel A Message Buffer see Figure 25-113

Receive FIFO Channel B Message Buffer see Figure 25-114

Table 25-86. Frame Header Field Descriptions (Transmit Message Buffer) (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-93

Figure 25-112. Receive Message Buffer Slot Status Structure (ChAB)

Figure 25-113. Receive Message Buffer Slot Status Structure (ChA)

Figure 25-114. Receive Message Buffer Slot Status Structure (ChB)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB CH VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB 1 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 25-88. Receive Message Buffer Slot Status Field Descriptions

Field Description

Common Message Buffer Status Bits

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B.
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B.
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B.
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B.
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B.
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B.
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B.
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

CH Channel first valid received — This status bit applies only to receive message buffers assigned to the static
segment and to both channels. It indicates the channel that has received the first valid frame in the slot. This flag
is set to 0 if no valid frame was received at all in the subscribed slot.
0 first valid frame received on channel A, or no valid frame received at all.
0 first valid frame received on channel B.

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A.
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-94 Freescale Semiconductor

Transmit Message Buffer Slot Status Description

This section describes the slot status structure for transmit message buffers. Only the TCA and TCB status
bits are directly related to the transmission process. All other status bits in this structure are related to a
receive process that may have occurred. The content of the slot status structure for transmit message
buffers depends on the channel assignment as given by Table 25-89.

The meaning of the bits in the slot status structure is described in Table 25-88.

Figure 25-115. Transmit Message Buffer Slot Status Structure (ChAB)

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A.
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A.
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A.
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A.
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A.
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A.
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

Table 25-89. Transmit Message Buffer Slot Status Content

Transmit Message Buffer Type Slot Status Content

Individual Transmit Message Buffer assigned to both channels
MBCCSRn[CHA] = 1 and MBCCSRn[CHB] = 1

see Figure 25-115

Individual Transmit Message Buffer assigned to channel A
MBCCSRn[CHA] = 1 and MBCCSRn[CHB] = 0

see Figure 25-116

Individual Transmit Message Buffer assigned to channel B
MBCCSRn[CHA] = 0 and MBCCSRn[CHB] = 1

see Figure 25-117

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

Table 25-88. Receive Message Buffer Slot Status Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-95

Figure 25-116. Transmit Message Buffer Slot Status Structure (ChA)

Figure 25-117. Transmit Message Buffer Slot Status Structure (ChB)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 25-90. Transmit Message Buffer Slot Status Structure Field Descriptions

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B.
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B.
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B.
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B.
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B.
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B.
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B.
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B.
0 vSS!TxConflict = 0.
1 vSS!TxConflict = 1.

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A.
0 vSS!ValidFrame = 0.
1 vSS!ValidFrame = 1.

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A.
0 vRF!Header!SyFIndicator = 0.
1 vRF!Header!SyFIndicator = 1.

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A.
0 vRF!Header!NFIndicator = 0.
1 vRF!Header!NFIndicator = 1.

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A.
0 vRF!Header!SuFIndicator = 0.
1 vRF!Header!SuFIndicator = 1.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-96 Freescale Semiconductor

25.6.5.3 Message Buffer Data Field Description

The message buffer data field is used to store the frame payload data, or a part of it, of the frame to be
transmitted to or received from the FlexRay bus. The minimum required length of this field depends on
the message buffer type that the physical message buffer is assigned to and is given in Table 25-91. The
structure of the message buffer data field is given in Figure 25-118.

NOTE
The controller will not access any locations outside the message buffer data
field boundaries given by Table 25-91.

Figure 25-118. Message Buffer Data Field Structure

The message buffer data field is located in the FlexRay memory; thus, the controller has no means to
control application write access to the field. To ensure data consistency, the application must follow a write
and read access scheme.

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A.
0 vSS!SyntaxError = 0.
1 vSS!SyntaxError = 1.

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A.
0 vSS!ContentError = 0.
1 vSS!ContentError = 1.

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A.
0 vSS!BViolation = 0.
1 vSS!BViolation = 1.

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A.
0 vSS!TxConflict = 0.
1 vSS!TxConflict = 1.

Table 25-91. Message Buffer Data Field Minimum Length

physical message buffer
assigned to

minimum length defined by

Individual Message Buffer in Segment 1 MBDSR[MBSEG1DS]

Receive Shadow Buffer in Segment 1 MBDSR[MBSEG1DS]

Individual Message Buffer in Segment 2 MBDSR[MBSEG2DS]

Receive Shadow Buffer in Segment 2 MBDSR[MBSEG2DS]

Receive FIFO for channel A RFDSR[ENTRY_SIZE] (RFSR[SEL] = 0)

Receive FIFO for channel B RFDSR[ENTRY_SIZE] (RFSR[SEL] = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 DATA0 / MID0 / NMV0 DATA1 / MID1 / NMV1

0x2 DATA2 / NMV2 DATA3 / NMV3

...

0xN-2 DATA N-2 DATA N-1

Table 25-90. Transmit Message Buffer Slot Status Structure Field Descriptions (continued)

Field Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-97

25.6.5.3.1 Message Buffer Data Field Read Access

For transmit message buffers, the controller will not modify the content of the Message Buffer Data Field.
Thus the application can read back the data at any time without any impact on data consistency.

For receive message buffers the application must lock the related receive message buffer and retrieve the
message buffer header index from the Message Buffer Index Registers (MBIDXRn). While the message
buffer is locked, the controller will not update the Message Buffer Data Field.

For receive FIFOs, the application can read the message buffer indicated by the Receive FIFO A Read
Index Register (RFARIR) or the Receive FIFO B Read Index Register (RFBRIR) when the related fill
levels in the Receive FIFO Fill Level and POP Count Register (RFFLPCR) indicate an non-empty FIFO.

25.6.5.3.2 Message Buffer Data Field Write Access

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the message buffer data field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 25-92.

25.6.6 Individual Message Buffer Functional Description

The controller provides three basic types of individual message buffers:

1. Single Transmit Message Buffers

2. Double Transmit Message Buffers

3. Receive Message Buffers

Table 25-92. Frame Data Write Access Constraints

Field single buffered
double buffered

commit side transmit side

DATA, MID, NMV POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS

Table 25-93. Frame Data Field Descriptions

Field Description

DATA 0,
DATA 1,

...
DATA N-1

Message Data — Provides the message data received or to be transmitted.

For receive message buffer and receive FIFOs, this field provides the message data received for this message
buffer.
For transmit message buffers, the field provides the message data to be transmitted.

MID 0,
MID 1

Message Identifier — If the payload preamble bit PPI is set in the message buffer frame header, the MID field
holds the message ID of a dynamic frame located in the message buffer. The receive FIFO filter uses the received
message ID for message ID filtering.

NMV 0,
NMV 1,

...
NMV 11

Network Management Vector — If the payload preamble bit PPI is set in the message buffer frame header, the
network management vector field holds the network management vector of a static frame located in the message
buffer.
Note: The MID and NMV bytes replace the corresponding DATA bytes.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-98 Freescale Semiconductor

Before an individual message buffer can be used, it must be configured by the application. After the initial
configuration, the message buffer can be reconfigured later. The set of the configuration data for individual
message buffers is given in Section 25.6.3.4.1, “Individual Message Buffer Configuration Data.”

25.6.6.1 Individual Message Buffer Configuration

The individual message buffer configuration consists of two steps. The first step is the allocation of the
required amount of memory for the FlexRay memory. The second step is the programming of the message
buffer configuration registers, which is described in this section.

25.6.6.1.1 Common Configuration Data

One part of the message buffer configuration data is common to all individual message buffers and the
receive shadow buffers. These data can only be set when the protocol is in the POC:config state.

The application configures the number of utilized individual message buffers by writing the message
buffer number of the last utilized message buffer into the LAST_MB_UTIL field in the Message Buffer
Segment Size and Utilization Register (MBSSUTR).

The application configures the size of the two segments of individual message buffers by writing the
message buffer number of the last message buffer in the first segment into the LAST_MB_SEG1 field in
the Message Buffer Segment Size and Utilization Register (MBSSUTR)

The application configures the length of the message buffer data fields for both of the message buffer
segments by writing to the MBSEG2DS and MBSEG1DS fields in the Message Buffer Data Size Register
(MBDSR).

Depending on the current receive functionality of the controller, the application must configure the receive
shadow buffers. For each segment and for each channel with at least one individual receive message buffer
assigned, the application must configure the related receive shadow buffer using the Receive Shadow
Buffer Index Register (RSBIR).

25.6.6.1.2 Specific Configuration Data

The second part of the message buffer configuration data is specific for each message buffer.

These data can be changed only when either

• the protocol is in the POC:config state or

• the message buffer is disabled (MBCCSRn[EDS] = 0)

The individual message buffer type is defined by the MTD and MBT bits in the Message Buffer
Configuration, Control, Status Registers (MBCCSRn) as given in Table 25-94.

Table 25-94. Individual Message Buffer Types

MBCCSRn[MTD] MBCCSRn[MBT] Individual Message Buffer Description

0 0 Receive Message Buffer

0 1 Reserved

1 0 Single Transmit Message Buffer

1 1 Double Transmit Message Buffer

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-99

The message buffer specific configuration data are

1. MCM, MBT, MTD bits in Message Buffer Configuration, Control, Status Registers (MBCCSRn)

2. all fields and bits in Message Buffer Cycle Counter Filter Registers (MBCCFRn)

3. all fields and bits in Message Buffer Frame ID Registers (MBFIDRn)

4. all fields and bits in Message Buffer Index Registers (MBIDXRn)

The meaning of the specific configuration data depends on the message buffer type, as given in the detailed
message buffer type descriptions Section 25.6.6.2, “Single Transmit Message Buffers,” Section 25.6.6.3,
“Receive Message Buffers,” and Section 25.6.6.4, “Double Transmit Message Buffer.”

25.6.6.2 Single Transmit Message Buffers

The section provides a detailed description of the functionality of single buffered transmit message buffers.

A single transmit message buffer is used by the application to provide message data to the controller that
will be transmitted over the FlexRay Bus. The controller uses the transmit message buffers to provide
information about the transmission process and status information about the slot in which message was
transmitted.

The individual message buffer with message buffer number n is configured to be a single transmit message
buffer by the following settings:

• MBCCSRn[MBT] = 0 (single buffered message buffer)

• MBCCSRn[MTD] = 1 (transmit message buffer)

25.6.6.2.1 Access Regions

To certain message buffer fields, both the application and the controller have access. To ensure data
consistency, a message buffer locking scheme is implemented, which is used to control the access to the
data, control, and status bits of a message buffer. The access regions for single transmit message buffers
are depicted in Figure 25-119. A description of the regions is given in Table 25-95. If an region is active
as indicated in Table 25-96, the access scheme given for that region applies to the message buffer.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-100 Freescale Semiconductor

Figure 25-119. Single Transmit Message Buffer Access Regions

The trigger bits MBCCSRn[EDT] and MBCCSRn[LCKT], and the interrupt enable bit
MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time. The
status bits MBCCSRn[EDS] and MBCCSRn[LCKS] are not under access control and can be accessed
from the controller at any time.

The interrupt flag MBCCSRn[MBIF] is not under access control and can be accessed from the application
and the controller at any time. controller clear access has higher priority.

The controller restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The transmit message
buffer states are given in Figure 25-120. A description of the states is given in Table 25-96, which also
provides the access scheme for the access regions.

The status bits MBCCSRn[EDS] and MBCCSRn[LCKS] provide the application with the required
message buffer status information. The internal status information is not visible to the application.

25.6.6.2.2 Message Buffer States

This section describes the transmit message buffer states and provides a state diagram.

Table 25-95. Single Transmit Message Buffer Access Regions Description

Region
Access from

Region used for
Application Module

CFG read/write - Message Buffer Configuration

MSG read/write - Message Data and Slot Status Access

NF - read-only Message Header Access for Null Frame Transmission

TX - read/write Message Transmission and Slot Status Update

CM - read-only Message Buffer Validation

SR - read-only Message Buffer Search

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSRn[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFRn[MTM/CHA/CHB/CCF*]

MBFIDRn[FID]

MBIDXRn[MBIDX]

MBCCSRn[MBT/MTD]

TX

NF

CMT

SR

CFG

MSG

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-101

Figure 25-120. Single Transmit Message Buffer States

Table 25-96. Single Transmit Message Buffer State Description

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

Idle 1 0 – CM,
SR

Idle - Message Buffer is idle.

Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.

Excluded from message buffer search.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.

Excluded from message buffer search.

HLck 1 1 MSG SR Locked - Applications access to data, control, and status.
Included in message buffer search.

CCSa 1 0 – – Slot Assigned - Message buffer assigned to next static slot.
Ready for Null Frame transmission.

HLckCCSa 1 1 MSG – Locked and Slot Assigned - Applications access to data, control, and
status.Message buffer assigned to next static slot

CCNf 1 0 – NF Null Frame Transmission

Header is used for null frame transmission.

HLckCCNf 1 1 MSG NF Locked and Null Frame Transmission - Applications access to data,
control, and status. Header is used for null frame transmission.

CCMa 1 0 – CM Message Available - Message buffer is assigned to next slot and
cycle counter filter matches.

HLckCCMa 1 1 MSG – Locked and Message Available - Applications access to data,
control, and status. Message buffer is assigned to next slot and cycle
counter filter matches.

CCTx 1 0 – TX Message Transmission - Message buffer data transmit. Payload data
from buffer transmitted

HDis

RESET_STATE
HD

HE
Idle

SA
DSS

SU
CCSu

CCSa CCTx

TX

HLck HLckCCSa CCNf

HL
HU

CCMa

HL
HU

HLckCCNf HLckCCMa

SSS

STS

HE

HL

STS

HU

HL

DSS

MA

SSS

HDisLck

HD

HU
HL

HU

STS
MA

SSS

SA

DSS

STS

DSS

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-102 Freescale Semiconductor

25.6.6.2.3 Message Buffer Transitions

Application Transitions

The application transitions can be triggered by the application using the commands described in
Table 25-97. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands issued by writing 1 to the trigger bit MBCCSRn[EDT]. The transition
that will be triggered by each of these command depends on the current value of the status bit
MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one of
the states CCSa, HLckCCSa, CCMa, HLckCCMa, CCNf, HLckCCNf, or CCTx, the disable transition has
no effect (command is ignored) and the message buffer state is not changed. No notification is given to the
application.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing 1 to the trigger bit MBCCSRn[LCKT]. The transition
that will be triggered by each of these commands depends on the current value of the status bit
MBCCSRn[LCKS]. If the command triggers the lock transition HL and the message buffer is in the state
CCTx, the lock transition has no effect (command is ignored) and message buffer state is not changed. In
this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (CHIERFR) is set.

Module Transitions

The module transitions that can be triggered by the controller are described in Table 25-98. Each transition
will be triggered for certain message buffers when the related condition is fulfilled.

CCSu 1 0 – TX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

Table 25-97. Single Transmit Message Buffer Application Transitions

Transition Command Condition Description

HE
MBCCSRn[EDT] = 1

MBCCSRn[EDS] = 0 Application triggers message buffer enable.

HD MBCCSRn[EDS] = 1 Application triggers message buffer disable.

HL
MBCCSRn[LCKT] = 1

MBCCSRn[LCKS] = 0 Application triggers message buffer lock.

HU MBCCSRn[LCKS] = 1 Application triggers message buffer unlock.

Table 25-98. Single Transmit Message Buffer Module Transitions

Transition Condition Description

SA slot match and
static slot

Slot Assigned - Message buffer is assigned to next static slot.

Table 25-96. Single Transmit Message Buffer State Description (continued)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-103

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 25-99, the module transitions have a higher priority than the application
transitions. For all states except the CCMa state, both a lock/unlock transition HL/HD and a module
transition can be executed at the same time. The result state is reached by first applying the application
transition and subsequently the module transition to the intermediately reached state. For example, if the
message buffer is in the HLck state and the application unlocks the message buffer by the HU transition
and the module triggers the slot assigned transition SA, the intermediate state is Idle and the resulting state
is CCSa.

The priorities among the module transitions is given in the second part of Table 25-99.

25.6.6.2.4 Transmit Message Setup

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field and sets the commit bit CMT in the Message Buffer Configuration, Control, Status
Registers (MBCCSRn). The physical access to the message buffer data field is described in
Section 25.6.3.1, “Individual Message Buffers.”

MA slot match and
CycleCounter match

Message Available - Message buffer is assigned to next slot and cycle counter
filter matches.

TX slot start and
MBCCSRn[CMT] = 1

Transmission Slot Start - Slot Start and commit bit CMT is set.

In case of a dynamic slot, pLatestTx is not exceeded.

SU status updated Status Updated - Slot Status field and message buffer status flags updated.
Interrupt flag set.

STS static slot start Static Slot Start - Start of static slot.

DSS
dynamic slot start or

symbol window start or
NIT start

Dynamic Slot or Segment Start. - Start of dynamic slot or symbol window or NIT.

SSS
slot start or

symbol window start or
NIT start

Slot or Segment Start - Start of static slot or dynamic slot or symbol window or
NIT.

Table 25-99. Single Transmit Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle, HLck SA > HD
MA > HD

Slot Assigned > Message Buffer Disable
Message Available > Message Buffer Disable

CCMa TX > HL Transmission Start > Message Buffer Lock

module internal

Idle, HLck MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

Table 25-98. Single Transmit Message Buffer Module Transitions (continued)

Transition Condition Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-104 Freescale Semiconductor

As indicated by Table 25-96, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, HLck,
HLckCCSa, HLckCCMa, or HLckCCMa. The application can change the state of a message buffer if it
issues the appropriate commands shown in Table 25-97. The state change is indicated through the
MBCCSRn[EDS] and MBCCSRn[LCKS] status bits.

If the transmit message buffer enters one of the states HDis, HDisLck, HLck, HLckCCSa, HLckCCMa, or
HLckCCMa the MBCCSRn[DVAL] flag is negated.

25.6.6.2.5 Message Transmission

As a result of the message buffer search described in Section 25.6.7, “Individual Message Buffer Search,”
the controller triggers the message available transition MA for as many as two transmit message buffers.
This changes the message buffer state from Idle to CCMa and the message buffers can be used for message
transmission in the next slot.

The controller transmits a message from a message buffer if both of the following two conditions are
fulfilled at the start of the transmission slot:

1. the message buffer is in the message available state CCMa

2. the message data are still valid (MBCCSRn[CMT] = 1)

In this case, the controller triggers the TX transition and changes the message buffer state to CCTx. A
transmit message buffer timing and state change diagram for message transmission is given in
Figure 25-121. In this example, the message buffer with message buffer number n is Idle at the start of the
search slot, matches the slot and cycle number of the next slot, and message buffer data are valid
(MBCCSRn[CMT] = 1).

Figure 25-121. Message Transmission Timing

Figure 25-122. Message Transmission from HLck state with unlock

search[s+1]
MT st

art

MA

slot s

TX SU

CCMa CCTx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

MT st
art

message transmit

SSS

CCSu

search[s+1]
MT st

art

MT st
art

MA

slot s

TX SSS

HLckCCMa CCTx

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCMa

message transmit

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-105

The amount of message data read from the FlexRay memory and transferred to the FlexRay bus is
determined by the following three items

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (MBSSUTR).

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (MBDSR)

3. the value of the PLDLEN field in the message buffer header field, as described in
Section 25.6.5.2.1, “Frame Header Description.”

If a message buffer is assigned to message buffer segment 1, and PLDLEN > MBSEG1DS, then
2 * MBSEG1DS bytes will be read from the message buffer data field and zero padding is used for the
remaining bytes for the FlexRay bus transfer. If PLDLEN < MBSEG1DS, the controller reads and
transfers 2*PLDLEN bytes. The same holds for segment 2 and MBSEG2DS.

25.6.6.2.6 Null Frame Transmission

A static slot with slot number S is assigned to the controller for channel A, if at least one transmit message
buffer is configured with the MBFIDRn[FID] set to S and MBCCFRn[CHA] set to 1. A Null Frame is
transmitted in the static slot S on channel A, if this slot is assigned to the controller for channel A, and all
transmit message buffers with MBFIDRn[FID] = S and MBCCFRn[CHA] = 1 are either not committed
(MBCCSRn[CMT] = 0), or locked by the application (MBCCSRn[LCKS] = 1), or the cycle counter filter
is enabled and does not match.

Additionally, the application can clear the commit bit of a message buffer that is in the CCMa state, which
is called uncommit or transmit abort. This message buffer will be used for null frame transmission.

As a result of the message buffer search described in Section 25.6.7, “Individual Message Buffer Search,”
the controller triggers the slot assigned transition SA for as many as two transmit message buffers if at least
one of the conditions mentioned above is fulfilled for these message buffers. The transition SA changes
the message buffer states from either Idle to CCSa or from HLck to HLckCCSa. In each case, these
message buffers will be used for null frame transmission in the next slot. A message buffer timing and state
change diagram for null frame transmission from Idle state is given in Figure 25-123.

Figure 25-123. Null Frame Transmission from Idle state

A message buffer timing and state change diagram for null frame transmission from HLck state is given
in Figure 25-124.

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

CCSa CCNf

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-106 Freescale Semiconductor

Figure 25-124. Null Frame Transmission from HLck state

If a transmit message buffer is in the CCSa or HLckCCSa state at the start of the transmission slot, a null
frame is transmitted in any case, even if the message buffer is unlocked or committed before the
transmission slot starts. A transmit message buffer timing and state change diagram for null frame
transmission for this case is given in Figure 25-125.

Figure 25-125. Null Frame Transmission from HLck state with unlock

Since the null frame transmission will not use the message buffer data, the application can lock/unlock the
message buffer during null frame transmission. A transmit message buffer timing and state change
diagram for null frame transmission for this case is given in Figure 25-126.

Figure 25-126. Null Frame Transmission from Idle state with locking

25.6.6.2.7 Message Buffer Status Update

After the end of each slot, the PE generates the slot status vector. Depending on the this status, the
transmitted frame type, and the amount of transmitted data, the message buffer status is updated.

Message Buffer Status Update after Complete Message Transmission

The term complete message transmission refers to the fact that all payload data stored in the message
buffer were send to FlexRay bus. In this case, the controller updates the slot status field of the message

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

HLckCCSa HLckCCNf

slot s+1

HLck

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

HLckCCSa CCNf

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCSa

null frame transmit

search[s+1]
MT st

art

MT st
art

SA

slot s

STS SSS

slot s+1

Idle

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

HL

CCSa CCNf HLckCCNf

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-107

buffer and triggers the status updated transition SU. With the SU transition, the controller sets the message
buffer interrupt flag MBCCSRn[MBIF] to indicate the successful message transmission.

Depending on the transmission mode flag MBCCFRn[MTM], the controller changes the commit flag
MBCCSRn[CMT] and the valid flag MBCCSRn[DVAL]. If the MBCCFRn[MTM] flag is negated, the
message buffer is in the event transmission mode. In this case, each committed message is transmitted only
once. The commit flag MBCCSRn[CMT] is cleared with the SU transition. If the MBCCFRn[MTM] flag
is asserted, the message buffer is in the state transmission mode. In this case, each committed message is
transmitted as long as the application provides new data or locks the message buffers. The controller will
not clear the MBCCSRn[CMT] flag at the end of transmission and will set the valid flag
MBCCSRn[DVAL] to indicate that the message will be transmitted again.

Message Buffer Status Update after Incomplete Message Transmission

The term incomplete message transmission refers to the fact that not all payload data that should be
transmitted were send to FlexRay bus. This may be caused by the following regular conditions in the
dynamic segment:

1. The transmission slot starts in a minislot with a minislot number greater than pLatestTx.

2. The transmission slot did not exist in the dynamic segment at all.

Additionally, an incomplete message transmission can be caused by internal communication errors. If
those error occur, the Protocol Engine Communication Failure Interrupt Flag PECF_IF is set in the
Protocol Interrupt Flag Register 1 (PIFR1).

In any of these two cases, the status of the message buffer is not changed at all with the SU transition. The
slot status field is not updated, the status and control flags are not changed, and the interrupt flag is not set.

Message Buffer Status Update after Null Frame Transmission

After the transmission of a null frame, the status of the message buffer that was used for the null frame
transmission is not changed at all. The slot status field is not updated, the status and control flags are not
changed, and the interrupt flag is not set.

25.6.6.3 Receive Message Buffers

The section provides a detailed description of the functionality of the receive message buffers.

A receive message buffer is used to receive a message from the FlexRay Bus based on individual filter
criteria. The controller uses the receive message buffer to provide the following data to the application

1. message data received

2. information about the reception process

3. status information about the slot in which the message was received

A individual message buffer with message buffer number n is configured as a receive message buffer by
the following configuration settings

• MBCCSRn[MBT] = 0 (single buffered message buffer)

• MBCCSRn[MTD] = 0 (receive message buffer)

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-108 Freescale Semiconductor

To certain message buffer fields, both the application and the controller have access. To ensure data
consistency, a message buffer locking scheme is implemented that is used to control the access to the data,
control, and status bits of a message buffer. The access regions for receive message buffers are depicted in
Figure 25-127. A description of the regions is given in Table 25-100. If an region is active as indicated in
Table 25-101, the access scheme given for that region applies to the message buffer.

Figure 25-127. Receive Message Buffer Access Regions

The trigger bits MBCCSRn[EDT] and MBCCSRn[LCKT] and the interrupt enable bit MBCCSRn[MBIE]
are not under access control and can be accessed from the application at any time. The status bits
MBCCSRn[EDS] and MBCCSRn[LCKS] are not under access control and can be accessed from the
controller at any time.

The interrupt flag MBCCSRn[MBIF] is not under access control and can be accessed from the application
and the controller at any time. controller set access has higher priority.

The controller restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The receive message
buffer states are given in Figure 25-128. A description of the message buffer states is given in Table 25-96,
which also provides the access scheme for the access regions.

The status bits MBCCSRn[EDS] and MBCCSRn[LCKS] provide the application with the required status
information. The internal status information is not visible to the application.

Table 25-100. Receive Message Buffer Access Region Description

Region
Access from

Region used for
Application Module

CFG read/write — Message Buffer Configuration, Message Data and Status Access

MSG read/write — Message Data, Header, and Status Access

RX — write-only Message Reception and Status Update

SR — read-only Message Buffer Search Data

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSRn[DVAL/DUP]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFRn[CHA/CHB/CCF*]

MBFIDRn[FID]

MBIDXRn[MBIDX]

MBCCSRn[MTD]

RX

SR

CFG

MSG

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-109

Figure 25-128. Receive Message Buffer States

25.6.6.3.1 Message Buffer Transitions

Application Transitions

The application transitions that can be triggered by the application using the commands described in
Table 25-102. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

Table 25-101. Receive Message Buffer States and Access

State
MBCCSRn Access from

Description
EDS LCKS Appl. Module

Idle 1 0 – SR Idle - Message Buffer is idle.

Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.

Excluded from message buffer search.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.

Excluded from message buffer search.

HLck 1 1 MSG – Locked - Applications access to data, control, and status.

Included in message buffer search.

CCBs 1 0 – – Buffer Subscribed - Message buffer subscribed for reception. Filter
matches next (slot, cycle, channel) tuple.

HLckCCBs 1 1 MSG – Locked and Buffer Subscribed - Applications access to data,
control, and status. Message buffer subscribed for reception.

CCRx 1 0 – – Message Receive - Message data received into related shadow
buffer.

HLckCCRx 1 1 MSG – Locked and Message Receive - Applications access to data, control,
and status. Message data received into related shadow buffer.

CCSu 1 0 – RX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

HDis

RESET_STATE
HD

HE
Idle

BS
SNS

SU
CCSu

CCBs CCRx

HLck HLckCCBs HLckCCRx

SSS

SLS

HE

HL

HDisLck

HD

HL
HU

BS

SNS

HL
HU

HU

HL
HU

SLS

SSS

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-110 Freescale Semiconductor

The enable and disable commands issued by writing 1 to the trigger bit MBCCSRn[EDT]. The transition
that will be triggered by each of these command depends on the current value of the status bit
MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one of
the states CCBs, HLckCCBs, or CCRx, the disable transition has no effect (command is ignored) and the
message buffer state is not changed. No notification is given to the application.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing 1 to the trigger bit MBCCSRn[LCKT]. The transition
that will be triggered by each of these commands depends on the current value of the status bit
MBCCSRn[LCKS]. If the command triggers the lock transition HL while the message buffer is in the state
CCRx, the lock transition has no effect (command is ignored) and message buffer state is not changed. In
this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (CHIERFR) is set.

Module Transitions

The module transitions that can be triggered by the controller are described in Table 25-103. Each
transition will be triggered for certain message buffers when the related condition is fulfilled.

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in Table 25-104, the module transitions have a higher priority than the application transitions.
For all states except the CCRx state, a module transition and the application lock/unlock transition HL/HU
and can be executed at the same time. The result state is reached by first applying the module transition
and subsequently the application transition to the intermediately reached state. For example, if the message
buffer is in the buffer subscribed state CCBs and the module triggers the slot start transition SLS at the

Table 25-102. Receive Message Buffer Application Transitions

Transition Host Command Condition Description

HE
MBCCSRn[EDT] = 1

MBCCSRn[EDS] = 0 Application triggers message buffer enable.

HD MBCCSRn[EDS] = 1 Application triggers message buffer disable.

HL
MBCCSRn[LCKT] = 1

MBCCSRn[LCKS] = 0 Application triggers message buffer lock.

HU MBCCSRn[LCKS] = 1 Application triggers message buffer unlock.

Table 25-103. Receive Message Buffer Module Transitions

Transition Condition Description

BS slot match and
CycleCounter match

Buffer Subscribed - The message buffer filter matches next slot and cycle.

SLS slot start Slot Start - Start of either Static Slot or Dynamic Slot.

SNS symbol window start or
NIT start

Symbol Window or NIT Start - Start of either Symbol Window or NIT.

SSS slot start or
symbol window start or

NIT start

Slot or Segment Start - Start of either Static Slot, Dynamic Slot, Symbol Window,
or NIT.

SU status updated Status Updated - Slot Status field, message buffer status flags, header index
updated. Interrupt flag set.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-111

same time as the application locks the message buffer by the HL transition, the intermediate state is CCRx
and the resulting state is locked buffer subscribed state HLckCCRx.

25.6.6.3.2 Message Reception

As a result of the message buffer search, the controller changes the state of as many as two enabled receive
message buffers from either idle state Idle or locked state HLck to the either subscribed state CCBs or
locked buffer subscribed state HLckCCBs by triggering the buffer subscribed transition BS.

If the receive message buffers for the next slot are assigned to both channels, then at most one receive
message buffer is changed to a buffer subscribed state.

If more than one matching message buffers assigned to a certain channel, then only the message buffer
with the lowest message buffer number is in one of the states mentioned above.

With the start of the next static or dynamic slot the module trigger the slot start transition SLS. This
changes the state of the subscribed receive message buffers from either CCBs to CCRx or from
HLckCCBs to HLckCCRx, respectively.

During the reception slot, the received frame data are written into the shadow buffers. For details on
receive shadow buffers, see Section 25.6.6.3.5, “Receive Shadow Buffers Concept.” The data and status
of the receive message buffers that are the CCRx or HLckCCRx are not modified in the reception slot.

25.6.6.3.3 Message Buffer Update

With the start of the next static or dynamic slot or with the start of the symbol window or NIT, the module
triggers the slot or segment start transition SSS. This transition changes the state of the receiving receive
message buffers from either CCRx to CCSu or from HLckCCRx to HLck, respectively.

If a message buffer was in the locked state HLckCCRx, no update will be performed. The received data
are lost. This is indicated by setting the Frame Lost Channel A/B Error Flag FRLA_EF/FRLB_EF in the
CHI Error Flag Register (CHIERFR).

If a message buffer was in the CCRx state it is now in the CCSu state. After the evaluation of the slot status
provided by the PE the message buffer is updated. The message buffer update depends on the slot status
bits and the segment the message buffer is assigned to. This is described in Table 25-105.

Table 25-104. Receive Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle BS > HD Buffer Subscribed > Message Buffer Disable

HLck BS > HD Buffer Subscribed > Message Buffer Disable

CCRx SSS > HL Slot or Segment Start > Message Buffer Lock

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-112 Freescale Semiconductor

NOTE
If the number of the last slot in the current communication cycle on a given
channel is n, then all receive message buffers assigned to this channel with
MBFIDRn[FID] > n will not be updated at all.

When the receive message buffer update has finished the status updated transition SU is triggered, which
changes the buffer state from CCSu to Idle. An example receive message buffer timing and state change
diagram for a normal frame reception is given in Figure 25-129.

Figure 25-129. Message Reception Timing

Table 25-105. Receive Message Buffer Update

vSS!ValidFrame vRF!Header!NFIndicator Update description

1 1 Valid non-null frame received.
- Message Buffer Data Field updated.

- Frame Header Field updated.

- Slot Status Field updated.

- DUP:= 1
- DVAL:= 1

- MBIF:= 1

1 0 Valid null frame received.

- Message Buffer Data Field not updated.

- Frame Header Field not updated.
- Slot Status Field updated.

- DUP:= 0

- DVAL not changed
- MBIF:= 1

0 x No valid frame received.
- Message Buffer Data Field not updated.

- Frame Header Field not updated.

- Slot Status Field updated.
- DUP:= 0

- DVAL not changed.

- MBIF:= 1, if the slot was not an empty dynamic slot.
Note: An empty dynamic slot is indicated by the following frame and slot

status bit values:
vSS!ValidFrame = 0 and vSS!SyntaxError = 0 and
vSS!ContentError = 0 and vSS!BViolation = 0.

search[s+1]
MT st

art

BS

slot s

SLS SU

CCBs CCRx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

MT st
art

message receive to receive shadow buffer

SSS

CCSu

sl
ot

 s
ta

rt

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-113

The amount of message data written into the message buffer data field of the receive shadow buffer is
determined by the following items:

1. The message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (MBSSUTR).

2. The message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (MBDSR).

3. The number of bytes received over the FlexRay bus.

If the message buffer is assigned to the message buffer segment 1, and the number of received bytes is
greater than 2*MBDSR.MBSEG1DS, the controller writes only 2*MBDSR.MBSEG1DS bytes into the
message buffer data field of the receive shadow buffer. If the number of received bytes is less than
2*MBDSR.MBSEG1DS, the controller writes only the received number of bytes and will not change the
trailing bytes in the message buffer data field of the receive shadow buffer. The same holds for the message
buffer segment 2 with MBDSR.MBSEG2DS.

25.6.6.3.4 Received Message Access

To access the message data received over the FlexRay bus, the application reads the message data stored
in the message buffer data field of the corresponding receive message buffer. The access to the message
buffer data field is described in Section 25.6.3.1, “Individual Message Buffers.”

The application can read the message buffer data field if the receive message buffer is one of the states
HDis, HDisLck, or HLck. If the message buffer is in one of these states, the controller will not change the
content of the message buffer.

25.6.6.3.5 Receive Shadow Buffers Concept

The receive shadow buffer concept applies only to individual receive message buffers. The intention of
this concept is to ensure that only syntactically and semantically valid received non-null frames are
presented to the application in a receive message buffer. The basic structure of a receive shadow buffer is
described in Section 25.6.3.2, “Receive Shadow Buffers.”

The receive shadow buffers temporarily store the received frame header and message data. After the slot
boundary the slot status information is generated. If the slot status information indicates the reception of
the valid non-null frame (see Table 25-105), the controller writes the slot status into the slot status field of
the receive shadow buffer and exchanges the content of the Message Buffer Index Registers (MBIDXRn)
with the content of the corresponding internal shadow buffer index register. In all other cases, the
controller writes the slot status into the identified receive message buffer, depending on the slot status and
the FlexRay segment the message buffer is assigned to.

The shadow buffer concept, with its index exchange, results in the fact that the FlexRay memory located
message buffer associated to an individual receive message buffer changes after successful reception of a
valid frame. This means that the message buffer area in the FlexRay memory accessed by the application
for reading the received message is different from the initial setting of the message buffer. Therefore, the
application must not rely on the index information written initially into the Message Buffer Index Registers
(MBIDXRn). Instead, the index of the message buffer header field must be fetched from the Message
Buffer Index Registers (MBIDXRn).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-114 Freescale Semiconductor

25.6.6.4 Double Transmit Message Buffer

The section provides a detailed description of the functionality of the double transmit message buffers.

Double transmit message buffers are used by the application to provide the controller with the message
data to be transmitted over the FlexRay Bus. The controller uses this message buffer to provide
information to the application about the transmission process, and status information about the slot in
which message data was transmitted.

In contrast to the single transmit message buffers, the application can provide new transmission data while
the transmission of the previously provided message data is running. This scheme is called double
buffering and can be considered as a FIFO of depth 2.

Double transmit message buffers are implemented by combining two individual message buffers that form
the two sides of an double transmit message buffer. One side is called the commit side and will be accessed
by the application to provide the message data. The other side is called the transmit side and is used by the
controller to transmit the message data to the FlexRay bus. The two sides are located in adjacent individual
message buffers. The message buffer that implements the commit side has an even message buffer number
2n. The transmit side message buffer follows the commit side message buffer and has the message buffer
number 2n+1. The basic structure and data flow of a double transmit message buffer is given in
Figure 25-130.

Figure 25-130. Double Transmit Buffer Structure and Data Flow

NOTE
Both the commit and the transmit side must be configured with identical
values except for the Message Buffer Index Registers (MBIDXRn).

25.6.6.4.1 Access Regions

To certain message buffer fields, both the application and the controller have access. To ensure data
consistency, a message buffer locking scheme is implemented, which controls the exclusive access to the
data, control, and status bits of the message buffer.

The access scheme for double transmit message buffers is depicted in Figure 25-131. The given regions
represent fields that can be accessed from both the application and the controller and, thus, require access
restrictions. A description of the regions is given in Table 25-106.

Commit Side Transmit Side

Application FlexRay Bus

MB# 2n MB# 2n+1

Internal Message
Transfer

message data message data message data

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-115

Figure 25-131. Double Transmit Message Buffer Access Regions Layout

The trigger bits MBCCSRn[EDT] and MBCCSRn[LCKT], and the interrupt enable bit
MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time. The
status bits MBCCSRn[EDS] and MBCCSRn[LCKS] are not under access control and can be accessed
from the controller at any time.

The interrupt flag MBCCSRn.MBIF is not under access control and can be accessed from the application
and the controller at any time. controller set access has higher priority.

The controller restricts its access to the regions, depending on the current state of the corresponding part
of the double transmit message buffer. The application must adhere to these restrictions in order to ensure
data consistency. The states for the commit side of a double transmit message buffer are given in
Figure 25-132. A description of the states is given in Table 25-108. The states for the transmit side of a

Table 25-106. Double Transmit Message Buffer Access Regions Description

Access Description

Region
Type

Application Module

Commit Side

CFG read/write — Message Buffer Configuration

MSG read/write — Message Buffer Data and Control access

ITX — read/write Internal Message Transfer.

SS — write-only Slot Status Update

Transmit Side

CFG read/write — Message Buffer Configuration

SR — read-only Message Buffer Search

TX — read-only Internal Message Transfer, Message Transmission

SS — write-only Slot Status Update

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSR(2n)[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFR(2n)[MTM/CHA/CHB/CCF*]

MBFIDR(2n)[FID]

MBIDXR(2n)[MBIDX]

MBCCSR(2n)[MBT/MTD]

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

MBCCSR(2n+1)[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

MBCCFR(2n+1)[MTM/CHA/CHB/CCF*]

MBFIDR(2n+1)[FID]

MBIDXR(2n+1)]MBIDX]

MBCCSR(2n+1)[MBT/MTD]

Commit Side Transmit Side

CFG

MSG

CFG

ITX

SS SS

SR

TX

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-116 Freescale Semiconductor

double transmit message buffer are given in Figure 25-133. A description of the states is given in
Table 25-108. The description tables also provide the access scheme for the access regions.

The status bits MBCCSRn[EDS] and MBCCSRn[LCKS] provide the application with the required
message buffer status information. The internal status information is not visible to the application.

25.6.6.4.2 Message Buffer States

This section describes the transmit message buffer states and provides a state diagram.

Figure 25-132. Double Transmit Message Buffer State Diagram (Commit Side)

A description of the states of the commit side of a double transmit message buffer is given in Table 25-107.

Table 25-107. Double Transmit Message Buffer State Description (Commit Side)

State
MBCCSR(2n) Access Region

Description
EDS LCKS Appl. Module

common states

HDis 0 0 CFG – Disabled - Message Buffer under configuration.

Commit Side can not be used for internal message transfer.

CCITx 1 0 – ITX Internal Message Transfer - Message Buffer Data transferred from
commit side to transmit side.

commit side specific states

Idle 1 0 – ITX,
SS

Idle - Message Buffer Commit Side is idle.

Commit Side can be used for internal message transfer.

HDisLck 0 1 CFG
SS

Disabled and Locked - Message Buffer under configuration.

Commit Side can not be used for internal message transfer.

HLck 1 1 MSG
SS

Locked - Applications access to data, control, and status.

Commit Side can not be used for internal message transfer.

HDis

RESET_STATE
HD

HE
Idle

IS
IE

CCITx

HLck

HE

HL
HU

HDisLck
HU

HD

HL

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-117

Figure 25-133. Double Transmit Message Buffer State Diagram (Transmit Side)

A description of the states of the transmit side of a double transmit message buffer is given in
Table 25-108.

Table 25-108. Double Transmit Message Buffer State Description (Transmit Side)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

common states

HDis 0 0 CFG – Disabled - Message Buffer under configuration.

Excluded from message buffer search.

CCITx 1 0 – TX Internal Message Transfer - Message Buffer Data transferred from
commit side to transmit side.

transmit side specific states

Idle 1 0 – SR Idle - Message Buffer Transmit Side is idle.

Transmit Side is included in message buffer search.

CCSa 1 0 – – Slot Assigned - Message buffer assigned to next static slot.

Ready for Null Frame transmission.

CCSaCCITx 1 0 – TX Slot Assigned and Internal Message Transfer - Message buffer
assigned to next static slot and Message Buffer Data transferred
from commit side to transmit side.

CCNf 1 0 – TX Null Frame Transmission

Header is used for null frame transmission.

CCNfCCITx 1 0 – TX Null Frame Transmission and Internal Message Transfer - Header is
used for null frame transmission and Message Buffer Data
transferred from commit side to transmit side.

CCMa 1 0 – – Message Available - Message buffer is assigned to next slot and
cycle counter filter matches.

CCMaCCITx 1 0 – – Message Available and Internal Message Transfer - Message buffer
is assigned to next slot and cycle counter filter matches and
Message Buffer Data transferred from commit side to transmit side.

HDis

RESET_STATE
HD

HE
Idle

SA
DSS

SU
CCSu

CCSa CCTx

TX

CCITx CCSaCCITx CCNf

IS
IE

CCMa

IS
IE

CCNfCCITx CCMaCCITx

SSS

STS

IS

IE STS

IE
IS

DSS

MA

SSS

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-118 Freescale Semiconductor

25.6.6.4.3 Message Buffer Transitions

Application Transitions

The application transitions that can be triggered by the application using the commands described in
Table 25-109. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands can be issued on the transmit side only. Any enable or disable command
issued on the commit side will be ignored without notification. The transitions that will be triggered
depends on the value of the EDS bit. The enable and disable commands will affect both the commit side
and the transmit side at the same time. If the application triggers the disable transition HD while the
transmit side is in one of the states CCSa, CCSaCCITx, CCNf, CCNfCCITx, CCMa, CCMaCCITx, CCTx,
or CCSu, the disable transition has no effect (command is ignored) and the message buffer state is not
changed. No notification is given to the application.

Message Buffer Lock and Unlock

The lock and unlock commands can be issued on the commit side only. Any lock or unlock command
issued on the transmit side will be ignored and the double transmit buffer lock error flag DBL_EF in the
CHI Error Flag Register (CHIERFR) will be set. The transitions that will be triggered depends on the
current value of the LCKS bit. The lock and unlock commands will only affect the commit side. If the
application triggers the lock transition HL while the commit side is in the state CCITx, the message buffer
state will not be changed and the message buffer lock error flag LCK_EF in the CHI Error Flag Register
(CHIERFR) will be set.

CCTx 1 0 – TX Message Transmission - Message buffer data transmit. Payload data
from buffer transmitted

CCSu 1 0 – SS Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.
Note: The slot status field of the commit side is updated too, even if
the application has locked the commit side.

Table 25-109. Double Transmit Message Buffer Host Transitions

Transition Host Command Condition Description

HE
MBCCSR(2n + 1)[EDT] = 1

MBCCSR(2n + 1)[EDS] = 0 Application triggers message buffer enable.

HD MBCCSR(2n+1)[EDS] = 1 Application triggers message buffer disable.

HL
MBCCSR(2n)[LCKT] = 1

MBCCSR(2n)[LCKS] = 0 Application triggers message buffer lock.

HU MBCCSR(2n)[LCKS] = 1 Application triggers message buffer unlock.

Table 25-108. Double Transmit Message Buffer State Description (Transmit Side) (continued)

State
MBCCSRn Access Region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-119

Module Transitions

The module transitions that can be triggered by the controller are described in Table 25-110. The
transitions C1 and C2 apply to both sides of the message buffer and are applied at the same time. All other
controller transitions apply to the transmit side only.

Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 25-111, the module transitions have a higher priority than the
application transitions. The priorities among the controller transitions and the related states are given in
the second part of Table 25-111. These priorities apply only to the transmit side. The internal message
transmit start transition IS has tho lowest priority.

Table 25-110. Double Transmit Message Buffer Module Transitions

Transition Condition Description

common transitions

IS
see Section 25.6.6.4.5,

“Internal Message Transfer”

Internal Message Transfer Start - Start transfer of message data from commit side
to transmit side.

IE Internal Message Transfer End - Stop transfer of message data from commit side
to transmit side.

Note: The internal message transfer is stopped before the slot or segment start.

transmit side specific transitions

SA slot match and
static slot

Slot Assigned - Message buffer is assigned to next static slot.

MA slot match and
CycleCounter match

Message Available - Message buffer is assigned to next slot and cycle counter
filter matches.

TX slot start and
MBCCSR(2n + 1)[CMT] = 1

Transmission Slot Start - Slot Start and commit bit CMT is set.

In case of a dynamic slot, pLatestTx is not exceeded.

SU status updated Status Updated - Slot Status field and message buffer status flags updated.
Interrupt flag set.

STS static slot start Static Slot Start - Start of static slot.

DSS
dynamic slot start or

symbol window start or
NIT start

Dynamic Slot or Segment Start. - Start of dynamic slot or symbol window or NIT.

SSS
slot start or

symbol window start or
NIT start

Slot or Segment Start - Start of static slot or dynamic slot or symbol window or
NIT.

Table 25-111. Double Transmit Message Buffer Transition Priorities

State Priority Description

module vs. application

Idle IS > HD
IS > HL

Internal Message Transfer Start > Message Buffer Disable

Internal Message Transfer Start > Message Buffer Lock

module internal

Idle MA > SA Message Available > Slot Assigned

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-120 Freescale Semiconductor

25.6.6.4.4 Message Preparation

The application provides the message data through the commit side. The transmission itself is executed
from the transmit side. The transfer of the message data from the commit side to the transmit side is done
by the Internal Message Transfer, which is described in Section 25.6.6.4.5, “Internal Message Transfer.”

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field of the commit side and sets the commit bit CMT in the Message Buffer Configuration,
Control, Status Registers (MBCCSRn). The physical access to the message buffer data field is described
in Section 25.6.3.1, “Individual Message Buffers.”

As indicated by Table 25-107, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, or HLck. The
application can change the state of a message buffer if it issues the appropriate commands shown in
Table 25-109. The state change is indicated through the MBCCSRn[EDS] and MBCCSRn[LCKS] status
bits.

25.6.6.4.5 Internal Message Transfer

The internal message transfer transfers the message data from the commit side to the transmit side. The
internal message transfer is implemented as the swapping of the content of the Message Buffer Index
Registers (MBIDXRn) of the commit side and the transmit side. After the swapping, the commit side CMT
bit is cleared, the commit side interrupt flag MBIF is set, the transmit side CMT bit is set, and the transmit
side DVAL bit is cleared.

The conditions and the point in time when the internal message transfer is started are controlled by the
message buffer commit mode bit MCM in the Message Buffer Configuration, Control, Status Registers
(MBCCSRn). The MCM bit configures the message buffer for either the streaming commit mode or the
immediate commit mode. A detailed description is given in Streaming Commit Mode and Immediate
Commit Mode. The Internal Message Transfer is triggered with the transition IS. Both sides of the message
buffer enter one of the CCITx states. The internal message transfer is finished with the transition IE.

Streaming Commit Mode

The intention of the streaming commit mode is to ensure that each committed message is transmitted at
least once. The controller will not start the Internal Message Transfer for a message buffer as long as the
message data on the transmit side is not transmitted at least once.

The streaming commit mode is configured by clearing the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (MBCCSRn).

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start

Transmission Slot Start > Dynamic Slot Start

Table 25-111. Double Transmit Message Buffer Transition Priorities (continued)

State Priority Description

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-121

In this mode, the internal message transfer from the commit side to the transmit side is started for a double
transmit message buffer when all of the following conditions are fulfilled

1. the commit side is in the Idle state

2. the commit site message data are valid (MBCCSR(2n)[CMT] = 1)

3. the transmit side is in one of the states Idle, CCSa, or CCMa

4. the transmit side contains either no valid message data (MBCCSR(2n + 1)[CMT] = 0) or
the message data were transmitted at least once (MBCCSR(2n + 1)[DVAL] = 1)

An example of a streaming commit mode state change diagram is given in Figure 25-134. In this example,
both the commit and the transmit side do not contain valid message data and the application provides two
messages. The message buffer does not match the next slot.

Figure 25-134. Internal Message Transfer in Streaming Commit Mode

Immediate Commit Mode

The intention of the immediate commit mode is to transmit the latest data provided by the application. This
implies that it is not guaranteed that each provided message will be transmitted at least once.

The immediate commit mode is configured by setting the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (MBCCSRn).

In this mode, the internal message transfer from the commit side to the transmit side is started for one
double transmit message buffer when all of the following conditions are fulfilled

1. The commit side is in the Idle state.

2. The commit site message data are valid (MBCCSR(2n)[CMT] = 1).

3. The transmit side is in one of the states Idle, CCSa, or CCMa.

It is not checked whether the transmit side contains no valid message data or valid message data were
transmitted at least once. If message data are valid and not transmitted, they may be overwritten.

An example of a streaming commit mode state change diagram is given in Figure 25-135. In this example,
both the commit and the transmit side do not contain valid message data, and the application provides two
messages and the first message is gets overwritten. The message buffer does not match the next slot.

Idle

C
om

m
it

Tr
an

sm
it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

ot
 s

ta
rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCITx Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

Idle

no internal message transfer,
until message transmitted

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-122 Freescale Semiconductor

Figure 25-135. Internal Message Transfer in Immediate Commit Mode

25.6.6.4.6 Message Transmission

For double transmit message buffers, the message buffer search checks only the transmit side part. The
internal scheduling ensures, that the internal message transfer is stopped on the message buffer search start.
Thus, the transmit side of message buffer, that is not in its transmission or status update slot, is always in
the Idle state.

The message transmit behavior and transmission state changes of the transmit side of a double transmit
message buffer are the same as for single buffered transmit buffers, except that the transmit side of double
buffers cannot be locked by the application, that is, the HU and HL transition do not exist. Therefore, refer
to Section 25.6.6.2.5, “Message Transmission.”

25.6.6.4.7 Message Buffer Status Update

The message buffer status update behavior of the transmit side of a double transmit message buffer is the
same as for single transmit message buffers which is described in Section 25.6.6.2.7, “Message Buffer
Status Update.”

Additionally, the slot status field of the commit side is update after the update of the slot status field of the
transmit side, even if the commit side is locked by the application. This is implemented to provide the slot
status of the most recent transmission slot.

25.6.7 Individual Message Buffer Search

This section provides a detailed description of the message buffer search algorithm.

The message buffer search determines for each enabled channel if a slot s in a communication cycle c is
assigned for frame or null frame transmission or if it is subscribed for frame reception on that channel.

The message buffer search is a sequential algorithm which is invoked at the following protocol related
events:

1. NIT start

2. slot start in the static segment

3. minislot start in the dynamic segment

Idle

C
om

m
it

Tr
an

sm
it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

ot
 s

ta
rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCITx Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

CCITx Idle

IS

CCITx

IE

Idle

Idle

internal message transfer
overwrites non-transmitted message

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-123

The message buffer search within the NIT searches for message buffers assigned or subscribed to slot 1.
The message buffer search within slot n searches for message buffers assigned or subscribed to slot n+1.

In general, the message buffer search for the next slot n considers only message buffers which are

1. enable (MBCCSRn[EDS] = 1), and

2. matches the next slot n (MBFIDRn[FID] = n), and

3. are the transmit side buffer in case of a double transmit message buffer.

On top of that, for the static segment only those message buffers are considered, that match the condition
of at least one row of Table 25-112. For the dynamic segment only those message buffers are considered,
that match the condition of at least one row of Table 25-113. These message buffers are called matching
message buffers.

For each enabled channel the message buffer search may identify multiple matching message buffers.
Among all matching message buffers the message buffers with highest priority according to Table 25-112
for the static segment and according to Table 25-113 for the dynamic segment are selected.

If there are multiple message buffer with highest priority, the message buffer with the lowest message
buffer number is selected. All message buffer which have the highest priority must have a consistent
channel assignment as specified in Section 25.6.7.2, “Message Buffer Channel Assignment Consistency.”

Depending on the message buffer channel assignment the same message buffer can be found for both
channel A and channel B. In this case, this message buffer is used as described in Section 25.6.3.1,
“Individual Message Buffers.”

Table 25-112. Message Buffer Search Priority (static segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 25.6.7.1, “Message Buffer Cycle Counter Filtering.”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1
1 - 0 1 transmit buffer, matches cycle count, not committed SA

1 1 - 1 transmit buffer, matches cycle count, locked SA

2 1 - - - transmit buffer SA

3 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 4 0 1 n/a 1 receive buffer, matches cycle count, locked SB

Table 25-113. Message Buffer Search Priority (dynamic segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 25.6.7.1, “Message Buffer Cycle Counter Filtering.”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 2 0 1 n/a 1 receive buffer, matches cycle count, locked SB

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-124 Freescale Semiconductor

25.6.7.1 Message Buffer Cycle Counter Filtering

The message buffer cycle counter filter is a value-mask filter defined by the CCFE, CCFMSK, and
CCFVAL fields in the Message Buffer Cycle Counter Filter Registers (MBCCFRn). This filter determines
a set of communication cycles in which the message buffer is considered for message reception or message
transmission. If the cycle counter filter is disabled (CCFE = 0), this set of cycles consists of all
communication cycles.

If the cycle counter filter of a message buffer does not match a certain communication cycle number, this
message buffer is not considered for message transmission or reception in that communication cycle. In
case of a transmit message buffer assigned to a slot in the static segment, though, this buffer is added to
the matching message buffers to indicate the slot assignment and to trigger the null frame transmission.

The cycle counter filter of a message buffer matches the communication cycle with the number CYCCNT
if at least one of the following conditions evaluates to true:

Eqn. 25-12

Eqn. 25-13

25.6.7.2 Message Buffer Channel Assignment Consistency

The message buffer channel assignment given by the CHA and CHB bits in the Message Buffer Cycle
Counter Filter Registers (MBCCFRn) defines the channels on which the message buffer will receive or
transmit. The message buffer with number n transmits or receives on channel A if MBCCFRn[CHA] = 1
and transmits or receives on channel B if MBCCFRn[CHB] = 1.

To ensure correct message buffer operation, all message buffers assigned to the same slot and with the
same priority must have a consistent channel assignment. That means they must be either assigned to one
channel only, or must be assigned to both channels. The behavior of the message buffer search is not
defined, if both types of channel assignments occur for one slot and priority. An inconsistent channel
assignment for message buffer 0 and message buffer 1 is depicted in Figure 25-136.

Figure 25-136. Inconsistent Channel Assignment

25.6.7.3 Node Related Slot Multiplexing

The term Node Related Slot Multiplexing applies to the dynamic segment only and refers to the
functionality if there are transmit as well as receive message buffers are configured for the same slot.

According to Table 25-113 the transmit buffer is only found if the cycle counter filter matches, and the
buffer is not locked and committed. In all other cases, the receive buffer will be found. Thus, if the block
has no data to transmit in a dynamic slot, it is able to receive frames on that slot.

MBCCFRn CCFE 0=

CYCCNT & MBCCFRn CCFMSK MBCCFRn CCFVAL & MBCCFRn CCFMSK=

MB0 MBCCFR0[CHA] = 1, MBCCFR0[CHB] = 0

MB1 dual channel assignment

single channel assignmentMBFIDR0[FID] = 10

MBFIDR1[FID] = 10 MBCCFR1[CHA] = 1, MBCCFR1[CHB] = 1

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-125

25.6.7.4 Message Buffer Search Error

If the message buffer search is running while the next message buffer search start event appears, the
message buffer search is stopped and the Message Buffer Search Error Flag MSB_EF is set in the CHI
Error Flag Register (CHIERFR). This appears only if the CHI frequency is too low to search through all
message buffers within the NIT or a minislot. The message buffer result is not defined in this case. For
more details see Section 25.7.3, “Number of Usable Message Buffers.”

25.6.8 Individual Message Buffer Reconfiguration

The initial configuration of each individual message buffer can be changed even when the protocol is not
in the POC:config state. This is referred to as individual message buffer reconfiguration. The
configuration bits and fields that can be changed are given in the section on Specific Configuration Data.
The common configuration data given in the section on Specific Configuration Data cannot be
reconfigured when the protocol is out of the POC:config state.

25.6.8.1 Reconfiguration Schemes

Depending on the target and destination basic state of the message buffer that is to be reconfigured, there
are three reconfiguration schemes.

25.6.8.1.1 Basic Type Not Changed (RC1)

A reconfiguration will not change the basic type of the individual message buffer, if both the message
buffer transfer direction bit MBCCSRn[MTD] and the message buffer type bit MBCCSRn[MBT] are not
changed. This type of reconfiguration is denoted by RC1 in Figure 25-137. Single transmit and receive
message buffers can be RC1-reconfigured when in the HDis or HDisLck state. Double transmit message
buffers can be RC1-reconfigured if both the transmit side and the commit side are in the HDis state.

25.6.8.1.2 Buffer Type Not Changed (RC2)

A reconfiguration will not change the buffer type of the individual message buffer if the message buffer
buffer type bit MBCCSRn[MBT] is not changed. This type of reconfiguration is denoted by RC2 in
Figure 25-137. It applies only to single transmit and receive message buffers. Single transmit and receive
message buffers can be RC2-reconfigured when in the HDis or HDisLck state.

25.6.8.1.3 Buffer Type Changed (RC3)

A reconfiguration will change the buffer type of the individual message buffer if the message buffer type
bit MBCCSRn[MBT] is changed. This type of reconfiguration is denoted by RC3 in Figure 25-137. The
RC3 reconfiguration splits one double buffer into two single buffers or combines two single buffer into
one double buffer. In the later case, the two single message buffers must have consecutive message buffer
numbers and the smaller one must be even. Message Buffers can be RC3 reconfigured if they are in the
HDis state.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-126 Freescale Semiconductor

Figure 25-137. Message Buffer Reconfiguration Scheme

25.6.9 Receive FIFOs

This section provides the functional description of the two receive FIFOs.

25.6.9.1 Overview

The two receive FIFOs implement the queued message buffer concept defined by the FlexRay
Communications System Protocol Specification, Version 2.1 Rev A. One FIFO is assigned to channel A,
the other FIFO is assigned to channel B. Both FIFOs work completely independent from each other.

The message buffer structure of each FIFO is described in Section 25.6.3.3, “Receive FIFO.” The area in
the FlexRay memory for each of the two FIFOs is characterized by:

• The FIFO system memory base address

• The index of the first FIFO entry given by Receive FIFO Start Index Register (RFSIR)

• The number of FIFO entries and the length of each FIFO entry as given by Receive FIFO Depth
and Size Register (RFDSR)

25.6.9.2 FIFO Configuration

The FIFOs can be configured for two different locations of the system memory base address via the FIFO
address mode bit FAM in the Module Configuration Register (MCR).

25.6.9.2.1 Single System Memory Base Address Mode

This mode is configured, when the FIFO address mode flag MCR[FAM] is set to 0. In this mode, the
location of the system memory base address for the FIFO buffers is System Memory Base Address
Register (SYMBADR).

25.6.9.2.2 Dual System Memory Base Address Mode

This mode is configured, when the FIFO address mode flag MCR[FAM] is set to 1. In this mode, the
location of the system memory base address for the FIFO buffers is Receive FIFO System Memory Base
Address Register (RFSYMBADR).

single RX single TX

double TX (commit side)

double TX (transmit side)

RC1RC1

RC1

RC2

RC3RC3

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-127

The FIFO control and configuration data are given in Section 25.6.3.7, “Receive FIFO Control and
Configuration Data.” The configuration of the FIFOs consists of two steps.

The first step is the allocation of the required amount of FlexRay memory for the FlexRay window. This
includes the allocation of the message buffer header area and the allocation of the message buffer data
fields. For more details see Section 25.6.4, “FlexRay Memory Layout.”

The second step is the programming of the configuration data register while the PE is in POC:config.

The following steps configure the layout of the FIFO.

• Configure the FIFO update and address modes in Module Configuration Register (MCR)

• Configure the FIFO system memory base address

• Configure the Receive FIFO Start Index Register (RFSIR) with the first message buffer header
index that belongs to the FIFO

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO entry size

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO depth

• Configure the FIFO Filters

25.6.9.3 FIFO Periodic Timer

The FIFO periodic timer is used to generate an FIFO almost-full interrupt at certain point in time, if the
almost-full watermark is not reached, but the FIFO is not empty. This can be used to prevent frames from
get stuck in the FIFO for a long time.

The FIFO periodic timer is configured via the Receive FIFO Periodic Timer Register (RFPTR). If the
periodic timer duration RFPTIR[PTD] is configured to 0x0000, the periodic timer is continuously expired.
If the periodic timer duration RFPTIR[PTD] is configured to 0x3FFF, the periodic timer never expires. If
the periodic timer is configured to a value ptd, greater than 0x0000 and smaller 0x3FFF, the periodic timer
expires and is restarted at the start of every communication cycle, and expires and is restarted after ptd
macroticks have been elapsed.

25.6.9.4 FIFO Reception

The FIFO reception is a controller internal operation.

A message frame reception is directed into the FIFO, if no individual message buffer is assigned for
transmission or subscribed for reception for the current slot. In this case the FIFO filter path shown in
Figure 25-138 is activated.

If the FIFO filter path indicates that the received frame has to be appended to the FIFO and the FIFO is
not full, the controller writes the received frame header into the message buffer header field indicated by
the controller internal FIFO write index. The frame payload data are written into the corresponding
message buffer data field. If the status of the received frame indicates a valid non-null frame, the slot status
information is written into the message buffer header field and the controller internal FIFO write index is
updated by 1 and the fifo fill level FLA (FLB) in the Receive FIFO Fill Level and POP Count Register
(RFFLPCR) is incremented.If the status of the received frame indicates an invalid or null frame, the frame
is not appended to the FIFO.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-128 Freescale Semiconductor

25.6.9.5 FIFO Almost-Full Interrupt Generation

If the fifo fill level FLA (FLB) is updated after a frame reception and exceeds the FIFO watermark level
WM, i.e. FLA>WMA (FLB>WMB), then the FIFO almost-full interrupt flag GIFER[FAFAIF]
(GIFER[FAFBIF]) is asserted.If the periodic timer expires, and FIFOA (FIFOB) is not empty, i.e. FLA>0
(FLB>0), then the FIFO almost-full interrupt flag GIFER[FAFAIF] (GIFER[FAFBIF]) is asserted.

25.6.9.6 FIFO Overflow Error Generation

If the FIFOA (FIFOB) is full, i.e. FLA=FIFO_DEPTHA (FLB=FIFO_DEPTHB) and the conditions for a
FIFO reception as described in Section 25.6.9.4, “FIFO Reception,” are fulfilled, then the fifo overflow
error flag CHIERFR[FOVA_EF] (CHIERFR[FOVB_EF]) is asserted.

25.6.9.7 FIFO Message Access

The FIFOA (FIFOB) contains valid messages if the FIFO fill level FLA (FLB) is greater than 0. The
Receive FIFO A Read Index Register (RFARIR) (Receive FIFO B Read Index Register (RFBRIR))
pointing to a message buffer with valid content and the oldest frames stored in the FIFO.

If the FIFO fill level FLA (FLB) is 0, than the FIFOA (FIFOB) contains no valid messages and the Receive
FIFO A Read Index Register (RFARIR) (Receive FIFO B Read Index Register (RFBRIR)) pointing to a
message buffer with invalid content. In this case the application must not read data from the FIFO.

To access the oldest message in the FIFOA (FIFOB), the application first reads the read index RDIDX out
of the Receive FIFO A Read Index Register (RFARIR) (Receive FIFO B Read Index Register (RFBRIR)).
This read index points to the message buffer header field of the oldest message buffer that contains valid
received message data. The application can access the message data as described in Section 25.6.3.3,
“Receive FIFO.” When the application has read the message buffer data and status information, it can
update the FIFO as described in Section 25.6.9.8, “FIFO Update.”

25.6.9.8 FIFO Update

The application updates the FIFOA (FIFOB) by writing a pop count value pc different from 0 to the
PCA (PCB) field in the Receive FIFO Fill Level and POP Count Register (RFFLPCR).

As a result of the this operation, the controller removes the oldest pc entries from FIFOA (FIFOB).

If the specified pop count value pc is greater than the current fill level fl provided in FLA (FAB) field, then
only fl entries are removed from the FIFOA (FIFOB), the remaining fl-pc requested pop operations are
discarded without any notification. In this case FIFOA (FIFOB) is empty after the update operation.

The read index in the Receive FIFO A Read Index Register (RFARIR) (Receive FIFO B Read Index
Register (RFBRIR)) is incremented by the number of removed items. If the read index reaches the top of
the FIFO, it wraps around to the FIFO start index defined in Receive FIFO Start Index Register (RFSIR)
automatically.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-129

25.6.9.8.1 FIFO Interrupt Flag Update

Th FIFO Interrupt Flag Update mode is configured, when the FIFO update mode flag MCR[FUM] is set
to 0. In this mode FIFOA (FIFOB) will be updated by 1 entry, when the interrupt flag GIFER[FAFAIF]
(GIFER[FAFBIF]) is written with 1 by the application.

If the FIFO is empty, the update request is ignored without any notification.

The read index in the Receive FIFO A Read Index Register (RFARIR) (Receive FIFO B Read Index
Register (RFBRIR)) is incremented by 1, if the FIFO was not empty. If the read index reaches the top of
the FIFO, it wraps around to the FIFO start index automatically.

25.6.9.9 FIFO Filtering

The FIFO filtering is activated after all enabled individual receive message buffers have been searched
without success for a message buffer to receive the current frame.

The controller provides three sets of FIFO filters. The FIFO filters are applied to valid non-null frames
only. The FIFO will not receive invalid or null-frames. For each FIFO filter, the pass criteria is specified
in the related section given below. Only frames that have passed all filters will be appended to the FIFO.
The FIFO filter path is depicted in Figure 25-138.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-130 Freescale Semiconductor

Figure 25-138. Received Frame FIFO Filter Path

Valid Frame Received (vRF)

Individual

Null Frame

Frame ID Value-

Frame ID

Append to FIFO (vRF)

Frame ID

No

Frame Received

FIFO full

Set FIFO Overflow Interrupt Flag

Message Buffer Found
?

No

Passed

Passed

Passed

Yes

(vRF!Header!NFIndicator=0)
?

Mask Rejection Filter
?

Range Rejection Filter
?

Range Acceptance Filter
?

in Dynamic Segment
?

?

Store Into Message Buffer (vRF)

Yes

No

Else

Ignore frame

Yes

Else

Else

Message ID
(vRF!Header!PPIndicator=1)

?

Message ID

Yes

Passed

Acceptance Filter
?

No

Yes

No

Else

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-131

A received frame passes the FIFO filtering if it has passed all three type of filter.

25.6.9.9.1 RX FIFO Frame ID Value-Mask Rejection Filter

The frame ID value-mask rejection filter is a value-mask filter and is defined by the fields in the Receive
FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR) and the Receive FIFO Frame ID Rejection
Filter Mask Register (RFFIDRFMR). Each received frame with a frame ID FID that does not match the
value-mask filter value passes the filter, i.e. is not rejected.

Consequently, a received valid frame with the frame ID FID passes the RX FIFO Frame ID Value-Mask
Rejection Filter if Equation 25-14 is fulfilled.

Eqn. 25-14

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to pass all frames by the following
settings.

• RFFIDRFVR[FIDRFVAL]:= 0x000 and RFFIDRFMR[FIDRFMSK]:= 0x7FF

Using the settings above, only the frame with frame ID 0 will be rejected, which is an invalid frame. All
other frames will pass.

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to reject all frames by the
following settings.

• RFFIDRFMR[FIDRFMSK]:= 0x000

Using the settings above, Equation 25-14 can never be fulfilled (0!= 0) and thus all frames are rejected; no
frame will pass. This is the reset value for the RX FIFO.

25.6.9.9.2 RX FIFO Frame ID Range Rejection Filter

Each of the four RX FIFO Frame ID Range filters can be configured as a rejection filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (RFRFCFR) and controlled by the
Receive FIFO Range Filter Control Register (RFRFCTR). The RX FIFO Frame ID range filters apply to
all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID Range
rejection filters if either no rejection filter is enabled, or, for all of the enabled RX FIFO Frame ID Range
rejection filters, i.e. RFRFCTR.FiMD = 1 and RFRFCTR.FiEN = 1, Equation 25-15 is fulfilled.

Eqn. 25-15

Consequently, all frames with a frame ID that fulfills Equation 25-16 for at least one of the enabled
rejection filters will be rejected and thus not pass.

Eqn. 25-16

25.6.9.9.3 RX FIFO Frame ID Range Acceptance filter

Each of the four RX FIFO Frame ID Range filters can be configured as an acceptance filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (RFRFCFR) and controlled by the
Receive FIFO Range Filter Control Register (RFRFCTR). The RX FIFO Frame ID range filters apply to
all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID Range

ID & RFFIDRFMR FIDRFMSK RFFIDRFVR FIDRFVAL & RFFIDRFMR FIDRFMSK

FID RFRFCFRSEL SIDIBD 0= or RFRFCFRSEL SIDIBD 1= FID

RFRFCFRSEL SIDIBD 0= FID RFRFCFRSEL SIDIBD 1=

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-132 Freescale Semiconductor

acceptance filters if either no acceptance filter is enabled, or, for at least one of the enabled RX FIFO Frame
ID Range acceptance filters, i.e. RFRFCTR.FiMD = 0 and RFRFCTR.FiEN = 1, Equation 25-17 is
fulfilled.

Eqn. 25-17

25.6.9.9.4 RX FIFO Message ID Acceptance Filter

The RX FIFO Message ID Acceptance Filter is a value-mask filter and is defined by the Receive FIFO
Message ID Acceptance Filter Value Register (RFMIDAFVR) and the Receive FIFO Message ID
Acceptance Filter Mask Register (RFMIAFMR). This filter applies only to valid frames received in the
dynamic segment with the payload preamble indicator bit PPI set to 1. All other frames will pass this filter.

A received valid frame in the dynamic segment with the payload preamble indicator bit PPI set to 1 and
with the message ID MID (the first two bytes of the payload) will pass the RX FIFO Message ID
Acceptance Filter if Equation 25-18 is fulfilled.

Eqn. 25-18

The RX FIFO Message ID Acceptance Filter can be configured to accept all frames by setting

• RFMIDAFMR[MIDAFMSK]:= 0x000

Using the settings above, Equation 25-18 is always fulfilled and all frames will pass.

25.6.10 Channel Device Modes

This section describes the two FlexRay channel device modes that are supported by the controller.

25.6.10.1 Dual Channel Device Mode

In the dual channel device mode, both FlexRay ports are connected to physical FlexRay bus lines. The
FlexRay port consisting of FR_A_RX, FR_A_TX, and FR_A_TX_EN is connected to the physical bus
channel A and the FlexRay port consisting of FR_B_RX, FR_B_TX, and FR_B_TX_EN is connected to
the physical bus channel B. The dual channel system is shown in Figure 25-139.

 RFRFCFRSEL SIDIBD 0= FID RFRFCFRSEL SIDIBD 1=

MID & RFMIDAFMR MIDAFMSK RFMIDAFMR MIDAFVAL & RFMIDAFMR MIDAFMSK=

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-133

Figure 25-139. Dual Channel Device Mode

25.6.10.2 Single Channel Device Mode

The single channel device mode supports devices that have only one FlexRay port available. This FlexRay
port consists of the signals FR_A_RX, FR_A_TX, and FR_A_TX_EN and can be connected to either the
physical bus channel A (shown in Figure 25-140) or the physical bus channel B (shown in Figure 25-141).

If the device is configured as a single channel device by setting MCR.SCD to 1, only the internal channel
A and the FlexRay Port A is used. Depending on the setting of MCR.CHA and MCR.CHB, the internal
channel A behaves either as a FlexRay Channel A or FlexRay Channel B. The bit MCR.CHA must be set,
if the FlexRay Port A is connected to a FlexRay Channel A. The bit MCR.CHB must be set if the FlexRay
Port A is connected to a FlexRay Channel B. The two FlexRay channels differ only in the initial value for
the frame CRC cCrcInit. For a single channel device, the application can access and configure only the
registers related to internal channel A.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel 0

channel 1

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FlexRay Channel B
FlexRay Bus Driver

Channel B

FR_B_RX

FR_B_TX

FR_B_TX_EN

FlexRay

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-134 Freescale Semiconductor

Figure 25-140. Single Channel Device Mode (Channel A)

Figure 25-141. Single Channel Device Mode (Channel B)

25.6.11 External Clock Synchronization

The application of the external rate and offset correction is triggered when the application writes to the
EOC_AP and ERC_AP fields in the Protocol Operation Control Register (POCR). The PE applies the
external correction values in the next even-odd cycle pair as shown in Figure 25-142 and Figure 25-143.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FlexRay

CHI PE

cfg(A)

reg(A)

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel B

Init Value for Frame CRC is cCrcInit[B]cCrcInit[A]

FlexRay Bus Driver
Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FlexRay

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-135

NOTE
The values provided in the EOC_AP and ERC_AP fields are the values that
were written from the application most recently. If these value were already
applied, they will not be applied in the current cycle pair again.

If the offset correction applied in the NIT of cycle 2n+1 shall be affect by the external offset correction,
the EOC_AP field must be written to after the start of cycle 2n and before the end of the static segment of
cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle 2n+1. If the value is not applied in cycle 2n+1, then
the value will be applied in the cycle 2n+3. Refer to Figure 25-142 for timing details.

Figure 25-142. External Offset Correction Write and Application Timing

If the rate correction for the cycle pair [2n+2, 2n+3] shall be affect by the external offset correction, the
ERC_AP field must be written to after the start of cycle 2n and before the end of the static segment start
of cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle pair [2n+2, 2n+3]. If the value is not applied for cycle
pair [2n+2, 2n+3], then the value will be applied for cycle pair [2n+4, 2n+5]. Refer to Figure 25-143 for
details.

Figure 25-143. External Rate Correction Write and Application Timing

25.6.12 Sync Frame ID and Sync Frame Deviation Tables

The FlexRay protocol requires the provision of a snapshot of the Synchronization Frame ID tables for the
even and odd communication cycle for both channels. The controller provides the means to write a copy
of these internal tables into the FlexRay memory and ensures application access to consistent tables by
means of table locking. Once the application has locked the table successfully, the controller will not
overwrite these tables and the application can read a consistent snapshot.

NOTE
Only synchronization frames that have passed the synchronization frame
filters are considered for clock synchronization and appear in the sync frame
tables.

static segment NIT static segment NIT

EOC_AP write window EOC_AP application

cycle 2n cycle 2n+1

static segment NIT

ERC_AP write window ERC_AP application

cycle 2n

static segment NIT

cycle 2n+1

static segment NIT

cycle 2n+2

static segment NIT

cycle 2n+3

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-136 Freescale Semiconductor

25.6.12.1 Sync Frame ID Table Content

The Sync Frame ID Table is a snapshot of the protocol related variables vsSyncIdListA and vsSyncIdListB
for each even and odd communication cycle. This table provides a list of the frame IDs of the
synchronization frames received on the corresponding channel and cycle that are used for the clock
synchronization.

25.6.12.2 Sync Frame Deviation Table Content

The Sync Frame Deviation Table is a snapshot of the protocol related variable zsDev(id)(oe)(ch)!Value.
Each Sync Frame Deviation Table entry provides the deviation value for the sync frame, with the frame
ID presented in the corresponding entry in the Sync Frame ID Table.

Figure 25-144. Sync Table Memory Layout

25.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup

The controller writes a copy of the internal synchronization frame ID and deviation tables into the FlexRay
memory if requested by the application. The application must provide the appropriate amount of FlexRay
memory for the tables. The memory layout of the tables is given in Figure 25-144. Each table occupies 120
16-bit entries.

SFTOR SFTOR + 180

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

SFTOR + 60 SFTOR +120

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

Offset + $00
Offset + $02
Offset + $04
Offset + $06
Offset + $08
Offset + $0A
Offset + $0C
Offset + $0E
Offset + $10
Offset + $12
Offset + $14
Offset + $16
Offset + $18
Offset + $1A
Offset + $1C

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Offset + $1E
Offset + $20
Offset + $22
Offset + $24
Offset + $26
Offset + $28
Offset + $2A
Offset + $2C
Offset + $2E
Offset + $30
Offset + $32
Offset + $34
Offset + $36
Offset + $38
Offset + $3A

SFCNTR
SFEVA
SFEVB

SFCNTR
SFODA
SFODB

EVEN ODD EVEN ODD

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-137

While the protocol is in POC:config state, the application must program the offsets for the tables into the
Sync Frame Table Offset Register (SFTOR).

25.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation

The application controls the generation process of the Sync Frame ID and Sync Frame Deviation Tables
into the FlexRay memory using the Sync Frame Table Configuration, Control, Status Register
(SFTCCSR). A summary of the copy modes is given in Table 25-114.

The Sync Frame Table generation process is described in the following for the even cycle. The same
sequence applies to the odd cycle.

If the application has enabled the sync frame table generation by setting SFTCCSR.SIDEN to 1, the
controller starts the update of the even cycle related tables after the start of the NIT of the next even cycle.
The controller checks if the application has locked the tables by reading the SFTCCSR.ELKS lock status
bit. If this bit is set, the controller will not update the table in this cycle. If this bit is cleared, the controller
locks this table and starts the table update. To indicate that these tables are currently updated and may
contain inconsistent data, the controller clears the even table valid status bit SFTCCSR[EVAL]. Once all
table entries related to the even cycle have been transferred into the FlexRay memory, the controller sets
the even table valid bit SFTCCSR[EVAL] and the Even Cycle Table Written Interrupt Flag EVT_IF in the
Protocol Interrupt Flag Register 1 (PIFR1). If the interrupt enable flag EVT_IE is set, an interrupt request
is generated.

To read the generated tables, the application must lock the tables to prevent the controller from updating
these tables. The locking is initiated by writing a 1 to the even table lock trigger SFTCCSR.ELKT. When
the even table is not currently updated by the controller, the lock is granted and the even table lock status
bit SFTCCSR.ELKS is set. This indicates that the application has successfully locked the even sync tables
and the corresponding status information fields SFRA, SFRB in the Sync Frame Counter Register
(SFCNTR). The value in the SFTCCSR.CYCNUM field provides the number of the cycle that this table
is related to.

The number of available table entries per channel is provided in the SFCNTR.SFEVA and
SFCNTR.SFEVB fields. The application can now start to read the sync table data from the locations given
in Figure 25-144.

Table 25-114. Sync Frame Table Generation Modes

SFTCCSR
Description

OPT SDVEN SIDEN

0 0 0 No Sync Frame Table copy

0 0 1 Sync Frame ID Tables will be copied continuously

0 1 0 Reserved

0 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables will be copied continuously

1 0 0 No Sync Frame Table copy

1 0 1 Sync Frame ID Tables for next even-odd-cycle pair will be copied

0 1 0 Reserved

1 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables for next even-odd-cycle pair will be
copied

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-138 Freescale Semiconductor

After reading all the data from the locked tables, the application must unlock the table by writing to the
even table lock trigger SFTCCSR.ELKT again. The even table lock status bit SFTCCSR.ELKS is reset
immediately.

If the sync frame table generation is disabled, the table valid bits SFTCCSR[EVAL] and
SFTCCSR[EVAL] are reset when the counter values in the Sync Frame Counter Register (SFCNTR) are
updated. This is done because the tables stored in the FlexRay memory are no longer related to the values
in the Sync Frame Counter Register (SFCNTR).

Figure 25-145. Sync Frame Table Trigger and Generation Timing

25.6.12.5 Sync Frame Table Access

The sync frame tables will be transferred into the FlexRay memory during the table write windows shown
in Figure 25-145. During the table write, the application cannot lock the table that is currently written. If
the application locks the table outside of the table write window, the lock is granted immediately.

25.6.12.5.1 Sync Frame Table Locking and Unlocking

The application locks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT in
the Sync Frame Table Configuration, Control, Status Register (SFTCCSR). If the affected table is not
currently written to the FlexRay memory, the lock is granted immediately, and the lock status bit
ELKS/OLKS is set. If the affected table is currently written to the FlexRay memory, the lock is not granted.
In this case, the application must issue the lock request again until the lock is granted.

The application unlocks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT.
The lock status bit ELKS/OLKS is cleared immediately.

25.6.13 MTS Generation

The controller provides a flexible means to request the transmission of the Media Access Test Symbol
MTS in the symbol window on channel A or channel B.

The application can configure the set of communication cycles in which the MTS will be transmitted over
the FlexRay bus by programming the CYCCNTMSK and CYCCNTVAL fields in the MTS A
Configuration Register (MTSACFR) and MTS B Configuration Register (MTSBCFR).

The application enables or disables the generation of the MTS on either channel by setting or clearing the
MTE control bit in the MTS A Configuration Register (MTSACFR) or MTS B Configuration Register
(MTSBCFR). If an MTS is to be transmitted in a certain communication cycle, the application must set
the MTE control bit during the static segment of the preceding communication cycle.

The MTS is transmitted over channel A in the communication cycle with number CYCCNT, if
Equation 25-20, Equation 25-21, and Equation 25-21 are fulfilled.

SFTCCSR.[OPT,SIDEN,SDVEN] write window
even table write

static segment NIT static segment NIT static segment NIT

cycle 2n-1 cycle 2n cycle 2n+1

odd table write

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-139

Eqn. 25-19

Eqn. 25-20

Eqn. 25-21

The MTS is transmitted over channel B in the communication cycle with number CYCCNT, if
Equation 25-19, Equation 25-22, and Equation 25-23 are fulfilled.

Eqn. 25-22

Eqn. 25-23

25.6.14 Key Slot Transmission

25.6.14.1 Key Slot Assignment

A key slot is assigned to the controller if the key_slot_id field in the Protocol Configuration Register 18
(PCR18) is configured with a value greater than 0 and less or equal to number_of_static_slots in Protocol
Configuration Register 2 (PCR2), otherwise no key slot is assigned.

25.6.14.2 Key Slot Transmission in POC:startup

If a key slot is assigned and the controller is in the POC:startup state, startup null frames will be
transmitted as specified by FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

25.6.14.3 Key Slot Transmission in POC:normal active

If a key slot is assigned and the controller is in POC:normal active, a frame of the type as shown in
Table 25-115 is transmitted. If a transmit message buffer is configured for the key slot and a valid message
is available, a message frame is transmitted (see Section 25.6.6.2.5, “Message Transmission”). If no
transmit message buffer is configured for the key slot or no valid message is available, a null frame is
transmitted (see Section 25.6.6.2.6, “Null Frame Transmission”).

25.6.15 Sync Frame Filtering

Each received synchronization frame must pass the Sync Frame Acceptance Filter and the Sync Frame
Rejection Filter before it is considered for clock synchronization. If the synchronization frame filtering is

Table 25-115. Key Slot Frame Type

PCR11[key_slot_used_for_sync] PCR11[key_slot_used_for_startup] key slot frame type

0 0 normal frame

0 1 normal frame1

1 The frame transmitted has an semantically incorrect header and will be detected as an invalid frame at the receiver.

1 0 sync frame

1 1 startup frame

PSR0 PROTSTATE POC:normal active=

MTSACRF MTE 1=

CYCCNT & MTSACFR CYCCNTMSK MTSACFR CYCCNTVAL & MTSACFR CYCCNTMSK=

MTSBCRF MTE 1=

YCCNT & MTSBCFR CYCCNTMSK MTSBCFR CYCCNTVAL & MTSBCFR CYCCNTMSK=

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-140 Freescale Semiconductor

globally disabled (the SFFE control bit in the Module Configuration Register (MCR) is cleared), all
received synchronization frames are considered for clock synchronization. If a received synchronization
frame did not pass at least one of the two filters, this frame is processed as a normal frame and is not
considered for clock synchronization.

25.6.15.1 Sync Frame Acceptance Filtering

The synchronization frame acceptance filter is implemented as a value-mask filter. The value is configured
in the Sync Frame ID Acceptance Filter Value Register (SFIDAFVR) and the mask is configured in the
Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR). A received synchronization frame with
the frame ID FID passes the sync frame acceptance filter, if Equation 25-24 or Equation 25-25evaluates to
true.

Eqn. 25-24

Eqn. 25-25

NOTE
Sync frames are transmitted in the static segment only. Thus FID < 1023.

25.6.15.2 Sync Frame Rejection Filtering

The synchronization frame rejection filter is a comparator. The compare value is defined by the Sync
Frame ID Rejection Filter Register (SFIDRFR). A received synchronization frame with the frame ID FID
passes the sync frame rejection filter if Equation 25-26 or Equation 25-27 evaluates to true.

Eqn. 25-26

Eqn. 25-27

NOTE
Sync frames are transmitted in the static segment only. Thus FID < 1023.

25.6.16 Strobe Signal Support

The controller provides a number of strobe signals for observing internal protocol timing related signals
in the protocol engine. The signals are listed and described in Table 25-12.

25.6.16.1 Strobe Signal Assignment

Each of the strobe signals listed in Table 25-12 can be assigned to one of the four strobe ports using the
Strobe Signal Control Register (STBSCR). To assign multiple strobe signals, the application must write
multiple times to the Strobe Signal Control Register (STBSCR) with appropriate settings.

To read out the current settings for a strobe signal with number N, the application must execute the
following sequence.

1. Write to STBSCR with WMD = 1 and SEL = N. (updates SEL field only)

MCR SFFE 0=

ID & SFIDAFMR FMSK SFIDAFVR FVAL & SFIDAFMR FMSK=

MCR SFFE 0=

FID SFIDRFR SYNFRID

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-141

2. Read STBCSR.
The SEL field provides N and the ENB and STBPSEL fields provides the settings for signal N.

25.6.16.2 Strobe Signal Timing

This section provides detailed timing information of the strobe signals with respect to the protocol engine
clock.

The strobe signals display internal PE signals. Due to the internal architecture of the PE, some signals are
generated several PE clock cycles before the actual action is performed on the FlexRay Bus. These signals
are listed in Table 25-12 with a negative clock offset. An example waveform is given in Figure 25-146.

Figure 25-146. Strobe Signal Timing (type = pulse, clk_offset = -2)

Other signals refer to events that occurred on the FlexRay Bus some cycles before the strobe signal is
changed. These signals are listed in Table 25-12 with a positive clock offset. An example waveform is
given in Figure 25-147.

Figure 25-147. Strobe Signal Timing (type = pulse, clk_offset = +4)

25.6.17 Timer Support

The controller provides two timers, which run on the FlexRay time base. Each timer generates a maskable
interrupt when it reaches a configured point in time. Timer T1 is an absolute timer. Timer T2 can be
configured to be an absolute or a relative timer. Both timers can be configured to be repetitive. In the
non-repetitive mode, timer stops if it expires. In repetitive mode, timer is restarted when it expires.

Both timers are active only when the protocol is in POC:normal active or POC:normal passive state. If
the protocol is not in one of these modes, the timers are stopped. The application must restart the timers
when the protocol has reached the POC:normal active or POC:normal passive state.

PE Clock

Strobe Signal

FlexRay Bus Event

-2

PE Clock

Strobe Signal

FlexRay Bus Event
+4

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-142 Freescale Semiconductor

25.6.17.1 Absolute Timer T1

The absolute timer T1 has the protocol cycle count and the macrotick count as the time base. The timer 1
interrupt flag TI1_IF in the Protocol Interrupt Flag Register 0 (PIFR0) is set at the macrotick start event,
if Equation 25-28 and Equation 25-29 are fulfilled.

Eqn. 25-28

Eqn. 25-29

If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (PIER0) is asserted,
an interrupt request is generated.

The status bit T1ST is set when the timer is triggered, and is cleared when the timer expires and is
non-repetitive. If the timer expires but is repetitive, the T1ST bit is not cleared and the timer is restarted
immediately. The T1ST is cleared when the timer is stopped.

25.6.17.2 Absolute / Relative Timer T2

The timer T2 can be configured to be an absolute or relative timer by setting the T2_CFG control bit in the
Timer Configuration and Control Register (TICCR). The status bit T2ST is set when the timer is triggered,
and is cleared when the timer expires and is non-repetitive. If the timer expires but is repetitive, the T2ST
bit is not cleared and the timer is restarted immediately. The T2ST is cleared when the timer is stopped.

25.6.17.2.1 Absolute Timer T2

If timer T2 is configured as an absolute timer, it has the same functionality timer T1 but the configuration
from Timer 2 Configuration Register 0 (TI2CR0) and Timer 2 Configuration Register 1 (TI2CR1) is used.
On expiration of timer T2, the interrupt flag TI2_IF in the Protocol Interrupt Flag Register 0 (PIFR0) is
set. If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (PIER0) is
asserted, an interrupt request is generated.

25.6.17.2.2 Relative Timer T2

If the timer T2 is configured as a relative timer, the interrupt flag TI2_IF in the Protocol Interrupt Flag
Register 0 (PIFR0) is set, when the programmed amount of macroticks MT[31:0], defined by Timer 2
Configuration Register 0 (TI2CR0) and Timer 2 Configuration Register 1 (TI2CR1), has expired since the
trigger or restart of timer 2. The relative timer is implemented as a down counter and expires when it has
reached 0. At the macrotick start event, the value of MT[31:0] is checked and then decremented. Thus, if
the timer is started with MT[31:0] == 0, it expires at the next macrotick start.

25.6.18 Slot Status Monitoring

The controller provides several means for slot status monitoring. All slot status monitors use the same slot
status vector provided by the PE. The PE provides a slot status vector for each static slot, for each dynamic
slot, for the symbol window, and for the NIT, on a per channel base. The content of the slot status vector

CYCTR CTCCNT & TI1CYSR T1_CYC_MSK TI1CYSR T1_CYC_VAL & TI1CYSR T1_CYC_MSK =

MTCTR MTCT TI1MTOR T1_MTOFFSET =

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-143

is described in Table 25-116. The PE provides the slot status vector within the first macrotick after the end
of the related slot/window/NIT, as shown in Figure 25-148.

Figure 25-148. Slot Status Vector Update

NOTE
The slot status for the NIT of cycle n is provided after the start of cycle n + 1.

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1

M
T

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-144 Freescale Semiconductor

25.6.18.1 Channel Status Error Counter Registers

The two channel status error counter registers, Channel A Status Error Counter Register (CASERCR) and
Channel B Status Error Counter Register (CBSERCR), incremented by one, if at least one of four slot
status error bits, vSS!SyntaxError, vSS!ContentError, vSS!BViolation, or vSS!TxConflict is set to 1. The
status vectors for all slots in the static and dynamic segment, in the symbol window, and in the NIT are
taken into account. The counters wrap round after they have reached the maximum value.

Table 25-116. Slot Status Content

Status Content

 static /
dynamic

Slot

slot related status
vSS!ValidFrame – valid frame received

vSS!SyntaxError – syntax error occurred while receiving

vSS!ContentError– content error occurred while receiving

vSS!BViolation – boundary violation while receiving
for slots in which the module transmits:

vSS!TxConflict – reception ongoing while transmission starts

for slots in which the module does not transmit:
vSS!TxConflict – reception ongoing while transmission starts

first valid – channel that has received the first valid frame

received frame related status
extracted from

a) header of valid frame, if vSS!ValidFrame = 1

b) last received header, if vSS!ValidFrame = 0
c) set to 0, if nothing was received

vRF!Header!NFIndicator – Null Frame Indicator (0 for null frame)

vRF!Header!SuFIndicator – Startup Frame Indicator
vRF!Header!SyFIndicator – Sync Frame Indicator

Symbol
Window

window related status

vSS!ValidFrame – always 0

vSS!ContentError – content error occurred while receiving
vSS!SyntaxError – syntax error occurred while receiving

vSS!BViolation – boundary violation while receiving

vSS!TxConflict – reception ongoing while transmission starts
received symbol related status

vSS!ValidMTS – valid Media Test Access Symbol received

received frame related status
see static/dynamic slot

NIT NIT related status

vSS!ValidFrame – always 0

vSS!ContentError – content error occurred while receiving
vSS!SyntaxError – syntax error occurred while receiving

vSS!BViolation – boundary violation while receiving

vSS!TxConflict – always 0
received frame related status

see static/dynamic slot

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-145

25.6.18.2 Protocol Status Registers

The Protocol Status Register 2 (PSR2) provides slot status information about the Network Idle Time NIT
and the Symbol Window. The Protocol Status Register 3 (PSR3) provides aggregated slot status
information.

25.6.18.3 Slot Status Registers

The eight slot status registers, Slot Status Registers (SSR0–SSR7), can be used to observe the status of
static slots, dynamic slots, the symbol window, or the NIT without individual message buffers. These
registers provide all slot status related and received frame / symbol related status information, as given in
Table 25-116, except of the first valid indicator for non-transmission slots.

25.6.18.4 Slot Status Counter Registers

The controller provides four slot status error counter registers, Slot Status Counter Registers
(SSCR0–SSCR3). Each of these slot status counter registers is updated with the value of an internal slot
status counter at the start of a communication cycle. The internal slot status counter is incremented if its
increment condition, defined by the Slot Status Counter Condition Register (SSCCR), matches the status
vector provided by the PE. All static slots, the symbol window, and the NIT status are taken into account.
Dynamic slots are excluded. The internal slot status counting and update timing is shown in Figure 25-149.

Figure 25-149. Slot Status Counting and SSCRn Update

The PE provides the status of the NIT in the first slot of the next cycle. Due to these facts, the SSCRn
register reflects, in cycle n, the status of the NIT of cycle n – 2, and the status of all static slots and the
symbol window of cycle n – 1.

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1
M

T

incr. SSCRn_INT on error incr. SSCRn_INT on error

SSCRn:= SSCRn_INT

SSCRn_INT not updated

SSCRn:= SSCRn_INT

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-146 Freescale Semiconductor

The increment condition for each slot status counter consists of two parts, the frame related condition part
and the slot related condition part. The internal slot status counter SSCRn_INT is incremented if at least
one of the conditions is fulfilled:

1. frame related condition:

• (SSCCRn.VFR | SSCCRn.SYF | SSCCRn.NUF | SSCCRn.SUF) // count on frame condition = 1;

and

• ((~SSCCRn.VFR | vSS!ValidFrame) & // valid frame restriction
(~SSCCRn.SYF | vRF!Header!SyFIndicator) & // sync frame indicator restriction
(~SSCCRn.NUF | ~vRF!Header!NFIndicator) & // null frame indicator restriction
(~SSCCRn.SUF | vRF!Header!SuFIndicator)) // startup frame indicator restriction = 1;

NOTE
The indicator bits SYF, NUF, and SUF are valid only when a valid frame
was received. Thus it is required to set the VFR always, whenever count on
frame condition is used.

2. slot related condition:

• ((SSCCRn.STATUSMASK[3] & vSS!ContentError) | // increment on content error
(SSCCRn.STATUSMASK[2] & vSS!SyntaxError) | // increment on syntax error
(SSCCRn.STATUSMASK[1] & vSS!BViolation) | // increment on boundary violation
(SSCCRn.STATUSMASK[0] & vSS!TxConflict)) // increment on transmission conflict = 1;

If the slot status counter is in single cycle mode (SSCCRn.MCY = 0), the internal slot status counter
SSCRn_INT is reset at each cycle start. If the slot status counter is in the multicycle mode
(SSCCRn.MCY = 1), the counter is not reset and incremented, until the maximum value is reached.

25.6.18.5 Message Buffer Slot Status Field

Each individual message buffer and each FIFO message buffer provides a slot status field, which provides
the information shown in Table 25-116 for the static/dynamic slot. The update conditions for the slot status
field depend on the message buffer type. Refer to the Message Buffer Update Sections in Section 25.6.6,
“Individual Message Buffer Functional Description.”

25.6.19 System Bus Access

This section provides a description of the system bus accesses performed by the controller.

All FlexRay memory data located in the system memory are accessed via the system bus. There are two
types of failures that can occur during the system bus access, the system bus illegal address access and the
system bus access timeout.

The behavior of the controller after the occurrence of a system bus failure is defined by the SBFF bit in
the Module Configuration Register (MCR).

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-147

25.6.19.1 System Bus Illegal Address Access

If the system bus detects an controller access to an illegal address, the controller receives a notification
from the system bus about this event and sets the ILSA_EF flag in the CHI Error Flag Register
(CHIERFR).

25.6.19.2 System Bus Access Timeout

The controller starts a timer when it has send an access request to the system bus. This timer expires after
2 * SYMATOR.TIMEOUT + 2 system bus clock cycles. If the access is not finished within this amount
of time, the SBCF_EF flag in the CHI Error Flag Register (CHIERFR) is set.

NOTE

If the system memory read access that retrieves the first message buffer
header data from a FlexRay transmit buffer fails due to a system memory
access timeout or illegal address access, it is possible that the slot status
information for the previous slot is written into the currently used transmit
message buffer. In this case, the slot status information is not written into the
message buffer assigned to the last slot. Thus, both the message buffer
assigned to the last slot, and the currently used transmit message buffer
contain incorrect slot status information. However, if this occurs, either the
System Bus Communication Failure Error Flag (SBCF_EF) or the Illegal
System Bus Address Error Flag (ILSA_EF) will be set in the Controller
Host Interface Error Flag Register (CHIERFR).

The FlexRay module and the system memory subsystem should be
configured to avoid the occurrence of system memory access timeouts and
illegal address accesses. In case that one of the error flags
CHIERFR[SBCF_EF] or CHIERFR[ILSA_EF] is set, the application
should not use the slot status information of the message buffers.

25.6.19.3 Continue after System Bus Failure

If the SBFF bit in the Module Configuration Register (MCR) is 0, the controller will continue its operation
after the occurrence of the system bus access failure but will not generate any system bus accesses until
the start of the next communication cycle.

If a frame is under transmission when the system bus failure occurs, a correct frame is generated with the
remaining header and frame data are replaced by all zeros. Depending on the point in time this can affect
the PPI bit, the Header CRC, the Payload Length in case of an dynamic slot, and the payload data. Starting
from the next slot in the current cycle, no frames will be transmitted and received, except for the key slot,
where a sync or startup null-frame is transmitted, if the key slot is assigned.

If a frame is received when the system bus failure occurs, the reception is aborted and the related receive
message buffer is not updated.

Normal operation is resumed after the start of next communication cycle.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-148 Freescale Semiconductor

25.6.19.4 Freeze after System Bus Failure

If the SBFF bit in the Module Configuration Register (MCR) is set to 1, the controller will go into the
freeze mode immediately after the occurrence of one of the system bus access failures.

25.6.20 Interrupt Support

The controller provides 172 individual interrupt sources and five combined interrupt sources.

25.6.20.1 Individual Interrupt Sources

25.6.20.1.1 Message Buffer Interrupts

The controller provides 128 message buffer interrupt sources.

Each individual message buffer provides an interrupt flag MBCCSRn[MBIF] and an interrupt enable bit
MBCCSRn[MBIE]. The controller sets the interrupt flag when the slot status of the message buffer was
updated. If the interrupt enable bit is asserted, an interrupt request is generated.

25.6.20.1.2 FIFO Interrupts

The controller provides 2 FIFO interrupt sources.

Each of the 2 FIFO provides a Receive FIFO Almost Full Interrupt Flag. The controller sets the Receive
FIFO Almost Full Interrupt Flags (GIFER.FAFBIF, GIFER.FAFAIF) in the Global Interrupt Flag and
Enable Register (GIFER) if the corresponding Receive FIFO fill level exceeds the defined watermark.

25.6.20.1.3 Wakeup Interrupt

The controller provides one interrupt source related to the wakeup.

The controller sets the Wakeup Interrupt Flag GIFER.WUPIF when it has received a wakeup symbol on
the FlexRay bus. The controller generates an interrupt request if the interrupt enable bit GIFER.WUPIE is
asserted.

25.6.20.1.4 Protocol Interrupts

The controller provides 25 interrupt sources for protocol related events. For details, see Protocol Interrupt
Flag Register 0 (PIFR0) and Protocol Interrupt Flag Register 1 (PIFR1). Each interrupt source has its own
interrupt enable bit.

25.6.20.1.5 CHI Error Interrupts

The controller provides 16 interrupt sources for CHI related error events. For details, see CHI Error Flag
Register (CHIERFR). There is one common interrupt enable bit GIFER.CHIIE for all CHI error interrupt
sources.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-149

25.6.20.2 Combined Interrupt Sources

Each combined interrupt source generates an interrupt request only when at least one of the interrupt
sources that is combined generates an interrupt request.

25.6.20.2.1 Receive Message Buffer Interrupt

The combined receive message buffer interrupt request RBIRQ is generated when at least one of the
individual receive message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit
GIFER.RBIE is set.

25.6.20.2.2 Transmit Message Buffer Interrupt

The combined transmit message buffer interrupt request TBIRQ is generated when at least one of the
individual transmit message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable
bit GIFER.TBIE is asserted.

25.6.20.2.3 Protocol Interrupt

The combined protocol interrupt request PRTIRQ is generated when at least one of the individual protocol
interrupt sources generates an interrupt request and the interrupt enable bit GIFER.PRIE is set.

25.6.20.2.4 CHI Error Interrupt

The combined CHI error interrupt request CHIIRQ is generated when at least one of the individual chi
error interrupt sources generates an interrupt request and the interrupt enable bit GIFER.CHIE is set.

25.6.20.2.5 Module Interrupt

The combined module interrupt request MIRQ is generated if at least one of the combined interrupt
sources generates an interrupt request and the interrupt enable bit GIFER.MIE is set.

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-150 Freescale Semiconductor

Figure 25-150. Scheme of cascaded interrupt request

Interrupt Sources Interrupt Signals

MBCCSRn[MBIF]

n

CHIER[15:0] 16

PIFR0[15:0] 16

PIFR1[15:0] 16

RBIRQ

CHIIRQ

PRTIRQ

GIFER[FAFAIF]
FAFAIRQ

GIFER[WUPIF]
WUPIRQ

GIFER[RBIE]

MBCCSRn[MTD]

Receive

Transmit

GIFER[PRIE]

GIFER[WUPIE]

GIFER[MIE]

MBCCSRn[MBIE] &

PIER0[15:0]

PIER1[15:0]

OR

&

&

&GIFER[CHIE]

& &

n

& OR TBIRQ
GIFER[TBIE] &

n

OR

OR &

&GIFER[FAFAIE]

GIFER[FAFBIF]
FAFBIRQ&GIFER[FAFBIE]

&

&

n = # Message Buffers

OR

GIFER[RBIF]

GIFER[TBIF]

GIFER[PRIF]

GIFER[CHIF]

GIFER[MIF]

MIRQ

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-151

Figure 25-151.

Figure 25-152. Scheme of combined interrupt flags

25.6.21 Lower Bit Rate Support

The controller supports a number of lower bit rates on the FlexRay bus channels. The lower bit rates are
implemented by modifying the duration of the microtick pdMicrotick, the number of samples per microtick
pSamplesPerMicrotick, the number of samples per bit cSamplesPerBit, and the strobe offset cStrobeOffset.
The application configures the FlexRay channel bit rate by setting the BITRATE field in the Module
Configuration Register (MCR). The protocol values are set internally. The available bit rates, the related
BITRATE field configuration settings and related protocol parameter values are shown in Table 25-117.

Interrupt Sources Combined Interrupt Flags

MBCCSRn[MBIF]
n

CHIER[15:0]

PIFR0[15:0]

PIFR1[15:0]

GIFER[FAFAIF]

GIFER[WUPIF]

CIFR[TBIF]

CIFR[CHIF]

CIFR[PRIF]

MBCCSRn[MTD]

Receive

Transmit

OR&

& OR CIFR[RBIF]n

OR

OR

GIFER[FAFBIF]

n = # Message Buffers

n

OR CIFR[MIF]

CIFR[FAFAIF]

CIFR[WUPIF]

CIFR[FAFBIF]

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-152 Freescale Semiconductor

NOTE
The bit rate of 8 Mbit/s is not defined by the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

25.7 Application Information

25.7.1 Initialization Sequence

This section describes the required steps to initialize the controller. The first subsection describes the steps
required after a system reset, the second section describes the steps required after preceding shutdown of
the controller.

25.7.1.1 Module Initialization

This section describes the module related initialization steps after a system reset.

1. Configure controller.

a) configure the control bits in the Module Configuration Register (MCR)

b) configure the system memory base address in System Memory Base Address Register
(SYMBADR)

2. Enable the controller.

a) write 1 to the module enable bit MEN in the Module Configuration Register (MCR)

The controller now enters the Normal Mode. The application can commence with the protocol
initialization described in Section 25.7.1.2, “Protocol Initialization.”

Table 25-117. FlexRay Channel Bit Rate Control

FlexRay Channel
Bit Rate
[Mbit/s]

MCR.BITRATE

p
d

M
ic

ro
ti

ck

[n
s]

g
d

S
am

p
le

C
lo

ck
P

er
io

d

[n
s]

p
S

am
p

le
sP

er
M

ic
ro

ti
ck

cS
am

p
le

sP
er

B
it

cS
tr

o
b

eO
ff

se
t

10.0 000 25.0 12.5 2 8 5

8.0 011 25.0 12.5 2 10 6

5.0 001 25.0 25.0 1 8 5

2.5 010 50.0 50.0 1 8 5

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-153

25.7.1.2 Protocol Initialization

This section describes the protocol related initialization steps.

1. Configure the Protocol Engine.

a) issue CONFIG command via Protocol Operation Control Register (POCR)

b) wait for POC:config in Protocol Status Register 0 (PSR0)

c) configure the PCR0,..., PCR30 registers to set all protocol parameters

2. Configure the Message Buffers and FIFOs.

a) set the number of message buffers used and the message buffer segmentation in the Message
Buffer Segment Size and Utilization Register (MBSSUTR)

b) define the message buffer data size in the Message Buffer Data Size Register (MBDSR)

c) configure each message buffer by setting the configuration values in the Message Buffer
Configuration, Control, Status Registers (MBCCSRn), Message Buffer Cycle Counter Filter
Registers (MBCCFRn), Message Buffer Frame ID Registers (MBFIDRn), Message Buffer
Index Registers (MBIDXRn)

d) configure the FIFOs

e) issue CONFIG_COMPLETE command via Protocol Operation Control Register (POCR)

f) wait for POC:ready in Protocol Status Register 0 (PSR0)

After this sequence, the controller is configured as a FlexRay node and is ready to integrate into the
FlexRay cluster.

25.7.2 Shut Down Sequence

This section describes a secure shut down sequence to stop the controller gracefully. The main targets of
this sequence are

• finish all ongoing reception and transmission

• do not corrupt FlexRay bus and do not disturb ongoing FlexRay bus communication

For a graceful shutdown the application shall perform the following tasks:

1. Disable all enabled message buffers.

a) repeatedly write 1 to MBCCSRn[EDT] until MBCCSRn[EDS] == 0.

2. Stop Protocol Engine.

a) issue HALT command via Protocol Operation Control Register (POCR)

b) wait for POC:halt in Protocol Status Register 0 (PSR0)

25.7.3 Number of Usable Message Buffers

This section describes the relationship between the number of message buffers that can be utilized and the
required minimum CHI clock frequency. Additional constraints for the minimum CHI clock frequency are
given in Section 25.3, “Controller Host Interface Clocking.”

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-154 Freescale Semiconductor

The controller uses a sequential search algorithm to determine the individual message buffer assigned or
subscribed to the next slot. This search must be finished within one FlexRay slot. The shortest FlexRay
slot is an empty dynamic slot. An empty dynamic slot is a minislot and consists of gdMinislot macroticks
with a nominal duration of gdMacrotick. The minimum duration of a corrected macrotick is
gdMacrotickmin = 39 µT. This results in a minimum slot length of

Eqn. 25-30

The search engine is located in the CHI and runs on the CHI clock. It evaluates one individual message
buffer per CHI clock cycle. For internal status update and double buffer commit operations, and as a result
of the clock domain crossing jitter, an additional amount of 10 CHI clock cycles is required to ensure
correct operation. For a given number of message buffers and for a given CHI clock frequency fchi, this
results in a search duration of

Eqn. 25-31

The message buffer search must be finished within one slot which requires that Equation 25-32 must be
fulfilled

Eqn. 25-32

This results in the formula given in Equation 25-33 which determines the required minimum CHI
frequency for a given number of message buffers that are utilized.

Eqn. 25-33

The minimum CHI frequency for a selected set of relevant protocol parameters is given in Table 25-118.

25.7.4 Protocol Control Command Execution

This section considers the issues of the protocol control command execution.

The application issues any of the protocol control commands listed in the POCCMD field of Table 25-15
by writing the command to the POCCMD field of the Protocol Operation Control Register (POCR). As a
result the controller sets the BSY bit while the command is transferred to the PE. When the PE has
accepted the command, the BSY flag is cleared. All commands are accepted by the PE.

The PE maintains a protocol command vector. For each command that was accepted by the PE, the PE sets
the corresponding command bit in the protocol command vector. If a command is issued while the
corresponding command bit is set, the command is not queued and is lost.

Table 25-118. Minimum fchi [MHz] examples (128 message buffers)

pdMicrotick
[ns]

gdMinislot

2 3 4 5 6 7

25.0 70.77 47.18 35.39 28.31 23.59 20.22

50.0 35.39 23.59 17.70 14.16 11.80 10.11

slotmin 39 pdMicrotick gdMinislot =

search
1

fchi

-------- # MessageBuffers 10+ =

search slotmin

fchi
MessageBuffers 10+

39 pdMicrotick gdMinislot
--

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-155

If the command execution block of the PE is idle, it selects the next accepted protocol command with the
highest priority from the current protocol command vector according to the protocol control command
priorities given in Table 25-119. If the current protocol state does not allow the execution of this protocol
command (see POC state changes in FlexRay Communications System Protocol Specification, Version 2.1
Rev A) the controller asserts the illegal protocol command interrupt flag IPC_IF in the Protocol Interrupt
Flag Register 1 (PIFR1). The protocol command is not executed in this case.

Some protocol commands may be interrupted by other commands or the detection of a fatal protocol error
as indicated by Table 25-119. If the application issues the FREEZE or READY command, or if the PE
detects a fatal protocol error, some commands already stored in the command vector will be removed from
this vector.

25.7.5 Message Buffer Search on Simple Message Buffer Configuration

This sections describes the message buffer search behavior for a simplified message buffer configuration.
The FIFO behavior is not considered in this section.

25.7.5.1 Simple Message Buffer Configuration

A simple message buffer configuration is a configuration that has at most one transmit message buffer and
at most one receive message buffer assigned to a slot S. The simple configuration used in this section
utilizes two message buffers, one single buffered transmit message buffer and one receive message buffer.

The transmit message buffer has the message buffer number t and has following configuration

Table 25-119. Protocol Control Command Priorities

Protocol Command Priority Interrupted By Cleared and Terminated By

FREEZE (highest) 1

none
READY 2

CONFIG_COMPLETE 3

ALL_SLOTS 4

FREEZE,
READY,

CONFIG_COMPLET,
fatal protocol error

FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

ALLOW_COLDSTART 5

RUN 6 FREEZE,

fatal protocol error

WAKEUP 7 FREEZE,

fatal protocol error

DEFAULT_CONFIG 8 FREEZE,
fatal protocol error

CONFIG 9

HALT (lowest) 10 FREEZE, READY, CONFIG_COMPLETE,

fatal protocol error

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-156 Freescale Semiconductor

The availability of data in the transmit buffer is indicated by the commit bit MBCCSRt[CMT] and the lock
bit MBCCSRt[LCKS].

The receive message buffer has the message buffer number r and has following configuration

Furthermore the assumption is that both message buffers are enabled (MBCCSRt[EDS] = 1 and
MBCCSRr[EDS] = 1)

NOTE
The cycle set {4n + 2} = {2,6,10,...} is assigned to the receive buffer only.

The cycle set {4n} = {0,4,8,12,...} is assigned to both buffers.

Table 25-120. Transmit Buffer Configuration

Register Field Value Description

MBCCSRt
MCM - used only for double buffers

MBT 0 single transmit buffer

MTD 1 transmit buffer

MBCCFRt

MTM 0 event transition mode

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000011

cycle set = {4n} = {0,4,8,12,...}CCFVAL 000000

MBFIDRt FID S assigned to slot S

Table 25-121. Receive Buffer Configuration

Register Field Value Description

MBCCSRr
MCM — n/a

MBT — n/a

MTD 0 receive buffer

MBCCFr

MTM — n/a

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000001

cycle set = {2n} = {0,2,4,6,...}CCFVAL 000000

MBFIDRr FID S subscribed slot

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 25-157

25.7.5.2 Behavior in Static Segment

In this case, both message buffers are assigned to a slot S in the static segment.

The configuration of a transmit buffer for a static slot S assigns this slot to the node as a transmit slot. The
FlexRay protocol requires:

• When a slot occurs, if the slot is assigned to a node on a channel that node must transmit either a
normal frame or a null frame on that channel. Specifically, a null frame will be sent if there is no
data ready, or if there is no match on a transmit filter (cycle counter filtering, for example).

Regardless of the availability of data and the cycle counter filter, the node will transmit a frame in the static
slot S. In any case, the result of the message buffer search will be the transmit message buffer t. The receive
message buffer r will not be found, no reception is possible.

25.7.5.3 Behavior in Dynamic Segment

In this case, both message buffers are assigned to a slot S in the dynamic segment. The FlexRay protocol
requires:

• When a slot occurs, if a slot is assigned to a node on a channel that node only transmits a frame on
that channel if there is data ready and there is a match on relevant transmit filters (no null frames
are sent).

The transmission of a frame in the dynamic segment is determined by the availability of data and the match
of the cycle counter filter of the transmit message buffer.

25.7.5.3.1 Transmit Data Not Available

If transmit data are not available, i.e.,the transmit buffer is not committed MBCCSRt[CMT] = 0 and/or
locked MBCCSRt[LCKS] = 1,

a) for the cycles in the set {4n}, which is assigned to both buffers, the receive buffer will be found
and the node can receive data, and

b) for the cycles in the set {4n + 2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive cycles are shown in Figure 25-153.

Figure 25-153. Transmit Data Not Available

25.7.5.3.2 Transmit Data Available

If transmit data are available, i.e.,the transmit buffer is committed MBCCSRt[CMT] = 1 and not locked
MBCCSRt[LCKS] = 0,

a) for the cycles in the set {4n}, which is assigned to both buffers, the transmit buffer will be found
and the node transmits data.

0

RX

1 2

RX

3 4

RX

5 6

RX

7 59 60

RX

61 62

RX

8

RX

63

FlexRay Communication Controller (FlexRAY)

MPC5668x Microcontroller Reference Manual, Rev. 4

25-158 Freescale Semiconductor

b) for the cycles in the set {4n + 2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive and transmit cycles are shown in Figure 25-153

Figure 25-154. Transmit Data Not Available

0

TX

1 2

RX

3 4

TX

5 6

RX

7 59 60

TX

61 62

RX

8

TX

63

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-1

Chapter 26
Media Local Bus (MLB)

26.1 Introduction
The MediaLB (MLB) is a multiplexed bus protocol defined by Standard Microsystems Semiconductor
Company (SMSC) to transfer multimedia data between the Media-Oriented Systems Transport (MOST)
ring and supporting system level ICs. It supports the complete MLB specification. This module offers a
serial to parallel conversion of the 3-pin MediaLB signals into 32-bit parallel words and vice versa for
transfer to system memory. This module provides a MediaLB port for all MediaLB relevant signals and
an application port to interface to the MPC5668x. The application port incorporates all signals necessary
to access MediaLB data bytes and protocol information as well as signals for controlling MediaLB Device
Core functionality.

NOTE
The MLB block is not implemented on the MPC5668E.

26.1.1 Block Diagram

A block diagram of the MLB module can be found in Figure 26-1.

Figure 26-1. Block Diagram

Channel Arbiter Channel Buffer Link Logic

Configuration Logic

M
LB

 C
or

e

Clock and Reset Logic

MLBDAT

MLBSIG

MLBCLK

Host Bus

Peripheral
Bus

Local Buffer RAM

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-2 Freescale Semiconductor

26.1.2 Features
• 3-pin MediaLB interface supported

• Support for as many as 16 logical channels and as many as 31 physical channels running at a
maximum speed of 1024Fs

• Programmable MediaLB clock frequency

— 256 Fs = 12.3 megabits per second @ Fs = 48 kHz

— 512 Fs = 24.6 megabits per second @ Fs = 48 kHz

• Supports all MOST data types:

— Control messages

— Packet messages (asynchronous)

— Streaming data (synchronous)

— Isochronous data (when supported by MLB master)

• Supports DMA style backend user interface

• Transmission of commands and data and reception of receive status when functioning as the
transmitting device associated with a logical channel address

• Reception of commands and data and transmission as receive status responses when functioning
as the receiving device associated with a logical channel address

• MLB lock detection

• System channel command handling

• System bus master supporting direct memory access between the MLB and system RAM

• Local channel buffer memory of 2K quadlets shared between all the logical channels

26.1.3 Overview

The MLB module implements the physical layer and link layer of the Media Local Bus specification,
interfacing to the MLB controller. The MLB implements the 3-pin MLB mode and can run at speeds as
fast as 1024Fs. It does not implement MLB controller functionality.

All MLB devices support a set of physical channels for sending data over the MLB. Each physical channel
is 4 bytes in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of channel type
(synchronous, asynchronous, control, or isochronous) and direction (transmit or receive).

The MLB provides support for as many as 16 logical channels and as many as 31 physical channels with
a maximum of 124 bytes of data per frame. Each logical channel is referenced using an unique channel
address and represents a unidirectional data path between a MLB device transmitting the data and the MLB
device(s) receiving the data.

Once per MOST network frame, the MLB controller generates a unique frame sync pattern. This pattern
defines the frame and channel boundaries of the signal information and data lines.

The MLB controller initiates all communication over the MLB by sending out the logical channel address
on the signal information line for each physical channel. This logical address indicates to the appropriate

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-3

MLB device that it can transmit data for that logical channel during the next physical channel slot. One
quadlet later, the transmitting MLB device send out a MLB command byte on the signal information line
and the corresponding data on the data line. All other MLB devices (including the controller) have already
compared the logical channel address with their internal table of addresses to determine if they are the
intended recipient of the data on this logical channel.

The receiving MLB device responds with a receive status response on the signal information line one byte
after the transmitting device sends the MLB command byte. Note that synchronous data transmissions
(which is the only data format to support multiple receivers) are not acknowledged, but asynchronous,
control and isochronous data transmissions are acknowledged.

For more information about the Media Local Bus protocol, please refer to the Media Local Bus
Specification.

26.1.4 Modes of Operation

The byte order in which data is transferred between the MLB bus and the MLB device is always Big
Endian; however, a multiplexor at the local channel buffer allows software to select the data byte order of
data within system memory. Big Endian or Little Endian is selected via a software programmable
configuration bit DCCR[MLE].

Table 26-1 illustrates the Big Endian data format. Table 26-2 illustrates the Little Endian data format.

26.2 External Signal Description
The MLB peripheral contains three external pins to interface to the MLB controller. They are shown in
Table 26-3.

Table 26-1. Big Endian Byte Order

Address data[31:24] data[23:16] data[15:8] data[7:0]

0x0000_0000 Byte 00 Byte 01 Byte 02 Byte 03

0x0000_0004 Byte 04 Byte 05 Byte 06 Byte 07

0x0000_0008 Byte 08 Byte 09 Byte 10 Byte 11

0x0000_000C Byte 12 Byte 13 Byte 14 Byte 15

Table 26-2. Little Endian Byte Order

Address data[31:24] data[23:16] data[15:8] data[7:0]

0x0000_0000 Byte 03 Byte 02 Byte 01 Byte 00

0x0000_0004 Byte 07 Byte 06 Byte 05 Byte 04

0x0000_0008 Byte 11 Byte 10 Byte 09 Byte 08

0x0000_000C Byte 15 Byte 14 Byte 13 Byte 12

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-4 Freescale Semiconductor

Detailed signal descriptions for the MLB peripheral can be found in Table 26-4.
:

26.3 Memory Map and Register Description

26.3.1 Memory Map

Table 26-5 shows the MLB configuration registers. Table 26-6 shows the channel configuration registers
for each channel within the MLB. Table 26-7 shows the overall memory map for the MLB.

Table 26-3. Signal Properties

Signal Port SIU_PCR Register Function I/O Reset Pull

MLBCLK PK0 SIU_PCR144 MLB Clock I 0 Down

MLBSIG PK1 SIU_PCR145 MLB Signal (control/status) I/O 0 Down

MLBDAT PK2 SIU_PCR146 MLB Data I/O 0 Down

Table 26-4. MLB—Detailed Signal Descriptions

Signal I/O Description

MLBCLK I MLB Clock.

State Meaning Asserted/Negated—Supports a 256Fs, 512Fs or 1024Fs clock input from the MLB
controller.

Timing Assertion/Negation—Supports maximum frequency of 49.2 MHz with a 48 kHz sample
rate.

MLBDAT I/O MLB Data

State Meaning Asserted/Negated—MLB data for serial receive/transmit channel data.

Timing Assertion/Negation—Input registered on the falling edge of MLBCLK. Output driven
from the rising edge of MLBCLK.

MLBSIG I/O MLB Signal (control/status)

State Meaning Asserted/Negated—MLB signal information for serial transmit channel commands,
serial receive channel responses, and logical channel address information.

Timing Assertion/Negation—Input registered on the falling edge of MLBCLK. Output driven
from the rising edge of MLBCLK.

Table 26-5. Configuration Registers

Offset from
MLB_BASE

(0xC3F8_4000)
Name Access

0x0000_0000 DCCR—Device Control Configuration Register R/W

0x0000_0004 SSCR—System Status Configuration Register R/W

0x0000_0008 SDCR—System Data Configuration Register R

0x0000_000C SMCR—System Mask Configuration Register R/W

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-5

0x0000_001C VCCR—Version Control Configuration Register R

0x0000_0020 SBCR—Synchronous Base Address Configuration Register R/W

0x0000_0024 ABCR—Asynchronous Base Address Configuration Register R/W

0x0000_0028 CBCR—Control Base Address Configuration Register R/W

0x0000_002C IBCR—Isochronous Base Address Configuration Register R/W

0x0000_0030 CICR—Channel Interrupt Configuration Register R

Table 26-6. Channel Configuration Registers

Offset from
MLB_BASE

(0xC3F8_4000)
Channel n Register (n = 0..15) Access

0x0010 + n × 0x10 CECRn—Channel n Entry Configuration Register R/W

0x0014 + n × 0x10 CSCRn—Channel n Status Configuration Register R/W

0x0018 + n × 0x10 CCBCRn—Channel n Current Buffer Configuration Register R

0x001A + n × 10 CNBCRn—Channel n Next Buffer Configuration Register R/W

0x0280 + n × 0x04 LCBCRn—Local Channel n Buffer Configuration Register R/W

Table 26-7. MLB Memory Map

Offset from
MLB_BASE

(0xC3F8_4000)
Register Access Reset Value Section/Page

0x0000 DCCR—Device Control Configuration Register R/W1 0x0000_0000 26.3.2.1/26-8

0x0004 SSCR—System Status Configuration Register R/W 0x0000_0000 26.3.2.2/26-10

0x0008 SDCR—System Data Configuration Register R 0x0000_0000 26.3.2.3/26-11

0x000C SMCR—System Mask Configuration Register R/W 0x0000_0060 26.3.2.4/26-12

0x001C VCCR—Version Control Configuration Register R 0x0300_0202 26.3.2.5/26-13

0x0020 SBCR—Synchronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.6/26-14

0x0024 ABCR—Asynchronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.7/26-14

0x0028 CBCR—Control Base Address Configuration Register R/W 0x0000_0000 26.3.2.8/26-15

0x002C IBCR—Isochronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.9/26-16

0x0030 CICR—Channel Interrupt Configuration Register R 0x0000_0000 26.3.2.10/26-16

0x0040 CECR0—Channel 0 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0044 CSCR0—Channel 0 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

Table 26-5. Configuration Registers (continued)

Offset from
MLB_BASE

(0xC3F8_4000)
Name Access

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-6 Freescale Semiconductor

0x0048 CCBCR0—Channel 0 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x004C CNBCR0—Channel 0 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0050 CECR1—Channel 1 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0054 CSCR1—Channel 1 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0058 CCBCR1—Channel 1 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x005C CNBCR1—Channel 1 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0060 CECR2—Channel 2 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0064 CSCR2—Channel 2 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0068 CCBCR2—Channel 2 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x006C CNBCR2—Channel 2 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0070 CECR3—Channel 3 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0074 CSCR3—Channel 3 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0078 CCBCR3—Channel 3 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x007C CNBCR3—Channel 3 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0080 CECR4—Channel 4 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0084 CSCR4—Channel 4 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0088 CCBCR4—Channel 4 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x008C CNBCR4—Channel 4 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0090 CECR5—Channel 5 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0094 CSCR5—Channel 5 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0098 CCBCR5—Channel 5 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x009C CNBCR5—Channel 5 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00A0 CECR6—Channel 6 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x00A4 CSCR6—Channel 6 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00A8 CCBCR6—Channel 6 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00AC CNBCR6—Channel 6 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00B0 CECR7—Channel 7 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x00B4 CSCR7—Channel 7 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00B8 CCBCR7—Channel 7 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00BC CNBCR7—Channel 7 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00C0 CECR8—Channel 8 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

Table 26-7. MLB Memory Map (continued)

Offset from
MLB_BASE

(0xC3F8_4000)
Register Access Reset Value Section/Page

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-7

0x00C4 CSCR8—Channel 8 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00C8 CCBCR8—Channel 8 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00CC CNBCR8—Channel 8 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00D0 CECR9—Channel 9 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x00D4 CSCR9—Channel 9 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00D8 CCBCR9—Channel 9 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00DC CNBCR9—Channel 9 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00E0 CECR10—Channel 10 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x00E4 CSCR10—Channel 10 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00E8 CCBCR10—Channel 10 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00EC CNBCR10—Channel 10 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00F0 CECR11—Channel 11 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x00F4 CSCR11—Channel 11 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x00F8 CCBCR11—Channel 11 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00FC CNBCR11—Channel 11 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0100 CECR12—Channel 12 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0104 CSCR12—Channel 12 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0108 CCBCR12—Channel 12 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x010C CNBCR12—Channel 12 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0110 CECR13—Channel 13 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0114 CSCR13—Channel 13 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0118 CCBCR13—Channel 13 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x011C CNBCR13—Channel 13 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0120 CECR14—Channel 14 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0124 CSCR14—Channel 14 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0128 CCBCR14—Channel 14 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x012C CNBCR14—Channel 14 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0130 CECR15—Channel 15 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0134 CSCR15—Channel 15 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0138 CCBCR15—Channel 15 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x013C CNBCR15—Channel 15 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

Table 26-7. MLB Memory Map (continued)

Offset from
MLB_BASE

(0xC3F8_4000)
Register Access Reset Value Section/Page

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-8 Freescale Semiconductor

26.3.2 Register Descriptions

26.3.2.1 Device Control Configuration Register (DCCR)

The Device Control Configuration Register (DCCR) is used to control basic features of the MLB device,
such as clock rate, lock status, enable, and reset behavior.

0x0140–0x027F Reserved

0x0280 LCBCR0—Local Channel 0 Buffer Configuration Register R/W 0x0803_E000 26.3.2.15/26-24

0x0284 LCBCR1—Local Channel 1 Buffer Configuration Register R/W 0x0803_E020 26.3.2.15/26-24

0x0288 LCBCR2—Local Channel 2 Buffer Configuration Register R/W 0x0803_E040 26.3.2.15/26-24

0x028C LCBCR3—Local Channel 3 Buffer Configuration Register R/W 0x0803_E060 26.3.2.15/26-24

0x0290 LCBCR4—Local Channel 4 Buffer Configuration Register R/W 0x0803_E080 26.3.2.15/26-24

0x0294 LCBCR5—Local Channel 5 Buffer Configuration Register R/W 0x0803_E0A0 26.3.2.15/26-24

0x0298 LCBCR6—Local Channel 6 Buffer Configuration Register R/W 0x0803_E0C0 26.3.2.15/26-24

0x029C LCBCR7—Local Channel 7 Buffer Configuration Register R/W 0x0803_E0E0 26.3.2.15/26-24

0x02A0 LCBCR8—Local Channel 8 Buffer Configuration Register R/W 0x0803_E100 26.3.2.15/26-24

0x02A4 LCBCR9—Local Channel 9 Buffer Configuration Register R/W 0x0803_E120 26.3.2.15/26-24

0x02A8 LCBCR10—Local Channel 10 Buffer Configuration Register R/W 0x0803_E140 26.3.2.15/26-24

0x02AC LCBCR11—Local Channel 11 Buffer Configuration Register R/W 0x0803_E160 26.3.2.15/26-24

0x02B0 LCBCR12—Local Channel 12 Buffer Configuration Register R/W 0x0803_E180 26.3.2.15/26-24

0x02B4 LCBCR13—Local Channel 13 Buffer Configuration Register R/W 0x0803_E1A0 26.3.2.15/26-24

0x02B8 LCBCR14—Local Channel 14 Buffer Configuration Register R/W 0x0803_E1C0 26.3.2.15/26-24

0x02BC LCBCR15—Local Channel 15 Buffer Configuration Register R/W 0x0803_E1E0 26.3.2.15/26-24

0x02C0–0x3FFF Reserved

1 Note that R/W registers may contain some read-only or write-only bits.

Table 26-7. MLB Memory Map (continued)

Offset from
MLB_BASE

(0xC3F8_4000)
Register Access Reset Value Section/Page

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-9

Offset: MLB_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDE LBM MCS[1:0]

0 MLK
MLE MHRE MRS

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
MDA[8:1]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-2. Device Control Configuration Register (DCCR)

Table 26-8. DCCR Field Descriptions

Field Description

MDE MLB Device Enable. When set, enables the MLB Interface based on the other bits in the register.
0 MLB device disabled.
1 MLB device enabled.

LBM Loop-Back Mode Enable. When set, enables the loop-back testing of the MLB bus between logical channel 0 (RX)
and logical channel 1 (TX).
0 Loop-back mode disabled.
1 Loop-Back Mode Enabled.

MCS
[1:0]

MLB Clock Select. These field must be programmed by system software to reflect the MLBCLK speed.
00 256Fs: supports 8 quadlets per frame.
01 512Fs: supports 16 quadlets per frame.
10 1024Fs: supports 32 quadlets per frame.
11 Reserved.

MLK MLB Lock. When set, indicates that the MLB Port is synchronized to the incoming MLB frame. If MLK is clear
(unlocked), MLK is set after FRAMESYNC is detected at the same position for three consecutive frames. If MLK is
set (locked), MLK is cleared after not receiving FRAMESYNC at the expected time for two consecutive frames. While
MLK is set, FRAMESYNC patterns occurring at locations other than the expected one are ignored.
0 MLB device is not synchronized to the incoming MLB frame.
1 MLB device is synchronized to the incoming MLB frame.

MLE MLB Little Endian. This field determines how MLB quadlet based data is stored in system memory. For normal
operation, this bit should be set.
0 Little Endian mode.
1 Big Endian mode.

MHRE MLB Hardware Reset Enable. When set, enables hardware to automatically reset the MLB physical and link layer
logic upon the reception of either a global (SDCR[MDS] = 8’h0000) or device specific (SDCR[MDS] = DA) MlbReset
(FEh) System Command.
0 MLB device does not reset on reception of system reset command.
1 MLB device is reset on reception of system reset command.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-10 Freescale Semiconductor

26.3.2.2 System Status Configuration Register (SSCR)

The System Status Configuration Register (SSCR) allows system software to monitor and control the
status of the MLB network. SSCR is updated once per frame by hardware during the MLB System
Channel. Except for the bits associated with MLB lock and unlock (SSCR[SDMU] and SSCR[SDML]),
the bits of the SSCR register are not valid until the MLB is locked to the MLB interface. System software
must service status events before the start of the next MLB frame to prevent the current frame status from
being lost.

MRS MLB Software Reset. When set, resets the MLB physical and link layer logic. Hardware clears this bit automatically.
0 MLB device is not reset by software.
1 MLB device is reset by software.

MDA
[8:1]

MLB Device Address. Determines the unique DeviceAddress (DA) for the MLB Device. DeviceAddresses are used
by the system channel MlbScan command.

DA[15:0] = { 7’h00, MDA[8:1], 1’b0 }

Offset: MLB_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
SSRE

SDMU SDML SDSC SDCS SDNU SDNL SDR

W w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-3. System Status Configuration Register (SSCR)

Table 26-9. SSCR Field Descriptions

Field Description

SSRE System Service Request Enable. System software can set this bit to indicate that this MLB Device is present and
needs service. An RxStatus DeviceServiceRequest (82h) is sent in response to a MlbScan System Command from
the MLB Controller. Hardware clears this bit after the RxStatus is sent.
0 MLB device responds to System Scan Command with Device Present (80h).
1 MLB device responds to System Scan Command with Device Service Request (82h).

SDMU System Detects MLB Unlock. This bit is set to indicate that the MLB Device has unlocked from the MLB frame.
Detecting a MLB unlock generates a maskable system interrupt to system software. Once set, this bit is sticky until
cleared by software by writing a logic one to this bit.
0 MLB device has not unlocked from MLB frame.
1 MLB device has unlocked from MLB frame.

Table 26-8. DCCR Field Descriptions (continued)

Field Description

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-11

26.3.2.3 System Data Configuration Register (SDCR)

The System Data Configuration Register (SDCR) allows system software to receive control information
from the MLB Controller. SDCR is updated once per frame by hardware during the MLB System Channel.
System software must read SDCR before the start of the next MLB frame to prevent the current frame data
from being lost.

SDML System Detects MLB Lock. This bit is set to indicate that the MLB Device has locked to the MLB frame. Detecting a
MLB lock generates a maskable system interrupt to system software. Once set, this bit is sticky until cleared by
software.
0 MLB device has not locked to MLB frame.
1 MLB device has locked to MLB frame.

SDSC System Detects SubCommand. This bit is set to indicate that the MLB Device has received the MlbSubCmd (E6h)
System Command. The user-defined software command is stored in the SDCR register. The decoding of this
command is left up to software. Detecting MlbSubCmd generates a maskable system interrupt to system software.
Once set, this bit is sticky until cleared by software.
0 MLB device has not detected a Sub-command System Command.
1 MLB device has detected a Sub-command System Command.

SDCS System Detects Channel Scan. This bit is set to indicate that the MLB Device has received the MlbScan (E4h)
System Command. The target DeviceAddress is stored in the SDCR register. Detecting MlbScan generates a
maskable system interrupt to system software. Once set, this bit is sticky until cleared by software.
0 MLB device has not detected a System Scan Command.
1 MLB device has detected a System Scan Command.

SDNU System Detects Network Unlock. This bit is set to indicate that the MLB Device has received the MOST_Unlock (E2h)
System Command. Detecting MOST_Unlock generates a maskable system interrupt to system software. Once set,
this bit is sticky until cleared by software.
0 MLB device has not detected an Unlock Command.
1 MLB device has detected an Unlock Command.

SDNL System Detects Network Lock. This bit is set to indicate that the MLB Device has received the MOST_Lock (E0h)
System Command. Detecting MOST_Lock generates a maskable system interrupt to system software. Once set,
this bit is sticky until cleared by software.
0 MLB device has not detected a Lock Command.
1 MLB device has detected a Lock Command.

SDR System Detects Reset. This bit is set to indicate that the MLB Device has received the MlbReset (FEh) System
Command. The target DeviceAddress is stored in the SDCR register. Detecting MLBReset generates a maskable
system interrupt to system software. Once set, this bit is sticky until cleared by software.
0 MLB device has not detected a Reset Command.
1 MLB device has detected a Reset Command.

Table 26-9. SSCR Field Descriptions (continued)

Field Description

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-12 Freescale Semiconductor

26.3.2.4 System Mask Configuration Register (SMCR)

The System Mask Configuration register (SMCR) allows system software to mask system status
interrupts.

Offset: MLB_BASE + 0x0008 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MSD[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MSD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-4. System Data Configuration Register (SDCR)

Table 26-10. SDCR Field Descriptions

Field Description

MSD MLB System Data. This register is loaded with the data from MLBDAT during the System Channel quadlet.

Offset: MLB_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
SMMU SMML SMSC SMCS SMNU SMNL SMR

W

Reset 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Figure 26-5. System Mask Configuration Register (SMCR)

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-13

26.3.2.5 Version Control Configuration Register (VCCR)

The Version Control Configuration Register (VCCR) allows system software to verify the version of the
MLB and the user implementation.

Table 26-11. SMCR Field Descriptions

Field Description

SMMU System Masks MLB Unlock. When set, this bit masks system interrupts generated when a MLB unlock is detected.
At reset, MLB unlock events are masked (SMMU = 1).
0 MLB unlock system interrupt is enabled.
1 MLB unlock system interrupt is disabled.

SMML System Masks MLB Lock. When set, this bit masks system interrupts generated when MLB lock is detected. At reset,
MLB lock events are masked (SMML = 1).
0 MLB lock system interrupt is enabled.
1 MLB lock system interrupt is disabled.

SMSC System Masks SubCommand. When set, this bit masks system interrupts for the MlbSubCmd (E6h) System
Command.
0 MLB SubCommand system interrupt is enabled.
1 MLB SubCommand system interrupt is disabled.

SMCS System Masks Channel Scan. When set, this bit masks system interrupts for the MlbScan (E4h) System Command.
0 MLB Channel Scan system interrupt is enabled.
1 MLB Channel Scan system interrupt is disabled.

SMNU System Masks Network Unlock. When set, this bit masks system interrupts for the MOST_Unlock (E2h) System
Command.
0 MLB Network Unlock system interrupt is enabled.
1 MLB Network Unlock system interrupt is disabled.

SMNL System Masks Network Lock. When set, this bit masks system interrupts for the MOST_Lock (E0h) System
Command.
0 MLB Network Lock system interrupt is enabled.
1 MLB Network Lock system interrupt is disabled.

SMR System Masks Reset. When set, this bit masks system interrupts for the MlbReset (FEh) System Command.
0 MLB Reset system interrupt is enabled.
1 MLB Reset system interrupt is disabled.

Offset: MLB_BASE + 0x001C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UMA[7:0] UMI[7:0]

W

Reset 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MMA[7:0] MMI[7:0]

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Figure 26-6. Version Control Configuration Register (VCCR)

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-14 Freescale Semiconductor

26.3.2.6 Synchronous Base Address Configuration Register (SBCR)

The Synchronous Base Address Configuration Register (SBCR) allows system software to define the base
address for synchronous RX/TX system memory buffers.

26.3.2.7 Asynchronous Base Address Configuration Register (ABCR)

The Asynchronous Base Address Configuration Register (ABCR) allows system software to define the
base address for asynchronous RX/TX system memory buffers.

Table 26-12. VCCR Field Descriptions

Field Description

UMA
[7:0]

User Major Revision. For first release of MPC5668x, the value is 0x03.

UMI
[7:0]

User Minor Revision. For first release of MPC5668x, the value is 0x00.

MMA
[7:0]

MLB Device Major Revision. For first release of MPC5668x, the value is 0x02.

MMI
[7:0]

MLB Device Minor Revision.For first release of MPC5668x, the value is 0x02.

Offset: MLB_BASE + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SRBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
STBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-7. Synchronous Base Address Configuration Register (SBCR)

Table 26-13. SSBCR Field Descriptions

Field Description

SRBA
[31:16]

Synchronous Receive Base Address. This base address is shared by all synchronous RX channels and defines the
upper 16 bits of the 32-bit system memory address for these channels.

STBA
[31:16]

Synchronous Transmit Base Address. This base address is shared by all synchronous TX channels and defines the
upper 16 bits of the 32-bit system memory address for these channels.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-15

26.3.2.8 Control Base Address Configuration Register (CBCR)

The Control Base Address Configuration Register (CBCR) allows system software to define the base
address for control RX/TX system memory buffers.

Offset: MLB_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ARBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ATBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-8. Asynchronous Base Address Configuration Register (ABCR)

Table 26-14. ABCR Field Descriptions

Field Description

ARBA
[31:16]

Asynchronous Receive Base Address. This base address is shared by all asynchronous RX channels and defines
the upper 16 bits of the 32-bit system memory address for these channels.

ATBA
[31:16]

Asynchronous Transmit Base Address. This base address is shared by all asynchronous TX channels and defines
the upper 16 bits of the 32-bit system memory address for these channels.

Offset: MLB_BASE + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CRBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CTBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-9. Control Base Address Configuration Register (CBCR)

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-16 Freescale Semiconductor

26.3.2.9 Isochronous Base Address Configuration Register (IBCR)

The Isochronous Base Address Configuration Register (IBCR) allows system software to define the base
address for isochronous RX/TX system memory buffers.

26.3.2.10 Channel Interrupt Configuration Register (CICR)

The Channel Interrupt Configuration Register (CICR) reflects the channel interrupt status of the individual
MLB logical channels. These bits are set by hardware when a channel interrupt is generated. The channel
interrupt bits are sticky and can only be reset by software.

Table 26-15. CBCR Field Descriptions

Field Description

CRBA
[31:16]

Control Receive Base Address. This base address is shared by all control RX channels and defines the upper 16
bits of the 32-bit system memory address for these channels.

CTBA
[31:16]

Control Transmit Base Address. This base address is shared by all control TX channels and defines the upper 16
bits of the 32-bit system memory address for these channels.

Offset: MLB_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IRBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ITBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-10. Isochronous Base Address Configuration Register (IBCR)

Table 26-16. IBCR Field Descriptions

Field Description

IRBA
[31:16]

Isochronous Receive Base Address. This base address is shared by all Isochronous RX channels and defines the
upper 16 bits of the 32-bit system memory address for these channels.

ITBA
[31:16]

Isochronous Transmit Base Address. This base address is shared by all Isochronous TX channels and defines the
upper 16 bits of the 32-bit system memory address for these channels.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-17

26.3.2.11 Channel n Entry Configuration Register

The Channel n Entry Configuration Register (CECRn) defines basic attributes about a given logical
channel, such as the channel enable, channel type, channel direction, and channel address. The definitions
of some of the bit fields in the CECRn register vary depending on the selected channel type.

Offset: MLB_BASE + 0x0030 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSU[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-11. Channel Interrupt Configuration Register (CICR)

Table 26-17. CICR Field Descriptions

Field Description

CSU
[15:0]

Channel Status Update for Logical Channels 15 through 0. When set, these bits indicate that hardware has
generated an interrupt for the appropriate channel. These bits are sticky and can only be cleared by a software write.
Writing to the CICR register has no effect. To clear a particular bit in the CICR, software must clear all of the
unmasked status bits in the corresponding CSCRn register.
0 Channel n has not generated an interrupt.
1 Channel n has generated an interrupt.

Offset: 0x0040 (CECR0)
0x0050 (CECR1)
0x0060 (CECR2)
0x0070 (CECR3)

0x0080 (CECR4)
0x0090 (CECR5)
0x00A0 (CECR6)
0x00B0 (CECR7)

0x00C0 (CECR8)
0x00D0 (CECR9)
0x00E0 (CECR10)
0x00F0 (CECR11)

0x0100 (CECR12)
0x0110 (CECR13)
0x0120 (CECR14)
0x0130 (CECR15)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CE TR CT[1:0]

FSE/
FCE

MDS[1:0]
0 0

MLFS
0

MBE MBS MBD MDB MPE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FSCD
IPL[7]

IPL[6:5] FSPC[4:0] / IPL[4:0] CA[8:1]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-12. Channel n Entry Configuration Register (CECRn)

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-18 Freescale Semiconductor

Table 26-18. CECRn Field Descriptions

Field Description

CE Channel n Enable.
0 Channel n disabled.
1 Channel n enabled.

TR Channel n Transmit Select.
0 Receive.
1 Transmit.

CT[1:0] Channel n Type Select.
00 Synchronous.
01 Isochronous.
10 Asynchronous.
11 Control.

FSE Frame Synchronization Enable. When set, enables Streaming Channel Frame Synchronization for this logical
synchronous channel. This field is valid for synchronous channels only.
0 Disable frame synchronization for synchronous channels.
1 Enable frame synchronization for synchronous channels.

FCE Flow Control Enable. When set, allows an isochronous RX channel to generate the ReceiverBusy (10h) response.
This field is valid for isochronous channels only.
0 Disable flow control for isochronous channels.
1 Enable flow control for isochronous channels.

MDS
[1:0]

Channel n Mode Select.
00 DMA Ping-pong buffering enabled.
01 DMA Circular buffering enabled.
10 Reserved.
11 Reserved.

MLFS Mask Lost Frame Synchronization. When set, masks Lost Frame Synchronization channel interrupts for this logical
channel.
0 Enable Lost Frame Synchronization channel interrupts for this logical channel.
1 Disable Lost Frame Synchronization channel interrupts for this logical channel.

MBE Mask Buffer Error. When set, masks Buffer Error channel interrupts for this logical channel.
0 Enable Buffer Error channel interrupts for this logical channel.
1 Disable Buffer Error channel interrupts for this logical channel.

MBS Mask Buffer Start. When set, masks Buffer Start channel interrupts for this logical channel.
0 Enable Buffer Start channel interrupts for this logical channel.
1 Disable Buffer Start channel interrupts for this logical channel.

MBD Mask Buffer Done. When set, masks Buffer Done channel interrupts for this logical channel.
0 Enable Buffer Done channel interrupts for this logical channel.
1 Disable Buffer Done channel interrupts for this logical channel.

MDB Mask Detect Break. When set, masks detect break channel interrupts for this logical channel. This bit is valid for
asynchronous and control channels only.
0 Enable detect break channel interrupts for this logical channel.
1 Disable detect break channel interrupts for this logical channel.

MPE Mask Protocol Error. When set, masks Protocol error channel interrupts for this logical channel. This bit is valid for
all RX channel types and valid for only asynchronous and control TX channels.
0 Enable protocol error channel interrupts for this logical channel.
1 Disable protocol error channel interrupts for this logical channel.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-19

26.3.2.12 Channel n Status Configuration Register

The Channel n Status Configuration Register (CSCRn) reflects the status of the given logical channel. The
definition of some of the bit fields in the CSCRn register vary depending on the selected channel type.

FSCD Frame Synchronization Channel Disable. When set, disables this logical channel (set CECHRn[CE] = 0) when
Lost Frame Synchronization occurs. This field is valid for synchronous channels only.
0 Do not disable this logical channel when frame synchronization is lost.
1 Disable this logical channel when frame synchronization is lost.

IPL
[7:0]

Isochronous Packet Length. For Isochronous TX channels, defines the number of packet bytes. The smallest
isochronous packet size per frame is 5 bytes (IPL[7:0] > 5). A packet length of 256 bytes can be represented as
IPL[7:0] = 0x00. For Isochronous RX channels, software must program IPL[7:2] to indicate the expected number
of bytes per packet, where IPL[1:0] always equals 0b00. A packet length of 253 bytes to 256 bytes can be
represented as IPL[7:0] = 0x00. This field is valid for isochronous channels only.

FSPC
[4:0]

Frame Synchronization Physical Channel Count. Defines the number of physical channels expected to match this
logical channel’s ChannelAddress each MediaLB frame. This field is valid for synchronous channels only.

CA[8:1] Channel Address. These bits determine the ChannelAddress associated with this logical channel. This value is
matched against the ChannelAddress received each physical channel from the MediaLB Controller. There is a
ChannelAddress match if and only if the ChannelAddress recovered from the MediaLB input, MLBSIG, equals the
ChannelAddress defined by:
CA[15:0] = { 7’h00, CA[8:1], 1’b0 }.

Table 26-18. CECRn Field Descriptions (continued)

Field Description

IPL[7:0]1 Bytes Per Packet (Expected)

0x00 253–256

0x08 5–8

0x0C 9–12

0x10 13–16

0x14 + 4n
n = 0 to 38

...

0xF8 245–248

0xFC 249–252

1 All other values are reserved.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-20 Freescale Semiconductor

Offset: 0x0044 (CSCR0)
0x0054 (CSCR1)
0x0064 (CSCR2)
0x0074 (CSCR3)

0x0084 (CSCR4)
0x0094 (CSCR5)
0x00A4 (CSCR6)
0x00B4 (CSCR7)

0x00C4 (CSCR8)
0x00D4 (CSCR9)
0x00E4 (CSCR10)
0x00F4 (CSCR11)

0x0104 (CSCR12)
0x0114 (CSCR13)
0x0124 (CSCR14)
0x0134 (CSCR15)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BM BF 0 0 0 0 0 0 0 0 0 0 IVB[1:0] GIRB/
GB

RDY
W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 PBS PBD PBDB PBPE 0 LFS HBE BE CBS CBD CBDB CBPE

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-13. Channel n Status Configuration Register

Table 26-19. Channel n Status Configuration Register Field Descriptions

Field Description

BM Buffer Empty. When set, the local channel buffer (for channel n) is empty. This bit is set and cleared by hardware. At
reset, the local channel buffer is empty (BM = 1).
0 Buffer not empty.
1 Buffer empty.

BF Buffer Full. When set, the local channel buffer (for channel n) is full. This bit is set and cleared by hardware.
0 Buffer not full.
1 Buffer full.

IVB[1:0] Isochronous Valid Bytes. These bits are loaded by hardware with the number of valid bytes in the last packet of a
broken Isochronous RX channel. Used in conjunction with CCBCRn[BCA], IVB[1:0] can be used by software to
determine the final valid byte of the local channel buffer. This field is only valid for logical channels configured for
isochronous RX data.
00 Final valid byte = (CCBCRn[BCA] – 5).
01 Final valid byte = (CCBCRn[BCA] – 4).
10 Final valid byte = (CCBCRn[BCA] – 3).
11 Final valid byte = (CCBCRn[BCA] – 2).

GIRB Generate Isochronous Receive Break. When set, this bit causes hardware to terminate the current packet, flush the
local channel buffer, clear the RDY bit, and load IVB[1:0]. This bit is set by system software and cleared by hardware.
This field is only valid for logical channels configured for isochronous RX data.
0 Do not generate isochronous receive break.
1 Generate isochronous receive break.

GB Generate Break. When the local channel buffer is configured for TX data, the setting of this bit causes hardware to
send the AsyncBreak (26h) or ControlBreak (36h) command and stop the transfer. When the local channel buffer is
configured for RX data, the setting of this bit causes hardware to send the MediaLB RxStatus ReceiverBreak (70h)
and stop the transfer. This bit is set by system software and cleared by hardware. This bit is only valid for logical
channels configured for asynchronous or control data.
0 Do not generate break.
1 Generate break.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-21

RDY Next Buffer Ready. System software should set this bit when all the registers, data, and program memory variables
are setup and ready to transmit or receive data using DMA. For TX data, the system memory buffer should also be
filled. For DMA using ping-pong buffering, hardware clears this bit after the buffer begins to be processed. For DMA
using circular buffering, software should clear this bit only when buffer processing needs to halted. If RDY is set
before processing of the Current Buffer is complete, status for the Current Buffer is reported using CSCRn[11:8]
(status bits for the previous buffer) and CSCRn[3:0] is not updated. The CSCRn[3:0] bits are only updated when the
processing for the Current Buffer is complete and the RDY bit has not yet been set.
0 Next buffer is not ready in system memory.
1 Next buffer is ready in system memory.

PBS Previous Buffer Start. When set, this bit indicates the first quadlet of the Previous Buffer has been successfully
transmitted or received. The setting of this bit generates a maskable channel interrupt to system software. This bit
is valid for all channel types.
0 First quadlet of the Previous Buffer has not been successfully transmitted or received.
1 First quadlet of the Previous Buffer has been successfully transmitted or received.

PBD Previous Buffer Done. When set, this bit indicates the last quadlet of the Previous Buffer has been successfully
transmitted or received. The setting of this bit generates a maskable channel interrupt to system software. This bit
is valid for all channel types. The Done status is always generated when the processing of a buffer has finished, even
if a Break or Error condition was detected during the packet processing. If Break or Error occurred, the Done status
bit is set in addition to the Break or Error status bit.
0 Last quadlet of the Previous Buffer has not been successfully transmitted or received.
1 Last quadlet of the Previous Buffer has been successfully transmitted or received.

PBDB Previous Buffer Detect Break. When set, this bit indicates that either a TX channel has detected a receiver break
response, ReceiverBreak (70h), or an RX channel has detected a transmitter break command, ControlBreak (36h)
or AsyncBreak (26h), while processing the Previous Buffer. The setting of this bit generates a maskable channel
interrupt to system software. This bit is valid for all channel types.
0 Break response was not detected while processing the Previous Buffer.
1 Break response was detected while processing the Previous Buffer.

PBPE Previous Buffer Protocol Error. When set, this bit indicates that either a TX channel has detected an RxStatus of
ReceiverProtocolError (72h), a RX channel has detected an invalid command for this channel type, or an additional
AsyncStart (20h) or ControlStart (30h) command has been received while in the middle of a packet. The setting of
this bit generates a maskable channel interrupt to system software. This bit is valid for all RX channels and valid for
only asynchronous and control TX channels.
0 Protocol error was not detected while processing the Previous Buffer.
1 Protocol error was detected while processing the Previous Buffer.

LFS Lost Frame Synchronization. When set, this bit indicates that the logical channel has lost synchronization with the
MediaLB frame. The setting of this bit generates a maskable channel interrupt to system software. This bit is valid
for synchronous channels only.
0 Frame synchronization not lost.
1 Frame synchronization lost.

HBE Host Bus Error. When set, this bit indicates that an error occurred on the host bus. If the channel is configured for
TX, then the bus error occurred during a read access. If the channel is configured for RX, then the bus error occurred
during a write access. The setting of this bit generates a non-maskable channel interrupt to system software. This
bit is valid for all channel types.
0 Bus error not detected.
1 Bus error detected.

Table 26-19. Channel n Status Configuration Register Field Descriptions (continued)

Field Description

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-22 Freescale Semiconductor

NOTE
If the MLB DMA attempts to write to an invalid memory address, then the
Host Bus Error bit of Channel N Status Configuration Register
(CSCRn[HBE]) is not set as expected. CSCRn[HBE] will be set correctly if
MLB DMA attempts to read from an invalid memory address. Therefore,
ensure MLB DMA writes are to valid memory addresses.

26.3.2.13 Channel n Current Buffer Configuration Register

The Channel n Current Buffer Configuration Register (CCBCRn) allows system software to monitor the
address pointer and buffer length of the Current Buffer in system memory for the logical channel. The
definitions of the bit fields in the CCBCRn register vary depending on the selected channel type.

BE Buffer Error. When set, this bit indicates that either a TX channel has detected a buffer underflow (e.g. attempted to
pop data from an empty buffer), or an RX channel has detected a buffer overflow (e.g. attempted to push data onto
a full buffer). The setting of this bit generates a maskable channel interrupt to system software. This bit is valid for
synchronous RX/TX and isochronous RX (CECRn[FCE] = 0) channels only.
0 TX underflow or RX overflow not detected.
1 TX underflow or RX overflow detected.

CBS Current Buffer Start. When set, this bit indicates the first quadlet of the Current Buffer has been successfully
transmitted or received. The setting of this bit generates a maskable channel interrupt to system software. This bit
is valid for all channel types.
0 First quadlet of the Current Buffer has not been successfully transmitted or received.
1 First quadlet of the Current Buffer has been successfully transmitted or received.

CBD Current Buffer Done. When set, this bit indicates the last quadlet of the Current Buffer has been successfully
transmitted or received. The setting of this bit generates a maskable channel interrupt to system software. This bit
is valid for all channel types. The Done status is always generated when the processing of a buffer has finished, even
if a Break or Error condition was detected during the packet processing. If Break or Error occurred, the Done status
bit is set in addition to the Break or Error status bit.
0 Last quadlet of the Current Buffer has not been successfully transmitted or received.
1 Last quadlet of the Current Buffer has been successfully transmitted or received.

CBDB Current Buffer Detect Break. When set, this bit indicates that either a TX channel has detected a receiver break
response, ReceiverBreak (70h), or an RX channel has detected a transmitter break command, ControlBreak (36h)
or AsyncBreak (26h), while processing the Current Buffer. The setting of this bit generates a maskable channel
interrupt to system software. This bit is valid for all channel types.
0 Break response was not detected while processing the Current Buffer.
1 Break response was detected while processing the Current Buffer.

CBPE Current Buffer Protocol Error. When set, this bit indicates that either a TX channel has detected an RxStatus of
ReceiverProtocolError (72h), a RX channel has detected an invalid command for this channel type, or an additional
AsyncStart (20h) or ControlStart (30h) command has been received while in the middle of a packet. The setting of
this bit generates a maskable channel interrupt to system software. This bit is valid for all RX channels and valid for
only asynchronous and control TX channels.
0 Protocol error was not detected while processing the Current Buffer.
1 Protocol error was detected while processing the Current Buffer.

Table 26-19. Channel n Status Configuration Register Field Descriptions (continued)

Field Description

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-23

26.3.2.14 Channel n Next Buffer Configuration Register

The Channel n Next Buffer Configuration Register (CNBCRn) allows system software to monitor the
address pointer and buffer length of the Next Buffer in system memory for the logical channel. The
definitions of the bit fields in the CNBCRn register vary depending on the selected channel type.

Offset: 0x0048 (CCBCR0)
0x0058 (CCBCR1)
0x0068 (CCBCR2)
0x0078 (CCBCR3)

0x0088 (CCBCR4)
0x0098 (CCBCR5)
0x00A8 (CCBCR6)
0x00B8 (CCBCR7)

0x00C8 (CCBCR8)
0x00D8 (CCBCR9)
0x00E8 (CCBCR10)
0x00F8 (CCBCR11)

0x0108 (CCBCR12)
0x0118 (CCBCR13)
0x0128 (CCBCR14)
0x0138 (CCBCR15)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
BCA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BFA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-14. Channel n Current Buffer Configuration Register

Table 26-20. Channel n Current Buffer Configuration Register Field Descriptions

Field Description

BCA
[15:0]

Buffer Current Address. The BCA field defines a 16-bit address pointer, which identifies the lower half of the
beginning address of the Current Buffer in system memory. The BCA[15:2] bits are loaded from CNBCRn[BSA[15:2]]
when the Next Buffer is ready for processing. This Current Buffer address pointer should always be quadlet aligned
(e.g. BCA[1:0] equals 2’b00). During the processing of the Current Buffer, the BCA field marks which quadlet of the
buffer is currently being processed.

The upper half of the beginning address of the Current Buffer is system memory is defined by SBCR[SRBA],
ABCA[ARBA], CBCR[CRBA], or IBCR[IRBA] when CECRn[TR] is clear; SBCR[STBA], ABCA[ATBA], CBCR[CTBA],
or IBCR[ITBA] when CECRn[TR] is set, depending on the value of CECRn[CT[1:0]].

BFA
[15:0]

Buffer Final Address. The BFA field defines a 16-bit address pointer, which identifies the lower half of the ending
address of the Current Buffer in system memory. The BFA[15:2] bits are loaded from CNBCRn[BEA[15:2]] when the
Next Buffer is read for processing. This Current Buffer address pointer, except when associated with isochronous
channels, should always be quadlet aligned (e.g. BFA[1:0] equals 2’b00). During the processing of the Current Buffer,
the point at which the BCA field becomes equal to (or greater than) the BFA field indicates that the processing of the
Current Buffer ends upon successful completion of the current quadlet (for isochronous and synchronous channels)
or upon successful completion of the current packet (for asynchronous and control channels). It is the responsibility
of system software to ensure the system memory buffers (for RX asynchronous and control channels) can
accommodate overflow in the size of the largest packet supported. Additionally, single-packet buffering can be used
by simply programming CNBCRn[BSA[15:2]] = CNBCRn[BEA[15:2]].

The upper half of the ending address of the Current Buffer in system memory is defined by SBCR[SRBA],
ABCA[ARBA], CBCR[CRBA], and IBCR[IRBA] when CECRn[TR] is clear; SBCR[STBA], ABCA[ATBA],
CBCR[CTBA], or IBCR[ITBA] when CECRn[TR] is set, depending on the value of CECRn[CT[1:0]].

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-24 Freescale Semiconductor

26.3.2.15 Local Channel n Buffer Configuration Register

The Local Channel n Buffer Configuration Register (LCBCRn) allows software to optimize use of the
local buffer RAM for local channel buffering. This register should only be written by software while the
logical channel is disabled (e.g. CECR3[CE] clear disables Channel 3; therefore software may write

Offset: 0x004C (CNBCR0)
0x005C (CNBCR1)
0x006C (CNBCR2)
0x007C (CNBCR3)

0x008C (CNBCR4)
0x009C (CNBCR5)
0x00AC (CNBCR6)
0x00BC (CNBCR7)

0x00CC (CNBCR8)
0x00DC (CNBCR9)
0x00EC (CNBCR10)
0x00FC (CNBCR11)

0x010C (CNBCR12)
0x011C (CNBCR13)
0x012C (CNBCR14)
0x013C (CNBCR15)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
BSA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BEA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-15. Channel n Next Buffer Configuration Register

Table 26-21. Channel n Next Buffer Configuration Register Field Descriptions

Field Description

BSA
[15:0]

Buffer Start Address. The BSA field defines a 16-bit address pointer, which identifies the lower half of the beginning
address of the Next Buffer in system memory. Once system software detects CSCRn[RDY]has been cleared by
hardware (for ping-pong buffering), the beginning address of the Next Buffer may be loaded into BSA[15:2]. System
software should then set CSCRn[RDY]. Once processing of the Current Buffer for the logical channel is complete,
the BSA[15:2] field is loaded into the CCBCRn[BCA[15:2]] field and processing of the next buffer can begin. This
Next Buffer address pointer must always be quadlet aligned (e.g. BSA[1:0] must be written as 2’b00).

The upper half of the beginning address of the Next Buffer in system memory is defined by SBCR[SRBA],
ABCA[ARBA], CBCR[CRBA], or IBCR[IRBA] when CECRn[TR] is clear; SBCR[STBA], ABCA[ATBA], CBCR[CTBA,
or IBCR[ITBA] when CECRn[TR] is set, depending on the value of CECRn[CT[1:0]].

BEA
[15:0]

Buffer End Address. The BEA field defines a 16-bit address pointer, which identifies the lower half of the ending
address of the Next Buffer in system memory. Once system software detects CSCRn[RDY] has been cleared by
hardware (for ping-pong buffering), the ending address of the Next Buffer may be loaded into BEA[15:2]. System
software should then set CSCRn[RDY]. Once processing of the Current Buffer for the logical channel is complete,
the BEA[15:2] field is loaded into the CCBCRn[BFA[15:2]] field and processing of the next buffer can begin. The
BEA[15:2] bits are loaded into CCBCRn[BFA[15:2]] when the Current Buffer is finished being processed. This Next
Buffer address pointer, except when associated with isochronous channels, should always be quadlet aligned (e.g.
BEA[1:0] defaults to 2’b00).

The upper half of the ending address of the Next Buffer in system memory is defined by SBCR[SRBA], ABCA[ARBA],
CBCR[CRBA], or IBCR[IRBA] when CECRn[TR] is clear; SBCR[STBA], ABCA[ATBA], CBCR[CTBA, or IBCR[ITBA]
when CECRn[TR] is set, depending on the value of CECRn[CT[1:0]].

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-25

LCBCR3). Writing to this register while the corresponding logical channel is enabled may result in
unexpected behavior.

Offset: 0x0280 (LCBCR0)
0x0284 (LCBCR1)
0x0288 (LCBCR2)
0x028C (LCBCR3)

0x0290 (LCBCR4)
0x0294 (LCBCR5)
0x0298 (LCBCR6)
0x029C (LCBCR7)

0x02A0 (LCBCR8)
0x02A4 (LCBCR9)
0x02A8 (LCBCR10)
0x02AC (LCBCR11)

0x02B0 (LCBCR12)
0x02B4 (LCBCR13)
0x02B8 (LCBCR14)
0x02BC (LCBCR15)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
BD[8:3]

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BD[2:0]

0 0 0 0
SA[8:0]

W

Reset1

1 Reset value of SA[8:0] for Channel n offset = Channel(n – 1)offset + Buffer Depth(Channel(n – 1))

1 1 1 0 0 0 0 * * * * * * * * *

Figure 26-16. Local Channel n Buffer Configuration Register

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-26 Freescale Semiconductor

26.4 Functional Description
The MLB Device peripheral is divided into six main components, as illustrated in Figure 26-1.

• MLB Core. Implements the physical layer of the MLB interface. This physical layer performs
serial-to-parallel and parallel-to-serial data transformations and MLB frame synchronization.

• Clock and Reset Control

• MLB Link Logic. Implements the link layer functionality of the MLB interface, including:

— Checking of synchronous, asynchronous, control, and isochronous channel protocol

— Handling of both RX and TX initiated breaks

— Generating RX responses to the MLB Core

— Generating TX commands for the MLB Core

— Processing of and responding to the system channel commands

— Detection of MLB bus lock/unlock

— Recognition and pipe-lining of logical ChannelAddresses

• MLB Configuration Logic. Implements the memory space for the Configuration Control Registers
and Channel Configuration Registers. These configuration and control registers are used to define

Table 26-22. Local Channel n Buffer Configuration Register Field Descriptions

Field Description

BD[8:0] Buffer Depth. This field defines the depth of the local channel buffer in the local buffer RAM in increments of 4
quadlets. At reset, the LCBCHn[BD[8:0]] field is loaded with 0x01F, or 128 quadlets.
0x000 – Depth = 4 quadlets.
0x001 – Depth = 8 quadlets.
0x002 – Depth = 12 quadlets.
...
0x1FF – Depth = 2048 quadlets.

Value 0x01F (decimal 31) equates to 128 quadlets.

The default buffer depth for all channels is 128 quadlets (0x01F).

SA[8:0] Buffer Start Address. This field defines the starting address of the channel buffer space in the local buffer RAM in
increments of 4 quadlets. At reset, the LCBCRn[SA[9:0]] field is loaded with the channel number multiplied by 32 (or
channel number multiplied by 128 quadlets).
0x000 – RAM Start Address offset = 0 quadlets.
0x001 – RAM Start Address offset = 4 quadlets.
0x002 – RAM Start Address offset = 8 quadlets.
...
0x1FFh – RAM Start Address offset = 2044 quadlets.

General: Channel n offset = Channel (n – 1)offset + BD(Channel (n – 1)).

Channel 0 = 0 offset.
Channel 1 = Channel 0 + BD(16quadlets) = 16quadlets offset.
Channel 2 = Channel 1 (16quadlets) + BD(16 quadlets) = 32 quadlets offset.
Channel 3 = Channel 2 (32 quadlets) + BD(144 quadlets) = 176 quadlets offset.
Channel 4 = Channel 3 (176 quadlets) + BD(144 quadlets) = 320 quadlets offset.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-27

various parameters and control the operation of the MLB Device. The registers are accessed
through the peripheral bus.

• MLB Channel Buffer. Implements the interface between the MLB Device and a single-port
SRAM. Functionality of the MLB Channel Buffer logic block includes:

— Buffering of logical channel data for bus latency issues

— Multiplexing of logical channel data in Big- and Little-Endian mode

— Implementation of hardware loop-back mode between logical channel 0 (RX) and logical
channel 1 (TX)

• MLB Channel Arbiter. Functions as the Host Bus master and is responsible for handling requests
from the MLB DMA Controller. Some of the Channel Arbiter functionality includes:

— Operating as a bus-master for DMA accesses to/from system memory

— Determining priorities of channel DMA requests

— Granting requests based on round-robin arbitration

— Routing data and control information between MLB logical channels and the Host Bus
interface, and consolidating channel interrupts

The MLB physical layer interfaces directly to the Media local bus. MediaLB is based on a scalable 3-pin
interface (MLBCLK, MLBSIG, MLBDAT) designed to operate at a maximum operating frequency of
1024 Fs (49.152 MHz at 48 kHz). The MediaLB topology supports communication among the MediaLB
controller (INIC) and other MediaLB devices. The MediaLB controller interfaces directly with the MOST
network. The MediaLB interface consists of the MLBCLK clock line, a bi-directional MLBSIG line for
signal information and a bi-directional MLBDAT line for data transfer.

The MediaLB topology supports one network controller connected to one or more devices, where the
controller is the interface between the MediaLB devices and the MOST network. The controller also
generates the MediaLB clock source MLBCLK, that is synchronized to the MOST network and provides
the timing for the entire MediaLB interface. The MLBCLK continues to operate even when the MediaLB
controller loses lock with the MOST network.

The MLBSIG line is a multiplexed signal which carries the ChannelAddress generated by the MediaLB
controller, as well as the Command and RxStatus bytes from the MediaLB devices. The MediaLB
controller incorporates MediaLB device functionality. The ChannelAddress indicates which device can
transmit and which device or devices receive on a particular logical channel.

The MLBDAT line is driven by the transmitting MediaLB device and is received by all other MediaLB
devices including the MediaLB controller. The MLBDAT line carries the actual data (synchronous,
asynchronous, isochronous, or control). For synchronous stream data transmission, multiple MediaLB
devices can receive the same data, in a broadcast fashion. The transmitting MediaLB device indicates the
particular type of data transmitted by sending the appropriate command on the MLBSIG line. The
commands supported are determined by the MediaLB device’s link layer.

When receiving signals over the bus, the physical layer first detects the framesync information in the
bitstream. The physical layer then captures the control and data information and converts it to a parallel
format to be passed to the link layer. When detecting the framesync information in the bitstream the
physical layer may also place data on the bus that has been converted from its native parallel format to the

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-28 Freescale Semiconductor

serial format required by the MLB interface. Data is transferred over the MLB in quadlets (32-bit words).
The MLB protocol supports as many as 32 quadlets per frame.

26.4.1 Clocking Requirements

The system clock (SYS_CLK) requirements for operation are shown in Table 26-23.

26.4.1.1 Reset

Soft reset of the physical and logical channel blocks is provided via the DDCE[MRS] bit.

Hard reset of the physical and logical channel blocks is enabled via the DCCR[MHRE] bit. When set,
reception of the global or device system reset commands resets the physical and link layers.

26.4.2 Interrupts

The MLB module generates 18 different interrupts, which are summarized in Table 26-24. For more
information on interrupts, please seeChapter 9, “Interrupts and Interrupt Controller (INTC).”

Table 26-23. Minimum MediaLB System Clock Requirements

Fs MLBCLK Minimum System Clock Speed

44.1 kHz 256 FS 12 MHz

512 FS 23 MHz

1024 FS 46 MHz

48.0 kHz 256 FS 13 MHz

512 FS 25 MHz

1024 FS 50 MHz

48.1 kHz 256 FS 13 MHz

512 FS 25 MHz

1024 FS 50 MHz

Table 26-24. MLB Interrupts

Interrupt Name
MPC5668x

Interrupt Vector
Interrupt Flag Bits Interrupt Mask Bits

MLB Channel Interrupt 95 CSCR0[20:31]
to

CSCR15[20:31]

CECR0[9:15]
to

CECR15[9:15]

MLB System Interrupt 96 SSCR[25:31] SMCR[25:31]

MLB Logical Channel 0 Interrupt 97 CSCR0[20:31] CECR0[9:15]

MLB Logical Channel 1 Interrupt 98 CSCR1[20:31] CECR1[9:15]

MLB Logical Channel 2 Interrupt 99 CSCR2[20:31] CECR2[9:15]

MLB Logical Channel 3 Interrupt 100 CSCR3[20:31] CECR3[9:15]

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-29

26.4.3 System Memory Buffers

System software must define system memory buffers for each hardware channel, using the CCBCRn and
CNBCRn registers. Each system memory buffer can occupy as much as 64 KB and must be aligned on a
64 KB boundary; however, the system memory buffers are not required to be contiguous with each other.

Each of the system memory buffers can be configured for either multi-packet or single-packet buffering.
Multi-packet buffering allows the system to reduce the interrupt load at the expense of larger system
memory buffers. Single-packet buffering allows system memory buffer size to be reduced at the expense
of increasing the interrupt rate.

System memory must accommodate situations in which the end of the buffer does not coincide with the
end of the current packet (e.g. asynchronous and control RX packets). This requires the system memory
buffers to allow overflow by the worst-case packet length.

System memory buffers are referred to as Previous Buffer, Current Buffer, and Next Buffer. The Current
Buffer is the system memory buffer the DMA Controller is currently processing and is defined by the
CCBCRn register. The status of the Current Buffer is reflected in CSCRn[STS[3:0]]. The Previous Buffer
is the system memory buffer the DMA Controller completed processing prior to the Current Buffer. The
status of the Previous Buffer is reflected in CSCRn[STS[11:8]]. The Next Buffer is the system memory
buffer the DMA Controller begins processing after the Current Buffer. The Next Buffer is defined by the
CNBCRn register.

For Isochronous RX channels, the DMA Controller aligns incoming packets on a packet boundary in
system memory, dependent on the setting of CECRn[IPL[7:0]] and the arrival of the IsoSyncByte
command.

MLB Logical Channel 4 Interrupt 101 CSCR4[20:31] CECR4[9:15]

MLB Logical Channel 5 Interrupt 102 CSCR5[20:31] CECR5[9:15]

MLB Logical Channel 6 Interrupt 103 CSCR6[20:31] CECR6[9:15]

MLB Logical Channel 7 Interrupt 104 CSCR7[20:31] CECR7[9:15]

MLB Logical Channel 8 Interrupt 105 CSCR8[20:31] CECR8[9:15]

MLB Logical Channel 9 Interrupt 106 CSCR9[20:31] CECR9[9:15]

MLB Logical Channel 10 Interrupt 107 CSCR10[20:31] CECR10[9:15]

MLB Logical Channel 11 Interrupt 108 CSCR11[20:31] CECR11[9:15]

MLB Logical Channel 12 Interrupt 109 CSCR12[20:31] CECR12[9:15]

MLB Logical Channel 13 Interrupt 110 CSCR13[20:31] CECR13[9:15]

MLB Logical Channel 14 Interrupt 111 CSCR14[20:31] CECR14[9:15]

MLB Logical Channel 15 Interrupt 112 CSCR15[20:31] CECR15[9:15]

Table 26-24. MLB Interrupts

Interrupt Name
MPC5668x

Interrupt Vector
Interrupt Flag Bits Interrupt Mask Bits

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-30 Freescale Semiconductor

26.4.4 Local Channel Buffer RAM

A single-port RAM is used to implement the memory space for local channel buffering. The size of the
RAM is 2k x 36-bits (1 quadlet of data; 4-bit tag). The initial start address and depth values for the logical
channels buffered in the RAM are controlled via the LCBCRn. After reset, the initial settings can be
overwritten by software.

See Figure 26-17 for more information on using the LCBCRn to configure the local RAM buffer.

Figure 26-17. Programming Example for LCBCRn

26.4.4.1 Local Buffer Start Address

The initial buffer start address of each local channel buffer is defined by the default (after reset) start
address of each local channel buffer (LCBCRn[SA[8:0]]). The start address is the location of the beginning
of the buffer in the local buffer RAM. Software may change the start address of each local channel buffer
after reset by writing to LCBCRn[SA[8:0]] directly.

26.4.4.2 Local Channel Buffer Depth

The initial buffer depth of each local channel buffer is configured by the default (after reset) depth of each
local channel buffer (LCBCRn[BD[8:0]]) in quadlets. The buffer depth should be set based on the
worst-case DMA interface read/write latency. Software may change the depth of each local channel buffer
after reset by writing to LCBCRn[BD[8:0]] directly.

Local Channel Buffer 0

LC
B

C
R

0.
B

D

LCBCR0.SA

Local Channel Buffer 2

LC
B

C
R

2.
B

D
LCBCR2.SA

Local Channel Buffer 1

LC
B

C
R

1.
B

D

LCBCR1.SA

0

2048

36 bits

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-31

26.4.5 Channel Arbiter

The MLB Device includes a DMA Controller with a Host Bus that can access system memory. The
channel arbiter logic of the MLB Device, arbitrates requests between the different logical channel requests.
Some of the functions of the channel arbiter include:

• determining priorities of channel requests

• granting high priority requests based on round-robin arbitration of current high priority requests

• granting low priority requests based on round-robin arbitration of current low priority requests, and

• routing data and control information between channels and the Host Bus.

26.4.5.1 Round Robin Arbitration

The MLB channel arbiter uses round-robin arbitration to determine which logical channel is granted
access to the Host Bus. An example of the round-robin arbitration method is provided in Figure 26-18.

Figure 26-18. Round-Robin Arbitration Example

Grant 0
(g0)

Grant 1
(g1)

Grant 3
(g3)

Grant 2
(g2)

g0 r0 r1 r2 r3

g1 r0 r1 r2 r3

g2 r0 r1 r2 r3

g3 r0 r1 r2 r3

g0 r1

g1 r2g2 r3

g3 r0

g0
 r1

 r2
 r3

g3 r0 r1 r2

g1 r0 r2 r3

g2
 r0

 r1
 r3

g3 r0 r1

g1 r2 r3

g2
 r

0
 r

3

g0
 r

1
r2

Round-Robin Arbitration: 4 Channel Example

gn - Channel n grant

rn - Channel n request

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-32 Freescale Semiconductor

26.4.6 DMA Controller (Ping-Pong Buffering)

Using the MLB DMA Controller with ping-pong buffering dictates a particular method used for
transferring data between hardware channels and system memory. When the MLB hardware channels are
configured in this mode, the CCBCRn and CNBCRn registers are used to configure and monitor the
system memory Current Buffer and Next Buffer, respectively.

Channels use ping-pong buffering when CECRn[MDS[1:0]] = 00. The Current Buffer and Next Buffer are
independent system memory buffers, which allow hardware to support the ping-pong buffering. Each is
addressed using two 16-bit address pointers, as follows:

• Buffer Start Address (CNBCRn[BSA]) – defines the beginning address of the Next Buffer in
system memory

• Buffer End Address (CNBCRn[BEA]) – determines the end of the Next Buffer in system memory

• Buffer Current Address (CCBCRn[BCA]) – defines the beginning of the Current Buffer in system
memory

• Buffer Final Address (CCBCRn[BFA]) – defines the end of the Current Buffer in system memory

26.4.6.1 Asynchronous and Control Packet Handling

The Current Buffer and Next Buffer can be configured for either multi-packet or single-packet buffering,
when receiving and transmitting asynchronous and control packet data. Multi-packet buffering allows the
system to reduce the interrupt load at the expense of larger system memory buffers. Single-packet
buffering allows system memory buffer size to be reduced at the expense of increasing the interrupt rate.

An example of multi-packet buffering for asynchronous and control channels is provided in Figure 26-19.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-33

Figure 26-19. Asynchronous/Control Packet Buffering Example

26.4.6.1.1 Packet Reception

When multi-packet buffering is used for receiving asynchronous or control data packets, buffer processing
should be handled in the following manner:

• At the start of buffer processing, the beginning of the Next Buffer becomes the beginning of the
Current Buffer, as CNBCRn[BSA] is loaded into CCBCRn[BCA]. Additionally, the end of the
Next Buffer becomes the end of the Current Buffer, as CNBCRn[BEA] is loaded into
CCBCRn[BFA] (See Note 1 in Figure 26-19).

• A Buffer Start interrupt is generated (CSCRn[STS[3]] set), which informs software that hardware
has updated CCBCRn, cleared the local channel CSCRn[RDY] bit, and is available to accept the
next buffer. Software may then prepare the Next Buffer by writing CNBCRn[BSA],
CNBCRn[BEA], and CSCRn[RDY]. (See Note 2 in Figure 26-19).

Packet 1
(First Packet)

Packet 2

Packet 3

Packet N
(Last Packet)

0

BS

BD

BCA

BFABEA

BFABEA

BSA BCA

internal registerNote 3
* RX handling only

Note 5A
* RX handling only

Note 4Note 1

Note 5B
* TX handling only

Note 6

Note 2

Legend

= 16-bit address pointer

= channel interrupt

(Shows RX/TX handling of Asynchronous/Control Packets using the Current Buffer)
Multi-Packet Buffering Example

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-34 Freescale Semiconductor

• The CCBCRn[BCA] field is loaded into an internal hardware register (not visible to system
software) at the start of each incoming asynchronous or control RX packet. If the packet is later
aborted (caused by AsyncBreak, ControlBreak, ReceiverBreak, or ReceiverProtocolError),
CCBCRn[BCA] is restored with the address pointer in the internal hardware register. The next
packet then overwrites the aborted RX packet, as aborted RX packets are not stored in system
memory. (See Note 3 in Figure 26-19).

• During the processing of the Current Buffer, CCBCRn[BCA] continues to mark which quadlet of
the asynchronous or control RX packet is currently being processed. (See Note 4 in Figure 26-19).

• Software is unable to predict the buffer length for asynchronous and control RX channels, since the
length of each RX packet is defined by the packet header (PML) and extracted by hardware as the
packet is received. As a result, there is a possibility that the last packet in the Current Buffer may
extend beyond CCBCRn[BFA]. System memory must accommodate this by allowing the buffers
to overflow by the worst-case packet length. (See Note 5A in Figure 26-19).

• A Buffer Done interrupt is generated (CSCRn[STS[2]] set) when the last quadlet from the last
packet (in the Current Buffer) has been successfully received. Software may then begin processing
the buffer. (See Note 6 in Figure 26-19).

NOTE
When the DMA Controller encounters an asynchronous or control packet
that is broken (or has an error), CCBCRn[BCA] is reloaded with the start
address of the last packet and the broken packet is overwritten. This
mechanism ensures that system software can always calculate the address of
the next packet start address within system memory.

Single-packet buffering of asynchronous and control RX packets should be handled in the same manner
described for multi-packet buffering, with the exception that the beginning and end address of the
Next Buffer should be set to the same address (e.g. CNBCRn[BSA] = CNBCRn[BEA]).

26.4.6.1.2 Packet Transmission

When multi-packet buffering is used for transmitting asynchronous or control data packets, buffer
processing should be handled in the following manner:

• At the start of buffer processing, the beginning of the Next Buffer becomes the beginning of the
Current Buffer, as CNBCRn[BSA] is loaded into CCBCRn[BCA]. Additionally, the end of the
Next Buffer becomes the end of the Current Buffer, as CNBCRn[BEA] is loaded into
CCBCRn[BFA]. (See Note 1 in Figure 26-19).

• A Buffer Start interrupt is generated (CSCRn[STS[3]] set), which informs software that hardware
has updated CCBCRn, cleared the local channel CSCRn[RDY] bit, and is available to accept the
next buffer. Software may then prepare the Next Buffer by writing: CNBCRn[BSA],
CNBCRn[BEA], and CSCRn[RDY]. (See Note 2 in Figure 26-19).

• During the processing of the Current Buffer, CCBCRn[BCA] continues to mark which quadlet of
the asynchronous or control TX packet is currently being processed. (See Note 4 in Figure 26-19).

• System software can determine the exact buffer length for TX channels. As a result, the last packet
in the Current Buffer should coincide with CCBCRn[BFA]. (See Note 5B in Figure 26-19).

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-35

• A Buffer Done interrupt is generated (CSCRn[STS[2]] set) when the last quadlet from the last
packet (in the Current Buffer) has been successfully transmitted. (See Note 6 in Figure 26-19).

Single-packet buffering of asynchronous and control TX packets should be handled in the same manner
described for multi-packet buffering.

26.4.6.2 Isochronous and Synchronous Data Handling

Reception and transmission of isochronous and synchronous data should be handled in the following
manner:

• At the start of buffer processing, the beginning of the Next Buffer becomes the beginning of the
Current Buffer, as CNBCRn[BSA] is loaded into CCBCRn[BCA]. Additionally, the end of the
Next Buffer becomes the end of the Current Buffer, as CNBCRn[BEA] is loaded into
CCBCRn.[BFA]. (See Note 1 in Figure 26-20).

• A Buffer Start interrupt is generated (CSCRn[STS[3]] set), which informs software that hardware
has updated CCBCRn, cleared the local channel CSCRn[RDY] bit, and is available to accept the
next buffer. Software may then prepare the Next Buffer by writing CNBCRn[BSA],
CNBCRn[BEA], and CSCRn[RDY]. (See Note 2 in Figure 26-20).

• During the processing of the Current Buffer, CCBCRn[BCA] continues to mark which quadlet of
the isochronous or synchronous data is currently being processed. (See Note 3 in Figure 26-20).

• A Buffer Done interrupt is generated (CSCRn[STS[2]] set) when the last quadlet in the
Current Buffer has been successfully transmitted/received. (See Note 4 in Figure 26-20).

An example of buffer processing for isochronous and synchronous channels is provided in Figure 26-20.

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-36 Freescale Semiconductor

Figure 26-20. Isochronous/Synchronous Data Buffering Examples

For reception or transmission of isochronous data, single-packet and multi-packet buffering is handled in
the same manner. Since isochronous channels have a fixed packet length (determined by CECRn[IPL]),
software should set the system memory buffer length as an even multiple of CECRn[IPL] for multi-packet
buffering and equal to CECRn[IPL] for single-packet buffering. It is assumed that all isochronous packets
in the system are of the same length, with the minimum supported length being 5 bytes.

For reception or transmission of synchronous data, the concept of multi-packet or single-packet buffering
is not applicable since synchronous data has no packet format. As a result, CCBCRn[BFA] always
indicates the end address of the Current Buffer for synchronous channels.

26.4.7 DMA Controller (Circular Buffering)

Logical channels can be programmed to operate using circular buffering by programming
CECRn[MDS[1:0]] = 01. It is recommended that circular buffering be used with synchronous channels
only (CECRn[CT[1:0]] = 00). Logical channels configured for transmitting or receiving other types of
data (e.g. asynchronous, control, or isochronous) should not use circular buffering.

In contrast ping-pong buffering, this mode effectively uses a single, circular system memory buffer to
process channel data. Software must program the beginning and ending address of the circular buffer in
the CNBCRn[BSA] and CNBCRn[BEA] fields. For proper operation, software must not change the
addresses in CNBCRn[BSA] and CNBCRn[BEA] once buffer processing has started.

Isochronous
BS

BD

BCA

BFABEA

BSA BCA

Note 3

Note 1

Note 4

Note 2

Legend

= 16-bit address pointer

= channel interrupt

(Shows RX/TX handling of Isochronous/Synchronous Data using the Current Buffer)
Isochronous/Synchronous Data Buffering Examples

(First Packet)
Packet 1

Isochronous
Packet 2

Isochronous
Packet 3

Isochronous

(Last Packet)
Packet N

Synchronous
Data

Current Buffer
for Synchronous

channel

Current Buffer
for Isochronous

channel

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-37

While processing the circular buffer, the CSCRn[RDY] bit is not automatically cleared by hardware, as it
is with ping-pong buffering. For circular buffer, the CSCRn[RDY] bit can only be cleared by software
through the peripheral bus interface. Once CNBCRn[BSA] and CNBCRn[BEA] are initially loaded,
software should set the CSCRn[RDY] bit to initiate buffer processing. This bit may be cleared by software,
as needed, to halt the buffer processing.

System design must ensure synchronous data is loaded into the circular buffer at the same rate at which it
is unloaded.

An example of the circular buffering for synchronous channels is provided in Figure 26-21.

Figure 26-21. Circular Buffering of Synchronous Data

Synchronous data using circular buffering should be handled in the following manner:

• Before buffer processing can begin, software must define the beginning address (CNBCRn[BSA])
and ending address of the circular buffer (CNBCRn[BEA]). Once the circular buffer beginning and
ending addresses are defined, software must set the CSCRn[RDY] bit to initiate buffer processing.

• At the start of buffer processing, the beginning address of the circular buffer (CNBCRn[BSA]) is
loaded into CCBCRn[BCA] CCBCRn[BCA]. Additionally, the ending address of the circular
buffer (CNBCRn[BEA]) is loaded into CCBCRn[BFA].

• During the processing of the circular buffer, CCBCRn[BCA] is updated to indicate which quadlet
of the synchronous data is currently being processed.

• Once the end of the buffer is reached and CCBCRn[BCA] = CCBCRn[BFA], the CCBCRn[BCA]
field is reloaded to point to the beginning address of the circular buffer (CNBCRn[BSA]).

• The CSCRn[RDY] bit remains set during the processing of the circular buffer. Software may clear
this bit, as needed, to halt buffer processing.

Legend

= 16-bit address pointer

BCA

C
ir

cu
la

r
B

u
ff

er
Synchronous Data Circular Buffering Example

BCA

BCA

BCA

Beginning of Circular Buffer
CNBCRn[BSA]

Once software programs
CNBCRn[BSA] and CNBCRn[BSA],
it should set CSCRn[RDY] to initiate

processing of the circular buffer.
At this point, software should not alter
the addresses of the CNBCRn[BSA]

and CNBCRn[BEA] fields.

End of Circular Buffer
CNBCRn[BEA] = CNBCRn[BFA]

Lo
ca

tio
n

in
 s

ys
te

m
 m

em
or

y
sh

ou
ld

 n
ot

 c
ha

ng
e

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-38 Freescale Semiconductor

26.4.8 Streaming Channel Frame Synchronization

Certain types of streaming applications require data to be synchronous with the MLB frame, including:
stereo, 5.1 audio, and Generic Synchronous Packet Format (GSPF) DTCP. The MLB
Streaming Channel Frame Synchronization feature provides this option.

For example, 24-bit stereo channels require two MLB physical channels (PC) to transmit left (0xLLLLLn)
and right (0xRRRRRn) speaker data. Assuming the MLB Controller allocates Physical Channel 1 (PC1)
and Physical Channel 2 (PC2) to this stereo channel, the data would be synchronized to the MLB frame as
shown in Table 26-25.

Without frame synchronization, the MLB may begin transmitting or receiving data that is not aligned with
the MLB frame. Misalignment, as depicted in Table 26-26, may result in data corruption.

The MLB supports Streaming Channel Frame Synchronization as a programmable option for each logical
channel configured for synchronous dataflow. System software can enable the frame synchronization
feature for a synchronous logical channel by setting CECHRn[FSE]. When enabled, the synchronous
logical channel begins transmitting and receiving data only at a MLB frame boundary.

When the loss of MLB frame synchronization occurs, the MLB detects it and optionally notifies system
software via a maskable channel interrupt. In order to use this option, system software must:

• program CECRn[FSPC[4:0]] with the expected number of physical channels per frame for the
logical channel, and

• unmask the CSCRn[STS[6]] bit by setting CECRn[MLFS] to 0.

A channel interrupt is generated when the actual number of physical channels detected during a MLB
frame does not match the expected value. An additional channel interrupt is generated if the local channel
buffer overflows (for RX channels) or underflows (for TX channels).

Table 26-25. Example of 24-bit Stereo Data Synchronous to 256 Fs MediaLB frame

Frame PC = 0 PC = 1 PC = 2 PC = 3 PC = 4 PC = 5 PC = 6 PC = 7

n = 0 0xLLLL_LLRR 0xRRRR_xxxx

n = 1 0xLLLL_LLRR 0xRRRR_xxxx

n = 2 0xLLLL_LLRR 0xRRRR_xxxx

n = 3 0xLLLL_LLRR 0xRRRR_xxxx

Table 26-26. Example of 24-bit Stereo Data Asynchronous to 256 Fs MediaLB frame

Frame PC = 0 PC = 1 PC = 2 PC = 3 PC = 4 PC = 5 PC = 6 PC = 7

n = 0 0xLLLL_LLRR

n = 1 0xRRRR_xxxx 0xLLLL_LLRR

n = 2 0xRRRR_xxxx 0xLLLL_LLRR

n = 3 0xRRRR_xxxx 0xLLLL_LLRR

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-39

Additionally, software may instruct the MLB to automatically disable a logical channel when MLB frame
synchronization is lost. To enable this feature, software must set CSCLRn[FSCD], which causes hardware
to automatically clear the Channel Enable bit (CECHRn[CE]) when synchronization is lost.

Frame synchronization is not supported for asynchronous, control, or isochronous channels.

26.4.9 Loop Back Test Mode

In order to facilitate silicon debug of the MLB Device, hardware supports the Loop-Back Test Mode. This
mode allows testing of the MLB pads, physical layer, link layer, channel protocol, and local channel buffer.
When the DCCR[LBM] bit is set, a data path is enabled which allows RX data from Channel 0 to be sent
out as TX data on Channel 1.

Figure 26-22 illustrates the Loop-Back Test Mode data path.

Figure 26-22. Loop-Back Test Mode Data Path

For Loop-Back Test Mode operation, software must perform the following steps:

• Set the logical ChannelAddresses for Channel 0 and 1. (They cannot be the same address.)

• Enable Channel 0 for receiving synchronous, asynchronous, control, or isochronous data.

• Enable Channel 1 for transmitting the same channel data type as Channel 0.

• Set the Loop-Back Mode bit (DCCR[LBM]).

Restrictions on the Loop-Back Test Mode are as follows:

• No protocol errors or breaks are allowed on either the RX or TX channel.

• Little-Endian mode must be disabled (DCCR[MLE] clear).

• Isochronous packet lengths must be quadlet multiples.

• Next Buffer Ready bits for Channels 0 and 1 must remain clear
(CSCR0[RDY] = CSCR1[RDY] = 0)

26.5 Initialization Information
The flowcharts in the following pages detail the intended software flow for the MLB Device peripheral.
These flowcharts are provided as examples only and are not intended as a source for firmware. Other valid
software flows are possible.

PADS
MediaLB Core

MediaLB
Link Logic

(Link Layer)
(Physical Layer) MediaLB Interface

Channel 1
Local Buffer

1

Channel 0
Local Buffer

Channel 1
Protocol Engine

(TX)

Channel 0
Protocol Engine

(RX)

DCCR.LMB = 1

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-40 Freescale Semiconductor

26.5.1 Main Loop

Figure 26-23. Main Loop

MLB module
System Reset

InitDevice

ReturnInitDevice

no

yes

Lock?

Initialize MLB Module Hardware Channels

n = 0

MediaLB

ChgChann

ReturnChgChan

InitChann

ReturnInitChan

n++

yes

no

n <
num_of_chans?

Background Loop

CINT
== 1?

yes

no

yesSINT
== 1?

no

ProcessCint

ReturnCint

ProcessSint

ReturnSint

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-41

26.5.2 Initialize Device

Figure 26-24. Initialize Device

Write data to DCCR

Any channels
configured for

InitDevice

ReturnInitDevice

Set system interrupt mask

Enable MLB module

Disable loop-back test mode

Select MediaLB clock speed

Select MediaLB pin mode

Set system endianness

Set device address

Set base address registers

Write data to SMCR

Write data to SBCR

at PBI address 0x03

DCCR[MDE]

DCCR[LBM]

at PBI address 0x00

SBCR, ABCR, CBCR, and ICBR

at PBI address 0x08

Write data to ABCR
at PBI address 0x09

Write data to CBCR
at PBI address 0x0A

Write data to IBCR
at PBI address 0x0B

DMA mode?

DCCR[MCS[1:0]]

SMCR[31:27]

DCCR[MLE]

DCCR[MDA[8:1]]

DCCR[4]

no

yes

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-42 Freescale Semiconductor

26.5.3 Initialize Channel

Figure 26-25. Initialize Channel

Isochronous

Determine channel direction

InitDmaBuffer(n)

ReturnDmaBuffer

InitChan(n)

ReturnInitChan

channel?

CECRn[TR]

Determinechannel type
CECRn[CT[1:0]]

Determine IO/DMA mode
CECRn[26]

Determine interrupt mask
CECRn[15:8]

Determine channel address
CECRn[CA[8:1]]

Write data to CECRn
at PBI address 0x10 + 4 * n

Determine isochronous flow control
mechanism CECRn[FSE]

Determine isochronouspacket length
CECRn[IPL[7:0]] For DMA Mode (ping-pong buffering), the

interrupt mask bits could be set as follows:
4: 0 – Sync RX/TX

1 Control RX/TX, Async RX/TX
3: 0 – All channel types/directions
2: 0 – All channel types/directions
1: 1 – All channel types/directions
0: 1 – All channel types/directions

For DMA Mode (circular buffering), the
interrupt mask bits could be set as follows:
4: 0 – Sync RX/TX
3: 1 – Synchronous only
2: 1 – Synchronous only
1: 0 – Synchronous only
0: 0 – Synchronous only

yes

no

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-43

Figure 26-26. Initialize DMA Buffer

InitDMABuffern

ReturnDMABuffer

Write data to CNBCRn
at PBI address 0x13 + 4 * n

Determine next buffer start address
CNBCRn[15:0]

Determine next buffer end address
CNBCRn[31:16]

Set RDY to 1 in CSCRn[15]
at IO address 0x11 + 4 * n

Ensure buffer is either filled for
transmission or ready for data reception

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-44 Freescale Semiconductor

26.5.4 Channel Interrupts

Figure 26-27. Channel Interrupt

n <
num_of_chans?

ProcCintDMA

ReturnCintDMA

Read channel status from CSCRn
at PBI address 0x11 + 4 * n

ProcessCint

ReturnCint

CLEAR INTERRUPTS:
Write CSCRn to 0x0000_FFFF

at PBI address 0x11 + 4 * n

ProcCintDMACir

ReturnCintDMACir

Ping-Pong
Buffering?

CICRn
== 1?

no

no

yes

yes

yes

no

n ++

Read interrupts from CICR
at PBI address 0x0C

n = 0

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-45

Figure 26-28. DMA Ping-Pong Buffer Channel Interrupt (part 1)

ProcCintDMA

ReturnCintDMA

Notify application

Notify application

Process current buffer
in system memory

Host bus error

DMA current buffer done

DMA current buffer started

Break received on MediaLB
during Current Buffer

Protocol error detected on MediaLB
during current buffer

Disable channel
and notify application

ReturnCintDMA
(Part 2)

ProcCintDMA
(Part 2)

CSCRn[BE]
== 1?

CSCRn[HBE]
== 1?

CSCRn[CBS]
== 1?

CSCRn[CBD]
== 1?

CSCRn[CBPE]
== 1?

CSCRn[CBDB]
== 1?

Buffer overflow for RX
Buffer underflow for TX

ReturnDMABuffer

initDMABuffer

yes

no

no

no

no

no

no

yes

yes

yes

yes

yes

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-46 Freescale Semiconductor

Figure 26-29. DMA Ping-Pong Buffer Channel Interrupt (part 2)

DMA current buffer done

ProcCintDMA

ReturnCintDMA

Notify application

Notify application

Break request detected on MediaLB
during previous buffer

Protocol error detected on MediaLB
during previous buffer

Process previous buffer
in system memory

CSCRn[PBD]
== 1?

CSCRn[PBPE]
== 1?

CSCRn[PBDB]
== 1?

(Part 2)

(Part 2)

no

no

no

yes

yes

yes

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 26-47

Figure 26-30. DMA Circular Buffer Channel Interrupt

CSCRn[HBE] Host bus error

ProcCintDMACir

ReturnCintDMACir

Disable channel
and notify application

Buffer overflow for RX
Buffer underflow for TX

Protocol error detected on MediaLB
during current buffer

Break received on MediaLB
during current buffer

Notify application

Notify application

== 1?

CSCRn[BE]
== 1?

CSCRn[CBPE]
== 1?

CSCRn[CBDB]
== 1?

yes

yes

yes

yes

no

no

no

no

Media Local Bus (MLB)

MPC5668x Microcontroller Reference Manual, Rev. 4

26-48 Freescale Semiconductor

26.5.5 System Interrupts

Figure 26-31. System Interrupts

Detect network unlock

Reset

Read data from SSCR
at PBI address 0x01

Read data from CSDCR
at PBI address 0x02

Read data from SDCR
at PBI address 0x02

Notify application

CLEAR INTERRUPTS:
Write SDCR to 0x0000_001F

SSCR[SDR] Detect system reset command

Detect network lock

Detect scan command

Detect system subcommand

ProcessSint

ReturnFromSint

== 1?

SSCR[SDNL]
== 1?

SSCR[SDNU]
== 1?

SSCR[SDCS]
== 1?

SSCR[SDSC]
== 1?

SDCR ==
DeviceAddress?

SDCR ==
DeviceAddress?

SDCR
== 0?

device
Notify application

Notify application

yes

no

yes

yes nono

yes

yes
no

no

no

no

Notify application

Read data from SDCR
at PBI address 0x02

at PBI address 0x02

yes

yes

yes

no

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-1

Chapter 27
Enhanced Modular Input/Output Subsystem (eMIOS200)

27.1 Introduction
The eMIOS200 provides functionality to generate or measure time events. The eMIOS200 is implemented
with its own configuration of timer channels to suit the target applications needs, while providing a
consistent user interface with previous eMIOS implementations. The MPC5668x has one eMIOS200
module that implements 16-bit counters.

27.1.1 Block Diagram

Figure 27-1 shows the eMIOS200 block diagram for the MPC5668G, implementing 24 unified channels.
Channels 0, 8, 16, 23, and 24 use channel type A. Channels 1 – 7 and 9 use channel type B. Channels
10 – 15, 17 – 22, and 25 – 31 use channel type C (see Section 27.1.4, “eMIOS200 Channel
Configurations”). The MPC5668E implements 32 unified channels in a similar fashion.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-2 Freescale Semiconductor

Figure 27-1. eMIOS200 Block Diagram (MPC5668G)

27.1.2 Features
• As many as 32 channels implemented using three channel types

• Channels features:

— 16-bit registers for captured/match values

[D][A]

Counter
Buses
(Time

Bases)

[C][A]

[B][A]

•••
•••

Counter
Buses
(Time

Bases)

Counter
Buses
(Time

Bases)

All
Submodules

Internal
Counter
Clock
Enable

IIB

Output Disable Input[3:0]

Global Time
Base Enable

Global Time Base
Bit (GTBE) Output

System
Clock

BIU
IP

Interface

Clock
Prescaler

Output Disable
Control Bus

••
•

••
•

•••
•••

[D][A]

Channel[23]
Channel
Type A

EMIOS[23]

Channel[22]
Channel
Type C

Channel[16]
Channel
Type A

Channel[15]
Channel
Type C

Channel[8]
Channel
Type A

Channel[7]
Channel
Type B

Channel[0]
Channel
Type A

[B]

[D]

[C]

Enhanced Modular
I/O System
(eMIOS200)

EMIOS[22]

EMIOS[16]

EMIOS[15]

EMIOS[8]

EMIOS[7]

EMIOS[0]

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-3

— 16-bit internal counter

— Internal prescaler

— Selectable time base

— Can generate its own time base

• Four 16-bit-wide counter buses

— Counter bus A can be driven by unified channel 23

— Counter buses B, C, D, and E are driven by unified channels 0, 8, 16, and 24, respectively

— Counter bus A can be shared among all unified channels. UCs 0 to 7, 8 to 15, 16 to 23, and 24
to 31 can share counter buses B, C, D, and E, respectively

• One global prescaler

• The output signal from the module configuration register’s global time base enable bit
(EMIOS_MCR[GTBE]) is wrapped back into the global timebase enable input so that the timebase
of each channel can be started simultaneously.

• Shared time bases through the counter buses

• Shadow FLAG register

• State of eMIOS200 can be frozen for debug purposes

• Debug mode is supported.

27.1.3 Modes of Operation

There are three main operating modes of eMIOS200: run mode, module disable mode, and debug mode.
These modes are briefly described in this section.

Run mode is the normal operation mode and is described in Section 27.4, “Functional Description.”

Module disable mode is used for MCU power management. The clock to the non-memory-mapped logic
in the eMIOS200 is stopped while in module disable mode. Module disable mode is entered when
MDIS = 1 in the EMIOS_MCR. Individual disabling of the channels is not supported. The eMIOS200
module can also be halted by setting the SIU_HLT0[HLT6] bit (see Section 7.3.2.23, “Halt Register
(SIU_HLTn)”).

Debug mode is individually programmed for each channel. When entering this mode, the unified channel
registers’ contents are frozen, but remain available for read and write access through the IP interface.

27.1.4 eMIOS200 Channel Configurations

Three different types of eMIOS200 channels are implemented on the MPC5668x. All channels implement
the General Purpose Input Output mode (GPIO) and the Single Input Capture and Output Compare modes
(SAIC, SAOC) in addition to the modes listed below.

Figure 27-2 shows the eMIOS200 channel implementations for the device. Channels 0, 8, 16, 23, and 24
use channel type A. Channels 1 – 7 and 9 use channel type B. Channels 10 – 15, 17 – 22, and 25 – 31 use
channel type C.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-4 Freescale Semiconductor

Figure 27-2. eMIOS200 Channel Configuration

27.1.4.1 Type A: Counter Channels

This channel type implements the counters used to drive the module counter buses, and is also available
to provide additional dedicated functions such as pulse edge counting, the lighting OPWMT mode,

Channel22

Channel21

Channel20

Channel19

Channel18

Channel17

Channel16

Channel23

C
ou

nt
er

_b
us

_D

Channel14

Channel9

Channel15

Channel8

Channel7

Channel13

Channel12

Channel11

Channel10

C
ou

nt
er

_b
us

_C

Channel Type A Channel Type B Channel Type C

IP Bus

Global

Bus
Interface

PrescalerClock

Counter_bus_A

eMIOS A—MPC5668G

Channel0

Channel6

Channel5

Channel4

Channel3

Channel2

Channel1

C
ou

nt
er

_b
us

_B

Channel31

Channel24

Channel22

Channel21

Channel20

Channel19

Channel18

Channel17

Channel16

Channel23

C
ou

nt
er

_b
us

_D

Channel14

Channel9

Channel15

Channel8

Channel7

Channel13

Channel12

Channel11

Channel10

C
ou

nt
er

_b
us

_C

Channel30

Channel29

Channel28

Channel27

Channel26

Channel25 C
ou

nt
er

_b
us

_E

IP Bus

Global

Bus
Interface

PrescalerClock

Counter_bus_A

eMIOS A—MPC5668E

Channel0

Channel6

Channel5

Channel4

Channel3

Channel2

Channel1

C
ou

nt
er

_b
us

_B

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-5

accumulation (PEC, PEA) and Quadrature Decode (QDEC). On the MPC5668E, five of these channels are
implemented on the device. On the MPC5668G, four of these channels are implemented.

27.1.4.2 Type B: Complex Channels

These complex channel types offer most of the modes already available on the counter channels. This
channel type includes Center aligned PWM modes with deadtime to allow support for motor control
applications, and may be combined with the quadrature decode of Type A channels. This channel type also
supports the lighting OPWMT mode, to add to the number of channels able to support this function as high
end BCM controllers need many of these channel types. Eight of these channels are implemented on both
versions of the MPC5668x device.

27.1.4.3 Type C: Lighting Channels

The majority of the timer channels are implemented using this type of channel. Its prime role is support
for lighting control with the provision of the OPWMT mode, but also allows some other simple timed I/O
functionality to be provided. On the MPC5668E, 19 of these channels are implemented on the device. On
the MPC5668G, 12 of these channels are implemented.

Table 27-1. Supported Modes on MPC5668x eMIOS Modules

Description Name
Channel Type

Number
Supported

Section/Page

Type A Type B Type C 5668E 5668G

General Purpose Input / Output GPIO X X X 32 24 27.4.1.1.1/27-22

Single Action Input Capture SAIC X X X 32 24 27.4.1.1.2/27-23

Single Action Output Compare SAOC X X X 32 24 27.4.1.1.3/27-24

Input Pulse-Width Measurement IPWM X X X 32 24 27.4.1.1.4/27-25

Input Period Measurement IPM X X X 32 24 27.4.1.1.5/27-27

Double Action Output Compare DAOC X X X 32 24 27.4.1.1.6/27-29

Pulse Edge Accumulation PEA X — — 5 4 27.4.1.1.7/27-31

Pulse Edge Counting PEC X — — 5 4 27.4.1.1.8/27-32

Quadrature Decode QDEC X — — 5 4 27.4.1.1.9/27-34

Modulus Counter MC X X — 13 12 27.4.1.1.10/27-35

Modulus Counter Buffered (Up / Down) MCB X X — 13 12 27.4.1.1.11/27-37

Output Pulse Width and Frequency Modulation Buffered OPWFMB X X — 13 12 27.4.1.1.12/27-40

Center-Aligned Output PWM Buffered with Dead Time OPWMCB X X — 13 12 27.4.1.1.13/27-45

Output Pulse Width Modulation Buffered OPWMB X X X 32 24 27.4.1.1.14/27-50

Output Pulse Width Modulation Trigger OPWMT X X X 32 24 27.4.1.1.15/27-53

Input Filter IPF X X X 32 24 27.4.1.2/27-57

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-6 Freescale Semiconductor

27.2 External Signal Description
Refer to Table 2-1 and Section 2.2, “Signal Properties Summary,” for detailed signal descriptions.

Each channel has one external signal, eMIOS[n]. Through the pad configuration register
(SIU_PCRn[PA]), you can choose to have a pin’s function be the eMIOS channel in either or both places
as described in Table 27-6.

The output disable input [3:0] is provided to implement the output disable feature. They are connected to
emios_flag_out signals according to Section 27.2.2, “Output Disable Input — eMIOS200 Output Disable
Input Signal.”

27.2.1 eMIOS[n]

eMIOS[n] are the eMIOS channel pins. When used as input, an eMIOS[n] signal is available to be read by
the MCU through the EMIOS_CSRn[UCIN]. When used as output, eMIOS[n] signal is configured in the
unified channel status and control register (EMIOS_CSRn).

NOTE
All eMIOS channels support both input and output functions. When the
eMIOS function is the primary function of a pin, then both the input and
output functions are supported. When the eMIOS function is not the primary
function of the pin, then only the output functions are supported.

27.2.2 Output Disable Input — eMIOS200 Output Disable Input Signal

Output disable inputs are connected as defined in Table 27-2.

27.3 Memory Map and Register Description
This section provides a detailed description of all eMIOS200 registers.

27.3.1 Memory Map

The eMIOS200 memory map is shown in Table 27-3. The address of each register is given as an offset to
the eMIOS200 base address. Registers are listed in address order, identified by complete name and
mnemonic, and lists the type of accesses allowed.

Table 27-2. ODIS Input Signals

eMIOS200 channel Output Disable Input Signal

emios_flag_out[20] Output disable input[3]

emios_flag_out[19] Output disable input[2]

emios_flag_out[18] Output disable input[1]

emios_flag_out[17] Output disable input[0]

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-7

Table 27-3. eMIOS200 Memory Map

Offset from
EMIOS_BASE
(0xFFFE_4000)

Register Access1 Reset Value Section/Page

Global Registers

0x0000 EMIOS_MCR—Module Configuration Register R/W 0x0000_0000 27.3.2.1/27-9

0x0004 EMIOS_GFR—Global FLAG Register R 0x0000_0000 27.3.2.2/27-10

0x0008 EMIOS_OUDR—Output Update Disable Register R/W 0x0000_0000 27.3.2.3/27-11

0x000C EMIOS_UCDIS—Stop (Disable) Channel Register R/W 0x0000_0000 27.3.2.4/27-11

0x0010–0x001F Reserved

Unified Channel 0 Registers

0x0020 EMIOS_CADR[0]—Channel A Data Register R/W 0x0000_0000 27.3.2.5/27-12

0x0024 EMIOS_CBDR[0]—Channel B Data Register R/W 0x0000_0000 27.3.2.6/27-12

0x0028 EMIOS_CCNTR[0]—Channel Counter Register R 0x0000_0000 27.3.2.7/27-13

0x002C EMIOS_CCR[0]—Channel Control Register R/W 0x0000_0000 27.3.2.8/27-14

0x0030 EMIOS_CSR[0]—Channel Status Register R 0x0000_0000 27.3.2.9/27-19

0x0034 EMIOS_ALTA[0]2—Alternate A Register R/W 0x0000_0000 27.3.2.10/27-20

0x0038–0x003F Reserved

Unified Channel 1 Registers

0x0040 EMIOS_CADR[1]—A Register R/W 0x0000_0000 27.3.2.5/27-12

0x0044 EMIOS_CBDR[1]—B Register R/W 0x0000_0000 27.3.2.6/27-12

0x0048 EMIOS_CCNTR[1]—Counter Register R 0x0000_0000 27.3.2.7/27-13

0x004C EMIOS_CCR[1]—Control Register R/W 0x0000_0000 27.3.2.8/27-14

0x0050 EMIOS_CSR[1]—Status Register R 0x0000_0000 27.3.2.9/27-19

0x0054 EMIOS_ALTA[1]2—Alternate A Register R/W 0x0000_0000 27.3.2.10/27-20

0x0058–0x005F Reserved

Unified Channel 2 Registers

0x0060 EMIOS_CADR[2]—A Register R/W 0x0000_0000 27.3.2.5/27-12

0x0064 EMIOS_CBDR[2]—B Register R/W 0x0000_0000 27.3.2.6/27-12

0x0068 EMIOS_CCNTR[2]—Counter Register R 0x0000_0000 27.3.2.7/27-13

0x006C EMIOS_CCR[2]—Control Register R/W 0x0000_0000 27.3.2.8/27-14

0x0070 EMIOS_CSR[2]—Status Register R 0x0000_0000 27.3.2.9/27-19

0x0074 EMIOS_ALTA[2]2—Alternate A Register R/W 0x0000_0000 27.3.2.10/27-20

0x0078–0x007F Reserved

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-8 Freescale Semiconductor

27.3.2 Register Descriptions

This section lists the eMIOS200 registers in address order and describes the registers and their bit fields.

Unified Channel 3–31 Registers3

0x0080–0x041F Same as other Channel Registers (e.g. EMIOS_CADR[2],
EMIOS_CBDR[2], etc.)

— — —

0x0420–0x3FFF Reserved

1 Note that R/W registers may contain some read-only or write-only bits.
2 The alternate address register provides and alternate read-only address to access A2 channel registers in pulse edge counting

(PEC) and windowed programmable time accumulation (WPTA) modes. IF EMIOS_CADR[n] register is used with
EMIOS_ALTA[n], both A1 and A2 registers can be accessed in these modes.

3 For a complete list of Unified Channel registers with their addresses, please see eMIOS_A in Appendix A, “Memory Map.”

Table 27-4. Unified Channel Base Offsets

Unified Channel
Offset from

EMIOS_BASE
(0xFFFE_4000)

Unified Channel
Offset from

EMIOS_BASE
(0xFFFE_4000)

Unified Channel 0 0x0020 Unified Channel 16 0x0220

Unified Channel 1 0x0040 Unified Channel 17 0x0240

Unified Channel 2 0x0060 Unified Channel 18 0x0260

Unified Channel 3 0x0080 Unified Channel 19 0x0280

Unified Channel 4 0x00A0 Unified Channel 20 0x02A0

Unified Channel 5 0x00C0 Unified Channel 21 0x02C0

Unified Channel 6 0x00E0 Unified Channel 22 0x02E0

Unified Channel 7 0x0100 Unified Channel 23 0x0300

Unified Channel 8 0x0120 Unified Channel 24 0x0320

Unified Channel 9 0x0140 Unified Channel 25 0x0340

Unified Channel 10 0x0160 Unified Channel 26 0x0360

Unified Channel 11 0x0180 Unified Channel 27 0x0380

Unified Channel 12 0x01A0 Unified Channel 28 0x03A0

Unified Channel 13 0x01C0 Unified Channel 29 0x03C0

Unified Channel 14 0x01E0 Unified Channel 30 0x03E0

Unified Channel 15 0x0200 Unified Channel 31 0x0400

Table 27-3. eMIOS200 Memory Map (continued)

Offset from
EMIOS_BASE
(0xFFFE_4000)

Register Access1 Reset Value Section/Page

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-9

27.3.2.1 eMIOS200 Module Configuration Register (EMIOS_MCR)

The EMIOS_MCR contains global control bits for the eMIOS200 block.

Offset: EMIOS_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ GTBE

0
GPREN

0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE[0:7]

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-3. eMIOS200 Module Configuration Register (EMIOS_MCR)

Table 27-5. EMIOS_MCR Field Descriptions

Field Description

bit 0 Reserved.

Note: Writing to this bit updates the register value, and reading it returns the last value written, but the bit has
no other effect.

MDIS Module Disable Bit. Puts the eMIOS200 in low-power mode. The MDIS bit is used to stop the clock of the
block, except the access to registers EMIOS_MCR, EMIOS_OUDR, and EMIOS_UCDIS.
0 Clock is running.
1 Enter low-power mode.

FRZ Freeze Bit. Enables the eMIOS200 to freeze the registers of the unified channels when debug mode is
requested at MCU level. Each unified channel must have FREN bit set in order to enter freeze mode. While
in freeze mode, the eMIOS200 continues to operate to allow the MCU access to the unified channel registers.
The unified channel remains frozen until the FRZ bit is written to 0 or the MCU exits debug mode or the unified
channel FREN bit is cleared.
0 Exit freeze mode.
1 Stops unified channel operation when in debug mode and the FREN bit is set in the EMIOS_CCR[n]

register.

GTBE Global Time Base Enable Bit. The GTBE bit is used to export a global time base enable from the module and
provide a method to start time bases of several blocks simultaneously.
0 Global time base enable out signal negated.
1 Global time base enable out signal asserted.
Note: The global time base enable input pin controls the internal counters. When asserted, internal counters

are enabled. When negated, internal counters are disabled.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-10 Freescale Semiconductor

27.3.2.2 eMIOS200 Global Flag Register (EMIOS_GFR)

GPREN Global Prescaler Enable Bit. The GPREN bit enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is cleared.
1 Prescaler enabled.

GPRE Global Prescaler Bits. The GPRE bits select the clock divider value for the global prescaler.

Offset: EMIOS_BASE + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R F31 F30 F29 F28 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-4. eMIOS200 Global Flag Register (EMIOS_GFR)

Table 27-6. EMIOS_GFR Field Descriptions

Field Description

F[31:0] FLAG Bits 23–0. The EMIOS_GFR is a read-only register that groups the FLAG bits from all channels. This
organization improves interrupt handling on simpler devices. These bits are mirrors of the FLAG bits of each
channel register (EMIOS_CSRn).
Note: The MCP5668E implements all 32 channels, comprising bits F31 through F0. The MCP5668G implements

only 24 channels, comprising bits F23 through F0.

Table 27-5. EMIOS_MCR Field Descriptions (continued)

Field Description

GPRE Divide Ratio

0000_0000 1

0000_0001 2

0000_0010 3

0000_0011 4

.

.

.

.

.

.

1111_1110 255

1111_1111 256

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-11

27.3.2.3 eMIOS200 Output Update Disable Register (EMIOS_OUDR)

27.3.2.4 eMIOS200 Disable Channel Register (EMIOS_UCDIS)

Offset: EMIOS_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
OU31 OU30 OU29 OU28 OU27 OU26 OU25 OU24 OU23 OU22 OU21 OU20 OU19 OU18 OU17 OU16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OU15 OU14 OU13 OU12 OU11 OU10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-5. eMIOS200 Output Update Disable Register (EMIOS_OUDR)

Table 27-7. EMIOS_OUDR Field Descriptions

Field Description

OU[31:0] Channel [n] Output Update Disable Bits. When running MCB mode or an output mode, values are written to
registers A2 and B2. OU[n] bits are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit
controls one channel.
0 Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the next period.

Unless stated otherwise, transfer occurs immediately.
1 Transfers disabled.
Note: The MCP5668E implements all 32 channels, comprising bits OU31 through OU0. The MCP5668G

implements only 24 channels, comprising bits OU23 through OU0.

Offset: EMIOS_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
UCDIS[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
UCDIS[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-6. eMIOS200 Enable Channel Register (EMIOS_UCDIS)

Table 27-8. EMIOS_UCDIS Field Descriptions

Field Description

UCDIS[31:0] Enable Channel [n] Bit. The UCDIS[n] bit is used to disable each of the unified channels by stopping its
respective clock.
0 UC [n] enabled.
1 UC [n] disabled.
Note: The MCP5668E implements all 32 channels, comprising bits UCDIS31 through UCDIS0. The

MCP5668G implements only 24 channels, comprising bits UCDIS23 through UCDIS0.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-12 Freescale Semiconductor

27.3.2.5 eMIOS200 A Register (EMIOS_CADR[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOS_CADR[n]. A1 and A2 are cleared by reset. Table 27-9 summarizes the
EMIOS_CADR[n] writing and reading accesses for all operation modes. For more information see
Section 27.4.1.1, “Unified Channel Modes of Operation.”

27.3.2.6 eMIOS200 B Register (EMIOS_CBDR[n])

Depending on the mode of operation, internal registers B1 or B2 can be assigned to address
EMIOS_CBDR[n]. Both B1 and B2 are cleared by reset. Table 27-9 summarizes the EMIOS_CBDR
writing and reading accesses for all operation modes. For more information see section Section 27.4.1.1,
“Unified Channel Modes of Operation.”

Depending on the channel configuration, it may have EMIOS_CBDR register or not. This means that if at
least one mode that requires the register is implemented, then the register is present. Otherwise, it is absent.

Offset: UC[n] base address + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-7. eMIOS200 A Register (EMIOS_CADR[n])

Offset: UC[n] base address + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-8. eMIOS200 B Register (EMIOS_CBDR[n])

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-13

27.3.2.7 eMIOS200 Counter Register (EMIOS_CCNTR[n])

The EMIOS_CCNTR[n] register contains the value of the internal counter for eMIOS channel n. When
GPIO mode is selected or the channel is frozen, the EMIOS_CCNTR[n] register is read/write. For all other
modes, the EMIOS_CCNTR[n] is a read-only register. When entering some operation modes, this register
is automatically cleared (refer to Section 27.4.1.1, “Unified Channel Modes of Operation,” for details).

Table 27-9. EMIOS_CADR[n] and EMIOS_CBDR[n] Values Assignment

Operation Mode
Register Access

Write Read Write Read Alternate Read

GPIO A1, A2 A1 B1, B2 B1 —

SAIC1 — A2 B2 B2 —

SAOC1

1 In these modes, the register EMIOS_CBDR[n] is not used, but B2 can be accessed.

A2 A1 B2 B2 —

IPWM — A2 — B1 —

IPM — A2 — B1 —

DAOC A2 A1 B2 B1 —

PEA A1 A2 — B1 —

PEC1 A1 A1 B1 B1 A2

QDEC1 A1 A1 B2 B2 —

MC1 A2 A1 B2 B2 —

OPWMT A1 A1 B2 B1 A2

MCB1 A2 A1 B2 B2 —

OPWFMB A2 A1 B2 B1 —

OPWMCB A2 A1 B2 B1 —

OPWMB A2 A1 B2 B1 —

Offset: UC[n] base address + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 In GPIO mode or freeze action, this register is writable.

Figure 27-9. eMIOS200 Counter Register (EMIOS_CCNTR[n])

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-14 Freescale Semiconductor

Depending on the channel configuration it may have an internal counter or not. It means that if at least one
mode that requires the counter is implemented, then the counter is present, otherwise it is absent.

27.3.2.8 eMIOS200 Control Register (EMIOS_CCR[n])

The control register gathers bits reflecting the status of the unified channel input/output signals and the
overflow condition of the internal counter, as well as several read/write control bits.

Offset: UC[n] base address + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FREN ODIS ODISSL UCPRE

UC
PREN

DMA
0

IF FCK FEN
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 FORC
MA

FORC
MB

0
BSL

ED
SEL

ED
POL

MODE[0:6]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-10. eMIOS200 Control Register (EMIOS_CCR[n])

Table 27-10. EMIOS_CCR[n] Field Descriptions

Field Description

FREN Freeze Enable Bit. The FREN bit, if set and validated by FRZ bit in EMIOS_MCR register, freezes all registers’
values when in debug mode, allowing the MCU to perform debug functions.
0 Normal operation.
1 Freeze unified channel registers’ values.

ODIS Output Disable Bit. The ODIS bit allows disabling the output pin when running any of the output modes with
the exception of GPIO mode.
0 The output pin operates normally.
1 If the selected output disable input signal is asserted, the output pin goes to EDPOL for OPWFMB and

OPWMB modes and to the complement of EDPOL for other modes, but the unified channel continues to
operate normally, i.e., it continues to produce FLAG and matches. When the selected output disable input
signal is negated, the output pin operates normally.

ODISSL Output Disable Select Bits. The ODISSL bits select one of the four output disable input signals.

ODISSL Input Signal

00 Output disable input 0

01 Output disable input 1

10 Output disable input 2

11 Output disable input 3

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-15

UCPRE Prescaler Bits. The UCPRE bits select the clock divider value for the internal prescaler of unified channel.

UCPREN Prescaler Enable Bit. The UCPREN bit enables the prescaler counter.
0 Prescaler disabled (no clock) and prescaler counter is loaded with UCPRE value.
1 Prescaler enabled.

DMA Direct Memory Access Bit. The DMA bit selects whether the FLAG generation is used as an interrupt or as a
DMA request.
0 FLAG assigned to interrupt request.
1 FLAG assigned to DMA request.

IF Input Filter Bits. The IF bits control the programmable input filter, selecting the minimum input pulse width that
can pass through the filter. For output modes, these bits have no meaning.

FCK Filter Clock Select Bit. The FCK bit selects the clock source for the programmable input filter.
0 Prescaled clock.
1 Main clock.

FEN FLAG Enable Bit. The FEN bit allows the unified channel FLAG bit to generate an interrupt signal or a DMA
request signal (the type of signal to be generated is defined by the DMA bit).
0 Disable (FLAG does not generate an interrupt or DMA request).
1 Enable (FLAG generates an interrupt or DMA request).

FORCMA Force Match A Bit. For output modes, the FORCMA bit is equivalent to a successful comparison on
comparator A (except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This
bit is valid for every output operation mode which uses comparator A, otherwise it has no effect.
0 Has no effect.
1 Force a match at comparator A.
For input modes, the FORCMA bit is not used and writing to it has no effect.

Table 27-10. EMIOS_CCR[n] Field Descriptions (continued)

Field Description

UCPRE Divide Ratio

00 1

01 2

10 3

11 4

IF1

1 Filter latency is three clock edges.

Minimum Input Pulse Width
[FLT_CLK Periods]

0000 Bypassed2

0001 02

0010 04

0100 08

1000 16

All others Reserved

2 The input signal is synchronized before arriving to the digital filter.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-16 Freescale Semiconductor

FORCMB Force Match B Bit. For output modes, the FORCMB bit is equivalent to a successful comparison on
comparator B (except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This
bit is valid for every output operation mode which uses comparator B, otherwise it has no effect.
0 Has no effect.
1 Force a match at comparator B.
For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL Bus Select Bits. The BSL bits are used to select either one of the counter buses or the internal counter to be
used by the unified channel.

EDSEL Edge Selection Bit. For input modes, the EDSEL bit selects if the internal counter is triggered by both edges
of a pulse or by a single edge only as defined by the EDPOL bit. When not shown in the mode of operation
description, this bit has no effect.
0 Single edge triggering defined by the EDPOL bit.
1 Both edges triggering.

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.
0 A FLAG is generated as defined by the EDPOL bit.
1 No FLAG is generated.

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
0 The EDPOL value is transferred to the output flip-flop.
1 The output flip-flop is toggled.

EDPOL Edge Polarity Bit. For input modes, the EDPOL bit asserts which edge triggers either the internal counter or
an input capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
0 Trigger on a falling edge.
1 Trigger on a rising edge.

For output modes, the EDPOL bit is used to select the logic level on the output pin.
0 A match on comparator A clears the output flip-flop, while a match on comparator B sets it.
1 A match on comparator A sets the output flip-flop, while a match on comparator B clears it.

MODE[0:6] Mode Selection Bits. The MODE bits select the mode of operation of the unified channel, as shown in
Table 27-11. Refer to Table 27-1 for more information on the different modes.

Note: If a reserved value is written to MODE, the results are unpredictable.

Table 27-10. EMIOS_CCR[n] Field Descriptions (continued)

Field Description

BSL Selected Bus

00 All channels: counter bus[A]

01 Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]
Channels 24 to 31: counter bus[E]

10 Reserved

11 All channels: internal counter

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-17

Table 27-11. MODE Bits

MODE[0:6] Mode Description

000_0000 GPIO (input) General Purpose Input/Output mode (input)

000_0001 GPIO (output) General Purpose Input/Output mode (output)

000_0010 SAIC Single Action Input Capture

000_0011 SAOC Single Action Output Compare

000_0100 IPWM Input Pulse Width Measurement

000_0101 IPM Input Period Measurement

000_0110 DAOC Double Action Output compare (with FLAG set on B match)

000_0111 DAOC Double Action Output compare (with FLAG set on both match)

000_1000 PEA Pulse/Edge Accumulation (continuous)

000_1001 PEA Pulse/Edge Accumulation (single shot)

000_1010 PEC Pulse/Edge Counting (continuous)

000_1011 PEC Pulse/Edge Counting (single shot)

000_1100 QDEC Quadrature Decode (for count & direction encoders type)

000_1101 QDEC Quadrature Decode (for phase_A & phase_B encoders type)

000_1110 – 000_1111 Reserved

001_0000 MC Modulus Counter (Up counter with clear on match start, internal clock)

001_0001 MC Modulus Counter (Up counter with clear on match start, external clock)

001_0010 MC Modulus Counter (Up counter with clear on match end, internal clock)

001_0011 MC Modulus Counter (Up counter with clear on match end, external clock)

001_0100 MCB Modulus Counter (Up/Down counter with flag on A1 match, internal clock)

001_0101 MCB Modulus Counter (Up/Down counter with flag on A1 match, external clock)

001_0110 MCB Modulus Counter (Up/Down counter with flag on A1 match or cycle boundary,
internal clock)

001_0111 MCB Modulus Counter (Up/Down counter with flag on A1 match or cycle boundary,
external clock)

001_1000 OPWFMB Output Pulse Width and Frequency Modulation (flag on B1 match, immediate update)

001_1001 Reserved

001_1010 OPWFMB Output Pulse Width and Frequency Modulation
(flag on A1 or B1 matches, immediate update)

001_1011 Reserved

001_1100 OPWMCB Center Aligned Output Pulse Width Modulation
(flag in trailing edge, trail edge dead-time)

001_1101 OPWMCB Center Aligned Output Pulse Width Modulation
(flag in trailing edge, lead edge dead-time)

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-18 Freescale Semiconductor

001_1110 OPWMCB Center Aligned Output Pulse Width Modulation
(flag in both edges, trail edge dead-time)

001_1111 OPWMCB Center Aligned Output Pulse Width Modulation
(flag in both edges, lead edge dead-time)

010_0000 OPWMB Output Pulse Width Modulation (flag on B1 match, immediate update)

010_0001 OPWMB Output Pulse Width Modulation (next period update)

010_0010 OPWMB Output Pulse Width Modulation (immediate update)

010_0011 OPWMB Output Pulse Width Modulation (next period update)

010_0100 – 010_0101 Reserved

010_0110 OPWMT Output Pulse Width Modulation with Trigger

010_0111 – 100_1111 Reserved

101_0000 MC Modulus Counter (Up counter with clear on match start, internal clock)

101_0001 MC Modulus Counter (Up counter with clear on match start, external clock)

101_0010 – 101_0011 Reserved

101_0100 MCB Modulus Counter (Up/Down counter with flag on A1 match, internal clock)

101_0101 MCB Modulus Counter (Up/Down counter with flag on A1 match, external clock)

101_0110 MCB Modulus Counter (Up/Down counter with flag on A1 match or cycle boundary,
internal clock)

101_0111 MCB Modulus Counter (Up/Down counter with flag on A1 match or cycle boundary,
external clock)

101_1000 OPWFMB Output Pulse Width and Frequency Modulation Buffered, (flag on B1 match)

101_1001 Reserved

101_1010 OPWFMB Output Pulse Width and Frequency Modulation Buffered, (flag on A1or B1 matches)

101_1011 Reserved

101_1100 OPWMCB Center Aligned Output Pulse Width Modulation Buffered
(flag in trailing edge, trail edge dead-time)

101_1101 OPWMCB Center Aligned Output Pulse Width Modulation Buffered
(flag in trailing edge, lead edge dead-time)

101_1110 OPWMCB Center Aligned Output Pulse Width Modulation Buffered
(flag in both edges, trail edge dead-time)

101_1111 OPWMCB Center Aligned Output Pulse Width Modulation Buffered
(flag in both edges, lead edge dead-time)

110_0000 OPWMB Output Pulse Width Modulation Buffered (flag on B1 match)

110_0001 Reserved

110_0010 OPWMB Output Pulse Width Modulation Buffered (flag on A1or B1 matches)

110_0011 – 111_1111 Reserved

Table 27-11. MODE Bits (continued)

MODE[0:6] Mode Description

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-19

27.3.2.9 eMIOS200 Status Register (EMIOS_CSR[n])

Offset: UC[n] base address + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVFL 0 0 0 0 0 0 0 0 0 0 0 0 UCIN UCOUT FLAG

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-11. eMIOS200 Status Register (EMIOS_CSR[n])

Table 27-12. EMIOS_CSR[n] Field Descriptions

Field Description

OVR Overrun Bit. The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set. This
bit can be cleared by clearing the FLAG bit or by software writing a 1.
0 Overrun has not occurred.
1 Overrun has occurred.

OVFL Overflow Bit. The OVFL bit indicates that an overflow has occurred in the internal counter. This bit must be
cleared by software writing a 1.
0 An overflow has not occurred.
1 An overflow has occurred.

UCIN Unified Channel Input Pin Bit. The UCIN bit reflects the input pin state after being filtered and synchronized.

UCOUT Unified Channel Output. The UCOUT bit reflects the output pin state.

FLAG FLAG Bit. The FLAG bit is set when an input capture or a match event in the comparators occurred. This bit
must be cleared by software writing a 1.
0 FLAG cleared.
1 FLAG set event has occurred.
Note: emios_flag_out reflects the FLAG bit value. When the DMA bit is set, the FLAG bit can be cleared by

the DMA controller.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-20 Freescale Semiconductor

27.3.2.10 eMIOS200 Alternate A Register (EMIOS_ALTA[n])

The EMIOS_ALTA[n] register provides an alternate read-only address to access A2 channel registers in
PEC and WPTA modes only. If EMIOS_CADR[n] register is used with EMIOS_ALTA[n], both A1 and
A2 registers can be accessed in these modes.

27.4 Functional Description
The three types of channels of the eMIOS200 can operate in the modes as listed in Table 27-1.

The eMIOS200 provides independently operating unified channels (UC) that can be configured and
accessed by a host MCU. On the MPC5668E, as many as five time bases can be shared by the channels
through five counter buses. On the MPC5668G, as many as four time bases can be shared by the channels
through four counter buses. Each unified channel can generate its own time base.

The eMIOS200 block is reset at positive edge of the clock (synchronous reset). All registers are cleared
on reset.

27.4.1 Unified Channel (UC)

Figure 27-13 shows the unified channel block diagram. Each unified channel consists of:

• Counter bus selector, which selects the time base to be used by the channel for all timing functions

• A programmable clock prescaler

• Two double buffered data registers, A and B, that allow as many as two input capture and/or output
compare events to occur before software intervention is needed

• Two comparators (equal only), A and B, which compare the selected counter bus with the value in
the data registers

• Internal counter, which can be used as a local time base or to count input events

• Programmable input filter, which ensures that only valid pin transitions are received by channel

• Programmable input edge detector, which detects the rising, falling or either edges

• An output flip-flop, which holds the logic level to be applied to the output pin

• eMIOS200 status and control register

UC[n] base address + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-12. eMIOS200 Alternate A Register (EMIOS_ALTA[n])

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-21

• An output disable input selector, which selects the output disable input signal to be used as output
disable

Figure 27-13. Unified Channel Block Diagram

Figure 27-14 shows the unified channel control block diagram.

channel_controller

ipd_done

ipd_req

uc_int_flag

biu_channel_en[n]

biu_a_en

biu_b_en

biu_cnt_en

Clock
Prescaler

biu_control_en

biu_status_en

ips_byte[7:0]

ips_byte[15:8]

ips_byte[23:16]

ips_byte[31:24]

ips_rwb

Programmable
Filter

channel_datapath

Comparator A

Comparator B

uc_cnt_rd_data[n]

uc_cnt_rd_data[n]

emios_counter_bus[0]

emios_counter_bus[1]

Match Logic

Mode Logic

RWCB

RCB

IIB

Counter Bus

Unified Channel

Control Signals

uc_rd_data[31:0]

ips_wdata[31:0]

ips_addr[29:27]

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-22 Freescale Semiconductor

Figure 27-14. Unified Channel Control Block Diagram

27.4.1.1 Unified Channel Modes of Operation

The mode of operation of the unified channel is determined by the mode select bits MODE[0:6] in the
EMIOS_CCR[n] register (see Table 27-11 for details).

When entering an output mode (except for GPIO mode), the output flip-flop is set to the complement of
the EDPOL bit in the EMIOS_CCR[n] register.

As the internal counter EMIOS_CCNTR[n] continues to run in all modes (except for GPIO mode), it is
possible to use this as a time base if the resource is not used in the current mode.

27.4.1.1.1 General-Purpose Input/Output (GPIO) Mode

In GPIO mode, all input capture and output compare functions of the unified channel are disabled, the
internal counter (EMIOS_CCNTR[n] register) is cleared and disabled. All control bits remain accessible.
In order to prepare the unified channel for a new operation mode, writing to registers EMIOS_CADR[n]
or EMIOS_CBDR[n] stores the same value in registers A1/A2 or B1/B2, respectively.

The MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes.

When changing the MODE bits, the application software must go to GPIO mode first to reset the unified
channel’s internal functions properly. Failure to do this could lead to invalid and unexpected output
compare or input capture results or the FLAGs being set incorrectly.

MODEn_en

Mode 0
Logic

Mode 1
Logic

Mode n
Logic

•
•
•

• • •

•
•
•

MODE1_en
MODE0_en

Shared
Logic

Channel
Datapath

Channel Controller

••

Control
Signals

Control Signals

Control Signals

•
•
•

EMIOS_CCR/Mode

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-23

In GPIO input mode (MODE = 000_0000),the FLAG generation is determined according to EDPOL and
EDSEL bits and the input pin status can be determined by reading the UCIN bit.

In GPIO output mode (MODE = 000_0001), the unified channel is used as a single output port pin and the
value of the EDPOL bit is permanently transferred to the output flip-flop.

27.4.1.1.2 Single Action Input Capture (SAIC) Mode

In SAIC mode (MODE = 000_0010), when a triggering event occurs on the input pin, the value on the
selected time base is captured into register A2. At the same time, the FLAG bit is set to indicate that an
input capture has occurred. Register EMIOS_CADR[n] returns the value of register A2. The channel is
ready to capture events as soon as SAIC mode is entered coming out from GPIO mode. The events are
captured as soon as they occur, thus reading register A always returns the value of the latest captured event.
Subsequent captures are enabled with no need of further reads from EMIOS_CADR[n] register. The
FLAG is set at any time a new event is captured.

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOS_CCR[n] register.

Figure 27-15 and Figure 27-16 show how the unified channel can be used for input capture.

Figure 27-15. Single Action Input Capture with Rising Edge Triggering Example

Selected
Counter Bus

FLAG
Set Event

Edge detect Edge detect Edge detect

A2 (Captured)
Value2

0xxxxxxx 0x001000 0x001250 0x0016A0

Notes: 1
2

Input Signal1

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

After input filter
EMIOS_CADR[n] A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-24 Freescale Semiconductor

Figure 27-16. Single Action Input Capture with Both Edges Triggering Example

27.4.1.1.3 Single Action Output Compare (SAOC) Mode

In SAOC mode (MODE = 000_0011), a match value is loaded in register A2 and then transferred to
register A1 to be compared with the selected time base. When a match occurs, the EDSEL bit selects if the
output flip-flop is toggled or if the value in EDPOL is transferred to it. At the same time, the FLAG bit is
set to indicate that the output compare match has occurred. Writing to register EMIOS_CADR[n] stores
the value in register A2 and reading to register EMIOS_CADR[n] returns the value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOS_CCR[n]
register. In this case, the FLAG bit is not set.

When SAOC mode is entered coming out from GPIO mode the output flip-flop is set to the complement
of the EDPOL bit in the EMIOS_CCR[n] register.

Counter bus can be either internal or external and is selected through the BSL bits.

Figure 27-17 and Figure 27-18 show how the unified channel can be used to perform a single output
compare with EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at
each match, respectively.

Figure 27-17. SAOC Example—EDPOL Value Being Transferred to the Output Flip-flop

Selected Counter Bus 0x001000 0x001102

FLAG Set Event

A2 (Captured) Value2 0xxxxxx 0x001000

Input Signal1

Edge detect

0x001103 0x0011080x001104 0x001105 0x001106 0x0011070x001001

FLAG Pin/Register

Edge detect

FLAG Clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x

Notes: 1
2

After input filter
EMIOS_CADR[n] A2

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADR[n] = A2
A2 = A1 according to OU[n] bit

Update to
A1

EDSEL = 0

Output
Flip-Flop

EDPOL = 1

A1 Value1 0x001000

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-25

Figure 27-18. SAOC Example —Toggling the Output Flip-Flop

Figure 19. SAOC Example with Flag Behavior

27.4.1.1.4 Input Pulse-Width Measurement (IPWM) Mode

The IPWM mode (MODE = 000_0100) allows the measurement of the width of a positive or negative
pulse by capturing the leading edge on register B1 and the trailing edge on register A2. Successive captures
are done on consecutive edges of opposite polarity. The leading edge sensitivity (i.e., pulse polarity) is
selected by EDPOL bit in the EMIOS_CCR[n] register. Registers EMIOS_CADR[n] and
EMIOS_CBDR[n] return the values in register A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the
selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1 and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2, B1, and
A1 are updated with the latest captured values and the FLAG remains set. Registers EMIOS_CADR[n]
and EMIOS_CBDR[n] return the value in registers A2 and B1, respectively.

Selected
Counter Bus

FLAG
Set Event

A1 Match A1 Match A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Note: 1

0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

EMIOS_CADR[n] = A2

Update to
A1

EDSEL = 1

Output
Flip-Flop

EDPOL = x

A1 Value1 0x001000

Selected Counter Bus 0x0 0x2

FLAG Set Event

A2 Value1 0x1

Output Flip-Flop

0x3 0x20x1 0x2 0x0 0x10x1

FLAG Pin/Register

FLAG Clear

EDSEL = 1

System Clock

A1 Match

EDPOL = x

Note: 1 EMIOS_CADR[n] A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-26 Freescale Semiconductor

In order to guarantee coherent access, reading EMIOS_CADR[n] forces B1 to be updated with the content
of register A1. At the same time transfers between B2 and B1 are disabled until the next read of
EMIOS_CBDR[n] register. Reading EMIOS_CBDR[n] register forces B1 be updated with A1 register
content and re-enables transfers from B2 to B1, to take effect at the next trailing edge capture. Transfers
from B2 to A1 are not blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 27-20 shows how the unified channel can be used for input pulse-width measurement.

Figure 27-20. Input Pulse-Width Measurement Example

Figure 27-21 shows the A1 and B1 updates when EMIOS_CADR[n] and EMIOS_CBDR[n] register reads
occur. The A1 register has always coherent data related to A2 register. When EMIOS_CADR[n] read is
performed, the B1 register is loaded with the A1 register content. This guarantees that the data in register
B1 always has the coherent data related to the last EMIOS_CADR[n] read. The B1 register updates remain
locked until EMIOS_CBDR[n] read occurs. If EMIOS_CADR[n] read is performed, B1 is updated with
A1 register content even if the B1 update is locked by a previous EMIOS_CADR[n] read operation.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

B B B

A2 (Captured)
Value2 0xxxxxxx 0xxxxxxx 0x001100 0x001525

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3

0x0015250x001100

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000

0xxxxxxx 0x001000 0x001250 0x0016A00x0012500x001000B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0xxxxxxx 0x001000 0x0012500x0012500x001000A1 Value3

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-27

Figure 27-21. B1 and A1 Updates at EMIOS_CADR[n] and EMIOS_CBDR[n] Reads

Reading EMIOS_CADR[n] followed by EMIOS_CBDR[n] always provides coherent data. If no coherent
data is required, the sequence of reads should be inverted, therefore EMIOS_CBDR[n] should be read
prior to EMIOS_CADR[n] register. Even in this case B1 register updates are blocked after
EMIOS_CADR[n] is read, therefore a second EMIOS_CBDR[n] is required to release the B1 register
updates.

27.4.1.1.5 Input Period Measurement (IPM) Mode

The IPM mode (MODE = 000_0101) allows the measurement of the period of an input signal by capturing
two consecutive rising edges or two consecutive falling edges. Successive input captures are done on
consecutive edges of the same polarity. The edge polarity is defined by the EDPOL bit in the
EMIOS_CCR[n] register.

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set and the values in registers B1 are meaningless. On the second and subsequent
captures, the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, and the data previously held in register B2 is transferred to data register B1 and to register A1.
The FLAG bit is set to indicate that the start and end points of a complete period have been captured. This
sequence of events is repeated for each subsequent capture. Registers EMIOS_CADR[n] and
EMIOS_CBDR[n] return the values in register A2 and B1, respectively.

To allow coherent data, reading EMIOS_CADR[n] forces A1 content be transferred to B1 register and
disables transfers between B2 and B1. These transfers are disabled until the next read of the
EMIOS_CBDR[n] register. Reading EMIOS_CBDR[n] register forces A1 content to be transferred to B1
and re-enables transfers from B2 to B1, to take effect at the next edge capture.

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

B B B

A2 (Captured)
Value2 0xxxxxxx

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3

0x0015250x001100

0xxxxxxx

0xxxxxxx

0x001000 0x001250 0x0016A0

0x0012500x001000

B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0x0012500x001000

A1 Value3

0x001000

Read EMIOS_CADR[n] Read EMIOS_CBDR[n]

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-28 Freescale Semiconductor

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 27-22 shows how the unified channel can be used for input period measurement.

Figure 27-22. Input Period Measurement Example

Figure 27-23 shows the A1 and B1 register updates when EMIOS_CADR[n] and EMIOS_CBDR[n] read
operations are performed. When EMIOS_CADR[n] read occurs, the content of A1 is transferred to B1 thus
providing coherent data in A2 and B1 registers. Transfers from B2 to B1 are then blocked until
EMIOS_CBDR[n] is read. After EMIOS_CBDR[n] is read, register A1 content is transferred to register
B1 and the transfers from B2 to B1 are re-enabled to occur at the transfer edges, which is the leading edge
in the Figure 27-23 example.

Figure 27-23. A1 and B1 Updates at EMIOS_CADR[n] and EMIOS_CBDR[n] Reads

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

A

A2 (Captured)
Value2 0xxxxxxx 0x001000 0x001250 0x0016A0

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1 A A

B1 Value3 0xxxxxxx 0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0xxxxxxx 0x001000 0x001250A1 Value

0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0Selected
Counter Bus

FLAG
Set Event

A A A

A2 (Captured)
Value2 0xxxxxxx

Notes: 1 After input filter
2 EMIOS_CADR[n] = A2

Input Signal1

EDPOL = 1

B1 Value3

0x001525

0xxxxxxx

0xxxxxxx

0x001000 0x001250 0x0016A0B2 (Captured)
Value

3 EMIOS_CBDR[n] = B1

0xxxxxxx 0x001250

A1 Value

0x001000

Read EMIOS_CADR[n] Read EMIOS_CBDR[n]

0x001100 0x001250

0x001000

0x001000 0x001250

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-29

27.4.1.1.6 Double Action Output Compare (DAOC) Mode

In the DAOC mode the leading and trailing edges of the variable pulse-width output are generated by
matches occurring on comparators A and B, respectively.

When the DAOC mode is first selected (coming from GPIO mode) both comparators are disabled.
Comparators A and B are enabled by updating registers A1 and B1 respectively and remain enabled until
a match occurs on that comparator, when it is disabled again. In order to update registers A1 and B1, a
write to A2 and B2 must occur and the OU[n] bit in EMIOS_OUDR must be cleared.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and to the
complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches or on the second match only (see Table 27-11 for
details).

If subsequent enabled output compares occur on registers A1 and B1, pulses continue to be generated,
regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a comparison event in comparator A or B, respectively. The FLAG bit is not affected by
these forced operations.

NOTE
If registers A1 and B1 are loaded with the same value, the unified channel
behaves as if a single match on comparator B had occurred, i.e., the output
pin is set to the complement of EDPOL bit and the FLAG bit is set.

Figure 27-24 and Figure 27-25 show how the unified channel can be used to generate a single output pulse
with FLAG bit being set on the second match or on both matches, respectively.

Figure 27-24. Double Action Output Compare with FLAG Set on the Second Match

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 EMIOS_CADR[n] = A1
2 EMIOS_CBDR[n] = B1

B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 & B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 = A1 according to OU[n] bit
B2 = B1 according to OU[n] bit

0x000500 0x001000 0x001100 0x001000 0x001100

MODE[6] = 0

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-30 Freescale Semiconductor

Figure 27-25. Double Action Output Compare with FLAG Set on Both Matches

Figure 27-26. DAOC with Transfer Disabling Example

Selected
Counter Bus

FLAG
Set Event

A1 Match

0xxxxxxx 0x001000 0x001000 0x001000

Notes: 1 EMIOS_CADR[n] = A1
2 EMIOS_CBDR[n] = B1

B1 Match B1 Match

0xxxxxxx 0x001100 0x0011000x001100

A1 Match
Update to
A1 & B1

Output
Flip-Flop

A1 Value1

B1 Value2

A2 = A1 according to OU[n] bit
B2 = B1 according to OU[n] bit

0x000500 0x001000 0x001100 0x001000 0x001100

MODE[6] = 1

Selected Counter Bus 0x0 0x2

FLAG Set Event

A1 Value2 0xx

Output Flip-Flop

2. EMIOS_CADR[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG Pin/Register

FLAG Clear

EDSEL = 1

System Clock

Enabled A1 Match

EDPOL = x

B2 Value5 0x2

B1 Value4 0xx

A2 Value3 0x1

OU1

Enabled B1 Match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2
write to A2

write to B2
write to A2

write to B2
MODE[6] = 1

3. EMIOS_CADR[n] = A2 (when writing)
4. EMIOS_CBDR[n] = B1 (when reading)
5. EMIOS_CBDR[n] = B2 (when writing)

Note: 1. OU[n] bit of EMIOS_OUDR register

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-31

27.4.1.1.7 Pulse/Edge Accumulation (PEA) Mode

The PEA mode returns the time taken to detect a desired number of input events. MODE[6] bit selects
between continuous or single shot operation.

After writing to register A1, the internal counter is cleared on the first input event, ready to start counting
input events and the selected timebase is latched into register B2. On the match between the internal
counter and register A1, a counter bus capture is triggered to register A2 and B2. The data previously held
in register B2 is transferred to register B1 and the FLAG bit is set to indicate that an event has occurred.

The desired time interval can be determined by subtracting register B1 from A2. Registers
EMIOS_CADR[n] and EMIOS_CBDR[n] return the values in register A2 and B1, respectively.

As part of the coherency mechanism, reading EMIOS_CADR[n] disables transfers from B2 to B1. These
transfers are disabled until the next read of the EMIOS_CBDR[n] register. Reading the EMIOS_CBDR[n]
register re-enables transfers from B2 to B1, to take effect at the next transfer event, as previously
described.1

In order to have coherent data in continuous mode of operation the following steps should be performed,
assuming FLAG is initially cleared:

1. Wait for FLAG assertion.

2. Read EMIOS_CADR[n] register.

3. Read EMIOS_CBDR[n] register.

4. Clear FLAG bit.

5. Return to step #1.

Accumulation cycles may be lost if the read is not performed in a timely manner. Whenever the Overrun
bit is asserted it means that one or more cycles have been lost.

Triggering of the counter clock (input event) is done by a rising or falling edge or both edges on the input
pin. The polarity of the triggering edge is selected by the EDSEL and EDPOL bits in EMIOS_CCR[n]
register.

For continuous operation mode (MODE[0] cleared, MODE[0:6] = 000_1000), the counter is cleared on
the next input event after a FLAG generation and continues to operate as previously described.

For single shot operation (MODE[0] set, MODE[0:6] = 000_1001), the counter is not cleared or
incremented after a FLAG generation until a new writing operation to register A is performed.

Figure 27-27 and Figure 27-28 show how the Unified Channel can be used for continuous and single shot
pulse/edge accumulation mode.

1. If B1 was not updated due to B2 to B1 transfer being disabled after reading register EMIOS_CADR[n], further
EMIOS_CADR[n] and EMIOS_CBDR[n] reads will not return coherent data until a new bus capture is triggered to registers A2
and B2. This capture event is indicated by the channel FLAG being asserted. If enabled, the FLAG also generates an interrupt.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-32 Freescale Semiconductor

Figure 27-27. Pulse/Edge Accumulation Continuous Mode Example

Figure 27-28. Pulse/Edge Accumulation Single-Shot Mode Example

27.4.1.1.8 Pulse/Edge Counting (PEC) Mode

The PEC mode returns the amount of pulses or edges detected on the input for a desired time window.
MODE[6] bit selects between continuous or single shot operation.

0xFFFFFF

0x000000

EMIOS_CCNTR[n]1

Time

A1 Match
write to A1

Selected Counter Bus 0x000400

A1 Value3 0x0015000xxxxxxx

A2 Value4 0x0004000xxxxxxx

B1 Value 0x0000900xxxxxxx

B2 Value5 0x0010000xxxxxxx

0x001500

0x000090

0x000090 0x007000

0x001500

0x007000

0x001000

 FLAG Pin/Register

A1 Match

0x001500

Input Signal2

0x001000

A1 events A1 eventsno events events

0x000400

Notes:

4. EMIOS_CADR[n] = A2 (when reading)
5. EMIOS_CBDR[n] = B1

3. EMIOS_CADR[n] = A1 (when writing)
2. After input filter
1. Cleared on the first input event after writing to register A1

0x007000

MODE = 000_10000

0xFFFFFF

0x000000

EMIOS_CCNTR[n]1

Time

write to A1

Selected Counter Bus 0x000400

A1 Value3 0x0015000xxxxxxx

A2 Value4 0x0004000xxxxxxx

B1 Value 0x0000900xxxxxxx

B2 Value5 0xxxxxxx

0x001500

0x000090

0x000090

 FLAG Pin/Register

0x001500

Input Signal2 A1 events

Notes:

4. EMIOS_CADR[n] = A2 (when reading)
5. EMIOS_CBDR[n] = B1

3. EMIOS_CADR[n] = A1 (when writing)
2. After input filter

 events events

0x000400

1. Cleared on the first input event after writing to register A1

A1 Match

MODE = 000_10001

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-33

Triggering of the internal counter is done by a rising or falling edge or both edges on the input signal. The
polarity and the triggering edge is selected by EDSEL and EDPOL bits in EMIOS_CCR[n] register.

Register A1 holds the start time and register B1 holds the stop time for the time window. After writing to
register A1, when a match occur between comparator A and the selected timebase, the internal counter is
cleared and it is ready to start counting input events. When the time base matches comparator B, the
internal counter is disabled and its content is transferred to register A2. At the same time the FLAG bit is
set. Reading registers EMIOS_CCNTR[n] or A2 returns the amount of detected pulses.

For continuous operation (MODE[6] cleared, MODE[0:6] = 000_1010), the next match between
comparator A and the selected time base clears the internal counter and counting is enabled again. In order
to guarantee coherent measurements when reading EMIOS_CCNTR[n] after the FLAG is set, the software
must check if the time base value is out of the time interval defined by registers A1 and B1. Alternatively
register A2 always holds the latest available measurement providing coherent data at any time after the
first FLAG had occurred. This register is addressed by the alternate address EMIOS_ALTA[n].

For single shot operation (MODE[6] set, MODE[0:6] = 000_1011), the next match between comparator
A and the selected time base has no effect, until a new write to register A is performed. The
EMIOS_CCNTR content is also transferred to register A2 when a match in the B comparator occurs.

Figure 27-29 and Figure 27-30 show how the Unified Channel can be used for continuous or single shot
pulse/edge counting mode.

Figure 27-29. Pulse/Edge Counting Continuous Mode Example

amount of events detected

0x000000

EMIOS_CCNTR[n]

Time

B1 Match

Flag Pin/Register

 A1 B1 write

Selected Counter Bus 0x0003030x000090 0x0003030x000090

A1 Value1 0x0000900x000090

B1 Match A1 Match

amount of events detected

B1 Value2 0x000303 0x000303 0x000303

A1 Match

0x000090

Notes: 1. EMIOS_CADR[n] = A1
2. EMIOS_CBDR[n] = B1

MODE = 000_1010

3. EMIOS_ALTA[n] = A2

A2 Value3 A2 EMIOS_CCNTR[n] A2 EMIOS_CCNTR[n]

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-34 Freescale Semiconductor

Figure 27-30. Pulse/Edge Counting Single-Shot Mode Example

27.4.1.1.9 Quadrature Decode (QDEC) Mode

Quadrature decode mode uses UC[n] operating in QDEC mode and the input programmable filter (IPF)
from UC[n – 1]. Note that UC[n – 1] can be configured, at the same time, to an operation mode that does
not use I/O pins, such as MC mode (modulus counter). The connection among the UCs is circular, i.e.,
when UC[0] is running in QDEC mode, the input programmable filter from UC[23] is being used.

This mode generates a FLAG every time the internal counter matches A1 register. The internal counter is
automatically selected and is not cleared when entering this mode.

MODE[0] bit selects which type of encoder is used: count & direction encoder or phase_A & phase_B
encoder.

When operating with count & direction encoder (MODE[6] cleared), UC[n] input pin must be connected
to the direction signal and UC[n – 1] input pin must be connected to the count signal of the quadrature
encoder. UC[n] EDPOL bit selects count direction according to direction signal and UC[n – 1] EDPOL bit
selects if the internal counter is clocked by the rising or falling edge of the count signal.

When operating with phase_A & phase_B encoder (MODE[6] set), UC[n] input pin must be connected to
the phase_A signal and UC[n – 1] input pin must be connected to the phase_B signal of the quadrature
encoder. EDPOL bit selects the count direction according to the phase difference between phase_A &
phase_B signals.

Figure 27-31 and Figure 27-32 show two Unified Channels configured to quadrature decode mode for
count & direction encoder and phase_A & phase_B encoders, respectively.

amount of events detected

0x000000

EMIOS_CCNTR[n]

Time

B1 Match

Flag Pin/Register

 A1 B1 write

Selected Counter Bus 0x0003030x000090 0x0003030x000090

A1 Value1 0x0000900x000090

B1 Match A1 Match

amount of events detected

B1 Value2 0x000303 0x000303 0x000303

A1 Match

0x000090

Notes: 1. EMIOS_CADR[n] = A1
2. EMIOS_CBDR[n] = B1

MODE = 000_1011

A2 Value3 A2 EMIOS_CCNTR[n] A2 EMIOS_CCNTR[n]

3. EMIOS_ALTA[n] = A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-35

Figure 27-31. Quadrature Decode Mode Example with Count & Direction Encoder

Figure 27-32. Quadrature Decode Mode Example with Phase_A & Phase_B Encoder

27.4.1.1.10 Modulus Counter (MC) Mode

The MC mode can be used to provide a time base for a counter bus or as a general purpose timer.

MODE[6] bit selects internal or external clock source when cleared or set, respectively. When external
clock is selected, the input signal pin is used as the source and the triggering polarity edge is selected by
the EDPOL and EDSEL in the EMIOS_CCR[n] register.

The internal counter counts up from the current value until it matches the value in register A1. Register B1
is cleared and is not accessible to the MCU. The MODE[4] bit selects up mode or up/down mode, when
cleared or set, respectively.

When in up count mode, a match between the internal counter and register A1 sets the FLAG and clears
the internal counter. The timing of those events varies according to the MC mode setup as follows:

Notes: EMIOS_CADR[n] A1

+1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1EMIOS_CCNTR[n] inc/dec

Direction (from UC[n])

Count (from UC[n – 1])

0x000000

EMIOS_CCNTR[n]

Time

 A1 Write A1 Match

FLAG Pin/Register

A1 Match

Value 1

(Value 1)

MODE[6] = 0

EDPOL = 1

+1

Notes: EMIOS_CADR[n] = A1

+1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1-1EMIOS_CCNTR[n] inc/dec

Phase A (from UC[n])

Phase B (from UC[n – 1])

0x000000

EMIOS_CCNTR[n]

Time

 A1 Write A1 Match

FLAG Pin/Register

A1 Match A1 Match A1 Match A1 Match A1 Write

Value 2
Value 1

(Value 1) (Value 2)

-1 +1 +1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1-1-1 +1

MODE[6] = 0

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-36 Freescale Semiconductor

• Internal counter clearing on match start (MODE[0:6] = 001_000b)

— External clock is selected if MODE[6] is set. In this case the internal counter clears as soon as
the match signal occurs. The channel FLAG is set at the same time the match occurs. Note that
by having the internal counter cleared as soon as the match occurs and incremented at the next
input event a shorter zero count is generated. See Figure 27-57 and Figure 27-59.

— Internal clock source is selected if MODE[6] is cleared. In this case the counter clears as soon
as the match signal occurs. The channel FLAG is set at the same time the match occurs. At the
next prescaler tick after the match the internal counter remains at zero and only resumes
counting on the following tick. See Figure 27-57 and Figure 27-60.

• Internal counter clearing on match end (MODE[0:6] = 001_001b)

— External clock is selected if MODE[6] is set. In this case the internal counter clears when the
match signal is asserted and the input event occurs. The channel FLAG is set at the same time
the counter is cleared. See Figure 27-57 and Figure 27-61.

— Internal clock source is selected if MODE[6] is cleared. In this case the internal counter clears
when the match signal is asserted and the prescaler tick occurs. The channel FLAG is set at the
same time the counter is cleared. See Figure 27-57 and Figure 27-61.

NOTE
If internal clock source is selected and the prescaler of the internal counter
is set to 1, the MC mode behaves the same way even in Clear on Match Start
or Clear on Match End sub-modes.

When in up/down count mode (MODE[0:6] = 001_01bb), a match between the internal counter and
register A1 sets the FLAG and changes the counter direction from increment to decrement. A match
between register B1 and the internal counter changes the counter direction from decrement to increment
and sets the FLAG only if MODE[5] bit is set.

Only values other than 0x00_0000 must be written into register A. Loading 0x00_0000 leads to
unpredictable results.

Updates on register A or the counter in MC mode may cause loss of match in the current cycle if the
transfer occurs near the match. In this case, the counter may roll over and resume operation in the next
cycle.

Figure 27-33 and Figure 27-34 show how the Unified Channel can be used as a modulus counter in up
mode and up/down mode, respectively.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-37

Figure 27-33. Modulus Counter Up Mode Example

Figure 27-34. Modulus Counter Up/Down Mode Example

27.4.1.1.11 Modulus Counter Buffered (MCB) Mode

The MCB mode provides a time base that can be shared with other channels through the internal counter
buses. Register A1 is double buffered, thus allowing smooth transitions between cycles when changing A2
register value. Register A1 is updated at the cycle boundary, which is defined as when the internal counter
reaches the value one. The internal counter values are within a range from 0x00_0001 to the value of
register A1 in MCB mode. The internal counter must not reach 0x00_0000 as a consequence of a
rollover.To avoid this, the user must start MCB only if the value stored in the internal counter is less than
the value stored in the EMIOS_CADR[n] register.

MODE[6] bit selects the internal clock source if set to 0 or external, if set to 1. When the external clock is
selected the input channel pin is used as the channel clock source. The active edge of this clock is defined
by EDPOL and EDSEL bits in the EMIOS_CCR channel register.

When entering in MCB mode, if the up counter is selected by MODE[4] = 0, the internal counter starts
counting from its current value to up direction until A1 match occurs. On the next system clock cycle after
the A1 match occurs, the internal counter is set to one. If up/down counter is selected by setting

0xFFFFFF

0x000303

0x000000

EMIOS_CCNTR[n]

Time

 A1 Match

A1 Value1 0x000303 0x000303 0x000200

 Write to A2
 A1 Match

 Write to A2

0x000200

 A1 Match A1 Match

0xxxxxxx

 FLAG Pin/Register

Notes: 1. EMIOS_CADR[n] = A1

0x000303 0x000200

A2 = A1 according to OU[n] bit

MODE[4] = 0

0xFFFFFF

0x000303

0x000000

EMIOS_CCNTR[n]

Time

 A1 Match

A1 Value1 0x000303 0x000303 0x000200

 Write to A2 B1 Match (=0) Write to A2

0x000200

 A1 Match B1 Match (=0)

0xxxxxxx

Notes: 1. EMIOS_CADR[n] = A1

0x0002000x000200
 FLAG Pin/Register

A2 = A1 according to OU[n] bit

MODE[4] = 1

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-38 Freescale Semiconductor

MODE[4] = 1, the counter changes direction at the A1 match and counts down until it reaches the value
one. After it has reached one, it is set to count in up direction again. Register B1 is set to one at mode
entering and cannot be changed while this mode is selected. B1 register is used to generate a match to set
the internal counter in up-count direction if up/down mode is selected.

The MCB mode counts between one and A1 register value. Only values greater than 0x00_0001 are
allowed to be written at A1 register. Loading values other than those leads to unpredictable results. The
counter cycle period is equal to A1 value in up counter mode. If in up/down counter mode the period is
defined by the expression: (2*A1) – 2.

Figure 27-35 shows the counter cycle for several A1 values. Register A1 is loaded with A2 register value
at the cycle boundary. Any value written to A2 register within cycle (n) is updated to A1 at the next cycle
boundary and therefore is used on cycle (n + 1). The cycle boundary between cycle (n) and cycle (n + 1)
is defined as the first system clock cycle of cycle (n + 1). The flags are generated as soon as A1 match had
occurred.

Figure 27-35. Modulus Counter Buffered (MCB) Up Count Mode

Figure 27-36 shows the MCB in up/down counter mode. Register A1 is updated at the cycle boundary. If
A2 is written in cycle (n), this new value is used in cycle (n + 1) for A1 match.

Flags are generated at A1 match only if MODE[5] is 0. If MODE[5] is set to 1, flags are also generated at
the cycle boundary.

EMIOS_CCNTR[n]

Time

Write to A2
 A1 Match A1 Match A1 Match

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007 0x000007

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-39

Figure 27-36. Modulus Counter Buffered (MCB) Up/Down Mode

Figure 27-37 shows the A1 register update process in up counter mode. The A1 load signal is generated
based on the detection of the internal counter reaching one and has the duration of one system clock cycle.
During the load pulse, A1 still holds its previous value. It is updated at the second system clock cycle only.

Figure 27-37. MCB Mode A1 Register Update in Up Counter Mode

Figure 27-38 shows the A1 register update in up/down counter mode. Note that A2 can be written at any
time within cycle (n) in order to be used in cycle (n + 1). Thus A1 receives this new value at the next cycle
boundary. The update disable bits (OU[n] in EMIOS_OUDR) can be used to disable the update of A1
register.

EMIOS_CCNTR[n]

Time

Write to A2
A1 Match A1 Match

Write to A2

0x000001

0x000005
0x000006
0x000007

FLAG Set Event

0x000005 0x000007A2 Value

A1 Value 0x000006 0x000005 0x000007

A1 Value 0x000008

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

Write to A2

A1 Load Signal

8

4

6

Counter = A1
Time

Cycle n Cycle n + 1 Cycle n + 2

A1 Match A1 MatchA1 Match
Write to A2

1

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-40 Freescale Semiconductor

Figure 27-38. MCB Mode A1 Register Update in Up/Down Counter Mode

27.4.1.1.12 Pulse-Width and Frequency Modulation Buffered (OPWFMB) Mode

This mode provides waveforms with variable duty cycle and frequency. The internal channel counter is
automatically selected as the time base when this mode is selected. A1 register indicates the duty cycle and
B1 register the frequency. Both A1 and B1 registers are double buffered to allow smooth signal generation
when changing the registers values. It supports 0% and 100% duty cycles.

To provide smooth and consistent channel operation, this mode differs substantially from the OPWFM
mode. The main differences reside in the A1 and B1 registers update, on the delay from the A1 match to
the output pin transition, and on the range of the internal counter values, which start from 1 and go as high
as the value in the B1 register. The internal counter must not reach 0x00_0000 as consequence of a
rollover. To avoid this, the user must start OPWFMB only if the value stored at internal counter is fewer
than the value that EMIOS_CBDR register stores.

When a match on comparator A occurs the output register is set to the value of EDPOL. When a match on
comparator B occurs the output register is set to the complement of EDPOL. B1 match also causes the
internal counter to transition to 1, thus restarting the counter cycle.

Only values greater than 0x00_0001 are allowed to be written to B1 register. Loading values other than
those leads to unpredictable results.

Figure 27-39 shows the operation of the OPWFMB mode regarding output pin transitions and A1/B1
registers match events. The output pin transition occurs when the A1 or B1 match signal is deasserted,
which is indicated by the A1 match negedge detection signal. If register A1 is set to 0x00_0004, the output
pin transitions four counter periods after the cycle has started, plus one system clock cycle. In the example
shown in Figure 27-39 the internal counter prescaler is set to two.

EMIOS_CCNTR[n]

Time

Write to A2
A1 Match A1 Match

Write to A2

0x000001

0x000005
0x000006

0x000005

A2 Value

A1 Value 0x000006

0x000005

Selected Counter = 2

A1 Load Signal

0x000006 0x000006

0x000006

Cycle n Cycle n + 1 Cycle n + 2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-41

Figure 27-39. OPWFMB A1 and B1 Match to Output Register Delay

Figure 27-40 shows the generated output signal if A1 is set to zero. Because the counter does not reach
zero in this mode, the channel internal logic infers a match as if A1 = 0x00_0001 with the difference that
in this case, the posedge of the match signal is used to trigger the output pin transition instead of the
negedge used when A1 = 0x00_0001. A1 posedge match signal from cycle (n + 1) occurs at the same time
as B1 negedge match signal from cycle (n). This allows using the A1 posedge match to mask the B1
negedge match when they occur at the same time. The result is that no transition occurs on the output
flip-flop and a 0% duty cycle is generated.

8

1

4

A1 Match

5

A1 Value 0x000004

A1 Match

A1 Match Negedge

Output Pin

EMIOS_CCNTR

Time

B1 Match
B1 Match

B1 Match Negedge

B1 Value 0x000008

System Clock

Prescaler

Detection

Detection

Negedge
Detection

Negedge
Detection

EDPOL = 0

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-42 Freescale Semiconductor

Figure 27-40. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 27-41 shows the timing for the A1 and B1 registers load. The A1 and B1 load use the same signal
that is generated based on the selected counter reaching the value one, or EMIOS_CCNTR[n] = 1. This
event is defined as the cycle boundary. The load signal pulse has the duration of one system clock cycle
and occurs at the first system clock period of every counter cycle. If A2 and B2 are written within cycle
(n), their values are loaded into A1 and B1, respectively, at the first clock of cycle (n + 1) and the new
values are used for matches at cycle (n + 1). The update disable bits (OU[n] in EMIOS_OUDR) can be
used to control the update of these registers, thus allowing to delay the A1 and B1 registers update for
synchronization purposes.

In Figure 27-41, it is assumed that the channel and global prescalers are set to one, meaning that the
channel internal counter transition at every system clock cycle. FLAGs can be generated only on B1
matches when MODE[5] is cleared, or on either A1 or B1 matches when MODE[5] is set. Because B1
FLAG occurs at the cycle boundary, this flag can be used to indicate that A2 or B2 data written on cycle
(n) were loaded to A1 or B1, respectively, thus generating matches in cycle (n + 1).

1

4
5

A1 Value 0x000004

A1 Match

A1 Match Negedge

Output Pin

EMIOS_CCNTR

Time

B1 Match Negedge Detection

B1 Match

B1 Match Negedge

B1 Value 0x000008

System Clock

Prescaler

A2 Value 0x000000
0x000000

A1 Match Posedge A1 Match Posedge Detection

No Transition at this Point

1

Cycle n Cycle n + 1

Detection

Detection

Detection

A1 Match
Negedge
Detection

EDPOL = 0

Write to A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-43

Figure 27-41. OPWFMB A1 and B1 Registers Update and Flags

Figure 27-42 shows the operation of the output disable feature in OPWFMB mode. The output disable
forces the channel output flip-flop to EDPOL bit value. This functionality targets applications that use
active high signals and a high to low transition at A1 match. In this case EDPOL should be set to 0.

Cycle n Cycle n + 1 Cycle n + 2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

A1/B1 Load Signal

Due to B1 Match

FLAG Set Event

Cycle n– 1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

MODE[6] = 1

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-44 Freescale Semiconductor

Figure 27-42. OPWFMB Mode with Active Output Disable

The output disable has a synchronous operation, meaning that the assertion of the output disable input pin
causes the channel output flip-flop to transition to EDPOL at the next system clock cycle. If the output
disable input is deasserted the output pin transition at the following A1 or B1 match.

In Figure 27-42 it is assumed that the output disable input is enabled and selected for the channel. Refer
to Section 27.3.2.8, “eMIOS200 Control Register (EMIOS_CCR[n]),” for a description of how the ODIS
and ODISSL bits enable and select the output disable inputs.

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similar to a B1 match FORCMB sets the
internal counter to 0x00_0001. The FLAG bit is not set by the FORCMA or FORCMB bits being asserted.

Figure 27-43 shows the generation of 100% and 0% duty cycle signals. It is assumed EDPOL = 0 and the
resultant prescaler value is 1. Initially, A1 = 0x00_0008 and B1 = 0x00_0008. In this case, the B1 match
has precedence over the A1 match, thus the output flip-flop is set to the complement of EDPOL bit. This
cycle corresponds to a 100% duty cycle signal. The same output signal can be generated for any A1 value
greater or equal to B1.

MODE[6] = 1
Cycle n Cycle n + 1 Cycle n + 2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Internal Counter

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

Output Disable

Due to B1 Match

FLAG Set Event

Cycle n – 1

Time

Write to A2
Match A1

 Write to A2 Match B1

EDPOL = 0

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-45

Figure 27-43. OPWFMB Mode from 100% to 0% Duty Cycle

A 0% duty cycle signal is generated if A1 = 0 as shown in cycle 9 in Figure 27-43. In this case, the
B1 = 0x00_0008 match from cycle 8 occurs at the same time as the A1 = 0x00_0000 match from cycle 9.
Refer to Figure 27-40 for a description of the A1 and B1 match generation. In this case, the A1 match has
precedence over the B1 match and the output signal transitions to EDPOL.

27.4.1.1.13 Center-Aligned Output PWM Buffered with Dead-Time (OPWMCB) Mode

This operation mode generates a center-aligned PWM with dead-time insertion to the leading or trailing
edge. A1 and B1 registers are double buffered to allow smooth output signal generation when changing
A2 or B2 registers values.

The selected counter bus must be running in up/down counter mode, as shown in Figure 27-36. The time
base selected for a channel configured to OPWMCB mode should be a channel configured to MCB mode.
The BSL bits select the time base. The time base must start at 0x00_0001 and upward not prior to
OPWMCB mode is active. Register A1 contains the ideal duty cycle for the PWM signal and is compared
with the selected time base. Register B1 contains the dead-time value and is compared against the internal
counter. For a leading edge dead-time insertion, the output PWM duty cycle is equal to the difference
between register A1 and register B1, and for a trailing edge dead-time insertion, the output PWM duty
cycle is equal to the sum of register A1 and register B1. MODE[6] bit selects between trailing and leading
dead-time insertion, respectively.

NOTE
The internal prescaler of the OPWMCB channel must be set to the same
value of the MCB channel prescaler. These prescalers must also be
synchronized. In this case, A1 and B1 registers represent the same timing
scale for duty cycle and dead-time insertion.

Figure 27-44 shows the load of A1 and B1 registers, which occurs when the selected counter bus reaches
the value one. This counter value defines the cycle boundary. Values written to A2 or B2 within cycle (n)
are loaded into A1 or B1 registers, respectively, and used to generate matches in cycle (n + 1).

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOS_CCNTR

EDPOL = 0

A1 Value

B1 Value

Output Pin

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-46 Freescale Semiconductor

Figure 27-44. OPWMCB A1 and B1 Registers Load

The (OU[n] in EMIOS_OUDR) bit can be used to disable the A1 and B1 updates, thus allowing to
synchronize the load on these registers with the load of A1 or B1 registers in others channels. Using the
update disable bit, A1 and B1 registers can be updated at the same counter cycle, allowing both registers
to change at the same time.

In this mode A1 matches always sets the internal counter to 0x00_0001. When operating with leading edge
dead time insertion the first A1 match sets the internal counter to 0x00_0001. When a match occurs
between register B1 and the internal time base, the output flip-flop is set to the value of the EDPOL bit. In
the following match between register A1 and the selected time base, the output flip-flop is set to the
complement of the EDPOL bit. This sequence repeats continuously. The internal counter should not reach
0x00_0000 as consequence of a rollover. To avoid this, the user must not write a value greater than twice
the difference between external count up limit and EMIOS_CADR value to the EMIOS_CBDR register.

 Figure 27-45 shows two cycles of a center-aligned PWM signal. Both A1 and B1 register values are
changing within the same cycle, which allows to vary at the same time the duty cycle and dead-time values.

Selected

Time

Write to A2
Write to B2 Write to B2

Write to A2

0x000001

0x000005
0x000006

0x000015

A1 Value

A2 Value 0x000020

0x000015

Selected Counter = 2

A1/B1 Load Signal

0x000020 0x000016

0x000016

Cycle n Cycle n + 1 Cycle n + 2

B1 Value 0x000004

B2 Value 0x000004 0x0000060x000005

0x000005 0x000006

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-47

Figure 27-45. Output PWMCB with Lead Dead-Time Insertion

When operating with trailing edge dead-time insertion, the first match between A1 and the selected time
base sets the output flip-flop to the value of the EDPOL bit and sets the internal counter to 0x00_0001. In
the second match between register A1 and the selected time base, the internal counter is set to 0x00_0001
and B1 matches are enabled. When the match between register B1 and the selected time base occurs, the
output flip-flop is set to the complement of the EDPOL bit. This sequence repeats continuously.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-48 Freescale Semiconductor

Figure 27-46. Output PWMCB with Trail Dead-Time Insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or in
both edges when MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses
continue to be generated regardless of the state of the FLAG bit.

NOTE
In OPWMCB mode, FORCMA and FORCMB do not have the same
behavior as a regular match. Instead they force the output flip-flop to
constant value, which depends on the selected dead-time insertion mode,
lead or trail and the value of the EDPOL bit.

FORCMA has different behaviors depending on the selected dead time insertion mode, lead or trail. In lead
dead-time insertion FORCMA force a transition in the output flip-flop to the opposite of EDPOL. In trail
dead-time insertion the output flip-flop is forced to the value of EDPOL bit.

If FORCMB bit is set, the output flip-flop value depends on the selected dead-time insertion mode. In lead
dead time insertion FORCMB forces the output flip-flop to transition to EDPOL bit value. In trail
dead-time insertion the output flip-flop is forced to the opposite of EDPOL bit value.

NOTE
FORCMA bit set does not set the internal time-base to 0x00_0001 as a
regular A1 match.

EDPOL = 1

Internal

Internal Counter is

Dead-Time

A1 Value

A2 Value

B1 Value

B2 Value

Selected

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015 0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

Output Flip-Flop

FLAG Set Event

0x000001

Counter Bus

Time

Time

Time Base

Dead-Time

Set to 1 on A1 Match

Write to B2
Write to A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-49

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are issued at the
same time.

NOTE
FORCMA and FORCMB have the same behavior even in freeze or normal
mode regarding the output pin transition.

When FORCMA is issued along with FORCMB, the output flip-flop is set to the opposite of EDPOL bit
value. This is equivalent of saying that FORCMA has precedence over FORCMB when lead dead-time
insertion is selected and FORCMB has precedence over FORCMA when trail dead-time insertion is
selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1 registers
relatively to the period of the external time base. Setting A1 = 1 generates a 100% duty cycle waveform.
If A1 is greater than the maximum value of the selected counter bus period, then a 0% duty cycle is
produced. Assuming EDPOL is set to one and OPWMCB mode with trail dead-time insertion, 100% duty
cycle signals can be generated if B1 occurs at or after the cycle boundary (external counter = 1).

Only values different than 0x00_0000 are allowed to be written to A1 register. If 0x00_0000 is loaded to
A1 the results are unpredictable.

NOTE
A special case occurs when A1 is set to (external counter bus period)/2,
which is the maximum value of the external counter. In this case, the output
flip-flop is constantly set to the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle. In trail
dead-time insertion B1 match from cycle (n) could eventually cross the cycle boundary and occur in cycle
(n + 1). In this case B1 match is masked out and does not cause the output flip-flop to transition. Therefore
matches in cycle (n + 1) are not affected by the late B1 matches from cycle (n).

Figure 27-47 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3. In this case
the trailing edge is positioned at the boundary of cycle n + 1, which is actually considered to belong to
cycle n + 2 and therefore does not cause the output flip-flip to transition.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-50 Freescale Semiconductor

Figure 27-47. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3)

The output disable feature, if enabled, causes the output flip-flop to transition to the EDPOL inverted state.
This feature allows an application to force the channel output pin to a “safe” state. The internal channel
matches continue to occur even in this case, thus generating flags. As soon as the output disable is
deasserted, the channel output pin is again controlled by the A1 and B1 matches. This process is
synchronous, meaning that the output channel pin transitions on system clock edges only.

It is important to notice that, as in OPWMB and OPWFMB modes, the match signal used to set or clear
the channel output flip-flop is generated on the deassertion of the channel combinational comparator
output signal which compares the selected time base with A1 or B1 register values. Refer to Figure 27-39,
which shows the delay from matches to output flip-flop transition in OPWFMB mode. The operation of
OPWMCB mode is similar to OPWFMB regarding matches and output pin transition.

27.4.1.1.14 Pulse-Width Modulation Buffered (OPWMB) Mode

OPWMB mode is used to generate pulses with programmable leading- and trailing-edge placement. An
external counter must be selected from one of the counter buses. The A1 register value defines the first
edge and B1 defines the second edge. The output signal polarity is defined by the EDPOL bit. If EDPOL
is 0, a negative edge occurs when A1 matches the selected counter bus; and a positive edge occurs when
B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. Refer to Figure 27-41 for more
information about A1 and B1 registers’ update.

0x000001

0x000020

0x000004

A1 Value

A2 Value

B1 Value
B2 Value

0x000004

0x000001

Output Flip-Flop

0x000003

0x000015

0x000003
0x000015

0x000003

Selected
Counter Bus

Time

Write to B2

Time

Cycle n Cycle n+ 1 Cycle n + 2

Dead-Time
Dead-Time

Dead-Time

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-51

FLAG can be generated at B1 matches, when MODE[5] is cleared, or on either A1 or B1 matches when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level corresponding
to a match on A1 or B1. The FLAG bit is not set by the FORCMA and FORCMB operations.

Some rules applicable to the OPWMB mode include:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle

• A1 = 0 match from cycle(n) has precedence over B1 match from cycle(n – 1)

• A1 matches are masked out if they occur after B1 match within the same cycle

• Any value written to A2 or B2 on cycle(n) is loaded to A1 and B1 registers at the following cycle
boundary (assuming (OU[n] in EMIOS_OUDR) is not asserted). The new values are used for A1
and B1 matches in cycle(n + 1)

Figure 27-48 shows the operation of the OPWMB mode regarding A1 and B1 matches and the transition
of the channel output pin. In this example, EDPOL is set to 0.

Figure 27-48. OPWMB Mode Matches and Flags

1

4

A1 Match Negedge

6

A1 Value 0x000004

A1 Match

Output Pin

Selected

Time

B1 Match Negedge
B1 Match

B1 Value 0x000006

Clock

Prescaler

A2 Value 0x000000

0x000000

A1 Match Posedge Detection

1

8
6

FLAG Bit Set

EDPOL = 0

A1 Match Negedge

B1 Match Negedge

A1 Match Posedge

Detection

Detection

Detection

Detection

Cycle n Cycle n + 1
Write to A2

Detection

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-52 Freescale Semiconductor

The output pin transitions are based on the negedges of the A1 and B1 match signals. Figure 27-48 shows
in cycle(n + 1) the value of the A1 register being set to zero. In this case, the match posedge is used instead
of the negedge to transition the output flip-flop.

Figure 27-49 shows the channel operation for 0% duty cycle. Note that the A1 match posedge signal
occurs at the same time as the B1 = 8 negedge signal. In this case A1 match has precedence over B1 match,
causing the output pin to remain at EDPOL bit value, thus generating a 0% duty cycle signal.

Figure 27-49. OPWMB Mode with 0% Duty Cycle

Figure 27-50 shows the operation of the OPWMB mode with the output disable signal asserted. The output
disable forces a transition in the output pin to the EDPOL bit value. After deassertion, the output disable
allows the output pin to transition at the following A1 or B1 match. The output disable does not modify
the flag bit behavior. There is one system clock delay between the assertion of the output disable signal
and the transition of the output pin to EDPOL.

1

4

A1 Match Negedge

A1 Value 0x000004

A1 Match

Output Pin

Selected

Time

B1 Match

B1 Value 0x000008

Clock

Prescaler

A2 Value 0x000000

0x000000

A1 Match Posedge Detection

1

8

FLAG Bit Set

EDPOL = 0

A1 Match Negedge

B1 Match Negedge

A1 Match Posedge

Detection

Detection

Detection

Cycle n Cycle n + 1
Write to A2

Detection

8

Counter Bus

A1 Match Negedge Detection

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-53

Figure 27-50. OPWMB Mode with Active Output Disable

Figure 27-51 shows a waveform changing from 100% to 0% duty cycle. In this case, EDPOL is 0. In this
example, B1 is programmed to the same value as the period of the external selected time base.

Figure 27-51. OPWMB Mode from 100% to 0% Duty Cycle

In Figure 27-51, if B1 is set to a value lower than 0x00_0008, it is not possible to achieve 0% duty cycle
by changing only A1 register value. Because B1 matches have precedence over A1 matches the output pin
transitions to the opposite of EDPOL bit at B1 match. If B1 is set to 0x00_0009, for instance, B1 match
does not occur, thus a 0% duty cycle signal is generated.

27.4.1.1.15 Output Pulse Width Modulation with Trigger (OPWMT) Mode

OPWMT mode (MODE[0:6] = 010_0110) is intended to support the generation of Pulse Width
Modulation signals where the period is not modified while the signal is being output, but where the duty

Cycle n Cycle n+1 Cycle n+2

A1 Value

B1 Value

B2 Value

0x000008

0x000002

0x000006

0x000008

0x000001

Selected

0x000004

0x000006

A2 Value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output Pin

Write to B2
 Match A1 Match B1

 Match B1

FLAG Set Event

Time

Write to A2
Match A1

 Write to A2 Match B1

Output Disable

Counter Bus

Due to B1 Match
cycle n – 1

EDPOL = 0

MODE[6] = 1

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 Value

B1 Value

Output Pin

0x000008

Prescaler = 1

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 Value

Time

Counter Bus

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-54 Freescale Semiconductor

cycle is varied and must not create glitches. The mode is intended to be used in conjunction with other
channels executing in the same mode and sharing a common timebase. It supports each channel with a
fixed PWM leading edge position with respect to the other channels and the ability to generate a trigger
signal at any point in the period that can be output from the module to initiate activity in other parts of the
device, such as starting ADC conversions.

An external counter driven in either MC Up or MCB Up mode must be selected from one of the counter
buses.

Register A1 defines the leading edge of the PWM output pulse and as such the beginning of the PWM’s
period. This makes it possible to ensure that the leading edge of multiple channels in OPWMT mode can
occur at a specific time with respect to the other channels when using a shared timebase. This can allow
the introduction of a fixed offset for each channel which can be particularly useful in the generation of
lighting PWM control signals where it is desirable that edges are not coincident with each other to help
eliminate noise generation. The value of register A1 represents the shift of the PWM channel with respect
to the selected timebase. A1 can be configured with any value within the range of the selected time base.
Note that registers loaded with 0x00_0000 do not produce matches if the timebase is driven by a channel
in MCB mode.

A1 is not buffered as the shift of a PWM channel must not be modified while the PWM signal is being
generated. In case A1 is modified it is immediately updated and one PWM pulse could be lost.

EMIOS_CBDR[n] address gives access to B2 register for write and B1 register for read. Register B1
defines the trailing edge of the PWM output pulse and as such the duty cycle of the PWM signal. To
synchronize B1 update with the PWM signal and so ensure a correct output pulse generation the transfer
from B2 to B1 is done at every match of register A1. This behavior is the same as the OPWM mode with
next period update.

EMIOS_OUDR register affects transfers between B2 and B1 only.

In order to account for the shift in the leading edge of the waveform defined by register A1, it is necessary
that the trailing edge, held in register B1, can roll over into the next period. This means that a match against
the B1 register should not have to be qualified by a match in the A1 register. The impact of this would
mean that incorrectly setting register B1 to a value less that register A1 results in the output being held
over a cycle boundary until the B1 value is encountered.

This mode provides a buffered update of the trailing edge by updating register B1 with register B2 contents
only at a match of register A1.

The value loaded in register A1 is compared with the value on the selected time base. When a match on
comparator A1 occurs, the output flip-flop is set to the value of the EDPOL bit. When a match occurs on
comparator B, the output flip-flop is set to the complement of the EDPOL bit.

Note that the output pin and flag transitions are based on the posedges of the A1, B1 and A2 match signals.
Please, refer to Figure 27-48 at Section 27.4.1.1.15, “Output Pulse Width Modulation with Trigger
(OPWMT) Mode for details on match posedge.

Register A2 defines the generation of a trigger event within the PWM period and A2 should be configured
with any value within the range of the selected time base, otherwise no trigger is generated. A match on
the comparator generates the FLAG signal but it has no effect on the PWM output signal generation. The

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-55

typical setup to obtain a trigger with FLAG is enabling DMA and driving the channel’s ipd_done input
high.

A2 is not buffered and therefore its update is immediate. If the channel is running when a change is made
this could cause either the loss of one trigger event or the generation of two trigger events within the same
period. Register A2 can be accessed by reading or writing the eMIOS200 UC Alternate A Register
(EMIOS_ALTA) at UC[n] base address + 0x0014.

FLAG signal is set only at match on the comparator with A2. A match on the comparator with A1 or B1
or B2 has no effect on FLAG.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A or B respectively. Any FORCMA and/or FORCMB has priority over any
simultaneous match regarding to output pin transitions. Note that the load of B2 content on B1 register at
an A match is not inhibited due to a simultaneous FORCMA/FORCMB assertion. If both FORCMA and
FORCMB are asserted simultaneously the output pin goes to the opposite of EDPOL value such as if A1
and B1 registers had the same value. FORCMA assertion causes the transfer from register B2 to B1 such
as a regular A match, regardless of FORCMB assertion.

If subsequent matches occur on comparators A1 and B, the PWM pulses continue to be generated,
regardless of the state of the FLAG bit.

At OPWMT mode entry the output flip-flop is set to the complement of the EDPOL bit in the
EMIOS_CCR[n] register.

In order to achieve 0% duty cycle both registers A1 and B must be set to the same value. When a
simultaneous match on comparators A and B occur, the output flip-flop is set at every period to the
complement value of EDPOL.

In order to achieve 100% duty cycle the register B1 must be set to a value greater than maximum value of
the selected time base. As a consequence if 100% duty cycle must be implemented the maximum counter
value for the time base is 0xFF_FFFE for a 24-bit counter and respectively 0xFFFE for a 16-bit counter.
When a match on comparator A1 occurs the output flip-flop is set at every period to the value of EDPOL
bit. The transfer from register B2 to B1 is still triggered by the match at comparator A.

As with other eMIOS200 mode, the OPWMT mode implements the Output Disable function. Setting the
ODIS bit in EMIOS_CCR[n] enables the Output Disable function. If the selected Output Disable input
signal is asserted for the channel, the output pin goes to the inverse of the EDPOL. The channel continues
to operate normally, although the output is fixed. When the Output Disable input signal is negated, the
output pin returns to operate as normal.

Figure 27-52 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
duty cycle update on next period update.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-56 Freescale Semiconductor

Figure 27-52. OPWMT Example

Figure 27-53 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
0% duty cycle.

Figure 27-53. OPWMT with 0% Duty Cycle

Figure 27-54 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
100% duty cycle.

0x0011FF
0x001000

0x000000

Selected Counter Bus

Time

Output Flip-Flop

A1 Value1

 write to B2

0x000400

B1 Value

B2 Value2 0x000700

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

0x000700

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOS_CADR[n] = A1
2. EMIOS_CBDR[n] = B2 for write, B1 for read

0x000700

A2 Value 0x000500

0x000500

FLAG Pin/Register

 Match A2
 Match A2

0x0011FF
0x001000

0x000000

Selected Counter Bus

Time

Output Flip-Flop

A1 Value1

 write to B2

0x000400

B1 Value

B2 Value2 0x000400

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOS_CADR[n] = A1
2. EMIOS_CBDR[n] = B2 for write, B1 for read

0x000400

A2 Value 0x000500

0x000500

FLAG Pin/Register

 Match A2
 Match A2

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-57

Figure 27-54. OPWMT with 100% Duty Cycle

27.4.1.2 Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the unified channel edge detector. A
block diagram of the IPF is shown in Figure 27-55.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
IF bits in EMIOS_CCR[n].

Figure 27-55. lnput Programmable Filter Submodule Diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter remains incrementing.
If a counter overflow occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next pin transition, the counter starts counting again. Any pulse that is shorter than a full range
of the masked counter is regarded as a glitch and it is not passed on to the edge detector. Figure 27-56
shows a timing diagram of the input filter.

0x0011FF
0x001000

0x000000

Selected Counter Bus

Time

Output Flip-Flop

A1 Value1

 write to B2

0x000400

B1 Value

B2 Value2 0x001200

 Match B1 does not occur
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOS_CADR[n] = A1
2. EMIOS_CBDR[n] = B2 for write, B1 for read

0x001200

A2 Value 0x000500

0x000500

FLAG Pin/Register

 Match A2
 Match A2

Synchronizer

IF3

clk

IF2 IF1 IF0

5-bit Up Counter

FCK

Prescaled Clock

EMIOSI

Clock

ipg_clk

Filter Out

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-58 Freescale Semiconductor

Figure 27-56. Input Programmable Filter Example

27.4.1.3 Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of the unified
channels. It is a programmable 2-bit down counter. The GCP output signal is prescaled by the value
defined in the UCPRE bits in the EMIOS_CCR[n] register. The output is clocked every time the counter
reaches zero. Counting is enabled by setting the UCPREN bit in the EMIOS_CCR[n]. The counter can be
stopped at any time by clearing this bit, thereby stopping the internal counter in the unified channel.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write 0 at both GPREN bit in EMIOSMCR register and UCPREN bit in EMIOS_CCR[n] register,
thus disabling prescalers;

2. Write the desired value for prescaling rate at UCPRE[] bits in EMIOS_CCR[n] register;

3. Enable channel prescaler by writing 1 at UCPREN bit in EMIOS_CCR[n] register;

4. Enable global prescaler by writing 1 at GPREN bit in EMIOSMCR register.

The prescaler is not disabled during either freeze state or negated GTBE input.

27.4.1.4 Effect of Freeze on the Unified Channel

When in debug mode, if the FRZ bit in the EMIOS_MCR register and the FREN bit in the
EMIOS_CCR[n] are both set, the internal counter and unified channel capture and compare functions are
halted. The unified channel is frozen in its current state.

During freeze, all registers are accessible. When the unified channel is operating in an output mode, the
force match functions remain available, allowing the software to force the output to the desired level.

During input modes, any input events that may occur while the channel is frozen are ignored.

When exiting debug mode or when the freeze enable bit is cleared (FRZ in the EMIOS_MCR or FREN in
the EMIOS_CCR[n] register), the channel actions resume but may be inconsistent until the channel enters
GPIO mode again.

Selected Clock

5-bit Counter

Filter Out

EMIOSI

Time

IF[3:0] = 0010

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-59

27.4.2 IP Bus Interface Unit (BIU)

The BIU provides the interface between the internal interface bus (IIB) and the peripheral bus, allowing
communication among all submodules and this IP interface.

The BIU allows 8-, 16-, and 32-bit access. They are performed over a 32-bit data bus in a single cycle
clock.

27.4.2.1 Effect of Freeze on the BIU

When the FRZ bit in the EMIOS_MCR register is set and the module is in debug mode, the operation of
BIU is not affected.

27.4.3 Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the unified channels. It is a
programmable 8-bit up counter. The main clock signal is prescaled by the value defined in the GPRE bits
in EMIOS_MCR. The output is clocked every time the counter overflows. Counting is enabled by setting
the GPREN bit in the EMIOS_MCR. The counter can be stopped at any time by clearing this bit, thereby
stopping the internal counter in all the unified channels.

27.4.3.1 Effect of Freeze on the GCP

When the FRZ bit in the EMIOS_MCR register is set and the module is in debug mode, the operation of
GCP submodule is not affected, i.e., there is no freeze function in this submodule.

27.5 Reset
The eMIOS200 is reset by the global asynchronous system reset signal.

The MDIS bit in the EMIOS_MCR register and the UCDIS bits in the EMIOS_UCDIS registers are
cleared during reset.

On resetting the eMIOS200 all unified channels enter GPIO input mode.

27.6 Interrupts
The eMIOS200 can generate one interrupt per channel. An interrupt request is generated according to the
configuration of the channel and input events or matches. See Chapter 9, “Interrupts and Interrupt
Controller (INTC),” for details on the eMIOS200 interrupt vector.

27.7 DMA Requests
The connection of the eMIOS200 DMA request signals to the DMA channel mux is described in
Section 22.5.2, “Enabling and Configuring Sources.”

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-60 Freescale Semiconductor

27.8 Initialization/Application Information
On resetting the eMIOS200 all unified channels enter GPIO input mode.

27.8.1 Considerations

Before changing an operating mode, the unified channel must be programmed to GPIO mode and
EMIOS_CADR[n] and EMIOS_CBDR[n] registers must be updated with the correct values for the next
operating mode. Then the EMIOS_CCR[n] register can be written with the new operating mode. If a
unified channel is changed from one mode to another without performing this procedure, the first operation
cycle of the selected time base can be random, i.e., matches can occur in random time if the contents of
EMIOS_CADR[n] or EMIOS_CBDR[n] were not updated with the correct value before the time base
matches the previous contents of EMIOS_CADR[n] or EMIOS_CBDR[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the interrupt service
routine.

27.8.2 Application Information

Correlated output signals can be generated by all output operation modes. The OU[n] bits in
EMIOS_OUDR can be used to control the update of these output signals.

In order to guarantee the internal counters of correlated channels are incremented in the same clock cycle,
the internal prescalers must be set before enabling the global prescaler. If the internal prescalers are set
after enabling the global prescaler, the internal counters may increment in the same ratio but at a different
clock cycle.

It is recommended to drive output disable input signals with the emios_flag_out signals of some unified
channels running in SAIC mode. When an output disable condition happens, the software interrupt routine
must service the output channels before servicing the channels running SAIC. This procedure avoids
glitches in the output pins.

27.8.3 Time Base Generation

For MC, OPWFM, and OPWM with internal clock source operation modes, the internal counter rate can
be modified by configuring the clock prescaler ratio. Figure 27-57 shows an example of a time base with
prescaler ratio equal to one. When the prescaler is greater than one, the counter is immediately cleared on
a match and then incremented in the next prescaled clock edge, except when running in OPWFM mode or
MC mode with internal clock source. In these cases, the counter will skip the next prescaled clock edge
and continue incremented on subsequent edges, as shown in Figure 27-58.

NOTE
MCB, OPWFMB, and OPWMB modes have a different behavior.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 27-61

Figure 27-57. Time Base Period when Running in the Fastest Prescaler Ratio

Figure 27-58. Time Base Period when Running with a Prescaler Ratio Greater Than 1

Figure 27-59. Time Base Generation with External Clock and Clear on Match Start

When a match occurs, the first clock cycle is used to clear the internal counter,
starting another period.

Note:

Prescaled Clock = 1

Internal Counter 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Match Value = 3

Clock

See Note

PRESCALED CLOCK RATIO = 1 (Bypassed)

When a match occurs, the first clock cycle is used to clear the internal counter, and only
after a second edge of prescaled clock the counter will start counting.

Note:

Prescaled Clock

Internal Counter 1 2 0

Match Value = 3

Clock

See Note

3 1 2 3 0 00

PRESCALED CLOCK RATIO = 3

System Clock

Input Event

Internal Counter

Match Value = 3

1 23 0

See Note

Note: When a match occurs, the first system clock cycle is used to clear the internal counter, and at the next edge

1 2 1 23 0

FLAG Set Event

FLAG Clear

FLAG Pin/Register

of prescaler clock enable the counter will start counting.

Enhanced Modular Input/Output Subsystem (eMIOS200)

MPC5668x Microcontroller Reference Manual, Rev. 4

27-62 Freescale Semiconductor

Figure 27-60. Time Base Generation with Internal Clock and Clear on Match Start

Figure 27-61. Time Base Generation with Clear on Match End

27.8.4 Coherent Accesses

For IPWM and IPM modes, it is recommended that the software wait for a new FLAG set event before
reading EMIOS_CADR[n] and EMIOS_CBDR[n] registers to get a new measurement. The FLAG
indicates that new data has been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt or DMA request
generation.

Reading the EMIOS_CADR[n] register again in the same period of the last read of EMIOS_CBDR[n]
register may lead to incoherent results. This occurs if the last read of EMIOS_CBDR[n] register occurred
after a disabled B2 to B1 transfer.

System Clock

Prescaler Clock Enable

Internal Counter

Match Value = 3

0 13 0 2 03 0

PRESCALED CLOCK RATIO = 3

See Note

Note: When a match occurs, the first clock cycle is used to clear the internal counter,

1 2

FLAG Set Event

FLAG Clear

FLAG Pin/Register

and only after a second edge of prescaled clock the counter will start counting.

System Clock

Input Event/

Internal Counter

Match Value = 3

0 13 2 0

PRESCALED CLOCK RATIO = 3

See Note

Note: The match occurs only when the input event/prescaler clock enable is active.
 Then, the internal counter is immediately cleared.

1 2 3

FLAG Set Event

FLAG Clear

FLAG Pin/Register

Prescaler Clock Enable

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-1

Chapter 28
Controller Area Network (FlexCAN)

28.1 Introduction
The MPC5668x contains as many as six controller area network (FlexCAN) blocks. Each FlexCAN
module is a communication controller implementing the CAN protocol according to Bosch Specification
version 2.0B and ISO Standard 11898. The CAN protocol is used as a serial data bus, meeting the specific
requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle,
cost-effectiveness and required bandwidth.

NOTE
The FlexCAN_F block is not implemented on the MPC5668E.

The CAN protocol interface (CPI) sub-module manages the serial communication on the CAN bus,
requesting RAM access for receiving and transmitting message frames, validating received messages and
performing error handling. The message buffer management (MBM) sub-module handles message buffer
selection for reception and transmission, taking care of arbitration and ID matching algorithms. The bus
interface unit (BIU) sub-module controls the access to and from the internal interface bus, to establish
connection to the CPU and other blocks. Clocks, address and data buses, interrupt outputs, and test signals
are accessed through the bus interface unit.

28.1.1 Block Diagram

A simplified block diagram of the FlexCAN illustrates the functionality and interdependence of major
sub-blocks (see Figure 28-1).

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-2 Freescale Semiconductor

Figure 28-1. FlexCAN Block Diagram

28.1.2 Features

The FlexCAN has these major features:

• Full implementation of the CAN protocol specification, Version 2.0A/B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

— Programmable bit rate as high as 1 Mbit/s

— Content-related addressing

• 64 flexible message buffers (MBs) of 0 to 8 bytes data length

• Each message buffer configurable as Rx or Tx, all supporting standard and extended messages

MB3

RAM

Bus Interface Unit

max MB #

(0–63)

Slave Interface

CAN Message

CNTXx

CNRXx

MB2

MB1

MB0

MB60

MB61

MB62

MB63

Clocks, Address and Data Buses,
Interrupt and Test Signals

Buffer

Management

Protocol

Interface

1 KB

RXIMR63

RXIMR62

RXIMR1

RXIMR0

ID Mask
Storage

256 bytes
RAM

FlexCAN

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-3

• Individual Rx mask registers per message buffer

• Includes 1056 bytes of RAM used for message buffer storage

• Includes 256 bytes of RAM used for individual Rx mask registers

• Full featured Rx FIFO with storage capacity for six frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either eight extended,
16 standard, or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN version

• Programmable clock source to the CAN protocol interface, either bus clock or crystal oscillator

• Unused message buffer and Rx mask register space can be used as general-purpose RAM space

• Listen-only mode capability

• Programmable loop-back mode supporting self-test operation

• Programmable transmission priority scheme: lowest ID, lowest buffer number or local priority on
individual Tx message buffers.

• Hardware cancellation on Tx message buffers.

• Time stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Short latency time due to an arbitration scheme for high-priority messages

• Low-power modes

28.1.3 Modes of Operation

There are four main operating modes of FlexCAN: normal, freeze, listen-only, and loop-back. One
low-power mode is supported: module disable. For more details, refer to Section 28.4.8, “Modes of
Operation Details.”

28.1.3.1 Normal Mode

In normal mode the module operates receiving and/or transmitting message frames, errors are handled
normally and all the CAN protocol functions are enabled. In the MCU, there is no distinction between user
and supervisor modes.

28.1.3.2 Freeze Mode

Freeze mode is entered when the FRZ bit in the module configuration register (CANx_MCR) is asserted,
while the HALT bit in CANx_MCR is set, or if debug mode is requested by either core. In freeze mode no
transmission or reception of frames is done, and synchronicity to the CAN bus is lost.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-4 Freescale Semiconductor

28.1.3.3 Listen-Only Mode

In this mode, transmission is disabled, all error counters are frozen, and the module operates in a CAN
error passive mode. Only messages acknowledged by another CAN station are received. If FlexCAN
detects a message that has not been acknowledged, it flags a BIT0 error (without changing the REC), as if
it was trying to acknowledge the message.

28.1.3.4 Loop-Back Mode

The module enters this mode when the LPB bit in the control register is asserted. In this mode, FlexCAN
performs an internal loop back that can be used for self test operation. The bit stream output of the
transmitter is internally fed back to the receiver input. The Rx CAN input pin is ignored and the Tx CAN
output goes to the recessive state (logic 1). FlexCAN behaves as it normally does when transmitting, and
treats its own transmitted message as a message received from a remote node. In this mode, FlexCAN
ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure proper reception
of its own message. Transmit and receive interrupts are generated.

28.1.3.5 Module-Disabled Mode

This low-power mode is entered when the MDIS bit in the CANx_MCR register is asserted. When
disabled, the clocks to the CAN protocol interface and message buffer management sub-modules are shut
down. Exit from this mode is done by negating the MDIS bit in the CANx_MCR register.

28.1.3.6 Halt Mode

This low power mode is entered when the corresponding HLT bit in the SIU_HLT0 is asserted. The HLT
bit drives the stop input to the module. When in halt mode, the module puts itself in an inactive state and
then informs the CPU that its clock can be shut down.

Exit from this mode happens when the HLT bit is de-asserted.

28.2 External Signal Description
Please refer to Table 2-1 and Section 2.2, “Signal Properties Summary,” for a complete description of the
FlexCAN signals.

28.3 Memory Map and Registers
This section provides a detailed description of all FlexCAN registers.

28.3.1 Module Memory Map

The complete memory map for an individual FlexCAN module is shown in Table 28-1. Except for the base
addresses, all FlexCAN modules have identical memory maps.

The Rx global mask (CANx_RXGMASK), Rx buffer 14 mask (CANx_RX14MASK) and the Rx buffer
15 mask (CANx_RX15MASK) registers are provided for backwards compatibility, and are not used when
the BCC bit in CANx_MCR is asserted.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-5

The offset address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate embedded
memories. These two ranges are completely occupied by RAM (1 KB and 256 bytes, respectively) when
FlexCAN is configured with 64 MBs. Furthermore, if the BCC bit in CANx_MCR is negated, then the
whole Rx individual mask registers address range (0x0880–0x097F) is considered reserved space.

Table 28-1. FlexCAN Memory Map

Offset from
FlexCAN_BASE

(FlexCAN_A: 0xFFFC_0000
FlexCAN_B: 0xFFFC_4000
FlexCAN_C: 0xFFFC_8000
FlexCAN_D: 0xFFFC_C000
FlexCAN_E: 0xFFFD_0000
FlexCAN_F: 0xFFFD_4000)

Register Access Reset Value Section/Page

0x0000 CANx_MCR—Module Configuration R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CANx_CTRL—Control Register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANx_TIMER—Free-Running Timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANx_RXGMASK—Rx Global Mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANx_RX14MASK—Rx Buffer 14 Mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANx_RX15MASK—Rx Buffer 15 Mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANx_ECR—Error Counter Register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANx_ESR—Error and Status Register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANx_IMASK2—Interrupt Masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANx_IMASK1—Interrupt Masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CANx_IFLAG2—Interrupt Flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANx_IFLAG1—Interrupt Flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080–0x017F MB0–MB15—Message Buffers R/W —1

1 Please refer to the register definition.

28.3.2/28-7

0x0180–0x027F MB16–MB31—Message Buffers R/W —1

0x0280–0x047F MB32–MB63—Message Buffers R/W —1

0x0480–0x087F Reserved

0x0880–0x08BF CANx_RXIMR0–CANx_RXIMR15—Rx Individual
Mask Registers

R/W 0x0000_0000 28.3.4.11/28-26

0x08C0–0x08FF CANx_RXIMR16–CANx_RXIMR31—Rx Individual
Mask Registers

R/W 0x0000_0000

0x0900–0x097F CANx_RXIMR32–CANx_RXIMR63—Rx Individual
Mask Registers

R/W 0x0000_0000

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-6 Freescale Semiconductor

The FlexCAN module stores CAN messages for transmission and reception using a message buffer
structure. Each MB is formed by 16 bytes mapped in memory as described in Table 28-2. The FlexCAN
module can manage as many as 64 message buffers. Table 28-2 shows a standard/extended message buffer
(MB0) memory map, using 16 bytes (0x80–0x8F) total space.

NOTE
Reading the C/S word of a message buffer (the first word of each MB) locks
it, preventing it from receiving further messages until it is unlocked either
by reading another MB or by reading the timer.

NOTE
During CAN messages reception by FlexCAN, the RXGMASK (Rx Global
Mask) is used as acceptance mask for most of the Rx Message Buffers
(MB). When the FIFO Enable bit in the FlexCAN Module Configuration
Register (CANx_MCR[FEN], bit 2) is set, the RXGMASK also applies to
most of the elements of the ID filter table. However there is a misalignment
between the position of the ID field in the Rx MB and in RXIDA, RXIDB,
and RXIDC fields of the ID Tables. In fact RXIDA filter in the ID Tables is
shifted one bit to the left from Rx MBs ID position as shown below:

• Rx MB ID = bits 3-31 of ID word corresponding to message ID bits 0-28

• RXIDA = bits 2-30 of ID Table corresponding to message ID bits 0-28

Note that the mask bits one-to-one correspondence occurs with the filters
bits, not with the incoming message ID bits. This leads the RXGMASK to
affect Rx MB and Rx FIFO filtering in different ways. For example, if the
user intends to mask out the bit 24 of the ID filter of Message Buffers then
the RXGMASK will be configured as 0xffff_ffef. As result, bit 24 of the ID
field of the incoming message will be ignored during filtering process for
Message Buffers. This very same configuration of RXGMASK would lead
bit 24 of RXIDA to be "don't care" and thus bit 25 of the ID field of the
incoming message would be ignored during filtering process for Rx FIFO.
Similarly, both RXIDB and RXIDC filters have multiple misalignments
with regards to position of ID field in Rx MBs, which can lead to erroneous
masking during filtering process for either Rx FIFO or MBs. RX14MASK
(Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as
the RXGMASK. This includes the misalignment problem between the
position of the ID field in the Rx MBs and in RXIDA, RXIDB, and RXIDC
fields of the ID Tables.

Table 28-2. Message Buffer MB0 Memory Mapping

Address
Offset

MB Field

0x80 Control and status (C/S)

0x84 Identifier field

0x88–0x8F Data fields 0–7 (1 byte each)

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-7

One of the following actions be taken to avoid the above problems:

• Do not enable the RxFIFO. If CANx_MCR[FEN]=0 then the Rx FIFO
is disabled and thus the masks RXGMASK, RX14MASK and
RX15MASK do not affect it.

• Enable Rx Individual Mask Registers. If the Backwards Compatibility
Configuration bit in the FlexCAN Module Configuration Register
(CANx_MCR[BCC], bit 15) is set then the Rx Individual Mask
Registers (RXIMR0-63) are enabled and thus the masks RXGMASK,
RX14MASK and RX15MASK are not used.

• Do not use masks RXGMASK, RX14MASK and RX15MASK (rather
set them to reset value, which is 0xffff_ffff) when CANx_MCR[FEN]=1
and CANx_MCR[BCC]=0. In this case, filtering processes for both Rx
MBs and Rx FIFO are not affected by those masks.

• Do not configure any MB as Rx (i.e. let all MBs as either Tx or inactive)
when CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case,
the masks RXGMASK, RX14MASK and RX15MASK can be used to
affect ID Tables without affecting filtering process for Rx MBs.

28.3.2 Message Buffer Structure

The message buffer structure used by the FlexCAN module is represented in Figure 28-2. Both extended
and standard frames (29-bit identifier and 11-bit identifier, respectively) used in the CAN specification
(version 2.0 Part B) are represented.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE

S
R

R

ID
E

R
T

R LENGTH TIME STAMP

0x4 PRIO ID (Extended/Standard) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

Figure 28-2. Message Buffer Structure

Table 28-3. Message Buffer Field Descriptions

Name Description

CODE Message Buffer Code. This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module
itself, as part of the message buffer matching and arbitration process. The encoding is shown in Table 28-4
and Table 28-5. See Section 28.4, “Functional Description,” for additional information.

SRR Substitute Remote Request. Fixed recessive bit, used only in extended format. It must be set to 1 by the user
for transmission (Tx Buffers) and is stored with the value received on the CAN bus for Rx receiving buffers. It
can be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is interpreted
as arbitration loss.
0 Dominant is not a valid value for transmission in extended format frames.
1 Recessive value is compulsory for transmission in extended format frames.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-8 Freescale Semiconductor

IDE ID Extended Bit. This bit identifies whether the frame format is standard or extended.
0 Frame format is standard.
1 Frame format is extended.

RTR Remote Transmission Request. This bit is used for requesting transmissions of a data frame. If FlexCAN
transmits this bit as 1 (recessive) and receives it as 0 (dominant), it is interpreted as arbitration loss. If this bit
is transmitted as 0 (dominant), then if it is received as 1 (recessive), the FlexCAN module treats it as bit error.
If the value received matches the value transmitted, it is considered as a successful bit transmission.
0 Indicates the current MB has a data frame to be transmitted.
1 Indicates the current MB has a remote frame to be transmitted.

LENGTH Length of Data in Bytes. This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset
0x8 through 0xF of the MB space (see Figure 28-2). In reception, this field is written by the FlexCAN module,
copied from the DLC (data length code) field of the received frame. In transmission, this field is written by the
CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR = 1, the Frame to be
transmitted is a remote frame and does not include the data field, regardless of the LENGTH field.

TIME STAMP Free-Running Counter Time Stamp. This 16-bit field is a copy of the free-running timer, captured for Tx and
Rx frames at the time when the beginning of the Identifier field appears on the CAN bus.

PRIO Local Priority. This 3-bit field is only used when LPRIO_EN bit is set in CANx_MCR and it only makes sense
for Tx buffers. These bits are not transmitted. They are appended to the regular ID to define the transmission
priority. See Section 28.4.2, “Arbitration Process.”

ID Frame Identifier. In standard frame format, only the 11 most significant bits (3 to 13) are used for frame
identification in both receive and transmit cases. The 18 least significant bits are ignored. In extended frame
format, all bits are used for frame identification in both receive and transmit cases.

DATA Data Field. A many as 8 bytes can be used for a data frame. For Rx frames, the data is stored as it is received
from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the frame.

Table 28-4. Message Buffer Code for Rx Buffers

Rx Code before
Rx New Frame

Description
Rx Code after
Rx New Frame

Comment

0000 NOT ACTIVE: MB is not active. — MB does not participate in the matching process.

0100 EMPTY: MB is active and empty. 0010 MB participates in the matching process. When a
frame is received successfully, the code is
automatically updated to FULL.

0010 FULL: MB is full. 0010 The act of reading the C/S word followed by unlocking
the MB does not make the code return to EMPTY. It
remains FULL. If a new frame is written to the MB
after the C/S word was read and the MB was
unlocked, the code still remains FULL.

0110 If the MB is FULL and a new frame is overwritten to
this MB before the CPU had time to read it, the code
is automatically updated to OVERRUN. Refer to
Section 28.4.4, “Matching Process,” for details about
overrun behavior.

Table 28-3. Message Buffer Field Descriptions (continued)

Name Description

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-9

c

28.3.3 Rx FIFO Structure

When the FEN bit is set in the CANx_MCR, the memory area from 0x80 to 0xFC(which is normally
occupied by MBs 0 to 7) is used by the reception FIFO engine. Figure 28-3 shows the Rx FIFO data
structure. The region 0x80–0x8C contains an MB structure which is the port through which the CPU reads

0110 OVERRUN: A frame was
overwritten into a full buffer.

0010 If the code indicates OVERRUN but the CPU reads
the C/S word and then unlocks the MB, when a new
frame is written to the MB the code returns to FULL.

0110 If the code already indicates OVERRUN, and yet
another new frame must be written, the MB is
overwritten again, and the code remains OVERRUN.
Refer to Section 28.4.4, “Matching Process,” for
details about overrun behavior.

0XY11 BUSY: FlexCAN is updating the
contents of the MB. The CPU
must not access the MB.

0010 An EMPTY buffer was written with a new frame (XY
was 01).

0110 A FULL/OVERRUN buffer was overwritten (XY was
11).

1 Note that for Tx MBs (see Table 28-5), the BUSY bit should be ignored on read, except when AEN bit is set in the CANx_MCR.

Table 28-5. Message Buffer Code for Tx Buffers

RTR
Initial Tx

Code

Code after
Successful

Transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 —
ABORT: MB was configured as Tx and CPU aborted the transmission. This code is
only valid when AEN bit in CANx_MCR is asserted. MB does not participate in the
arbitration process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the MB automatically
returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission, the MB
automatically becomes and Rx MB with the same ID.

0 1010 1010 Transmit a data frame whenever a remote request frame with the same ID is
received. This MB participates simultaneously in both the matching and arbitration
processes. The matching process compares the ID of the incoming remote request
frame with the ID of the MB. If a match occurs this MB is allowed to participate in the
current arbitration process and the CODE field is automatically updated to 1110 to
allow the MB to participate in future arbitration runs. When the frame is eventually
transmitted successfully, the Code automatically returns to 1010 to restart the
process again.

0 1110 1010 The MBM generates this code as a result of match to a remote request frame. The
data frame is transmitted unconditionally once and then the code automatically
returns to ‘1010’. The CPU can also write this code with the same effect.

Table 28-4. Message Buffer Code for Rx Buffers (continued)

Rx Code before
Rx New Frame

Description
Rx Code after
Rx New Frame

Comment

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-10 Freescale Semiconductor

data from the FIFO (the oldest frame received and not read yet). The region 0x90–0xDC is reserved for
internal use of the FIFO engine. The region 0xE0–0xFC contains an eight-entry ID table that specifies
filtering criteria for accepting frames into the FIFO. Figure 28-4 shows the three different formats that the
elements of the ID table can assume, depending on the IDAM field of the CANx_MCR. Note that all
elements of the table must have the same format. See Section 28.4.6, “Rx FIFO,” for more information.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x80

S
R

R

ID
E

R
T

R LENGTH TIME STAMP

0x84 ID (Extended/Standard) ID (Extended)

0x88 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x8C Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90

Reservedto

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

Figure 28-3. Rx FIFO Structure

A
R
E
M

E
X
T

RXIDA
(Standard = 29–19, Extended = 29–1)

B
R
E
M

E
X
T

RXIDB_0
(Standard = 29–19, Extended = 29–16)

R
E
M

E
X
T

RXIDB_1
(Standard = 13–3, Extended = 13–0)

C
RXIDC_0

(Std/Ext = 31–24)
RXIDC_1

(Std/Ext = 23–16)
RXIDC_2

(Std/Ext = 15–8)
RXIDC_3

(Std/Ext = 7–0)

Figure 28-4. ID Table 0–7

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-11

28.3.4 Register Descriptions

This section lists the FlexCAN registers in address order and describes the registers and their bit fields.

28.3.4.1 Module Configuration Register (CANx_MCR)

This register defines global system configurations, such as the module operation mode (e.g., low power)
and maximum message buffer configuration. Most of the fields in this register can be accessed at any time,
except the MAXMB field, which should only be changed while the module is in freeze mode.

Table 28-6. ID Table 0–7 Field Descriptions

Name Description

REM Remote Frame. This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.
0 Remote frames are rejected and data frames can be accepted.
1 Remote frames can be accepted and data frames are rejected.

EXT Extended Frame. Specifies whether extended or standard frames are accepted into the FIFO if they match the
target ID.
0 Extended frames are rejected and standard frames can be accepted.
1 Extended frames can be accepted and standard frames are rejected.

RXIDA Rx Frame Identifier (Format A). Specifies an ID to be used as acceptance criteria for the FIFO. In the standard
frame format, only the 11 most significant bits (3 to 13) are used for frame identification. In the extended frame
format, all bits are used.

RXIDB_0
RXIDB_1

Rx Frame Identifier (Format B). Specifies an ID to be used as acceptance criteria for the FIFO. In the standard
frame format, the 11 most significant bits (a full standard ID) (3 to 13) are used for frame identification. In the
extended frame format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0
RXIDC_1
RXIDC_2
RXIDC_3

Rx Frame Identifier (Format C). Specifies an ID to be used as acceptance criteria for the FIFO. In both standard
and extended frame formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.

Offset: Base + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ FEN HALT

NOT_
RDY

0 SOFT
_RST

FRZ_
ACK

1 0 WRN
_EN

LPM_
ACK

0 0 SRX_
DIS

BCC
W

Reset 1 1 0 1 1 0 0 0 11 0 0 1 01 01 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 LPRIO
_EN

AEN
0 0

IDAM
0 0

MAXMB
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 Writes to this bit have no effect, but reads return the written value.

Figure 28-5. Module Configuration Register (CANx_MCR)

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-12 Freescale Semiconductor

Table 28-7. CANx_MCR Field Descriptions

Field Description

MDIS Module Disable. Controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the clock to
the CAN protocol interface and message buffer management submodules. This is the only bit in CANx_MCR not
affected by soft reset. See Section 28.4.8.2, “Module Disabled Mode,” for more information.
0 Enable the FlexCAN module.
1 Disable the FlexCAN module.

FRZ Freeze Enable. Specifies the FlexCAN behavior when the HALT bit in the CANx_MCR is set or when debug
mode is requested at MCU level. When FRZ is set, FlexCAN is enabled to enter freeze mode. Clearing this bit
causes FlexCAN to exit from freeze mode.
0 Not enabled to enter freeze mode.
1 Enabled to enter freeze mode.

FEN FIFO Enable. controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot be used
for normal reception and transmission because the corresponding memory region (0x80–0xFF) is used by the
FIFO engine. See Section 28.3.3, “Rx FIFO Structure,” and Section 28.4.6, “Rx FIFO,” for more information.
0 FIFO not enabled.
1 FIFO enabled.

HALT Halt FlexCAN. Assertion of this bit puts the FlexCAN module into freeze mode if FRZ is asserted. The CPU
clears it after initializing the message buffers and CANx_CTRL. If FRZ is set, no reception or transmission is
performed by FlexCAN before this bit is cleared. While in freeze mode, the CPU has write access to the
CANx_ECR, that is otherwise read-only. Freeze mode cannot be entered while FlexCAN is disabled. See
Section 28.4.8.1, “Freeze Mode,” for more information.
0 No freeze mode request.
1 Enters freeze mode if the FRZ bit is asserted.

NOT_RDY FlexCAN Not Ready. Indicates that FlexCAN is either disabled or in freeze mode. This flag is cleared once
FlexCAN has exited these modes.
0 FlexCAN module is in normal mode, listen-only mode, or loop-back mode.
1 FlexCAN module is either disabled or in freeze mode.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-13

SOFT_RST Soft Reset. When asserted, FlexCAN resets its internal state machines and some of the memory-mapped
registers. The following registers are affected by soft reset:
 • CANx_MCR (except the MDIS bit)
 • CANx_TIMER
 • CANx_ECR
 • CANx_ESR
 • CANx_IMASK1
 • CANx_IMASK2
 • CANx_IFLAG1
 • CANx_IFLAG2
Configuration registers that control the interface to the CAN bus are not affected by soft reset. The following
registers are unaffected:
 • CANx_CTRL
 • CANx_RXGMASK
 • CANx_RX14MASK
 • CANx_RX15MASK
 • All message buffers
The SOFT_RST bit can be asserted directly by the CPU when it writes to the CANx_MCR, but it is also asserted
when global soft reset is requested at MCU level. Because soft reset is synchronous and has to follow a
request/acknowledge procedure across clock domains, it may take some time to fully propagate its effect. The
SOFT_RST bit remains asserted while reset is pending, and is automatically negated when reset completes.
Therefore, software can poll this bit to know when the soft reset has completed.
0 No reset request.
1 Resets values in registers indicated above.

FRZ_ACK Freeze Mode Acknowledge. Indicates that FlexCAN is in freeze mode and its prescaler is stopped. The freeze
mode request cannot be granted until current transmission and reception processes have finished. Therefore the
software can poll the FRZ_ACK bit to know when FlexCAN has actually entered freeze mode. If freeze mode
request is negated, then this bit is negated once the FlexCAN prescaler is running again. If freeze mode is
requested while FlexCAN is disabled, then the FRZ_ACK bit is only set when the low-power mode is exited. See
Section 28.4.8.1, “Freeze Mode,” for more information.
0 FlexCAN not in freeze mode, prescaler running.
1 FlexCAN in freeze mode, prescaler stopped.

WRN_EN Warning Interrupt Enable. When set, this bit enables the generation of the TWRN_INT and RWRN_INT flags in
the error and status register. If WRN_EN is negated, the TWRN_INT and RWRN_INT flags is always 0,
independent of the values of the error counters, and no warning interrupt is ever generated.
1 TWRN_INT and RWRN_INT bits are set when the respective error counter transition from < 96 to 96.
0 TWRN_INT and RWRN_INT bits are 0, independent of the values in the error counters.

LPM_ACK Low-Power Mode Acknowledge. Indicates whether FlexCAN is disabled. This cannot be performed until all
current transmission and reception processes have finished, so the CPU can poll the LPM_ACK bit to know when
FlexCAN has actually been disabled. See Section 28.4.8.2, “Module Disabled Mode,” for more information.
0 FlexCAN not disabled.
1 FlexCAN is disabled.

SRX_DIS Self Reception Disable. This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this
bit is set, frames transmitted by the module are not stored in any MB, regardless if the MB is programmed with
an ID that matches the transmitted frame, and no interrupt flag or interrupt signal is generated due to the frame
reception.
0 Self reception enabled.
1 Self reception disabled.

Table 28-7. CANx_MCR Field Descriptions (continued)

Field Description

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-14 Freescale Semiconductor

28.3.4.2 Control Register (CANx_CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, loop back mode, listen only mode, bus off recovery
behavior, and interrupt enabling (bus-off, error, warning). It also determines the division factor for the
clock prescaler. Most of the fields in this register should only be changed while the module is disabled or

BCC Backwards Compatibility Configuration. Provided to support backwards compatibility with previous FlexCAN
versions. When this bit is negated, the following configuration is applied:
 • For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID masking per

MB, FlexCAN uses its previous masking scheme with CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK.

 • The reception queue feature is disabled. On receiving a message, if the first MB with a matching ID that is
found is still occupied by a previous unread message, FlexCAN does not look for another matching MB. It
overrides this MB with the new message and sets the CODE field to 0b0110 (overrun).

This bit is cleared on reset, allowing legacy software to work without modification.
0 Individual Rx masking and queue feature are disabled.
1 Individual Rx masking and queue feature are enabled.

LPRIO_EN Local Priority Enable. Provided for backwards compatibility reasons. It controls whether the local priority feature
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended ID concept,
the arbitration process is done based on the full 32-bit word, but the actual transmitted ID still has 11 bits for
standard frames and 29 bits for extended frames.
0 Local priority disabled.
1 Local priority enabled.

AEN Abort Enable. Provided for backwards compatibility reasons. When set, it enables the Tx abort feature. This
feature guarantees a safe procedure for aborting a pending transmission, so that no frame is sent in the CAN
bus without notification.
0 Abort disabled.
1 Abort enabled.

IDAM ID Acceptance Mode. Identifies the format of the elements of the Rx FIFO filter table. All elements of the table
are configured at the same time by this field (they are all the same format).

MAXMB Maximum Number Of Message Buffers. This 6-bit field defines the maximum number of message buffers of the
FlexCAN module. The reset value (0x0F) is equivalent to a 16 MB configuration. This field should be changed
only while the module is in freeze mode.

Note: MAXMB must be programmed with a value smaller or equal to the number of available message buffers,
otherwise FlexCAN can transmit and receive wrong messages.

Table 28-7. CANx_MCR Field Descriptions (continued)

Field Description

IDAM Format Explanation

00 A One full ID (standard or extended) per filter element.

01 B Two full standard IDs or two partial 14-bit extended IDs per filter element.

10 C Four partial 8-bit IDs (standard or extended) per filter element.

11 D All frames rejected.

Maximum MBs in use MAXMB 1+=

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-15

in freeze mode. Exceptions are the BOFF_MSK, ERR_MSK, TWRN_MSK, RWRN_MSK, and
BOFF_REC bits, which can be accessed at any time.

Offset: Base + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17v 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BOFF
_MSK

ERR_
MSK

CLK_
SRC

LPB
TWRN
_ MSK

RWRN
_MSK

0 0
SMP

BOFF
_REC

TSYN LBUF LOM PROPSEG
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-6. Control Register (CANx_CTRL)

Table 28-8. CANx_CTRL Field Descriptions

Bits Description

PRESDIV Prescaler Division Factor. Defines the ratio between the CPI clock frequency and the serial clock (SCK)
frequency. The SCK period defines the time quantum of the CAN protocol. For the reset value, the SCK
frequency is equal to the CPI clock frequency. The maximum value of this register is 0xFF, that gives a minimum
SCK frequency equal to the CPI clock frequency divided by 256. For more information, refer to Section 28.4.7.4,
“Protocol Timing.”

RJW Resync Jump Width. Defines the maximum number of time quanta that a bit time can be changed by one
re-synchronization. One time quantum is equal to one SCK period. The valid programmable values are 0–3.

PSEG Phase Segment 1. Defines the length of phase buffer segment 1 in the bit time. The valid programmable values
are 0–7.

PSEG2 Phase Segment 2. Defines the length of phase buffer segment 2 in the bit time. The valid programmable values
are 1–7.

BOFF_MSK Bus Off Mask. Provides a mask for the bus off interrupt.
0 Bus off interrupt disabled.
1 Bus off interrupt enabled.

ERR_MSK Error Mask. Provides a mask for the error interrupt.
0 Error interrupt disabled.
1 Error interrupt enabled.

S-clock frequency CPI clock frequency
PRESDIV 1+

---=

Resync Jump Width RJW + 1=

Phase Buffer Segment 1 PSEG1 + 1 Time Quanta=

Phase Buffer Segment 2 PSEG2 + 1 Time Quanta=

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-16 Freescale Semiconductor

CLK_SRC CAN Engine Clock Source. Selects the clock source to the CAN Protocol Interface (CPI) to be either the system
clock (driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the prescaler to
generate the serial clock (SCK). In order to guarantee reliable operation, this bit should only be changed while
the module is disabled.
0 The CAN engine clock source is the oscillator clock.
1 The CAN engine clock source is the system clock.

LPB Loop Back. Configures FlexCAN to operate in loop-back mode. See Section 28.4.8, “Modes of Operation
Details,” for information about this operating mode.
0 Loop back disabled.
1 Loop back enabled.

TWRN_MSK This bit provides a mask for the Tx Warning Interrupt associated with the TWRN_INT flag in the ESR register.
This bit has no effect if the WRN_EN bit in CANx_MCR is negated and it is read as zero when WRN_EN is
negated.
1 Tx Warning Interrupt enabled.
0 Tx Warning Interrupt disabled.

RWRN_MSK This bit provides a mask for the RX Warning Interrupt associated with the RWRN_INT flag in the Error and
Status Register. This bit has no effect if the WRN_EN bit in CANx_MCR is negated and it is read as zero when
WRN_EN is negated.
1 Rx Warning Interrupt enabled.
0 Rx Warning Interrupt disabled.

SMP Sampling Mode. Defines the sampling mode of each bit in the receiving messages (Rx).
0 Just one sample is used to determine the Rx bit value.
1 Three samples are used to determine the value of the received bit: the regular one (sample point) and 2

preceding samples, a majority rule is used.

BOFF_REC Bus Off Recovery Mode. Defines how FlexCAN recovers from bus off state. If this bit is negated, automatic
recovering from bus off state occurs according to the CAN Specification 2.0B. If this bit is set, automatic
recovering from bus off is disabled and the module remains in bus off state until the bit is negated by the user.
If the negation occurs before 128 sequences of 11 recessive bits are detected on the CAN bus, then bus off
recovery happens as if the BOFF_REC bit had never been asserted. If the negation occurs after 128 sequences
of 11 recessive bits occurred, then FlexCAN re-synchronizes to the bus by waiting for 11 recessive bits before
joining the bus. After negation, the BOFF_REC bit can be re-asserted again during bus off, but it is only effective
the next time the module enters bus off. If BOFF_REC was negated when the module entered bus off, asserting
it during bus off is not effective for the current bus off recovery.
0 Automatic recovering from bus off state enabled, according to CAN Spec 2.0 part B.
1 Automatic recovering from bus off state disabled.

TSYN Timer Sync Mode. Enables a mechanism that resets the free-running timer each time a message is received
in message buffer 0. This feature provides means to synchronize multiple FlexCAN stations with a special
SYNC message (that is, global network time). If the FEN bit in CANx_MCR is set (FIFO enabled), MB8 is used
for timer synchronization instead of MB0.
0 Timer sync feature disabled.
1 Timer sync feature enabled.
Note: There is a possibility of 4–5 ticks count skew between the different FlexCAN stations that would operate

in this mode.

LBUF Lowest Buffer Transmitted First. This bit defines the ordering mechanism for message buffer
transmission.When asserted, the LPRIO_EN bit does not affect the priority arbitration.
0 Buffer with highest priority is transmitted first.
1 Lowest number buffer is transmitted first.

Table 28-8. CANx_CTRL Field Descriptions

Bits Description

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-17

28.3.4.3 Free-Running Timer (CANx_TIMER)

This register represents a 16-bit free-running counter that can be read and written by the CPU. The timer
starts from 0x0000 after Reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During Freeze Mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the Time Stamp entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. All this is transparent to the
user, except for the fact that the data takes some time to be actually written to the register. If desired,
software can poll the register to discover when the data was actually written.

28.3.4.4 Rx Mask Registers

By negating the CANx_MCR[BCC] bit, the CANx_RXGMASK, CANx_RX14MASK, and
CANx_RX15MASK registers are used as acceptance masks for received frame IDs. Three masks are

LOM Listen-Only Mode. Configures FlexCAN to operate in listen-only mode. In this mode, the FlexCAN module
receives messages without giving any acknowledge. It is not possible to transmit any message in this mode.
0 FlexCAN module is in normal active operation, listen only mode is deactivated.
1 FlexCAN module is in listen only mode operation.

PROPSEG Propagation Segment. Defines the length of the propagation segment in the bit time. The valid programmable
values are 0–7.

Offset: Base + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-7. Free-Running Timer (CANx_TIMER)

Table 28-8. CANx_CTRL Field Descriptions

Bits Description

Propagation Segment Time (PROPSEG + 1) Time Quanta=

Time Quantum = one S clock period

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-18 Freescale Semiconductor

defined: a global mask, used for Rx buffers 0–13 and 16–63, and two extra masks dedicated for buffers 14
and 15. The meaning of each mask bit is the following:

• Mask bit = 0: the corresponding incoming ID bit is “don’t care.”

• Mask bit = 1: the corresponding ID bit is checked against the incoming ID bit, to see if a match
exists.

Note that these masks are used both for standard and extended ID formats. The value of mask registers
should not be changed while in normal operation. Locked frames which had matched a MB through a mask
may be transferred into the MB (upon release) but may no longer match. Table 28-9 shows some examples
of ID masking for standard and extended message buffers.

28.3.4.4.1 Rx Global Mask (CANx_RXGMASK)

This register is provided for legacy support. On MPC5668x, setting the BCC bit in CANx_MCR causes
the CANx_RXGMASK Register to have no effect on the module operation.

CANx_RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have
individual mask registers. When the FEN bit in CANx_MCR is set (FIFO enabled), the

Table 28-9. Mask Examples for Standard/Extended Message Buffers

Base ID
ID28.................ID18

IDE
Extended ID

ID17......................................ID0
Match

MB2 ID 1 1 1 1 1 1 1 1 0 0 0 0

MB3 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB4 ID 0 0 0 0 0 0 1 1 1 1 1 0

MB5 ID 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MB14 ID 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Rx Global Mask 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Rx Msg in1

1 Match for Extended Format (MB3).

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 3

Rx Msg in2

2 Match for Standard Format. (MB2).

1 1 1 1 1 1 1 1 0 0 1 0 2

Rx Msg in3

3 Mismatch for MB3 because of ID0.

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

Rx Msg in4

4 Mismatch for MB2 because of ID28.

0 1 1 1 1 1 1 1 0 0 0 0

Rx Msg in5

5 Mismatch for MB3 because of ID28, Match for MB14 (uses CANx_RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

Rx 14 Mask 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Rx Msg in6

6 Mismatch for MB14 because of ID27 (uses CANx_RX14MASK).

1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Rx Msg in7

7 Match for MB14 (uses CANx_RX14MASK).

0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 14

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-19

CANx_RXGMASK also applies to all elements of the ID filter table, except elements 6-7, which have
individual masks.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

28.3.4.4.2 Rx 14 Mask (CANx_RX14MASK)

This register is provided for legacy support. On MPC5668x, setting the BCC bit in CANx_MCR causes
the CANx_RX14MASK register to have no effect on the module operation.

CANx_RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the FEN
bit in CANx_MCR is set (FIFO enabled), the CANx_RX14MASK also applies to element 6 of the ID filter
table. This register has the same structure as the Rx Global Mask Register. It must be programmed while
the module is in freeze mode, and must not be modified when the module is transmitting or receiving
frames.

• Address Offset: 0x14

• Reset Value: 0xFFFF_FFFF

28.3.4.4.3 Rx 15 Mask (CANx_RX15MASK)

This register is provided for legacy support. On MPC5668x, setting the BCC bit in CANx_MCR causes
the CANx_RX15MASK register to have no effect on the module operation.

When the BCC bit is negated, CANx_RX15MASK is used as acceptance mask for the Identifier in
Message Buffer 15. When the FEN bit in CANx_MCR is set (FIFO enabled), the CANx_RX14MASK also
applies to element 7 of the ID filter table. This register has the same structure as the Rx Global Mask
Register. It must be programmed while the module is in freeze mode, and must not be modified when the
module is transmitting or receiving frames.

Offset: Base + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 28-8. Rx Mask Register (CANx_RXGMASK)

Table 28-10. CANx_RXGMASK Field Descriptions

Field Description

MIn Mask Bits. For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO, the
mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
0 the corresponding bit in the filter is “don’t care.”
1 The corresponding bit in the filter is checked against the one received.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-20 Freescale Semiconductor

• Address Offset: 0x18

• Reset Value: 0xFFFF_FFFF

28.3.4.5 Error Counter Register (CANx_ECR)

CANx_ECR has two 8-bit fields reflecting the value of two FlexCAN error counters: the transmit error
counter (TXECTR field) and receive error counter (RXECTR field). The rules for increasing and
decreasing these counters are described in the CAN protocol and are completely implemented in the
FlexCAN module. Both counters are read-only except in freeze mode, where they can be written by the
CPU.

Writing to the CANx_ECR while in freeze mode is an indirect operation. The data is first written to an
auxiliary register and then an internal request/acknowledge procedure across clock domains is executed.
All this is transparent to the user, except for the fact that the data takes some time to be actually written to
the register. If desired, software can poll the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol: transmitting, for example, an error active
or error passive flag, delaying its transmission start time (error passive), and avoiding any influence on the
bus when in the bus off state. The following are the basic rules for FlexCAN bus state transitions:

• If the value of TXECTR or RXECTR increases to be greater than or equal to 128, the FLT_CONF
field in the CANx_ESR is updated to reflect the error passive state.

• If the FlexCAN state is error passive, and either TXECTR or RXECTR decrements to a value less
than or equal to 127 while the other already satisfies this condition, the FLT_CONF field in the
CANx_ESR is updated to reflect the ‘error active’ state.

• If the value of TXECTR increases to be greater than 255, the FLT_CONF field in the CANx_ESR
is updated to reflect the bus off state, and an interrupt may be issued. The value of TXECTR is then
reset to 0.

• If FlexCAN is in the bus off state, then TXECTR is cascaded together with another internal counter
to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence, TXECTR is reset
to 0 and counts in a manner where the internal counter counts 11 such bits and then wraps around
while incrementing the TXECTR. When TXECTR reaches the value of 128, the FLT_CONF field
in CANx_ESR is updated to be error active, and both error counters are reset to 0. At any instance
of dominant bit following a stream of less than 11 consecutive recessive bits, the internal counter
resets itself to 0 without affecting the TXECTR value.

• If during system start-up, only one node is operating, then its TXECTR increases in each message
it is trying to transmit, as a result of acknowledge errors (indicated by the ACK_ERR bit in
CANx_ESR). After the transition to the error passive state, the TXECTR is not incremented by
acknowledge errors. Therefore, the device never goes to the bus off state.

If the RXECTR increases to a value greater than 127, it is not incremented further, even if more errors are
detected while being a receiver. At the next successful message reception, the counter is set to a value
between 119 and 127 to resume the error active state.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-21

28.3.4.6 Error and Status Register (CANx_ESR)

This register reflects various error conditions, some general status of the device, and it is the source of four
interrupts to the CPU. The reported error conditions (bits 16–21) are those that occurred since the last time
the CPU read this register. The CPU read action clears bits 16–23. Bits 22–28 are status bits.

Most bits in this register are read-only, except TWRN_INT, RWRN_INT, BOFF_INT, and ERR_INT,
which are interrupt flags that can be cleared by writing 1 to them (writing 0 has no effect).

NOTE
A read clears BIT1_ERR, BIT0_ERR, ACK_ERR, CRC_ERR, FRM_ERR,
and STF_ERR, therefore these bits must not be read speculatively.

Offset: Base + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RXECTR TXECTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-9. Error Counter Register (CANx_ECR)

Offset: Base + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWRN_
INT

RWRN_
INT

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BIT1_
ERR

BIT0_
ERR

ACK_
ERR

CRC_
ERR

FRM_
ERR

STF_
ERR

TX_
WRN

RX_
WRN

IDL
E

TXR
X

FLT_CONF 0
BOFF_

INT
ERR_
INT

0

W r1c r1c r1c r1c r1c r1c r1c r1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-10. Error and Status Register (CANx_ESR)

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-22 Freescale Semiconductor

Table 28-11. CANx_ESR Field Descriptions

Field Description

TWRN_INT If the WRN_EN bit in CANx_MCR is set, the TWRN_INT bit is set when the TXWRN flag transitions from 0 to
1, meaning that the Tx error counter reached 96. If the corresponding mask bit in the CANx_CTRL register
(TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing to 1. Writing 0 has no
effect.
0 No such occurrence.
1 TXECTR 96.

RWRN_INT If the WRN_EN bit in CANx_MCR is set, the RWRN_INT bit is set when the RXWRN flag transitions from 0 to
1, meaning that the Rx error counter reached 96. If the corresponding mask bit in the CANx_CTRL register
(RWRNMSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing to 1. Writing 0 has no
effect.
0 No such occurrence.
1 RXECTR 96.

BIT1_ERR Bit 1 Error. Indicates when an inconsistency occurs between the transmitted and the received message in a bit.
A read clears BIT1_ERR.
0 No such occurrence.
1 At least one bit sent as recessive is received as dominant.This bit is not set by a transmitter in case of

arbitration field or ACK slot, or in case of a node sending a passive error flag that detects dominant bits.
Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node sending a

passive error flag that detects dominant bits.

BIT0_ERR Bit 0 Error. Indicates when an inconsistency occurs between the transmitted and the received message in a bit.
A read clears BIT0_ERR.
0 No such occurrence.
1 At least one bit sent as dominant is received as recessive.

ACK_ERR Acknowledge Error. Indicates that an acknowledge error has been detected by the transmitter node; that is, a
dominant bit has not been detected during the ACK SLOT. A read clears ACK_ERR.
0 No such occurrence.
1 An ACK error occurred since last read of this register.

CRC_ERR Cyclic Redundancy Code Error. Indicates that a CRC error has been detected by the receiver node; that is, the
calculated CRC is different from the received. A read clears CRC_ERR.
0 No such occurrence.
1 A CRC error occurred since last read of this register.

FRM_ERR Form Error. Indicates that a form error has been detected by the receiver node; that is, a fixed-form bit field
contains at least one illegal bit. A read clears FRM_ERR.
0 No such occurrence.
1 A form error occurred since last read of this register.

STF_ERR Stuffing Error. Indicates that a stuffing error has been detected. A read clears STF_ERR.
0 No such occurrence.
1 A stuffing error occurred since last read of this register.

TX_WRN Tx Error Counter. This status bit indicates that repetitive errors are occurring during message transmission. A
read clears TX_WRN.
0 No such occurrence.
1 TXECTR 96.

RX_WRN Rx Error Counter. This status bit indicates when repetitive errors are occurring during messages reception. A
read clears RX_WRN.
0 No such occurrence.
1 RXECTR 96.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-23

28.3.4.7 Interrupt Masks 2 Register (CANx_IMASK2)

This register allows any number of a range of 32 message buffer interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (that is, when the corresponding CANx_IFLAG2 bit
is set).

IDLE CAN Bus IDLE State. This status bit indicates when CAN bus is in IDLE state.
0 No such occurrence.
1 CAN bus is now IDLE.

TXRX Current FlexCAN Status (Transmitting/Receiving). This status bit indicates if FlexCAN is transmitting or
receiving a message when the CAN bus is not in IDLE state. This bit has no meaning when IDLE is asserted.
0 FlexCAN is receiving a message (IDLE = 0).
1 FlexCAN is transmitting a message (IDLE = 0).

FLT_CONF Fault Confinement State. This status bit indicates the confinement state of the FlexCAN module. If the LOM bit
in the CANx_CTRL is asserted, the FLT_CONF field indicates “Error Passive”. Since the CANx_CTRL is not
affected by soft reset, the FLT_
CONF field is not affected by soft reset if the LOM bit is asserted.
00 Error active.
01 Error passive.
1n Bus off.

BOFF_INT Bus Off Interrupt. This status bit is set when FlexCAN is in the bus off state. If CANx_CTRL[BOFF_MSK] is set,
an interrupt is generated to the CPU. This bit is cleared by writing it to 1. Writing 0 has no effect.
0 No such occurrence.
1 FlexCAN module is in “Bus Off” state.

ERR_INT Error Interrupt. This status bit indicates that at least one of the error bits (bits 16–21) is set. If
CANx_CTRL[ERR_MSK] is set, an interrupt is generated to the CPU. This bit is cleared by writing it to 1.
Writing 0 has no effect.
0 No such occurrence.
1 Indicates setting of any error bit in the CANx_ESR.

Offset: Base + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-11. Interrupt Masks 2 Register (CANx_IMASK2)

Table 28-11. CANx_ESR Field Descriptions (continued)

Field Description

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-24 Freescale Semiconductor

28.3.4.8 Interrupt Masks 1 Register (CANx_IMASK1)

This register allows to enable or disable any number of a range of 32 message buffer interrupts. It contains
one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an interrupt after
a successful transmission or reception (i.e., when the corresponding CANx_IFLAG1 bit is set).

28.3.4.9 Interrupt Flags 2 Register (CANx_IFLAG2)

This register defines the flags for 32 message buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding CANx_IFLAG2 bit. If the corresponding
CANx_IMASK2 bit is set, an interrupt is generated. The interrupt flag must be cleared by writing it to ‘1’.
Writing ‘0’ has no effect.

When the AEN bit in the CANx_MCR is set (abort enabled), while the CANx_IFLAG2 bit is set for a MB
configured as Tx, the writing access done by CPU into the corresponding MB is blocked.

Table 28-12. CANx_IMASK2 Field Descriptions

Field Description

BUFnM Message Buffer n Mask. Enables or disables the respective FlexCAN message buffer (MB63 to MB32) Interrupt.
0 The corresponding buffer Interrupt is disabled.
1 The corresponding buffer Interrupt is enabled.
Note: Setting or clearing a bit in the CANx_IMASK2 register can assert or negate an interrupt request,

respectively.

Offset: Base + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-12. Interrupt Masks 1 Register (CANx_IMASK1)

Table 28-13. CANx_IMASK1 Field Descriptions

Field Description

BUFnM Message Buffer n Mask. Enables or disables the respective FlexCAN message buffer (MB31 to MB0) Interrupt.
0 The corresponding buffer Interrupt is disabled.
1 The corresponding buffer Interrupt is enabled.
Note: Setting or clearing a bit in the CANx_IMASK1 register can assert or negate an interrupt request,

respectively.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-25

28.3.4.10 Interrupt Flags 1 Register (CANx_IFLAG1)

This register defines the flags for 32 message buffer interrupts and FIFO interrupts. It contains one
interrupt flag bit per buffer. Each successful transmission or reception sets the corresponding
CANx_IFLAG1 bit. If the corresponding CANx_IMASK1 bit is set, an interrupt is generated. The
interrupt flag must be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in the CANx_MCR register is set (Abort enabled), while the CANx_IFLAG1 bit is set
for a MB configured as Tx, the writing access done by CPU into the corresponding MB is blocked.

When the FEN bit in the CANx_MCR register is set (FIFO enabled), the function of the eight least
significant interrupt flags (BUF7I – BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and
BUF5I indicate operating conditions of the FIFO, while BUF4I to BUF0I are not used.

Offset: Base + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-13. Interrupt Flag 2 Register (CANx_IFLAG2)

Table 28-14. CANx_IFLAG2 Field Descriptions

Field Description

BUFnI Message Buffer n Interrupt. Each bit represents the respective FlexCAN message buffer (MB63–MB32) interrupt.
Write 1 to clear.
0 No such occurrence.
1 The corresponding buffer has successfully completed transmission or reception.

Offset: Base + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31I

BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25I

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15I

BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
9I

BUF
8I

BUF
7I

BUF
6I

BUF
5I

BUF
4I

BUF
3I

BUF
2I

BUF
1I

BUF
0IW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-14. Interrupt Flag 1 Register (CANx_IFLAG1)

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-26 Freescale Semiconductor

28.3.4.11 Rx Individual Mask Registers (CANx_RXIMR0 – CANx_RXIMR63)

These registers are used as acceptance masks for ID filtering in Rx MBs and the FIFO. If the FIFO is not
enabled, one mask register is provided for each available message buffer, providing ID masking capability
on a per message buffer basis. When the FIFO is enabled (FEN bit in CANx_MCR is set), the first eight
mask registers apply to the eight elements of the FIFO filter table (on a one-to-one correspondence), while
the rest of the registers apply to the regular MBs, starting from MB8.

The individual Rx mask registers are implemented in RAM, so they are not affected by reset and must be
explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while the
module is in freeze mode. Out of freeze mode, write accesses are blocked and read accesses return all
zeros. Furthermore, if the BCC bit in the register is negated, any read or write operation to these registers
results in access error.

Table 28-15. CANx_IFLAG1 Field Descriptions

Field Description

BUF31I–
BUF8I

Message Buffer n Interrupt. Each bit represents the respective FlexCAN message buffer (MB31 to MB8) interrupt.
Write 1 to clear.
0 No such occurrence.
1 The corresponding buffer has successfully completed transmission or reception.

BUF7I Buffer MB7 Interrupt or “FIFO Overflow”
If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this flag indicates an overflow
condition in the FIFO (frame lost because FIFO is full).
0 No such occurrence.
1 MB7 completed transmission/reception or FIFO overflow.

BUF6I Buffer MB6 Interrupt or “FIFO Warning”
If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this flag indicates that 5 out
of 6 buffers of the FIFO are already occupied (FIFO almost full).
0 No such occurrence.
1 MB6 completed transmission/reception or FIFO almost full.

BUF5I Buffer MB5 Interrupt or “Frames Available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this flag indicates that at least
one frame is available to be read from the FIFO.
0 No such occurrence.
1 MB5 completed transmission/reception or frames available in the FIFO.

BUF4I–
BUF0I

Buffer MBn Interrupt or “Reserved”
If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is enabled, these flags are
not used and must be considered as reserved locations.
0 No such occurrence.
1 Corresponding MB completed transmission/reception.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-27

28.4 Functional Description
The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for transmitting and
receiving CAN frames. The mailbox system is composed by a set of as many as 64 message buffers (MB)
that store configuration and control data, time stamp, message ID and data (see Section 28.3.2, “Message
Buffer Structure”). The memory corresponding to the first eight MBs can be configured to support a FIFO
reception scheme with a powerful ID filtering mechanism, capable of checking incoming frames against
a table of IDs (as many as eight extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its
own individual mask register. Simultaneous reception through FIFO and mailbox is supported. For
mailbox reception, a matching algorithm makes it possible to store received frames only into MBs that
have the same ID programmed on its ID field. A masking scheme makes it possible to match the ID
programmed on the MB with a range of IDs on received CAN frames. For transmission, an arbitration
algorithm decides the prioritization of MBs to be transmitted based on the message ID (optionally
augmented by 3 local priority bits) or the MB ordering.

Before proceeding with the functional description, an important concept must be explained. A message
buffer is said to be “active” at a given time if it can participate in the matching and arbitration algorithms
that are happening at that time. An Rx MB with a ‘0000’ code is inactive (refer to Table 28-4). Similarly,
a Tx MB with a ‘1000’ or ‘1001’ code is also inactive (refer to Table 28-5). An MB not programmed with
‘0000’, ‘1000’ or ‘1001’ is temporarily deactivated (does not participate in the current arbitration or
matching run) when the CPU writes to the C/S field of that MB (see Section 28.4.5.2, “Message Buffer
Deactivation”).

Offset: Base + 0880 - 0x0975 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-15. Rx Individual Mask Registers (CANx_RXIMR0 – CANx_RXIMR63)

Table 28-16. CANx_RXIMR0 – CANx_RXIMR63 Field Descriptions

Field Description

MI31–M0 Mask Bits
For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO, the mask bits affect
all bits programmed in the filter table (ID, IDE, RTR).
0 The corresponding bit in the filter is “don’t care.”
1 The corresponding bit in the filter is checked against the one received.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-28 Freescale Semiconductor

28.4.1 Transmit Process

If the MB is active (transmission pending), write an ABORT code (‘1001’) to the code field of the control
and status word to request an abortion of the transmission, then read back the code field and the IFLAG1/2
register to check if the transmission was aborted (see Section 28.4.5.1, “Transmission Abort Mechanism”).
If backwards compatibility is desired (AEN in CANx_MCR negated), just write ‘1000’ to the Code field
to inactivate the MB but then the pending frame may be transmitted without notification (see
Section 28.4.5.2, “Message Buffer Deactivation”).

• Write the ID word.

• Write the data bytes.

• Write the length, control and code fields of the control and status word to activate the MB.

Once the MB is activated in the fourth step, it participates into the arbitration process and eventually is
transmitted according to its priority. At the end of the successful transmission, the value of the free-running
timer is written into the time stamp field, the code field in the control and status word is updated, a status
flag is set in the interrupt flag register and an interrupt is generated if allowed by the corresponding
interrupt mask register bit. The new code field after transmission depends on the code that was used to
activate the MB in step four (see Table 28-4 and Table 28-5 in Section 28.3.2, “Message Buffer
Structure”). When the abort feature is enabled (AEN in CANx_MCR is asserted), after the Interrupt Flag
is asserted for a MB configured as transmit buffer, the MB is blocked, therefore the CPU is not able to
update it until the interrupt flag be negated by CPU. It means that the CPU must clear the corresponding
CANx_IFLAG before starting to prepare this MB for a new transmission or reception.

28.4.2 Arbitration Process

This process selects which MB is transmitted next. All MBs programmed as transmit buffers are scanned
to find the lowest ID1 or the lowest MB number or the highest priority, depending on the LBUF and
LPRIO_EN bits on the control register. The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished

• When MBM is in idle or bus off state and the CPU writes to the C/S word of any MB

• Upon leaving freeze mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is transmitted first.
When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is transmitted first but. If LBUF
is negated and LPRIO_EN is asserted, the PRIO bits augment the ID used during the arbitration process.
With this extended ID concept, arbitration is done based on the full 32-bit ID and the PRIO bits define
which MB should be transmitted first, therefore MBs with PRIO = 000 have higher priority. If two or more
MBs have the same priority, the regular ID determines the priority of transmission. If two or more MBs
have the same priority (3 extra bits) and the same regular ID, the lowest MB is transmitted first.

1. If LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed inside the ID at the same
positions they are transmitted in the CAN frame.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-29

Once the highest priority MB is selected, it is transferred to a temporary storage space called serial
message buffer (SMB), which has the same structure as a normal MB but is not user accessible. This
operation is called “move-out” and after it is done, write access to the corresponding MB is blocked (if the
AEN bit in CANx_MCR is asserted). The write access is released in the following events:

• After the MB is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the
CAN protocol rules. FlexCAN transmits as many as 8 data bytes, even if the data length code (DLC) value
is bigger.

28.4.3 Receive Process

The CPU prepares a message buffer for frame reception by executing the following steps:

1. If the MB has a pending transmission, write an ABORT code (‘1001’) to the code field of the
control and status word to request an abortion of the transmission, then read back the code field
and the CANx_IFLAG1/2 register to check if the transmission was aborted (see Section 28.4.5.1,
“Transmission Abort Mechanism”). If backwards compatibility is desired (AEN in CANx_MCR
negated), just write ‘1000’ to the code field to inactivate the MB, but then the pending frame may
be transmitted without notification (see Section 28.4.5.2, “Message Buffer Deactivation”). If the
MB already programmed as a receiver, just write ‘0000’ to the code field of the control and status
word to keep the MB inactive.

2. Write the ID word.

3. Write ‘0100’ to the code field of the control and status word to activate the MB.

After the MB is activated in the third step, it can receive frames that match the programmed ID. At the end
of a successful reception, the MB is updated by the MBM as follows:

1. The value of the free-running timer is written into the time stamp field.

2. The received ID, data (8 bytes at most), and length fields are stored.

3. The code field in the control and status word is updated (see Table 28-4 and Table 28-5 in
Section 28.3.2, “Message Buffer Structure”).

4. A status flag is set in the interrupt flag register and an interrupt is generated if allowed by the
corresponding interrupt mask register bit.

Upon receiving the MB interrupt, the CPU should service the received frame using the following
procedure:

1. Read the control and status word (mandatory – activates an internal lock for this buffer).

2. Read the ID field (optional – needed only if a mask was used).

3. Read the data field.

4. Read the free-running timer (optional – releases the internal lock).

Upon reading the control and status word, if the BUSY bit is set in the code field, then the CPU should
defer the access to the MB until this bit is negated. Reading the free-running timer is not mandatory. If not

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-30 Freescale Semiconductor

executed, the MB remains locked, unless the CPU reads the C/S word of another MB. Only a single MB
is locked at a time. The only mandatory CPU read operation is the one on the control and status word to
assure data coherency (see Section 28.4.5, “Data Coherence”).

The CPU should synchronize to frame reception by the status flag bit for the specific MB in one of the
CANx_IFLAG registers and not by the code field of that MB. Polling the code field does not work because
after a frame is received and the CPU services the MB (by reading the C/S word followed by unlocking
the MB), the code field does not return to EMPTY. It remains FULL, as explained in Table 28-4. If the
CPU tries to work around this behavior by writing to the C/S word to force an EMPTY code after reading
the MB, the MB is actually deactivated from any currently ongoing matching process. As a result, a newly
received frame matching the ID of that MB may be lost. In summary: never do polling by reading directly
the C/S word of the MBs. Instead, read the CANx_IFLAG registers.

The received ID field is always stored in the matching MB, thus the contents of the ID field in an MB may
change if the match was due to masking. Note also that FlexCAN does receive frames transmitted by itself
if there exists an Rx matching MB, provided the SRX_DIS bit in the CANx_MCR is not asserted. If
SRX_DIS is asserted, FlexCAN does not store frames transmitted by itself in any MB, even if it contains
a matching MB, and no interrupt flag or interrupt signal is generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the FIFO during
freeze mode (see Section 28.4.6, “Rx FIFO”). Upon receiving the frames available interrupt from FIFO,
the CPU should service the received frame using the following procedure:

1. Read the control and status word (optional – needed only if a mask was used for IDE and RTR bits).

2. Read the ID field (optional – needed only if a mask was used).

3. Read the data field.

4. Clear the frames available interrupt (mandatory – release the buffer and allow the CPU to read the
next FIFO entry).

28.4.4 Matching Process

The matching process is an algorithm executed by the MBM that scans the MB memory looking for Rx
MBs programmed with the same ID as the one received from the CAN bus. If the FIFO is enabled, the
8-entry ID table from FIFO is scanned first and then, if a match is not found within the FIFO table, the
other MBs are scanned. In the event that the FIFO is full, the matching algorithm always looks for a
matching MB outside the FIFO region.

When the frame is received, it is temporarily stored in a hidden auxiliary MB called serial message buffer
(SMB). The matching process takes place during the CRC field of the received frame. If a matching ID is
found in the FIFO table or in one of the regular MBs, the contents of the SMB are transferred to the FIFO
or to the matched MB during the 6th bit of the end-of-frame field of the CAN protocol. This operation is
called move-in. If any protocol error (CRC, ACK, etc.) is detected, than the move-in operation does not
happen.

For the regular mailbox MBs, an MB is said to be free to receive a new frame if the following conditions
are satisfied:

• The MB is not locked (see Section 28.4.5.3, “Message Buffer Lock Mechanism”)

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-31

• The code field is either EMPTY or else it is FULL or OVERRUN but the CPU has already serviced
the MB (read the C/S word and then unlocked the MB)

If the first MB with a matching ID is not free to receive the new frame, then the matching algorithm keeps
looking for another free MB until it finds one. If it cannot find one that is free, then it overwrites the last
matching MB (unless it is locked) and sets the code field to OVERRUN (refer to Table 28-4 and
Table 28-5). If the last matching MB is locked, then the new message remains in the SMB, waiting for the
MB to be unlocked (see Section 28.4.5.3, “Message Buffer Lock Mechanism”).

Suppose, for example, that the FIFO is disabled and there are two MBs with the same ID, and FlexCAN
starts receiving messages with that ID. Let us say that these MBs are the second and the fifth in the array.
When the first message arrives, the matching algorithm finds the first match in MB number 2. The code
of this MB is EMPTY, so the message is stored there. When the second message arrives, the matching
algorithm finds MB number 2 again, but it is not free to receive, so it keeps looking and finds MB number
5 and stores the message there. If yet another message with the same ID arrives, the matching algorithm
finds out that there are no matching MBs that are free to receive, so it decides to overwrite the last matched
MB, which is number 5. In doing so, it sets the code field of the MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a reception queue
(in addition to the full featured FIFO) to allow more time for the CPU to service the MBs. By programming
more than one MB with the same ID, received messages are queued into the MBs. The CPU can examine
the time stamp field of the MBs to determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in previous versions of
the FlexCAN module. When the BCC bit in CANx_MCR is negated, the matching algorithm stops at the
first MB with a matching ID that it founds, whether this MB is free or not. As a result, the message
queueing feature does not work if the BCC bit is negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports individual
masking per MB. Please refer to Section 28.3.4.11, “Rx Individual Mask Registers (CANx_RXIMR0 –
CANx_RXIMR63).” During the matching algorithm, if a mask bit is asserted, then the corresponding ID
bit is compared. If the mask bit is negated, the corresponding ID bit is “don’t care”. Please note that the
individual mask registers are implemented in RAM, so they are not initialized out of reset. Also, they can
only be programmed if the BCC bit is asserted and while the module is in freeze mode.

FlexCAN also supports an alternate masking scheme with only three mask registers (RGXMASK,
CANx_RX14MASK, and CANx_RX15MASK) for backwards compatibility. This alternate masking
scheme is enabled when the BCC bit in the CANx_MCR Register is negated.

28.4.5 Data Coherence

To maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described in
Section 28.4.1, “Transmit Process,” and Section 28.4.3, “Receive Process.” Any form of CPU accessing
an MB structure within FlexCAN other than those specified may cause FlexCAN to behave in an
unpredictable way.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-32 Freescale Semiconductor

28.4.5.1 Transmission Abort Mechanism

The abort mechanism provides a safe way to request the abortion of a pending transmission. A feedback
mechanism is provided to inform the CPU if the transmission was aborted or if the frame could not be
aborted and was transmitted instead. To maintain backwards compatibility, the abort mechanism must be
explicitly enabled by asserting the AEN bit in the CANx_MCR.

In order to abort a transmission, the CPU must write a specific abort code (1001) to the code field of the
control and status word. When the abort mechanism is enabled, the active MBs configured as transmission
must be aborted first and then they may be updated. If the abort code is written to an MB that is currently
being transmitted, or to an MB that was already loaded into the SMB for transmission, the write operation
is blocked and the MB is not deactivated, but the abort request is captured and kept pending until one of
the following conditions are satisfied:

• The module loses the bus arbitration

• There is an error during the transmission

• The module is put into freeze mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is set in the
CANx_IFLAG register and an interrupt to the CPU is generated (if enabled). The abort request is
automatically cleared when the interrupt flag is set. In the other hand, if one of the above conditions is
reached, the frame is not transmitted, therefore the abort code is written into the code field, the interrupt
flag is set in the CANx_IFLAG and an interrupt is (optionally) generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write operation is not
blocked, therefore the MB is updated and no interrupt flag is set. In this way the CPU needs to read the
abort code to make sure the active MB was deactivated. Although the AEN bit is asserted and the CPU
wrote the abort code, in this case the MB is deactivated and not aborted, because the transmission did not
start yet. One MB is only aborted when the abort request is captured and kept pending until one of the
previous conditions are satisfied.

The abort procedure can be summarized as follows:

• CPU writes 1001 into the code field of the C/S word

• CPU reads the CODE field and compares it to the value that was written

• If the CODE field that was read is different from the value that was written, the CPU must read the
corresponding CANx_IFLAG to check if the frame was transmitted or it is being currently
transmitted. If the corresponding CANx_IFLAG is set, the frame was transmitted. If the
corresponding CANx_IFLAG is reset, the CPU must wait for it to be set, and then the CPU must
read the CODE field to check if the MB was aborted (CODE = 1001) or it was transmitted
(CODE = 1000).

28.4.5.2 Message Buffer Deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the control and
status word of active MBs out of freeze mode. Any CPU write access to the control and status word of an
MB causes that MB to be excluded from the transmit or receive processes during the current matching or
arbitration round. The deactivation is temporary, affecting only for the current match/arbitration round.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-33

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data of that MB may no longer be coherent, therefore deactivation of that MB is done.

Even with the coherence mechanism described above, writing to the control and status word of active MBs
when not in freeze mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN keeps looking for another matching MB within the ones it has not
scanned yet. If it cannot find one, then the message is lost. Suppose, for example, that two MBs
have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame is lost even if the second matching MB was
free to receive.

• If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then FlexCAN
looks for another winner within the MBs that it has not scanned yet. Therefore, it may transmit an
MB with ID that may not be the lowest at the time because a lower ID might be present in one of
the MBs that it had already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted but no interrupt is issued and the code field is not
updated. In order to avoid this situation, the abort procedures described in Section 28.4.5.1,
“Transmission Abort Mechanism,” should be used.

28.4.5.3 Message Buffer Lock Mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When
the CPU reads the Control and Status word of an “active not empty” Rx MB, FlexCAN assumes that the
CPU wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.
The lock is released when the CPU reads the free-running timer (global unlock operation), or when it reads
the Control and Status word of another MB. The MB locking is done to prevent a new frame to be written
into the MB while the CPU is reading it.

NOTE
The locking mechanism only applies to Rx MBs which have a code different
than INACTIVE (‘0000’) or EMPTY1 (‘0100’). Also, Tx MBs cannot be
locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the array are
programmed with the same ID, and FlexCAN has already received and stored messages into these two
MBs. Suppose now that the CPU decides to read MB number 5 and at the same time another message with
the same ID is arriving. When the CPU reads the control and status word of MB number 5, this MB is
locked. The new message arrives and the matching algorithm finds out that there are no free to receive
MBs, so it decides to override MB number 5. However, this MB is locked, so the new message cannot be
written there. It remains in the SMB waiting for the MB to be unlocked, and not written to the MB until

1. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior is honored when the
BCC bit is negated.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-34 Freescale Semiconductor

then. If the MB is not unlocked in time and yet another new message with the same ID arrives, then the
new message overwrites the one on the SMB and there is no indication of lost messages either in the code
field of the MB or in the error and status register.

While the message is being moved-in from the SMB to the MB, the BUSY bit on the code field is asserted.
If the CPU reads the control and status word and finds out that the BUSY bit is set, it should defer accessing
the MB until the BUSY bit is negated.

NOTE
If the BUSY bit is asserted or if the MB is empty, then reading the control
and status word does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its lock status
is negated and the MB is marked as invalid for the current matching round. Any pending message on the
SMB is not transferred anymore to the MB.

28.4.6 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the CANx_MCR. The reset value of this bit
is zero to maintain software backwards compatibility with previous versions of the module that did not
have the FIFO feature. When the FIFO is enabled, the memory region normally occupied by the first 8
MBs (0x80-0xFF) is now reserved for use of the FIFO engine (see Section 28.3.3, “Rx FIFO Structure”).
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the
received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer
structure at the beginning of the memory.

The FIFO can store as many as six frames pending service by the CPU. An interrupt is sent to the CPU
when new frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame
(accessing an MB in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers
the FIFO engine to replace the MB in 0x80 with the next frame in the queue, and then issue another
interrupt to the CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW
interrupt is issued to the CPU and subsequent frames are not accepted until the CPU creates space in the
FIFO by reading one or more frames. A warning interrupt is also generated when 4 frames are accumulated
in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of 8
32-bit registers that can be configured to one of the following formats (see also Section 28.3.3, “Rx FIFO
Structure”):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE
A chosen format is applied to all eight registers of the filter table. It is not
possible to mix formats within the table.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-35

The eight elements of the filter table are individually affected by the first eight individual mask registers
(CANx_RXIMR0 – CANx_RXIMR7), allowing very powerful filtering criteria to be defined. The rest of
the RXIMR, starting from RXIM8, continue to affect the regular MBs, starting from MB8. If the BCC bit
is negated, then the FIFO filter table is affected by the legacy mask registers as follows: element 6 is
affected by CANx_RX14MASK, element 7 is affected by CANx_RX15MASK and the other elements (0
to 5) are affected by CANx_RXGMASK.

28.4.7 CAN Protocol Related Features

28.4.7.1 Remote Frames

A remote frame is a special kind of frame. The user can program a MB to be a request remote frame by
writing the MB as transmit with the RTR bit set to 1. After the remote request frame is transmitted
successfully, the MB becomes a receive message buffer, with the same ID as before.

When a remote request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the CODE field ‘1010’. If there is a matching ID, then this MB frame is transmitted.
Note that if the matching MB has the RTR bit set, then FlexCAN transmits a remote frame as a response.

A received remote request frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame should match.

In the case that a remote request frame was received and matched a MB, this message buffer immediately
enters the internal arbitration process, but is considered as normal Tx MB, with no higher priority. The data
length of this frame is independent of the DLC field in the remote frame that initiated its transmission.

If the Rx FIFO is enabled (bit FEN set in CANx_MCR), FlexCAN does not generate an automatic response
for remote request frames that match the FIFO filtering criteria. If the remote frame matches one of the
target IDs, it is stored in the FIFO and presented to the CPU. Note that for filtering formats A and B, it is
possible to select whether remote frames are accepted or not. For format C, remote frames are always
accepted (if they match the ID).

28.4.7.2 Overload Frames

FlexCAN transmits overload frames due to detection of these conditions on CAN bus:

• Detection of a dominant bit in the first/second bit of intermission

• Detection of a dominant bit at the 7th bit (last) of end of frame field (Rx frames)

• Detection of a dominant bit at the 8th bit (last) of error frame delimiter or overload frame delimiter

28.4.7.3 Time Stamp

The value of the free-running timer is sampled at the beginning of the identifier field on the CAN bus, and
is stored at the end of move in the TIME STAMP field, providing network behavior with respect to time.

Note that the free-running timer can be reset on a specific frame reception, enabling network time
synchronization. Refer to TSYN description in Section 28.3.4.2, “Control Register (CANx_CTRL).”

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-36 Freescale Semiconductor

28.4.7.4 Protocol Timing

The clock source to the CAN protocol interface (CPI) can be either the system clock or a direct feed from
the oscillator pin EXTAL. The clock source is selected by the CLK_SRC bit in the CANx_CTRL. The
clock is fed to the prescaler to generate the serial clock (SCK).

The FlexCAN module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The CANx_CTRL has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 28.3.4.2, “Control Register (CANx_CTRL).”

The PRESDIV field controls a prescaler that generates the serial clock (SCK), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by FlexCAN.

A bit time is subdivided into three segments1 (reference Figure 28-16 and Table 28-17):

• SYNCSEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.

• Time segment 1: This segment includes the propagation segment and the phase segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the
CANx_CTRL register so that their sum (plus 2) is in the range of 4 to 16 time quanta.

• Time segment 2: This segment represents the phase segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CANx_CTRL register (plus 1) to be 2 to 8 time
quanta long.

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the Bosch
CAN 2.0A/B protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler Value
--=

Bit Rate
fTq

Number of Time Quanta
---=

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-37

Figure 28-16. Segments within the Bit Time

Table 28-18 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an information
processing time (IPT) of 2, which is the value implemented in the FlexCAN
module.

Table 28-17. Time Segment Syntax

Syntax Description

SYNCSEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node in receive mode samples the bus at this point. If the three samples per bit
option is selected, then this point marks the position of the third sample.

Table 28-18. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Resynchronization

Jump Width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

SYNCSEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta

= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROPSEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-38 Freescale Semiconductor

28.4.7.5 Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, match, move in and move out processes
are executed during certain time windows inside the CAN frame, as shown in Figure 28-17. When doing
matching and arbitration, FlexCAN needs to scan the whole message buffer memory during the available
time slot. In order to have sufficient time to do that, the following restrictions must be observed:

• A valid CAN bit timing must be programmed, as indicated in Figure 28-17.

• The system clock frequency cannot be smaller than the oscillator clock frequency, i.e.,the PLL
cannot be programmed to divide down the oscillator clock.

• There must be a minimum ratio of 16 between the system clock frequency and the CAN bit rate.

Figure 28-17. Arbitration, Match and Move Time Windows

28.4.8 Modes of Operation Details

28.4.8.1 Freeze Mode

This mode is entered by asserting the HALT bit in the CANx_MCR or when the MCU is put into debug
mode. In both cases it is also necessary that the FRZ bit is asserted in the CANx_MCR. When freeze mode
is requested during transmission or reception, FlexCAN does the following:

• Waits to be in either intermission, passive error, bus off or idle state

• Waits for all internal activities like move in or move out to finish

• Ignores the Rx input pin and drives the Tx pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the CANx_ECR, which is read-only in other modes

• Sets the NOT_RDY and FRZ_ACK bits in CANx_MCR

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

Table 28-18. CAN Standard Compliant Bit Time Segment Settings (continued)

Time Segment 1 Time Segment 2
 Resynchronization

Jump Width

CRC (15) EOF (7) Intermi1

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

1 Intermi = Intermission

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-39

After requesting freeze mode, the user must wait for the FRZ_ACK bit to be asserted in CANx_MCR
before executing any other action, otherwise FlexCAN can operate in an unpredictable way. In freeze
mode, all memory mapped registers are accessible.

Exiting freeze mode is done in one of these ways:

• CPU negates the FRZ bit in the CANx_MCR

• The MCU exits debug mode and/or the HALT bit is negated

After it is out of freeze mode, FlexCAN tries to resynchronize to the CAN bus by waiting for
11 consecutive recessive bits.

28.4.8.2 Module Disabled Mode

This low-power mode is entered when the CANx_MCR[MDIS] bit is asserted. If the module is disabled
during freeze mode, it shuts down the clocks to the CPI and MBM sub-modules, sets the
CANx_MCR[LPM_ACK] bit, and negates the CANx_MCR[FRZ_ACK] bit. If the module is disabled
during transmission or reception, FlexCAN does the following:

• Waits to be in either idle or bus off state, or else waits for the third bit of intermission and then
checks it to be recessive

• Waits for all internal activities like move in or move out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Shuts down the clocks to the CPI and MBM sub-modules

• Sets the NOT_RDY and LPM_ACK bits in CANx_MCR

The bus interface unit continues to operate, enabling the CPU to access memory mapped registers except
the free-running timer, the CANx_ECR and the message buffers, which cannot be accessed when the
module is disabled. Exiting from this mode is done by negating the CANx_MCR[MDIS] bit, which
resumes the clocks and negates the CANx_MCR[LPM_ACK] bit.

28.4.9 Interrupts

The FlexCAN module interrupts are ORed together at the chip level as described in Chapter 9, “Interrupts
and Interrupt Controller (INTC).”

There is an interrupt source for each MB from MB0 to MB15. There is no distinction between Tx and Rx
interrupts for a particular buffer, under the assumption that the buffer is initialized for either transmission
or reception. Each of the buffers has assigned a flag bit in the CANx_IFLAG2 or CANx_IFLAG1 registers.
The bit is set when the corresponding buffer completes a successful transmission/reception and is cleared
when the CPU writes it to 1.

A combined interrupt for each of two MB groups, MB16–MB31 and MB32–MB63, is also generated by
an OR of all the interrupt sources from the associated MBs. This interrupt gets generated when any of the
MBs generates an interrupt. In this case the CPU must read the CANx_IFLAG2 and CANx_IFLAG1
registers to determine which MB caused the interrupt.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-40 Freescale Semiconductor

The other two interrupt sources (bus off/transmit warning/receive warning and error) generate interrupts
like the MB interrupt sources, and can be read from CANx_ESR. The bus off/transmit warning/receive
warning and error interrupt mask bits are located in the CANx_CTRL.

28.4.10 Bus Interface

The CPU access to FlexCAN registers are subject to the following rules:

• Read and write access to unimplemented or reserved address space results in access error. Any
access to unimplemented MB Rx individual mask register locations results in access error. Any
access to the Rx individual mask register space when the BCC bit in CANx_MCR is negated results
in access error.

• For a FlexCAN configuration that uses less than the total number of MBs and MAXMB is set
accordingly, the remaining MB and Rx mask register spaces can be used as general-purpose RAM
space. Note that the Rx individual mask registers can only be accessed in freeze mode, and this is
still true for unused space within this memory. Note also that reserved words within RAM cannot
be used. As an example, suppose FlexCAN is configured with 64 MBs and MAXMB is
programmed with zero. The maximum number of MBs in this case becomes one. The MB memory
starts at 0x0060, but the space from 0x0060 to 0x007F is reserved (for SMB usage), and the space
from 0x0080 to 0x008F is used by the one MB. This leaves us with the available space from
0x0090 to 0x047F. The available memory in the mask registers space would be from 0x0884 to
0x097F. Byte, word, and long word accesses are allowed to the unused MB space.

NOTE
Unused MB space must not be used as general purpose RAM while
FlexCAN is transmitting and receiving CAN frames.

28.5 Initialization and Application Information
This section provides instructions for initializing the FlexCAN module.

28.5.1 FlexCAN Initialization Sequence

The FlexCAN module can be reset in three ways:

• MCU-level hard reset, which resets all memory-mapped registers asynchronously

• MCU-level soft reset, which resets some of the memory-mapped registers synchronously (refer to
Table 28-7 to see what registers are affected by soft reset)

• SOFT_RST bit in CANx_MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The SOFT_RST bit remains
asserted while soft reset is pending, so software can poll this bit to know when the reset has completed.

After the module is enabled (CANx_MCR[MDIS] bit negated), FlexCAN must be put into freeze mode
before doing any configuration. In freeze mode, FlexCAN is un-synchronized to the CAN bus, the HALT
and FRZ bits in CANx_MCR are set, the internal state machines are disabled and the FRZ_ACK and

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 28-41

NOT_RDY bits in the CANx_MCR are set. The CNTX pin is in recessive state and FlexCAN does not
initiate frame transmission nor receives any frames from the CAN bus. Note that the message buffer
contents are not affected by reset, so they are not automatically initialized.

For any configuration change/initialization, it is required that FlexCAN is put into freeze mode (see
Section 28.4.8.1, “Freeze Mode”). The following is a generic initialization sequence applicable for the
FlexCAN module:

• Initialize the CANx_MCR

— Enable the individual filtering per MB and reception queue features by setting the BCC bit

— Enable the warning interrupts by setting the WRN_EN bit

— If required, disable frame self reception by setting the SRX_DIS bit

— Enable the FIFO by setting the FEN bit

— Enable the abort mechanism by setting the AEN bit

— Enable the local priority feature by setting the LPRIO_EN bit

• Initialize CANx_CTRL.

— Determine bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW.

— Determine the bit rate by programming the PRESDIV field.

— Determine internal arbitration mode (LBUF bit).

• Initialize message buffers.

— The control and status word of all message buffers must be initialized

— If FIFO was enabled, the 8-entry ID table must be initialized

— Other entries in each message buffer should be initialized as required

• Initialize the Rx individual mask registers

• Set required interrupt mask bits in the IMASK registers (for all MB interrupts), in CANx_CTRL
(for bus off and error interrupts) and in CANx_MCR for wake-up interrupt

• Negate the HALT bit in CANx_MCR

Starting with this last event, FlexCAN attempts to synchronize with the CAN bus.

Controller Area Network (FlexCAN)

MPC5668x Microcontroller Reference Manual, Rev. 4

28-42 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-1

Chapter 29
Deserial – Serial Peripheral Interface (DSPI)

29.1 Introduction
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for
communication between the MPC5668x and external devices. The DSPI supports pin-count reduction
through serialization and deserialization of eMIOS channels and memory-mapped registers. The channels
and register content are transmitted using a SPI-like protocol. There are four identical DSPI blocks:
DSPI_A, DSPI_B, DSPI_C, and DSPI_D.

The DSPIs have three configurations:

• Serial peripheral interface (SPI) configuration where the DSPI operates as a basic SPI or as a
queued SPI through the use of internal FIFOs.

• Deserial serial interface (DSI) configuration where the DSPI serializes the parallel input signals
and deserializes received data by placing it on the parallel output signals.

• Combined serial interface (CSI) configuration where the DSPI operates in both SPI and DSI
configurations interleaving DSI frames with SPI frames, giving priority to SPI frames.

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software. Figure 29-1 shows a DSPI with external queues in system RAM.

Figure 29-1. DSPI with Queues and DMA

System RAM

DSPI

DMA Controller

TX Queue

RX FIFOTX FIFO

Shift Register

Data

Data

Addr/Ctrl

RX Queue

Data Data

Addr/Ctrl

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-2 Freescale Semiconductor

29.1.1 Block Diagram

Figure 29-2 is a simplified block diagram of the DSPI that illustrates the functionality and interdependence
of major blocks.

Figure 29-2. DSPI Block Diagram

29.1.2 Features

The DSPI supports these SPI features:

• Full-duplex, three-wire synchronous transfers

• Master and slave mode

• Buffered transmit operation using the TX FIFO with depth of 4 entries

• Buffered receive operation using the RX FIFO with depth of 4 entries

• TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues

• Visibility into TX and RX FIFOs for ease of debugging

• Programmable transfer attributes on a per-frame basis:

CMD

DMA and interrupt control

TX FIFO RX FIFO

TX data RX data

16

16

Shift register SOUT

SPI

SPI and DSI baud rate,
delay and transfer

control

CSI
priority
logic

TXSS
DSI

32
Internal

32

SIN

SCK

PCS[0]/SS

PCS[4:1]

PCS[5]/PCSS

INTCeDMA

4

16

16

16

16

16

32

32

16

16

Parallel Inputs

Internal
Parallel Outputs

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-3

— Parameterized number of transfer attribute registers (from two to eight)

— Serial clock with programmable polarity and phase

— Various programmable delays

— Programmable serial frame size of 4 to 32 bits, expandable by software control

— Continuously held chip select capability

• Six peripheral chip selects, expandable to 32 with external demultiplexer

• Deglitching support for as many as 128 peripheral chip select with external demultiplexer

• DMA support for adding entries to TX FIFO and removing entries from RX FIFO:

— TX FIFO is not full (TFFF)

— RX FIFO is not empty (RFDF)

• Six Interrupt conditions:

— End of queue reached (EOQF)

— TX FIFO is not full (TFFF)

— Transfer of current frame complete (TCF)

— Attempt to transmit with an empty Transmit FIFO (TFUF)

— RX FIFO is not empty (RFDF)

— Frame received while Receive FIFO is full (RFOF)

• Modified SPI transfer formats for communication with slower peripheral devices

• Module disable mode supported via MDIS bits in the DSPI block

• Halt mode supported via HLT bits in the SIU block

The DSPI also supports pin reduction through serialization and deserialization.

• Two sources of serialized data:

— DSPI memory-mapped register

— Parallel Input signals

• Deserialized data is provided as Parallel Output signals and as bits in a memory-mapped register

• Transfer initiation conditions:

— Continuous

— Change in data

• Pin serialization/deserialization with interleaved SPI frames for control and diagnostics

• Continuous serial communications clock

• Enhanced DSI logic to implement a 32-bit Timed Serial Bus (TSB) configuration, supporting the
Micro Second Bus downstream frame format.

29.1.3 DSPI Configurations

The DSPI block has three distinct serial transmission configurations; SPI, DSI and CSI.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-4 Freescale Semiconductor

29.1.3.1 SPI Configuration

The SPI configuration allows the DSPI to send and receive serial data. This configuration allows the DSPI
to operate as a basic SPI block with the FIFOs providing support for external queue operation. Data to be
transmitted and data received reside in separate FIFOs. The FIFOs can be popped and pushed by host
software or by a DMA controller.

29.1.3.2 DSI Configuration

In the DSI configuration, the DSPI serializes as many as 16 parallel input signals or register bits. The DSPI
also deserializes the received data to parallel output signals or to a memory-mapped register. The data is
transferred using a SPI-like protocol.

Specifically in the TSB configuration, detailed on Section 29.4.10, “Timed Serial Bus (TSB),” the DSPI
serializes from 4 to 32 Parallel Input signals or register bits. The TSB downstream frame used to
communicate with a single slave is shown in Figure 29-39.

29.1.3.3 CSI Configuration

The CSI configuration is a combination of the SPI and DSI configurations. In this configuration, the DSPI
interleaves DSI data with SPI data. Interleaving is done on the frame boundaries. In this configuration, SPI
data transmission has higher priority than DSI data transmission.

29.1.4 Modes of Operation

The DSPI has five modes of operation that can be divided into two categories; block-specific modes such
as master, slave, and module disable modes; and MCU-specific modes like external halt and debug modes.

The block-specific modes are entered by host software writing to a register. The MCU-specific modes are
controlled by signals external to the DSPI. The MCU-specific modes are modes that the entire MCU may
enter, in parallel to the DSPI being in one of its block-specific modes.

29.1.4.1 Master Mode

Master mode allows the DSPI to initiate and control serial communication. In this mode, the SCK signal
and the PCS[x] signals are controlled by the DSPI and configured as outputs.

29.1.4.2 Slave Mode

Slave mode allows the DSPI to communicate with SPI/DSI bus masters. In this mode the DSPI responds
to externally controlled serial transfers. The DSPI cannot control serial transfers in slave mode. In this
mode, the SCK signal and the PCS[0]/SS signal are configured as inputs and provided by a bus master.

29.1.4.3 Module Disable Mode

Module disable mode is used for MCU power management. The clock to the non-memory mapped logic
in the DSPI can be stopped while in the module disable mode. Logic external to the DSPI is needed to fully
implement the module disable mode.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-5

29.1.4.4 Halt Mode

Halt mode is used for MCU power management and controlled by the individual HLT bits in the
SIU_HLT0 register. When a request is made to enter halt mode (assert HLT bit), the DSPI block
acknowledges the request and completes the transfer in progress. When the DSPI reaches the frame
boundary it signals that the system clocks to the DSPI block may be shut off.

29.1.4.5 Debug Mode

Debug mode is used for system development and debugging. If the device enters debug mode while the
FRZ bit in the DSPI_MCR is set, the DSPI stops all serial transfers. If the device enters debug mode while
the FRZ bit is negated, the DSPI behavior is unaffected and remains dictated by the block-specific mode
and configuration of the DSPI.

29.2 External Signal Description
The DSPI supports the following external signals:

Refer to Table 2-1 and Section 2.2, “Signal Properties Summary,” for detailed signal descriptions.

29.3 Memory Map and Registers
This section provides a detailed description of all DSPI registers.

29.3.1 Module Memory Map

The DSPI memory map is shown in Table 29-2 (the memory map is the same for each individual DSPI
module). The address of each register is given as an offset to the DSPI base address. Registers are listed
in address order, identified by complete name and mnemonic, and list the type of accesses allowed.

Table 29-1. External Signals

Name I/O Type
Function

Master Mode Slave Mode

PCS[0] / SS Output / Input Peripheral Chip Select 0 Slave Select

PCS[1] – PCS[4] Output Peripheral Chip Select 1–4 unused

PCS[5] / PCSS Output Peripheral Chip Select 5 / Peripheral
Chip Select Strobe

unused

SIN Input Serial Data In

SOUT Output Serial Data Out

SCK Output / Input Serial Clock (output) Serial Clock (input)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-6 Freescale Semiconductor

Table 29-2. DSPI Memory Map

Offset from
DSPI_BASE

DSPI_A = 0xFFF9_0000
DSPI_B = 0xFFF9_4000
DSPI_C = 0xC3F9_0000
DSPI_D = 0xC3F9_4000

Register Access Reset Value Section/Page

0x0000 DSPI_MCR—DSPI module configuration register R/W 0x0000_4001 29.3.2.1/29-7

0x0004 Reserved

0x0008 DSPI_TCR—DSPI transfer count register R/W 0x0000_0000 29.3.2.2/29-9

0x000C DSPI_CTAR0—DSPI clock and transfer attributes register 0 R/W 0x7800_0000 29.3.2.3/29-10

0x0010 DSPI_CTAR1—DSPI clock and transfer attributes register 1 R/W 0x7800_0000 29.3.2.3/29-10

0x0014 DSPI_CTAR2—DSPI clock and transfer attributes register 2 R/W 0x7800_0000 29.3.2.3/29-10

0x0018 DSPI_CTAR3—DSPI clock and transfer attributes register 3 R/W 0x7800_0000 29.3.2.3/29-10

0x001C DSPI_CTAR4—DSPI clock and transfer attributes register 4 R/W 0x7800_0000 29.3.2.3/29-10

0x0020 DSPI_CTAR5—DSPI clock and transfer attributes register 5 R/W 0x7800_0000 29.3.2.3/29-10

0x0024 DSPI_CTAR6—DSPI clock and transfer attributes register 6 R/W 0x7800_0000 29.3.2.3/29-10

0x0028 DSPI_CTAR7—DSPI clock and transfer attributes register 7 R/W 0x7800_0000 29.3.2.3/29-10

0x002C DSPI_SR—DSPI status register R 0x0000_0000 29.3.2.4/29-16

0x0030 DSPI_RSER—DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 29.3.2.5/29-18

FIFO Registers

0x0034 DSPI_PUSHR—DSPI push TX FIFO register R/W 0x0000_0000 29.3.2.6/29-19

0x0038 DSPI_POPR—DSPI pop RX FIFO register R 0x0000_0000 29.3.2.7/29-21

0x003C DSPI_TXFR0—DSPI transmit FIFO register 0 R 0x0000_0000 29.3.2.8/29-21

0x0040 DSPI_TXFR1—DSPI transmit FIFO register 1 R 0x0000_0000 29.3.2.8/29-21

0x0044 DSPI_TXFR2—DSPI transmit FIFO register 2 R 0x0000_0000 29.3.2.8/29-21

0x0048 DSPI_TXFR3—DSPI transmit FIFO register 3 R 0x0000_0000 29.3.2.8/29-21

0x004C–0x0078 Reserved

0x007C DSPI_RXFR0—DSPI receive FIFO register 0 R 0x0000_0000 29.3.2.9/29-22

0x0080 DSPI_RXFR1—DSPI receive FIFO register 1 R 0x0000_0000 29.3.2.9/29-22

0x0084 DSPI_RXFR2—DSPI receive FIFO register 2 R 0x0000_0000 29.3.2.9/29-22

0x0088 DSPI_RXFR3—DSPI receive FIFO register 3 R 0x0000_0000 29.3.2.9/29-22

0x008C–0x00B8 Reserved

DSI Registers

0x00BC DSPI_DSICR—DSPI DSI configuration register R/W 0x0000_0000 29.3.2.10/29-23

0x00C0 DSPI_SDR—DSPI DSI serialization data register R 0x0000_0000 29.3.2.11/29-24

0x00C4 DSPI_ASDR—DSPI DSI alternate serialization data
register

R/W 0x0000_0000 29.3.2.12/29-25

0x00C8 DSPI_COMPR—DSPI DSI transmit comparison register R 0x0000_0000 29.3.2.13/29-26

0x00CC DSPI_DDR—DSPI DSI deserialization data register R 0x0000_0000 29.3.2.14/29-26

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-7

29.3.2 Register Descriptions

This section lists the DSPI registers in address order and describes the registers and their bit fields.

29.3.2.1 DSPI Module Configuration Register (DSPI_MCR)

The DSPI_MCR contains bits that configure various attributes associated with DSPI operation. The HALT
and MDIS bits can be changed at any time but only takes effect on the next frame boundary. Only the
HALT and MDIS bits in the DSPI_MCR may be changed while the DSPI is in the Running state.

0x00D0 DSPI_DSICR1—DSPI DSI TSB configuration register 1 R/W 0x0000_0000 29.3.2.15/29-27

0x00D4–0x3FFF Reserved

Offset: DSPI_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MSTR

CONT_
SCKE

DCONF FRZ MTFE
PCS
SE

ROOE
0 0 PCS

IS5
PCS
IS4

PCS
IS3

PCS
IS2

PCS
IS1

PCS
IS0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
MDIS

DIS_
TXF

DIS_
RXF

CLR_
TXF

CLR_
RXF

SMPL_PT
0 0 0 0 0 0 0

HALT
W

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 29-3. DSPI Module Configuration Register (DSPI_MCR)

Table 29-3. DSPI_MCR Field Descriptions

Field Description

MSTR Master/Slave Mode Select. The MSTR bit configures the DSPI for either Master Mode or Slave Mode.
0 DSPI is in Slave Mode.
1 DSPI is in Master Mode.

CONT_SCKE Continuous SCK Enable. The CONT_SCKE bit enables the Serial Communication Clock (SCK) to run
continuously. See Section 29.4.9, “Continuous Serial Communications Clock,” for details.
0 Continuous SCK disabled.
1 Continuous SCK enabled.

Table 29-2. DSPI Memory Map (continued)

Offset from
DSPI_BASE

DSPI_A = 0xFFF9_0000
DSPI_B = 0xFFF9_4000
DSPI_C = 0xC3F9_0000
DSPI_D = 0xC3F9_4000

Register Access Reset Value Section/Page

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-8 Freescale Semiconductor

DCONF DSPI Configuration. The DCONF field selects between the three different configurations of the DSPI. The
values below list the DCONF values for the various configurations.

FRZ Freeze. The FRZ bit enables the DSPI transfers to be stopped on the next frame boundary when the device
enters Debug Mode.
0 Do not halt serial transfers.1Halt serial transfers.

MTFE Modified Timing Format Enable. The MTFE bit enables a modified transfer format to be used. See
Section 29.4.8.4, “Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1),” for more information.
0 Modified SPI transfer format disabled.
1 Modified SPI transfer format enabled.

PCSSE Peripheral Chip Select Strobe Enable. The PCSSE bit enables the PCS[5]/PCSS to operate as an PCS Strobe
output signal. See Section 29.4.7.5, “Peripheral Chip Select Strobe Enable (PCSS),” for more information.
0 PCS[5]/PCSS is used as the Peripheral Chip Select[5] signal.
1 PCS[5]/PCSS is used as an active-low PCS Strobe signal.

ROOE Receive FIFO Overflow Overwrite Enable. The ROOE bit enables an RX FIFO overflow condition to either
ignore the incoming serial data or to overwrite existing data. If the RX FIFO is full and new data is received,
the data from the transfer that generated the overflow is either ignored or shifted in to the shift register. If the
ROOE bit is asserted, the incoming data is shifted in to the shift register. If the ROOE bit is negated, the
incoming data is ignored. See Section 29.4.12.6, “Receive FIFO Overflow Interrupt Request,” for more
information.
0 Incoming data is ignored.
1 Incoming data is shifted in to the shift register.

PCSISn Peripheral Chip Select Inactive State. The PCSIS bit determines the inactive state of the PCS[x] signal.
0 The inactive state of PCS[x] is low.
1 The inactive state of PCS[x] is high.

MDIS Module Disable. The MDIS bit allows the clock to be stopped to the non-memory mapped logic in the DSPI
effectively putting the DSPI in a software controlled power-saving state. See Section 29.4.13, “Power Saving
Features,” for more information. The reset value of the MDIS bit is parameterized, with a default reset value of
‘1’.
0 Enable DSPI clocks.
1 Allow external logic to disable DSPI clocks.

DIS_TXF Disable Transmit FIFO. The DIS_TXF bit provides a mechanism to disable the TX FIFO. When the TX FIFO
is disabled, the transmit part of the DSPI operates as a simplified double-buffered SPI. See Section 29.4.3.3,
“FIFO Disable Operation,” for details.
0 TX FIFO is enabled.
1 TX FIFO is disabled.

Table 29-3. DSPI_MCR Field Descriptions (continued)

Field Description

DCONF DSPI Configuration

00 SPI

01 DSI

10 CSI

11 Reserved

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-9

29.3.2.2 DSPI Transfer Count Register (DSPI_TCR)

The DSPI_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management.

NOTE
The user must not write to the DSPI_TCR while the DSPI is running.

DIS_RXF Disable Receive FIFO. The DIS_RXF bit provides a mechanism to disable the RX FIFO. When the RX FIFO
is disabled, the receive part of the DSPI operates as a simplified double-buffered SPI. See Section 29.4.3.3,
“FIFO Disable Operation,” for details.
0 RX FIFO is enabled.
1 RX FIFO is disabled.

CLR_TXF Clear TX FIFO. CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX FIFO Counter.
The CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO Counter.
1 Clear the TX FIFO Counter.

CLR_RXF Clear RX FIFO. CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the RX Counter. The
CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter.
1 Clear the RX FIFO Counter.

SMPL_PT SMPL_PT — Sample Point. SMPL_PT allows the host software to select when the DSPI Master samples SIN
in Modified Transfer Format. Figure 29-31 shows where the master can sample the SIN pin. The table below
lists the various delayed sample points.

HALT Halt. The HALT bit provides a mechanism by software to start and stop DSPI transfers. See Section 29.4.2,
“Start and Stop of DSPI Transfers,” for details on the operation of this bit.
0 Start transfers.
1 Stop transfers.

Table 29-3. DSPI_MCR Field Descriptions (continued)

Field Description

SMPL_PT
Number of system clock cycles between

odd-numbered edge of SCKn and sampling of SINn.

00 0

01 1

10 2

11 Reserved

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-10 Freescale Semiconductor

29.3.2.3 DSPI Clock and Transfer Attributes Registers 0–7 (DSPI_CTARn)

The DSPI_CTARn registers are used to define different transfer attribute configurations. SPI and DSI
transfers select one of the DSPI_CTARn registers from which to get their transfer attributes. The user must
not write to the DSPI_CTARn registers while the DSPI is in the running state.

In master mode, the DSPI_CTARn registers define combinations of transfer attributes such as frame size,
clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the
bitfields in the DSPI_CTAR0 and DSPI_CTAR1 registers are used to set the slave transfer attributes. See
the individual bit descriptions for details on which bits are used in slave modes.

When the DSPI is configured as a SPI master, the CTAS field in the command portion of the TX FIFO
entry selects which DSPI_CTARn register is used. When the DSPI is configured as a SPI bus slave, the
DSPI_CTAR0 register is used.

When the DSPI is configured as a DSI master, the DSICTAS field in the DSPI DSI Configuration Register
(DSPI_DSICR) selects which DSPI_CTARn register is used. For more information on the DSPI_DSICR,
see Section 29.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR).” When the DSPI is configured
as a DSI bus slave, the DSPI_CTAR1 register is used.

In CSI configuration, the transfer attributes are selected based on whether the current frame is SPI data or
DSI data. SPI transfers in CSI configuration follow the protocol described for SPI configuration, and DSI
transfers in CSI configuration follow the protocol described for DSI configuration. CSI configuration is
only valid in conjunction with master mode. See Section 29.4.5, “Combined Serial Interface (CSI)
Configuration,” for more details.

Offset: DSPI_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPI_TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-4. DSPI Transfer Count Register (DSPI_TCR)

Table 29-4. DSPI_TCR Field Descriptions

Field Description

SPI_TCNT SPI Transfer Counter. SPI_TCNT is used to keep track of the number of SPI transfers made. The SPI_TCNT field
counts the number of SPI transfers the DSPI makes. The SPI_TCNT field is incremented every time the last bit of
a SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that value. SPI_TCNT is reset to
0 at the beginning of the frame when the CTCNT field is set in the executing SPI command. The transfer counter
wraps around; i.e., incrementing the counter past 65,535 (0xFFFF) resets the counter to 0.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-11

In continuous clock mode, only tDT is supported for TSB. However, in TSB noncontinuous clock mode,
both the PDT and DT delays are valid.

.

Offset: DSPI_BASE + 0x000C (DSPI_CTAR0)
0x0010 (DSPI_CTAR1)
0x0014 (DSPI_CTAR2)
0x0018 (DSPI_CTAR3)

0x001C (DSPI_CTAR4)
0x0020 (DSPI_CTAR5)
0x0024 (DSPI_CTAR6)
0x0028 (DSPI_CTAR7)

Access: User
read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ CPOL CPHA

LSB
FE

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-5. DSPI Clock and Transfer Attributes Registers 0–7 (DSPI_CTARn)

Table 29-5. DSPI_CTARn Field Description

Field Description

DBR Double Baud Rate. The DBR bit doubles the effective baud rate of the Serial Communications Clock (SCK). This
field is only used in master mode. It effectively halves the baud rate division ratio supporting faster frequencies
and odd division ratios for the serial communications clock (SCK). When the DBR bit is set, the duty cycle of the
SCK depends on the value in the baud rate prescaler and the clock phase bit as listed in Table 29-6. See the
BR[0:3] field description for details on how to compute the baud rate. If the overall baud rate is divide by two or
divide by three of the system clock then neither the continuous SCK enable or the modified timing format enable
bits should be set.
0 The baud rate is computed normally with a 50/50 duty cycle.
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler.

FMSZ Frame Size. The FMSZ field selects the number of bits transferred per frame. The FMSZ field is used in Master
Mode and Slave Mode. Table 29-7 lists the frame size encodings.
When operating in TSB confirmation, detailed on Section 29.4.10, “Timed Serial Bus (TSB),” the FMSZ defines
the point with in the 32-bit (maximum length) frame where control of the CS switches from the DSPI_DSICR to
the DSPI_DSICR1 register. The cross over point must range between 4 bits and 16 bits and is encoded per
Table 29-7. The remaining frame after the cross over point, regardless of how many bits are remaining, is
controlled by the DSPI_DSICR1 register.

CPOL Clock Polarity. The CPOL bit selects the inactive state of the Serial Communications Clock (SCK). This bit is used
in both Master and Slave Mode. For successful communication between serial devices, the devices must have
identical clock polarities. When the Continuous Selection Format is selected, switching between clock polarities
without stopping the DSPI can cause errors in the transfer due to the peripheral device interpreting the switch of
clock polarity as a valid clock edge.
0 The inactive state value of SCK is low.
1 The inactive state value of SCK is high.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-12 Freescale Semiconductor

CPHA Clock Phase. The CPHA bit selects which edge of SCK causes data to change and which edge causes data to
be captured. This bit is used in both master and slave mode. For successful communication between serial
devices, the devices must have identical clock phase settings. Continuous SCK is only supported for
CPHA = 1.

0 Data is captured on the leading edge of SCK and changed on the following edge.
1 Data is changed on the leading edge of SCK and captured on the following edge.

LSBFE LSB First. The LSBFE bit selects if the LSB or MSB of the frame is transferred first. This bit is only used in master
mode. When operating in TSB configuration, this bit should be always 1.
0 Data is transferred MSB first.
1 Data is transferred LSB first.

PCSSCK PCS to SCK Delay Prescaler. The PCSSCK field selects the prescaler value for the delay between assertion of
PCS and the first edge of the SCK. This field is only used in master mode. The table below lists the prescaler
values. See the CSSCK[0:3] field description for details on how to compute the PCS to SCK delay.

PASC After SCK Delay Prescaler. The PASC field selects the prescaler value for the delay between the last edge of
SCK and the negation of PCS. This field is only used in master mode. The table below lists the prescaler values.
See the ASC[0:3] field description for details on how to compute the After SCK Delay.

PDT Delay after Transfer Prescaler. The PDT field selects the prescaler value for the delay between the negation of
the PCS signal at the end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field
is only used in master mode. The table below lists the prescaler values. See the DT[0:3] field description for
details on how to compute the delay after transfer.

Table 29-5. DSPI_CTARn Field Description (continued)

Field Description

PCSSCK PCS to SCK Delay Prescaler Value

00 1

01 3

10 5

11 7

PASC After SCK Delay Prescaler Value

00 1

01 3

10 5

11 7

PDT Delay after Transfer Prescaler Value

00 1

01 3

10 5

11 7

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-13

PBR Baud Rate Prescaler. The PBR field selects the prescaler value for the baud rate. This field is only used in master
mode. The baud rate is the frequency of the serial communications clock (SCK). The system clock is divided by
the prescaler value before the baud rate selection takes place. The baud rate prescaler values are listed in the
table below. See the BR[0:3] field description for details on how to compute the baud rate.

CSSCK PCS to SCK Delay Scaler. The CSSCK field selects the scaler value for the PCS to SCK delay. This field is only
used in master mode. The PCS to SCK delay is the delay between the assertion of PCS and the first edge of the
SCK. Table 29-8 list the scaler values.The PCS to SCK delay is a multiple of the system clock period and it is
computed according to the following equation:

Eqn. 29-1

See Section 29.4.7.2, “PCS to SCK Delay (tCSC),” for more details.

ASC After SCK Delay Scaler. The ASC field selects the scaler value for the after SCK delay. This field is only used in
master mode. The after SCK delay is the delay between the last edge of SCK and the negation of PCS.
Table 29-9 list the scaler values.The after SCK delay is a multiple of the system clock period, and it is computed
according to the following equation:

Eqn. 29-2

See Section 29.4.7.3, “After SCK Delay (tASC),” for more details.

DT Delay after Transfer Scaler. The DT field selects the delay after transfer scaler. This field is only used in master
mode. The delay after transfer is the time between the negation of the PCS signal at the end of a frame and the
assertion of PCS at the beginning of the next frame. Table 29-10 lists the scaler values. In the continuous serial
communications clock operation the DT value is fixed to one TSCK, except when the TSBC bit from DSPI_DSICR
register is enabling the TSB configuration. See detailed information onSection 29.4.10, “Timed Serial Bus (TSB).”
The delay after transfer is a multiple of the system clock period and it is computed according to the following
equation:

Eqn. 29-3

See Section 29.4.7.4, “Delay after Transfer (tDT),” for more details.

BR Baud Rate Scaler. The BR field selects the scaler value for the baud rate. This field is only used in master mode.
The pre-scaled system clock is divided by the baud rate scaler to generate the frequency of the SCK. Table 29-11
lists the baud rate scaler values.The baud rate is computed according to the following equation:

Eqn. 29-4

See Section 29.4.7.1, “Baud Rate Generator,” for more details.

Table 29-5. DSPI_CTARn Field Description (continued)

Field Description

PBR Baud Rate Prescaler Value

00 2

01 3

10 5

11 7

tCSC
1

fSYS
-------------- PCSSCK CSSCK=

tASC
1

fSYS
-------------- PASC ASC=

tDT
1

fSYS
-------------- PDT DT=

SCK baud rate
fSYS
PBR
-------------- 1 DBR+

BR
-----------------------=

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-14 Freescale Semiconductor

Table 29-6. DSPI SCK Duty Cycle

DBR CPHA PBR SCK Duty Cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 29-7. DSPI Transfer Frame Size

FMSZ Framesize FMSZ Framesize

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Table 29-8. DSPI PCS to SCK Delay Scaler

CSSCK
PCS to SCK Delay

Scaler Value
CSSCK

PCS to SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-15

Table 29-9. DSPI After SCK Delay Scaler

ASC
After SCK Delay

Scaler Value
ASC

After SCK Delay
Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 29-10. DSPI Delay after Transfer Scaler

DT
Delay after

Transfer Scaler
Value

DT
Delay after

Transfer Scaler
Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 29-11. DSPI Baud Rate Scaler

BR
Baud Rate Scaler

Value
BR

Baud Rate Scaler
Value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-16 Freescale Semiconductor

29.3.2.4 DSPI Status Register (DSPI_SR)

The DSPI_SR contains status and flag bits. The bits reflect the status of the DSPI and indicate the
occurrence of events that can generate interrupt or DMA requests. Software can clear a flag bit in the
DSPI_SR by writing a 1 to it. Writing a 0 to a flag bit has no effect.

NOTE
This register cannot be written in module disable mode, owing to the use of
power saving mechanisms.

NOTE
When generating DSPI bit frames in Continuous Peripheral Chip Select
mode (DSPIx_PUSHR[CONT=1]) and when changing DSPIx_CTARn bit
fields between frames, adhere to the following conditions, as they can
generate error if:

• If DSPIx_CTARn[CPHA]=1, DSPIx_MCR[CONT_SCKE = 0], and
DSPIx_CTARn[CPOL, CPHA, PCSSCK or PBR] change between
frames.

• If DSPIx_CTARn[CPHA]=0 or DSPIx_MCR[CONT_SCKE = 1] and
any bit field of DSPIx_CTARn changes between frames except
DSPIx_CTARn[PBR].

Offset: DSPI_BASE + 0x002C Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TCF

TXRXS 0
EOQF TFUF

0
TFFF

0 0 0 0 0
RFOF

0
RFDF

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-6. DSPI Status Register (DSPI_SR)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-17

Table 29-12. DSPI_SR Field Descriptions

Field Description

TCF Transfer Complete Flag. The TCF bit indicates that all bits in a frame have been shifted out. The TCF bit is set
at the end of the frame transfer. The TCF bit remains set until cleared by software.
0 Transfer not complete.
1 Transfer complete.

TXRXS TX & RX Status. The TXRXS bit reflects the status of the DSPI. See Section 29.4.2, “Start and Stop of DSPI
Transfers,” for information on how what causes this bit to be negated or asserted.
0 TX and RX operations are disabled (DSPI is in STOPPED state).
1 TX and RX operations are enabled (DSPI is in RUNNING state).

EOQF End of Queue Flag. The EOQF bit indicates that transmission in progress is the last entry in a queue. The
EOQF bit is set when TX FIFO entry has the EOQ bit set in the command halfword and the end of the transfer
is reached. The EOQF bit remains set until cleared by software. When the EOQF bit is set, the TXRXS bit is
automatically cleared.
0 EOQ is not set in the executing command.
1 EOQ bit is set in the executing SPI command.

TFUF Transmit FIFO Underflow Flag. The TFUF bit indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI blocks operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and a
transfer is initiated by an external SPI master. The TFUF bit remains set until cleared by software.
0 TX FIFO underflow has not occurred.
1 TX FIFO underflow has occurred.

TFFF Transmit FIFO Fill Flag. The TFFF bit provides a method for the DSPI to request more entries to be added to
the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be cleared by host software
or an acknowledgement from the DMA controller when the TX FIFO is full.
0 TX FIFO is full.
1 TX FIFO is not full.

RFOF Receive FIFO Overflow Flag. The RFOF bit indicates that an overflow condition in the RX FIFO has occurred.
The bit is set when the RX FIFO and shift register are full and a transfer is initiated. The bit remains set until
cleared by software.
0 RX FIFO overflow has not occurred.
1 RX FIFO overflow has occurred.

RFDF Receive FIFO Drain Flag. The RFDF bit provides a method for the DSPI to request that entries be removed
from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be cleared by host software
or an acknowledgement from the DMA controller when the RX FIFO is empty.
0 RX FIFO is empty.
1 RX FIFO is not empty.

TXCTR TX FIFO Counter. The TXCTR field indicates the number of valid entries in the TX FIFO. The TXCTR is
incremented every time the DSPI _PUSHR is written. The TXCTR is decremented every time a SPI command
is executed and the SPI data is transferred to the shift register.

TXNXTPTR Transmit Next Pointer. The TXNXTPTR field indicates which TX FIFO Entry is transmitted during the next
transfer. The TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO to the shift
register. See Section 29.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” for more details.

RXCTR RX FIFO Counter. The RXCTR field indicates the number of entries in the RX FIFO. The RXCTR is
decremented every time the DSPI _POPR is read. The RXCTR is incremented every time data is transferred
from the shift register to the RX FIFO.

POPNXTPTR Pop Next Pointer. The POPNXTPTR field contains a pointer to the RX FIFO entry that is returned when the
DSPI_POPR is read. The POPNXTPTR is updated when the DSPI_POPR is read. See Section 29.4.3.5,
“Receive First-In First-Out (RX FIFO) Buffering Mechanism,” for more details.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-18 Freescale Semiconductor

29.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

The DSPI_RSER serves two purposes. It enables flag bits in the DSPI_SR to generate DMA requests or
interrupt requests. The DSPI_RSER also selects the type of request to be generated. See the individual bit
descriptions for information on the types of requests the bits support. The user must not write to the
DSPI_RSER while the DSPI is in the running state.

Offset: DSPI_BASE + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF_
RE

0 0 EOQF
_RE

TFUF
_RE

0 TFFF
_RE

TFFF_
DIRS

0 0 0 0 RFOF
_RE

0 RFDF_
RE

RFDF_
DIRSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-7. DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

Table 29-13. DSPI_RSER Field Descriptions

Field Description

TCF_RE Transmission Complete Request Enable. The TCF_RE bit enables TCF flag in the DSPI_SR to generate an
interrupt request.
0 TCF interrupt requests are disabled.
1 TCF interrupt requests are enabled.

EOQF_ RE DSPI Finished Request Enable. The EOQF_RE bit enables the EOQF flag in the DSPI_SR to generate an
interrupt request.
0 EOQF interrupt requests are disabled.
1 EOQF interrupt requests are enabled.

TFUF_RE Transmit FIFO Underflow Request Enable. The TFUF_RE bit enables the TFUF flag in the DSPI_SR to generate
an interrupt request.
0 TFUF interrupt requests are disabled.
1 TFUF interrupt requests are enabled.

TFFF_RE Transmit FIFO Fill Request Enable. The TFFF_RE bit enables the TFFF flag in the DSPI_SR to generate a
request. The TFFF_DIRS bit selects between generating an interrupt request or a DMA requests.
0 TFFF interrupt requests or DMA requests are disabled.
1 TFFF interrupt requests or DMA requests are enabled.

TFFF_DIRS Transmit FIFO Fill DMA or Interrupt Request Select. The TFFF_DIRS bit selects between generating a DMA
request or an interrupt request. When the TFFF flag bit in the DSPI_SR is set, and the TFFF_RE bit in the
DSPI_RSER register is set, this bit selects between generating an interrupt request or a DMA request.
0 Interrupt request is generated.
1 DMA request is generated.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-19

29.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)

The DSPI_PUSHR provides a means to write to the TX FIFO. Data written to this register is transferred
to the TX FIFO. See Section 29.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” for
more information. Write accesses of 8 or 16 bits to the DSPI_PUSHR transfer 32 bits to the TX FIFO.

NOTE
Only the TXDATA field is used for DSPI slaves.

NOTE
When the DSPI module has more than one entry in the TX FIFO and only
one entry is written and that entry has the CONT bit set, and continuous
SCK clock selected the PCS levels may change between transfer complete
and write of the next data to the DSPI_PUSHR register. To ensure PCS
stability during data transmission in Continious Selection Format and
Continious SCK clock enabled make sure that the data with reset CONT bit
is written to DSPI_PUSHR register before previous data sub-frame (with
CONT bit set) transfer is over.

RFOF_RE Receive FIFO Overflow Request Enable. The RFOF_RE bit enables the RFOF flag in the DSPI_SR to generate
an interrupt requests.
0 RFOF interrupt requests are disabled.
1 RFOF interrupt requests are enabled.

RFDF_RE Receive FIFO Drain Request Enable. The RFDF_RE bit enables the RFDF flag in the DSPI_SR to generate a
request. The RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
0 RFDF interrupt requests or DMA requests are disabled.
1 RFDF interrupt requests or DMA requests are enabled.

RFDF_DIRS Receive FIFO Drain DMA or Interrupt Request Select. The RFDF_DIRS bit selects between generating a DMA
request or an interrupt request. When the RFDF flag bit in the DSPI_SR is set, and the RFDF_RE bit in the
DSPI_RSER register is set, the RFDF_DIRS bit selects between generating an interrupt request or a DMA
request.
0 Interrupt request is generated.
1 DMA request is generated.

Table 29-13. DSPI_RSER Field Descriptions (continued)

Field Description

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-20 Freescale Semiconductor

Offset: DSPI_BASE + 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CONT CTAS EOQ

CT
CNT

0 0 0 0
PCS5 PCS4 PCS3 PCS2 PCS1 PCS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-8. DSPI PUSH TX FIFO Register (DSPI_PUSHR)

Table 29-14. DSPI_PUSHR Field Descriptions

Field Description

CONT NOTEContinuous Peripheral Chip Select Enable. The CONT bit selects a Continuous Selection Format. The bit is

used in SPI master mode. The bit enables the selected PCS signals to remain asserted between transfers. See

Section 29.4.8.5, “Continuous Selection Format,” for more information.

To ensure PCS stability during data transmission in Continuous
Selection Format (and Continuous SCK clock enabled) make sure
that the data with reset CONT bit is written to DSPI_PUSHR
register before previous data sub-frame (with CONT bit set)
transfer is over.

0 Return Peripheral Chip Select signals to their inactive state between transfers.
1 Keep Peripheral Chip Select signals asserted between transfers.

CTAS Clock and Transfer Attributes Select. The CTAS field selects which DSPI_CTARn register is used to set the transfer
attributes for the associated SPI frame. The field is only used in SPI master mode. In SPI slave mode, DSPI_CTAR0
is used. The table below shows how the CTAS values map to the DSPI_CTARn registers.

EOQ End Of Queue. The EOQ bit provides a means for host software to signal to the DSPI that the current SPI transfer
is the last in a queue. At the end of the transfer the EOQF bit in the DSPI_SR is set.
0 The SPI data is not the last data to transfer.
1 The SPI data is the last data to transfer.

CTAS
Use Clock and Transfer

Attributes from
CTAS

Use Clock and Transfer
Attributes from

000 DSPI_CTAR0 100 DSPI_CTAR4

001 DSPI_CTAR1 101 DSPI_CTAR5

010 DSPI_CTAR2 110 DSPI_CTAR6

011 DSPI_CTAR3 111 DSPI_CTAR7

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-21

29.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)

The DSPI_POPR provides a means to read the RX FIFO. See Section 29.4.3.5, “Receive First-In First-Out
(RX FIFO) Buffering Mechanism,” for a description of the RX FIFO operations. 8- or 16-bit read accesses
to the DSPI_POPR read from the RX FIFO and update the counter and pointer.

29.3.2.8 DSPI Transmit FIFO Registers 0–15 (DSPI_TXFRn)

The DSPI_TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is
an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the DSPI_TXFRn
registers does not alter the state of the TX FIFO.

CTCNT Clear SPI_TCNT. The CTCNT provides a means for host software to clear the SPI transfer counter. The CTCNT bit
clears the SPI_TCNT field in the DSPI_TCR register. The SPI_TCNT field is cleared before transmission of the
current SPI frame begins.
0 Do not clear SPI_TCNT field in the DSPI_TCR.
1 Clear SPI_TCNT field in the DSPI_TCR.

PCSn Peripheral Chip Select 0–7. The PCS bits select which PCS signals are asserted for the transfer.
0 Negate the PCS[x] signal.
1 Assert the PCS[x] signal.

TXDATA Transmit Data. The TXDATA field holds SPI data to be transferred according to the associated SPI command.

Offset: DSPI_BASE + 0x0038 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-9. DSPI POP RX FIFO Register (DSPI_POPR)

Table 29-15. DSPI_POPR Field Descriptions

Field Description

RXDATA Received Data. The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the Pop Next Data
Pointer.

Table 29-14. DSPI_PUSHR Field Descriptions (continued)

Field Description

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-22 Freescale Semiconductor

29.3.2.9 DSPI Receive FIFO Registers 0–3 (DSPI_RXFRn)

The DSPI_RXFRn registers provide visibility into the RX FIFO for debugging purposes. Each register is
an entry in the RX FIFO. The DSPI_RXFR registers are read-only. Reading the DSPI_RXFRn registers
does not alter the state of the RX FIFO.

Offset: DSPI_BASE+ Access: Read

0x003C (DSPI_TXFR0)
0x0040 (DSPI_TXFR1)
0x0044 (DSPI_TXFR2)
0x0048 (DSPI_TXFR3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-10. DSPI Transmit FIFO Register 0–15 (DSPI_TXFRn)

Table 29-16. DSPI_TXFRn Field Descriptions

Field Description

TXCMD Transmit Command. The TXCMD field contains the command that sets the transfer attributes for the SPI data. See
Section 29.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR),” for details on the command field.

TXDATA Transmit Data. The TXDATA field contains the SPI data to be shifted out.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-23

29.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)

The DSI Configuration Register selects various attributes associated with DSI and CSI configurations. The
user must not write to the DSPI_DSICR while the DSPI is in the running state.

Offset: DSPI_BASE+ Access: Read

0x007C (DSPI_RXFR0)
0x0080 (DSPI_RXFR1)
0x0084 (DSPI_RXFR2)
0x0088 (DSPI_RXFR3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-11. DSPI Receive FIFO Registers 0–15 (DSPI_RXFRn)

Table 29-17. DSPI_RXFRn Field Description

Field Description

RXDATA Receive Data. The RXDATA field contains the received SPI data.

Offset: DSPI_BASE + 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
TSBC TXSS

0 0
CID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DCO
NT

DSICTAS
0 0 0 0 0 0 DPCS

5
DPCS

4
DPCS

3
DPCS

2
DPCS

1
DPCS

0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-12. DSPI DSI Configuration Register (DSPI_DSICR)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-24 Freescale Semiconductor

29.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)

The DSPI_SDR contains the signal states of the parallel input signals. The pin states of the parallel input
signals are latched into the DSPI_SDR on the rising edge of every system clock. The DSPI_SDR is
read-only. When the TXSS bit in the DSPI_DSICR is negated, the data in the DSPI_SDR is the source of
the serialized data.

Table 29-18. DSPI_DSICR Field Descriptions

Field Description

TSBC Timed Serial Bus Configuration. The TSBC bit enables the Timed Serial Bus configuration. This configuration
allows 32-bit data to be used. It also allows TDT to be programmable. See Section 29.4.10, “Timed Serial Bus
(TSB),” for detailed information.
0 Timed Serial Bus configuration disabled.
1 Timed Serial Bus configuration enabled.
If this bit is disabled, the DSPI_DSICR1 register should not be used.

TXSS Transmit Data Source Select. The TXSS bit selects the source of data to be serialized. The source can be either
data from host Software written to the DSPI DSI Alternate Serialization Data Register (DSPI_ASDR), or Parallel
Input pin states latched into the DSPI DSI Serialization Data Register (DSPI_SDR).
0 Source of serialized data is the DSPI_SDR.
1 Source of serialized data is the DSPI_ASDR.

CID Change In Data Transfer Enable. The CID bit enables a change in serialization data to initiate a transfer. The bit
is used in master mode in DSI and CSI configurations to control when to initiate transfers. When the CID bit is
set, serialization is initiated when the current DSI data differs from the previous DSI data shifted out. The
DSPI_COMPR register is compared with the DSPI_SDR or DSPI_ASDR register to detect a change in data.
Refer to Section 29.4.4.5, “DSI Transfer Initiation Control,” for more information. When the TSBC bit is set, the
CID bit is used for both DSICR and DSICR1 registers.

DCONT DSI Continuous Peripheral Chip Select Enable. Enables the PCSx signals to remain asserted between transfers.
The DCONT bit affects the PCS signals in DSI master mode only. See Section 29.4.8.5, “Continuous Selection
Format,” for details.
0 Return peripheral chip select signals to their inactive state after transfer is complete.
1 Keep peripheral chip select signals asserted after transfer is complete.

DSICTAS DSI Clock and Transfer Attributes Select. The DSICTAS field selects which DSPI_CTARn register is used to
provide transfer attributes in DSI configuration. The DSICTAS field is used in DSI master mode. In DSI slave
mode, the DSPI_CTAR1 is always selected. The table below shows how the DSICTAS values map to the
DSPI_CTARn registers. When TSB configuration is selected the DSICTAS bits control all 32 bits.

DPCSn DSI Peripheral Chip Select n. The DPCS bits select which PCS signals to assert during a DSI transfer. The DPCS
bits only control the assertions of the PCS signals in DSI master mode.When TSB configuration is enabled, the
DPCS bits only apply for the first 16 bits of the frame; the PCS used for any further bits is selected in the DSICR1
register.
0 Negate PCS[x].
1 Assert PCS[x].

DSICTAS
DSI Clock and Transfer
Attributes Controlled by

DSICTAS
DSI Clock and Transfer
Attributes Controlled by

000 DSPI_CTAR0 100 DSPI_CTAR4

001 DSPI_CTAR1 101 DSPI_CTAR5

010 DSPI_CTAR2 110 DSPI_CTAR6

011 DSPI_CTAR3 111 DSPI_CTAR7

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-25

The DSPI_SDR is a 32-bit register. The upper 16 bits are only used when TSB is enabled. For non-TSB
configurations, only the least 16 significant bits are used.

29.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

The DSPI_ASDR provides a means for host software to write the data to be serialized. When the TXSS
bit in the DSPI_DSICR is set, the data in the DSPI_ASDR is the source of the serialized data. Writes to
the DSPI_ASDR take effect on the next frame boundary.

The DSPI_ASDR is a 32-bit register. The upper 16 bits are only used when TSB is enabled. For non-TSB
configurations, only the least 16 significant bits are used.

Offset: DSPI_BASE + 00C0 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-13. DSPI DSI Serialization Data Register (DSPI_SDR)

Table 29-19. DSPI_SDR Field Description

Bits Description

SER_DATA Serialized Data. The SER_DATA field contains the signal states of the Parallel Input signals.

Offset: DSPI_BASE + 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-14. DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-26 Freescale Semiconductor

29.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)

The DSPI_COMPR holds a copy of the last transmitted DSI data. The DSPI_COMPR is read-only. DSI
data is transferred to this register as it is loaded into the TX Shift Register.

The DSPI_COMPR is a 32-bit register. The upper 16 bits are only used when TSB is enabled. For non-TSB
configurations only the least 16 significant bits are used.

29.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)

The DSPI_DDR register holds the signal states for the parallel output signals. The DSPI_DDR is read-only
and it is memory mapped so that host software can read the incoming DSI frames.

Table 29-20. DSPI_ASDR Field Description

Field Description

ASER_DATA Alternate Serialized Data. The ASER_DATA field holds the alternate data to be serialized.

Offset: DSPI_BASE + 0x00C8 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-15. DSPI DSI Transmit Comparison Register (DSPI_COMPR)

Table 29-21. DSPI_COMPR Field Description

Field Description

COMP_DATA Compare Data. The COMP_DATA field holds the last serialized DSI data.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-27

29.3.2.15 DSPI DSI Configuration Register 1 (DSPI_DSICR1)

The DSI Configuration Register 1 selects various attributes associated with TSB configuration. The user
must not write to the DSPI_DSICR1 while the DSPI is in the running state. If TSB configuration is not
used, the register value is ignored.

Offset: DSPI_BASE + 0x00CC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-16. DSPI Deserialization Data Register (DSPI_DDR)

Table 29-22. DSPI_DDR Field Description

Field Description

DESER_DATA Deserialized Data. When TSB configuration is set, the DESER_DATA field holds deserialized data that is
presented as signal states to the parallel output signals. If TSB is disabled, these bits are ignored, and only the
lower 16 bits are valid.

DESER_DATA Deserialized Data. The DESER_DATA field holds deserialized data that is presented as signal states to the
parallel output signals.

Address: DSPI_BASE + 0x00D0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
TSBCNT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

D
P

C
S

1_
5

D
P

C
S

1_
4

D
P

C
S

1_
3

D
P

C
S

1_
2

D
P

C
S

1_
1

D
P

C
S

1_
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-17. DSPI DSI Configuration Register 1 (DSPI_DSICR1)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-28 Freescale Semiconductor

29.4 Functional Description
The DSPI supports full-duplex, synchronous serial communications between the MCU and peripheral
devices. The DSPI can also be used to reduce the number of pins required for I/O by serializing and
deserializing as many as 16 parallel input/output signals from the eMIOS. All communications are through
an SPI-like protocol. Specifically in the TSB configuration, the DSPI can serialize as many as 32 parallel
input signals or 32 registered bits.

The DSPI has three configurations:

• SPI configuration, in which the DSPI operates as a basic SPI or a queued SPI.

• DSI configuration, in which the DSPI serializes and deserializes parallel input/output signals or
bits from memory-mapped registers.

• CSI configuration, in which the DSPI combines the functionality of the SPI and DSI
configurations.

The DCONF field in the DSPI_MCR register determines the DSPI configuration. See Table 29-3 for the
DSPI configuration values.

The DSPI_CTARn registers hold clock and transfer attributes. The manner in which a CTAR is selected
depends on the DSPI configuration (SPI, DSI, or CSI). The SPI configuration can select which CTAR to
use on a frame-by-frame basis by setting the CTAS field in the DSPI_PUSHR. The DSI configuration
statically selects which CTAR to use. In CSI configuration, priority logic determines if SPI data or DSI
data is transferred. The type of data transferred (whether DSI or SPI) dictates which CTAR the CSI
configuration uses. See Section 29.3.2.3, “DSPI Clock and Transfer Attributes Registers 0–7
(DSPI_CTARn),” for information on DSPI_CTARn fields.

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by the SOUT and
SIN signals to form a distributed 32-bit register. The master and slave use 16-bit shift registers regardless
the TSBC bit is asserted in the DSPI_DSICR register. When a data transfer operation is performed, data
is serially shifted a pre-determined number of bit positions. Because the registers are linked, data is
exchanged between the master and the slave; the data that was in the master’s shift register is now in the

Table 29-23. DSPI_SDR Field Descriptions

Field Description

TSBCNT Timed Serial Bus Operation Count. When TSBC is set, TSBCNT defines the length of the TSB frame. A number
between 4 and 32.
The TSBCNT field selects number of bits to be shifted out during a transfer in TSB operation. The field sets the
number of SCK cycles that the bus master generates to complete the transfer. The number of SCK cycles used
is one more than the value in the TSBCNT field. The number of SCK cycles defined by TSBCNT must be equal
to or greater than the frame size.

DPCS1_x DSI Peripheral Chip Select 0–7. These bits define the CS to assert for the second part of the DSI frame when
operating in TSB configuration with dual receiver. The DPCS1 bits select which of the PCS signals to assert
during the second DSI transfer. The DPCS1 bits only control the assertions of the PCS signals in DSI master
mode when in TSB configuration.
0 Negate PCS[x].
1 Assert PCS[x].

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-29

shift register of the Slave, and vice versa. At the end of a transfer, the TCF bit in the DSPI_SR is set to
indicate a completed transfer. Figure 29-18 illustrates how master and slave data is exchanged.

Figure 29-18. SPI and DSI Serial Protocol Overview

The DSPI has six peripheral chip select (PCS) signals that are used to select the slaves with which the DSPI
communicates.

The three DSPI configurations share transfer protocol and timing properties so they are described
independently of the configuration in Section 29.4.8, “Transfer Formats.” The transfer rate and delay
settings are described in Section 29.4.7, “DSPI Baud Rate and Clock Delay Generation.””

See Section 29.4.13, “Power Saving Features,” for information on the power-saving features of the DSPI.

29.4.1 Modes of Operation

The DSPI modules have the following modes available:

• Master mode

• Slave mode

• Module disable mode

• Halt mode

• Debug mode

Master, slave, and module disable modes are module-specific modes. External halt and debug mode are
device-specific modes.

The module-specific modes are determined by bits in the DSPI_MCR. External halt and debug mode are
modes that the entire MCU can enter in parallel with the DSPI being configured in one of its block-specific
modes.

29.4.1.1 Master Mode

In master mode, the DSPI can initiate communications with peripheral devices. The DSPI operates as bus
master when the MSTR bit in the DSPI_MCR is set. The serial communications clock (SCK) is controlled
by the master DSPI. All three DSPI configurations are valid in master mode.

Shift Register

Baud Rate
Generator

Shift Register

SIN

SINSOUT

SOUT

SCK SCK

SSPCSx

DSPI Master DSPI Slave

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-30 Freescale Semiconductor

In SPI configuration, master mode transfer attributes are controlled by the SPI command in the current TX
FIFO entry. The CTAS field in the SPI command selects which of the eight DSPI_CTARn registers are
used to set the transfer attributes. Transfer attribute control is on a frame by frame basis. See
Section 29.4.3, “Serial Peripheral Interface (SPI) Configuration,” for more details.

In DSI configuration, master mode transfer attributes are controlled by the DSPI DSI Configuration
Register (DSPI_DSICR). A detailed description of the DSPI_DSCIR is located in Section 29.3.2.10,
“DSPI DSI Configuration Register (DSPI_DSICR).” The DSISCTAS field in the DSPI_DSICR selects
which of the DSPI_CTARn registers are used to set the transfer attributes. Transfer attributes are set up
during initialization and should not be changed between frames. See Section 29.4.4, “Deserial Serial
Interface (DSI) Configuration,” for more details.

The CSI configuration is only available in master mode. In CSI configuration, the DSI data is transferred
using DSI configuration transfer attributes and SPI data is transferred using the SPI configuration transfer
attributes. In order for the bus slave to distinguish between DSI and SPI frames, the transfer attributes for
the two types of frames must utilize different peripheral chip select signals. See Section 29.4.5, “Combined
Serial Interface (CSI) Configuration,” for details.

29.4.1.2 Slave Mode

In slave mode, the DSPI responds to transfers initiated by a SPI master. The DSPI operates as bus slave
when the MSTR bit in the DSPI_MCR register is negated. The DSPI slave is selected by a bus master by
having the slave’s SS asserted. In slave mode, the SCK is provided by the bus master. All transfer attributes
are controlled by the bus master. However, clock polarity, clock phase, and numbers of bits to transfer must
still be configured in the DSPI slave for proper communications.

The SPI and DSI configurations are valid in slave mode. In SPI slave mode, the slave transfer attributes
are set in the DSPI_CTAR0. In DSI slave mode, the slave transfer attributes are set in the DSPI_CTAR1.
In both SPI and DSI configurations, the DSPI in slave mode transfers data MSB first. The LSBFE field of
the associated CTAR is ignored.

29.4.1.3 Module Disable Mode

The module disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI can be stopped while in module disable mode.The DSPI enters the module disable mode
when the MDIS bit in DSPI_MCR is set. Logic external to the DSPI is needed to implement the module
disable mode. See Section 29.4.13, “Power Saving Features,” for more details on the module disable
mode.

29.4.1.4 Halt Mode

When the appropriate bit in the SIU_HLT0 register is set, a request to enter halt mode is sent to the DSPI.
The DSPI does not acknowledge the request to enter halt mode until it has reached a frame boundary.
When the DSPI has reached a frame boundary, it halts all operations and indicates that it is ready to have
its clocks shut off. The DSPI exits halt mode and resumes normal operation once the clocks are turned on.
Serial communications or register accesses made while in halt mode are ignored even if the clocks have
not been shut off yet. See Section 29.4.13, “Power Saving Features,” for more details on the halt mode.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-31

29.4.1.5 Debug Mode

The debug mode is used for system development and debugging. If the MCU enters debug mode while the
FRZ bit in the DSPI_MCR is set, the DSPI stops all serial transfers and enters a stopped state. If the MCU
enters debug mode while the FRZ bit is negated, the DSPI behavior is unaffected and remains dictated by
the module-specific mode and configuration of the DSPI. The DSPI enters debug mode when a debug
request is asserted by an external controller. See Figure 29-19 for a state diagram.

29.4.2 Start and Stop of DSPI Transfers

The DSPI has two operating states: stopped and running. The states are independent of DSPI
configuration. The default state of the DSPI is stopped. In the stopped state, no serial transfers are initiated
in master mode and no transfers are responded to in slave mode. The stopped state is also a safe state for
writing the various configuration registers of the DSPI without causing undetermined results. The TXRXS
bit in the DSPI_SR is negated in this state. In the running state, serial transfers take place. The TXRXS bit
in the DSPI_SR is asserted in the running state. Figure 29-19 shows a state diagram of the start and stop
mechanism. The transitions are described in Table 29-24.

Figure 29-19. DSPI Start and Stop State Diagram

State transitions from running to stopped occur on the next frame boundary if a transfer is in progress, or
on the next system clock cycle if no transfers are in progress.

Table 29-24. State Transitions for Start and Stop of DSPI Transfers

Transition # Current State Next State Description

0 Reset Stopped Generic power-on-reset transition

1 Stopped Running The DSPI is started (DSPI transitions to running) when all of the following
conditions are true:
 • EOQF bit is clear
 • Debug mode is unselected or the FRZ bit is clear
 • HALT bit is clear

2 Running Stopped The DSPI stops (transitions from running to stopped) after the current frame for
any one of the following conditions:
 • EOQF bit is set
 • Debug mode is selected and the FRZ bit is set
 • HALT bit is set

Running
TXRXS = 1

Stopped
TXRXS = 0

Reset

Power-on-Reset 0

1

2

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-32 Freescale Semiconductor

29.4.3 Serial Peripheral Interface (SPI) Configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer
attributes. The DSPI is in SPI configuration when the DCONF field in the DSPI_MCR is 0b00. The SPI
frames can be from 4 to 16 bits long. The data to be transmitted can come from queues stored in RAM
external to the DSPI. Host software or a DMA controller can transfer the SPI data from the queues to a
first-in first-out (FIFO) buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer.
Host software or a DMA controller can transfer the received data from the RX FIFO to memory external
to the DSPI. The FIFO buffer operations are described in Section 29.4.3.4, “Transmit First-In First-Out
(TX FIFO) Buffering Mechanism,” and Section 29.4.3.5, “Receive First-In First-Out (RX FIFO)
Buffering Mechanism.” The interrupt and DMA request conditions are described in Section 29.4.12,
“DMA and Interrupt Conditions.”

Figure 29-20 shows an example of how a master DSPI connects to a SPI slave in SPI configuration.

Figure 29-20. DSPI Connections for SPI and DSI Transfers

The SPI configuration supports two block-specific modes: master mode and slave mode. The FIFO
operations are similar for the master mode and slave mode. The main difference is that in master mode the
DSPI initiates and controls the transfer according to the fields in the SPI command field of the TX FIFO
entry. In slave mode, the DSPI only responds to transfers initiated by a bus master external to the DSPI
and the SPI command field of the TX FIFO entry is ignored.

29.4.3.1 SPI Master Mode

In SPI master mode, the DSPI initiates the serial transfers by controlling the serial communications clock
(SCK) and the peripheral chip select (PCS) signals. The SPI command field in the executing TX FIFO
entry determines which CTAR registers are used to set the transfer attributes and which PCS signal to
assert. The command field also contains various bits that help with queue management and transfer
protocol. See Section 29.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR),” for details on the SPI
command fields. The data field in the executing TX FIFO entry is loaded into the shift register and shifted
out on the serial out (SOUT) pin. In SPI master mode, each SPI frame to be transmitted has a command
associated with it allowing for transfer attribute control on a frame by frame basis.

29.4.3.2 SPI Slave Mode

In SPI slave mode, the DSPI responds to transfers initiated by a SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for

DSPI Master

Shift Register

Baud Rate Generator

SPI/DSI Slave

Shift Register

SOUTSIN

SOUT SIN

SCK SCK

PCSx SS

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-33

successful communication with a SPI master. The SPI slave mode transfer attributes are set in the
DSPI_CTAR0.

29.4.3.3 FIFO Disable Operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The TX and RX FIFOs are
disabled separately. The TX FIFO is disabled by writing a ‘1’ to the DIS_TXF bit in the DSPI_MCR. The
RX FIFO is disabled by writing a ‘1’ to the DIS_RXF bit in the DSPI_MCR.

The FIFO disable mechanisms are transparent to the user and to host software; Transmit data and
commands are written to the DSPI_PUSHR and received data is read from the DSPI_POPR. When the TX
FIFO is disabled the TFFF, TFUF and TXCTR fields in DSPI_SR behave as if there is a one-entry FIFO
but the contents of the DSPI_TXFR registers and TXNXTPTR are undefined. When the RX FIFO is
disabled the RFDF, RFOF and RXCTR fields in the DSPI_SR behave as if there is a one-entry FIFO but
the contents of the DSPI_RXFR registers and POPNXTPTR are undefined.

The TX and RX FIFOs must be disabled only if the application’s operating mode requires the FIFO to be
disabled. A FIFO must be disabled before it is accessed. Failure to disable a FIFO prior to a first FIFO
access is not supported, and may result in incorrect results.

29.4.3.4 Transmit First-In First-Out (TX FIFO) Buffering Mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
four entries, each consisting of a command field and a data field. SPI commands and data are added to the
TX FIFO by writing to the DSPI PUSH TX FIFO Register (DSPI_PUSHR). For more information on
DSPI_PUSHR, refer to Section 29.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR).” TX FIFO
entries can only be removed from the TX FIFO by being shifted out or by flushing the TX FIFO.

The TX FIFO counter field (TXCTR) in the DSPI Status Register (DSPI_SR) indicates the number of valid
entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data is
transferred into the shift register from the TX FIFO. For more information on DSPI_SR, refer to
Section 29.3.2.4, “DSPI Status Register (DSPI_SR).”

The TXNXTPTR field indicates which TX FIFO entry is transmitted during the next transfer. The
TXNXTPTR contains the positive offset from DSPI_TXFR0 in number of 32-bit registers. For example,
TXNXTPTR = 0b0010 (2) means that the DSPI_TXFR2 contains the SPI data and command for the next
transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the
shift register.

29.4.3.4.1 Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the
DSPI_PUSHR. When the TX FIFO is not full, the TX FIFO fill flag (TFFF) in the DSPI_SR is set. The
TFFF bit is cleared when TX FIFO is full and the eDMA controller indicates that a write to DSPI_PUSHR
is complete or by host software writing a ‘1’ to the TFFF in the DSPI_SR. The TFFF can generate a DMA
request or an interrupt request. See Section 29.4.12.2, “Transmit FIFO Fill Interrupt or DMA Request
(TFFF),” for details.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-34 Freescale Semiconductor

The DSPI ignores attempts to push data to a full TX FIFO, i.e., the state of the TX FIFO is unchanged. No
error condition is indicated.

29.4.3.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO counter
is decremented by one. At the end of a transfer, the TCF bit in the DSPI_SR is set to indicate the
completion of a transfer. The TX FIFO is flushed by writing a ‘1’ to the CLR_TXF bit in DSPI_MCR.

If an external bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is empty,
the Transmit FIFO Underflow Flag (TFUF) in the slave’s DSPI_SR is set. See Section 29.4.12.4,
“Transmit FIFO Underflow Interrupt Request (TFUF),” for details.

29.4.3.5 Receive First-In First-Out (RX FIFO) Buffering Mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four received
SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer when the received data
in the shift register is transferred into the RX FIFO. SPI data are removed (popped) from the RX FIFO by
reading the DSPI POP RX FIFO Register (DSPI_POPR). RX FIFO entries can only be removed from the
RX FIFO by reading the DSPI_POPR or by flushing the RX FIFO. For more information on the
DSPI_POPR, refer to Section 29.3.2.7, “DSPI POP RX FIFO Register (DSPI_POPR).”

The RX FIFO Counter field (RXCTR) in the DSPI Status Register (DSPI_SR) indicates the number of
valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR is read or SPI data is
copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPI_SR points to the RX FIFO entry that is returned when the
DSPI_POPR is read. The POPNXTPTR contains the positive offset from DSPI_RXFR0 in number of
32-bit registers. For example, POPNXTPTR = 0b0010 means that the DSPI_RXFR2 contains the received
SPI data that is returned when DSPI_POPR is read. The POPNXTPTR field is incremented every time the
DSPI_POPR is read.

29.4.3.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time a SPI frame is transferred to
the RX FIFO, the RX FIFO counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPI_SR is asserted
indicating an overflow condition. Depending on the state of the ROOE bit in the DSPI_MCR, the data from
the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit
is asserted, the incoming data is shifted in to the shift register. If the ROOE bit is negated, the incoming
data is ignored.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-35

29.4.3.5.2 Draining the RX FIFO

Host software or the eDMA controller can remove (pop) entries from the RX FIFO by reading the DSPI
POP RX FIFO Register (DSPI_POPR). For more information on DSPI_POPR, refer to Section 29.3.2.7,
“DSPI POP RX FIFO Register (DSPI_POPR).” A read of the DSPI_POPR decrements the RX FIFO
counter by one. Attempts to pop data from an empty RX FIFO are ignored, and the RX FIFO counter
remains unchanged. The data returned from reading an empty RX FIFO is undetermined.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPI_SR is set. The RFDF bit is
cleared when the RX_FIFO is empty and the DMA controller indicates that a read from DSPI_POPR is
complete or by host software writing a 1 to the RFDF.

29.4.4 Deserial Serial Interface (DSI) Configuration

The DSI configuration supports pin-count reduction by serializing parallel input signals or register bits and
shifting them out in a SPI-like protocol. The timing and transfer protocol is described in Section 29.4.8,
“Transfer Formats.” The received serial frames are converted to a parallel form (deserialized) and placed
on the parallel output signals or in a register.

The various features of the DSI configuration are set in the DSPI_DSICR. For more information on the
DSPI_DSICR, refer to Section 29.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR).” The DSPI
is in DSI configuration when the DCONF field in the DSPI_MCR = 0b01.

The DSI frames can be from 4 to 16 bits long, but 4 to 32 bits can be used in the TSB configuration (see
Section 29.4.10, “Timed Serial Bus (TSB),” for detailed information).

29.4.4.1 DSI Master Mode

In DSI master mode, the DSPI initiates and controls the DSI transfers. The DSI master has these conditions
that can initiate a transfer:

• Continuous

• Change in data

The two transfer initiation conditions are described in Section 29.4.4.5, “DSI Transfer Initiation Control.”
Transfer attributes are set during initialization. The DSICTAS field in the DSPI_DSICR determines which
DSPI_CTARn register controls the transfer attributes.

29.4.4.2 DSI Slave Mode

In DSI slave mode, the DSPI responds to transfers initiated by a SPI or DSI bus master. In this mode the
DSPI does not initiate DSI transfers. Certain transfer attributes such as clock polarity and phase must be
set for successful communication with a DSI master. The DSI slave mode transfer attributes are set in the
DSPI_CTAR1.

29.4.4.3 DSI Serialization

In the DSI configuration, 4 to 16 bits can be serialized using two different sources. The TXSS bit in the
DSPI_DSICR selects between the DSPI DSI Serialization Data Register (DSPI_SDR) and the DSPI DSI

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-36 Freescale Semiconductor

Alternate Serialization Data Register (DSPI_ASDR) as the source of the serialized data. See
Section 29.3.2.11, “DSPI DSI Serialization Data Register (DSPI_SDR),” and Section 29.3.2.12, “DSPI
DSI Alternate Serialization Data Register (DSPI_ASDR),” for more details. The DSPI_SDR holds the
latest parallel input signal values, which are sampled at every rising edge of the system clock. The
DSPI_ASDR register is written by host software and used as an alternate source of serialized data.

A copy of the last 32-bit DSI frame shifted out of the Shift Register is stored in the DSPI DSI Transmit
Comparison Register (DSPI_COMPR). This register provides added visibility for debugging and it serves
as a reference for transfer initiation control.Section 29.3.2.13, “DSPI DSI Transmit Comparison Register
(DSPI_COMPR),” contains details on the DSPI_COMPR. Figure 29-21 shows the DSI Serialization logic.

Figure 29-21. DSI Serialization Diagram

29.4.4.4 DSI Deserialization

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPI DSI Deserialization
Data Register (DSPI_DDR). This register presents the deserialized data as parallel output signal values.
The DSPI_DDR is memory mapped to allow host software to read the deserialized data directly. For more
information on the DSPI_DDR, refer to Section 29.3.2.14, “DSPI DSI Deserialization Data Register
(DSPI_DDR).” Figure 29-22 shows the DSI Deserialization logic.

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPI_DDR. This register
presents the deserialized data as parallel output signal values. The DSPI_DDR is memory mapped to allow
host software to read the deserialized data directly. For more information on the DSPI_DDR, refer to
Section 29.3.2.14, “DSPI DSI Deserialization Data Register (DSPI_DDR).” Figure 29-22 shows the DSI
deserialization logic.

1

0

DSPI Alternate
Serialization Data Register

SOUTx
Parallel

DSI Configuration
Register

DSI Transmit
Comparison Register

Clock
Logic

0 1 • • • • • 15

Shift RegisterDSI Serialization
Data Register

Control
Logic

SCKx

Inputs

PCSx

32

32

16

32
TXSS

Slave Bus Interface

32

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-37

Figure 29-22. DSI Deserialization Diagram

29.4.4.5 DSI Transfer Initiation Control

Data transfers for a master DSPI in DSI configuration are initiated by a condition. The transfer initiation
conditions are selected by the TRRE and CID bits in the DSPI_DSICR. Table 29-25 lists the transfer
initiation conditions.

29.4.4.5.1 Continuous Control

For continuous control, the initiation of a transfer is based on the baud rate at which data is transferred
between the DSPI and the external device. The baud rate is set in the DSPI_CTARn register selected by
the DSICTAS field in the DSPI_DSICR. A new DSI frame shifts out when the previous transfer cycle has
completed and the delay after transfer (tDT) has elapsed.

29.4.4.5.2 Change In Data Control

For change in data control, a transfer is initiated when the data to be serialized has changed since the
transfer of the last DSI frame. A copy of the previously transferred DSI data is stored in the
DSPI_COMPR. When the data in the DSPI_SDR or the DSPI_ASDR is different from the data in the
DSPI_COMPR, a new DSI frame is transmitted. The TXSS bit in the DSPI_DSICR selects the register to
which the DSPI_COMPR is compared.

29.4.5 Combined Serial Interface (CSI) Configuration

The CSI configuration of the DSPI is used to support SPI and DSI functions on a frame by frame basis.
CSI configuration allows interleaving of DSI data frames from the parallel input signals with SPI

Table 29-25. DSI Data Transfer Initiation Control

DSPI_DSICR Bits
Transfer Initiation Control

TRRE CID

0 0 Continuous

0 1 Change in Data

SIN

Control
Logic

0 1 • • • • • N – 1

Shift Register

N

Slave Bus Interface

ParallelDSI Deserialization
Data Register Outputs

N

In TSB configuration, the number of bits N = 32. For non-TSB, N = 16.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-38 Freescale Semiconductor

commands and data from the TX FIFO. The data returned from the bus slave is either used to drive the
parallel output signals or it is stored in the RX FIFO. The CSI configuration allows serialized data and
configuration or diagnostic data to be transferred to a slave device using only one serial link. The DSPI is
in CSI configuration when the DCONF field in the DSPI_MCR is 0b10. Figure 29-23 shows an example
of how a DSPI can be used with a deserializing peripheral that supports SPI control for control and
diagnostic frames.

Figure 29-23. Example of System using DSPI in CSI Configuration

In CSI configuration, the DSPI transfers DSI data based on DSI Transfer Initiation Control. (See
Section 29.4.4.5, “DSI Transfer Initiation Control.”) When there are SPI commands in the TX FIFO, the
SPI data has priority over the DSI frames. When the TX FIFO is empty, DSI transfer resumes.

Two peripheral chip select signals indicate whether DSI data or SPI data is transmitted. The user must
configure the DSPI so that the two CTAR registers associated with DSI data and SPI data assert different
peripheral chip select signals denoted in the figure as PCSx and PCSy. The CSI configuration is only
supported in master mode.

Data returned from the external slave while a DSI frame is transferred is placed on the parallel output
signals. Data returned from the external slave while an SPI frame is transferred is moved to the RX FIFO.
The TX FIFO and RX FIFO are fully functional in CSI mode.

29.4.5.1 CSI Serialization

Serialization in the CSI configuration is similar to serialization in DSI configuration. The transfer
attributes for SPI frames are determined by the DSPI_CTARn register selected by the CTAS field in the
SPI command halfword. The transfer attributes for the DSI frames are determined by the DSPI_CTARn
register selected by the DSICTAS field in the DSPI_DSICR. Figure 29-24 shows the CSI serialization
logic.

SPI

DSPI master

DSI

Shift register

TX FIFO

TX
priority
control

SINx

SOUTx

SCKx

PCSx

PCSy SPI

External slave deserializer

Shift register

frame

Frame
select
logic

SOUTx

SINx

SCKx

SSx

SSy DSI
frame

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-39

Figure 29-24. CSI Serialization Diagram

The parallel inputs signal states are latched into the DSPI DSI Serialization Data Register (DSPI_SDR) on
the rising edge of every system clock and serialized based on the transfer initiation control settings in the
DSPI_DSICR. For more information on the DSPI_SDR, refer to Section 29.3.2.11, “DSPI DSI
Serialization Data Register (DSPI_SDR).” SPI frames written to the TX FIFO have priority over DSI data
from the DSPI_SDR and are transferred at the next frame boundary. A copy of the most recently
transferred DSI frame is stored in the DSPI_COMPR. The transfer priority logic selects the source of the
serialized data and asserts the appropriate chip select signal.

29.4.5.2 CSI Deserialization

The deserialized frames in CSI configuration go into the DSPI_SDR or the RX FIFO based on the transfer
priority logic. When DSI frames are transferred, the returned frames are deserialized and latched into the
DSPI_DDR. When SPI frames are transferred, the returned frames are deserialized and written to the RX
FIFO. Figure 29-25 shows the CSI deserialization logic.

Figure 29-25. CSI Deserialization Diagram

SOUTx

Parallel

DSI control
register

DSI transmit
comparison register

Clock
logic

0 1 • • • • • 15

Shift registerDSI serialization
data register

Control
logic

SCKx

inputs

PCSx (SPI)
PCSy (DSI)

16

16

16

16

Transfer

Slave bus interface

16

TX FIFO

(P_IN)

priority logic

SIN

Control
logic

0 1 • • • • • 15

Shift register

16

Slave bus interface

ParallelDSI deserialization
data register

outputs
16

Transfer
priority logic

16

RX FIFO

(P_OUT)

16

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-40 Freescale Semiconductor

29.4.6 Buffered SPI Operation

The DSPI can use a FIFO buffering mechanism to transmit and receive commands and data to and from
external devices. The transmit FIFO buffers SPI commands and data to be transferred. The receive FIFO
buffers incoming serial data. Both FIFOs are four entries deep. The TX FIFO stores 32-bit words when the
DSPIs are configured for master mode. The 32-bit words are composed of 16-bit command fields and data
fields as wide as 16 bits. The RX FIFOs store 16-bit words of received data from external devices. When
the DSPI is configured for slave mode, the DSPI ignores the SPI command in the TX FIFO.

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software. See Figure 29-26 for conceptual diagram of the queue data transfer control in the
MCU.

Figure 29-26. DSPI Queue Transfer Control in MPC5668x

29.4.7 DSPI Baud Rate and Clock Delay Generation

The SCK frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option for doubling the baud rate. Figure 29-27 shows
conceptually how the SCK signal is generated.

Figure 29-27. Communications Clock Prescalers and Scalers

29.4.7.1 Baud Rate Generator

The baud rate is the frequency of the serial communication clock (SCK). The system clock is divided by
a baud rate prescaler (defined by DSPI_CTARn[PBR]) and baud rate scaler (defined by

System RAM

DSPI

DMA controller/

TX queue

RX FIFOTX FIFO

Shift register

Data

Data

Address

RX queue

Data Data

Address
DMA

control/

host

host

Prescaler

1

Scaler

1 + DBR
System clock SCK

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-41

DSPI_CTARn[BR]) to produce SCK with the possibility of halving the scaler division. The DBR, PBR,
and BR fields in the DSPI_CTARn registers select the frequency of SCK using the following formula:

Eqn. 29-5

Table 29-26 shows an example of a computed baud rate.

29.4.7.2 PCS to SCK Delay (tCSC)

The PCS to SCK delay is the length of time from assertion of the PCS signal to the first SCK edge. See
Figure 29-29 for an illustration of the PCS to SCK delay. The PCSSCK and CSSCK fields in the
DSPI_CTARn registers select the PCS to SCK delay, and the relationship is expressed by the following
formula:

Eqn. 29-6

Table 29-27 shows an example of the computed PCS to SCK delay.

29.4.7.3 After SCK Delay (tASC)

The after SCK delay is the length of time between the last edge of SCK and the negation of PCS. See
Figure 29-29 and Figure 29-30 for illustrations of the after SCK delay. The PASC and ASC fields in the
DSPI_CTARn registers select the after SCK delay. The relationship between these variables is given in the
following formula:

Table 29-28 shows an example of the computed after SCK delay.

Table 29-26. Baud Rate Computation Example

fSYS PBR
Prescaler

Value
BR

Scaler
Value

DBR
Value

Baud Rate

66 MHz 0b00 2 0b0000 2 0 16.67 Mbit/s

20 MHz 0b00 2 0b0000 2 1 10 Mbit/s

Table 29-27. PCS to SCK Delay Computation Example

PCSSCK
Prescaler

Value
CSSCK

Scaler
Value

fSYS PCS to SCK Delay

0b01 3 0b0100 32 100 MHz 0.96 µs

SCK baud rate
fSYS

PBRPrescalerValue
-- 1 DBR+

BRScalerValue
--=

tCSC =
fSYS

CSSCK PCSSCK1

tASC =
fSYS

ASC PASC1

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-42 Freescale Semiconductor

29.4.7.4 Delay after Transfer (tDT)

The delay after transfer is the length of time between negation of the PCS signal for a frame and the
assertion of the PCS signal for the next frame. See Figure 29-29 for an illustration of the delay after
transfer. The PDT and DT fields in the DSPI_CTARn registers select the delay after transfer. The
following formula expresses the PDT/DT/delay after transfer relationship:

Eqn. 29-7

Table 29-29 shows an example of the computed delay after transfer.

When in non-continuous clock mode the TDT delay is configurable as outlined in the DSPI_CTARn
registers. When in continuous clock mode and TSB is not enabled the delay is fixed at 1 SCK period. When
in TSB and continuous mode, the delay is programmed as outlined in the DSPI_CTARn registers. In event
that the delay does not coincide with an SCK period in duration, the delay is extended to the next SCK
active edge. Table 29-30 shows an example of how to compute the delay after Transfer with the clock
period of SCK defined as TSCK. The values calculated assume 1 TSCK period = 4 ipg_clk.

Table 29-28. After SCK Delay Computation Example

PASC
Prescaler

Value
ASC

Scaler
Value

Fsys After SCK Delay

0b01 3 0b0100 32 100 MHz 0.96 us

Table 29-29. Delay after Transfer Computation Example

PDT
Prescaler

Value
DT

Scaler
Value

fSYS Delay after Transfer

0b01 3 0b1110 32768 100 MHz 0.98 ms

 tDT =
 fSYS

DT PDT
1

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-43

29.4.7.5 Peripheral Chip Select Strobe Enable (PCSS)

The PCSS signal provides a delay to allow the PCS signals to settle after a transition occurs, thereby
avoiding glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPI_MCR, PCSS
provides a signal for an external demultiplexer to decode the PCS[0:4] signals into as many as 32
glitch-free PCS signals. Figure 29-28 shows the timing of the PCSS signal relative to PCS signals.

Figure 29-28. Peripheral Chip Select Strobe Timing

Table 29-30. Delay after Transfer Computation Example in TSB Configuration

PDT field

Tdt1
(Tsck)

1 Some values are not reachable (e.g., 9, 11, 13, 15, 17, 18, 19...), to
calculate these values, please see the Equation 29-3.

0 1 2 3

D
T

 f
ie

ld

02

2 The values in this row were rounded to the next integer value.

1 2 3 4

1 1 3 5 7

2 2 6 10 14

3 4 12 20 28

4 8 24 40 56

5 16 48 80 112

6 32 96 160 224

7 64 192 320 448

8 128 384 640 896

9 256 768 1280 1792

10 512 1536 2560 3584

11 1024 3072 5120 7168

12 2048 6144 10240 14336

13 4096 12288 20480 28672

14 8192 24576 40960 57344

15 16384 49152 81920 114688

PCSS

PCSx

tPCSSCK tPASC

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-44 Freescale Semiconductor

The delay between the assertion of the PCSx signals and the assertion of PCSS is selected by the PCSSCK
field in the DSPI_CTARn register based on the following formula:

Eqn. 29-8

At the end of the transfer the delay between PCSS negation and PCSx negation is selected by the PASC
field in the DSPI_CTARn register based on the following formula:

Eqn. 29-9

Table 29-31 shows an example of the computed tPCSSCK delay.

Table 29-32 shows an example of the computed the tPASC delay.

The PCSS signal is not supported when Continuous Serial Communication SCK is enabled
(CONT_SCKE = 1).

29.4.8 Transfer Formats

The SPI serial communication is controlled by the serial communications clock (SCK) signal and the PCS
signals. The SCK signal provided by the master device synchronizes shifting and sampling of the data on
the SIN and SOUT pins. The PCS signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer attributes
registers (DSPI_CTARn) select the polarity and phase of the serial clock, SCK. The polarity bit selects the
idle state of the SCK. The clock phase bit selects if the data on SOUT is valid before or on the first SCK
edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPI_CTAR0 (SPI) or DSPI_CTAR1 (DSI)
select the polarity and phase of the serial clock. Even though the bus Slave does not control the SCK signal,
clock polarity, clock phase and number of bits to transfer must be identical for the master device and the
slave device to ensure proper transmission.

Table 29-31. Peripheral Chip Select Strobe Assert Computation Example

PCSSCK Prescaler fSYS Delay before Transfer

0b11 7 100 MHz 70.0 ns

Table 29-32. Peripheral Chip Select Strobe Negate Computation Example

PASC Prescaler fSYS Delay after Transfer

0b11 7 100 MHz 70.0 ns

 tPCSSCK = PCSSCK
fSYS

1

 tPASC = PASC
fSYS

1

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-45

The DSPI supports four different transfer formats:

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified transfer format with CPHA = 0

• Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle
to give the peripheral more setup time. The MTFE bit in the DSPI_MCR selects between Classic SPI
Format and Modified Transfer Format. The Classic SPI Formats are described in Section 29.4.8.1,
“Classic SPI Transfer Format (CPHA = 0),” and Section 29.4.8.2, “Classic SPI Transfer Format
(CPHA = 1).” The Modified Transfer Formats are described in Section 29.4.8.3, “Modified SPI/DSI
Transfer Format (MTFE = 1, CPHA = 0),” and Section 29.4.8.4, “Modified SPI/DSI Transfer Format
(MTFE = 1, CPHA = 1).”

In the SPI and DSI configurations, the DSPI provides the option of keeping the PCS signals asserted
between frames. See Section 29.4.8.5, “Continuous Selection Format,” for details.

29.4.8.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in Figure 29-29 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample their
SIN pins on the odd-numbered SCK edges and change the data on their SOUT pins on the even-numbered
SCK edges.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-46 Freescale Semiconductor

Figure 29-29. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUTx pin and asserting the appropriate
peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its
SOUT pin. After the tCSC delay has elapsed, the master outputs the first edge of SCK. This is the edge used
by the master and slave devices to sample the first input data bit on their serial data input signals. At the
second edge of the SCK, the master and slave devices place their second data bit on their serial data output
signals. For the rest of the frame the master and the slave sample their SIN pins on the odd-numbered clock
edges and changes the data on their SOUT pins on the even-numbered clock edges. After the last clock
edge occurs a delay of tASC is inserted before the master negates the PCS signals. A delay of tDT is inserted
before a new frame transfer can be initiated by the master.

For the CPHA = 0 condition of the master, TCF and EOQF are set and the RXCTR counter is updated at
the next to last serial clock edge of the frame (edge 15) of Figure 29-29.

For the CPHA = 0 condition of the slave, TCF is set and the RXCTR counter is updated at the last serial
clock edge of the frame (edge 16) of Figure 29-29.

29.4.8.2 Classic SPI Transfer Format (CPHA = 1)

This transfer format shown in Figure 29-30 is used to communicate with peripheral SPI slave devices that
require the first SCK edge before the first data bit becomes available on the slave SOUT pin. In this format
the master and slave devices change the data on their SOUT pins on the odd-numbered SCK edges and
sample the data on their SIN pins on the even-numbered SCK edges

SCK
(CPOL = 0)

PCSx/SS

tASC

SCK
(CPOL = 1)

Master & Slave
Sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-47

Figure 29-30. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the PCS signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCK edge and at the same time places valid data on the master SOUT pin.
The slave responds to the first SCK edge by placing its first data bit on its slave SOUT pin.

At the second edge of the SCK the master and slave sample their SIN pins. For the rest of the frame the
master and the slave change the data on their SOUT pins on the odd-numbered clock edges and sample
their SIN pins on the even-numbered clock edges. After the last clock edge occurs a delay of tASC is inserted
before the master negates the PCS signal. A delay of tDT is inserted before a new frame transfer can be
initiated by the master.

For CPHA = 1 the master EOQF and TCF and slave TCF are set at the last serial clock edge (edge 16) of
Figure 29-30. For CPHA = 1 the master and slave RXCTR counters are updated on the same clock edge.

29.4.8.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)

In this modified transfer format, both the master and the slave sample later in the SCK period than in
classic SPI mode to allow for delays in device pads and board traces. These delays become a more
significant fraction of the SCK period as the SCK period decreases with increasing baud rates.

NOTE
For correct operation of the modified transfer format, the user must
thoroughly analyze the SPI link timing budget.

The master and the slave place data on the SOUT pins at the assertion of the PCS signal. After the PCS to
SCK delay has elapsed, the first SCK edge is generated. The slave samples the master SOUT signal on

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

PCSx/SS

tASC

SCK
(CPOL = 1)

Master & Slave
Sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB First (LSBFE = 0):
LSB First (LSBFE = 1):

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last SCK edge of frame (edge 16)

16

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-48 Freescale Semiconductor

every odd-numbered SCK edge. The slave also places new data on the slave SOUT on every
odd-numbered clock edge.

The master places its second data bit on the SOUT line one system clock after odd-numbered SCK edge.
The point where the master samples the slave SOUT is selected by writing to the SMPL_PT field in the
DSPI_MCR. Table 29-33 lists the number of system clock cycles between the active edge of SCK and the
master sample point. The master sample point can be delayed by one or two system clock cycles.

Figure 29-31 shows the modified transfer format for CPHA = 0. Only the condition where CPOL = 0 is
illustrated. The delayed master sample points are indicated with a lighter shaded arrow.

Figure 29-31. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, Fsck = Fsys/4)

29.4.8.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)

Figure 29-32 shows the modified transfer format for CPHA = 1. Only the condition where CPOL = 0 is
described. At the start of a transfer, the DSPI asserts the PCS signal to the slave device. After the PCS to
SCK delay has elapsed, the master and the slave put data on their SOUT pins at the first edge of SCK. The
slave samples the master SOUT signal on the even-numbered edges of SCK. The master samples the slave
SOUT signal on the odd-numbered SCK edges starting with the third SCK edge. The slave samples the

Table 29-33. Delayed Master Sample Point

SMPL_PT
Number of System Clock Cycles Between

Odd-Numbered Edge of SCK and Sampling of SIN

00 0

01 1

10 2

11 Reserved

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCSx

tASC

SCK

Master Sample

Slave SOUT

Master SOUT

System clock
System clock

Slave Sample

tCSC

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-49

last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after
the last edge of SCK. No clock edge is visible on the master SCK pin during the sampling of the last bit.
The SCK to PCS delay must be greater or equal to half of the SCK period.

NOTE
For correct operation of the modified transfer format, the user must
thoroughly analyze the SPI link timing budget.

Figure 29-32. DSPI Modified Transfer Format (MTFE = 1, CPHA = 1, Fsck = Fsys/4)

NOTE
When the DSPI is being used in the Modified Transfer Format mode
(DSPI_MCR[MTFE]=1) with the clock phase set for data changing on the
leading edge of the clock and captured on the following edge in the DSPI
Clock and Transfer Attributes Register (DSPI_CTARn[CPHA]=1), if the
After SCK delay scaler (ASC) time is set to less than 1/2 SCK clock period
the DSPI may not complete the transaction - the TCF flag will not be set,
serial data will not received, and last transmitted bit can be truncated.

In this case, the Modified Transfer Format mode is required
DSPI_MCR[MTFE]=1 with the clock phase set for serial data changing on
the leading edge of the clock and captured on the following edge in the SCK
clock (Transfer Attributes Register (DSPI_CTARn[CPHA]=1) make sure
that the ASC time is set to be longer than half SCK clock period.

29.4.8.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The continuous selection format provides the flexibility to
handle both cases. The continuous selection format is enabled for the SPI configuration by setting the

tCSC = PCS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

PCS

tASC

SCK

Master Sample

Master SOUT

Slave SOUT

Slave Sample

tCSC

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-50 Freescale Semiconductor

CONT bit in the SPI command. Continuous selection is enabled for the DSI configuration by setting the
DCONT bit in the DSPI_DSICR. The behavior of the PCS signals in the two configurations is identical,
so only SPI configuration is described.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states in between
frames. The idle states of the chip select signals are selected by the PCSIS field in the DSPI_MCR.
Figure 29-33 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 0.

Figure 29-33. Example of Non-Continuous Format (CPHA = 1, CONT = 0)

When the CONT bit = 1and the PCS signal for the next transfer is the same as for the current transfer, the
PCS signal remains asserted for the duration of the two transfers. The delay between transfers (tDT) is not
inserted between the transfers. Figure 29-34 shows the timing diagram for two 4-bit transfers with
CPHA = 1 and CONT = 1.

Figure 29-34. Example of Continuous Transfer (CPHA = 1, CONT = 1)

In Figure 29-34, the period length at the start of the next transfer is the sum of tASC and tCSC; i.e., it does
not include a half-clock period. The default settings for these provide a total of four system clocks. In many
situations, tASC and tCSC must be increased if a full half-clock period is required.

SCK
(CPOL = 0)

PCSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

PCS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = PCS to SCK delay.
tASC = After SCK delay.

Master SIN

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-51

Switching CTAR registers or changing which PCS signals are asserted between frames while using
continuous selection can cause errors in the transfer. The PCS signal should be negated before CTAR is
switched or different PCS signals are selected.

29.4.8.6 Clock Polarity Switching Between DSPI Transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated by the change
in the idle state of the clock occurs one system clock before the assertion of the chip select for the next
frame. In Figure 29-35, time A shows the one clock interval. Time B is user programmable from a
minimum of two system clocks. Refer to Section 29.3.2.3, “DSPI Clock and Transfer Attributes Registers
0–7 (DSPI_CTARn).”

Figure 29-35. Polarity Switching Between Frames

29.4.9 Continuous Serial Communications Clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPI_MCR. Continuous SCK is valid
in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 is ignored if the CONT_SCKE bit is
set. Continuous SCK is supported for modified transfer format.

• Clock and transfer attributes for the continuous SCK mode are set according to the following rules:
When the DSPI is in SPI configuration, CTAR0 shall be used initially. At the start of each SPI
frame transfer, the CTAR specified by the CTAS for the frame shall be used.

• When the DSPI is in DSI configuration, the CTAR specified by the DSICTAS field shall be used
at all times.

• When the DSPI is in CSI configuration, the CTAR selected by the DSICTAS field shall be used
initially. At the start of a SPI frame transfer, the CTAR specified by the CTAS value for the frame
shall be used. At the start of a DSI frame transfer, the CTAR specified by the DSICTAS field shall
be used.

• In all configurations, the currently selected CTAR shall remain in use until the start of a frame with
a different CTAR specified, or the continuous SCK mode is terminated.

PCS

System Clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-52 Freescale Semiconductor

It is recommended that the baud rate is the same for all transfers made while using the continuous SCK.
Switching clock polarity between frames while using continuous SCK can cause errors in the transfer.
Continuous SCK operation is not guaranteed if the DSPI is put into halt mode or module disable mode.

Enabling continuous SCK disables the PCS to SCK delay and the delay after transfer (TDT) is fixed at one
TSCK cycle. When TSB configuration is enabled the TDT is programmable to a minimum of 1xTSCK cycles
by configuring PDT and DT values in the respective CTAR register. Figure 29-36 shows timing diagram
for continuous SCK format with continuous selection disabled.

Enabling continuous SCK disables the PCS to SCK delay and the after SCK delay. The delay after transfer
is fixed at one SCK cycle. Figure 29-36 shows timing diagram for continuous SCK format with continuous
selection disabled.

Figure 29-36. Continuous SCK Timing Diagram (CONT = 0)

If the CONT bit in the TX FIFO entry is set or the DCONT in the DSPI_DSICR is set, PCS remains
asserted between the transfers. Under certain conditions, SCK can continue with PCS asserted, but with
no data being shifted out of SOUT (SOUT pulled high). This can cause the slave to receive incorrect data.
Those conditions include:

• Continuous SCK with CONT bit set, but no data in the transmit FIFO.

• Continuous SCK with CONT bit set and entering STOPPED state (refer to Section 29.4.2, “Start
and Stop of DSPI Transfers”).

• Continuous SCK with CONT bit set and entering halt mode or module disable mode.

Figure 29-37 shows timing diagram for continuous SCK format with continuous selection enabled.

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

tDT
tDT = 1 SCK.

Master SIN

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-53

Figure 29-37. Continuous SCK Timing Diagram (CONT = 1)

29.4.10 Timed Serial Bus (TSB)

The DSPI can be programmed in timed serial bus (TSB) configuration by asserting the TSBC bit in the
DSPI_DSICR register. See Section 29.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR),” for
details. To operate in TSB configuration, the DSPI must be in master mode and configured as DSI
(DCONF = 0b01). The TSB allows operating in continuous and non-continuous serial communication
clock (controlled by bit CONT_SCKE).

Figure 29-38 shows the signals used in the TSB interface. The SDR and ASDR registers are set to 32 bits
in this configuration, to allow the Micro Second Channel (MSC) feature to be performed.

In the TSB configuration, the DSPI can send from 4 to as many as 32 data bits. The source of these bits
can be either the DSPI DSI Alternate Serialization Data Register (DSPI_ASDR), written by the host
software, or the parallel input pin states latched into the DSPI DSI Serialization Data Register
(DSPI_SDR).

Figure 29-38. DSPI Usage in the TSB Configuration

The same constraints that apply to DSI are valid for TSB except for the frame size and the Delay After
Transfer value (TDT). The TSB configuration allows from 4 to 32 bits frame size to be used, and TDT can
be programmable to a minimum of 1 × TSCK, allowing a programmable inter-message gap. See
Table 29-10 and Table 29-30 for details on programming the TDT values.

SCK
(CPOL = 0)

PCS

SCK
(CPOL = 1)

Master SOUT

Master SIN

Transfer 1 Transfer 2

SOUT (Downstream Frame)

SCK

PCS

DSI

(Master)

32 Bit Data
Register
(ASDR)

32 Bit

(SDR)
Serial Data

GPIO or COMMAND
Data Writes

Parallel
Inputs

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-54 Freescale Semiconductor

The time between the negation of the CS at the end of one frame to the assertion of CS at the next frame
is defined by: TDT = PDT × DT / Fsys, but delayed until the next active edge of TSCK. The gap is only be
whole period of TSCK and the PDT and DT fields of the specific DSPI_CTARn register select the delay
after transfer. Some values are possible.

Figure 29-39. TSB Downstream Frame

Figure 29-39 shows the two types of downstream frames used in the TSB configuration, command frame
and data frame. Refer to Section 29.4.10.1, “PCS Switch Over Timing,” and Section 29.4.10.3, “TSB Data
Frame Format,” for detailed information. The Command Word can be written by software, and the Data
Word consist of 32-bit words, from the SDR or ASDR registers. Only the downstream frame is supported
in the TSB configuration. The upstream frame can be handled by software using any available serial input.

The selection bit, the start bit for a frame, is not a requirement but could be implemented by software. The
number of frame bits can be in the range of 4 to 32 bits. In this configuration, the least significant bit of a
frame should be transmitted first (LSBFE = 1).

29.4.10.1 PCS Switch Over Timing

When in TSB mode, it is possible to switch the set of PCS signals that are driven during the first part of
the frame to a different set of PCS signals during the second part of the frame. The bit at which this switch
over occurs is contained in the DSICR register.

In order to maximize both the setup and hold time margins on the old and new PCS signals, the timing of
the switch over occurs on the active edge of the master SCK data capture between the last bit of the first
part of the frame and the first bit of the second part of the frame. For example, if the first part of the frame
is 5 bits and the second part of the frame is 10 bits, the PCS signals switch at the active edge of the master
SCK in between bits 5 and 6 of the frame as seen by the slave. The exact timing between the external
signals SCK and PCS signals is not exactly aligned due to routing and pad differences. This approach
ensures that larger/shorter SCK periods result in approximately symmetric increases/decreases of setup
and hold margins on the PCS signals. The setup time for the PCS signals before the first bit of the first part
of the frame and the hold time for the PCS signals after the last bit of the second part of the frame are

tDT

Data Frame

Invalid
LSB

Active Phase

0

SCK

PCS

Master SOUT

tDT = from 1 to (PDT × DT / Fsys) TSCK

Invalid

Command Frame

tDT

Command Frame = 0 to 32 bits

LSB1

 Selection BitData Frame = 4 to 32 bits

(CPOL = 0)

Active Phase

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-55

unchanged in this mode with respect to the other modes and remain controlled by the CSC and ASC delay
fields respectively when not in continuous SCK mode.

29.4.10.2 TSB Command Frame Format

In the TSB configuration a command frame is shown in Figure 29-40.

Figure 29-40. Command Frame Format

In the active phase of the command frame, the chip select becomes active validating the SOUT and SCK
output signals. Outside the active phase, chip select is at passive level and invalid data may occur at SOUT.

For TSB configuration, assuming CPOL = 0, the SOUT output and the chip select changes its state always
with the SCK rising edge. The SOUT signal must be sampled in the slave device with the falling edge of
SCK. The clock period of SCK is defined as TSCK. The length of the command frame passive phase TDT
should always be fixed to a minimum of 1x TSCK.

29.4.10.3 TSB Data Frame Format

A data frame is transmitted from the TSB controller to the receiving devices. Figure 29-41 details the
frame active and passive phase,

For TSB configuration assuming CPOL = 0, the SOUT output and the chip select change their states
always with the SCK rising edge. The SOUT signal must be sampled in the receiving device with the
falling edge of SCK. The length of the data frame passive phase TDT can be a minimum of 1 × TSCK.

A data frame can be composed by data bits only or by data bits preceded by a selection bit, see
Figure 29-41. A data frame with a selection bit always starts with a low level bit at SOUT.

The number of data bits in the active phase is from 4 to 32 bits, and the least significant bit of a data portion
is transmitted first (LSBFE = 1).

SCK

PCS

Master SOUT Invalid

Command Frame

tDT

Command Frame = 0 to 32 bits

LSB1

Command Selection Bit

(CPOL = 0)

Active Phase

tDT = from 1 to (PDT * DT / Fsys)TSCK

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-56 Freescale Semiconductor

Figure 29-41. TSB Data Frame Format

29.4.11 Peripheral Chip Select Expansion and Deglitching

The DSPI supports as many as 64 peripheral chip select signals with the use of an external demultiplexer.
As many as 32 peripheral chip select signals can be used if deglitching is desired. The PCSS signal
provides the appropriate timing to enable and disable the demultiplexer for the PCS[0:4] signals.

Figure 29-42 shows how an external 5-to-32 demultiplexer (decoder) can be connected to the DSPI.

Figure 29-42. DSPI PCS Expansion and Deglitching

29.4.12 DMA and Interrupt Conditions

The DSPI has six conditions that can generate interrupt requests only and two conditions that can generate
interrupt or DMA request. Table 29-34 lists the conditions. The X indicates which signals are connected.

Table 29-34. DSPI Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of queue reached (EOQ) EOQF X

TX FIFO is not full TFFF X X

Transfer of current frame complete TCF X

SCK

PCS

Master SOUT

tDT

Data Frame 1 Data Frame 2

Invalid

tDT

Invalid
LSB LSB

Active PhaseActive Phase

0 0

Data Selection Bit

Data Frame = 4 to 32 bits
tDT = from 1 to (PDT × DT / Fsys) TSCK

 DSPI

PCS0–PCS4

PCSS

PCS0
PCS1

PCS31

5

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-57

Each condition has a flag bit in the DSPI Status Register (DSPI_SR) and an Request Enable bit in the DSPI
DMA/Interrupt Request Select and Enable Register (DSPI_RSER). The TX FIFO Fill Flag (TFFF) and
RX FIFO Drain Flag (RFDF) generate interrupt requests or DMA requests depending on the TFFF_DIRS
and RFDF_DIRS bits in the DSPI_RSER. See Table 22-4 for the DSPI DMA channel assignments and
Table 9-12 for the DSPI interrupt vectors.

29.4.12.1 End of Queue Interrupt Request (EOQF)

The end of queue request indicates that the end of a transmit queue is reached. The end of queue request
is generated when the EOQ bit in the executing SPI command is asserted and the EOQF_RE bit in the
DSPI_RSER is asserted. See the EOQ bit description in Section 29.3.2.4, “DSPI Status Register
(DSPI_SR).” Refer to Figure 29-29 and Figure 29-30 that illustrate when EOQF is set.

29.4.12.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the TFFF_RE bit in the DSPI_RSER is asserted. The TFFF_DIRS bit in the DSPI_RSER selects
whether a DMA request or an interrupt request is generated.

29.4.12.3 Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The transfer complete
request is generated at the end of each frame transfer when the TCF_RE bit is set in the DSPI_RSER. See
the TCF bit description in Section 29.3.2.4, “DSPI Status Register (DSPI_SR).” Refer to Figure 29-29 and
Figure 29-30 that illustrate when TCF is set.

29.4.12.4 Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI blocks operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in slave mode and SPI
configuration is empty, and a transfer is initiated from an external SPI master. If the TFUF bit is set while
the TFUF_RE bit in the DSPI_RSER is asserted, an interrupt request is generated.

29.4.12.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO drain request
is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the

Attempt to transmit with an empty transmit FIFO TFUF X

RX FIFO is not empty RFDF X X

Frame received while receive FIFO is full RFOF X

Table 29-34. DSPI Interrupt and DMA Request Conditions (continued)

Condition Flag Interrupt DMA

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-58 Freescale Semiconductor

DSPI_RSER is asserted. The RFDF_DIRS bit in the DSPI_RSER selects whether a DMA request or an
interrupt request is generated.

29.4.12.6 Receive FIFO Overflow Interrupt Request

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has occurred. A
receive FIFO overflow request is generated when RX FIFO and shift register are full and a transfer is
initiated. The RFOF_RE bit in the DSPI_RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPI_MCR, the data from the transfer that generated the
overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is
shifted in to the shift register. If the ROOE bit is negated, the incoming data is ignored.

29.4.12.7 DMA Requests

The connection of the DSPI DMA request signals to the DMA channel mux is described in Table 22-4.

29.4.12.8 Interrupt Requests

The DSPI interrupts are connected as described in Table 22-4.

29.4.13 Power Saving Features

The DSPI supports three power-saving strategies:

• Halt mode

• Module disable mode—clock gating of non-memory mapped logic

• Clock gating of slave interface signals and clock to memory-mapped logic

29.4.13.1 Halt Mode

By setting the appropriate bit in the SIU_HLT0 register, a request is made to shut down all clocks in the
DSPI. If no serial transfer is in progress, the DSPI immediately asserts an acknowledge signal to the
system, allowing the clocks to be disabled. If a serial transfer is in progress when the request is received,
the DSPI waits until it reaches a frame boundary before it asserts the acknowledge signal to the system.
The status of this acknowledge signal can be determined by reading the SIU_HLTACK0 register.

While the clocks are shut off, the DSPI memory-mapped logic is not accessible. The states of the interrupt
and DMA request signals cannot be changed while in halt mode.

Halt mode is exited by negating the appropriate bit in the SIU_HLT0 register.

29.4.13.2 Module Disable Mode

Module disable mode is a block-specific mode that the DSPI can enter to save power. Host software can
initiate the module disable mode by writing a 1 to the MDIS bit in the DSPI_MCR.

When the MDIS bit is asserted, the DSPI negates ipg_enable_clk at the next frame boundary. If
implemented, the ipg_enable_clk signal can stop the clock to the non-memory mapped logic. When

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-59

ipg_enable_clk is negated, the DSPI is in a dormant state, but the memory mapped registers are still
accessible. Certain read or write operations have a different affect when the DSPI is in the module disable
mode. Reading the RX FIFO pop register does not change the state of the RX FIFO. Likewise, writing to
the TX FIFO push register does not change the state of the TX FIFO. Clearing either of the FIFOs has no
effect in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPI_MCR has
no effect in the module disable mode. In the module disable mode, all status bits and register flags in the
DSPI return the correct values when read, but writing to them has no effect. Writing to the DSPI_TCR
during module disable mode has no effect. Interrupt and DMA request signals cannot be cleared while in
the module disable mode.

29.4.13.3 Slave Interface Signal Gating

The DSPI’s module enable signal is used to gate slave interface signals such as address, byte enable,
read/write and data. This prevents toggling slave interface signals from consuming power unless the DSPI
is accessed. The module enable signal can also be used to gate the clock (ipg_clk_s) to the
memory-mapped logic.

29.5 Initialization/Application Information

29.5.1 How to Change Queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of queue
management. Queues are primarily supported in SPI configuration. This section presents an example of
how to change queues for the DSPI.

1. The last command word from a queue is executed. The EOQ bit in the command word is set to
indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ
flag (EOQF) in the DSPI_SR is set.

3. Setting the EOQF flag disables both serial transmission and reception of data, putting the DSPI in
the STOPPED state. The TXRXS bit is negated to indicate the STOPPED state.

4. The eDMA continues to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel assigned
to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in
the eDMA controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the
RXCNT in DSPI_SR or by checking RFDF in the DSPI_SR after each read operation of the
DSPI_POPR.

7. Modify DMA descriptor of TX and RX channels for new queues.

8. Flush TX FIFO by writing a 1 to the CLR_TXF bit in the DSPI_MCR, Flush RX FIFO by writing
a 1 to the CLR_RXF bit in the DSPI_MCR.

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new
queue or via CPU writing directly to SPI_TCNT field in the DSPI_TCR.

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-60 Freescale Semiconductor

10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the
DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

29.5.2 Baud Rate Settings

Table 29-35 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPI_CTARn registers. The values calculated assume a 100 MHz
system frequency and the double baud rate DBR bit is clear.

29.5.3 Delay Settings

Table 29-36 shows the values for the Delay after Transfer (TDT) and CS to SCK Delay (TCSC) that can be
generated based on the prescaler values and the scaler values set in the DSPI_CTARn registers. The values
calculated assume a 100 MHz system frequency. This table does not apply for TSB continuous mode.

Table 29-35. Baud Rate Values

Baud Rate Divider Prescaler Values

2 3 5 7

B
au

d
 R

at
e

S
ca

le
r

V
al

u
es

2 25.0M 16.7M 10.0M 7.14M

4 12.5M 8.33M 5.00M 3.57M

6 8.33M 5.56M 3.33M 2.38M

8 6.25M 4.17M 2.50M 1.79M

16 3.12M 2.08M 1.25M 893k

32 1.56M 1.04M 625k 446k

64 781k 521k 312k 223k

128 391k 260k 156k 112k

256 195k 130k 78.1k 55.8k

512 97.7k 65.1k 39.1k 27.9k

1024 48.8k 32.6k 19.5k 14.0k

2048 24.4k 16.3k 9.77k 6.98k

4096 12.2k 8.14k 4.88k 3.49k

8192 6.10k 4.07k 2.44k 1.74k

16384 3.05k 2.04k 1.22k 872

32768 1.53k 1.02k 610 436

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-61

29.5.4 Oak Family Compatibility with the DSPI

Table 29-37 shows the translation of commands written to the TX FIFO command halfword with
commands written to the Command Ram of the Oak family QSPI. The table illustrates how to configure
the DSPI_CTARn registers to match the default cases for the possible combinations of the Oak Family
Control Bits in its command RAM. The defaults for the Oak Family are based on a system clock of
40 MHz. All delay variables below generate the same delay, or as close as possible, from the DSPI
100 MHz system clock that an Oak Family part would generate from its 40 MHz system clock. For other
system clock frequencies, the customer can recompute the values using Section 29.5.3, “Delay Settings.”

• For BITSE = 0 8 bits per transfer

• For DT = 0 0.425 µs delay: For this value, the closest value in the DSPI is 0.480 µs

• For DSCK = 0 1/2 SCK period: For this value, the value for the DSPI is 20 ns

Table 29-36. Delay Values

Delay Prescaler Values

1 3 5 7

D
el

ay
 S

ca
le

r
V

al
u

es

2 20.0 ns 60.0 ns 100.0 ns 140.0 ns

4 40.0 ns 120.0 ns 200.0 ns 280.0 ns

8 80.0 ns 240.0 ns 400.0 ns 560.0 ns

16 160.0 ns 480.0 ns 800.0 ns 1.1 s

32 320.0 ns 960.0 ns 1.6 s 2.2 s

64 640.0 ns 1.9 s 3.2 s 4.5 s

128 1.3 s 3.8 s 6.4 s 9.0 s

256 2.6 s 7.7 s 12.8 s 17.9 s

512 5.1 s 15.4 s 25.6 s 35.8 s

1024 10.2 s 30.7 s 51.2 s 71.7 s

2048 20.5 s 61.4 s 102.4 s 143.4 s

4096 41.0 s 122.9 s 204.8 s 286.7 s

8192 81.9 s 245.8 s 409.6 s 573.4 s

16384 163.8 s 491.5 s 819.2 s 1.1 ms

32768 327.7 s 983.0 s 1.6 ms 2.3 ms

65536 655.4 s 2.0 ms 3.3 ms 4.6 ms

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-62 Freescale Semiconductor

29.5.5 Calculation of FIFO Pointer Addresses

The user has complete visibility of the TX and RX FIFO contents through the FIFO registers, and valid
entries can be identified through a memory-mapped pointer and a memory-mapped counter for each FIFO.
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is
the transmit next pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the pop next pointer
(POPNXTPTR). Figure 29-43 illustrates the concept of first-in and last-in FIFO entries along with the
FIFO counter. The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO. See
Section 29.4.3.4, “Transmit First-In First-Out (TX FIFO) Buffering Mechanism,” and Section 29.4.3.5,
“Receive First-In First-Out (RX FIFO) Buffering Mechanism,” for details on the FIFO operation.

Figure 29-43. TX FIFO Pointers and Counter

Table 29-37. Oak Family QSPI Compatibility with the DSPI

Oak Family Control Bits
 DSPI Corresponding Control Bits

Corresponding DSPI_CTARn Register Configuration

BITSE CTAS[0] DT CTAS[1] DSCK CTAS[2] DSPI_CTARn FMSZ PDT DT PCSSCK CSSCK

0 0 0 0 1111 10 0011 00 0000

0 0 1 1 1111 10 0011 user user

0 1 0 2 1111 user1

1 Selected by user

user 00 0000

0 1 1 3 1111 user user user user

1 0 0 4 user 10 0011 00 0000

1 0 1 5 user 10 0011 user user

1 1 0 6 user user user 00 0000

1 1 1 7 user user user user user

Entry C

Entry A (first In)

– 1

Entry B

Entry D (last In)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 29-63

29.5.5.1 Address Calculation for the First-in Entry and Last-in Entry in the TX
FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

Eqn. 29-10

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Eqn. 29-11

where:
TX FIFO base: base address of TX FIFO

TXCTR: TX FIFO counter
TXNXTPTR: transmit next pointer

TX FIFO depth: transmit FIFO depth

29.5.5.2 Address Calculation for the First-in Entry and Last-in Entry in the RX
FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

Eqn. 29-12

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Eqn. 29-13

where:
RX FIFO base: base address of RX FIFO

RXCTR: RX FIFO counter
POPNXTPTR: pop next pointer

RX FIFO depth: receive FIFO depth

First-in Entry Address TX FIFO Base 4 TXNXTPTR +=

Last-in Entry address TX FIFO Base 4 modulo TX FIFO depth TXCTR TXNXTPTR 1–+ +=

First-in Entry Address RX FIFO Base 4 POPNXTPTR +=

Last-in Entry address RX FIFO Base 4 modulo RX FIFO depth RXCTR POPNXTPTR 1–+ +=

Deserial – Serial Peripheral Interface (DSPI)

MPC5668x Microcontroller Reference Manual, Rev. 4

29-64 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-1

Chapter 30
Enhanced Serial Communication Interface (eSCI)

30.1 Introduction
The eSCI allows asynchronous serial communications with peripheral devices and other CPUs. The eSCI
has special features that allow the eSCI to operate as a LIN bus master, complying with the LIN 1.3, 2.0,
2.1, and SAE J2602 specification.

30.1.1 Block Diagram

A simplified block diagram of the eSCI illustrates the functionality and interdependence of major blocks
(see Figure 30-1).

Figure 30-1. eSCI Block Diagram

30.1.2 Features

The eSCI has these major features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

Receive
Shift Register

16

RXD

Polarity
Control

Baud Rate
Generator

Receive
Data Register

TXD
Transmit

Data Register

Transmit
Shift Register

Internal Data Bus

Receive
Control
Wakeup
Control

Frame Format
Control

Transmit
Control

Internal Data Bus

Interrupt
Generation

Loop
Control

CPU
IRQ

RX DMA
Channel

DMA
CTRL

TX DMA
Channel

DMA
Control

LIN FSM
Control

TCLK

RCLKBUS
CLK

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-2 Freescale Semiconductor

• 13-bit baud rate selection

• Programmable frame, payload, and character format

• Support of 2 stop bits in receiver path

• Hardware parity generation and checking

— Programmable even or odd parity

• Programmable polarity of RXD pin

• Separately enabled transmitter and receiver

• Two receiver wake up methods:

— Idle line wake-up

— Address mark wake-up

• Interrupt-driven operation with eight flags:

— Transmitter empty

— Transmission complete

— Receiver full

— Idle receiver input

— Receiver overrun

— Noise error

— Framing error

— Parity error

• Receiver framing error detection

• 1/16 bit-time noise detection

• 2 channel DMA interface

• LIN support

— LIN Master Node functionality (master and slave task)

— Compatible with LIN slaves from revisions 1.x and 2.0 of the LIN standard

— Detection of Bit Errors, Physical Bus Errors, and Checksum Errors

— All status bit can generate maskable interrupts

— Application layer CRC support

— Programmable CRC polynom

— Detection and generation of wakeup characters

— Programmable wakeup delimiter time

— Programmable slave timeout

— Can be configured to include header bits in checksum

— LIN DMA interface

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-3

30.1.3 Modes of Operation

The SCI module has two functional operational modes, SCI and LIN mode, and low power modes. The
availability of register bits and fields depends on the selected operational mode.

30.1.3.1 SCI Mode

The SCI mode is the default functional operational mode and is described in Section 30.4.5, “SCI Mode.”

30.1.3.2 LIN Mode

The LIN mode is the second functional operational mode and is described in Section 30.4.6, “LIN Mode.”

30.1.3.3 Disabled Mode

In the Disabled mode, the eSCI module indicates to the clocking system that all module clocks can be
turned off. The eSCI module is in the Disabled mode when the MDIS bit in the eSCI Control Register 2
(eSCI_CR2) is set.

30.1.3.4 Halt Mode

When the eSCI module is in halt mode, it is inactive and indicates to the system that all clocks to the eSCI
modules can be turned off.

The system requests the eSCI module to enter the halt mode when the appropriate HLT bit is set in the
SIU_HLT0 (for eSCI_A to eSCI_H) or SIU_HLT1 (for eSCI_J to eSCI_M register. When this happens,
the eSCI module performs a shut down of the ongoing transmission or reception as described in
Section 30.1.3.4.1, “Entering Halt Mode from SCI Mode” and Section 30.1.3.4.3, “Entering Halt Mode
from LIN Mode.” If the eSCI module is in halt mode and the system stop signal is de-asserted and the LIN
bit and the MDIS bit are 0, the eSCI module enters the SCI mode. The TRDE flag is set. No data will be
transmitted as long as new data is provided by the application. If the receiver is still enabled, it starts the
detection of the start bit.

The system requests the eSCI module to leave the halt mode by de-asserting the HLT bit. When this
happens, the eSCI module then enters the operational mode configured by the LIN bit and the MDIS bit.
The related sequence is described in Section 30.1.3.4.2, “Leaving Halt Mode into SCI Mode” and
Section 30.1.3.4.4, “Leaving Halt Mode into LIN Mode.”

30.1.3.4.1 Entering Halt Mode from SCI Mode

If the eSCI module is in SCI mode and the system stop signal is asserted while a SCI frame or character
transmission is running, the eSCI module performs a shut down of the transmit process. Therefore, it
continues the ongoing frame or character transmission until the last bit of the SCI frame or character has
been transmitted. After the end of the transmission, all pending transfer requests are cleared and no more
data will be transmitted. None of the transmitter related register flags will be set.

If the eSCI module is in SCI mode and the system stop signal is asserted while a SCI frame or character
reception is running, the module stops the reception immediately. None of the receiver related register
flags will be set.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-4 Freescale Semiconductor

If the eSCI module is in SCI mode and the system stop signal is asserted and no transmission or reception
is running, the eSCI module enters the halt mode.

30.1.3.4.2 Leaving Halt Mode into SCI Mode

If the eSCI module is in halt mode and the system stop signal is de-asserted and the LIN bit and the MDIS
bit are 0, the eSCI module enters the SCI mode. The TRDE flag is set. No data will be transmitted as long
as new data is provided by the application. If the receiver is still enabled, it starts the detection of the start
bit.

30.1.3.4.3 Entering Halt Mode from LIN Mode

If the eSCI module is in LIN mode and the system stop signal is asserted while a LIN byte field or character
transmission is running, the eSCI module performs a shut down of the transmit process. Therefore, it
continues the ongoing LIN byte field or character transmission until the last bit of the LIN byte field or
character has been transmitted. After the end of the transmission, all pending transfer requests are cleared
and no more data will be transmitted. None of the transmitter related register flags will be set.

If the eSCI module is in LIN mode and the system stop signal is asserted while a LIN byte field or character
reception is running, the eSCI module aborts the reception immediately. None of the receiver related
register flags will be set.

If the eSCI module is in LIN mode and the system stop signal is asserted and no transmission or reception
is running, the eSCI module resets the LIN protocol engine to its idle state, resets the write access counter
of the LIN Transmit Register (eSCI_LTR) and enters the halt mode.

30.1.3.4.4 Leaving Halt Mode into LIN Mode

If the eSCI module is in halt mode and the system stop signal is de-asserted and the LIN bit is set and the
MDIS bit is 0, the eSCI module enters the LIN mode. The TXRDY flag is set. No data will be transmitted
as long as new LIN frame header data is provided by the application. If the receiver is still enabled, it starts
the detection of the start bit.

30.2 External Signal Description
Each eSCI_x module has two external signals: TXD_x (transmit data output of eSCI_x) and RXD_x
(receive data input of eSCI_x). Refer to Table 2-1 and Section 2.2, “Signal Properties Summary,” for
detailed signal descriptions.

30.3 Memory Map and Registers
This section provides the memory map and a detailed description of the memory mapped registers.

30.3.1 Memory Map

The eSCI memory map is shown in Table 30-1. The address of each register is given as an offset to the
eSCI base address. Registers are listed in address order, identified by complete name and mnemonic, and
include the type of accesses allowed.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-5

NOTE
eSCI_G, eSCI_H, eSCI_J, eSCI_K, eSCI_L, and eSCI_M are not
implemented on the MPC5668G.

30.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Writes to a reserved register location do not have any effect and
reads of these locations return a 0. Details of register bit and field function follow the register diagrams,
in bit order.

Table 30-1. eSCI Memory Map

Offset from
ESCI_BASE

eSCI_A = 0xFFFA_0000
eSCI_B = 0xFFFA_4000
eSCI_C = 0xFFFA_8000
eSCI_D = 0xFFFA_C000
eSCI_E = 0xFFFB_0000
eSCI_F = 0xFFFB_4000
eSCI_G = 0xFFFB_8000
eSCI_H = 0xFFFB_C000
eSCI_J = 0xC3FA_0000
eSCI_K = 0xC3FA_4000
eSCI_L = 0xC3FA_8000
eSCI_M = 0xC3FA_C000

Register Access
Reset
Value

Section/Page

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0xA000 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x8000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x4000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-6 Freescale Semiconductor

30.3.2.1 eSCI Baud Rate Register (eSCI_BRR)

This register provides the control value for the serial baud rate. The baud rate and clock generation is
specified in Section 30.4.3, “Baud Rate and Clock Generation.”

A byte write access to only the upper byte of this register (eSCI_BRR[0:7]) will not change the content of
the register. Instead, the written byte is stored internally into a shadow register. A subsequent byte write
access to only the lower byte of this register (eSCI_BRR[8:15]) updates the lower byte and copies the
contents of the shadow register into the upper byte.

A byte write access to only the lower byte of this register (eSCI_BRR[8:0]) without a preceding byte write
access to only the upper byte copies a value of all zeroes into the upper byte.

A word write access to this register updates both the lower and upper byte immediately and is the
recommended write access type for this register.

30.3.2.2 eSCI Control Register 1 (eSCI_CR1)

This register provides bits to configure the functionality of the module, provides the interrupt enable bits
for the interrupt flags provided in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) and provides
the control bits for the transmitter and receiver.

Offset: ESCI_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
SBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 30-2. eSCI Baud Rate Register (eSCI_BRR)

Table 30-2. eSCI_BRR Field Descriptions

Field Description

SBR Serial Baud Rate. This field provides the baud rate control value SBR.

Offset: ESCI_BASE + 0x0002 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LOOPS

0
RSRC M WAKE ILT PE PT TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-3. eSCI Control Register 1 (eSCI_CR1)

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-7

Table 30-3. eSCI_CR1 Field Descriptions

Field Description

LOOPS Loop Mode Select. Together with the RSRC control bit, this control bit defines the receiver source mode. The
mode coding is defined in Table 30-4 and the modes are described in Section 30.4.5.3.2, “Receiver Input Mode
Selection.”

RSRC Receiver Source Control. Together with the LOOPS control bit, this control bit defines the receiver source mode.
The mode coding is defined in Table 30-4 and the modes are described in Section 30.4.5.3.2, “Receiver Input
Mode Selection.”

M Frame Format Mode. Together with the M2 bit of the eSCI Control Register 3 (eSCI_CR3), this control bit controls
the frame format used. The supported frame formats and the related settings are described in Section 30.4.2,
“Frame Formats.”

WAKE Receiver Wake-up Condition. This control bit defines the wake-up condition for the receiver. The receiver
wake-up is described in Section 30.4.5.5, “Multiprocessor Communication.”
0 Idle line wake-up.
1 Address mark wake-up

ILT Idle Line Type. This control bit defines the type of idle line detection for the receiver wake-up. The two types are
described in Section 30.4.5.5.1, “Idle-Line Wakeup.”
0 Idle line detection starts after reception of a low bit.
1 Idle line detection starts after reception of the last stop bit.

PE Parity Enable. This control bit enables the parity bit generation and checking. The location of the parity bits is
shown in Section 30.4.2, “Frame Formats.”
0 Parity bit generation and checking disabled.
1 Parity bit generation and checking enabled.

PT Parity Type. This control bit defines whether even or odd parity has to be used.
0 Even parity (even number of ones in character clears the parity bit).
1 Odd parity (odd number of ones in character clears the parity bit).

TIE Transmitter Interrupt Enable. This bit controls the eSCI_IFSR1[TRDE] interrupt request generation.
0 TDRE interrupt request generation disabled.
1 TDRE interrupt request generation enabled.

TCIE Transmission Complete Interrupt Enable. This bit controls the eSCI_IFSR1[TC] interrupt request generation.
0 TC interrupt request generation disabled.
1 TC interrupt request generation enabled.

RIE Receiver Full Interrupt Enable. This bit controls the eSCI_IFSR1[RDRF] interrupt request generation.
0 RDRF interrupt request generation disabled.
1 RDRF interrupt request generation enabled.

ILIE Idle Line Interrupt Enable. This bit controls eSCI_IFSR1[IDLE] interrupt request generation.
0 IDLE interrupt request generation disabled.
1 IDLE interrupt request generation enabled.

TE Transmitter Enable. This control bit enables and disables the transmitter. The control features of the transmitter
are described in Section 30.4.5.2.1, “Transmitter States and Transitions.”
0 Transmitter disabled.
1 Transmitter enabled.

RE Receiver Enable.This control bit enables and disables the receiver. The control features of the receiver are
described in Section 30.4.5.3.1, “Receiver States and Transitions.”
0 Receiver disabled.
1 Receiver enabled.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-8 Freescale Semiconductor

30.3.2.3 eSCI Control Register 2 (eSCI_CR2)

This register provides bits to configure the functionality of the module, and interrupt enable bits for the
interrupt flags provided in eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) and control bits for the
transmitter and receiver.

RWU Receiver Wake-Up Mode. This bit controls and indicates the receiver wake-up mode, which is described in
Section 30.4.5.5, “Multiprocessor Communication.”
0 Normal receiver operation.
1 Receiver is in wake-up mode.
Note: This bit should be set in SCI mode only.

SBK Send Break Character. This bit controls the transmission of break characters, which is described in
Section 30.4.5.2.7, “Break Character Transmission.”
0 No break characters are transmitted.
1 Break characters are transmitted.
Note: This bit should be set in SCI mode only.

Table 30-4. Receive Source Mode Selection

LOOPS RSCR Receiver Input Mode

0 0 Dual Wire Mode

0 1 Reserved

1 0 Loop Mode

1 1 Single Wire Mode

Offset: ESCI_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FBR BSTP

BERR
IE

RX
DMA

TX
DMA

BRCL
TX
DIR

BE
SM

BE
STP

RX
POL

P
MSK

ORIE NFIE FEIE PFIE
W

Reset 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-4. eSCI Control Register 2 (eSCI_CR2)

Table 30-3. eSCI_CR1 Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-9

Table 30-5. eSCI_CR2 Field Descriptions

Field Description

MDIS Module Disabled Mode. This bit controls the module mode of operation, which is described in Section 30.1.3,
“Modes of Operation.”
0 Module is not in disabled mode.
1 Module is in disabled mode.

FBR Fast Bit Error Detection. This bit controls the Bit Error Detection mode.
0 Standard bit error detection performed as described in
Note: 1Fast bit error detection performed as described in This bit is used in LIN mode only.

BSTP DMA Stop on Bit Error or Physical Bus Error. This bit controls the transmit DMA requests generation in case of
bit errors or physical bus errors. Bit errors are indicated by the BERR flag in the Interrupt Flag and Status Register
1 (eSCI_IFSR1) and physical bus errors are indicated by the PBERR flag in the Interrupt Flag and Status
Register 2 (eSCI_IFSR2).
0 Transmit DMA requests generated regardless of bit errors or physical bus errors.
1 Transmit DMA requests are not generated if eSCI_IFSR1[BERR] or eSCI_IFSR2[PBERR] flags are set.
Note: This bit is used in LIN mode only.

BERRIE Bit Error Interrupt Enable. This bit controls the BERR interrupt request generation.
0 BERR interrupt request generation disabled.
1 BERR interrupt request generation enabled.

RXDMA Receive DMA Control. This bit enables the receive DMA feature.
0 Receive DMA disabled.
1 Receive DMA enabled.

TXDMA Transmit DMA Control. This bit enables the transmit DMA feature.
0 Transmit DMA disabled.
1 Transmit DMA enabled.

BRCL Break Character Length. This bit is used to define the length of the break character to be transmitted.
The settings are specified in Section 30.4.2.2, “Break Character Formats.”

TXDIR TXD pin output enable. This bit determines whether the TXD pin is used as an output.
0 TXD pin is not used as output.
1 TXD pin is used as output.
Note: This bit is used in Single Wire Mode only.

BESM Fast Bit Error Detection Sample Mode. This bit defines the sample point for the fast bit error detection mode.
0 Sample point is RS9.
1 Sample point is RS13.
Note: This bit is used in LIN mode only.

BESTP Transmit Stop on Bit Error. If this control bit is set, the eSCI stops driving the LIN bus immediately when a Bit
Error has been detected, i.e. eSCI_IFSR1[BERR] = 1. Additionally, the eSCI will not start a new byte
transmission as long the BERR interrupt flag is set.
0 Transmission is not stopped on bit error.
1 Transmission is stopped on bit error.
Note: This bit is used in LIN mode only.

RXPOL RXD Pin polarity. This bit controls the polarity of the RXD pin. See Section 30.4.2.1.1, “Inverted Data Frame
Formats.”
0 Normal Polarity.
1 Inverted Polarity.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-10 Freescale Semiconductor

30.3.2.4 eSCI Data Register (eSCI_DR)

This register is used to provide transmit data and retrieve received data in SCI mode. In LIN mode any
write access to this register is ignored and any read access returns all 0. In case of data transmission this
register is used to provide a part of the transmit data. In case of data reception this register provides a part
of the received data and related error information.

If the application writes to the lower byte of this register (eSCI_SDR[7:0]), the internal commit flag iCMT,
which is not visible to the application, is set to indicate that the register has been updated and ready to
transmit new data.

If the application reads from the lower byte of this register (eSCI_SDR[7:0]), a signal is send to the internal
receiver unit to indicate that the register was r

PMSK Parity Bit Masking. This bit defines whether the received parity bit is presented in the related bit position in the
SCI Data Register (eSCI_SDR).
0 The received parity bit is presented in the bit position related to the parity bit.
1 The value 0 is presented in the bit position related to the parity bit.

ORIE Overrun Interrupt Enable. This bit controls the eSCI_IFSR1[OR] interrupt request generation.
0 OR interrupt request generation disabled.
1 OR interrupt request generation enabled.

NFIE Noise Interrupt Enable. This bit controls the eSCI_IFSR1[NF] interrupt request generation.
0 NF interrupt request generation disabled.
1 NF interrupt request generation enabled.

FEIE Frame Error Interrupt Enable. This bit controls the eSCI_IFSR1[FE] interrupt request generation.
0 FE interrupt request generation disabled.
1 FE interrupt request generation enabled.

PFIE Parity Error Interrupt Enable. This bit controls the eSCI_IFSR1[PF] interrupt request generation.
0 PF interrupt request generation disabled.
1 PF interrupt request generation enabled.

Offset: ESCI_BASE + 0x0006 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RN
TN

ERR 0 RD[11:8] RD[7] RD[6:0]

W TD[7] TD[6:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-5. eSCI Data Register (eSCI_DR)

Table 30-5. eSCI_CR2 Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-11

30.3.2.5 eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1)

This register provides interrupt flags that indicate the occurrence of module events. The related interrupt
enable bits are located in Control Register 1 (eSCI_CR1) and Control Register 2 (eSCI_CR2).

Table 30-6. eSCI_DR Field Descriptions

Field Description

RN Received Most Significant Bit. The semantic of this bit depends on the frame format selected by eSCI_CR3[M2],
eSCI_CR1[M], and eSCI_CR1[PE].
[M2 = 0,M = 1,PE = 0]: value of received data bit 8 or address bit.
[M2 = 0,M = 1,PE = 1]: value of received parity bit if eSCI_CR2[PMSK] = 0, 0 otherwise.
[M2 = 1,M = 0,PE = 1]: value of received parity bit if eSCI_CR2[PMSK] = 0, 0 otherwise.
[M2 = 1,M = 1,PE = 1]: value of received parity bit if eSCI_CR2[PMSK] = 0, 0 otherwise.
It is 0 for all other frame formats.

TN Transmit Most Significant Bit. The semantic of this bit depends on the frame format selected by eSCI_CR3[M2],
eSCI_CR1[M], and eSCI_CR1[PE].
[M2 = 0,M = 1,PE = 0]: value to be transmitted as data bit 8 or address bit.
It is not used for all other frame formats.

ERR Receive Error Bit. This bit indicates the occurrence of the errors selected by the Control Register 3 (eSCI_CR3)
during the reception of the frame presented in SCI Data Register (eSCI_SDR). In case of an overrun error for
subsequent frames this bit is set too.
0 None of the selected errors occured.
1 At least one of the selected errors occured.

RD[11:8] Received Data. The semantic of this field depends on the frame format selected by eSCI_CR3[M2] and
eSCI_CR1[M].
[M2 = 1,M = 1]: value of the received data bits 11:8. (Rn = BITn).
It is all 0 for all other frame formats.

RD7 Received Bit 7. The semantic of this bit depends on the format selected by eSCI_CR3[M2], eSCI_CR1[M], and
eSCI_CR1[PE].
[M2 = 0,M = 0,PE = 0]: value of received bit 7 or ADDR bit.
[M2 = 0,M = 0,PE = 1]: value of received parity bit if eSCI_CR2[PMSK] = 0, 0 otherwise.
For all other frame formats it is the value of received bit 7.

TD7 Transmit Bit 7. The semantic of this bit depends on the format selected by eSCI_CR3[M2], eSCI_CR1[M], and
eSCI_CR1[PE].
[M2 = 0,M = 0,PE = 0]: value of transmit bit 7 or ADDR bit.
[M2 = 0,M = 0,PE = 1]: not used. Parity bit is generated internally before transmission.
For all other frame formats it is the value of transmit bit 7.

RD[6:0] Received bits 6 to 0. Value of received BITn is shown in bit RDn

TD[6:0] Transmit bits 6 to 0. Value of bit TDn is transmitted in BITn.

Offset: ESCI_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TDRE TC RDRF IDLE OR NF FE PF 0 0 0 BERR 0 0 TACT RACT

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-6. eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1)

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-12 Freescale Semiconductor

30.3.2.6 eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2)

This register provides interrupt flags that indicate the occurrence of LIN related events. The related
interrupt enable bits are located in eSCI LIN Control Register 1 (eSCI_LCR1) and eSCI LIN Control
Register 2 (eSCI_LCR2). All interrupt flags in this register are set in LIN mode only.

Table 30-7. eSCI_IFSR1 Field Descriptions

Field Description

TDRE Transmit Data Register Empty Interrupt Flag. This interrupt flag is set when the content of the SCI Data Register
(eSCI_SDR) is transferred into the internal shift register.
Note: This flag is set in SCI mode only.

TC Transmit Complete Interrupt Flag. This interrupt flag is set when a frame, break or idle character transmission
has been completed and no data were written into SCI Data Register (eSCI_SDR) after the last setting of the
TDRE flag and the SBK bit in Control Register 1 (eSCI_CR1) is 0.
This flag is set in LIN mode if the preamble was transmitted after enabling the transmitter.

RDRF Receive Data Register Full Interrupt Flag. This interrupt flag is set when the payload data of a received frame is
transferred into the SCI Data Register (eSCI_SDR).
Note: This flag is set in SCI mode only.

IDLE Idle Line Flag. This flag is set when an idle character was detected and the receiver is not in the wakeup state.
Note: This flag is set in SCI mode only.

OR Overrun Flag. This flag is set when an overrun was detected as described in Section 30.4.5.3.11, “Receiver
Overrun.”
Note: This flag is set in SCI mode only.

NF Noise Interrupt Flag. This flag is set when the payload data of a received frame was transferred into the SCI Data
Register (eSCI_SDR) or LIN Receive Register (eSCI_LRR) and the receiver has detected noise during the
reception of that frame, as described in Section 30.4.5.3.13, “Bit Sampling.”

FE Framing Error Interrupt Flag. This interrupt flag is set when the payload data of a received frame was transferred
into the SCI Data Register (eSCI_SDR) or LIN Receive Register (eSCI_LRR) and the receiver has detected a
framing error during the reception of that frame, as described in Section 30.4.5.3.18, “Stop Bit Verification.”

PF Parity Error Interrupt Flag. This interrupt flag is set when the payload data of a received frame was transferred
into the SCI Data Register (eSCI_SDR) and the receiver has detected a parity error for the character, as
described in Section 30.4.5.4, “Reception Error Reporting.”
Note: This flag is set in SCI mode only.

BERR Bit Error Flag. This flag is set when a bit error was detected as described in Section 30.4.6.5.3, “Standard Bit
Error Detection.”
Note: This flag is set in LIN mode only.

TACT Transmitter Active. The status bit is set as long as the transmission of a frame or special character is ongoing.
0 No transmission in progress.
1 Transmission in progress.

RACT Receiver Active. The bit is set 3 receiver clock (RCLK) cycles after the successful qualification of a start bit. This
bit is cleared when an idle character is detected.
0 No reception in progress.
1 Reception in progress.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-13

30.3.2.7 eSCI LIN Control Register 1 (eSCI_LCR1)

This register provides control bits to control and configure the LIN hardware. This register provides the
interrupt enable bits for the interrupt flags in Interrupt Flag and Status Register 2 (eSCI_IFSR2).

Offset: ESCI_BASE + 0x000A Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RX
RDY

TX
RDY

L
WAKE

STO
PB

ERR
CERR

CK
ERR

FRC 0 0 0 0 0 0 UREQ OVFL

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-7. eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2)

Table 30-8. LINSTAT1 Field Descriptions

Field Description

RXRDY Receive Data Ready Interrupt Flag. This interrupt flag is set when the payload data of a received frame is
transferred into the LIN Receive Register (eSCI_LRR).

TXRDY Transmit Data Ready Interrupt Flag. This interrupt flag is set when the content of the LIN Transmit Register
(eSCI_LTR) is processed by the LIN PE either to generate a frame header or to transmit frame data.

LWAKE LIN Wakeup Received Flag. This interrupt flag is set when a LIN wakeup character is received, as described in
Section 30.4.6.6, “LIN Wakeup.”

STO Slave Timeout Interrupt Flag. This interrupt flag is set when a Slave-Not-Responding-Error is detected. A
detailed description is given in Section 30.4.6.5.5, “Slave-Not-Responding-Error Detection.”

PBERR Physical Bus Error Flag. This interrupt flag is set when the receiver input remains unchanged for at least 31
RCLK clock cycles after the start of a byte transmission, as described in Section 30.4.6.5, “LIN Error Reporting.”

CERR CRC Error Flag. This interrupt flag is set when an incorrect CRC pattern was detected for a received LIN frame.

CKERR Checksum Error Flag. This interrupt flag is set when a checksum error was detected for a received LIN frame.

FRC Frame Complete Flag. This interrupt flag is set when a LIN frame was completely transmitted or received.

UREQ Unrequested Data Received Flag. This interrupt flag is set when unrequested activity has been detected on the
LIN bus, as described in Section 30.4.6.5, “LIN Error Reporting.”

OVFL Overflow Flag. This interrupt flag is set when an overflow as described in Section 30.4.6.5.8, “Overflow
Detection,” was detected.

Offset: ESCI_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LRES WU WUD

0 0
PRTY LIN RXIE TXIE WUIE STIE PBIE CIE CKIE FCIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-8. eSCI LIN Control Register 1 (eSCI_LCR1)

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-14 Freescale Semiconductor

Table 30-9. eSCI_LCR1 Field Descriptions

Field Description

LRES LIN FSM Resync. This bit controls the state of the LIN protocol engine.
0 LIN protocol engine in normal mode.
1 LIN protocol engine hold in initial state.

WU LIN Bus Wake-Up Trigger. This bit is used to trigger the generation of a wake-up signal on the LIN bus, as
described in Section 30.4.6.6, “LIN Wakeup.”
0 Write has no effect.
1 Write triggers the generation of a wakeup signal.

WUD LIN Bus Wake-Up Delimiter Time. This field determines how long the LIN protocol engine waits after the end of
the transmitted wakeup signal, before starting the next LIN frame transmission.
00 4 bit times.
01 8 bit times.
10 32 bit times.
11 64 bit times.

PRTY Parity Generation Control. This bit controls the generation of the two parity bits in the LIN header.
0 Parity bits generation disabled.
1 Parity bits generation enabled.

LIN LIN Mode Control. This bit controls whether the device is in SCI or LIN Mode.
0 SCI Mode.
1 LIN Mode.

RXIE Receive Data Ready Interrupt Enable. This bit controls the eSCI_IFSR2[RXRDY] interrupt request generation.
0 RXRDY interrupt request generation disabled.
1 RXRDY interrupt request generation enabled.

TXIE Transmit Data Ready Interrupt Enable. This bit controls the eSCI_IFSR2[TXRDY] interrupt request generation.
0 TXRDY interrupt request generation disabled.
1 TXRDY interrupt request generation enabled.

WUIE LIN Wakeup Received Interrupt Enable. This bit controls the eSCI_IFSR2[LWAKE] interrupt request generation.
0 LWAKE interrupt request generation disabled.
1 LWAKE interrupt request generation enabled.

STIE Slave Timeout Flag Interrupt Enable. This bit controls the eSCI_IFSR2[STO] interrupt request generation.
0 STO interrupt request generation disabled.
1 STO interrupt request generation enabled.

PBIE Physical Bus Error Interrupt Enable. This bit controls the eSCI_IFSR2[PBERR] interrupt request generation.
0 PBERR interrupt request generation disabled.
1 PBERR interrupt request generation enabled.

CIE CRC Error Interrupt Enable. This bit controls the eSCI_IFSR2[CERR] interrupt request generation.
0 CERR interrupt request generation disabled.
1 CERR interrupt request generation enabled.

CKIE Checksum Error Interrupt Enable. This bit controls the eSCI_IFSR2[CKERR] interrupt request generation.
0 CKERR interrupt request generation disabled.
1 CKERR interrupt request generation enabled.

FCIE Frame Complete Interrupt Enable. This bit controls the eSCI_IFSR2[FRC] interrupt request generation.
0 FRC interrupt request generation disabled.
1 FRC interrupt request generation enabled.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-15

30.3.2.8 eSCI LIN Control Register 2 (eSCI_LCR2)

This register provides the interrupt enable bits for the interrupt flags in Interrupt Flag and Status Register
2 (eSCI_IFSR2).

30.3.2.9 eSCI LIN Transmit Register (eSCI_LTR)

This register is used by the application to initiate the LIN frame header generation for both LIN TX frames
and LIN RX frames. If a LIN TX frame is generated, this register is used to provide the payload data for
the LIN TX frame.

If the application initiates a LIN TX frame transfer, i.e the TD bit is set to 1, the content and usage shown
in LIN Transmit Register (eSCI_LTR) — LIN TX Frame Generation applies (Figure 30-10). The initiation
and transmit of a TX frame is described in Section 30.4.6.3, “LIN TX Frame Generation.”

If the application initiates an LIN RX frame, i.e the TD bit is set to 0, the content and usage shown in LIN
Transmit Register (eSCI_LTR) — LIN RX Frame Generation applies (Figure 30-11). The initiation and
transmit of a RX frame is described in Section 30.4.6.4, “LIN RX Frame Generation.”

Each write access to this register increments the internal write access counter and enables the writing to
the next field. The write access counter is reset if:

• The LIN PE is in the idle state (eSCI_LCR1[LRES] = 1)

• A LIN TX frame was completely transmitted (eSCI_IFSR1[FRC] was set to 1)

• A LIN RX frame was completely received (eSCI_IFSR1[FRC] was set to 1)

• The module has entered halt mode.

Offset: ESCI_BASE + 0x000E Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
UQIE OFIE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-9. eSCI LIN Control Register 2 (eSCI_LCR2)

Table 30-10. eSCI_LCR2 Field Descriptions

Field Description

UQIE Unrequested Data Received Interrupt Enable. This bit controls the eSCI_IFSR2[UREQ] interrupt request
generation.
0 UREQ interrupt request generation disabled.
1 UREQ interrupt request generation enabled.

OFIE Overflow Interrupt Enable. This bit controls the LINSTAT2[OVFL] interrupt request generation.
0 OVFL interrupt request generation disabled.
1 OVFL interrupt request generation enabled.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-16 Freescale Semiconductor

The content and usage of the eSCI LIN TX Register (eSCI_LTR) depends on the transfer direction of
initiated frame. If the application initiates a TX frame transfer, i.e., the TD bit is set to 1, the content and
usage shown in eSCI LIN TX Register (eSCI_LTR) — TX Frame Generation register (Figure 30-10)
applies. If the application initiates an RX frame, i.e., the TD bit is set to 0, the content and usage shown in
eSCI LIN TX Register (eSCI_LTR) — RX Frame Generation register (Figure 30-11) applies.

The initiation and transmit of a TX frame is described in Section 30.4.6.3, “LIN TX Frame Generation.”
The initiation and transmit of a RX frame is described in Section 30.4.6.4, “LIN RX Frame Generation.”

NOTE
When the eSCI module is in LIN mode and transmits or receives a LIN
frame, if the CPU requests Stop Mode, and the Stop Mode is left, a
subsequent triggered LIN RX Frame reception may hang. The module will
never assert the eSCI_IFSR2[RXRDY] and eSCI_IFSR2[TXRDY] flags.
The application should ensure that no LIN transmission is running before it
requests Stop Mode by checking the status of the eSCI_IFSR1[TACT] and
eSCI_IFSR1[RACT] status flags.

Offset: ESCI_BASE + 0x0010 Access: User write-only
(TD = 1)

Byte 0 1 2 3 4 5 6 7

R

1st W P[1:0] ID[5:0]

2nd W LEN

3rd W CSM CSE CRC TD (= 1) TO (ignored)

4th+ W DATA

Reset 0 0 0 0 0 0 0 0

Figure 30-10. eSCI LIN TX Register (eSCI_LTR) — TX Frame Generation

Offset: ESCI_BASE + 0x0010 Access: User write-only
(TD = 0)

Byte 0 1 2 3 4 5 6 7

R

1st W P[1:0] ID[5:0]

2nd W LEN

3rd W CSM CSE CRC TD (= 0) TO[11:8]

4th W TO[7:0]

Reset 0 0 0 0 0 0 0 0

Figure 30-11. eSCI LIN TX Register (eSCI_LTR) — RX Frame Generation

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-17

30.3.2.10 eSCI LIN Receive Register (eSCI_LRR)

This register provides the data bytes of received LIN RX frames.

Table 30-11. eSCI_LTR Field Descriptions

Field Description

P[1:0] Identifier Parity. This field provides the identifier parity that is used to create the protected identifier if the
automatic identifier parity generation is disabled, i.e., the PRTY bit in the eSCI LIN Control Register 1
(eSCI_LCR1) is 0.

ID[5:0] Identifier. This field is used for the identifier field in the protected identifier.

LEN Frame Length. This field defines the number of data bytes to be transmitted or received.

CSM Checksum Model. This bit controls the checksum calculation model used.
0 Classic Checksum Model (LIN 1.3).
1 Enhanced Checksum Model (LIN 2.0).

CSE Checksum Enable. This bit control the generation and checking of the checksum byte.
0 No generation and checking of checksum byte.
1 Generation and checking of checksum byte.

CRC CRC Enable. This bit controls the generation of checking standard or enhanced LIN frames, which are described
in Section 30.4.6.2, “LIN Frame Formats.”
0 Standard LIN frame generation and checking.
1 Enhanced LIN frame generation and checking.

TD Transfer Direction. This bit control the transfer direction of the data, CRC, and checksum byte fields.
0 Data, CRC, and Checksum byte fields received, described in Section 30.4.6.4, “LIN RX Frame Generation.”
1 Data, CRC, and Checksum byte fields transmitted, described in Section 30.4.6.3, “LIN TX Frame Generation.”

TO Timeout Value. The content of the field depends on the transfer direction.
RX frame: Defines the time available for a complete RX frame transfer, as described in Section 30.4.6.5.5,
“Slave-Not-Responding-Error Detection.”
TX frame: Must be set to 0.

DATA Transmit Data. Data bits for transmission.

Offset: ESCI_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R D 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-12. eSCI LIN Receive X Register (eSCI_LRR)

Table 30-12. LINRX Field Descriptions

Field Description

D Receive Data. This field provides the data bytes of received LIN RX frames.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-18 Freescale Semiconductor

30.3.2.11 eSCI LIN CRC Polynomial Register (eSCI_LPR)

This register provides the CRC polynom for generation and processing of CRC-enhanced LIN frames.

30.3.2.12 eSCI Control Register 3 (eSCI_CR3)

This register is used to control the frame formats and the generation of the ERR bit in the SCI Data Register
(eSCI_SDR).

Offset: ESCI_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P

W

Reset 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1

Figure 30-13. eSCI LIN CRC Polynomial Register (eSCI_LPR)

Table 30-13. eSCI_LPR Field Descriptions

Field Description

Pn Polynomial bit xPn. Used to define the LIN polynomial. The standard is x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1 (the
polynomial used for the CAN protocol).

Offset: ESCI_BASE + 0x001A Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
SYNM EROE ERFE ERPE M2

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-14. eSCI Control Register 1 (eSCI_CR1)

Table 30-14. eSCI_CR1 Field Descriptions

Field Description

SYNM Synchronization Mode. This bit controls the synchronization mode of the receiver. The synchronization modes
are described in Section 30.4.5.3.14, “Bit Synchronization.”
0 Synchronization performed at each falling data bit edge.
1 Synchronization performed at start bit qualification only.

EROE ERR flag overrun enable.
0 SCIDRH[ERR] flag not affected by overrun detection.
1 SCIDRH[ERR] flag is set on overrun detection during frame reception.

ERFE ERR flag frame error enable.
0 eSCI_SDR[ERR] flag not affected by frame error detection.
1 eSCI_SDR[ERR] flag is set on frame error detection for the data provided in eSCI_SDR.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-19

ERPE ERR flag parity error enable.
0 eSCI_SDR[ERR] flag not affected by parity error detection.
1 eSCI_SDR[ERR] flag is set on parity error detection for the data provided in eSCI_SDR.

M2 Frame Format Mode 2. Together with the M bit of the Control Register 1 (eSCI_CR1), this bit controls the frame
format used. The supported frame formats and the related settings are defined in Section 30.4.2, “Frame
Formats.”

Table 30-14. eSCI_CR1 Field Descriptions (continued)

Field Description

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-20 Freescale Semiconductor

30.4 Functional Description
This section provides a complete functional description of the eSCI block, detailing the operation of the
design from the end user perspective in a number of subsections.

30.4.1 Module Control

The operational mode of the module is controlled by the MDIS bit in the eSCI Control Register 2
(eSCI_CR2). The module can transmit and receive data when it is enabled, i.e., MDIS = 1.

30.4.2 Frame Formats

The eSCI module uses the standard NRZ mark/space data format. The eSCI supports three basic frame
types, which are the data frames, break characters, and idle characters.

30.4.2.1 Data Frame Formats

Each data frame contains a character that is surrounded by a start bit, an optional parity or address bit, and
one or two stop bits. The supported data frame formats for transmission and reception are specified in
Table 30-15. The supported data frame formats for reception only are specified in Table 30-16.

Table 30-15. Supported Data Frame Formats for RX and TX

Control Frame Content

eSCI_CR3 eSCI_CR1

Start
Bits

Payload Bits

Stop
Bits

M2 M PE WAKE
Character

Bits
Address

Bits1

1 The address bit identifies the frame as an address character. See Section 30.4.5.5, “Multiprocessor
Communication.”

Parity
Bits

LIN byte fields (Figure 30-15)

0 0 0 0 1 8 0 0 1

SCI frames (8 payload bits)(Figure 30-16)

0 0 0 0 1 8 0 0 1

0 0 0 1 1 7 1 0 1

0 0 1 0 1 7 0 1 1

SCI frames (9 payload bits) (Figure 30-17)

0 1 0 0 1 9 0 0 1

0 1 0 1 1 8 1 0 1

0 1 1 0 1 8 0 1 1

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-21

The structure of the LIN frames in normal polarity is shown in Figure 30-15.

Figure 30-15. LIN Byte Field Format

The structures of the supported SCI frame formats with 8 payload bits are shown in Figure 30-16.

Figure 30-16. SCI Frame Formats (8 Payload Bits)

The structures of the supported SCI frame formats with 9 payload bits are shown in Figure 30-17.

Figure 30-17. SCI Frame Formats (9 Payload Bits)

The structures of the supported SCI frame formats with 2 stop bits in normal polarity are shown in
Figure 30-18. This frame format is supported for reception only.

Figure 30-18. SCI Frame Formats (2 Stop Bits)

Table 30-16. Supported Data Frame Formats for RX only

Control Frame Content

eSCI_CR3 eSCI_CR1

Start
Bits

Payload Bits

Stop
Bits

M2 M PE WAKE
Character

Bits
Address

Bits
Parity
Bits

SCI frames (2 stop bits) (see Figure 30-18)

1 0 1 0 1 8 0 1 2

1 1 1 0 1 12 0 1 2

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT0
START

BIT
ADDR

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT7

BIT0
START

BIT
PARITY

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
ADDR

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT8

BIT0
START

BIT
PARITY

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
PARITY

BIT
STOP

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

BIT0
START

BIT
PARITY

BIT
STOP

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-22 Freescale Semiconductor

30.4.2.1.1 Inverted Data Frame Formats

The structures of the supported data frame formats in inverted polarity are shown in Figure 30-19. These
frame types are supported for reception only. The polarity of the RXD pin is controlled by the RXPOL bit
in the eSCI_ Control Register 2 (eSCI_CR2).

Figure 30-19. Inverted SCI Frame Formats

30.4.2.2 Break Character Formats

The supported break character formats are specified in Table 30-17.

The structure and content of the LIN break symbols is shown in Figure 30-20.

Figure 30-20. LIN Break Symbol Format

The structure and content of the SCI break characters is shown in Figure 30-21.

Table 30-17. Supported Break Character Formats

Control1

1 All codings not listed are reserved and must not be used.

Break Character Content

eSCI_CR3 eSCI_CR1 eSCI_CR2
Start
Bit

Character Bits
Delimit

Bits
M2 M BRCL

LIN Break Symbol (see Figure 30-20)

0 0 0 1 9 1

0 0 1 1 12 1

SCI Break Character (see Figure 30-21)

0 0 0 1 9 0

0 0 1 1 12 0

0 1 0 1 10 0

0 1 1 1 13 0

START
BIT

STOP
BIT

START
BIT

STOP
BIT

STOP
BIT

BIT0
START

BIT
Break
DelimitBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8

BIT0
START

BIT
Break
DelimitBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-23

Figure 30-21. SCI Break Character Formats

30.4.2.3 Idle Character Formats

An idle character is a sequence of bits with the value 1. The supported idle character formats are specified
in Table 30-18. The preamble has the same structure and content as an idle character.

The structure and content of the SCI idle characters is shown in Figure 30-22.

Figure 30-22. SCI Idle Character Formats

30.4.3 Baud Rate and Clock Generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value written to the SBR field in the eSCI Baud Rate Register (eSCI_BRR) determines
the module clock divisor. The baud rate clock is synchronized with the bus clock and drives the receiver.
The baud rate clock divided by 16 drives the transmitter. The receiver has an acquisition rate of 16 samples
per bit time.

Table 30-18. Supported Idle Character Formats

Control
Idle Character Length

eSCI_CR3[M2] eSCI_CR1[M]

SCI Idle Characters (see Figure 30-22)

0 0 10

0 1 11

1 0 12

1 1 16

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11 BIT12

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9 BIT11

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9 BIT11 BIT12 BIT13 BIT14BIT14

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-24 Freescale Semiconductor

The baud rate generator is enabled when the TE bit or RE bit in the eSCI Control Register 1 (eSCI_CR1)
is set to 1 for the first time. The baud rate generator is disabled when SBR = 0.

Baud rate generation is subject to one source of error:

• Integer division of the module clock may not give the exact required target baud rate.

Figure 30-19 lists some examples of achieving target baud rates with a module clock frequency of
MCLK = 10.2 MHz.

30.4.3.1 Module Clock

The module clock MCLK is derived from the system bus clock. It has the same phase and frequency.

30.4.3.2 Transmitter Clock

The transmitter clock TCLK is used to drive the data to the serial bus via the TXD pin. It is derived from
the system bus clock by the baud rate generator. The baud rate generator is controlled by the value of the
SBR[12:0] field in the eSCI Baud Rate Register (eSCI_BRR). The frequency of the transmitter clock is
determined by Equation 30-1 and defines the length of the transmitted bits, which is denoted as the bit
time.

Eqn. 30-1

30.4.3.3 Receiver Clock

The receiver clock RCLK is used to sample the data received on the RXD or TXD pin. It is derived from
the system bus clock by the baud rate generator. The baud rate generator is controlled by the value of the
SBR[12:0] field in the eSCI Baud Rate Register (eSCI_BRR). The frequency of the receiver sample clock
is determined by Equation 30-2.

Eqn. 30-2

Table 30-19. Baud Rates Error Example (MCLK = 10.2 MHz)

eSCI_BRR[SBR] RCLK (Hz) TCLK (Hz) Target Baud Rate Error (%)

17 600,000.0 37,500.0 38,400 2.3

33 309,090.9 19,318.2 19,200 .62

66 154,545.5 9659.1 9600 .62

133 76,691.7 4793.2 4800 .14

266 38,345.9 2396.6 2400 .14

531 19,209.0 1200.6 1200 .11

1062 9604.5 600.3 600 .05

2125 4800.0 300.0 300 .00

4250 2400.0 150.0 150 .00

5795 1760.1 110.0 110 .00

fTCLK

fMCLK

16 SBR 12:0
--------------------------------------=

fRT

fMCLK

SBR 12:0
---------------------------=

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-25

Since the frequency of the receiver clock is 16 times the frequency of the transmitter clock, each bit is
sampled 16 times. Each of the 16 samples of a bit has a sample number assigned, which is defined by the
receiver sample counter RSC. The nth sample is denoted by RSn. The receiver sample counter RSC is
updated with each rising edge of the receiver clock RCLK.

30.4.4 Baud Rate Tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated
bit time misalignment can cause one of the three stop bit data samples RS8, RS9, and RS10 to fall outside
the actual stop bit. A noise error occurs if the stop bit sample RS8, RS9, and RS10 samples are not all the
same logical value 1. A framing error occurs if the receiver clock is misaligned in such a way that the
majority of the RS8, RS9, and RS10 stop bit samples are a logic zero.

30.4.4.1 Faster Receiver Tolerance

In this case the receiver has a higher baud rate than the transmitter, thus the stop bit sampling starts already
in the last transmitted payload bit. To ensure the correct noise- and framing error-free reception of the stop
bit, the samples RS8, RS9, and RS10 must be located in the transmitted stop bit as shown in Figure 30-23.

Figure 30-23. Faster Receiver

The maximum tolerance that ensures error-free reception can be calculated with the assumption, that RS7
is sampled during the last transmitted payload bit and RS8 is sampled in the stop bit.

For an frame with n payload bits the transmitter starts the transmission of the stop bit

Eqn. 30-3

after the start of the transmission of the start bit.

For an frame with n payload bits, the receiver samples the RS8 sample of the stop bit

Eqn. 30-4

after the successful qualification of the start bit.

To ensure error-free reception of the stop bit, the transmitter must start the transmission of the stop bit
before the receiver samples RS8.

Eqn. 30-5

RCLK

START BIT

RXD

START BIT
QUALIFICATION

6 7 8 21 3RSC 8 9 10

DATA
VOTING

PAYLOAD STOP BIT

6 7

txSTOP n 1+ = 16 RTTR

rxSTOP n 1+ = 16 RTRE 7 RTRE+

txSTOP rxSTOP

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-26 Freescale Semiconductor

The maximum percent difference between the receiver baud rate and the transmitter baud rate is:

Eqn. 30-6

The maximum percent differences for the supported frames is given in Table 30-20

30.4.4.2 Slower Receiver Tolerance

In this case, the receiver has a slower baud rate than the transmitter, thus the stop bit sampling is still
running while the next start bit is already transmitted. To ensure the correct noise- and framing error-free
reception of the stop bit, the samples RS8, RS9, and RS10 must be located in the transmitted stop bit as
shown in Figure 30-24.

Figure 30-24. Slower Receiver

The maximum tolerance that ensures error-free reception can be calculated with the assumption that RS11
is sampled in the transmitted start bit and RS10 is sampled in the last stop bit.

For an frame with n payload bits and s stop bits, the transmitter starts the transmission of the next start bit

Eqn. 30-7

after the start of the transmission of the previous start bit.

For an frame with n payload bits and s stop bits, the receiver samples the RS10 sample of the last stop bit

Eqn. 30-8

after the successful qualification of the start bit.

To ensure error-free reception of the last stop bit, the transmitter must start the transmission of the start bit
after the receiver samples RS10.

Eqn. 30-9

Table 30-20. Faster Receiver Maximum Tolerance

Payload Bits Max Baudrate Difference txSTOP rxSTOP

8 4.63% 144 151

9 4.19% 160 167

13 3.03% 224 231

baudrate
rxSTOP txSTOP–

rxSTOP

 100

RCLK

START BIT

RXD

START BIT
QUALIFICATION

6 7 8 21 3RSC 8 9 10

DATA
VOTING

LAST STOP BIT

11

txSTART n s 1+ + = 16 RTTR

rxSTOP n s+ = 16 RTRE 9 RTRE+

rxSTOP txSTART

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-27

The maximum percent difference between the receiver baud rate and the transmitter baud rate is:

Eqn. 30-10

The maximum percent differences for the supported frames is given in Table 30-21

30.4.5 SCI Mode

30.4.5.1 SCI Mode Configuration

The application must configure the following bits and fields in order to achieve correct SCI operation.

• enable SCI Mode

– eSCI LIN Control Register 1 (eSCI_LCR1)[LIN] = 0

• select baud rate

– eSCI Baud Rate Register (eSCI_BRR)[SBR]

• select receiver input mode

– eSCI Control Register 1 (eSCI_CR1)[LOOPS]

– eSCI Control Register 1 (eSCI_CR1)[RSRC]

• select frame format

– eSCI Control Register 1 (eSCI_CR1)[M]

– eSCI Control Register 1 (eSCI_CR1)[PE]

– eSCI Control Register 1 (eSCI_CR1)[WAKE]

– eSCI Control Register 3 (eSCI_CR3)[M2]

• select parity type

– eSCI Control Register 1 (eSCI_CR1)[PT]

30.4.5.2 Transmitter

The transmitter supports the transmission of all frame types defined in Table 30-15, of all break characters
defined in Table 30-17, and of all idle characters defined in Table 30-18.

30.4.5.2.1 Transmitter States and Transitions

The transmitter has four basic states that are shown and described in Table 30-22. The state transitions that
can triggered by the application commands are shown in Table 30-23. The state transitions that can

Table 30-21. Slower Receiver Maximum Tolerance

Payload Bits Stop Bits Max Baudrate Difference rxSTOP txSTART

8 1 4.37% 153 160

9 1 3.97% 169 176

9 2 3.57% 185 196

13 2 2.73% 249 256

baudrate
txSTART rxSTOP–

txSTART

--
 100

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-28 Freescale Semiconductor

triggered by the module are shown in Table 30-24. The state diagram of the transmitter is shown in
Figure 30-25.

Figure 30-25. Transmitter State Diagram

The current state of the transmitter can be determined by the TE control bit in the eSCI Control Register 1
(eSCI_CR1) and the TACT status bit in eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1).

The application triggers a transition described in Table 30-23 when it issues a command by writing to the
TE bit in the eSCI Control Register 1 (eSCI_CR1). The transition is triggered only if the conditions are
fulfilled. As a result of the transition the state of the transmitter is changed as shown in Figure 30-25 and
the action given in Table 30-23 is executed.

The module transition shown in Table 30-24 are triggered when the described condition or event occurs.
The send break bit SBK in the eSCI Control Register 1 (eSCI_CR1) is checked for the start condition. The
internal commit bit iCMT, the transmitter active bit TACT in the eSCI Interrupt Flag and Status Register 1
(eSCI_IFSR1), the TDRE, and the TC flag in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1)
are changed as a action result of the transition.

Table 30-22. Transmitter States

State
Indication

Description
eSCI_CR1[TE] eSCI_IFSR1[TACT]

Idle 0 0 Transmitter is disabled and no transmission is running

Ready 1 0 Transmitter is enabled and no transmission is running

Run 1 1 Transmitter is enabled and transmission is running

Stop 0 1 Transmitter is disabled and transmission is running

Table 30-23. Transmitter Application Transitions

Transition Command Condition Action Description

EN eSCI_CR1[TE] = 1 eSCI_CR1[TE] = 0 iPRE:= 1 Transmitter is enabled by application command.

DIS eSCI_CR1[TE]:= 0 eSCI_CR1[TE] = 1 Transmitter is disabled by application command

Ready

EN

start

Idle

RESET_STATE

Run

Stop

DIS

DIS
EN

halt

done

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-29

30.4.5.2.2 Frame and Character Transmission

The transmitter starts the transmission of a data frame or special character when the condition for the start
transition as described in Table 30-24 is fulfilled. There are three source for data or character transmission.
The priority among these source are specified in Table 30-25. All three sources can be available at one
point in time.

30.4.5.2.3 CPU Controlled SCI Data Frame Transmission

The transmission of a data frame is started when the transmitter is in its ready state and only the commit
bit iCMT is set.

As the first step, the content of the eSCI SCI Data Register (eSCI_SDR) is transferred into the internal
transmitter shift register. When this transfer is finished, the internal commit bit iCMT is cleared and the
transmit data register empty flag TDRE in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is
set. If the transmit interrupt enable bit TIE in the eSCI Control Register 1 (eSCI_CR1) is also set, the
TDRE flag generates a transmitter interrupt request.

The transmitter shift register then shifts a frame out through the TXD output signal, which is prefaced with
a start bit and appended with the parity bit, if configured, and the configured number of stop bits.

When the last stop bit has been transmitted and the application has not disabled the transmitter, the
transmitter returns to the ready state via the done transition. If no frame or character transmit request is
pending, the transfer complete flag TC in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is
set.

If the application has disabled the transmitter while the frame is transmitted and stop bit has been
transmitted, the transmitter goes into the idle state via the halt transition. The transfer complete flag TC in

Table 30-24. Transmitter Module Transitions

Transition Condition Action Description

start (State = Ready)
and

(SBK = 1 or iPRE = 1 or iCMT = 1)

TACT = 1 Start of transmission of data frame or special character
when data are available or character transmission
request is pending.

done State = Run
and

last stop bit transmitted

TACT = 0
TC =

(SBK & iPRE & TC)

Finished transmission of data frame or special
character and transmitter still enabled. Transmission is
complete if no transmit request is pending.

halt State = Stop
and

last stop bit transmitted

TACT = 0
TC = 1

iCMT = 0

Finished transmission of data frame or special
character and transmitter was disabled.

Table 30-25. Transmit Source Priority

Priority Indication Transmission Source

(highest) 0 eSCI_CR1[SBK] = 1 Break character.

1 iPRE = 1 Preamble.

(lowest) 2 iCMT = 1 eSCI SCI Data Register (eSCI_SDR) frame.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-30 Freescale Semiconductor

the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit iCMT is
cleared.

30.4.5.2.4 DMA Controlled SCI Data Frame Transmission

In this mode, the eSCI module handles the generation of data frames internally.

When new data required for transmission, the module generates the transmit DMA request and the DMA
controller delivers the required data via write accesses to the eSCI SCI Data Register (eSCI_SDR). The
write access to the low byte of the eSCI SCI Data Register (eSCI_SDR) triggers the transmission of the
data. The write access to the high byte of the eSCI SCI Data Register (eSCI_SDR) triggers no internal
operation.

The application requests the eSCI module to enter this mode by setting the TXDMA bit in the eSCI Control
Register 2 (eSCI_CR2). From this point in time, the module starts the generation of DMA requests and
frame transmission. Before entering this mode, the application should perform the following actions:

1. Configure the module for SCI mode.

2. Enable the transmitter by setting TE in the eSCI Control Register 1 (eSCI_CR1) to 1.

3. Set up the DMA controller channel and provide frame data in system memory.

Figure 30-26 shows an overview of the DMA-controlled date frame transmission.

Figure 30-26. DMA Controlled SCI Data Frame Generation

NOTE
A received SCI frame is not written into the SCI Data Registers and the
Overrun (OR) flag is not set in the SCI Status Register 1 (SCISR1), if:

• The eSCI has received the last data bit of an SCI frame n,

• The Receive Data Register Full (RDRF) flag is still set in the SCISR1
after the reception of SCI frame n-1, and

DMA
Controller eSCI

TX DMA
channelDATA 2

DATA N

System Memory

DATA 1 DATA N

SCI Data frame

DATA 1

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-31

• During the reception of the STOP bit of frame n the host reads the SCI
Data Registers, and clears the RDRF flag

In this case the RDRF flag is erroneously set again by the controller instead
of the OR flag. Thus, the host reads the data of frame n-1 a second time, and
the data of frame n is lost.

The application should ensure that the data of the foregoing frame is read
out from the SCI Data Registers before the last data bit of the actual frame
is received.

30.4.5.2.5 Parity Generation

The eSCI module generates the parity bit in transmitted data frame when the parity enable bit PE in the
eSCI Control Register 1 (eSCI_CR1) is set. The parity type bit PT in the eSCI Control Register 1
(eSCI_CR1) defines whether the odd or even parity is generated.

30.4.5.2.6 Preamble Transmission

The transmission of a preamble is started when the transmitter is in ready state, the internal iPRE bit, which
is not visible to the application, is set, and the SBK in the eSCI Control Register 1 (eSCI_CR1) is clear.

After the transmission of the stop bit and if the application has not disabled the transmitter, the transmitter
returns to the ready state via the done transition. If no frame or character transmit request is pending, the
transfer complete flag TC in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

If the application has disabled the transmitter while the preamble is transmitted and if the stop bit has been
transmitted, the transmitter goes into the idle state via the halt transition. The transfer complete flag TC in
the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit iCMT is
cleared.

30.4.5.2.7 Break Character Transmission

The transmission of a break character is started when the transmitter is in ready state and the send break
character bit SBK in the eSCI Control Register 1 (eSCI_CR1) is set. After the transmission of the break
character and if the application has not disabled the transmitter, the transmitter returns to the ready state
via the done transition and restarts the transmission. As long as SBK bit remains set, the transmitter
continues to send break characters.

When the application has cleared the SBK bit or has disabled the transmitter, the transmitter continues to
transmit the current break character. After it has finished the transmission of this break character it
transmits a stop bit. The stop bit at the end of a break character sequence guarantees the recognition of the
start bit of the next data frame.

After the transmission of the stop bit and if the application has not disabled the transmitter, the transmitter
returns to the ready state via the done transition. If no frame or character transmit request is pending, the
transfer complete flag TC in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

If the application has disabled the transmitter while the break character is transmitted and if the stop bit
has been transmitted, the transmitter goes into the idle state via the halt transition. The transfer complete

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-32 Freescale Semiconductor

flag TC in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit
iCMT is cleared.

30.4.5.3 Receiver

The receiver supports the reception of all data frame types defined in Table 30-15 and Table 30-16, of all
break characters defined in Table 30-17, and of all idle characters defined in Table 30-18.

30.4.5.3.1 Receiver States and Transitions

The receiver has four basic states that are shown and described in Table 30-26. The state transitions that
can triggered by the application commands are shown in Table 30-27. The state transitions that can
triggered by the module are shown in Table 30-28. The state diagram of the transmitter is shown in
Figure 30-27.

Figure 30-27. Receiver State Diagram

The current state of the receiver can be determined by the RE and RWU bit in the eSCI Control Register
1 (eSCI_CR1) and the RACT status bit in eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1).

The application triggers a transition described in Table 30-27 when it issues a command by writing to the
RE bit in the eSCI Control Register 1 (eSCI_CR1). The transition is triggered only if the conditions are
fulfilled. As a result of the transition the state of the receiver is changed as shown in Figure 30-27 and the
action given in Table 30-27 is executed.

Table 30-26. Receiver States

State
Indication

Description
RE RACT RWU

Idle 0 0 0 Receiver is disabled and no reception is running

Ready 1 0 0 Receiver is enabled and no reception is running

Run 1 1 0 Receiver is enabled and reception is running

Wakeup 1 — 1 Receiver is in wakeup mode

Ready

EN

start

Idle

RESET_STATE

DISDIS
doneRun

Wakeup

SLP SLP
wake0wake1

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-33

The module transition shown in Table 30-28 are triggered when the described event occurs.

30.4.5.3.2 Receiver Input Mode Selection

This section describes the three receiver input modes supported by the eSCI module. The modes are
selected by the LOOPS and RSRC control bits in the eSCI Control Register 1 (eSCI_CR1).

30.4.5.3.3 Dual Wire Mode

In dual wire mode, the eSCI uses the TXD pin for transmitting and the RXD pin for data receiving.

Figure 30-28. Dual Wire Mode

30.4.5.3.4 Single Wire Mode

In single wire mode, the RXD pin is disconnected from the eSCI module and the TXD pin is used for both
receiving and transmitting.

Table 30-27. Receiver Application Transition

Transition Command Condition Action Description

EN RE = 1 RE = 0 Receiver is enabled by application command.

DIS RE = 0 RE = 1 Receiver is disabled by application command

SLP RWU = 1 RE = 1 Receiver is set into wakeup mode

Table 30-28. Receiver Module Transition

Transition Condition Action Description

start (State = Ready, Run)
and

(start bit received)

RACT:= 1 Start of reception of data frame or break character.

done (State = Run)
and

(idle character received)

RACT:= 0 Idle Character received.

wake0 (State = Wakeup)
and

(idle character received)

RWU:= 0 Wakeup Idle Character received.

wake1 (State = Wakeup)
and

(address frame received)

RWU:= 0 Wakeup address frame received.

RXD

TRANSMITTER

RECEIVER

TXD

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-34 Freescale Semiconductor

Figure 30-29. Single Wire Mode

The TXDIR bit (eSCI_CR2[1]) determines whether the TXD pin is going to be used as an input
(TXDIR = 0) or an output (TXDIR = 1) in this mode of operation.

30.4.5.3.5 Loop Mode

In loop mode, the input of the receiver is driven by the output of the transmitter. The RXD pin is
disconnected from the eSCI module.

Figure 30-30. Loop Mode

30.4.5.3.6 Frame and Character Reception

The receiver is started when it is in ready or wakeup state and on the selected receiver input (see
Section 30.4.5.3.2, “Receiver Input Mode Selection”) an active signal is sampled. The receiver enters the
run or wakeup state. The received bits are recovered by the bit sampling described in Section 30.4.5.3.13,
“Bit Sampling.” During the reception, the received bits are shifted into the internal shift register.

30.4.5.3.7 Break Character Detection

The receiver does not provide any means to detect the reception of a break character. Instead, break
characters are processed as data frames. Due to the received 0 at the stop bit location, the reception of a
break character causes at least a framing error. The error reporting is performed as described in
Section 30.4.5.4, “Reception Error Reporting.”

30.4.5.3.8 Idle Character Detection

The start point of the idle character detection is controlled by the idle line type bit ILT in the eSCI Control
Register 1 (eSCI_CR1).

If the ILT bit is 0, the idle character detection starts always immediately after the reception of a bit with
the value 0. In this mode, a data frame with a payload section of all ones is erroneously detected as an idle
character.

TRANSMITTER

RECEIVER RXD

TXD

TRANSMITTER

RECEIVER RXD

TXD

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-35

If the ILT bit is 1, the idle character detection starts after the reception of the last stop bit.

30.4.5.3.9 CPU Controlled SCI Data Frame Reception

This section describes the reception process when the receiver is in the run state.

When the required number of frame bits have been received, the payload bits of the received frame are
transferred into eSCI SCI Data Register (eSCI_SDR) if the RDRF flag is 0. The receive data register full
flag RDRF in eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set. If the receive interrupt enable
bit RIE in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set, the RDRF interrupt request
is generated.

If an idle character has been detected, the IDLE flag in the eSCI Interrupt Flag and Status Register 1
(eSCI_IFSR1) is set. If the idle line interrupt enable bit ILIE in the eSCI Control Register 1 (eSCI_CR1)
is set, the IDLE interrupt request is generated.

If any of the receiver errors described in Section 30.4.5.4, “Reception Error Reporting,” have been
occurred, that corresponding flags are set.

If the application disabled the receiver by clearing the receiver enable bit RE in the eSCI Interrupt Flag
and Status Register 1 (eSCI_IFSR1), the current frame is discarded and no flags are updated.

30.4.5.3.10 DMA Controlled SCI Data Frames Reception

In this mode, the eSCI module controls the reception of SCI data frames automatically and utilizes the
connected DMA channels. Figure 30-31 shows an overview of the DMA-controlled SCI data frame
reception. The RX DMA channel is used to transfer the received frame data into the memory.

When new data is received, the module generates the receive DMA request and the DMA controller
retrieves the provided data from the eSCI SCI Data Register (eSCI_SDR). The read access from the low
byte of the eSCI SCI Data Register (eSCI_SDR) signals the end of the DMA cycle for the current data and
triggers the reception of new data. The read access from the eSCI SCI Data Register (eSCI_SDR) triggers
no internal action

The application request the eSCI module to enter this mode by setting the RXDMA bit in the eSCI Control
Register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA requests and
frame transmission and reception. Before entering this mode, the application should perform the following
actions:

1. Configure the module for SCI mode.

2. Enable the receiver by setting RE in eSCI Control Register 1 (eSCI_CR1) to 1.

3. Set up the DMA controller channel.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-36 Freescale Semiconductor

Figure 30-31. DMA-Controlled SCI Data Frame Reception

30.4.5.3.11 Receiver Overrun

When the eSCI module has received a frame and attempts to transfer the payload data of the received frame
into the eSCI SCI Data Register (eSCI_SDR) but neither the application nor the DMA controller has read
the eSCI SCI Data Register (eSCI_SDR) since its last update, the overrun flag OR in the eSCI Interrupt
Flag and Status Register 1 (eSCI_IFSR1) is set. The data contained in eSCI SCI Data Register
(eSCI_SDR) are not changed and the received data are lost.

30.4.5.3.12 Wake-up Frame Reception

This section describes the reception process when the receiver is in the wakeup state.

When the required number of frame bits have been received, the payload bits of the received frame are
transferred into eSCI SCI Data Register (eSCI_SDR) if the RDRF flag is 0.

If the address-mark wake-up mode is selected and the received frame has the address bit set, the receive
data register full flag RDRF in eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set. If the receive
interrupt enable bit RIE in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set, the RDRF
interrupt request is generated. The RWU bit is cleared, and the receiver enters the run state via the wake1
transition.

If the idle line wake-up mode is selected and the receiver has detected an idle character, The RWU bit is
cleared, and the receiver enters the ready state via the wake0 transition.

If any of the receiver errors described in Section 30.4.5.4, “Reception Error Reporting,” have been
occurred, that corresponding flags are set.

30.4.5.3.13 Bit Sampling

The receiver samples the selected receiver input (see Section 30.4.5.3.2, “Receiver Input Mode Selection”)
with the receiver clock RCLK. The sampling for start bit detection is shown in Figure 30-32. The sampling
for data and stop bit reception is shown in Figure 30-33. The samples indicated by dashed arrows are not

DMA
Controller eSCI

System Memory

DATA 1 DATA n

SCI data frame

RX DMA
channel

DATA 2

DATA n

DATA 1

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-37

used by the receiver. The received data bits are transferred into the internal shift register after the data
strobing. If noise or framing errors are detected, this is flagged as described in Section 30.4.5.4,
“Reception Error Reporting.”

30.4.5.3.14 Bit Synchronization

To adjust for baud rate mismatch, a synchronization of the cyclic sample counter RSC is performed during
start bit reception as described in Section 30.4.5.3.15, “Start Bit Sampling.”

Additionally, the synchronization of the cyclic sample counter RSC can be configured to be performed
during data bit reception as described in Section 30.4.5.3.16, “Data Bit Sampling.”

30.4.5.3.15 Start Bit Sampling

Figure 30-32. Start Bit Sampling and Strobing

Start Bit Qualification

To adjust for baud rate mismatch, the cyclic sample counter RSC is re-synchronized by reset after
successful start bit qualification. A start bit is successfully qualified, if no reception is ongoing and three
consecutive high samples are followed immediately by a low sample.

Start Bit Verification

After the successful start bit qualification the receiver starts to verify the start bit by a two out of three
samples majority voting.

A start bit is verified if at least two out of the three sample RSC3, RSC5, and RSC5 are sampled low. Noise
is detected when exactly one out of the three samples is high. The results of the start bit verification is
summarized in Table 30-29.

Table 30-29. Start Bit Verification Result

[RS3, RS5, RS7] Start Bit Verified Noise Detected

000 Yes No

001 Yes Yes

010 Yes Yes

1

Sampled Value

RCLK

START BITReceiver Input

START BIT
QUALIFICATION

1111 1 0 0 0 000 0

4 5 6 7 8 2

sample counter reset

3RSC 4 5 6 7

0

8 9 10 11 12 13 14 15 16 1

0 0

START BIT
VERIFICATION

NOISE
DETECTION

data strobing

0 100 10 0 0

2

sample counter wrap

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-38 Freescale Semiconductor

If the start bit verification was not successful, the receiver resumes the start bit qualification. If the start bit
verification was successful, the receiver continues sampling to perform noise detection on the samples at
RS8, RS9, and RS10. The results of the start bit noise detection is summarized in Table 30-30.

30.4.5.3.16 Data Bit Sampling

Figure 30-33. Data and Stop Bit Sampling and Strobing

To determine the value of a data bit and to detect noise, a two out of three majority voting is performed on
the samples RS8, RS9, and RS10. Table 30-31 summarizes the results of the data bit sample. The receiver
detects the number of data bit according to the selected frame format.

100 Yes Yes

011 No No

101 No No

110 No No

111 No No

Table 30-30. Start Bit Noise Detection

[RS8, RS9, RS10] Noise Detected

000 No

001 Yes

010 Yes

100 Yes

011 Yes

101 Yes

110 Yes

111 Yes

Table 30-29. Start Bit Verification (continued)Result

[RS3, RS5, RS7] Start Bit Verified Noise Detected

Sampled Value

RCLK

DATA / STOP BITReceiver Input

1111 1 0 0 0 000 0

2 3RSC 4 5 6 7

0

8 9 10 11 12 13 14 15 16 1

0 0

DATA
VOTING

data strobing

0 100 10 0 0

2

sample counter wrap

112 13 14 15 16

sample counter wrap

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-39

30.4.5.3.17 Data Bit Synchronization

To adjust for baud rate mismatch during the reception of data bits, the cyclic sample counter RSC can be
configured to be synchronized on falling edges during data bit reception. This kind of synchronization is
performed only if the synchronization mode bit SYNM in the eSCI Control Register 3 (eSCI_CR3) is 0.

Data Bit Synchronization (Right Shifted Edges)

This kind of sample counter synchronization happens if the transmitter is slower than the receiver. The
reset behavior of the sample counter is shown in Figure 30-34. The sample counter reset condition is:

1. The data bit N-1 is sampled as 1, and

2. the data bit N is sampled as 0, and

3. a falling edge consisting of three consecutive 1-samples and a following 0-sample is detected, and

4. the 0-sample of the falling edge is received at data bit N sample j, with 1 <= j <= 8.

If the condition is fulfilled, the sample counter is reset 16 RCLK cycles after the 0 of the falling edge
condition was received. The bit counter is not increased.

Figure 30-34. Data Bit Synchronization (Right Shifted Edges)

Table 30-31. Data Bit Sampling

[RS8, RS9, RS10] Data Bit Value Noise Detected

000 0 No

001 0 Yes

010 0 Yes

100 0 Yes

011 1 Yes

101 1 Yes

110 1 Yes

111 1 No

VOTING
DATA

RCLK

RXD

2 3RSC 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

wrap

1

wrap

3

sample counter reset
right shifted falling edge

FALLING
EDGE

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

VOTING
DATA

reset

VOTING
DATA

DATA BIT N – 1 DATA BIT N DATA BIT N + 1

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-40 Freescale Semiconductor

Data Bit Synchronization (Left Shifted Edges)

This kind of sample counter synchronization happens if the transmitter is faster than the receiver. The reset
behavior of the sample counter is shown in Figure 30-35. The sample counter reset condition is:

1. The data bit N – 1 is sampled as 1, and

2. The data bit N is sampled as 0, and

3. A falling edge consisting of three consecutive 1-samples and a following 0-sample is detected, and

4. The 0-sample of the falling edge is received at data bit N sample j, with 11 j 16.

If the condition is fulfilled, the sample counter is reset 16 RCLK cycles after the 0-sample of the falling
edge condition was received. The bit counter is increased by 1.

Figure 30-35. Data Bit Synchronization (Left Shifted Edges)

If the 0-sample of the falling edge condition is received at sample 9 or 10, no sample counter
synchronization is performed.

30.4.5.3.18 Stop Bit Verification

The reception of a valid stop bit is verified if at least two out of the sample RS8, RS9, and RS10 are
sampled high. If this is not that case, a framing error is detected. Noise is detected if not all of the samples
are of the same value. The results of the stop bit verification are summarized in Table 30-32.

Table 30-32. Stop Bit Verification

[RS8, RS9, RS10] Stop Bit Verified Framing Error Detected Noise Detected

000 No Yes No

001 No Yes Yes

010 No Yes Yes

100 No Yes Yes

011 Yes No Yes

101 Yes No Yes

110 Yes No Yes

111 Yes No No

VOTING
DATA

RCLK

RXD

2 3RSC 4 5 6 7 8 9 10 11 12 13 14 15 161

wrap

sample counter reset

left shifted falling edge

2 3 4 5 6 7 8 9 10 11 12 131 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161

VOTING
DATA

reset

VOTING
DATA

DATABIT N-1

FALLING
EDGE

2 3 4 51

DATABIT N+1DATABIT N

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-41

30.4.5.3.19 Parity Checking

The eSCI module calculates the parity of a received character and checks is versus the received parity bit
in the received data frame when the parity enable bit PE in the eSCI Control Register 1 (eSCI_CR1) is set.
The parity type bit PT in the eSCI Control Register 1 (eSCI_CR1) defines whether to check for odd or even
parity is generated. If an parity error is detected, this is reported as described in Section 30.4.5.4,
“Reception Error Reporting.”

30.4.5.4 Reception Error Reporting

The receiver can detect four error types: parity errors, framing errors, noise errors, and the overrun error.

The receiver reports the errors detected during frame reception at the end of the reception of the last stop
bit of a frame. For error reporting the receiver utilizes the OR, NF, FE, and PF flags in the eSCI Interrupt
Flag and Status Register 1 (eSCI_IFSR1).

If the receiver has detected an overrun as described in Section 30.4.5.3.11, “Receiver Overrun,” only the
OR flag is set. All other error flags are not updated.

If the receiver has not detected an overrun and has detected noise as described in Section 30.4.5.3.13, “Bit
Sampling,” the NF flag is set.

If the receiver has not detected an overrun and has detected a framing error as described in
Section 30.4.5.3.13, “Bit Sampling,” the FE flag is set.

If the receiver has not detected an overrun and has detected a parity error as described in
Section 30.4.5.3.19, “Parity Checking,” the PF flag is set.

30.4.5.5 Multiprocessor Communication

The multiprocessor communication allows one processor to send blocks of frames to other processors on
the same serial link. To avoid the received data interrupt for frames not intended for the processor, the eSCI
receiver can be put into the wakeup state. If the receiver is in the wakeup state, the eSCI still loads the
received data into the eSCI SCI Data Register (eSCI_SDR), but does not set the RDRF flag and
consequently does not request the RDRF interrupt.

The receiver leaves the wakeup state and clears the RWU bit in the eSCI Control Register 1 (eSCI_CR1)
when the wakeup pattern configured by WAKE bit in eSCI Control Register 1 (eSCI_CR1) is received.
The eSCI module supports two types of wakeup patterns, the idle-line wakeup pattern and the
address-mark wakeup pattern.

30.4.5.5.1 Idle-Line Wakeup

The idle-line wakeup mode is selected when the WAKE bit in eSCI Control Register 1 (eSCI_CR1) is 0.
In this mode, the receiver leaves the wakeup state, when an idle character is detected as described in
Section 30.4.5.3.8, “Idle Character Detection.” The next received frame is the address frame, which
contains address information that can be evaluated by the application. If the application decides not to
receive the frame block, it can set the RWU bit in the eSCI Control Register 1 (eSCI_CR1) and return the
receiver to the wakeup state.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-42 Freescale Semiconductor

Figure 30-36. Idle-Line Wakeup Format

30.4.5.5.2 Address-Mark Wakeup

The address-mark wakeup mode is selected when the WAKE bit in eSCI Control Register 1 (eSCI_CR1)
is 1. If the WAKE bit is set, the address bit is added to the frame format. In this mode, the receiver leaves
the wakeup state, when a data frame with the address bit value of 1 was received. This frame is the address
frame and contains address information that can be evaluated by the application. If the application decides
not to receive the frame block, it can set the RWU bit in the eSCI Control Register 1 (eSCI_CR1) and
return the receiver to the wakeup state. All data frames that belong to the frame block must have the
address bit cleared.

Figure 30-37. Address-Mark Wakeup Format

30.4.6 LIN Mode

The eSCI provides support for the LIN protocol. It can be used to automate most tasks of a LIN master. In
conjunction with the DMA interface it is possible to transmit entire LIN frames and sequences of LIN
frames as well as to receive data from LIN slaves without application intervention. There is no special
support for LIN slave mode.

30.4.6.1 LIN Mode Configuration

The application must configure the following bits and fields in order to achieve correct LIN operation. The
configuration of bits and fields not mentioned in this section depend on the connected LIN slaves and the
current application.

• enable LIN Mode

– eSCI LIN Control Register 1 (eSCI_LCR1)[LIN]:= 1

• select RXD pin as receiver input

– eSCI Control Register 1 (eSCI_CR1)[LOOPS]:= 0

– eSCI Control Register 1 (eSCI_CR1)[RSRC]:= 0

• select LIN byte fields as used frame format

Frame Block Frame BlockIdle Character

Receiver Wakeup

Address Frame

Frame Block Frame Block

Receiver Wakeup

Address Frame
(ADDR BIT = 1)

Address Frame
(ADDR BIT = 1)

Receiver Wakeup

ignored idle times

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-43

– eSCI Control Register 1 (eSCI_CR1)[M]:= 0

– eSCI Control Register 1 (eSCI_CR1)[PE]:= 0

– eSCI Control Register 1 (eSCI_CR1)[WAKE]:= 0

– eSCI Control Register 3 (eSCI_CR3)[M2]:= 0

• select break character length of 13 bit as required by LIN 2.0

– eSCI Control Register 2 (eSCI_CR2)[BRCL]:= 1

• select both transmitter and receiver reset on bit error detection

– eSCI LIN Control Register 1 (eSCI_LCR1)[LDBG]:= 0

• select transmission stop on bit error detection

– eSCI Control Register 2 (eSCI_CR2)[BESTP]:= 1

• select transmission DMA stop on bit error detection

– eSCI Control Register 2 (eSCI_CR2)[BSTP]:= 1

• enable both transmitter and receiver

– eSCI Control Register 1 (eSCI_CR1)[TE]:= 1

– eSCI Control Register 1 (eSCI_CR1)[RE]:= 1

30.4.6.2 LIN Frame Formats

The term LIN frame refers to a sequence of LIN byte fields preceded by a break character, both are
described in Section 30.4.2, “Frame Formats.” The eSCI module allows to generate LIN frames for LIN
slaves of LIN standards 1.3 and 2.0.

30.4.6.2.1 Standard LIN Frames

A standard LIN frame, shown in Figure 30-38 consists of a break character, a sync field, an ID field, zero
or more data fields, and a checksum field. The data fields and the checksum field are generated by the LIN
master for TX LIN frames and generated by the LIN slave for RX LIN frames. The header fields are always
generated by the LIN master.

Figure 30-38. Standard LIN Frame Format

30.4.6.2.2 CRC Enhanced LIN Frames

The CRC Enhanced LIN frames shown in Figure 30-39 contain two additional CRC byte fields. These
fields are located between the last data field and the Checksum field. The value of the CRC is calculated
on the same byte fields as the Checksum is calculated on. The polynom used for the CRC calculation is
defined by eSCI LIN CRC Polynomial Register (eSCI_LPR). The eSCI module generates the CRC fields
for TX frames and checks the CRC fields for RX frames if the CRC bit in the eSCI LIN Transmit Register
(eSCI_LTR) was written with a value of 1.

Break Synch Identifier Data 1 Data 2 Data N Checksum

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-44 Freescale Semiconductor

Figure 30-39. CRC Enhanced LIN Frame Format

The CRC Enhanced LIN frames are not part of the LIN standard.

30.4.6.3 LIN TX Frame Generation

The eSCI module supports two modes of LIN TX Frame generation. In the application controlled mode,
the application provides the required frame configuration and frame data by subsequent write accesses to
the eSCI LIN Transmit Register (eSCI_LTR). In the DMA generation mode, the DMA controller provides
the required frame configuration and frame data in response to DMA requests generated by the eSCI
module.

30.4.6.3.1 CPU Controlled LIN TX Frame Generation

In this mode, the application initiates the generation of a LIN TX Frame and provides the data to be
transmitted by a sequence of subsequent CPU write accesses to the eSCI LIN Transmit Register
(eSCI_LTR). When the eSCI module has processed the data written into the eSCI LIN Transmit Register
(eSCI_LTR), the TXRDY interrupt flag in the eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2) is
set.

The application should clear the TXRDY interrupt flag before writing data into the eSCI LIN Transmit
Register (eSCI_LTR) because the eSCI module sets the TXRDY one clock cycle after the write access.

The first data written to the eSCI LIN Transmit Register (eSCI_LTR) provides the Identifier and Identifier
Parity fields. The second data written defines the number of data bytes to be transmitted. The third data
written defines the CRC and checksum generation. The TD bit has to be set to 1 in order to invoke the LIN
TX frame generation. The value of the TO field is ignored by the eSCI module for LIN TX frames.

After the third data is written, the generation of a LIN TX frame is started. First, a break field is transmitted,
then the synch field and the protected identifier field.

All subsequent write accesses to the eSCI LIN Transmit Register (eSCI_LTR) provide data bytes to be
transmitted via the LIN bus. A data byte field is transmitted as soon as data are available. After the last
data byte (defined by the value written to the LEN field) is sent, the configured CRC and checksum fields
are sent out.

After the transmission of the checksum field of the LIN TX frame, the write access counter for the eSCI
LIN Transmit Register (eSCI_LTR) is reset and the FRC interrupt flag in the eSCI Interrupt Flag and Status
Register 2 (eSCI_IFSR2) is set.

Break Synch Identifier Data 1 Data 2 Data N ChecksumCRC1 CRC2

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-45

NOTE
If the eSCI module enters stop while the transmit DMA is enabled and
messages are being transmitted, when the CPU exits stop or doze mode, it
is possible that DMA requests will not be generated by the eSCI module. To
avoid this, the application should ensure that the eSCI module is idle before
entering the stop mode. The eSCI module is idle when both transmitter and
receiver active status bits in the Interrupt Flag and Status Register 1
(eSCI_IFSR1) are not set. The application should not trigger a new
transmission on the eSCI module if the application is preparing for the stop
mode.

30.4.6.3.2 DMA Controlled LIN TX Frame Generation

In this mode, the eSCI module handles the generation of an LIN TX Frame internally. When new data is
ready for transmission, the module generates the transmit DMA request and the DMA controller delivers
the required data. The application requests the eSCI module to enter this mode by setting the TXDMA bit
in the eSCI Control Register 2 (eSCI_CR2). From this point in time, the module starts the generation of
DMA requests and frame transmission. Before entering this mode, the application should perform the
following actions:

1. Configure the module for LIN mode.

2. Enable the transmitter by setting TE in eSCI Control Register 1 (eSCI_CR1) to 1.

3. Set up the DMA controller channel and provide frame data in system memory.

Figure 30-40 shows an overview of the DMA-controlled LIN TX frame. The content of the fields in the
memory is the same as described in eSCI LIN Transmit Register (eSCI_LTR) — LIN TX Frame
Generation.

Figure 30-40. DMA Controlled LIN TX Frame Generation

DMA
Controller eSCI

CSM

TX DMA
channel

ID[5:0]P[1:0]

LEN1

CSE CRC TD2 0

DATA 1

DATA 2

DATA N

System Memory

1 LEN must be set to N
2 TD must be set to 1

Break Synch Identifier DATA 1 DATA N Checksum

LIN TX frame

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-46 Freescale Semiconductor

30.4.6.4 LIN RX Frame Generation

The eSCI module supports two modes of LIN RX Frame generation and reception, the CPU controlled
mode and the DMA controlled mode. In the CPU controlled mode, the application provides the required
data by subsequent CPU write accesses to the eSCI LIN Transmit Register (eSCI_LTR) and retrieves the
received data by subsequent CPU read accesses to the eSCI LIN Receive Register (eSCI_LRR). In the
DMA controlled mode, the DMA controller provides the required frame configuration data in response to
DMA requests generated by the eSCI module and transfers the received frame data to the memory in
response to DMA requests generated by the eSCI module.

30.4.6.4.1 Application Controlled LIN RX Frames Generation

In this mode, the application initiates the generation of an LIN RX Frame by a sequence of subsequent
CPU write accesses to the eSCI LIN Transmit Register (eSCI_LTR). When the eSCI module has processed
the data written into eSCI LIN Transmit Register (eSCI_LTR), the TXRDY interrupt flag in the eSCI
Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set.

The application must clear the TXRDY interrupt flag before writing data into the eSCI LIN Transmit
Register (eSCI_LTR) because the eSCI module sets the TXRDY one clock cycle after the write access.

The first data written to the eSCI LIN Transmit Register (eSCI_LTR) provides the Identifier and Identifier
Parity fields. The second data written defines the number of data bytes requested from the LIN slave. The
third data written defines the CRC and checksum generation. The TD bit must be set to 0 to invoke the RX
frame generation. The TO field defines the upper part of the timeout value. The fourth byte written defines
the lower part of the timeout value.

After the fourth byte is written, the generation of a LIN RX frame is started. First, a break field is
transmitted, then the synch field and the protected identifier field. After the transmission of the protected
identifier, the eSCI module starts to receive the frame data transmitted by the LIN slave. When the module
has received a complete byte field, the received data are transferred into the eSCI LIN Receive Register
(eSCI_LRR) and the receive data ready flag RXRDY in the eSCI Interrupt Flag and Status Register 2
(eSCI_IFSR2) is set.

The application can retrieve the received data by subsequent read access from eSCI LIN Receive Register
(eSCI_LRR) after checking the RXRDY flag. The application must clear the RXRDY flag immediately
after reading the eSCI LIN Receive Register (eSCI_LRR).

After the reception of the configured number of data from the slave, the module starts the reception of the
configured CRC and Checksum byte fields. These data are not transferred into the eSCI LIN Receive
Register (eSCI_LRR). The CRC and Checksum checking is performed internally. Errors are reported as
described in Section 30.4.6.5, “LIN Error Reporting.”

After the reception of the checksum field of the LIN RX frame, the FRC interrupt flag in the eSCI Interrupt
Flag and Status Register 2 (eSCI_IFSR2) is set.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-47

NOTE
When the eSCI module is in LIN mode and transmits the Header of an LIN
RX frame, if the CPU requests Stop Mode, the eSCI module may not
acknowledge the Stop Mode request and will stay in Normal Operating
Mode (not in lower power stop mode).

The application should ensure that no LIN transmission is running before it
requests Stop Mode by checking the Transmit Active and Receive Active
status bits in the eSCI Interrupt Flag and Status Register
(eSCI_IFSR1[TACT] and eSCI_IFSR1[RACT]).

30.4.6.4.2 DMA Controlled LIN RX Frames Generation

In this mode, the eSCI module controls the generation of LIN RX frame header and the reception of the
frame data automatically and utilizes the two connected DMA channels. Figure 30-40 provides a block
diagram that shows an overview of the DMA Controlled LIN RX Frame generation and reception. The
content of the header fields in the memory is the same as described in eSCI LIN Transmit Register
(eSCI_LTR) — LIN RX frame generation. The TX DMA channel is used the fetch the LIN RX frame
header and control information. The RX DMA channel is used to transfer the received frame data into the
memory.

When new data required for transmission, the module generates the transmit DMA request and the DMA
controller delivers the required data. When new data was received, the module generates the receive DMA
request and the DMA controller retrieves the provided data.

The application request the eSCI module to enter this mode by setting the RXDMA bit in the eSCI Control
Register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA requests and
frame transmission and reception. Before entering this mode, the application should perform the following
actions:

1. Configure the module for LIN mode.

2. Enable transmitter and receiver by setting TE and RE in eSCI Control Register 1 (eSCI_CR1) to 1.

3. Set up the two DMA controller channels and provide frame header data in system memory.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-48 Freescale Semiconductor

Figure 30-41. DMA Controlled LIN RX Frame Generation and Reception

30.4.6.5 LIN Error Reporting

This section describes error checking and the signaling of detected errors in LIN mode.

30.4.6.5.1 Physical Bus Error Detection

If the receiver input is sampled 0 for at least 31 sample clock cycles after the start of the transmission of a
LIN frame, the physical bus error flag PBERR in the eSCI Interrupt Flag and Status Register 2
(eSCI_IFSR2) is set.

30.4.6.5.2 Unrequested Activity Detection

If an unrequested byte is received (i.e., a byte that is not part of an RX frame) that is not recognized as a
wakeup or break character, the bit error flag BERR in the eSCI Interrupt Flag and Status Register 2
(eSCI_IFSR2) is set. In addition, the RXRDY flag is set. The LINRX register must be read before normal
operations can proceed.

30.4.6.5.3 Standard Bit Error Detection

The standard bit error detection is performed on each byte field transmission.

During the transmission of the frame header and frame data, the receiver is running and receives the signal
values on the serial bus. After the complete transmission of a byte field, the eSCI compares the data that
was transmitted and the data that was received. If they do not match, the bit error flag BERR in the eSCI
Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set.

30.4.6.5.4 Fast Bit Error Detection

Fast Bit Error Detection has been designed to allow flagging of LIN bit errors while they occur, rather than
flagging them after a byte transmission has completed (see Figure 30-42).

Figure 30-42. Fast Bit Error Detection on a LIN Bus

DMA
Controller eSCI

CSM

TX DMA
channel

ID[5:0]P[1:0]

LEN1

CSE CRC TD2 TO[11:8]

DATA 1

DATA 2

DATA N

System Memory

1 LEN must be set to N
2 TD must be set to 0

Break Synch Identifier DATA 1 DATA N Checksum

LIN RX frame

TO[7:0]

RX DMA
channel

from LIN Master from LIN Slave

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-49

If fast bit error detection bit FBR in the eSCI Control Register 2 (eSCI_CR2) is set, the eSCI compares the
transmitted and received data streams while the transmitter is active (not idle). Once a mismatch between
the transmitted data and the received data is detected, the bit error flag BERR is set.

To adjust to different bus loads, the sample point at which the incoming bit is compared to the transmitted
bit can be selected with the BESM bit in the eSCI Control Register 2 (eSCI_CR2). If
eSCI_CR2[BESM] = 1, the comparison is performed with sample RS13. Otherwise, it is performed with
RS9, as shown inFigure 30-43. See Section 30.4.5.3.13, “Bit Sampling.”

Figure 30-43. Timing Diagram Fast Bit Error Detection

NOTE
To calculate the exact position of the sample point with regard to the RX pin,
the delays through the pads and the two Bus Clock cycle delay through the
input synchronizer also needs to be taken into account.

30.4.6.5.5 Slave-Not-Responding-Error Detection

The Slave-Not-Responding-Error is defined in LIN Specification Package Revision 1.3; December 12,
2002; 6 ERROR AND EXCEPTION HANDLING. The LIN specification requires that a
NO_RESPONSE_ERROR has to be detected if a message frame is not fully completed within the
maximum length TFRAME_MAX by any slave task upon transmission of the SYNCH and IDENTIFIER
fields. The maximum frame length TFRAME_MAX is defined in LIN Specification Package Revision 1.3;
December 12, 2002; 3.3 LENGTH OF MESSAGE FRAME AND BUS SLEEP DETECT, as

Eqn. 30-11

where NDATA is the number of data byte fields of the message frame.

The STO interrupt flag in the eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set if a LIN RX
frame was not fully received in the amount of time specified in the timeout value field TO in the eSCI LIN
Transmit Register (eSCI_LTR). The time period starts with the falling edge of the transmitted LIN break
character and is specified in units of transmit bits.

To achieve LIN compliant Slave-Not-Responding-Error detection, the timeout value TO in the eSCI LIN
Transmit Register (eSCI_LTR) field has to be set to TFRAME_MAX when a LIN RX frame is initiated.

Output Transmit
Shift Register

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Receive
Shift Register

eSCI_CR2[BESM] = 0 eSCI_CR2[BESM] = 1

Compare Sample Points

TFRAME_MAX 10 NDATA 45+ 1.4=

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-50 Freescale Semiconductor

30.4.6.5.6 Checksum Error Detection

If the checksum enable bit CSE in the eSCI LIN Transmit Register (eSCI_LTR) is set, checksum checking
is performed based on the received checksum byte. The checksum mode is selected by the CSM bit in the
eSCI LIN Transmit Register (eSCI_LTR). If the value received in the checksum bytes does not match the
calculated checksum, the checksum error flag CKERR in the eSCI Interrupt Flag and Status Register 2
(eSCI_IFSR2) is set.

30.4.6.5.7 CRC Error Detection

CRC checking is performed on the two received CRC bytes CRC1 and CRC2 if the CRC Enhanced LIN
frame format was selected by the CRC bit in the eSCI LIN Transmit Register (eSCI_LTR). If the value
received in the two CRC bytes did not match the calculated CRC pattern, the CRC error flag CERR in the
eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set.

30.4.6.5.8 Overflow Detection

When the receiver has received the next byte field to be transferred into the eSCI LIN Receive Register
(eSCI_LRR), but neither the application nor the RX DMA channel have read data from this register since
the last update, the received data overflow flag OVFL in the eSCI Interrupt Flag and Status Register 2
(eSCI_IFSR2) is set. In this case, the content of the eSCI LIN Receive Register (eSCI_LRR) is not
changed. The data received most recently are lost.

30.4.6.6 LIN Wakeup

The section describes the LIN wakeup behavior of the eSCI module.

30.4.6.6.1 LIN Wakeup Generation

The eSCI module can cause the LIN bus to exit the sleep mode by sending a break character. The
application triggers the transmission of a break character by writing 1 to the LIN bus wakeup trigger WU
in the eSCI LIN Control Register 1 (eSCI_LCR1). After the end of transmission of this break character,
the transmitter neither sets the TXRDY flag in the eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2)
nor starts the transmission of frame data until the wakeup delimiter period has expired. The wakeup
delimiter period is defined by the WUD field in the eSCI LIN Control Register 1 (eSCI_LCR1).

To generate a valid wakeup character according to LIN 2.0, the eSCI first needs to be programmed to a
baud rate lower than 32 kbaud, then WU can be set. Should the application require a higher baud rate, then
this rate can be set once the wakeup character has been transmitted.

30.4.6.6.2 LIN Wakeup Reception

If the eSCI receives a valid wakeup condition on the selected receiver input, the LIN wakeup flag LWAKE
in the eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set. Since each valid wakeup condition
violates the byte field structure, the frame error flag FE in the eSCI Interrupt Flag and Status Register 1
(eSCI_IFSR1) is also set.

The eSCI detects the following conditions as valid wakeup conditions:

• Reception of a break signal

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-51

• Reception of a LIN 1.x wakeup character (0x80, 0x00 or oxC0)

• Reception of a LIN 2.0 wakeup character (low pulse of 250 ms to 5 ms).
To detect LIN 2.0 wakeup characters, the baud rate must to be set to 32 kbaud down to 1.6 kbaud.

NOTE
If the eSCI module is transmitting a LIN frame and the application sets and
clears the LIN Finite State Machine Resync bit in the LIN Control Register
1 (eSCI_LCR1[LRES]) to abort the transmission, the LIN Wakeup Receive
Flag in the LIN StatusRegister may be set (LWAKE=1). To avoid this, if the
application has triggered LIN Protocol Engine Reset via the
eSCI_LCR1[LRES], it should wait for the duration of a frame and clear the
eSCI_IFSR2[LWAKE] flag before waiting for a wakeup.

NOTE
If the eSCI module is in LIN mode and is transmitting a LIN frame, and the
application sets and subsequently clears the LIN reset bit (LRES) in the LIN
Control register 1 (ESCI_LCR1), the next LIN frame transmission might
incorrectly signal the occurrence of bit errors (ESCI_IFSR1[BERR]) and
frame error (ESCI_IFSR1[FE]), and the transmitted frame might be
incorrect.

30.4.6.7 LIN Protocol Engine Reset

The LIN protocol engine is reset when the LRES bit in the eSCI LIN Control Register 1 (eSCI_LCR1) is
set to 1. In this case, the LIN protocol engine will no longer initiate new transmissions or receptions.
However, ongoing byte transmission or reception is not halted.

In order to start the LIN Protocol Engine with idle transmitter and receiver processes, the LRES bit should
be asserted for the duration of at least one bit.

30.4.7 Interrupts

This section describes the interrupt sources and interrupt request generation.

30.4.7.1 Interrupt Flags and Enables

All interrupt sources, interrupt flags, and interrupt enable bits are listed in Table 30-33. This table indicates
the operational modes, where the interrupt flags can be set by the eSCI module.

Table 30-33. eSCI Interrupt Flags and Interrupt Enable Bits

Interrupt Source Interrupt Flag Interrupt Enable Interrupt Enable Bit

Transmitter SCI eSCI_IFSR1[TDRE] eSCI_CR1[TIE]

Transmitter SCI, LIN eSCI_IFSR1[TC] eSCI_CR1[TCIE]

Receiver SCI eSCI_IFSR1[RDRF] eSCI_CR1[RIE]

Receiver SCI eSCI_IFSR1[IDLE] eSCI_CR1[ILIE]

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-52 Freescale Semiconductor

30.4.7.2 Interrupt Request Generation

The eSCI module provides one hardware interrupt request signal to the systems interrupt controller. This
interrupt request signal is asserted if and only if at least one of the interrupt flags and the corresponding
interrupt enables are set to 1. Otherwise the interrupt line is deasserted.

30.5 Application Information

30.5.1 SCI Data Frames Separated by Preamble

To separate SCI data frame with preambles with minimum idle line time, use this sequence between
messages:

1. Write to the eSCI SCI Data Register (eSCI_SDR).

— This sets the internal iCMT bit, which requests the data transmission.

2. Wait until TDRE in the eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

— This indicates the start of transmission; the iCMT bit was cleared.

3. Clear and subsequently set the TE bit in the eSCI Control Register 1 (eSCI_CR1).

— This set the internal iPRE bit, which requests the preamble transmission.

4. Write to the eSCI SCI Data Register (eSCI_SDR).

— This sets the internal iCMT bit, which requests the data transmission.

Receiver SCI eSCI_IFSR1[OR] eSCI_CR2[ORIE]

Receiver SCI, LIN eSCI_IFSR1[NF] eSCI_CR2[NFIE]

Receiver SCI, LIN eSCI_IFSR1[FE] eSCI_CR2[FEIE]

Receiver SCI eSCI_IFSR1[PF] eSCI_CR2[PFIE]

Receiver LIN eSCI_IFSR1[BERR] eSCI_CR2[BERRIE]

Receiver LIN eSCI_IFSR2[RXRDY] eSCI_LCR1[RXIE]

Transmitter LIN eSCI_IFSR2[TXRDY] eSCI_LCR1[TXIE]

Receiver LIN eSCI_IFSR2[LWAKE] eSCI_LCR1[WUIE]

Receiver LIN eSCI_IFSR2[STO] eSCI_LCR1[STIE]

Receiver LIN eSCI_IFSR2[PBERR] eSCI_LCR1[PBIE]

Receiver LIN eSCI_IFSR2[CERR] eSCI_LCR1[CIE]

Receiver LIN eSCI_IFSR2[CKERR] eSCI_LCR1[CKIE]

Receiver LIN eSCI_IFSR2[FRC] eSCI_LCR1[FCIE]

Receiver LIN eSCI_IFSR2[UREQ] eSCI_LCR2[URIE]

Transmitter, Receiver LIN eSCI_IFSR2[OVFL] eSCI_LCR2[OFIE]

Table 30-33. eSCI Interrupt Flags and Interrupt Enable Bits (continued)

Interrupt Source Interrupt Flag Interrupt Enable Interrupt Enable Bit

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 30-53

The priority scheme of the transmitter (described in Table 30-25) ensures that the preamble is transmitted
before the data frame.

Enhanced Serial Communication Interface (eSCI)

MPC5668x Microcontroller Reference Manual, Rev. 4

30-54 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-1

Chapter 31
Inter-Integrated Circuit Bus Controller Module (I2C)

31.1 Introduction
The inter-integrated circuit (I2C™) bus is a two-wire bidirectional serial bus that provides a simple and
efficient method of data exchange between devices. It minimizes the external connections to devices and
does not require an external address decoder.

This bus is suitable for applications requiring occasional communication over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.

The interface is designed to operate as fast as 100 kbps with maximum bus loading and timing. The device
is capable of operating at higher baud rates, as fast as a maximum of module clock/20, with reduced bus
loading. The maximum communication length and the number of devices that can be connected are limited
by a maximum bus capacitance of 400 pF.

The MPC5668x provides four functionally identical I2C modules, identified as I2C_A through I2C_D.

31.1.1 Block Diagram

A simplified block diagram of the I2C illustrates the functionality and interdependence of major blocks
(see Figure 31-1).

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-2 Freescale Semiconductor

Figure 31-1. I2C Block Diagram

31.1.2 DMA Interface

A simple DMA interface is implemented so that the I2C can request data transfers with minimal support
from the CPU. DMA mode is enabled by setting the DMAEN bit in the I2C Bus Control Register (IBCR).
DMA requests can be performed on all four I2C channels.

The DMA interface is only valid when the I2C module is configured for master mode and the DMA
channel mux has selected the I2C DMA request signals to be inputs to a DMA channel.

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

Bus Clock

I2C

Registers

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-3

Figure 31-2. I2C Module DMA Interface Block Diagram

31.1.3 Features

The I2C has these major features:

• Compatible with I2C bus standard

• Multi-master operation

• Software programmable for one of 256 serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

Input
Sync

In/Out
Data
Shift
Register

Address

Compare

SDA

IRQAddress

Clock

Control

Start
Stop
Arbitration
Control

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

Data bus

SCL

DMA request

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-4 Freescale Semiconductor

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

• Basic DMA interface

Features currently not supported:

• No support for general call address

• Not compliant to ten-bit addressing

31.1.4 Modes of Operation

There are two operating modes of the I2C module: run mode and halt mode. In run mode, I2C_x = 0 in the
SIU_HLT0 register and all functional parts of the I2C module are running. In halt mode, I2C_x = 1 in the
SIU_HLT0 register and all clocks to the I2C module are disabled.

31.2 External Signal Description
Refer to Chapter 2, “Signal Description,” for detailed signal descriptions.

31.3 Memory Map and Registers
This section provides a detailed description of all I2C registers.

31.3.1 Module Memory Map

Table 31-1 shows the I2C memory map. The address of each register is given as an offset to the I2C base
address. Registers are listed in address order, identified by complete name and mnemonic.

Table 31-1. I2C Memory Map

Offset from
I2C_BASE

I2C_A = 0xFFF8_8000
I2C_B = 0xFFF8_C000
I2C_C = 0xC3F8_8000
I2C_D = 0xC3F8_C000

Register Access Reset Value Section/Page

0x0000 IBAD—I2C bus address register R/W 0x00 31.3.2.1/31-5

0x0001 IBFD—I2C bus frequency divider register R/W 0x00 31.3.2.2/31-5

0x0002 IBCR—I2C bus control register R/W 0x80 31.3.2.3/31-8

0x0003 IBSR—I2C bus status register R/W 0x80 31.3.2.4/31-9

0x0004 IBDR—I2C bus data I/O register R/W 0x00 31.3.2.5/31-10

0x0005 IBIC—I2C bus interrupt configuration register R/W 0x00 31.3.2.6/31-11

0x0006–0x3FFF Reserved

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-5

31.3.2 Register Descriptions

This section lists the I2C registers in address order and describes the registers and their bit fields.

31.3.2.1 I2C Bus Address Register (IBAD)

This register contains the address the I2C bus responds to when addressed as a slave; it is not the address
sent on the bus during the address transfer.

31.3.2.2 I2C Bus Frequency Divider Register (IBFD)

Offset: 0x00000 Access: User read/write

0 1 2 3 4 5 6 7

R
AD

0

W

Reset 0 0 0 0 0 0 0 0

Figure 31-3. I2C Bus Address Register (IBAD)

Table 31-2. IBAD Field Descriptions

Field Description

AD Slave Address. Specific slave address to be used by the I2C bus module.
Note: The default mode of I2C bus is slave mode for an address match on the bus.

Offset: 0x0001 Access: User read/write

0 1 2 3 4 5 6 7

R
MULT ICR

W

Reset 0 0 0 0 0 0 0 0

Figure 31-4. I2C Bus Frequency Divider Register (IBFD)

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-6 Freescale Semiconductor

Figure 31-5. SCL Divider and SDA Hold

Table 31-3. IBFD Field Descriptions

Field Description

MULT I2C Multiplier Factor. The MULT bits define the multiplier factor mul. This factor is used along with the SCL divider to
generate the I2C baud rate. The multiplier factor mul as defined by the MULT bits is provided below.
00 mul = 1
01 mul = 2
10 mul = 4
11 Reserved

ICR I2C Bus Clock Rate. The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MULT
bits are used to determine the I2C baud rate, the SDA hold time, the SCL Start hold time and the SCL Stop hold time.
Table 31-4 provides the SCL divider and hold values for corresponding values of the ICR.

The SCL divider multiplied by multiplier factor mul is used to generate I2C baud rate.

I2C baud rate = bus speed (Hz)/(mul * SCL divider) Eqn. 31-1

SDA hold time is the delay from the falling edge of SDA (I2C data) to the changing of SDA (I2C data).

SDA hold time = bus period (s) * mul * SDA hold value Eqn. 31-2

SCL Start hold time is the delay from the falling edge of SDA (I2C data) while SCL is high (Start condition) to the
falling edge of SCL (I2C clock).

SCL Start hold time = bus period (s) * mul * SCL Start hold value Eqn. 31-3

SCL Stop hold time is the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA
SDA (I2C data) while SCL is high (Stop condition).

SCL Stop hold time = bus period (s) * mul * SCL Stop hold value Eqn. 31-4

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-7

Table 31-4. I2C Divider and Hold Values

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SDA Hold
(Stop)
Value

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start)
Value

SCL Hold
(Stop)
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

16 104 21 46 53 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 1022 1025

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3E 3072 513 1534 1537

1F 240 33 118 121 3F 3840 513 1918 1921

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-8 Freescale Semiconductor

31.3.2.3 I2C Bus Control Register (IBCR)

Offset: 0x0002 Access: User read/write

0 1 2 3 4 5 6 7

R
MDIS IBIE

MS TX
NOACK

0
DMAEN

0

W RSTA

Reset 1 0 0 0 0 0 0 0

Figure 31-6. I2C Bus Control Register (IBCR)

Table 31-5. IBCR Field Descriptions

Field Description

MDIS Module Disable. This bit controls the software reset of the entire I2C bus module.
0 The I2C bus module is enabled. This bit must be cleared before any other IBCR bits have any effect.
1 The module is reset and disabled. This is the power-on reset situation. When high, the interface is held in reset,

but registers can be accessed.
Note: If the I2C bus module is enabled in the middle of a byte transfer, the interface behaves as follows: slave mode

ignores the current transfer on the bus and starts operating when a subsequent start condition is detected.
Master mode is not aware that the bus is busy. Therefore, if a start cycle is initiated, the current bus cycle may
become corrupt. This ultimately results in the current bus master or the I2C bus module losing arbitration, after
which, bus operation returns to normal.

IBIE I-Bus Interrupt Enable.
0 Interrupts from the I2C bus module are disabled. This does not clear any currently pending interrupt condition.
1 Interrupts from the I2C bus module are enabled. An I2C bus interrupt occurs provided the IBIF bit in the status

register is also set.

MS Master/Slave Mode Select. This bit is cleared on reset. When this bit is changed from 0 to 1, a START signal is
generated on the bus and the master mode is selected. When this bit is changed from 1 to 0, a STOP signal is
generated and the operation mode changes from master to slave. A STOP signal should be generated if only the
IBIF flag is set. MS is cleared without generating a STOP signal when the master loses arbitration.
0 Slave mode.
1 Master mode.

TX Transmit/Receive Mode Select. This bit selects the direction of master and slave transfers. When addressed as a
slave this bit must be set by software according to the SRW bit in the status register. In master mode this bit must
be set according to the type of transfer required. Therefore, for address cycles, this bit is always high.
0 Receive.
1 Transmit.

NOACK Data Acknowledge Disable. This bit specifies the value driven onto SDA during data acknowledge cycles for both
master and slave receivers. The I2C module always acknowledges address matches, provided it is enabled,
regardless of the value of NOACK. Values written to this bit are used only when the I2C Bus is a receiver, not a
transmitter.
0 An acknowledge signal is sent out to the bus at the 9th clock bit after receiving one byte of data.
1 No acknowledge signal response is sent (i.e., acknowledge bit = 1).

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-9

31.3.2.4 I2C Bus Status Register (IBSR)

RSTA Repeat Start. Writing a 1 to this bit generates a repeated START condition on the bus, provided it is the current bus
master. This bit is always read as a low. Attempting a repeated start at the wrong time, if the bus is owned by another
master, results in loss of arbitration.
0 No effect.
1 Generate repeat start cycle.

DMAEN DMA enable. When this bit is set, the DMA TX and RX lines are asserted when the I2C module requires data to be
read or written to the data register. No transfer done interrupts are generated when this bit is set; however, an
interrupt is generated if loss of arbitration or addressed as slave conditions occur. The DMA mode is valid only when
the I2C module is configured as a master and the DMA transfer still requires CPU intervention at the start and the
end of each frame of data. See the DMA application information section for more details.
0 Disable the DMA TX/RX request signals.
1 Enable the DMA TX/RX request signals.

Offset: 0x0003 Access: User read/write

0 1 2 3 4 5 6 7

R TCF IAAS IBB
IBAL

0 SRW IBIF RXAK

W w1c

Reset 1 0 0 0 0 0 0 0

Figure 31-7. I2C Bus Status Register (IBSR)

Table 31-6. IBSR Field Descriptions

Field Description

TCF Transfer Complete. While one byte of data is transferred, this bit is cleared. It is set by the falling edge of the ninth
clock of a byte transfer. This bit is valid only during or immediately following a transfer to the I2C module or from the
I2C module.
0 Transfer in progress.
1 Transfer complete.

IAAS Addressed as a Slave. When its own specific address (I-bus address register) is matched with the calling address,
this bit is set. The CPU is interrupted provided the IBIE is set. Then the CPU must check the SRW bit and set its
Tx/Rx mode accordingly. Writing to the I-bus control register clears this bit.
0 Not addressed.
1 Addressed as a slave.

IBB Bus Busy. This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a STOP signal
is detected, IBB is cleared and the bus enters idle state.
0 Bus is idle.
1 Bus is busy.

IBAL Arbitration Lost. The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost. Arbitration
is lost in the following circumstances:
 • SDA is sampled low when the master drives a high during an address or data transmit cycle.
 • SDA is sampled low when the master drives a high during the acknowledge bit of a data receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.
This bit must be cleared by software, by writing a one to it. A write of zero has no effect.

Table 31-5. IBCR Field Descriptions (continued)

Field Description

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-10 Freescale Semiconductor

31.3.2.5 I2C Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to IBDR, a data transfer is initiated. The most significant bit
is sent first. In master receive mode, reading this register initiates next byte data receiving. In slave mode,
the same functions are available after an address match has occurred. The TX bit in the IBCR must
correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin.
For instance, if the I2C is configured for master transmit but a master receive is desired, then reading the
IBDR does not initiate the receive.

Reading the IBDR returns the last byte received while the I2C is configured in either master receive or
slave receive modes. The IBDR does not reflect every byte that is transmitted on the I2C bus, nor can
software verify that a byte has been written to the IBDR correctly by reading it back.

In master-transmit mode, the first byte of data written to IBDR following assertion of MS is used for the
address transfer and should comprise the calling address (in position D0–D6) concatenated with the
required R/W bit (in position D7).

bit 4 Reserved for future use. A read returns 0; must be written as 0.

SRW Slave Read/Write. When IAAS is set, this bit indicates the value of the R/W command bit of the calling address sent
from the master. This bit is valid only when the I-bus is in slave mode, a complete address transfer has occurred with
an address match and no other transfers have been initiated. By programming this bit, the CPU can select slave
transmit/receive mode according to the command of the master.
0 Slave receive, master writing to slave.
1 Slave transmit, master reading from slave.

IBIF I-Bus Interrupt Flag. The IBIF bit is set when one of the following conditions occurs:
 • Arbitration lost (IBAL bit set)
 • Byte transfer complete (TCF bit set and DMAEN bit not set)
 • Addressed as slave (IAAS bit set)
 • NoAck from slave (MS and TX bits set)
 • I2C bus going idle (IBB high-low transition and enabled by BIIE)
A processor interrupt request is generated if the IBIE bit is set. This bit must be cleared by software, by writing a 1
to it. A write of 0 has no effect on this bit. In DMA mode (DMAEN set), a byte transfer complete condition does not
trigger the setting of IBIF. All other conditions apply.

RXAK Received Acknowledge. This is the value of SDA during the acknowledge bit of a bus cycle. If the received
acknowledge bit (RXAK) is low, it indicates an acknowledge signal has been received after the completion of 8 bits
data transmission on the bus. If RXAK is high, it means no acknowledge signal is detected at the 9th clock.
0 Acknowledge received.
1 No acknowledge received.

Offset: 0x0004 Access: User read/write

0 1 2 3 4 5 6 7

R
Data

W

Reset 0 0 0 0 0 0 0 0

Figure 31-8. I2C Bus Data I/O Register (IBDR)

Table 31-6. IBSR Field Descriptions (continued)

Field Description

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-11

31.3.2.6 I2C Bus Interrupt Configuration Register (IBIC)

31.4 Functional Description

31.4.1 I-Bus Protocol

The I2C bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to it must have open-drain or open-collector outputs. A logical AND function is exercised on
both lines with external pullup resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address transmission,
data transfer, and STOP signal. They are described briefly in the following sections and illustrated in
Figure 31-10.

Offset: 0x0005 Access: User read/write

0 1 2 3 4 5 6 7

R
BIIE

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

Figure 31-9. I2C Bus Interrupt Configuration Register (IBIC)

Table 31-7. IBIC Field Descriptions

Field Description

BIIE Bus Idle Interrupt Enable Bit. This configuration bit can be used to enable the generation of an interrupt after the I2C
bus becomes idle. After this bit is set, an IBB high-low transition sets the IBIF bit. This feature can be used to signal
to the CPU the completion of a STOP on the I2C bus.
0 Bus idle interrupts disabled.
1 Bus idle interrupts enabled.

bits 1–7 Reserved for future use. A read returns 0; must be written as 0.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-12 Freescale Semiconductor

Figure 31-10. I2C Bus Transmission Signals

31.4.1.1 START Signal

When the bus is free, i.e.,no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 31-10, a
START signal is a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of
a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their
idle states.

Figure 31-11. Start and Stop conditions

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W XXX D0 D1 D2 D3 D4 D5 D6 D7

Calling Address Read/ Data Byte

AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W AD0 AD1 AD2 AD3 AD4 AD5 AD6 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write

SDA

 SCL

START condition STOP condition

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-13

31.4.1.2 Slave Address Transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer—the slave transmits data to the master

0 = Write transfer—the master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master responds by sending
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 31-10).

No two slaves in the system may have the same address. If the I2C bus is master, it must not transmit an
address that is equal to its own slave address. The I2C bus cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle, the I2C bus reverts to slave mode and operates
correctly, even if it is being addressed by another master.

31.4.1.3 Data Transfer

After successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high (see Figure 31-10). There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte must be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. Therefore, one complete data byte transfer
needs nine clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means end
of data to the slave, so the slave releases the SDA line for the master to generate a STOP or START signal.

31.4.1.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL is at logical 1 (see Figure 31-10).

The master can generate a STOP even if the slave has generated an acknowledge, at which point the slave
must release the bus.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-14 Freescale Semiconductor

31.4.1.5 Repeated START Signal

As shown in Figure 31-10, a repeated START signal is a START signal generated without first generating
a STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

31.4.1.6 Arbitration Procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus simultaneously, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure. A bus master loses arbitration if it transmits logic “1” while another master transmits
logic 0. The losing masters immediately switch to slave receive mode and stop driving the SDA output. In
this case, the transition from master to slave mode does not generate a STOP condition. Meanwhile, a
status bit is set by hardware to indicate loss of arbitration.

31.4.1.7 Clock Synchronization

Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device's clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock remains within
its low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 31-12). When all
engaged devices have counted off their low period, the synchronized clock SCL line is released and pulled
high. There is then no difference between the device clocks and the state of the SCL line and all the devices
start counting their high periods. The first device to complete its high period pulls the SCL line low again.

Figure 31-12. I2C Bus Clock Synchronization

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-15

31.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such cases, it halts the bus clock and forces
the master clock into wait state until the slave releases the SCL line.

31.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow the bit rate of a transfer. After the
master has driven SCL low, the slave can drive SCL low for the required period and then release it. If the
slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

31.4.2 Interrupts

31.4.2.1 General

The I2C uses one interrupt vector only.

31.4.2.2 Interrupt Description

There are five types of internal interrupts in the I2C. The interrupt service routine can determine the
interrupt type by reading the status register.

I2C Interrupt can be generated on:

• Arbitration lost condition (IBAL bit set)

• Byte transfer condition (TCF bit set and DMAEN bit not set)

• Address detect condition (IAAS bit set)

• No acknowledge from slave received when expected

• Bus going idle (IBB bit not set)

The I2C interrupt is enabled by the IBIE bit in the I2C control register. It must be cleared by writing 1 to
the IBIF bit in the interrupt service routine. The bus going idle interrupt needs to be additionally enabled
by the BIIE bit in the IBIC register.

Table 31-8. Interrupt Summary

Interrupt Offset Vector Priority Source Description

I2C Interrupt — — — IBAL, TCF,
IAAS, IBB bits in

IBSR register

When any IBAL, TCF, or IAAS bits are set an interrupt may be
caused based on arbitration lost, transfer complete or address
detect conditions. If enabled by BIIE, the deassertion of IBB can
also cause an interrupt, indicating that the bus is idle.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-16 Freescale Semiconductor

31.5 Initialization/Application Information

31.5.1 I2C Programming Examples

31.5.1.1 Initialization Sequence

Reset puts the I2C bus control register in its default state. Before the interface can be used to transfer serial
data, an initialization procedure must be carried out, as follows:

1. Update the frequency divider register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.

2. Update the I2C bus address register (IBAD) to define its slave address.

3. Clear the MDIS bit of the I2C bus control register (IBCR) to enable the I2C interface system.

4. Modify the bits of the IBCR to select master/slave mode, transmit/receive mode and interrupt
enable or not. Optionally modify the bits of the I2C bus interrupt configuration register (IBIC) to
further refine the interrupt behavior.

5. Configure the SDA and SCL pads. (The SIU Pad Configuration registers must be configured to
select the appropriate I2C function. Also, the open drain feature of the pad must be enabled by
setting the ODE bit in the appropriate SIU pad configuration register.)

31.5.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the master
transmitter mode. If the device is connected to a multi-master bus system, the state of the I2C bus busy bit
(IBB) must be tested to check if the serial bus is free.

If the bus is free (IBB = 0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB, which is set to indicate the
direction of transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period, it may be necessary to wait until the I2C is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.

An example of the sequence of events which generates the START signal and transmits the first byte of
data (slave address) is shown below:

while (bit 2, IBSR ==1) // wait in loop for IBB flag to clear
bit3 and bit 2, IBCR = 1 // set transmit and master mode, i.e. generate start condition
IBDR = calling_address // send the calling address to the data register
while (bit 2, IBSR ==0) // wait in loop for IBB flag to be set

31.5.1.3 Post-Transfer Software Response

Transmission or reception of a byte sets the data transferring bit (TCF) to 1, which indicates one byte
communication is finished. The I2C Bus interrupt bit (IBIF) is set also; an interrupt is generated if the

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-17

interrupt function is enabled during initialization by setting the IBIE bit. The IBIF (interrupt flag) can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit is cleared to indicate data transfer in progress by reading the IBDR data register in receive
mode or writing the IBDR in transmit mode. The TCF bit must not be used as a data transfer complete flag
because the flag timing depends on a number of factors including the I2C bus frequency. This bit may not
conclusively provide an indication of a transfer complete situation. Transfer complete situations must be
detected using the IBIF flag

Software may service the I2C I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Polling should monitor the IBIF bit rather than the TCF bit because their operation is different
when arbitration is lost.

When an interrupt occurs at the end of the address cycle, the master is always in transmit mode, i.e., the
address is transmitted. If master receive mode is required, indicated by R/W bit in IBDR, then the TX bit
should be toggled at this stage.

During slave mode address cycles (IAAS = 1) the SRW bit in the status register is read to determine the
direction of the subsequent transfer and the TX bit is programmed accordingly. For slave mode data cycles
(IAAS = 0) the SRW bit is not valid. The TX bit in the control register should be read to determine the
direction of the current transfer.

The following is an example software sequence for master transmitter in the interrupt routine.
clear bit 6, IBSR // Clear the IBIF flag
if (bit 2, IBCR ==0)

slave_mode() // run slave mode routine
if (bit 3, IBCR ==0))

receive_mode() // run receive_mode routine
if (bit 7, IBSR == 1) // if NO ACK
 end(); // end transmission
else
IBDR = data_to_transmit // transmit next byte of data

31.5.1.4 Generation of STOP

A data transfer ends with a STOP signal generated by the master device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following example shows how a stop
condition is generated by a master transmitter.

if (tx_count == 0) or // check to see if all data bytes have been transmitted
 (bit 7, IBSR == 1) { // or if no ACK generated
 clear bit 2, IBCR // generate stop condition
 }
else {
IBDR = data_to_transmit // write byte of data to DATA register
 tx_count -- // decrement counter
 } // return from interrupt

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data. This can be done by setting the transmit acknowledge bit (TXAK)
before reading the second last byte of data. Before reading the last byte of data, a STOP signal must first
be generated. The following example shows how a STOP signal is generated by a master receiver.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-18 Freescale Semiconductor

rx_count -- // decrease the rx counter
if (rx_count ==1) // 2nd last byte to be read ?
 bit 4, IBCR = 1 // disable ACK
if (rx_count == 0) // last byte to be read ?
 bit 6, IBCR = 0 // generate stop signal
else
data_received = IBDR // read RX data and store

31.5.1.5 Generation of Repeated START

At the end of data transfer, if the master wants to remain communicating on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example is as shown.

bit 5, IBCR = 1 // generate another start (restart)
IBDR == calling_address // transmit the calling address

31.5.1.6 Slave Mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) must be tested to check if
a calling of its own address has been received. If IAAS is set, software sets the transmit/receive mode
select bit (TX bit of IBCR) according to the R/W command bit (SRW). Writing to the IBCR clears IAAS
automatically. IAAS is read as set when it is from the interrupt at the end of the address cycle where an
address match occurred. Interrupts resulting from subsequent data transfers have IAAS cleared. A data
transfer may be initiated by writing information to IBDR for slave transmits or dummy reading from IBDR
in slave receive mode. The slave drives SCL low in-between byte transfers SCL is released when the IBDR
is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an end of data signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so the master can generate a STOP signal.

31.5.1.7 Arbitration Lost

If several masters try to engage the bus simultaneously, one master wins and the others lose arbitration.
The devices that lost arbitration are immediately switched to slave receive mode by the hardware. Their
data output to the SDA line is stopped, but SCL remains generated until the end of the byte during which
arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer with IBAL = 1
and MS = 0. If one master attempts to start transmission while the bus is being engaged by another master,
the hardware inhibits the transmission, switches the MS bit from 1 to 0 without generating a STOP
condition, generates an interrupt to CPU, and sets the IBAL to indicate that the attempt to engage the bus
is failed. When considering these cases, the slave service routine should test the IBAL first and the
software should clear the IBAL bit if it is set.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-19

Figure 31-13. Flowchart of Typical I2C Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK = 0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK = 1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS = 1
?

IAAS = 1
?

SRW = 1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-20 Freescale Semiconductor

31.5.2 DMA Application Information

The DMA interface on the I2C is not completely autonomous and requires intervention from the CPU to
start and to terminate the frame transfer. DMA mode is valid for master-transmit and master-receive modes
only. Software must ensure that the DMA enable bit in the control register is not set when the I2C module
is configured in master mode.

The DMA controller must transfer only one byte of data per Tx/Rx request. This is because there is no
FIFO on the I2C block.

The CPU should also keep the I2C interrupt enabled during a DMA transfer to detect the arbitration lost
condition and take action to recover from this situation. The DMAEN bit in the IBCR register works as a
disable for the transfer complete interrupt. This means that during normal transfers (no errors) there always
is either an interrupt or a request to the DMA controller, depending on the setting of the DMAEN bit. All
error conditions trigger an interrupt and require CPU intervention. The address match condition does not
occur in DMA mode as the I2C should never be configured for slave operation.

The following sections detail how to set up a DMA transfer and what intervention is required from the
CPU. It is assumed that the system DMA controller is capable of generating an interrupt after a certain
number of DMA transfers have taken place.

31.5.2.1 DMA Mode, Master Transmit

Figure 31-14 details exactly the operation for using a DMA controller to transmit n data bytes to a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the last data byte) can be transferred by the DMA controller. The last data byte must be transferred
by the CPU.

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-21

Figure 31-14. Flowchart of DMA Mode Master Transmit

31.5.2.2 DMA Mode, Master RX

Figure 31-15 details the exact operation for using a DMA controller to receive n data bytes from a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the two last data bytes) can be read by the DMA controller. The last two data bytes must be
transferred by the CPU.

Config I2C for
 Master TX

CPU writes calling
address to slave

interrupt
generated

Arb Lost or
No ack?

CPU handles

condition

yes

no

 CPU sets
DMAENABLE

DMA writes 1

ipd_rx_req
generated

 DMA written

 data?
(n-1) bytes of

no

yes

 CPU clears
DMA enable

interrupt
generated

Start
Generated

 byte of data

CPU writes last

data byte

interrupt
generated

CPU clears

MS bit in CR
 Stop
generated

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-22 Freescale Semiconductor

Figure 31-15. Flowchart of DMA Mode Master Receive

31.5.2.3 Exiting DMA Mode, System Requirement Considerations

As described above, the final transfers of both Tx and Rx transfers need to be managed via interrupt by the
CPU. To change from DMA to interrupt driven transfers in the I2C module, disable the DMAEN bit in the
IBCR register. The trigger to exit the DMA mode is that the programmed DMA transfer control descriptor
(TCD) has completed all its transfers to/from the I2C module.

Config I2C for
 Master TX

interrupt
generated

Arb Lost or
No ack?

CPU handles

condition

yes

no

 CPU sets TX/RX
to RX

 CPU: dummy

 CPU sets
DMAENABLE

read of DATAreg

DMA reads byte

ipd_rx_req
generated

of data

 Slave TX one
 byte of data

 DMA read

 data?
(n-2) bytes of

no

yes

 CPU clears
DMA enable

Slave TX n-1

data byte

interrupt
generated

CPU reads n-1
data

 CPU sets
TXACK

Slave TX last
data byte

interrupt
generated

CPU reads last
data byte

Stop
generated

Start
Generated

CPU writes calling
address to slave

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 31-23

After the last DMA write (TX mode) to the I2C the module immediately starts the next I2C-bus transfer.
The same is true for RX mode. After the DMA read from the IBDR register the module initiates the next
I2C-bus transfer. This results in two possible scenarios in the DMA mode exiting scheme.

1. Fast reaction

The DMAEN bit is cleared before the next I2C-bus transfer completes. In this case, the module
raises an interrupt request to the CPU which can be serviced normally.

2. Slow reaction

The DMAEN bit is cleared after the next I2C-bus transfer has already completed. In this case, the
module does not raise an interrupt request to the CPU. Instead, the TCF bit can be read to determine
that the transfer completed and the module is ready for further transfer.

31.5.2.3.1 Fast vs. Slow Reaction

The reaction time TR for the system to disable DMAEN after the last DMA controller access to the I2C is
the time required for one byte transfer over the I2C. In a fast reaction the disabling has to occur before the
ninth bit of the data transfer, which is the ACK bit. So the time available is eight times the SCL period.

TR = 8 x TSCL Eqn. 31-5

In fast mode, with 400 kbit/s, TSCL is 2.5 s, so TR is 20 s.

Depending on the system and DMA controller there are different possibilities for the deassertion of
DMAEN. Three options are:

1. CPU intervention via interrupt

The DMA controller is programmed to signal an interrupt to the CPU which is then responsible for
the deassertion of DMAEN. This scheme is supported by most systems but can result in a slow
reaction time if higher priority interrupts interfere. Therefore, the interrupt handling routine can
become complicated as it has to check which of the two scenarios happened (check TCF bit) and
act accordingly. In case of slow reaction you can force an interrupt for the I2C in the interrupt
controller to have the further transfer handled by the normal I2C interrupt routine. The use of nested
interrupts can cause problems in this scenario, if the DMA interrupt stalls between the deassertion
and the DMAEN bit and the checking of the TCF bit.

2. DMA channel linking (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer is linked to
another channel that does a write to the I2C IBCR register to disable the DMAEN bit. This is
probably the fastest system solution, but it uses two DMA channels. On the system level, no higher
priority DMA requests must occur between the two linked TCDs because those can result in slow
reaction.

3. DMA scatter/gather process (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer has the
scatter-gather feature activated. This feature initiates a reload of another TCD from system RAM
after the completion of the first TCD. The new TCD has its start bit already set and immediately
starts the required write to the I2C IBCR register to disable the DMAEN bit. This TCD also has
scatter-gather activated and is programmed to reload the initial TCD upon completion, bringing the

Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5668x Microcontroller Reference Manual, Rev. 4

31-24 Freescale Semiconductor

system back into a ready-for-I2C-transfer state. The advantage over the two other solutions is that
this does not require CPU intervention or a second DMA channel. This comes at the cost of 64
bytes RAM (two TCDs), some system bus transfer overhead, and a little increase in application
code complexity. On the system level, no higher priority DMA requests must occur during the
scatter-gather process because those can result in a slow reaction.

Example latencies for a 32 MHz system with a full speed 32-bit AHB bus and an I2C connected via half
speed IPI bus:

• Accessing the I2C from the DMA controller via IPI bus typically requires four cycles (consecutive
accesses to the I2C could be faster):

4 x TIPI = 4 / 16 MHz = 250 ns Eqn. 31-6

• Reloading a new TCD (8 32 bit) via AHB to the DMA controller (scatter/gather process):

8 x TAHB = 8 / 32 MHz = 250 ns Eqn. 31-7

With the DMA scatter-gather process, the required IBCR access can be done in 0.5 s, leaving a large
margin of 19.5 s for additional system delays. The slow reaction case can be prevented in this way. The
system user must decide which usage model suits his overall requirements best.

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-1

Chapter 32
Cross Triggering Unit (CTU)

32.1 Introduction
The Cross Triggering Unit (CTU) is a collection of 9-bit down-counters with an exponential prescaler able
to generate the trigger event for the ADC conversion. The delayed trigger event can be a combination of
unified channel flags/triggering events connected to different timers (eMIOS/PIT) present in the system.
The 7-bit channel number is provided to the ADC. This channel number is used to communicate which
particular channel has to be converted.

NOTE
The CTU is not implemented on the MPC5668G.

32.2 Main Features
• 9-bit down-counters counting from a programmable start value to 0

• Different counters associated with different channel groups

• Channel group is defined based on PWM channel clock

• Different delay value for each eMIOS flag/PIT event

• 4-bit programmable exponential prescaler: fCK_TIM divided by 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024

• Single cycle delayed trigger output. The trigger output is a combination of 33 input flags/events
connected to different timers in the system.

• Maskable interrupt generation whenever a trigger output is generated

• Event configuration registers dedicated to each UC flag/triggering event storing the values of a
channel number to be provided for ATD conversion, CLR_FLAG bit, counter selection bits, delay
value selection bits and trigger masking for each UC flag/triggering event

• Acknowledgment signal to eMIOS/PIT for clearing the flag

• Synchronization with ADC to avoid collision

32.3 Block Diagram
The block diagram is shown in Figure 32-1.

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-2 Freescale Semiconductor

Figure 32-1. Cross Triggering Unit Block Diagram

32.4 Memory Map and Register Description
This section provides a detailed description of all CTU registers.

32.4.1 Module Memory Map

The CTU registers are listed in Table 32-1.

Table 32-1. CTU Memory Map

Offset from
CTU_BASE

0xFFFD_8000
Register Access Reset Value Section/Page Size

0x0000 CTU_CSR – Control Status Register R/W1 0x0000_0000 32.4.1.1/32-4 32

0x0004 CTU_SVR1 – Start Value Register 1 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x0008 CTU_SVR2 – Start Value Register 2 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x000C CTU_SVR3 – Start Value Register 3 R/W1 0x0000_0000 32.4.1.2/32-5 32

Event
Gen

Event
Gen

Event Configuration Register 31

CTU_SVR1

CTU_SVR2

CTU_SVR7

CTU_CVR0

CTU_CVR1

CTU_CVR2

CTU_CVR3

4-bit Prescaler

Counter Arbitration
and

Event arbitration

CHANNEL_VALUE

TRGO

TRG_
INT

flag_ack

next_cmd

and mask/en

Trigger Output
Control

Event
Gen

FLAG0

FLAG1

FLAG32

ch_value_select

clr_flag

Event Configuration Register 0

Event Configuration Register 1

Counters

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-3

0x0010 CTU_SVR4 – Start Value Register 4 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x0014 CTU_SVR5 – Start Value Register 5 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x0018 CTU_SVR6 – Start Value Register 6 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x001C CTU_SVR7 – Start Value Register 7 R/W1 0x0000_0000 32.4.1.2/32-5 32

0x0020 CTU_CVR0 – Current Value Register 0 RO 0x0000_0000 32.4.1.3/32-5 32

0x0024 CTU_CVR1 – Current Value Register 1 RO 0x0000_0000 32.4.1.3/32-5 32

0x0028 CTU_CVR2 – Current Value Register 2 RO 0x0000_0000 32.4.1.3/32-5 32

0x002C CTU_CVR3 – Current Value Register 3 RO 0x0000_0000 32.4.1.3/32-5 32

0x0030 CTU_EVTCFGR02 – Event Configuration Register 0 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0034 CTU_EVTCFGR12 – Event Configuration Register 1 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0038 CTU_EVTCFGR22 – Event Configuration Register 2 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x003C CTU_EVTCFGR32 – Event Configuration Register 3 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0040 CTU_EVTCFGR42 – Event Configuration Register 4 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0044 CTU_EVTCFGR52 – Event Configuration Register 5 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0048 CTU_EVTCFGR62 – Event Configuration Register 6 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x004C CTU_EVTCFGR72 – Event Configuration Register 7 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0050 CTU_EVTCFGR82 – Event Configuration Register 8 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0054 CTU_EVTCFGR92 – Event Configuration Register 9 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0058 CTU_EVTCFGR102 – Event Configuration Register 10 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x005C CTU_EVTCFGR112 – Event Configuration Register 11 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0060 CTU_EVTCFGR122 – Event Configuration Register 12 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0064 CTU_EVTCFGR132 – Event Configuration Register 13 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0068 CTU_EVTCFGR142 – Event Configuration Register 14 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x006C CTU_EVTCFGR152 – Event Configuration Register 15 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0070 CTU_EVTCFGR162 – Event Configuration Register 16 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0074 CTU_EVTCFGR172 – Event Configuration Register 17 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0078 CTU_EVTCFGR182 – Event Configuration Register 18 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x007C CTU_EVTCFGR192 – Event Configuration Register 19 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0080 CTU_EVTCFGR202 – Event Configuration Register 20 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0084 CTU_EVTCFGR212 – Event Configuration Register 21 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0088 CTU_EVTCFGR222 – Event Configuration Register 22 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x008C CTU_EVTCFGR232 – Event Configuration Register 23 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0090 CTU_EVTCFGR242 – Event Configuration Register 24 R/W1 0x0000_0000 32.4.1.4/32-6 32

Table 32-1. CTU Memory Map

Offset from
CTU_BASE

0xFFFD_8000
Register Access Reset Value Section/Page Size

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-4 Freescale Semiconductor

32.4.1.1 Control Status Register (CTU_CSR)

0x0094 CTU_EVTCFGR252 – Event Configuration Register 25 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x0098 CTU_EVTCFGR262 – Event Configuration Register 26 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x009C CTU_EVTCFGR272 – Event Configuration Register 27 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x00A0 CTU_EVTCFGR282 – Event Configuration Register 28 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x00A4 CTU_EVTCFGR292 – Event Configuration Register 29 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x00A8 CTU_EVTSELR302 – Event Configuration Register 30 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x00AC CTU_EVTSELR312 – Event Configuration Register 31 R/W1 0x0000_0000 32.4.1.4/32-6 32

0x00B0 CTU_EVTSELR323 – Event Configuration Register 32 R/W1 0x0000_0000 32.4.1.4/32-6 32

1 Some bits are read-only.
2 For eMIOS channels 0 – 31.
3 For PIT3.

Offset: CTU_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 TRGI
EN

TRGI 0 0
PRESC_CONF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-2. Control Status Register (CTU_CSR)

Table 32-2. CTU_CSR Register Field Descriptions

Bit Description

TRGIEN Trigger Interrupt Request Enable
0 Trigger interrupt request disabled.
1 Trigger interrupt request enabled. A request is generated if the TRGI flag is set.

TRGI Trigger Interrupt Flag. This flag is set by hardware when the trigger output request is generated after a valid input
event is detected. It is cleared by software.
0 No trigger output request.
1 Trigger output request generated.

Table 32-1. CTU Memory Map

Offset from
CTU_BASE

0xFFFD_8000
Register Access Reset Value Section/Page Size

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-5

32.4.1.2 Start Value Register (CTU_SVRn)

The CTU_SVRn registers contain the start values to be loaded into the CTU_CVRm registers.

32.4.1.3 Current Value Register (CTU_CVRm)

The CTU_CVRm registers contain the current count value.

PRESC_
CONF

Prescaler Configuration.
The counter clock is derived from the system clock by dividing it by 20 to 210 depending on the prescaler configuration
bits. The clock division coding is as follows:
0000 Clock divided by 1 (no division).
0001 Clock divided by 2.
0010 Clock divided by 4.
0011 Clock divided by 8.
0100 Clock divided by 16.
0101 Clock divided by 32.
0110 Clock divided by 64.
0111 Clock divided by 128.
1000 Clock divided by 256.
1001 Clock divided by 512.
1010 Clock divided by 1024.
1011 – 1111 Clock divided by 1(no division).

Offset: CTU_BASE + 0x0004 (CTU_SVR1)
0x0008 (CTU_SVR2)
0x000C(CTU_SVR3)
0x0010 (CTU_SVR4)

0x0014 (CTU_SVR5)
0x0018 (CTU_SVR6)
0x001C (CTU_SVR7)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0
SV[8:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-3. Start Value Register (CTU_SVRn)

Table 32-4. CTU_SVRn Register Field Descriptions

Bit Description

SV[8:0] Start Value. These bits store the start value of the counting to be loaded into the current value register whenever an
event mapped to this start value register is serviced.

Table 32-2. CTU_CSR Register Field Descriptions (continued)

Bit Description

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-6 Freescale Semiconductor

32.4.1.4 Event Configuration Register (CTU_EVTCFGRn)

Event configuration registers 0 – 31 are associated with eMIOS channels 0 – 31. Event configuration
register 32 is associated with PIT3.

Offset: CTU_BASE + 0x0020 (CTU_CVR0)
0x0024 (CTU_CVR1)

0x0028 (CTU_CVR2)
0x002C (CTU_CVR3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 CV[8:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-5. Current Value Register (CTU_CVRn)

Table 32-6. CTU_CVRm Register Field Descriptions

Bit Description

CV[8:0] Current Value. These bits contain the current value of the counter. The counter starts counting from the start value
loaded from corresponding start value register down to 0x000 as soon as a valid input event is detected.

Offset: CTU_BASE + 0x0030–0x00B0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TM

0 COUNT_
GROUP

0
DELAY_INDEX

CLR_
FLAG

0
CHANNEL_VALUE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-7. Event Configuration Register (CTU_EVTCFGRn)

Table 32-8. CTU_EVTCFGRn Register Field Descriptions

Bit Description

TM Trigger Mask.
0 Trigger masked.
1 Trigger enabled.

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-7

These registers contain the channel value signifying which channel needs to be ATD converted, the
CLR_FLAG used to clear ocmp flag through software, the counter group that specifies the clock group to
which input channel is associated, the delay selection bits that have to be loaded into the counters and the
mask/enable for the event.

The CLR_FLAG bit has to be used cautiously as setting this bit may result in loss of events.

The event input can be masked by setting trigger mask bit of CTU_EVTCFGRn register to ‘0’.

32.5 Functional Description
The CTU is used to generate a trigger output for the conversion and provide the channel to be converted.
The trigger output is a combination of gated events of different eMIOS/PIT flags with configurable delays.
The trigger output is a single cycle pulse used to trigger an ADC conversion of the channel number
provided by CTU.

Each event has a dedicated configuration register (CTU_EVTCFGRn). These registers store a channel
number which is used to communicate which channel needs to be converted, the counter group, the start
value selection bits and masking bit for that particular event.

The CTU interfaces between the eMIOS/PIT and the ADC, and convert the events generated by the eMIOS
into ADC conversion requests.

COUNT_
GROUP

Counter Group.
00 Counter 0 is associated with the particular event.
01 Counter 1 is associated with the particular event.
10 Counter 2 is associated with the particular event.
11 Counter 3 is associated with the particular event.

DELAY_
INDEX

Delay Index.
000 No delay is provided.
001 Counter is loaded with value stored in CTU_SVR1.
010 Counter is loaded with value stored in CTU_SVR2
011 Counter is loaded with value stored in CTU_SVR3
100 Counter is loaded with value stored in CTU_SVR4
101 Counter is loaded with value stored in CTU_SVR5
110 Counter is loaded with value stored in CTU_SVR6
111 Counter is loaded with value stored in CTU_SVR7

CLR_FLAG1 To provide flag_ack through software.
0 Flag_ack is dependent on flag servicing.
1 Flag_ack is forced to ‘1’ for the particular event.

CHANNEL_
VALUE

Channel value to be provided to ADC.

1 This bit implementation is generic based and implemented only for inputs mapped to PIT event flags.

Table 32-8. CTU_EVTCFGRn Register Field Descriptions (continued)

Bit Description

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-8 Freescale Semiconductor

Figure 32-3. CTU Trigger Sources Allocation

All the flags can be divided in to four different counter groups which signify which PWM channel clock
group the particular event is generated. The four counters can run in parallel and the trigger output is
generated for the counter expiring first. If more than one counter reaches zero at the same time, the lower
index counter has higher priority and the corresponding channel value is provided to the ADC.

Each trigger input from the CTU is connected to the Event Trigger signal of an eMIOS or PIT channel.
The assignment between eMIOS/PIT outputs and CTU trigger inputs is defined in Table 32-9.

The eMIOS signal “FLAG” is used in DMA mode to interface with the trigger input of the CTU. The CTU
resets the FLAG signal once the ADC conversion request has been completed.

NOTE
The eMIOS channels can either be used with eDMA or CTU. They cannot
be used with eDMA and CTU at the same time.

Table 32-9. CTU Trigger Sources

Trigger Number Module Source

0 eMIOS Channel_0

1 eMIOS Channel_1

2 eMIOS Channel_2

3 eMIOS Channel_3

4 eMIOS Channel_4

5 eMIOS Channel_5

6 eMIOS Channel_6

7 eMIOS Channel_7

8 eMIOS Channel_8

Event Configuration Register_0

Trigger Inputs

Trig_0

Event Configuration Register_1Trig_1

Event Configuration Register_31Trig_31

Event Configuration Register_32Trig_32

P
rio

rit
y

H
ig

he
r

Lo
w

er

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-9

Whenever a flag is set in a particular counter group, the corresponding counter loads the value from one
of the start value registers depending on the delay selection bits. An acknowledgement signal is sent to
eMIOS/PIT to clear the flag. In case more than one flag is set in the same counter group, the lower index
flag is given priority and the corresponding delay value is loaded into the counter.

The acknowledgment signal can be forced to ‘1’ by setting the CLR_FLAG bit of the CTU_EVTCFGRn
register. These bits are implemented for only those input flags to which PIT flags are connected. The
purpose to provide these bits is to have the option of clearing PIT flags by software.

In summary, two levels of arbitration are done before the channel number and trigger are provided to the
ADC:

9 eMIOS Channel_9

10 eMIOS Channel_10

11 eMIOS Channel_11

12 eMIOS Channel_12

13 eMIOS Channel_13

14 eMIOS Channel_14

15 eMIOS Channel_15

16 eMIOS Channel_16

17 eMIOS Channel_17

18 eMIOS Channel_18

19 eMIOS Channel_19

20 eMIOS Channel_20

21 eMIOS Channel_21

22 eMIOS Channel_22

23 eMIOS Channel_23

24 eMIOS Channel_24

25 eMIOS Channel_25

26 eMIOS Channel_26

27 eMIOS Channel_27

28 eMIOS Channel_28

29 eMIOS Channel_29

30 eMIOS Channel_30

31 eMIOS Channel_31

32 PIT PIT_4

Table 32-9. CTU Trigger Sources (continued)

Trigger Number Module Source

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-10 Freescale Semiconductor

• First level of arbitration is done between all events associated to one counter. The lowest index
channel has the highest priority.

• Second level of arbitration is done between counters. The lowest index counter has the highest
priority.

32.5.1 Pending Request

In case multiple events occur in the same counter group, the sequence below is followed:

1. The lowest index event is given priority, and a corresponding delay is loaded into the counter.

2. The counter starts counting down. Other events remain pending.

3. The eMIOS/PIT flag is cleared for the event being serviced.

4. When the counter reaches zero, ADC conversion is triggered, provided that the previous
conversion (if any) is completed and arbitration grants the trigger to this counter.

5. The counter is loaded with the delay value corresponding to next pending flag and the sequence
follows. In case no more flags are pending, the counter resets.

The counters are also reset if the CTU halt bit (bit 9) in the SIU_HLT1 register is set.

32.5.2 Counter

The counters are 9-bit down-counters which are triggered by the logical OR output of the input events for
that counter group. A particular counter can only be triggered if some unmasked event is pending in that
counter group. As soon as a valid input event is detected, the current value register CTU_CVRm (i.e.,
counter) is loaded with the corresponding start value for that particular event and the counter starts
counting down. The start value for the particular event is based on the delay selection bits of the
corresponding CTU_EVTCFGR register. The counter stops automatically when the count value reaches
‘0’ and provides the ADC trigger and corresponding channel number, provided that it wins the arbitration
and the previous ADC conversion (if any) is over.

In case some flags are pending in the counter group and they are not masked, the counter is reloaded with
a delay value corresponding to the lowest index pending flag and starts counting down again. If no valid
flag is set for the counter group, the counter remains in reset state.

The counters are in the following states after each reset condition:

• System reset — Reset (all zeros)

• Power On Reset — Reset (all zeros)

• Wake-up from low power Sleep mode — Reset (all zeros)

32.5.3 Prescaler

The counter clock is the prescaler output. To offer a wide counting period range, the prescaler allows to
divide the clock by 20 to 210 depending on the prescaler configuration (PRESC_CONF) bits of the
CTU_CSR register.

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 32-11

The PRESC_CONF bits of register CTU_CSR must not be modified while the counters are running. The
counter behavior is not guaranteed if this rule is not respected. Also, it is recommended to program the
CTU_SVRn registers only when counters are not running.

32.5.4 Trigger Interrupt Request

When a request for trigger output is generated, the flag TRGI in the CTU_CSR register is set. An interrupt
is generated if the TRGIEN bit in the CTU_CSR register is set. If this condition is false, the interrupt
remains pending to be issued as soon as it is enabled. The interrupt status flag can be cleared by writing
‘1’ to the TRGI bit.

32.5.5 Halt Request

Whenever a halt mode entry request is generated (CTU halt bit in the SIU_HLT0 register is set), the
counters are reset. Setting this bit also turns off the clock to the module, shutting it down.

32.5.6 Channel Value

The channel value stored in an event configuration register is demultiplexed to 7 bits and then provided to
the ADC. The mapping of channel number value to the corresponding ADC channel is provided in
Table 32-10.

So while programming an event configuration register, this mapping has to be taken care of, e.g., if the
channel value of any event configuration register is programmed to 16, it actually corresponds to channel
32 of ADC and conversion occurs for this channel.

Table 32-10. Channel Number Value Mapping

ADC Channel CTU Channel

Channel 0–15 Channel 0–15

Channel 16–31 — not mapped —

Channel 32–47 Channel 16–31

Channel 48–63 — not mapped —

Channel 64–95 Channel 32–64

Cross Triggering Unit (CTU)

MPC5668x Microcontroller Reference Manual, Rev. 4

32-12 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-1

Chapter 33
Analog-to-Digital Converter (ADC)

33.1 Introduction
The ADC module contains advanced features for normal, injected, and triggered injected conversion,
along with offset cancellation and offset refresh control, and supports the interface to the Cross Triggering
Unit (CTU). The ADC contains user-configurable sampling and conversion times with a clock prescaler
unit to generate the ADC clock from the clock provided to the ADC digital interface. The ADC contains
“analog watchdogs” for comparing values of the converted data against user programmed thresholds and
interrupt generation based on threshold violation by the converted data.

NOTE
The CTU is not implemented on the MPC5668G.

33.1.1 Block Diagram

Figure 33-1 shows the ADC block diagram.

It can be configured to generate sampling signals for as many as 96 multiplexed analog input channels.
There are three types of input channels: internal channels (group 0 and 1), and external channels (group 2).

Figure 33-1. ADC Block Diagram

Interrupt lines BUS

Cross

ADC Digital Interface ADC Analog

Triggering
Unit

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-2 Freescale Semiconductor

33.1.2 Features

The ADC digital interface provides the following features:

• 10-bit resolution

• As many as 64 internal channels

— 16 high precision

— 48 normal precision

• As many as 32 additional external channels supported

• Three different sampling and conversion time registers, one for each group of input channels

• Conversions on external channels have all the same features as the internal ones

• External decode signals (3 bits) for external analog mux

• Conversion speeds as short as 1 µs (1 MHz)

• Supports current injection ±1 ma

• One-shot/scan modes

• Chain injection mode

• Triggered injection

• Presampling

• Offset cancellation and offset refresh control

• External start feature

• Power down mode

• Two different abort features allow aborting either a single-channel conversion or chain conversion

• As many as 96 data registers for storing the converted data. Some conversion information as mode
of operation (normal, injected, or CTU) is associated with data value.

• Configurable analog watchdog channels controlled by the generic parameter num_watchdog

• Alternate analog thresholds

• Auto clock off feature

• Clock prescaler (ipg_clk divided by 2)

• CTU trigger mode

• Big Endian

33.2 External Signals
The ADC supports two types of external signals: power signals and analog input signals. See Chapter 2,
“Signal Description.” Table 2-1 describes the analog input signals and Table 2-2 describes the power
signals.

NOTE
In Chapter 2, “Signal Description,” AN[0:63] = internal channels.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-3

33.3 Memory Map and Register Definition
This section provides memory maps and detailed descriptions of all registers. Data written to or read from
reserved areas of the memory map is undefined.

33.3.1 ADC Memory Map

This section provides the memory map for the ADC.

Table 33-1. ADC Memory Map

Offset from
ADC_BASE
(ADC_A=

0xFFF8_0000)

Register Access Reset Value Section/Page Size

0x0000 MCR — Main Configuration Register R/W1 0x0000_0001 33.3.2.1/33-8 32

0x0004 MSR — Main Status Register RO 0x0000_0001 33.3.2.2/33-10 32

0x0008–0x000C Reserved

0x0010 ISR — Interrupt Status Register R/W1 0x0000_0000 33.3.2.3/33-11 32

0x0014 CEOCFR0 — Channel Pending Register 0 R/W1 0x0000_0000 33.3.2.4/33-12 32

0x0018 CEOCFR1 — Channel Pending Register 1 R/W1 0x0000_0000 33.3.2.5/33-13 32

0x001C CEOCFR2 — Channel Pending Register 2 R/W1 0x0000_0000 33.3.2.6/33-13 32

0x0020 IMR — Interrupt Mask Register R/W1 0x0000_0000 33.3.2.7/33-14 32

0x0024 CIMR0 — Channel Interrupt Mask Register 0 R/W1 0x0000_0000 33.3.2.8/33-15 32

0x0028 CIMR1 — Channel Interrupt Mask Register 1 R/W1 0x0000_0000 33.3.2.9/33-15 32

0x002C CIMR2 — Channel Interrupt Mask Register 2 R/W1 0x0000_0000 33.3.2.10/33-16 32

0x0030 WTISR — Watchdog Interrupt Threshold Register R/W1 0x0000_0000 33.3.2.11/33-16 32

0x0034 WTIMR — Watchdog Interrupt Threshold Mask Register R/W1 0x0000_0000 33.3.2.12/33-17 32

0x0038–0x003C Reserved

0x0040 DMAE — DMA Enable Register R/W1 0x0000_0000 33.3.2.13/33-18 32

0x0044 DMAR0 — DMA Channel Select Register 0 R/W1 0x0000_0000 33.3.2.14/33-18 32

0x0048 DMAR1 — DMA Channel Select Register 1 R/W1 0x0000_0000 33.3.2.15/33-19 32

0x004C DMAR2 — DMA Channel Select Register 2 R/W1 0x0000_0000 33.3.2.16/33-19 32

0x0050 TRC0 — Threshold Control Register 0 R/W1 0x0000_0000 33.3.2.17/33-20 32

0x0054h TRC1 — Threshold Control Register 1 R/W1 0x0000_0000 33.3.2.17/33-20 32

0x0058 TRC2 — Threshold Control Register 2 R/W1 0x0000_0000 33.3.2.17/33-20 32

0x005C TRC3 — Threshold Control Register 3 R/W1 0x0000_0000 33.3.2.17/33-20 32

0x0060 THRHLR0 — Threshold Register 0 R/W1 0x0FFF_0000 33.3.2.18/33-21 32

0x0064 THRHLR1 — Threshold Register 1 R/W1 0x0FFF_0000 33.3.2.18/33-21 32

0x0068 THRHLR2 — Threshold Register 2 R/W1 0x0FFF_0000 33.3.2.18/33-21 32

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-4 Freescale Semiconductor

0x006C THRHLR3 — Threshold Register 3 R/W1 0x0FFF_0000 33.3.2.18/33-21 32

0x0070–0x007C Reserved

0x0080 PSCR — Presampling Control Register R/W1 0x0000_0000 33.3.2.19/33-22 32

0x0084 PSR0 — Presampling Register 0 R/W1 0x0000_0000 33.3.2.20/33-22 32

0x0088 PSR1 — Presampling Register 1 R/W1 0x0000_0000 33.3.2.21/33-23 32

0x008C PSR2 — Presampling Register 2 R/W1 0x0000_0000 33.3.2.22/33-23 32

0x0090 Reserved

0x0094 CTR0 — Conversion Timing Register 0 R/W1 0x0000_0203 33.3.2.23/33-24 32

0x0098 CTR1— Conversion Timing Register 1 R/W1 0x0000_0203 33.3.2.24/33-24 32

0x009C CTR2 — Conversion Timing Register 2 R/W1 0x0000_0203 33.3.2.25/33-25 32

0x00A0 Reserved

0x00A4 NCMR0 — Normal Conversion Mask Register 0 R/W1 0x0000_0000 33.3.2.26/33-33 32

0x00A8 NCMR1 — Normal Conversion Mask Register 1 R/W1 0x0000_0000 33.3.2.27/33-34 32

0x00AC NCMR2 — Normal Conversion Mask Register 2 R/W1 0x0000_0000 33.3.2.28/33-34 32

0x00B0 Reserved

0x00B4 JCMR0 — Injected Conversion Mask Register 0 R/W1 0x0000_0000 33.3.2.29/33-35 32

0x00B8 JCMR1 — Injected Conversion Mask Register 1 R/W1 0x0000_0000 33.3.2.30/33-35 32

0x00BC JCMR2 — Injected Conversion Mask Register 2 R/W1 0x0000_0000 33.3.2.31/33-36 32

0x00C0 OFFWR — Offset Word Register R/W1 0x0000_0000 33.3.2.32/33-36 32

0x00C4 DSDR — Decode Signals Delay Register R/W1 0x0000_0000 33.3.2.33/33-37 32

0x00C8 PDEDR — Power Down Exit Delay Register R/W1 0x0000_0000 33.3.2.34/33-38 32

0x00CC – 0x00FC Reserved

0x0100 PRECDATAREG0 — Channel 0 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0104 PRECDATAREG1 — Channel 1 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0108 PRECDATAREG2 — Channel 2 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x010C PRECDATAREG3 — Channel 3 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0110 PRECDATAREG4 — Channel 4 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0114 PRECDATAREG5 — Channel 5 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0118 PRECDATAREG6 — Channel 6 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x011C PRECDATAREG7 — Channel 7 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0120 PRECDATAREG8 — Channel 8 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

Table 33-1. ADC Memory Map (continued)

Offset from
ADC_BASE
(ADC_A=

0xFFF8_0000)

Register Access Reset Value Section/Page Size

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-5

0x0124 PRECDATAREG9 — Channel 9 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0128 PRECDATAREG10 — Channel 10 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x012C PRECDATAREG11 — Channel 11 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0130 PRECDATAREG12 — Channel 12 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0134 PRECDATAREG13 — Channel 13 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0138 PRECDATAREG14 — Channel 14 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x013C PRECDATAREG15 — Channel 15 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0140 PRECDATAREG16 — Channel 16 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0144 PRECDATAREG17 — Channel 17 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0148 PRECDATAREG18 — Channel 18 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x014C PRECDATAREG19 — Channel 19 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0150 PRECDATAREG20 — Channel 20 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0154 PRECDATAREG21 — Channel 21 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0158 PRECDATAREG22 — Channel 22 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x015C PRECDATAREG23 — Channel 23 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0160 PRECDATAREG24 — Channel 24 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0164 PRECDATAREG25 — Channel 25 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0168 PRECDATAREG26 — Channel 26 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x016C PRECDATAREG27 — Channel 27 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0170 PRECDATAREG28 — Channel 28 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0174 PRECDATAREG29 — Channel 29 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0178 PRECDATAREG30 — Channel 30 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x017C PRECDATAREG31 — Channel 31 Data Register RO 0x0000_0000 33.3.2.35/33-38 32

0x0180 INTDATAREG0 — Channel 32 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0184 INTDATAREG1 — Channel 33 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0188 INTDATAREG2 — Channel 34 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x018C INTDATAREG3 — Channel 35 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0190 INTDATAREG4 — Channel 36 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0194 INTDATAREG5 — Channel 37 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0198 INTDATAREG6 — Channel 38 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x019C INTDATAREG7 — Channel 39 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

Table 33-1. ADC Memory Map (continued)

Offset from
ADC_BASE
(ADC_A=

0xFFF8_0000)

Register Access Reset Value Section/Page Size

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-6 Freescale Semiconductor

0x01A0 INTDATAREG8 — Channel 40 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01A4 INTDATAREG9 — Channel 41 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01A8 INTDATAREG10 — Channel 42 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01AC INTDATAREG11 — Channel 43 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01B0 INTDATAREG12 — Channel 44 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01B4 INTDATAREG13 — Channel 45 Data Register) RO 0x0000_0000 33.3.2.36/33-39 32

0x01B8 INTDATAREG14 — Channel 46 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01BC INTDATAREG15 — Channel 47 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01C0 INTDATAREG16 — Channel 48 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01C4 INTDATAREG17 — Channel 49 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01C8 INTDATAREG18 — Channel 50 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01CC INTDATAREG19 — Channel 51 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01D0 INTDATAREG20 — Channel 52 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01D4 INTDATAREG21 — Channel 53 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01D8 INTDATAREG22 — Channel 54 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01DC INTDATAREG23 — Channel 55 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01E0 INTDATAREG24 — Channel 56 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01E4 INTDATAREG25 — Channel 57 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01E8 INTDATAREG26 — Channel 58 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01EC INTDATAREG27 — Channel 59 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01F0 INTDATAREG28 — Channel 60 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01F4 INTDATAREG29 — Channel 61 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01F8 INTDATAREG30 — Channel 62 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x01FC INTDATAREG31 — Channel 63 Data Register RO 0x0000_0000 33.3.2.36/33-39 32

0x0200 EXTDATAREG0 — Channel 64 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0204 EXTDATAREG1 — Channel 65 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0208 EXTDATAREG2 — Channel 66 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x020C EXTDATAREG3 — Channel 67 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0210 EXTDATAREG4 — Channel 68 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0214 EXTDATAREG5 — Channel 69 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0218 EXTDATAREG6 — Channel 70 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

Table 33-1. ADC Memory Map (continued)

Offset from
ADC_BASE
(ADC_A=

0xFFF8_0000)

Register Access Reset Value Section/Page Size

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-7

33.3.2 ADC Register Descriptions

This section lists the ADC registers in address order and describes the registers and their bit fields.

0x021C EXTDATAREG7 — Channel 71 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0220 EXTDATAREG8 — Channel 72 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0224 EXTDATAREG9 — Channel 73 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0228 EXTDATAREG10 — Channel 74 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x022C EXTDATAREG11 — Channel 75 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0230 EXTDATAREG12 — Channel 76 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0234 EXTDATAREG13 — Channel 77 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0238 EXTDATAREG14 — Channel 78 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x023C EXTDATAREG15 — Channel 79 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0240 EXTDATAREG16 — Channel 80 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0244 EXTDATAREG17 — Channel 81 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0248 EXTDATAREG18 — Channel 82 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x024C EXTDATAREG19 — Channel 83 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0250 EXTDATAREG20 — Channel 84 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0254 EXTDATAREG21 — Channel 85 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0258 EXTDATAREG22 — Channel 86 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x025C EXTDATAREG23 — Channel 87 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0260 EXTDATAREG24 — Channel 88 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0264 EXTDATAREG25 — Channel 89 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0268 EXTDATAREG26 — Channel 90 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x026C EXTDATAREG27 — Channel 91 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0270 EXTDATAREG28 — Channel 92 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0274 EXTDATAREG29 — Channel 93 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0278 EXTDATAREG30 — Channel 94 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x027C EXTDATAREG31 — Channel 95 Data Register RO 0x0000_0000 33.3.2.37/33-39 32

0x0280– 0x3FFF Reserved

1 Some bits are read-only.

Table 33-1. ADC Memory Map (continued)

Offset from
ADC_BASE
(ADC_A=

0xFFF8_0000)

Register Access Reset Value Section/Page Size

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-8 Freescale Semiconductor

33.3.2.1 Main Configuration Register (MCR)

The MCR provides configuration settings for the ADC.

Address: ADC_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OWR
EN

WL
SIDE

MODE
EDG
LEV

TR
GEN

EDGE
XSTR
TEN

N
START

0 JTR
GEN

J
EDGE

J
START

0 0 CTU
EN

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 ADCLK
SEL

ABORT
CHAIN

ABORT ACKO
OFFRE
FRESH

OFFC
ANC

0 0
PWDN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 33-2. Main Configuration Register (MCR)

Table 33-2. MCR Field Descriptions

Field Description

OWREN Overwrite enable.
0 Conversion data is discarded.
1 Conversion data is overwritten by a newer result.

WLSIDE Write Left /Right aligned.
0 Conversion data is written right-aligned.
1 Conversion data is left-aligned (from 15 to (15 – resolution + 1)).

MODE One Shot/Scan mode selection.
0 One Shot mode: configure the normal conversion of one chain.
1 Scan mode: configure continuous chain conversion mode. When the programmed chain conversion is

finished, the chain conversion restarts immediately.

EDGLEV Edge /Level selection for external start trigger.
0 Edge configuration for external trigger usage.
1 Level configuration for external trigger usage.

TRGEN External trigger enable. This bit must be set to use external triggering to start a conversion.
0 An external trigger cannot be used to start a conversion.
1 An external trigger can start a conversion.

EDGE Start trigger edge/ level detection. The following table shows the interaction between the EDGE bit and the
TRGEN and EDGLEV bits.

TRGEN EDGLEV EDGE Trigger Detection

0 n n External triggering disabled

1 0 0 External trigger on falling edge of trigger

1 0 1 External trigger on rising edge of trigger

1 1 0 External trigger on low edge of trigger

1 1 1 External trigger on high edge of trigger

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-9

XSTRTEN External Start enable. This can be used in order to synchronize the START events of two ADCs.
0 START signal is disabled.
1 START signal is asserted when external START is detected.

NSTART Normal Start conversion. Setting this bit starts the chain or scan conversion. Resetting this bit during scan
mode causes the current chain conversion to finish, then stops the operation.
This bit stays high while the conversion is ongoing (or pending during injection mode).
0 Causes the current chain conversion to finish and stops the operation.
1 Starts the chain or scan conversion.

JTRGEN Injection external trigger enable.
0 External trigger disabled for channel injection (injected conversion cannot be started using an external

signal).
1 External trigger enabled for channel injection.

JEDGE Injection trigger edge selection. Edge selection for external trigger, if JTRGEN = 1.
0 Selects falling edge for the external trigger.
1 Selects rising edge for the external trigger.

JSTART Injection start. Setting this bit starts the configured injected analog channels to be converted by software.
Resetting this bit has no effect, as the injected chain conversion cannot be interrupted.

CTUEN Cross Triggering Unit enable.
0 The cross triggering unit is disabled and the triggered injected conversion cannot take place.
1 The cross triggering unit is enabled and the triggered injected conversion can take place.
Note: The CTU is not implemented on the MPC5668G.

ADCLKSEL Analog clock frequency selector. When this bit is set, the AD_clk frequency is equal to ipg_clk frequency.
Otherwise, the AD_clk frequency is half ipg_clk frequency. This bit can be written in Power Down mode only.
0 AD_clk frequency is half ipg_clk frequency.
1 AD_clk frequency is equal to ipg_clk frequency.

ABORTCHAIN Abort chain. When this bit is set, the ongoing Chain Conversion is aborted. This bit is reset by hardware as
soon as a new conversion is requested.
0 Conversion is not affected.
1 Aborts the ongoing chain conversion.

ABORT Abort conversion. When this bit is set, the ongoing conversion is aborted and a new conversion is invoked.
This bit is reset by hardware as soon as a new conversion is invoked.
0 Conversion is not affected.
1 Aborts the ongoing conversion.

ACKO Auto clock off enable. If set, this bit enables the Auto clock off feature. See Section 33.4.10, “Auto Clock Off
Mode,” for more information.
0 Auto clock off is disabled.
1 Auto clock off is enabled.

OFFREFRESH Offset refresh enable. If set, this bit enables the offset refresh feature.
0 No offset refresh.
1 Offset refresh during idle mode when ADC is waiting for a new start of conversion.

Table 33-2. MCR Field Descriptions (continued)

Field Description

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-10 Freescale Semiconductor

33.3.2.2 Main Status Register (MSR)

The MSR provides status bits for the ADC.

OFFCANC Offset Cancellation. This bit is reset to 0 when the offset cancellation ends.
0 No offset cancellation phase.
1 Offset cancellation phase before conversion.

PWDN Power down enable. When this bit is set, the analog module is requested to enter Power Down mode. When
ADC status is PWDN, resetting this bit starts ADC transition to IDLE mode.
0 ADC is in normal mode.
1 ADC has been requested to power down.

Address: ADC_BASE + 0x0004 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0

N
START

J
ABORT

0 0
J

START
0 0 0

CTU
START

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CHADDR 0 0 0 ACKO

OFF
REFR
ESH

OFF
CANC

ADCSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 33-3. Main Status Register (MSR)

Table 33-3. MSR Field Descriptions

Field Description

NSTART This status bit indicates that a normal conversion is ongoing.
0 Normal conversion is not occurring now.
1 Normal conversion is occurring.

JABORT This status bit indicates that an injected conversion has been aborted.This bit is reset when a new injected
conversion starts.
0 New injected conversion has been started.
1 Injected conversion has been aborted.

JSTART This status bit indicates that an injected conversion is ongoing.
0 Injected conversion is not occurring now.
1 Injected conversion is occurring.

Table 33-2. MCR Field Descriptions (continued)

Field Description

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-11

33.3.2.3 Interrupt Status Register (ISR)

The ISR register contains interrupt status bits for the ADC.

CTUSTART This status bit indicates that a CTU conversion is ongoing. This bit is set when a CTU trigger pulse is received
and the CTU conversion starts. When CTU trigger mode is enabled, this bit is automatically reset when the
conversion is completed. Otherwise, if Control Mode is enabled this bit is reset when the CTU is disabled
(CTUEN = 0).
0 CTU conversion is not occurring now.
1 CTU conversion is occurring.
Note: The CTU is not implemented on the MPC5668G.

CHADDR Channel under measure address. This bitfield indicates which channel (0 to 95) is under measure.

ACKO Auto clock off enable. This status bit indicates whether the Auto clock off feature is activated.
0 Auto clock off feature is deactivated.
1 Auto clock off feature is activated.

OFFREFRESH This status bit indicates that an offset refresh is ongoing.
0 No offset refresh.
1 Offset refresh during idle mode when ADC is waiting for a new start of conversion.

OFFCANC This status bit indicates that an offset cancellation is ongoing.
0 Offset cancellation is not occurring.
1 Offset cancellation is occurring.

ADCSTATUS This bitfield displays the ADC status, as follows:

Table 33-3. MSR Field Descriptions (continued)

Field Description

ADCSTATUS Description

0b000 IDLE or Offset cancel/refresh

0b001 Power Down

0b010 Wait State

0b100 Sample

0b110 Conversion

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-12 Freescale Semiconductor

33.3.2.4 Channel Pending Register 0 (CEOCFR0)

Three Channel Interrupt Pending Registers are provided to signal which of the 96 channels’ measures have
been completed. These are COCFR[0:2]. CEOCFR0 is the End of Conversion Pending Interrupt register
for group 0 channels (channels 0–31).

Address: ADC_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

OFF
CANC
OVR

EOFF
SET

EO
CTU

JEOC JECH EOC ECH

W w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-4. Interrupt Status Register (ISR)

Table 33-4. ISR Field Descriptions

Field Description

OFFCANCOVR Offset Cancellation Phase Over interrupt (OFFCANCOVR) flag. When the ADC generates the offset_ok_i to
high indication then the offset cancellation phase programmed by the user is over and the offset coefficient is
written into the offset register. When this bit is set, an OFFCANCOVR interrupt has occurred.

EOFFSET Error in Offset Refresh interrupt (EOFFSET) flag. This interrupt is generated during the offset cancellation
phase in case the offset_measure_ok_i pulse is not received. When this bit is set, an EOFFSET interrupt has
occurred.

EOCTU End of CTU Conversion interrupt (EOCTU) flag. It is the interrupt of the digital end of conversion for the CTU
channel; active when set. When this bit is set, an EOCTU interrupt has occurred.

JEOC End of Injected Channel Conversion interrupt (JEOC) flag. It is the interrupt of the digital end of conversion for
the injected channel; active when set. When this bit is set, a JEOC interrupt has occurred.

JECH End of Injected Chain Conversion interrupt (JECH) flag. It is the interrupt of the digital end of chain conversion
for the injected channel; active when set. When this bit is set, a JECH interrupt has occurred.

EOC End of Channel Conversion interrupt (EOC) flag. It is the interrupt of the digital end of conversion. When this
bit is set, an EOC interrupt has occurred.

ECH End of Chain Conversion interrupt (ECH) flag. It is the interrupt of the digital end of chain conversion. When
this bit is set, an ECH interrupt has occurred.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-13

33.3.2.5 Channel Pending Register 1 (CEOCFR1)

CEOCFR1 is the End of Conversion Pending Interrupt register for group 1 channels (channels 32–63).

33.3.2.6 Channel Pending Register 2 (CEOCFR2)

CEOCFR2 is the End of Conversion Pending Interrupt register for group 2 channels (channels 64–95).

Address: ADC_BASE + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EOC
CH31

EOC
CH30

EOC
CH29

EOC
CH28

EOC
CH27

EOC
CH26

EOC
CH25

EOC
CH24

EOC
CH23

EOC
CH22

EOC
CH21

EOC
CH20

EOC
CH19

EOC
CH18

EOC
CH17

EOC
CH16

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EOC
CH15

EOC
CH14

EOC
CH13

EOC
CH12

EOC
CH11

EOC
CH10

EOC
CH9

EOC
CH8

EOC
CH7

EOC
CH6

EOC
CH5

EOC
CH4

EOC
CH3

EOC
CH2

EOC
CH1

EOC
CH0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-5. Channel Pending Registers 0 (CEOCFR0)

Table 33-5. CEOCFR0 Field Descriptions

Field Description

EOCCHn When set, the conversion of channel n has been completed.

Address: ADC_BASE + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EOC
CH63

EOC
CH62

EOC
CH61

EOC
CH60

EOC
CH59

EOC
CH58

EOC
CH57

EOC
CH56

EOC
CH55

EOC
CH54

EOC
CH53

EOC
CH52

EOC
CH51

EOC
CH50

EOC
CH49

EOC
CH48

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EOC
CH47

EOC
CH46

EOC
CH43

EOC
CH44

EOC
CH43

EOC
CH42

EOC
CH41

EOC
CH40

EOC
CH39

EOC
CH38

EOC
CH37

EOC
CH36

EOC
CH35

EOC
CH34

EOC
CH33

EOC
CH32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-6. Channel Pending Register 1 (CEOCFR1)

Table 33-6. CEOCFR1 Field Descriptions

Field Description

EOCCHn When set, the conversion of channel n has been completed.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-14 Freescale Semiconductor

33.3.2.7 Interrupt Mask Register (IMR)

The IMR register contains the interrupt enable bits for the ADC.

Address: ADC_BASE + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EOC
CH95

EOC
CH94

EOC
CH93

EOC
CH92

EOC
CH91

EOC
CH90

EOC
CH89

EOC
CH88

EOC
CH87

EOC
CH86

EOC
CH85

EOC
CH84

EOC
CH83

EOC
CH82

EOC
CH81

EOC
CH80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EOC
CH79

EOC
CH78

EOC
CH77

EOC
CH76

EOC
CH75

EOC
CH74

EOC
CH73

EOC
CH72

EOC
CH71

EOC
CH70

EOC
CH69

EOC
CH68

EOC
CH67

EOC
CH66

EOC
CH65

EOC
CH64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-7. Channel Pending Register 2 (CEOCFR2)

Table 33-7. CEOCFR2 Field Descriptions

Field Description

EOCCHn When set, the conversion of channel n has been completed.

Address: ADC_BASE + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

W

Reset 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 MSK
OFF

CANC
OVR

MSKE
OFF
SET

MSK
EOCTU

MSK
JEOC

MSK
JECH

MSK
EOC

MSK
ECH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-8. Interrupt Mask Register (IMR)

Table 33-8. IMR Field Descriptions

Field Description

MSKOFFCAN
COVR

Mask bit for Offset Cancellation Phase Over interrupt (OFFCANCOVR). When set, the OFFCANCOVR
interrupt is enabled.

MSKEOFFSET Mask bit for Error in Offset Refresh interrupt (EOFFSET). When set, the EOFFSET interrupt is enabled.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-15

33.3.2.8 Channel Interrupt Mask Register 0 (CIMR0)

The CIMR0 register contains the Channel Interrupt Enable bits for group 0 channels (channels 0–31).

33.3.2.9 Channel Interrupt Mask Register 1 (CIMR1)

The CIMR1 register contains the Channel Interrupt Enable bits for group 1 channels (channels 32–63).

MSKEOCTU Mask bit for End of CTU Conversion interrupt (EOCTU). When set, the EOCTU interrupt is enabled.

MSKJEOC Mask bit for End of Injected Channel Conversion interrupt (JEOC). When set, the JEOC interrupt is enabled.

MSKJECH Mask bit for End of Injected Chain Conversion interrupt (JECH). When set, the JECH interrupt is enabled.

MSKEOC Mask bit for End of Channel Conversion interrupt (EOC). When set, the EOC interrupt is enabled.

MSKECH Mask bit for End of Chain Conversion interrupt (ECH). When set, the ECH interrupt is enabled.

Address: ADC_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIM
31

CIM
30

CIM
29

CIM
28

CIM
27

CIM
26

CIM
25

CIM
24

CIM
23

CIM
22

CIM
21

CIM
20

CIM
19

CIM
18

CIM
17

CIM
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
15

CIM
14

CIM
13

CIM
12

CIM
11

CIM
10

CIM
9

CIM
8

CIM
7

CIM
6

CIM
5

CIM
4

CIM
3

CIM
2

CIM
1

CIM
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-9. Channel Pending Register 0 (CIMR0)

Table 33-9. CIMR0 Field Descriptions

Field Description

CIMn When set, the interrupt for channel n is enabled.

Table 33-8. IMR Field Descriptions (continued)

Field Description

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-16 Freescale Semiconductor

33.3.2.10 Channel Interrupt Mask Register 2 (CIMR2)

The CIMR2 register contains the Channel Interrupt Enable bits for group 2 channels (channels 64–95).

33.3.2.11 Watchdog Threshold Interrupt Status Register (WTISR)

The WTISR register contains status bits for the programmable analog watchdog timer.

Address: ADC_BASE + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIM
63

CIM
62

CIM
61

CIM
60

CIM
59

CIM
58

CIM
57

CIM
56

CIM
55

CIM
54

CIM
53

CIM
52

CIM
51

CIM
50

CIM
49

CIM
48W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
47

CIM
46

CIM
43

CIM
44

CIM
43

CIM
42

CIM
41

CIM
40

CIM
39

CIM
38

CIM
37

CIM
36

CIM
35

CIM
34

CIM
33

CIM
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-10. Channel Interrupt Mask Register 1 (CIMR1)

Table 33-10. CIMR1 Field Descriptions

Field Description

CIMn When set, the interrupt for channel n is enabled.

Address: ADC_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIM
95

CIM
94

CIM
93

CIM
92

CIM
91

CIM
90

CIM
89

CIM
88

CIM
87

CIM
86

CIM
85

CIM
84

CIM
83

CIM
82

CIM
81

CIM
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
79

CIM
78

CIM
77

CIM
76

CIM
75

CIM
74

CIM
73

CIM
72

CIM
71

CIM
70

CIM
69

CIM
68

CIM
67

CIM
66

CIM
65

CIM
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-11. Channel Interrupt Mask Register 2 (CIMR2)

Table 33-11. CIMR2 Field Descriptions

Field Description

CIMn When set, the interrupt for channel n is enabled.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-17

33.3.2.12 Watchdog Threshold Interrupt Mask Register (WTIMR)

The WTIMR register contains the threshold interrupt enable bits.

Address: ADC_BASE + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0

WDG
3H

WDG
2H

WDG
1H

WDG
0H

WDG
3L

WDG
2L

WDG
1L

WDG
0L

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-12. Watchdog Threshold Interrupt Status Register (WTISR)

Table 33-12. WTISR Field Descriptions

Field Description

WDGnH This corresponds to the status flag generated when the converted value is higher than the programmed higher
threshold.

WDGnL This corresponds to the status flag generated when the converted value is lower than the programmed lower
threshold.

Address: ADC_BASE + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 MSK
WDG

3H

MSK
WDG

2H

MSK
WDG

1H

MSK
WDG

0H

MSK
WDG

3L

MSK
WDG

2L

MSK
WDG

1L

MSK
WDG

0L
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-13. Watchdog Threshold Interrupt Mask Register (WTIMR)

Table 33-13. WTISR Field Descriptions

Field Description

MSKWDGnH This corresponds to the mask bit for the interrupt generated when the converted value is higher than the
programmed higher threshold. When set, the interrupt is enabled.

MSKWDGnL This corresponds to the mask bit for the interrupt generated when the converted value is lower than the
programmed lower threshold. When set, the interrupt is enabled.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-18 Freescale Semiconductor

33.3.2.13 DMA Enable Register (DMAE)

The DMAE register sets up the DMA for use with the ADC.

NOTE
The ADC_DMAE[DCLR] should not be used. When
ADC_DMEAE[DCLR] is set the DMA request should be cleared only after
the data registers are read. However, the DMA request is automatically
cleared and will not be recognised by the eDMA.

33.3.2.14 DMA Channel Select Register 0 (DMAR0)

The DMAR0 register contains the DMA Enable bits for group 0 channels (channels 0–31).

Address: ADC_BASE + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DCLR

DMA
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-14. DMA Enable Register (DMAE)

Table 33-14. DMAE Field Descriptions

Field Description

DCLR DMA Clear sequence enable.
0 DMA request cleared by Acknowledge from DMA controller.
1 DMA request cleared on read of data registers.

DMAEN DMA global enable.
0 DMA feature is disabled.
1 DMA feature is enabled.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-19

33.3.2.15 DMA Channel Select Register 1 (DMAR1)

The DMAR1 register contains the DMA Enable bits for group 1 channels (channels 32–63).

33.3.2.16 DMA Channel Select Register 2 (DMAR2)

The DMAR2 register contains the DMA Enable bits for group 2 channels (channels 64–95).

Address: ADC_BASE + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DMA
31

DMA
30

DMA
29

DMA
28

DMA
27

DMA
26

DMA
25

DMA
24

DMA
23

DMA
22

DMA
21

DMA
20

DMA
19

DMA
18

DMA
17

DMA
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
15

DMA
14

DMA
13

DMA
12

DMA
11

DMA
10

DMA
9

DMA
8

DMA
7

DMA
6

DMA
5

DMA
4

DMA
3

DMA
2

DMA
1

DMA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-15. DMA Channel Select Register 0 (DMAR0)

Table 33-15. DMAR0 Field Descriptions

Field Description

DMAn When set, channel n is enabled to transfer data in DMA mode.

Address: ADC_BASE + 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DMA
63

DMA
62

DMA
61

DMA
60

DMA
59

DMA
58

DMA
57

DMA
56

DMA
55

DMA
54

DMA
53

DMA
52

DMA
51

DMA
50

DMA
49

DMA
48W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
47

DMA
46

DMA
43

DMA
44

DMA
43

DMA
42

DMA
41

DMA
40

DMA
39

DMA
38

DMA
37

DMA
36

DMA
35

DMA
34

DMA
33

DMA
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-16. DMA Channel Select Register 1 (DMAR1)

Table 33-16. DMAR1 Field Descriptions

Field Description

DMAn When set, channel n is enabled to transfer data in DMA mode.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-20 Freescale Semiconductor

33.3.2.17 Threshold Control Registers 0 – 3 (TRCn)

The four TRCn registers are used to store the user programmable upper thresholds’ values.

Address: ADC_BASE + 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DMA
95

DMA
94

DMA
93

DMA
92

DMA
91

DMA
90

DMA
89

DMA
88

DMA
87

DMA
86

DMA
85

DMA
84

DMA
83

DMA
82

DMA
81

DMA
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
79

DMA
78

DMA
77

DMA
76

DMA
75

DMA
74

DMA
73

DMA
72

DMA
71

DMA
70

DMA
69

DMA
68

DMA
67

DMA
66

DMA
65

DMA
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-17. DMA Channel Select Register 2 (DMAR2)

Table 33-17. DMAR2 Field Descriptions

Field Description

DMAn When set, channel n is enabled to transfer data in DMA mode.

Address: ADC_BASE + 0x0050 (TRC0)
ADC_BASE + 0x0054 (TRC1)
ADC_BASE + 0x0058 (TRC2)
ADC_BASE + 0x005C (TRC3)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R THR
EN

THR
INV

THR
OP

0 0 0 0 0 0
THRCH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-18. Threshold Control Registers 0 – 3 (TRCn)

Table 33-18. TRCn Field Descriptions

Field Description

THREN Threshold enable.
When set, it enables the threshold detection feature for the selected channel.

THRINV Invert the output pin.
Setting this bit inverts the behavior of the threshold output pin.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-21

33.3.2.18 Threshold Registers 0 – 3 (THRHLRn)

The four THRHLRn registers are used to store the user-programmable thresholds’ values.

THROP Threshold output pin status. This bit reflects the output pin status. See Section 33.4.5.1, “Analog Watchdog
Pulse Width Modulation Bus.”

THRCH Choose the channel (0 to 95) for threshold comparison.

Address: ADC_BASE + 0x0060 (THRHLR0)
ADC_BASE + 0x0064 (THRHLR1)
ADC_BASE + 0x0068 (THRHLR2)
ADC_BASE + 0x006C (THRHLR3)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
THRH

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-19. Threshold Registers 0 – 3 (THRHLRn)

Table 33-19. THRHLRn Field Descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Table 33-18. TRCn Field Descriptions

Field Description

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-22 Freescale Semiconductor

33.3.2.19 Presampling Control Register (PSCR)

33.3.2.20 Presampling Register 0 (PSR0)

The PSR0 register contains the Presampling Enable bits for group 0 channels (channels 0–31).

Address: ADC_BASE + 0x0080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
PREVAL2 PREVAL1 PREVAL0

PRE
CONVW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-20. Presampling Control Register (PSCR)

Table 33-20. PSCR Field Descriptions

Field Description

PREVAL2 Internal voltage selection for Presampling. Selects analog input voltage for presampling from the available four
internal voltages (group 2 channels).

PREVAL1 Internal voltage selection for Presampling. Selects analog input voltage for presampling from the available four
internal voltages (group 1 channels).

PREVAL0 Internal voltage selection for Presampling. Selects analog input voltage for presampling from the available four
internal voltages (group 0 channels).

PRECONV Convert Presampled value. If bit PRECONV is set, presampling is followed by the conversion. Sampling is
bypassed and conversion of presampled data is performed.

Address: ADC_BASE + 0x0084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
31

PRES
30

PRES
29

PRES
28

PRES
27

PRES
26

PRES
25

PRES
24

PRES
23

PRES
22

PRES
21

PRES
20

PRES
19

PRES
18

PRES
17

PRES
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
15

PRES
14

PRES
13

PRES
12

PRES
11

PRES
10

PRES
9

PRES
8

PRES
7

PRES
6

PRES
5

PRES
4

PRES
3

PRES
2

PRES
1

PRES
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-21. Presampling Register 0 (PSR0)

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-23

33.3.2.21 Presampling Register 1 (PSR1)

The PSR1 register contains the Presampling Enable bits for group 1 channels (channels 32–63).

33.3.2.22 Presampling Register 2 (PSR2)

The PSR2 register contains the Presampling Enable bits for group 2 channels (channels 64–95).

Table 33-21. PSR0 Field Descriptions

Field Description

PRESn When set, presampling is enabled for channel n.

Address: ADC_BASE + 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
63

PRES
62

PRES
61

PRES
60

PRES
59

PRES
58

PRES
57

PRES
56

PRES
55

PRES
54

PRES
53

PRES
52

PRES
51

PRES
50

PRES
49

PRES
48W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
47

PRES
46

PRES
43

PRES
44

PRES
43

PRES
42

PRES
41

PRES
40

PRES
39

PRES
38

PRES
37

PRES
36

PRES
35

PRES
34

PRES
33

PRES
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-22. Presampling Register 1 (PSR1)

Table 33-22. PSR1 Field Descriptions

Field Description

PRESn When set, presampling is enabled for channel n.

Address: ADC_BASE + 0x008C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
95

PRES
94

PRES
93

PRES
92

PRES
91

PRES
90

PRES
89

PRES
88

PRES
87

PRES
86

PRES
85

PRES
84

PRES
83

PRES
82

PRES
81

PRES
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
79

PRES
78

PRES
77

PRES
76

PRES
75

PRES
74

PRES
73

PRES
72

PRES
71

PRES
70

PRES
69

PRES
68

PRES
67

PRES
66

PRES
65

PRES
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-23. Presampling Register 2 (PSR2)

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-24 Freescale Semiconductor

33.3.2.23 Conversion Timing Register 0 (CTR0)

Conversion Timing Register 0 (CTR0) is associated with group 0 channels (channels 0–31). Parameters
contained in CTR0 are also used to perform Offset Cancellation and Offset Refresh.

33.3.2.24 Conversion Timing Register 1 (CTR1)

Conversion Timing Register 1 (CTR1) is associated with group 1 channels (channels 32–63).

Table 33-23. PSR2 Field Descriptions

Field Description

PRESn When set, presampling is enabled for channel n.

Address: Base + 0x0094 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INP
LATCH

0
OFFSHIFT

0
INPCMP

0
INPSAMP

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Figure 33-24. Conversion Timing Register 0 (CTR0)

Table 33-24. CTR0 Field Descriptions

Field Description

INPLATCH Configuration bit for Latching phase duration.
0 Latching phase duration is one-half clock cycle.
1 Latching phase duration is one clock cycle.
Note: INPLATCH can be set only if INPCMP is bigger than 01b. Otherwise, INPLATCH is automatically set to

0 inside the ADC.

OFFSHIFT Configuration bits for the Offset Shift characteristic.
00 No shift (that is the transition between codes 000h and 001h) is reached when the Avin is equal to 1 LSB.
01 Transition between code 000h and 001h is reached when the Avin is equal to 1/2 LSB.
10 Transition between code 00h and 001h is reached when the Avin is equal to 0.
11 Reserved.

INPCMP Configuration bits for the comparison duration. See Table 33-27.

INPSAMP Configuration bits for the sampling phase duration. See Table 33-28.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-25

33.3.2.25 Conversion Timing Register 2 (CTR2)

Conversion Timing Register 2 (CTR2) is associated with group 2 channels (channels 64–95).

Address: ADC_BASE + 0x0098 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INP
LATCH

0 0 0 0
INPCMP

0
INPSAMP

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Figure 33-25. Conversion Timing Register 1 (CTR1)

Table 33-25. CTR1 Field Descriptions

Field Description

INPLATCH Configuration bit for Latching phase duration.
0b Latching phase duration is one-half clock cycle.
1b Latching phase duration is one clock cycle.
Note: The 1b condition is possible only if INPCMP is bigger than 01b. Otherwise, it is automatically set to 0b

inside the ADC.

INPCMP Configuration bits for the comparison duration.See Table 33-27.

INPSAMP Configuration bits for the sampling phase duration. See Table 33-28.

Address: ADC_BASE + 0x009C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INP
LATCH

0 w 0 0
INPCMP

0
INPSAMP

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Figure 33-26. Conversion Timing Register 2 (CTR2)

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-26 Freescale Semiconductor

Table 33-26. CTR2 Field Descriptions

Field Description

INPLATCH Configuration bit for Latching phase duration.
0b Latching phase duration is one-half clock cycle.
1b Latching phase duration is one clock cycle.
Note: The 1b condition is possible only if INPCMP is bigger than 01b. Otherwise, it is automatically set to 0b

inside the ADC.

INPCMP Configuration bits for the comparison duration. See Table 33-27.

INPSAMP Configuration bits for the sampling phase duration. See Table 33-28.

Table 33-27. Max AD_clk Frequency and Related Configuration Settings

INPLATCH INPCMP INPSAMPLE
AD_clk fmax

(MHz)

AD_clk Phase Min Duration Tsample min
(ns)High Low

0 0b00 or 0b01 0b0000 0011 20 24 22.5 125

0 0b00 or 0b01 0b0000 0100 20 + 4% 24 22.5 168

1 0b10 0b0000 0100 20 + 4% 24 15 168

1 0b10 0b0000 0101 20 + 4% 15 15 135

1 0b11 0b0000 0110 32 + 4% 12 12 132

1 0b11 0b0000 0111 40 + 4% 9 9 128

1 0b11 0b0000 1000 50 + 4% 9 9 134

1 0b11 0b0000 1001 60 + 4% 7.5 7.5 128

Table 33-28. ADC Sampling and Conversion Timing

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

1 0b11 0b0000 1001 8 * Tck 30 * Tck 1 * Tck 39 * Tck2

1 0b11 0b0000 1010 9 * Tck 30 * Tck 1 * Tck 40 * Tck

1 0b11 0b0000 1011 10 * Tck 30 * Tck 1 * Tck 41 * Tck

1 0b11 0b0000 1100 11 * Tck 30 * Tck 1 * Tck 42 * Tck

1 0b11 0b0000 1101 12 * Tck 30 * Tck 1 * Tck 43 * Tck

1 0b11 0b0000 1110 13 * Tck 30 * Tck 1 * Tck 44 * Tck

1 0b11 0b0000 1111 14 * Tck 30 * Tck 1 * Tck 45 * Tck

1 0b11 0b0001 0000 15 * Tck 30 * Tck 1 * Tck 46 * Tck

1 0b11 0b0001 0001 16 * Tck 30 * Tck 1 * Tck 47 * Tck

1 0b11 0b0001 0010 17 * Tck 30 * Tck 1 * Tck 48 * Tck

1 0b11 0b0001 0011 18 * Tck 30 * Tck 1 * Tck 49 * Tck

1 0b11 0b0001 0100 19 * Tck 30 * Tck 1 * Tck 50 * Tck

1 0b11 0b0001 0101 20 * Tck 30 * Tck 1 * Tck 51 * Tck

1 0b11 0b0001 0110 21 * Tck 30 * Tck 1 * Tck 52 * Tck

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-27

1 0b11 0b0001 0111 22 * Tck 30 * Tck 1 * Tck 53 * Tck

1 0b11 0b0001 1000 23 * Tck 30 * Tck 1 * Tck 54 * Tck

1 0b11 0b0001 1001 24 * Tck 30 * Tck 1 * Tck 55 * Tck

1 0b11 0b0001 1010 25 * Tck 30 * Tck 1 * Tck 56 * Tck

1 0b11 0b0001 1011 26 * Tck 30 * Tck 1 * Tck 57 * Tck

1 0b11 0b0001 1100 27 * Tck 30 * Tck 1 * Tck 58 * Tck

1 0b11 0b0001 1101 28 * Tck 30 * Tck 1 * Tck 59 * Tck

1 0b11 0b0001 1110 29 * Tck 30 * Tck 1 * Tck 60 * Tck

1 0b11 0b0001 1111 30 * Tck 30 * Tck 1 * Tck 61 * Tck

1 0b11 0b0010 0000 31 * Tck 30 * Tck 1 * Tck 62 * Tck

1 0b11 0b0010 0001 32 * Tck 30 * Tck 1 * Tck 63 * Tck

1 0b11 0b0010 0010 33 * Tck 30 * Tck 1 * Tck 64 * Tck

1 0b11 0b0010 0011 34 * Tck 30 * Tck 1 * Tck 65 * Tck

1 0b11 0b0010 0100 35 * Tck 30 * Tck 1 * Tck 66 * Tck

1 0b11 0b0010 0101 36 * Tck 30 * Tck 1 * Tck 67 * Tck

1 0b11 0b0010 0110 37 * Tck 30 * Tck 1 * Tck 68 * Tck

1 0b11 0b0010 0111 38 * Tck 30 * Tck 1 * Tck 69 * Tck

1 0b11 0b0010 1000 39 * Tck 30 * Tck 1 * Tck 70 * Tck

1 0b11 0b0010 1001 40 * Tck 30 * Tck 1 * Tck 71 * Tck

1 0b11 0b0010 1010 41 * Tck 30 * Tck 1 * Tck 72 * Tck

1 0b11 0b0010 1011 42 * Tck 30 * Tck 1 * Tck 73 * Tck

1 0b11 0b0010 1100 43 * Tck 30 * Tck 1 * Tck 74 * Tck

1 0b11 0b0010 1101 44 * Tck 30 * Tck 1 * Tck 75 * Tck

1 0b11 0b0010 1110 45 * Tck 30 * Tck 1 * Tck 76 * Tck

1 0b11 0b0010 1111 46 * Tck 30 * Tck 1 * Tck 77 * Tck

1 0b11 0b0011 0000 47 * Tck 30 * Tck 1 * Tck 78 * Tck

1 0b11 0b0011 0001 48 * Tck 30 * Tck 1 * Tck 79 * Tck

1 0b11 0b0011 0010 49 * Tck 30 * Tck 1 * Tck 80 * Tck

1 0b11 0b0011 0011 50 * Tck 30 * Tck 1 * Tck 81 * Tck

1 0b11 0b0011 0100 51 * Tck 30 * Tck 1 * Tck 82 * Tck

1 0b11 0b0011 0101 52 * Tck 30 * Tck 1 * Tck 83 * Tck

1 0b11 0b0011 0110 53 * Tck 30 * Tck 1 * Tck 84 * Tck

1 0b11 0b0011 0111 54 * Tck 30 * Tck 1 * Tck 85 * Tck

1 0b11 0b0011 1000 55 * Tck 30 * Tck 1 * Tck 86 * Tck

1 0b11 0b0011 1001 56 * Tck 30 * Tck 1 * Tck 87 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-28 Freescale Semiconductor

1 0b11 0b0011 1010 57 * Tck 30 * Tck 1 * Tck 88 * Tck

1 0b11 0b0011 1011 58 * Tck 30 * Tck 1 * Tck 89 * Tck

1 0b11 0b0011 1100 59 * Tck 30 * Tck 1 * Tck 90 * Tck

1 0b11 0b0011 1101 60 * Tck 30 * Tck 1 * Tck 91 * Tck

1 0b11 0b0011 1110 61 * Tck 30 * Tck 1 * Tck 92 * Tck

1 0b11 0b0011 1111 62 * Tck 30 * Tck 1 * Tck 93 * Tck

1 0b11 0b0100 0000 63 * Tck 30 * Tck 1 * Tck 94 * Tck

1 0b11 0b0100 0001 64 * Tck 30 * Tck 1 * Tck 95 * Tck

1 0b11 0b0100 0010 65 * Tck 30 * Tck 1 * Tck 96 * Tck

1 0b11 0b0100 0011 66 * Tck 30 * Tck 1 * Tck 97 * Tck

1 0b11 0b0100 0100 67 * Tck 30 * Tck 1 * Tck 98 * Tck

1 0b11 0b0100 0101 68 * Tck 30 * Tck 1 * Tck 99 * Tck

1 0b11 0b0100 0110 69 * Tck 30 * Tck 1 * Tck 100 * Tck

1 0b11 0b0100 0111 70 * Tck 30 * Tck 1 * Tck 101 * Tck

1 0b11 0b0100 1000 71 * Tck 30 * Tck 1 * Tck 102 * Tck

1 0b11 0b0100 1001 72 * Tck 30 * Tck 1 * Tck 103 * Tck

1 0b11 0b0100 1010 73 * Tck 30 * Tck 1 * Tck 104 * Tck

1 0b11 0b0100 1011 74 * Tck 30 * Tck 1 * Tck 105 * Tck

1 0b11 0b0100 1100 75 * Tck 30 * Tck 1 * Tck 106 * Tck

1 0b11 0b0100 1101 76 * Tck 30 * Tck 1 * Tck 107 * Tck

1 0b11 0b0100 1110 77 * Tck 30 * Tck 1 * Tck 108 * Tck

1 0b11 0b0100 1111 78 * Tck 30 * Tck 1 * Tck 109 * Tck

1 0b11 0b0101 0000 79 * Tck 30 * Tck 1 * Tck 110 * Tck

1 0b11 0b0101 0001 80 * Tck 30 * Tck 1 * Tck 111 * Tck

1 0b11 0b0101 0010 81 * Tck 30 * Tck 1 * Tck 112 * Tck

1 0b11 0b0101 0011 82 * Tck 30 * Tck 1 * Tck 113 * Tck

1 0b11 0b0101 0100 83 * Tck 30 * Tck 1 * Tck 114 * Tck

1 0b11 0b0101 0101 84 * Tck 30 * Tck 1 * Tck 115 * Tck

1 0b11 0b0101 0110 85 * Tck 30 * Tck 1 * Tck 116 * Tck

1 0b11 0b0101 0111 86 * Tck 30 * Tck 1 * Tck 117 * Tck

1 0b11 0b0101 1000 87 * Tck 30 * Tck 1 * Tck 118 * Tck

1 0b11 0b0101 1001 88 * Tck 30 * Tck 1 * Tck 119 * Tck

1 0b11 0b0101 1010 89 * Tck 30 * Tck 1 * Tck 120 * Tck

1 0b11 0b0101 1011 90 * Tck 30 * Tck 1 * Tck 121 * Tck

1 0b11 0b0101 1100 91 * Tck 30 * Tck 1 * Tck 122 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-29

1 0b11 0b0101 1101 92 * Tck 30 * Tck 1 * Tck 123 * Tck

1 0b11 0b0101 1110 93 * Tck 30 * Tck 1 * Tck 124 * Tck

1 0b11 0b0101 1111 94 * Tck 30 * Tck 1 * Tck 125 * Tck

1 0b11 0b0110 0000 95 * Tck 30 * Tck 1 * Tck 126 * Tck

1 0b11 0b0110 0001 96 * Tck 30 * Tck 1 * Tck 127 * Tck

1 0b11 0b0110 0010 97 * Tck 30 * Tck 1 * Tck 128 * Tck

1 0b11 0b0110 0011 98 * Tck 30 * Tck 1 * Tck 129 * Tck

1 0b11 0b0110 0100 99 * Tck 30 * Tck 1 * Tck 130 * Tck

1 0b11 0b0110 0101 100 * Tck 30 * Tck 1 * Tck 131 * Tck

1 0b11 0b0110 0110 101 * Tck 30 * Tck 1 * Tck 132 * Tck

1 0b11 0b0110 0111 102 * Tck 30 * Tck 1 * Tck 133 * Tck

1 0b11 0b0110 1000 103 * Tck 30 * Tck 1 * Tck 134 * Tck

1 0b11 0b0110 1001 104 * Tck 30 * Tck 1 * Tck 135 * Tck

1 0b11 0b0110 1010 105 * Tck 30 * Tck 1 * Tck 136 * Tck

1 0b11 0b0110 1011 106 * Tck 30 * Tck 1 * Tck 137 * Tck

1 0b11 0b0110 1100 107 * Tck 30 * Tck 1 * Tck 138 * Tck

1 0b11 0b0110 1101 108 * Tck 30 * Tck 1 * Tck 139 * Tck

1 0b11 0b0110 1110 109 * Tck 30 * Tck 1 * Tck 140 * Tck

1 0b11 0b0110 1111 110 * Tck 30 * Tck 1 * Tck 141 * Tck

1 0b11 0b0111 0000 111 * Tck 30 * Tck 1 * Tck 142 * Tck

1 0b11 0b0111 0001 112 * Tck 30 * Tck 1 * Tck 143 * Tck

1 0b11 0b0111 0010 113 * Tck 30 * Tck 1 * Tck 144 * Tck

1 0b11 0b0111 0011 114 * Tck 30 * Tck 1 * Tck 145 * Tck

1 0b11 0b0111 0100 115 * Tck 30 * Tck 1 * Tck 146 * Tck

1 0b11 0b0111 0101 116 * Tck 30 * Tck 1 * Tck 147 * Tck

1 0b11 0b0111 0110 117 * Tck 30 * Tck 1 * Tck 148 * Tck

1 0b11 0b0111 0111 118 * Tck 30 * Tck 1 * Tck 149 * Tck

1 0b11 0b0111 1000 119 * Tck 30 * Tck 1 * Tck 150 * Tck

1 0b11 0b0111 1001 120 * Tck 30 * Tck 1 * Tck 151 * Tck

1 0b11 0b0111 1010 121 * Tck 30 * Tck 1 * Tck 152 * Tck

1 0b11 0b0111 1011 122 * Tck 30 * Tck 1 * Tck 153 * Tck

1 0b11 0b0111 1100 123 * Tck 30 * Tck 1 * Tck 154 * Tck

1 0b11 0b0111 1101 124 * Tck 30 * Tck 1 * Tck 155 * Tck

1 0b11 0b0111 1110 125 * Tck 30 * Tck 1 * Tck 156 * Tck

1 0b11 0b0111 1111 126 * Tck 30 * Tck 1 * Tck 157 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-30 Freescale Semiconductor

1 0b11 0b1000 0000 127 * Tck 30 * Tck 1 * Tck 158 * Tck

1 0b11 0b1000 0001 128 * Tck 30 * Tck 1 * Tck 159 * Tck

1 0b11 0b1000 0010 129 * Tck 30 * Tck 1 * Tck 160 * Tck

1 0b11 0b1000 0011 130 * Tck 30 * Tck 1 * Tck 161 * Tck

1 0b11 0b1000 0100 131 * Tck 30 * Tck 1 * Tck 162 * Tck

1 0b11 0b1000 0101 132 * Tck 30 * Tck 1 * Tck 163 * Tck

1 0b11 0b1000 0110 133 * Tck 30 * Tck 1 * Tck 164 * Tck

1 0b11 0b1000 0111 134 * Tck 30 * Tck 1 * Tck 165 * Tck

1 0b11 0b1000 1000 135 * Tck 30 * Tck 1 * Tck 166 * Tck

1 0b11 0b1000 1001 136 * Tck 30 * Tck 1 * Tck 167 * Tck

1 0b11 0b1000 1010 137 * Tck 30 * Tck 1 * Tck 168 * Tck

1 0b11 0b1000 1011 138 * Tck 30 * Tck 1 * Tck 169 * Tck

1 0b11 0b1000 1100 139 * Tck 30 * Tck 1 * Tck 170 * Tck

1 0b11 0b1000 1101 140 * Tck 30 * Tck 1 * Tck 171 * Tck

1 0b11 0b1000 1110 141 * Tck 30 * Tck 1 * Tck 172 * Tck

1 0b11 0b1000 1111 142 * Tck 30 * Tck 1 * Tck 173 * Tck

1 0b11 0b1001 0000 143 * Tck 30 * Tck 1 * Tck 174 * Tck

1 0b11 0b1001 0001 144 * Tck 30 * Tck 1 * Tck 175 * Tck

1 0b11 0b1001 0010 145 * Tck 30 * Tck 1 * Tck 176 * Tck

1 0b11 0b1001 0011 146 * Tck 30 * Tck 1 * Tck 177 * Tck

1 0b11 0b1001 0100 147 * Tck 30 * Tck 1 * Tck 178 * Tck

1 0b11 0b1001 0101 148 * Tck 30 * Tck 1 * Tck 179 * Tck

1 0b11 0b1001 0110 149 * Tck 30 * Tck 1 * Tck 180 * Tck

1 0b11 0b1001 0111 150 * Tck 30 * Tck 1 * Tck 181 * Tck

1 0b11 0b1001 1000 151 * Tck 30 * Tck 1 * Tck 182 * Tck

1 0b11 0b1001 1001 152 * Tck 30 * Tck 1 * Tck 183 * Tck

1 0b11 0b1001 1010 153 * Tck 30 * Tck 1 * Tck 184 * Tck

1 0b11 0b1001 1011 154 * Tck 30 * Tck 1 * Tck 185 * Tck

1 0b11 0b1001 1100 155 * Tck 30 * Tck 1 * Tck 186 * Tck

1 0b11 0b1001 1101 156 * Tck 30 * Tck 1 * Tck 187 * Tck

1 0b11 0b1001 1110 157 * Tck 30 * Tck 1 * Tck 188 * Tck

1 0b11 0b1001 1111 158 * Tck 30 * Tck 1 * Tck 189 * Tck

1 0b11 0b1010 0000 159 * Tck 30 * Tck 1 * Tck 190 * Tck

1 0b11 0b1010 0001 160 * Tck 30 * Tck 1 * Tck 191 * Tck

1 0b11 0b1010 0010 161 * Tck 30 * Tck 1 * Tck 192 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-31

1 0b11 0b1010 0011 162 * Tck 30 * Tck 1 * Tck 193 * Tck

1 0b11 0b1010 0100 163 * Tck 30 * Tck 1 * Tck 194 * Tck

1 0b11 0b1010 0101 164 * Tck 30 * Tck 1 * Tck 195 * Tck

1 0b11 0b1010 0110 165 * Tck 30 * Tck 1 * Tck 196 * Tck

1 0b11 0b1010 0111 166 * Tck 30 * Tck 1 * Tck 197 * Tck

1 0b11 0b1010 1000 167 * Tck 30 * Tck 1 * Tck 198 * Tck

1 0b11 0b1010 1001 168 * Tck 30 * Tck 1 * Tck 199 * Tck

1 0b11 0b1010 1010 169 * Tck 30 * Tck 1 * Tck 200 * Tck

1 0b11 0b1010 1011 170 * Tck 30 * Tck 1 * Tck 201 * Tck

1 0b11 0b1010 1100 171 * Tck 30 * Tck 1 * Tck 202 * Tck

1 0b11 0b1010 1101 172 * Tck 30 * Tck 1 * Tck 203 * Tck

1 0b11 0b1010 1110 173 * Tck 30 * Tck 1 * Tck 204 * Tck

1 0b11 0b1010 1111 174 * Tck 30 * Tck 1 * Tck 205 * Tck

1 0b11 0b1011 0000 175 * Tck 30 * Tck 1 * Tck 206 * Tck

1 0b11 0b1011 0001 176 * Tck 30 * Tck 1 * Tck 207 * Tck

1 0b11 0b1011 0010 177 * Tck 30 * Tck 1 * Tck 208 * Tck

1 0b11 0b1011 0011 178 * Tck 30 * Tck 1 * Tck 209 * Tck

1 0b11 0b1011 0100 179 * Tck 30 * Tck 1 * Tck 210 * Tck

1 0b11 0b1011 0101 180 * Tck 30 * Tck 1 * Tck 211 * Tck

1 0b11 0b1011 0110 181 * Tck 30 * Tck 1 * Tck 212 * Tck

1 0b11 0b1011 0111 182 * Tck 30 * Tck 1 * Tck 213 * Tck

1 0b11 0b1011 1000 183 * Tck 30 * Tck 1 * Tck 214 * Tck

1 0b11 0b1011 1001 184 * Tck 30 * Tck 1 * Tck 215 * Tck

1 0b11 0b1011 1010 185 * Tck 30 * Tck 1 * Tck 216 * Tck

1 0b11 0b1011 1011 186 * Tck 30 * Tck 1 * Tck 217 * Tck

1 0b11 0b1011 1100 187 * Tck 30 * Tck 1 * Tck 218 * Tck

1 0b11 0b1011 1101 188 * Tck 30 * Tck 1 * Tck 219 * Tck

1 0b11 0b1011 1110 189 * Tck 30 * Tck 1 * Tck 220 * Tck

1 0b11 0b1011 1111 190 * Tck 30 * Tck 1 * Tck 221 * Tck

1 0b11 0b1100 0000 191 * Tck 30 * Tck 1 * Tck 222 * Tck

1 0b11 0b1100 0001 192 * Tck 30 * Tck 1 * Tck 223 * Tck

1 0b11 0b1100 0010 193 * Tck 30 * Tck 1 * Tck 224 * Tck

1 0b11 0b1100 0011 194 * Tck 30 * Tck 1 * Tck 225 * Tck

1 0b11 0b1100 0100 195 * Tck 30 * Tck 1 * Tck 226 * Tck

1 0b11 0b1100 0101 196 * Tck 30 * Tck 1 * Tck 227 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-32 Freescale Semiconductor

1 0b11 0b1100 0110 197 * Tck 30 * Tck 1 * Tck 228 * Tck

1 0b11 0b1100 0111 198 * Tck 30 * Tck 1 * Tck 229 * Tck

1 0b11 0b1100 1000 199 * Tck 30 * Tck 1 * Tck 230 * Tck

1 0b11 0b1100 1001 200 * Tck 30 * Tck 1 * Tck 231 * Tck

1 0b11 0b1100 1010 201 * Tck 30 * Tck 1 * Tck 232 * Tck

1 0b11 0b1100 1011 202 * Tck 30 * Tck 1 * Tck 233 * Tck

1 0b11 0b1100 1100 203 * Tck 30 * Tck 1 * Tck 234 * Tck

1 0b11 0b1100 1101 204 * Tck 30 * Tck 1 * Tck 235 * Tck

1 0b11 0b1100 1110 205 * Tck 30 * Tck 1 * Tck 236 * Tck

1 0b11 0b1100 1111 206 * Tck 30 * Tck 1 * Tck 237 * Tck

1 0b11 0b1101 0000 207 * Tck 30 * Tck 1 * Tck 238 * Tck

1 0b11 0b1101 0001 208 * Tck 30 * Tck 1 * Tck 239 * Tck

1 0b11 0b1101 0010 209 * Tck 30 * Tck 1 * Tck 240 * Tck

1 0b11 0b1101 0011 210 * Tck 30 * Tck 1 * Tck 241 * Tck

1 0b11 0b1101 0100 211 * Tck 30 * Tck 1 * Tck 242 * Tck

1 0b11 0b1101 0101 212 * Tck 30 * Tck 1 * Tck 243 * Tck

1 0b11 0b1101 0110 213 * Tck 30 * Tck 1 * Tck 244 * Tck

1 0b11 0b1101 0111 214 * Tck 30 * Tck 1 * Tck 245 * Tck

1 0b11 0b1101 1000 215 * Tck 30 * Tck 1 * Tck 246 * Tck

1 0b11 0b1101 1001 216 * Tck 30 * Tck 1 * Tck 247 * Tck

1 0b11 0b1101 1010 217 * Tck 30 * Tck 1 * Tck 248 * Tck

1 0b11 0b1101 1011 218 * Tck 30 * Tck 1 * Tck 249 * Tck

1 0b11 0b1101 1100 219 * Tck 30 * Tck 1 * Tck 250 * Tck

1 0b11 0b1101 1101 220 * Tck 30 * Tck 1 * Tck 251 * Tck

1 0b11 0b1101 1110 221 * Tck 30 * Tck 1 * Tck 252 * Tck

1 0b11 0b1101 1111 222 * Tck 30 * Tck 1 * Tck 253 * Tck

1 0b11 0b1110 0000 223 * Tck 30 * Tck 1 * Tck 254 * Tck

1 0b11 0b1110 0001 224 * Tck 30 * Tck 1 * Tck 255 * Tck

1 0b11 0b1110 0010 225 * Tck 30 * Tck 1 * Tck 256 * Tck

1 0b11 0b1110 0011 226 * Tck 30 * Tck 1 * Tck 257 * Tck

1 0b11 0b1110 0100 227 * Tck 30 * Tck 1 * Tck 258 * Tck

1 0b11 0b1110 0101 228 * Tck 30 * Tck 1 * Tck 259 * Tck

1 0b11 0b1110 0110 229 * Tck 30 * Tck 1 * Tck 260 * Tck

1 0b11 0b1110 0111 230 * Tck 30 * Tck 1 * Tck 261 * Tck

1 0b11 0b1110 1000 231 * Tck 30 * Tck 1 * Tck 262 * Tck

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-33

33.3.2.26 Normal Conversion Mask Register 0 (NCMR0)

The Normal Conversion Mask Register 0 (NCMR0) is used to program which of the group 0 channels
(channel 0–31) are converted during normal conversion.

1 0b11 0b1110 1001 232 * Tck 30 * Tck 1 * Tck 263 * Tck

1 0b11 0b1110 1010 233 * Tck 30 * Tck 1 * Tck 264 * Tck

1 0b11 0b1110 1011 234 * Tck 30 * Tck 1 * Tck 265 * Tck

1 0b11 0b1110 1100 235 * Tck 30 * Tck 1 * Tck 266 * Tck

1 0b11 0b1110 1101 236 * Tck 30 * Tck 1 * Tck 267 * Tck

1 0b11 0b1110 1110 237 * Tck 30 * Tck 1 * Tck 268 * Tck

1 0b11 0b1110 1111 238 * Tck 30 * Tck 1 * Tck 269 * Tck

1 0b11 0b1111 0000 239 * Tck 30 * Tck 1 * Tck 270 * Tck

1 0b11 0b11110001 240 * Tck 30 * Tck 1 * Tck 271 * Tck

1 0b11 0b1111 0010 241 * Tck 30 * Tck 1 * Tck 272 * Tck

1 0b11 0b1111 0011 242 * Tck 30 * Tck 1 * Tck 273 * Tck

1 0b11 0b1111 0100 243 * Tck 30 * Tck 1 * Tck 274 * Tck

1 0b11 0b1111 0101 244 * Tck 30 * Tck 1 * Tck 275 * Tck

1 0b11 0b1111 0110 245 * Tck 30 * Tck 1 * Tck 276 * Tck

1 0b11 0b1111 0111 246 * Tck 30 * Tck 1 * Tck 277 * Tck

1 0b11 0b1111 1000 247 * Tck 30 * Tck 1 * Tck 278 * Tck

1 0b11 0b1111 1001 248 * Tck 30 * Tck 1 * Tck 279 * Tck

1 0b11 0b1111 1010 249 * Tck 30 * Tck 1 * Tck 280 * Tck

1 0b11 0b1111 1011 250 * Tck 30 * Tck 1 * Tck 281 * Tck

1 0b11 0b1111 1100 251 * Tck 30 * Tck 1 * Tck 282 * Tck

1 0b11 0b1111 1101 252 * Tck 30 * Tck 1 * Tck 283 * Tck

1 0b11 0b1111 1110 253 * Tck 30 * Tck 1 * Tck 284 * Tck

1 0b11 0b1111 1111 254 * Tck 30 * Tck 1 * Tck 285 * Tck

1 Represents the number of clock cycles that this operation will last.
2 The ADC minimum conversion time at 60 MHz is 39 * Tck; that corresponds to 650 ns.

Table 33-28. ADC Sampling and Conversion Timing (continued)

INPLATCH INPCMP INPSAMP Tsample
1 Teval ndelay Tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-34 Freescale Semiconductor

33.3.2.27 Normal Conversion Mask Register 1 (NCMR1)

The Normal Conversion Mask Register 1 (NCMR1) is used to program which of the group 1 channels
(channel 32–63) are converted during normal conversion.

33.3.2.28 Normal Conversion Mask Register 2 (NCMR2)

The Normal Conversion Mask Register 2 (NCMR2) is used to program which of the group 2 channels
(channel 63–95) are converted during normal conversion.

Address: ADC_BASE + 0x00A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH31 CH30 CH29 CH28 CH27 CH26 CH25 CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17 CH16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-27. Normal Conversion Mask Register 0 (NCMR0)

Table 33-29. NCMR0 Field Descriptions

Field Description

CHn When set, conversion is enabled for channel n.

Address: ADC_BASE + 0x00A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH63 CH62 CH61 CH60 CH59 CH58 CH57 CH56 CH55 CH54 CH53 CH52 CH51 CH50 CH49 CH48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH47 CH46 CH45 CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-28. Normal Conversion Mask Register 1 (NCMR1)

Table 33-30. NCMR1 Field Descriptions

Field Description

CHn When set, conversion is enabled for channel n.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-35

33.3.2.29 Injected Conversion Mask Register 0 (JCMR0)

The Injected Conversion Mask Register 0 (JCMR0) is used to program which of the group 0 channels
(channel 0–31) are converted during injected conversion.

33.3.2.30 Injected Conversion Mask Register 1 (JCMR1)

The Injected Conversion Mask Register 1 (JCMR1) is used to program which of the group 1 channels
(channel 32–63) are converted during injected conversion.

Address: ADC_BASE + 0x00AC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-29. Normal Conversion Mask Register 2 (NCMR2)

Table 33-31. NCMR2 Field Descriptions

Field Description

CHn When set, conversion is enabled for channel n.

Address: ADC_BASE + 0x00B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH31 CH30 CH29 CH28 CH27 CH26 CH25 CH24 CH23 CH22 CH21 CH20 CH19 CH18 CH17 CH16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-30. Injected Conversion Mask Register 0 (JCMR0)

Table 33-32. JCMR0 Field Descriptions

Field Description

CHn When set, injected sampling is enabled for channel n.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-36 Freescale Semiconductor

33.3.2.31 Injected Conversion Mask Register 2 (JCMR2)

The Injected Conversion Mask Register 2 (JCMR2) is used to program which of the group 2 channels
(channel 63–95) are converted during injected conversion.

33.3.2.32 Offset Word Register (OFFWR)

The OFFWR register allows the user to set an offset cancellation word as opposed to a calculated word.

Address: ADC_BASE + 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH63 CH62 CH61 CH60 CH59 CH58 CH57 CH56 CH55 CH54 CH53 CH52 CH51 CH50 CH49 CH48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH47 CH46 CH45 CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-31. Injected Conversion Mask Register 1 (JCMR1)

Table 33-33. JCMR1 Field Descriptions

Field Description

CHn When set, injected sampling is enabled for channel n.

Address: ADC_BASE + 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-32. Injected Conversion Mask Register 2 (JCMR2)

Table 33-34. JCMR2 Field Descriptions

Field Description

CHn When set, injected sampling is enabled for channel n.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-37

33.3.2.33 Decode Signals Delay Register (DSDR)

The DSDR register specifies the delay between the external decode signals and the start of the sampling
phase.

Address: Base + 0x00EC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OFF
SET

LOAD
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
OFFSET_WORD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-33. Offset Word Register (OFFWR)

Table 33-35. OFFWR Field Descriptions

Field Description

OFFSETLOAD Used to enable offset loading. This bit should be written before writing the OFFSET_WORD field.

OFFSET_
WORD

The offset word coefficient generated at the end of the offset cancellation phase is latched into this register.
That offset word can be also written by software. In that case, it is loaded into the analog ADC and used as the
offset cancellation word instead of the one calculated using the offset cancellation process. That field should
be written before starting conversion.

Address: ADC_ Base + 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
DSD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-34. Decode Signals Delay Register (DSDR)

Table 33-36. DSDR Field Descriptions

Field Description

DSD The delay between the external decode signals and the start of the sampling phase. It is used to take into
account the settling time of the external mux.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-38 Freescale Semiconductor

33.3.2.34 Power Down Exit Delay Register (PDEDR)

The PDEDR register specifies the delay between the power-down reset and the start of the next conversion.

33.3.2.35 Precision Channel n Data Register (PRECDATAREGn)

The PRECDATAREGn registers provide conversion results for the group 0 channel (channels 0–31) data
registers. Each data register gives also some information regarding the corresponding result. One
PRECDATAREGn register is provided for each channel.

Address: ADC_BASE + 0x00C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
PDED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-35. Power Down Exit Delay Register (PDEDR)

Table 33-37. PDEDR Field Descriptions

Field Description

PDED The delay between the power down bit MCR[PWDN] reset and the start of the next conversion.

Address: See Table 33-1. Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
VALID OVERW RESULT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-36. Precision Channel n Data Register (PRECDATAREGn)

Table 33-38. PRECDATAREGn Field Descriptions

Field Description

VALID Used to notify when the data is valid (a new value has been written). It is automatically cleared when data is
read.

OVERW Overwrite data. Used to notify when a conversion data is overwritten by a newer result.The new data is written
or discarded according to the OWREN bit of MCR register.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-39

33.3.2.36 Internal Channel n Data Register (INTDATAREGn)

The INTDATAREGn registers provide conversion results for the group 1 channel (channels 32–63) data
registers. Each data register gives also some information regarding the corresponding result. One
INTDATAREGn register is provided for each channel.

33.3.2.37 External Channel n Data Register (EXTDATAREGn)

The EXTDATAREGn registers provide conversion results for the group 2 channel (channels 64–95) data
registers. Each data register gives also some information regarding the corresponding result. One
EXTDATAREGn register is provided for each channel.

RESULT This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of normal conversion mode.
01 Data is a result of injected conversion mode.
10 Data is a result of CTU conversion mode.
11 reserved

CDATA Channel 0 – 31 converted data.

Address: See Table 33-1. Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
VALID OVERW RESULT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-37. Internal Channel n Data Register (INTDATAREGn)

Table 33-39. INTDATAREGn Field Descriptions

Field Description

VALID Used to notify when the data is valid (a new value has been written). It is automatically cleared when data is
read.

OVERW Overwrite data. Used to notify when a conversion data is overwritten by a newer result.The new data is written
or discarded according to the OWREN bit of MCR register.

RESULT This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of normal conversion mode.
01 Data is a result of injected conversion mode.
10 Data is a result of CTU conversion mode.
11 reserved

CDATA Channel 32 – 63 converted data.

Table 33-38. PRECDATAREGn Field Descriptions

Field Description

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-40 Freescale Semiconductor

Address: See Table 33-1. Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
VALID OVERW RESULT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-38. External Channel n Data Register (EXTDATAREGn)

Table 33-40. EXTDATAREGn Field Descriptions

Field Description

VALID Used to notify when the data is valid (a new value has been written). It is automatically cleared when data is
read.

OVERW Overwrite data. Used to notify when a conversion data is overwritten by a newer result.The new data is written
or discarded according to the OWREN bit of MCR register.

RESULT This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of normal conversion mode.
01 Data is a result of injected conversion mode.
10 Data is a result of CTU conversion mode.
11 reserved

CDATA Channel 64 – 95 converted data.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-41

33.4 Functional Description

33.4.1 Analog Channel Conversion

Three conversion modes are available within the ADC module:

• Normal conversion

• Injected conversion

• Triggered injected conversion using CTU

33.4.1.1 Normal Conversion

Normal conversion is programmed by configuring the normal conversion mask registers (NCMRn) in
which each channel can be individually enabled by setting the corresponding CHn bit. Mask registers must
be programmed before starting the conversion and cannot be changed until the conversion of all the
selected channels ends.

33.4.1.2 Start of Normal Conversion

A normal conversion can be started in one of two ways:

• By software (TRGEN = 0):

— If the external trigger enable bit is reset, the conversion chain starts when the NSTART bit in
MCR is set.

• By trigger (TRGEN = 1):

— An external trigger/enable signal is detected to start the conversion. The enable pin is checked
only when the conversion is started. The end and the restart of the conversion must be checked
by software. This feature is enabled setting the TRGEN bit in the MCR register. Two options
are available:

– If EDGLEV (edge/level selection) bit in MCR is reset then a rising/falling edge (depending
on the EDGE bit in MCR) detected in an external pin set the NSTART bit in MCR and starts
the programmed conversion. EDGE = 0 means falling, EDGE = 1 means rising edge.

– If EDGLEV (edge/level selection) bit in MCR is set, the conversion is started if and only if
the NSTART bit in MCR is set and the programmed level on the external trigger pin is
detected. The level is selected using the EDGE bit in MCR. EDGE = 0 means that the start
of conversion is enabled if the external pin is low. If EDGE = 1, the start of conversion is
enabled when the external pin is high.

The NSTART status bit of MCR is automatically set when a normal conversion starts. At the same time
NSTART bit of MCR is reset, allowing the software to program a new start of conversion. In that case the
new requested conversion starts after the running conversion is completed.

If the contents of all the normal conversion mask registers is zero (i.e., no channel is selected), the
conversion operation is considered completed and the interrupt ECH is immediately issued after the start
of conversion.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-42 Freescale Semiconductor

If the START bit in MCR is reset while ADC is converting, the user needs to wait for the ADC to finish
the current chain conversion (i.e., ECH interrupt) before setting the START bit once again.

33.4.1.3 Normal Conversion Operating Modes

Two operating modes are available for the normal conversion:

• One Shot mode

• Scan mode

To enter one of these modes, it is necessary to program the MCR[MODE] bit. The first phase of the
conversion process involves sampling the analog channel and the next phase involves the conversion phase
when the sampled analog value is converted to digital as shown in Figure 33-39.

Figure 33-39. Normal Conversion Flow

In One Shot mode (MODE = 0), a sequential conversion specified in the NCMRn mask register is
performed only once. At the end of each conversion, the digital result of the conversion is stored into the
corresponding data register.

For example: Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be
converted in the One Shot mode. MODE = 0 is set for One Shot mode. Conversion starts from the channel
B followed by conversion of channels D-E. At the end of conversion of channel E the scanning of channels
stops.

The MSR[NSTART] status bit is automatically set when the normal conversion starts. At the same time
MCR[NSTART] is reset, allowing the software to program a new start of conversion. In that case the new
requested conversion starts after the running conversion is completed.

In Scan mode (MODE = 1), a sequential conversion of channels specified in the NCMRn register is
continuously performed. As in the previous case, at the end of each conversion the digital result of the
conversion is stored into the corresponding data register.

The MSR[NSTART] bit is automatically set when the normal conversion starts. Unlike One Shot mode,
the MCR[NSTART] is not reset. It can be reset by software when the user needs to stop scan mode. In that
case, the ADC completes the current scan conversion and after the last conversion resets MSR[NSTART]
as well.

For Example: Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be
converted in the Scan mode. MODE = 1 is set for Scan mode. Conversion starts from the channel B
followed by conversion of the channels D – E. At the end of conversion of channel E the scanning of
channel B starts followed by conversion of the channels D – E. This sequence repeats itself until the
NSTART bit of MCR is reset by software.

If the conversion is started by an external trigger and EDGLEV = 0, MCR[NSTART] bit is not set. As a
consequence, once started the only way to stop scan mode conversion is to set MODE = 0.

Sample B Convert B Sample C Convert C Sample D Convert D Sample E Convert E

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-43

In both modes, at the end of each conversion an End Of Conversion (EOC) interrupt is issued (if enabled
by the corresponding mask bit) and at the end of the conversion sequence an End Of Chain (ECH) interrupt
is issued (if enabled by the corresponding mask bit).

33.4.1.4 Injected Channel Conversion

A conversion chain can be injected into the ongoing normal conversion by configuring the JCMRn
injected mask registers. As in normal conversion, each internal channel can be individually selected. This
injected conversion can only be in one-shot mode and interrupts the normal conversion. When an injected
conversion is inserted, ongoing channel conversion is aborted and the injected channel request is
processed. After the last channel in the injected chain is converted, normal conversion resumes from the
channel at which the normal conversion was aborted as shown in Figure 33-40.

Figure 33-40. Injected Sample/Conversion Sequence

The ADC input signal “injection_trg” must be connected to the PIT_2 output. This allows the application
to use PIT_2 to periodically inject conversion chains. The ADC can also be externally triggered from
external inputs. See pin muxing for details.

The injected conversion can be started using two options:

• By software setting the MCR[JSTART] bit; the current conversion is suspended and the injected
chain is converted. At the end of the chain, the MSR[JSTART] bit is reset and the normal chain
conversion is resumed.

• By an external trigger signal setting the MCR[JTRGEN] bit; a programmed event (rising/falling
edge depending on MCR[JEDGE] bit) on the injection external pin starts the injected conversion
by setting the JSTART bit. At the end of the chain, the MSR[JSTART] bit is reset and the normal
chain conversion is resumed.

The JSTART status bit of MSR is automatically set when the injected conversion starts. At the same time
JSTART bit of MCR is reset, allowing the software to program a new start of conversion. In that case the
new requested conversion starts after the running conversion is completed.

At the end of each injected conversion, an End Of Injected Conversion (JEOC) interrupt is issued (if
enabled by the corresponding mask bit) and at the end of the sequence an End Of Injected Chain (JECH)
interrupt is issued (if enabled by the corresponding mask bit).

Sample B Convert B Sample C Convert C Sample D Convert D Sample E Convert E

Sample C Abort C Sample I Convert I Sample J Convert J Sample C Convert C

Injected conversion of channels I and J

Normal conversion resumes from the last
aborted channel.

The ongoing channel conversion is interrupted and the injected conversion
chain is processed first. After the injected chain is converted the normal
conversion resumes from the channel at which normal conversion was
aborted.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-44 Freescale Semiconductor

If the content of all the injected conversion mask registers is zero (i.e., no channel is selected) the interrupt
JECH is immediately issued after the start of conversion.

Once started, injected chain conversion cannot be interrupted.

33.4.1.5 Abort Conversion

Two different abort functions are provided.

The user can abort the ongoing conversion by setting the MCR[ABORT] bit. This results in a new start
pulse to the analog ADC. In the case of an abort operation, the NSTART/JSTART bit remains set and the
ABORT bit gets reset after the conversion of the next channel starts.This behavior is true for normal or
triggered/injected conversion modes.

It is also possible to abort the current chain conversion setting the MCR[ABORTCHAIN] bit. In that case
the behavior of the ADC depends on the MODE bit. If scan mode is disabled, the NSTART bit is
automatically reset together with the ABORTCHAIN bit. Otherwise, if the MODE = 1, a new chain
conversion is started.

When an ABORTCHAIN is requested while an injected conversion is running over a suspended normal
conversion, both injected chain and normal conversion chain are aborted (both NSTART and JSTART bits
are reset too).

33.4.2 Analog Clock Generator and Conversion Timings

The analog clock provided to the ADC module cannot be faster than 60 MHz and must have a 50% duty
cycle.

As shown in Figure 33-41, the analog clock generator is made up of a clock prescaler and the AD_clk
frequency is half ipg_clk frequency. When the CTU interface is enabled, depending on the position of the
rising edge of the signal ctu_trigger (coming from the CTU), AD_clk could also be stretched as described
in Figure 33-41.

Figure 33-41. Prescaler Simplified Block Diagram

AD_clk

ipg_clk

ctu_trigger

ipg_clk

AD_clk

AD_conf_latch
AD_conf_compare<1:0>
AD_conf_sample<7:0>

CTR0
CTR1
CTR2

ACKO

ipg_clk

ipg_clk/2

MCR[ADCLKSEL]

Clock

Prescaler

ctu_trigger

ADCLKSEL = 0

ipg_clk

AD_clk

ctu_trigger

ADCLKSEL = 0

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-45

The clock stretching is implemented if and only if MCR[ADCLKSEL] = 0 (if AD_clk is half ipg_clk).

In order to support different loadings and switching times (in particular for the group 2 channels), three
different Conversion Timing registers are present (CTR[0 – 2]). The first is associated with group 0
channels, the second one with group 1 channels, and the third one with the group 2 channels. INPLATCH
and IPCMP configurations are limited when ipg_clk frequency is greater than 20 Mhz.

33.4.3 ADC Cross Triggering Unit

The ADC Cross Triggering Unit (CTU) is included to enhance the injected conversion capability of the
ADC. The CTU contains multiple event inputs that can be used to select the channels to be converted from
the appropriate event configuration register. In Figure 33-42 the CTU/ADC interface is shown. The CTU
generates a trigger output pulse (ctu_trigger) of one clock cycle and outputs onto a data bus
(ctu_numchannel) which channel has to be converted. A single channel is converted for each request. After
performing the conversion, the ADC returns the result on the ctu_dataout bus. Together with the converted
data, the ADC outputs two pulses named ctu_nextcmd and ctu_push spaced one clock cycle (of analog
AD_clk) apart. The ctu_nextcmd is set to ‘1’ during the last clock cycle of ADC evaluation phase. The
ctu_push is asserted when the conversion is finished, meaning that the ctu_dataout is valid. After
performing the conversion, the conversion result is saved in the corresponding data register and it is
compared with Watchdog thresholds if requested.

Figure 33-42. ADC Cross Triggering Unit

Two different modes can be selected by programming the CTUEN field of MCR, as described in
Table 33-41:

When the CTU is enabled, the CPU is able to write in the ADC registers but the CPU cannot start any
conversion. Conversion requests can be generated only by the CTU trigger pulse. If a normal or injected
conversion is requested, it is automatically discarded. When the CTU sends to the ADC the number of the

Table 33-41. CTU Selection

CTUEN CTU Mode

0 CTU is disabled.

1 CTU Trigger Mode is enabled.

ctu_trigger

ctu_numchannel<num_ch_bits-1:0>

ctu_nextcmd

ctu_push

ctu_dataout<9:0>

ADC

Digital

InterfaceCTU

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-46 Freescale Semiconductor

channel to be converted, that is taken as the injected channel value and the triggered injected conversion
starts. The CTUSTART bit is set automatically at this point and it is also automatically reset when the CTU
is disabled (CTUEN = 0).

The CTU and the ADC digital interface are synchronous with the ipg_clk in both cases.

33.4.3.1 CTU Trigger Mode

In CTU trigger mode, normal and injected conversion are still enabled.

When a ctu_trigger pulse is received the output data ctu_numchannel is taken as the injected channel value
and the triggered injected conversion starts. The MSR[CTUSTART] bit is set automatically at this point
and it is also automatically reset when the triggered injected conversion is completed.

CTU conversions must be requested (generating ctu_trigger pulse) when offset cancellation phase is over.
Otherwise, ctu_trigger pulse is discarded. If a ctu_trigger pulse is received during an offset refresh, the
current refresh is immediately stopped in order to satisfy the CTU request.

If an injected conversion (programmed by the user by setting the JSTART bit) is ongoing and a pulse is
received on the ctu_trigger input line, then the injected channel conversion chain is aborted) and only the
triggered injected conversion proceeds. After aborting the injected conversion, the MSR[JSTART] bit is
reset to ‘0’. That abort is signalled through the MSR[JABORT] status bit.

If normal conversion is ongoing and a pulse is received on the ctu_trigger input line, then ongoing channel
conversion is aborted and the triggered injected conversion is processed. When it is finished, normal
conversion resumes from the channel at which the normal conversion was aborted.

If another ctu_trigger pulse is received before ctu_nextcmd signal, that triggered conversion request is
discarded.

When a normal conversion is requested during CTU conversion (CTUSTART = 1), the normal conversion
starts when CTU conversion is completed (CTUSTART = 0). Otherwise when an injected conversion is
requested during CTU conversion, that conversion is discarded and the MCR[JSTART] bit is immediately
reset.

33.4.3.2 CTU Control Mode

When CTU Control mode is enabled, the CPU is able to write in the ADC registers but it cannot start any
conversion. Conversion requests can be generated only by the CTU trigger pulse. If a normal or injected
conversion is requested, it is automatically discarded.

When a ctu_trigger pulse is received the output data ctu_numchannel is taken as the injected channel value
and the triggered injected conversion starts. The CTUSTART bit is set automatically at this point and it is
also automatically reset when CTU Control mode is disabled (CTUEN = 0).

CTU conversions must be requested (generating ctu_trigger pulse) when offset cancellation phase is over.
In fact, each ctu_trigger pulse received during offset cancellation is discarded. Otherwise, if a ctu_trigger
pulse is received during an offset refresh, the current refresh is immediately stopped in order to satisfy the
CTU request.

Timings of CTU interface signals in CTU Control mode are shown in Figure 33-43 and Figure 33-44.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-47

In both cases, the delay between the positive edge of ctu_trigger signal and the starting of conversion is
fixed. In the first case, the AD_clock is stretched during the low phase in order to guarantee that constraint.

Figure 33-43. CTU Control Mode Interface Timings (Case 1)

Figure 33-44. CTU Control Mode Interface Timings (Case 2)

ipg_clk

ctu_trigger

ctu_numchannel<5:0>

ctu_nextcmd

ctu_push

ctu_dataout<9:0>

AD_clk

tconv

ipg_clk

ctu_trigger

ctu_numchannel<5:0>

ctu_nextcmd

ctu_push

ctu_dataout<9:0>

AD_clk

tconv

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-48 Freescale Semiconductor

33.4.4 Presampling

Presampling allows to precharge or discharge the ADC internal capacitor before it starts
sampling/conversion of the analog input coming from pads. This is useful in the reset information (offset
cancellation) regarding the last converted data. During presampling, the analog ADC samples the
internally generated voltage. During sampling, the analog ADC samples analog input coming from pads.

Presampling can be enabled/disabled on a channel basis by setting the corresponding bits in the PSRn
registers.

After enabling the presampling for a channel, the normal sequence of operation for that channel is
Presampling + Sampling + Conversion. Sampling of the channel can be bypassed by setting the
PRECONV bit in the PSCR register. When sampling of a channel is bypassed, the sampled data of internal
voltage in the presampling state is converted.

Figure 33-45. Presampling Sequence

Figure 33-46. Presampling Sequence with PRECONV = 1

Figure 33-47. Presampling Sequence with PREONCE = 0

Figure 33-48. Presampling Sequence with PRECONV = 1 and PREONCE = 0

Sample B Convert B Presample C Sample C Convert C Convert DSample D Sample EPresample D

Presampling is enabled in Channels C and D. For Channel B, the total clock conversion cycles = (S) + (C).
For Channels C and D, the total clock conversion cycles = (P) + (S) + (C).

Sample B Convert B Presample C Convert C Presample D Convert ESample EConvert D

Presampling is enabled in Channels C and D, but sampling is bypassed in these channels by setting
PRECONV = 1 in the PREREG register. For Channels C and D, the total clock conversion cycles = (P) + (C).

Sample B Convert B Presample C Sample C Convert C Sample EConvert DSample D

Presampling is enabled in Channels C and D, but Presampling is done once,
as PREONCE = 0 in the PREREG register.

Sample B Convert B Presample C Convert C Sample D Convert ESample EConvert D

Presampling is enabled in Channels C and D. PREONCE = 0 and PRECONV = 1 in the PREREG register.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-49

33.4.4.1 Presampling Channel Enable Signals

The presampling enable signals (presample_sw_en<3:0>) are used to enable analog switch used to sample
an internally generated voltage. It is possible to select between four internally generated voltages
V0,V1,V2,V3 depending on the value of PREVALn fields in the PSCR register as given in Table 33-42.

Three Presampling Value fields (PREVAL0, PREVAL1, PREVAL2) are contained in PSCR register. The
first one is associated with group 0 channels (0 to 31), the second one with group 1 channels (from 32 to
63), and the third one with group 2 channels. That allows to select three different presampling values for
each channel type.

If the COUNTER bit of the PREREG is set, then it has a higher priority over the PREVAL field. In that
case, the first voltage (V0) is selected in the start and used for the first chain’s conversion. When the
conversion of the first chain is over, the next voltage (V1) is selected for presampling of the next chain and
so on.After V3 the next chain conversion presampling voltage wraps around to V0.

In case of a scan mode conversion if the COUNTER bit is set then for every wrap around of the conversion
chain, the value of the presampling voltage employed to precharge the ADC hard macrocell is changed as
following: For the first chain a value of V0 is used, for the second chain V1 is used, and so on. When the
presampling voltage value reaches V3, then for the next conversion chain, the value used for presampling
is V0 and the sequence repeats itself.

The presampling channel enable timings follow a different methodology in respect to the channel select
timings (for detailed explanation refer to ADC analog specifications).

33.4.5 Programmable Analog Watchdog

The analog watchdogs are used for determining whether the value obtained on conversion of a channel lies
within a given guard area (as shown in Figure 33-50). If the converted value lies outside the guard area
specified by the upper and lower threshold values, then corresponding threshold violation interrupts are
generated.

As many as four analog watchdogs are available. The channel on which the analog watchdog is to be
applied is selected by the THRCH field in the TRCn (n = [0...3]) register. The analog watchdog is enabled
by setting the corresponding THREN bit in TRCn register (n = [0...3]).

The lower and higher threshold values for the analog watchdog are programmed by THRL field in TRBn
(n = [0...3]) and THRH field in TRAn (n = [0...3]) respectively.

Table 33-42. Presampling Voltage Selected Based on PREVAL Field

PREVAL0/PREVAL1/PREVAL2 Presampling Voltage Voltage Signal presample_sw_en

00 V0 VRL 0b0001

01 V1 VRH ob0010

10 V2 VDDSYN 0b0100

11 V3 VDD 0b1000

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-50 Freescale Semiconductor

The logic configuration for selecting the threshold values for the analog watchdog is shown in
Figure 33-50. After the conversion of the selected channel a comparison is performed between the
converted value obtained and the threshold values set. The result is stored as WDGnH and WDGnL bits
in the WTISR register as explained in Table 33-43. Depending on the MSKWDGnL and MSKWDGnH
mask bits in the WTIMR register, an interrupt is generated on threshold violation.

Figure 33-49. Alternate Watchdog Threshold Configuration

Figure 33-50. Guarded Area

Table 33-43. Values of WDGnH and WDGnL Fields

WDGnH WDGnL Converted data

1 0 converted data > THRH

0 1 converted data < THRL

0 0 THRH < converted data < THRL

THRHn

THRH_ALTn

0

1

THRHn

THRH_ALTn

0

1

Analog Watchdog n

Upper Threshold for conversion

Lower Threshold for conversion

alternate_wdgbus(x)

Setting Upper and Lower Threshold values for the analog watchdog [n = (0 ... 3)]

THRH

THRL

Analog Voltage

Upper threshold

Lower threshold
Guarded area

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-51

NOTE
If the higher threshold for the analog watchdog is programmed lower than
the lower threshold and the converted value is lesser than the lower
threshold then the WDGnL interrupt for the low threshold violation is set,
else if the converted value is greater than the lower threshold (consequently
also greater than the higher threshold) then the interrupt WDGnH for high
threshold violation is set. Thus the user should take care of avoiding that
situation as it could lead to misinterpretation of the watchdog interrupts.

33.4.5.1 Analog Watchdog Pulse Width Modulation Bus

For each input channel, an output bus is used to signal outside the result of the comparison generating
modulated pulse waveforms based on the converted analog values received by the analog watchdogs:

• If the converted data value is lower than the lower threshold, then the output pin (and THROP bit
in TRCn register) is forced high.

• If the converted voltage is higher than the higher threshold, then the output pin (and THROP bit in
TRCn register) is forced low.

• If the converted voltage lies between the upper and the lower threshold guard window, then the
output pin (and THROP bit in TRCn register) keeps its logic value.

The logic level of the output pin can be programmed by software. In fact, the user can decide to keep the
behavior described or to invert the output logic level by setting the THRINV bit in the TRCn register.

The values set on the ad_awpwm bus remain same in case the alternate watchdog thresholds are employed
by enabling the corresponding bit of the alternate watchdog input bus.

An example of the operation is shown in Table 33-44.

33.4.6 DMA Functionality

A Direct Memory Access (DMA) request can be programmed after the conversion of every channel by
setting the respective masking bit in DMARn registers. The DMA masking registers must be programmed
before starting any conversion.

DMA interface signals timings are described in Figure 33-51.

DMA transfers can be enabled by setting the DMAE[DMAEN] bit. When DMAE[DCLR] is set then the
DMA request is cleared on the reading of the register for which DMA transfer has been enabled.

Table 33-44. Example for ad_awpwm_o Operation

Converted data
watchdog(n)

Upper Threshold
watchdog(n)

Lower Threshold
watchdog(n)

THRINV
watchdog(n)

AD_AWPWM(n)

0x0155 0x0055 0x0000 0 0

0x0055 0x01FF 0x0088 0 1

0x0155 0x0055 0x0000 1 1

0x0055 0x01FF 0x0088 1 0

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-52 Freescale Semiconductor

Figure 33-51. Request/Acknowledge Timings

33.4.7 Interrupts

The ADC generates the following maskable interrupt signals:

• EOC (End of Conversion) interrupt request

• ECH (End of Chain) interrupt request

• JEOC (End of Injected Conversion) interrupt request

• JECH (End of Injected Chain) interrupt request

• EOFFSET (Error in Offset Cancellation) interrupt request

• OFFCANCOVR (Offset Cancellation Phase Over) interrupt request

• WDGnL and WDGnH (Watchdog Threshold) interrupt requests

Interrupts are generated during the conversion process to signal events such as End of Conversion, etc., as
explained in the register description for ISR. Two registers named ISR (Interrupt Status Register) and IMR
(Interrupt Mask Register) are provided in order to check and enable the interrupt request to the External
Interrupt Control (EIC) module.

The interrupts generated by the analog watchdog are handled by two registers, Watchdog Threshold
Interrupt Status Register (WTISR) and Watchdog Threshold Interrupt Mask Register (WTIMR), in order
to check and enable the interrupt request to EIC module. The watchdog interrupt source sets 2 pending bits
WDGnH and WDGnL for each of the four channels being monitored in the WTISR register.

In order to reduce the number of interrupt lines, interrupts are combined (ORed) on three lines:

• EOC, ECH, JEOC and JECH on the ADC_EOC line

• EOFFSET and OFFCANCOVR on the ADC_ER line

• WDG0L, WDG0H, WDG1L, WDG1H, WDG2L, WDG2H, WDG3L and WDG3H on the
ADC_WD line

The ISR register contains the interrupt pending request status. In case the user wants to clear a particular
interrupt event status, then writing a ‘1’ to the corresponding status bit clears the pending interrupt flag (at
this write operation all the other bits of the ISR register must be maintained at ‘0’). This is the only write
operation on the ISR and WTISR register. Any other write operation is forbidden, so the registers are
accessible in Read/Clear mode only.

DMA ADC

ipd_req

ipd_ack

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 33-53

33.4.8 External Decode Signals Delay

The ADC provides three external decode signals used to select which of the 32 group 2 channels has to be
converted. In order to take into account the control switching time of the external analog mux a Decode
Signals Delay register is provided. Writing that register allows to program the delay between the decoding
signal selection and the actual start of conversion

33.4.9 Power Down Mode

The analog part of the ADC can be put in low power mode by setting the PWDN bit in MCR. After
ipg_hard_async_reset_b is released the ADC analog module is kept in power down mode by default, so
this state must be exited before starting any operation by resetting the appropriate bit in MCR. When in
power down mode, no offset cancellation or conversion can be started. If a ctu_trigger pulse is received
during power-down, it is discarded.

If a conversion or an offset cancellation is ongoing then ADC hard macrocell cannot be put immediately
into the power down mode. The ongoing operation must be allowed to complete or be aborted manually
(by resetting the NSTART or OFFCANC bit) and only then may the PWDN bit in the MCR register be
cleared. A normal or an injected conversion can be aborted using the ABORTCHAIN function.

If the PWDN is set while a normal conversion is running, the ADC completes the current channel
conversion before entering power-down. As a consequence, PWDN bit of CSR is set only after the running
conversion has finished.

If the CTU is enabled and CTUSTART bit is ‘1’ then the PWDN bit cannot be set. When CTU trigger mode
is enabled, the application has to wait for the end of conversion (CTUSTART bit automatically reset).
When CTU control mode is enabled, before entering power-down the application needs to reset CTUEN
bit, too.

After the power down phase is completed, the process ongoing before the power down phase must be
restarted manually (by setting the appropriate START/OFFCANC bit).

33.4.10 Auto Clock Off Mode

To reduce the power consumption during the IDLE mode of operation (without going into power down
mode), an “auto-clock-off” feature can be enabled by setting the MCR[ACKO] bit. When enabled, the
analog clock is automatically switched off when no operation is ongoing, that is, no offset cancellation or
offset refresh in idle phase or conversion is programmed by the user.

Analog-to-Digital Converter (ADC)

MPC5668x Microcontroller Reference Manual, Rev. 4

33-54 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-1

Chapter 34
IEEE 1149.1 Test Access Port Controller (JTAGC)

34.1 Introduction
The JTAGC provides the means to test chip functionality and connectivity and controls access to the debug
features of the device while remaining transparent to system logic when not in test mode. Testing is
performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard. Instructions can
be executed that allow the test access port (TAP) to be shared with other modules on the MCU. All data
input to and output from the JTAGC is communicated in serial format.

Chapter 35, “Nexus Development Interface (NDI) includes information relevant to use of the JTAGC,
including Section 34.6, “Initialization/Application Information,” which gives practical application
examples for both controllers.

34.1.1 Block Diagram

A simplified block diagram of the JTAGC illustrates the functionality and interdependence of major blocks
(see Figure 34-1). The JTAG port of the device consists of four inputs and one output. These pins include
JTAG compliance select (JCOMP), test data input (TDI), test data output (TDO), test mode select (TMS),
and test clock input (TCK). TDI, TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard
and are shared with the NDI through the test access port (TAP) interface.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-2 Freescale Semiconductor

Figure 34-1. JTAGC Block Diagram

34.1.1.1 Individual and Multi-Core Debug

When daisy chaining a JTAG interface (see Figure 34-2), two separate commands can be shifted into the
different cores serially. This allows start (go) commands or step commands to be input to the cores in
parallel. Commands are shifted in during the JTAG SHIFT_IR state and are executed when the
UPDATE_IR state is reached in the TAP state diagram.

TCK

TMS

TDI

Test access port (TAP)

TDO32-bit device identification register

TEST_CNTL register

controller

1-bit bypass register

5-bit TAP instruction decoder

JCOMP

Power-on
reset

5-bit TAP instruction register

Nexus Port Controller TDO

e200Z6 TDO

e200Z0 TDO

Daisy Chained
e200Z6 and e200Z0 TDO

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-3

Figure 34-2. JTAG/Nexus Daisy Chain of the MPC5668x e200z6 and e200z0 Cores

34.1.2 Features

The JTAGC is compliant with the IEEE 1149.1-2001 standard and has these major features:

• IEEE 1149.1-2001 test access port (TAP) interface.

• A JCOMP input that provides the ability to share the TAP.

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, as well as
several public and private MCU-specific instructions (see Table 34-2).

• Three test data registers: a bypass register, a boundary scan register, and a device identification
register.

• A TAP controller state machine that controls the operation of the data registers, instruction register,
and associated circuitry.

34.1.3 Modes of Operation

The JTAGC uses JCOMP and a power-on reset indication as its primary reset signals. Several IEEE
1149.1-2001 defined test modes are supported, as well as a bypass mode.

TDO

e200z6 OnCE TAP

TDI

TDI TDO

TDOTDI

e200z0 OnCE TAP

NPC/JTAGC

ACCESS_AUX_TAP_Z6 (from _ONCE) ACCESS_AUX_TAP_MULTI ACCESS_AUX_TAP_Z0

Multi-core access

Single-core access

TMS and JCOMP are not shown for clarity.
NPC TAP also not shown for clarity.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-4 Freescale Semiconductor

34.1.3.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state.
The TEST-LOGIC-RESET state is entered upon the assertion of the power-on reset signal, negation of
JCOMP, or through TAP controller state machine transitions controlled by TMS. Asserting power-on reset
or negating JCOMP results in asynchronous entry into the reset state. While in reset, the following actions
occur:

• The TAP controller is forced into the test-logic-reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered.

• The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system reset. These
instructions include EXTEST, CLAMP, and HIGHZ.

34.1.3.2 IEEE 1149.1-2001 Defined Test Modes

The JTAGC supports several IEEE 1149.1-2001 defined test modes. The test mode is selected by loading
the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, HIGHZ, CLAMP, SAMPLE, and SAMPLE/PRELOAD. Each instruction
defines the set of data registers that may operate and interact with the on-chip system logic while the
instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for
each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST,
SAMPLE, or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is
enabled for serial access between TDI and TDO when the HIGHZ, CLAMP, or reserved instructions are
active. The functionality of each test mode is explained in more detail in Section 34.4.4, “JTAGC
Instructions.”

34.1.3.3 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC into bypass
mode. While in bypass mode, the single-bit bypass shift register is used to provide a minimum-length
serial path to shift data between TDI and TDO.

34.1.3.4 TAP Sharing Mode

There are three selectable auxiliary TAP controllers that share the TAP with the JTAGC. Selectable TAP
controllers include the Nexus port controller (NPC), e200z6 OnCE, and e200z0. The instructions required
to grant ownership of the TAP to the auxiliary TAP controllers are ACCESS_AUX_TAP_NPC,
ACCESS_AUX_TAP_Z6 (from _ONCE) (for e200z6), and ACCESS_AUX_TAP_Z0. Additionally, the
instruction for daisy chaining the e200z6 and e200z0 is ACCESS_AUX_TAP_MULTI (allows
instructions to be clocked into both the e200z0 and e200z6 serially). Instruction opcodes for each
instruction are shown in Table 34-2.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is transferred to the
selected TAP controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-5

TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers see Chapter 35, “Nexus Development Interface (NDI).”

34.2 External Signal Description
Refer to Table 2-1 and Section 2.2, “Signal Properties Summary for detailed signal descriptions.

34.3 Memory Map and Registers
This section provides a detailed description of the JTAGC registers accessible through the TAP interface,
including data registers and the instruction register. Individual bit-level descriptions and reset states of
each register are included. These registers are not memory-mapped and can be accessed through the TAP
only.

34.3.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Figure 34-3. The instruction register allows
instructions to be loaded into the module to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can be
changed in the Update-IR and Test-Logic-Reset TAP controller states only. Synchronous entry into the
test-logic-reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the test-logic-reset state results in asynchronous loading of the IDCODE
instruction. During the capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

34.3.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, CLAMP, HIGHZ, or reserve instructions are active. After entry into the capture-DR
state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the
bypass register is always a logic 0.

0 1 2 3 4

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 34-3. 5-Bit Instruction Register

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-6 Freescale Semiconductor

34.3.3 Device Identification Register

The device identification register, shown in Figure 34-4, allows the part revision number, design center,
part identification number, and manufacturer identity code to be determined through the TAP. The device
identification register is selected for serial data transfer between TDI and TDO when the IDCODE
instruction is active. Entry into the capture-DR state while the device identification register is selected
loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action occurs
in the update-DR state.

34.3.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE, or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 34.4.5, “Boundary Scan.”

34.4 Functional Description

34.4.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the test logic and
allowing normal operation of the on-chip system logic. The instruction register is also loaded with the
IDCODE instruction.

IR[4:0]: 0_0001 (IDCODE) Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset1

1 PRN default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

* * * * 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 34-4. Device Identification Register

Table 34-1. Device Identification Register Field Descriptions

Field Description

PRN Part Revision Number. Contains the revision number of the device. This field changes with each revision of the device
or module.

DC Design Center. Indicates the Freescale design center. For the MPC5668 family this value is 0x20.

PIN Part Identification Number. Contains the part number of the device. For the MPC5668 family, this value is 0x268.

MIC Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale, 0xE.

ID IDCODE Register ID. Identifies this register as the device identification register and not the bypass register. Always
set to 1.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-7

34.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with other
TAP controllers on the MCU. Ownership of the port is determined by the value of the JCOMP signal and
the currently loaded instruction. For more detail on TAP sharing via JTAGC instructions refer to
Section 34.4.4.2, “ACCESS_AUX_TAP_x Instructions.”

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as
illustrated in Figure 34-5. This applies for the instruction register, test data registers, and the bypass
register.

Figure 34-5. Shifting Data Through a Register

34.4.3 TAP Controller State Machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 34-6 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal. As Figure 34-6 shows, holding TMS at logic 1
while clocking TCK through a sufficient number of rising edges also causes the state machine to enter the
test-logic-reset state.

Selected Register

MSB LSB

TDI TDO

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-8 Freescale Semiconductor

Figure 34-6. IEEE 1149.1-2001 TAP Controller Finite State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-9

34.4.3.1 Enabling the TAP Controller

The JTAGC TAP controller is enabled by setting JCOMP to a logic 1 value.

34.4.3.2 Selecting an IEEE 1149.1-2001 Register

Access to the JTAGC data registers is achieved by loading the instruction register with any of the JTAGC
instructions while the JTAGC is enabled. Instructions are shifted in via the select-IR-scan path and loaded
in the update-IR state. At this point, all data register access is performed via the select-DR-scan path.

The select-DR-scan path is used to read or write the register data by shifting in the data (lsb first) during
the shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting may be terminated after the required number of bits have been
acquired.

34.4.4 JTAGC Instructions

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 34-2. This section gives
an overview of each instruction. Refer to the IEEE 1149.1-2001 standard for more details.

Table 34-2. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and preloading
without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling without
disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded values to
output pins and asserting functional reset

HIGHZ 01001 Selects bypass register while three-stating all output pins and asserting
functional reset

CLAMP 01100 Selects bypass register while applying preloaded values to output pins
and asserting functional reset

ACCESS_AUX_TAP_NPC 10000 Grants the Nexus port controller (NPC) ownership of the TAP

ACCESS_AUX_TAP_Z6 (from _ONCE) 10001 Grants the Nexus e200z6 core interface ownership of the TAP

ACCESS_AUX_TAP_Z0 11001 Grants the Nexus e200z0 core interface ownership of the TAP

ACCESS_AUX_TAP_MULTI 11100 Daisy chaining the e200z6 and e200z0 cores—allows instructions to be
clocked into both the e200z0 and e200z6 serially

BYPASS 11111 Selects bypass register for data operations

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-10 Freescale Semiconductor

34.4.4.1 BYPASS Instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active, the system logic operates
normally.

34.4.4.2 ACCESS_AUX_TAP_x Instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take control of the TAP.
When this instruction is loaded, control of the TAP pins is transferred to the selected auxiliary TAP
controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any TDO output
from the selected TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains
control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP
controllers are held in RUN-TEST/IDLE while they are inactive.

See Section 34.5, “e200z0 and e200z6 OnCE Controllers,” for a block diagram and e200z0 OnCE
controller register descriptions.

34.4.4.3 CLAMP Instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan
register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an
EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system
reset for the MCU to force a predictable internal state.

Factory Debug Reserved1 00010
00011
00100
00101
00110
00111
01001
01010
01100

Intended for factory debug only

Reserved2 All Other
Codes

Decoded to select bypass register

1 Intended for factory debug, and not customer use
2 Freescale reserves the right to change the decoding of reserved instruction codes in the future

Table 34-2. JTAG Instructions (continued)

Instruction Code[4:0] Instruction Summary

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-11

34.4.4.4 EXTEST—External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan
register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

34.4.4.5 HIGHZ Instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active, all
output drivers are placed in an inactive drive state (for example, high impedance). HIGHZ also asserts the
internal system reset for the MCU to force a predictable internal state.

34.4.4.6 IDCODE Instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC is reset.

34.4.4.7 SAMPLE Instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and immediately before the boundary scan register cells at the output pins. This sampling occurs on
the rising edge of TCK in the capture-DR state when the SAMPLE instruction is active. The sampled data
is viewed by shifting it through the boundary scan register to the TDO output during the Shift-DR state.
There is no defined action in the update-DR state. Both the data capture and the shift operation are
transparent to system operation.

34.4.4.8 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction has two functions:

• First, the SAMPLE portion of the instruction obtains a sample of the system data and control
signals present at the MCU input pins and immediately before the boundary scan register cells at
the output pins. This sampling occurs on the rising edge of TCK in the capture-DR state when the
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it through the
boundary scan register to the TDO output during the shift-DR state. The data capture and the shift
operation are transparent to system operation.

• Secondly, the PRELOAD portion of the instruction initializes the boundary scan register cells
before selecting the EXTEST or CLAMP instructions to perform boundary scan tests. This is
achieved by shifting in initialization data to the boundary scan register during the shift-DR state.
The initialization data is transferred to the parallel outputs of the boundary scan register cells on
the falling edge of TCK in the update-DR state. The data is applied to the external output pins by
the EXTEST or CLAMP instruction. System operation is not affected.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-12 Freescale Semiconductor

34.4.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

34.5 e200z0 and e200z6 OnCE Controllers
The e200z0 core OnCE controller supports a complete set of Nexus 1 debug features, as well as providing
access to the Nexus2+ configuration registers. A complete discussion of the e200z0 OnCE debug features
is available in the e200z0 Reference Manual.

The following sections describe functionality of the e200z0 OnCE controller; however, the e200z6 OnCE
controller operates in the same manner as the e200z0 OnCE controller, and is fully documented in the
e200z6 Reference Manual.

NOTE
The register select field in the e200z6 OnCE command register
(OCMD[RS]) does not implement the shared nexus control register (SNC).

34.5.1 e200z0 OnCE Controller Block Diagram

Figure 34-7 is a block diagram of the e200z0 OnCE block.

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-13

Figure 34-7. e200z0 OnCE Block Diagram

34.5.2 e200z0 OnCE Controller Functional Description

The functional description for the e200z0 OnCE controller is the same as for the JTAGC, with the
differences described below.

34.5.2.1 Enabling the TAP Controller

To access the e200z0 OnCE controller, the proper JTAGC instruction needs to be loaded in the JTAGC
instruction register, as discussed in Section 34.1.3.4, “TAP Sharing Mode.” The e200z0 OnCE TAP
controller may either be accessed independently or chained with the e200z6 OnCE TAP controller, such
that the TDO output of the e200z6 TAP controller is fed into the TDI input of the e200z0 TAP controller.
The chained configuration allows commands to be loaded into both core’s OnCE registers in one shift
operation, so that both cores can be sent a GO command at the same time for example.

34.5.3 e200z0 OnCE Controller Register Descriptions

Most e200z0 OnCE debug registers are fully documented in the e200z0 Reference Manual.

34.5.3.1 OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and serves as the instruction register (IR). It holds the 10-bit commands to be used as input for the
e200z0 OnCE Decoder. The OCMD is shown in Figure 34-8. The OCMD is updated when the TAP

TCK

e200z0_TMS

TDI

Test Access Port (TAP)

e200z0_TDO

Bypass Register

External Data Register

Controller

TAP Instruction Register

OnCE Mapped Debug Registers

Auxiliary Data Register

e200z0_TRST

(OnCE OCMD)

TDO Mux
Control

{From
JTAGC

(to JTAGC)

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-14 Freescale Semiconductor

controller enters the update-IR state. It contains fields for controlling access to a resource, as well as
controlling single-step operation and exit from OnCE mode.

Although the OCMD is updated during the update-IR TAP controller state, the corresponding resource is
accessed in the DR scan sequence of the TAP controller, and as such, the update-DR state must be
transitioned through in order for an access to occur. In addition, the update-DR state must also be
transitioned through in order for the single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated with it.

0 1 2 3 4 5 6 7 8 9

R
R/W GO EX RS

W

Reset: 0 0 0 0 0 0 0 0 1 0

Figure 34-8. OnCE Command Register (OCMD)

Table 34-3. e200z0 and e200z6 OnCE Register Addressing

RS Register Selected

000 0000 – 000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011 – 000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 – 001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 – 010 1011 Reserved

010 1100 Debug Counter Register (DBCNT)1

010 1101 Debug PCFIFO (PCFIFO) (read-only)1

010 1110 – 010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 34-15

34.6 Initialization/Application Information
The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is required:

1. Set the JCOMP signal to logic 1, thereby enabling the JTAGC TAP controller.

2. Load the appropriate instruction for the test or action to be performed.

011 0100 Debug Control Register 3 (DBCR3)2

011 0101 – 110 1111 Reserved (do not access)

111 0000 – 111 1001 General Purpose Register Selects [0:9]

111 1010 Cache Debug Access Control Register (CDACNTL)1

111 1011 Cache Debug Access Data Register (CDADATA)1

111 1100 – 111 1011 Reserved

111 1100 Nexus Access

111 1101 LSRL Select
(factory test use only)

111 1110 Enable_OnCE

111 1111 Bypass

1 Reserved, not implemented on e200z0.
2 Reserved, not implemented on e200z0. Do not access.

Table 34-3. e200z0 and e200z6 OnCE Register Addressing (continued)

RS Register Selected

IEEE 1149.1 Test Access Port Controller (JTAGC)

MPC5668x Microcontroller Reference Manual, Rev. 4

34-16 Freescale Semiconductor

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-1

Chapter 35
Nexus Development Interface (NDI)

35.1 Introduction
NOTE

The Power PC standard is to number the register bits according to the
MSB = 0 convention. However, the Nexus standard is to number the register
bits according to the LSB = 0 convention.

Register bits in this chapter are numbered according to the Nexus standard
(LSB = 0 convention).

The MPC5668x device contains multiple Nexus clients that communicate over a single IEEE-ISTO
5001™-2003 Nexus class 3+ and 2+ combined JTAG IEEE 1149.1/auxiliary out interface. Combined, all
of the Nexus clients are referred to as the Nexus development interface (NDI). Class 3+ Nexus allows for
program, data, and ownership trace of the microcontroller execution without access to the external data
and address buses. Class 2+ Nexus allows for program and ownership trace of the microcontroller
execution without access to the external data and address buses.

Communication to the NDI is handled via the auxiliary port and the JTAG port.

• The auxiliary port is comprised of 16 output pins and 1 input pin. The output pins include 1
message clock out (MCKO) pin, 12 message data out (MDO) pins, 2 message start/end out
(MSEO) pins, and 1 event out (EVTO) pin. Event in (EVTI) is the only input pin for the auxiliary
port.

• The JTAG port consists of four inputs and one output. These pins include JTAG compliance select
(JCOMP), test data input (TDI), test data output (TDO), test mode select (TMS), and test clock
input (TCK). TDI, TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard and
are shared with the NDI through the test access port (TAP) interface. JCOMP along with power-on
reset and the TAP state machine are used to control reset for the NDI module. Ownership of the
TAP is achieved by loading the appropriate enable instruction for the desired Nexus client in the
JTAG controller (JTAGC) when JCOMP is asserted. See Section 35.4, “Memory Map and
Registers,” for the JTAGC opcodes to access the different Nexus clients.

35.2 Block Diagram
Figure 35-1 shows a functional block diagram of the NDI. Figure 35-2 shows an implementation block
diagram of the MPC5668x NDI, which shows how the individual Nexus blocks are combined to form the
NDI.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-2 Freescale Semiconductor

Figure 35-1. NDI Functional Block Diagram

Power-on

TCK

JCOMP

EVTO

MSEO[1:0]

MDO[11:0]

reset

Arbiter

Divided system
clock

e200z6
trace

information

e200z0
trace

information

MCKO

Input
TAP

controller

Control registers
to trace blocks

TDO

TDI

TMS

EVTI
Reset
control

Message
queueOwnership trace

Watchpoint trace

Z0
snoop

Message
formatter

Program trace

Message
queue

Data trace

Ownership trace

Watchpoint trace

Z6
snoop

Message
formatter

Program trace

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-3

Figure 35-2. NDI Implementation Block Diagram

35.2.1 NDI Features

The NDI module of the MPC5668x is compliant with the IEEE-ISTO 5001-2003 standard. The following
features are implemented:

JCOMP TDITCKTDOTMS

JTAG Port Controller (JTAGC)

Program, Data,
Ownership,
Watchpoint,

Trace

Nexus3+

EVTIMSEO[1:0]MCKOMDO[11:0]

Nexus Port Controller

EVTO

AXBS

Peripheral
BridgeSRAM

(96K)
Flash

(2 MB)

Read/Write
Access

R/W register,
R/W data,
Halt, Step,
Continue

MMU

e200z6

Program,
Ownership,
Watchpoint,

Trace

Nexus2+

Read/Write
Access

R/W register,
R/W data,
Halt, Step,
Continue

e200z0

Cache

Buffer Buffer

Peripheral
Bridge

A B

Reset Control

Auxiliary Port

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-4 Freescale Semiconductor

• 22-bit full duplex pin interface for medium and high visibility throughput

— Only one mode is supported: full port mode (FPM). FPM comprises 12 MDO pins.

— Auxiliary output port

– One MCKO (message clock out) pin

– 12 MDO (message data out) pins

– Two MSEO (message start/end out) pins

– One EVTO (event out) pin

— Auxiliary input port uses one EVTI (event in) pin

— Five-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)

• The NPC block performs the following functions:

— Controls arbitration for ownership of the Nexus Auxiliary Output Port

— Nexus Device Identification Register and Messaging

— Generates MCKO enable and frequency division control signals

— Controls sharing of EVTO

— Generates an MCKO clock gating control signal to enable gating of MCKO when the auxiliary
output port is idle.

— Control of the device-wide debug mode

— Generates asynchronous reset signal for Nexus blocks based on JCOMP input and power-on
reset status

• Host processor (e200z6) development support features (Nexus3+)

— IEEE-ISTO 5001-2003 standard class 3 compliant.

— Program trace via branch trace messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the
development tool to interpolate what transpires between the discontinuities. Thus, static code
may be traced.

— Data trace via data write messaging (DWM) and data read messaging (DRM). This allows the
development tool to trace reads and/or writes to selected internal memory resources.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership
trace message is transmitted when a new process/task is activated, allowing development tools
to trace ownership flow.

— Run-time access to the on-chip memory map via the JTAG port. This allows for enhanced
download/upload capabilities.

— Watchpoint messaging (WPM) via the auxiliary port.

— Watchpoint trigger enable of program and/or data trace messaging.

— Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger.

— All features controllable and configurable via JTAG port.

• I/O co-processor (e200z0) development support features (Nexus2+)

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-5

— IEEE-ISTO 5001-2003 standard class 2 compliant with additional class 3 and 4 features
available.

— Program trace via branch trace messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the
development tool to interpolate what transpires between the discontinuities. Thus, static code
can be traced.

— Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership
trace message is transmitted when a new process/task is activated, allowing development tools
to trace ownership flow.

— Run-time access to the embedded processor memory map via the JTAG port. This allows for
enhanced download/upload capabilities.

— Watchpoint messaging (WPM) via the auxiliary port.

— Watchpoint trigger enable of program and/or data trace messaging.

— Registers for Program Trace, Ownership Trace and Watchpoint Trigger.

— All features controllable and configurable via JTAG port.

• The capability for an event out signal from either the e200z6 Nexus3+ or e200z0 Nexus2+ to
generate a debug request to the other core, thus allowing both cores to enter debug mode within a
short period of each other.

NOTE
Because MPC5668x implements multiple Nexus blocks, the configuration
of the Message Data Out pins is controlled by the NPC.

35.2.2 Modes of Operation

The NDI block is in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state. The
TEST-LOGIC-RESET state is entered on the assertion of the power-on reset signal, negation of JCOMP,
or through state machine transitions controlled by TMS. Assertion of JCOMP allows the NDI to move out
of the reset state, and is a prerequisite to grant Nexus clients control of the TAP. Ownership of the TAP is
achieved by loading the appropriate enable instruction for the desired Nexus client in the JTAG controller
(JTAGC) block when JCOMP is asserted.

The NPC transitions out of the reset state immediately following negation of power-on reset.

35.2.2.1 Nexus Reset Mode

In Nexus reset mode, the following actions occur:

• Register values default back to their reset values.

• The message queues are marked as empty.

• The auxiliary output port pins are negated if the NDI controls the pads.

• The TDO output buffer is disabled if the NDI has control of the TAP.

• The TDI, TMS, and TCK inputs are ignored.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-6 Freescale Semiconductor

• The NDI block indicates to the MCU that it is not using the auxiliary output port. This indication
can be used to three-state the output pins or use them for another function.

35.2.2.2 Full-Port Mode

In full-port mode, all available MDO pins are used to transmit messages. All trace features are enabled or
can be enabled by writing the configuration registers via the JTAG port. Twelve MDO pins are available
in full-port mode.

35.2.2.3 Reduced-Port Mode

Reduced-port mode is not supported on the MPC5668x.

35.2.2.4 Disabled-Port Mode

In disabled-port mode, message transmission is disabled. Any debug feature that generates messages
cannot be used. The primary features available are class 1 features and read/write access.

35.2.2.5 Censored Mode

The NDI supports internal flash censorship mode by preventing the transmission of trace messages and
Nexus access to memory-mapped resources when censorship is enabled.

35.2.2.6 Halt Mode

Halt mode logic is implemented in the Nexus port controller (NPC). When a request is made to enter halt
mode, the NDI block completes monitoring of any pending bus transaction, transmits all messages already
queued, and acknowledges the halt request. After the acknowledgment, the system clock input are shut off
by the clock driver on the device. While the clocks are shut off, the development tool cannot access the
NDI. See Section 7.3.2.23, “Halt Register (SIU_HLTn),” for a description of Halt Mode entry.

35.3 External Signal Description
The auxiliary and JTAG pin interfaces provide for the transmission of messages from Nexus modules to
the external development tools and for access to Nexus client registers. The auxiliary/JTAG pin definitions
are outlined in Table 35-1.

Table 35-1. Signal Properties

Name Port Function

EVTO Auxiliary Event Out pin

EVTI Auxiliary Event In pin

MCKO Auxiliary Message Clock Out pin (from NPC)

MDO[11:0] Auxiliary Message Data Out pins

MSEO[1:0] Auxiliary Message Start/End Out pins

JCOMP JTAG JTAG Compliancy and TAP Sharing Control

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-7

Refer to Chapter 2, “Signal Description,” and Table 2-1 for detailed signal descriptions.

35.4 Memory Map and Registers
The NDI block contains no memory mapped registers. Nexus registers are accessed by the development
tool via the JTAG port using a client select and a register index. The client select is controlled by loading
the correct access instruction into the JTAG controller, as described in Section 34.4.4, “JTAGC
Instructions.” After the desired client TAP is selected, OnCE registers for that client are accessible by
loading the appropriate value in the RS[0:6] field of the OnCE command register (OCMD), as described
in Section 34.5.3.1, “OnCE Command Register (OCMD).” Nexus is enabled, and the associated Nexus
registers become accessible, by loading the NEXUS_ENABLE instruction into the RS[0:6] field of the
OCMD. When Nexus register access is enabled, the desired Nexus register is accessible using the index
shown in Table 35-3.

Detailed sequences for Nexus3+ register access are described in Section 35.6.10.8, “ IEEE 1149.1 (JTAG)
RD/WR Sequences. Detailed sequences for Nexus2+ register access are described in Section 35.7.9.7,
“ IEEE 1149.1 (JTAG) RD/WR Sequences.

TCK JTAG Test Clock Input

TDI JTAG Test Data Input

TDO JTAG Test Data Output

TMS JTAG Test Mode Select Input

Table 35-2. Nexus Client JTAG Instructions

Instruction Description Opcode

NPC JTAG Instruction Opcodes

NEXUS_ENABLE Opcode for NPC Nexus Enable instruction (4-bits) 0x0

BYPASS Opcode for the NPC BYPASS instruction (4-bits) 0xF

e200z6 OnCE JTAG Instruction Opcodes1

1 Refer to the e200z6 Reference Manual for a complete list of available OnCE instructions.

NEXUS3_ACCESS Opcode for e200z6 OnCE Nexus Enable instruction (10-bits) 0x7C

BYPASS Opcode for the e200z6 OnCE BYPASS instruction (10-bits) 0x7F

e200z0 OnCE JTAG Instruction Opcodes2

2 Refer to the e200z0 Reference Manual for a complete list of available OnCE instructions.

NEXUS2_ACCESS Opcode for e200z0 OnCE Nexus Enable instruction (10-bits) 0x7C

BYPASS Opcode for the e200z0 OnCE BYPASS instruction (10-bits) 0x7F

Table 35-1. Signal Properties (continued)

Name Port Function

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-8 Freescale Semiconductor

Table 35-3. NDI Registers

Index Register Read Address1

1 See Section 35.5.5.2.3, “NPC IEEE 1149.1-2001 (JTAG) TAP,” for a description of the read and write address usage for the
e200z6 and e200z0 Nexus Control/Status registers.

Write Address1 Section/Page

NPC Registers2

2 See Section 35.5.4 for a detailed description of the NPC registers.

0x00 Device ID (DID) 0x00 — 35.5.4.3/35-15

0x7F Port Configuration Register (PCR) 0x7F 0x7F 35.5.4.4/35-16

e200z6 Control/Status Registers3

0x02 e200z6 Development Control1 (PPC_DC1) 0x04 0x05 35.6.8.1/35-32

0x03 e200z6 Development Control2 (PPC_DC2) 0x06 0x07 35.6.8.1/35-32

0x04 e200z6 Development Status (PPC_DS) 0x08 — 35.6.8.2/35-34

0x07 e200z6 Read/Write Access Control/Status (Nexus3_RWCS) 0x0E 0x0F 35.6.8.3/35-35

0x09 e200z6 Read/Write Access Address (Nexus3_RWA) 0x12 0x13 35.6.8.4/35-36

0x0A e200z6 Read/Write Access Data (Nexus3_RWD) 0x14 0x15 35.6.8.5/35-36

0x0B e200z6 Watchpoint Trigger (PPC_WT) 0x16 0x17 35.6.8.6/35-38

0x0D e200z6 Data Trace Control (PPC_DTC) 0x1A 0x1B 35.6.8.7/35-40

0x0E e200z6 Data Trace Start Address 1 (PPC_DTSA1) 0x1C 0x1D 35.6.8.8/35-41

0x0F e200z6 Data Trace Start Address 2 (PPC_DTSA2) 0x1E 0x1F 35.6.8.8/35-41

0x12 e200z6 Data Trace End Address 1 (PPC_DTEA1) 0x24 0x25 35.6.8.9/35-41

0x13 e200z6 Data Trace End Address 2 (PPC_DTEA2) 0x26 0x27 35.6.8.9/35-41

0x14 – 0x3F Reserved 0x28–0x7E 0x29 – 0x7F —

e200z0 Control/Status Registers4

0x02 e200z0 Development Control1 (PPC_DC1) 0x04 0x05 35.7.7.1/35-76

0x03 e200z0 Development Control2 (PPC_DC2) 0x06 0x07 35.7.7.1/35-76

0x04 e200z0 Development Status (PPC_DS) 0x08 — 35.7.7.2/35-78

0x07 e200z0 Read/Write Access Control/Status (Nexus2_RWCS) 0x0E 0x0F 35.7.7.3/35-78

0x09 e200z0 Read/Write Access Address (Nexus2_RWA) 0x12 0x13 35.7.7.4/35-80

0x0A e200z0 Read/Write Access Data (Nexus2_RWD) 0x14 0x15 35.7.7.5/35-80

0x0B e200z0 Watchpoint Trigger (PPC_WT) 0x16 0x17 35.7.7.6/35-81

0x0C – 0x3F Reserved 0x1A – 0x7E 0x19 – 0x7F —

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-9

35.4.1 NDI Functional Description

The NDI block is implemented by integrating the following blocks on the MPC5668x:

• Nexus Port Controller Block

• Nexus e200z6 Development Interface (OnCE and Nexus3+ subblocks)

• Nexus e200z0 Development Interface (OnCE and Nexus2+ subblocks)

Refer to the block guides for more information about these blocks. Note that the TAP controller logic, reset
logic, and some miscellaneous logic are duplicated in all these blocks.

35.4.1.1 Enabling Nexus Clients for TAP Access

Once the NDI is out of the reset state, the loading of a specific instruction in the JTAG controller (JTAGC)
block is required to grant the NDI ownership of the TAP. Each Nexus client has its own JTAGC instruction
opcode for ownership of the TAP, granting that client the means to read/write its registers. The JTAGC
instruction opcode for each Nexus client is shown in Table 34-2. Once the JTAGC opcode for a client has
been loaded, the client is enabled by loading its NEXUS-ENABLE instruction. Opcodes for all other
instructions supported by Nexus clients can be found in the relevant sections of this chapter.

Details for accessing the NPC registers is covered in Section 35.5.5.2.3, “NPC IEEE 1149.1-2001 (JTAG)
TAP.”

35.4.1.2 TAP Sharing

Each of the individual Nexus blocks on the MCU implements a TAP controller for accessing its registers.
The JTAGC controls the ownership of the TAP so that the interface to all of these individual TAP
controllers appears to be a single port from outside the device. Once a Nexus client has been granted
ownership of the TAP, any data input via TDI and TMS is passed to the selected TAP controller, and any
TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

35.4.1.3 Configuring the NDI for Nexus Messaging

The NDI is placed in disabled mode upon exit of power-on reset. If message transmission via the auxiliary
port is desired, a write to the port configuration register (PCR) located in the NPC is then required to enable
the NDI and select the mode of operation. Asserting MCKO_EN in the PCR places the NDI in enabled
mode and enables MCKO. The frequency of MCKO is selected by writing the MCKO_DIV field.
Asserting the FPM bit selects full-port mode.

NOTE
Reduced-port mode is not supported. The FPM bit in the PCR must be set
when configuring the NDI.

3 See Section 35.6.8 for a detailed description of the e200z6 Nexus registers.
4 See Section 35.7.7 for a detailed description of the e200z0 Nexus registers.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-10 Freescale Semiconductor

When writing to the PCR, the PCR LSB must be written to a logic 0. Setting the LSB of the PCR enables
factory debug mode and prevents the transmission of Nexus messages.

Table 35-4 describes the NDI configuration options.

35.4.1.4 Programmable MCKO Frequency

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock, and its frequency is determined by the value of the MCKO_DIV
field in the port configuration register (PCR) located in the NPC. Possible operating frequencies include
SYS_CLK, one-half, one-quarter, and one-eighth SYS_CLK speed.

Table 35-5 shows the MCKO_DIV encodings. In this table, SYS_CLK represents the system clock
frequency.

35.4.1.5 Nexus Messaging

Most of the messages transmitted by the NDI include a SRC field. This field is used to identify which
source generated the message. Table 35-6 shows the values used for the SRC field by the different clients
on the device. These 4-bit values are specific to the device.

Table 35-4. NDI Configuration Options

JCOMP Asserted MCKO_EN bit of PCR FPM bit of PCR1

1 FPM must always be set.

Configuration

No X X Reset

Yes 0 X Disabled

Yes 1 1 Full-Port Mode

Table 35-5. MCKO_DIV Values

MCKO_DIV[2:0] MCKO Frequency

0b0001

1 The SYS_CLK setting for MCKO frequency should only
be used if this setting does not violate the maximum
operating frequency of the auxiliary port pins.

SYS_CLK

0b001 SYS_CLK/2

0b010 Reserved

0b011 SYS_CLK/4

0b100 Reserved

0b101 Reserved

0b110 Reserved

0b111 SYS_CLK/8

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-11

35.4.1.6 e200z6 and e200z0 Cross Triggering Control

To enable a debug event in one core to cause a debug event in the other core at approximately the same
time, the EVTO signal from the e200z0 Nexus2+ or e200z6 Nexus3+ is connected to the other core’s devt2
input. When enabled in each core’s Nexus1 DBCR0 register, a pulse of the devt2 signal causes a debug
event to occur. In this case, only one external EVTO signal is generated and each core controls whether or
not EVTO causes a debug event to occur.

Interconnection of debug mode control signals are shown in Figure 35-3.

Figure 35-3. Debug Mode Control Interconnections

Figure 35-4 shows the flow for configuring the e200z0 Nexus2+ to cause an debug request to the e200z6.

Table 35-6. SRC Packet Encodings

SRC[3:0] Client

0b0000 e200z6

0b0001- 0b0111 Reserved

0b1000 e200z0

0b1001- 0b1111 Reserved

EVTI

EVTI

EVTO

devt2

e200z6 Core Complex

EVTI

devt2

EVTO

e200z0 Core Complex

EVTONPC

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-12 Freescale Semiconductor

Figure 35-4. Flow for Enabling e200z0 to put the e200z6 into Debug Mode

Process flow used to initialize z6 as “break request master”
and z0 as “break request slave”
This configuration causes the z0 to follow the z6 into debug mode

Assert
System Reset

- Enable Nexus
- Select NPC PCR Register and
- Configure FPM, MCK_EN,
 EVT_EN, and MCK fields.

- Access Nexus Dev Control Register 1
- Configure EOC Field (EVTO Control)

- Select OnCE DBCR0
- Set EDM Bit

- Select OnCE SNCR
(Shared Nexus Control Register)
- Configure NT bit field for Z6 Ownership

- Select OnCE Control Register (OCR)
- Set DR bit (request debug mode right
 out of reset).

- Select OnCE Control Register (OCR)
- Set DR bit (request debug mode right
 out of reset).

Negate
System Reset

NPC

Z0, Z6 Multi

Z0

Z6

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-13

Figure 35-4. Flow for Enabling e200z0 to put the e200z6 into Debug Mode (Continued)

The flow for enabling the e200z6 Nexus3+ to cause a debug request to the e200z0 is similar.

35.5 Nexus Port Controller (NPC)
The Nexus Port Controller (NPC) is that part of the NDI that controls access and arbitration of the device’s
internal Nexus modules. The NPC contains the port configuration register (PCR) and the device
identification register (DID). The contents of the NPC DID are the same as the JTAGC device
identification register.

35.5.1 NPC Overview

The MPC5668x incorporates multiple modules that require development support. Each of these modules
implements a development interface based on the IEEE-ISTO 5001-2001 standard and must share the
input and output ports that interface with the development tool. The NPC controls the usage of these ports

- Using Nexus Read/Write Access,
Configure the CRP Z0VEC register

- Select DBCR0 Register.
- Set DEVT2 Bit

- Select OnCE CMD register.
- Set EX bit to exit debug mode.

Z6 Breakpoint
reached or
entered debug
mode?

- Select DBSR
- Write to DEVT2 bit to clear it.

Z0 enters Debug
Mode

NPC

Z0, Z6 Multi

Z0

Z6

- Select OnCE Control Register (OCR)
- Set DR bit (request debug mode right
 out of reset).

Yes

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-14 Freescale Semiconductor

in a manner that allows the individual modules to share the ports, while appearing to the development tool
as a single module.

35.5.2 NPC Features

The NPC performs the following functions:

• Controls arbitration for ownership of the Nexus auxiliary output port

• Nexus device identification register and messaging

• Generates MCKO enable and frequency division control signals

• Controls sharing of EVTO

35.5.3 Control of the device-wide debug mode NPC Memory Map

Table 35-7 shows the NPC registers by index values. The registers are not memory-mapped and can only
be accessed via the TAP. The NPC does not implement the client select control register because the value
does not matter when accessing the registers. Note that the bypass register (refer to Section 35.5.4.1,
“Bypass Register”) and instruction register (refer to Section 35.5.4.2, “Instruction Register”) have no
index values. These registers are not accessed in the same manner as Nexus client registers.

35.5.4 NPC Register Descriptions

This section consists of NPC register descriptions.

35.5.4.1 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS instruction or any unimplemented instructions are active. After entry into the
CAPTURE-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after
selecting the bypass register is always a logic 0.

35.5.4.2 Instruction Register

The NPC uses a 4-bit instruction register as shown in Figure 35-5. The instruction register is accessed via
the SELECT_IR_SCAN path of the tap controller state machine, and allows instructions to be loaded into
the module to enable the NPC for register access (NEXUS_ENABLE) or select the bypass register as the
shift path from TDI to TDO (BYPASS or unimplemented instructions).

Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state, and latched on the
falling edge of TCK in the Update-IR state. The latched instruction value can only be changed in the
Update-IR and test-logic-reset TAP controller states. Synchronous entry into the test-logic-reset state

Table 35-7. NPC Memory Map

Index Register Name Register Description Size (bits)

0 DID Device ID register 32

127 PCR Port configuration register 32

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-15

results in synchronous loading of the BYPASS instruction. Asynchronous entry into the test-logic-reset
state results in asynchronous loading of the BYPASS instruction. During the Capture-IR TAP controller
state, the instruction register is loaded with the value of the previously executed instruction, making this
value the register’s read value when the TAP controller is sequenced into the Shift-IR state.

35.5.4.3 Nexus Device ID Register (DID)

The NPC device identification register, shown in Figure 35-6, allows the part revision number, design
center, part identification number, and manufacturer identity code of the device to be determined through
the auxiliary output port, and serially through TDO. See Section 35.5.5.2.3, “NPC IEEE 1149.1-2001
(JTAG) TAP.” This register is read-only.

3 2 1 0

R Previous Instruction Opcode

W Instruction Opcode

Reset: BYPASS Instruction Opcode (0xF)

Figure 35-5. 4-Bit Instruction Register

Reg Index: 0x00 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PRN DC PIN

W

Reset 1

1 Part Revision Number default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

* * * * 1 0 0 0 0 0 1 0 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIN (continued) MIC 1

W

Reset 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 35-6. Nexus Device ID Register (DID)

Table 35-8. DID Field Descriptions

Field Description

PRN Part Revision Number. Contains the revision number of the part. This field changes with each revision of the device
or module.

DC Design Center. Indicates the Freescale design center. This value is 0x20.

PIN Part Identification Number. Contains the part number of the device.

MIC Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale, 0x00E.

bit 0 Fixed Per JTAG 1149.1. Always set to 1.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-16 Freescale Semiconductor

35.5.4.4 Port Configuration Register (PCR)

The PCR is used to select the NPC mode of operation, enable MCKO and select the MCKO frequency,
and enable or disable MCKO gating. This register should be configured as soon as the NDI is enabled.

The PCR register may be rewritten by the debug tool subsequent to the enabling of the NPC for low power
debug support. In this case, the debug tool may set and clear the LP_DBG_EN and SLEEP_SYNC bits,
but must preserve the original state of the remaining bits in the register.

NOTE
The mode (MCKO_GT) or clock division (MCKO_DIV) bits must not be
modified after MCKO has been enabled. Changing the mode or clock
division while MCKO is enabled can produce unpredictable results.

Reg Index: 0x7F Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FPM

MCKO
_GT

MCKO
_EN

MCKO_DIV
EVT
_EN

0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LP_DBG
_EN

0 0 0 0 0 SLEEP
_SYNC

0 0 0 0 0 0 0 0 PSTAT
_ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-7. Port Configuration Register (PCR)

Table 35-9. PCR Field Descriptions

Field Description

FPM Full Port Mode.The value of the FPM bit determines if the auxiliary output port uses the full MDO port or a
reduced MDO port to transmit messages.
0 A subset of MDO pins are used to transmit messages.
Note: All MDO pins are used to transmit messages.This bit must always be set when configuring the NDI.

MCKO_GT MCKO Clock Gating Control.This bit is used to enable or disable MCKO clock gating. If clock gating is
enabled, the MCKO clock is gated when the NPC is in enabled mode but not actively transmitting messages
on the auxiliary output port. When clock gating is disabled, MCKO is allowed to run even if no auxiliary output
port messages are being transmitted.
0 MCKO gating is disabled.
1 MCKO gating is enabled.

MCKO_EN MCKO Enable. This bit enables the MCKO clock to run. When enabled, the frequency of MCKO is
determined by the MCKO_DIV field.
0 MCKO clock is driven to zero.
1 MCKO clock is enabled.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-17

MCKO_DIV MCKO Division Factor. The value of this signal determines the frequency of MCKO relative to the system
clock frequency when MCKO_EN is asserted. In this table, SYS_CLK represents the system clock
frequency.

EVT_EN EVTO/EVTI Enable. This bit enables the EVTO/EVTI port functions.
0 EVTO/EVTI port disabled.
1 EVTO/EVTI port enabled.

LP_DBG_EN Low Power Debug Enable. The LP_DBG_EN bit enables debug functionality to support entry and exit from
low power sleep mode.
0 Low power debug disabled.
1 Low power debug enabled.

SLEEP_SYNC Sleep Mode Synchronization. The SLEEP_SYNC bit is used to synchronize the entry into / exit from sleep
mode between the device and debug tool. Before entry into sleep mode, the device sets this bit. After
reading SLEEP_SYNC as set, the debug tool then clears SLEEP_SYNC to acknowledge to the device that
it may enter into sleep mode. During wakeup from sleep mode, the debug tool sets SLEEP_SYNC to
acknowledge to the device that it may exit sleep mode.
0 No sleep mode entry pending.
1 Sleep mode entry pending.
Note: During sleep entry, the device sets the SLEEP_SYNC bit. The debug tool then clears this bit to enter

low power mode. The bit changes to 0, but is not readable, since the device immediately enters low
power mode. During sleep exit, the device then clears the SLEEP_SYNC bit. Then the debug tool sets
this bit to exit low power mode. The bit does not change to 1.

PSTAT_EN Processor status mode enable. Enables processor status (PSTAT) mode. In PSTAT mode, all auxiliary
output port MDO pins are used to transmit processor status information, and Nexus messaging is
unavailable.
0 PSTAT mode disabled.
1 PSTAT mode enabled.
Note: PSTAT mode is intended for factory processor debug only. Customers should clear the PSTAT_EN bit

should be cleared to disable PSTAT mode. When PSTAT mode is enabled, no Nexus messages are
transmitted under any circumstances.

Table 35-9. PCR Field Descriptions (continued)

Field Description

MCKO_DIV MCKO Frequency

0b0001 SYS_CLK

0b001 SYS_CLK 2
0b010 Reserved

0b011 SYS_CLK 4
0b100 Reserved

0b101 Reserved

0b110 Reserved

0b111 SYS_CLK 8
1 The SYS_CLK setting for MCKO frequency should only be

used if this setting does not violate the maximum operating
frequency of the auxiliary port pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-18 Freescale Semiconductor

35.5.5 NPC Functional Description

35.5.5.1 NPC Reset Configuration

The NPC is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the PCR is then required to enable the NPC and select the mode of operation. Asserting
MCKO_EN places the NPC in enabled mode and enables MCKO. The frequency of MCKO is selected by
writing the MCKO_DIV field.

Table 35-4 describes the NPC reset configuration options.

35.5.5.2 Auxiliary Output Port

The auxiliary output port is shared by each of the Nexus modules on the device. The NPC communicates
with each of the individual modules and arbitrates for access to the port. Additional information about the
auxiliary port is found in Section 34.1.1.1, “Individual and Multi-Core Debug.”

35.5.5.2.1 Output Message Protocol

The protocol for transmitting messages via the auxiliary port is accomplished with the MSEO functions.
The MSEO pins are used to signal the end of variable-length packets and the end of messages. They are
not required to indicate the end of fixed-length packets. MDO and MSEO are sampled on the rising edge
of MCKO.

Figure 35-8 illustrates the state diagram for MSEO transfers. All transitions not included in the figure are
reserved, and must not be used.

Figure 35-8. MSEO Transfers

MSEO = 00

MSEO = 11

MSEO = 01

MSEO = 00

Normal
Transfer

End
Packet

Start
Message

End
Message

Idle

MSEO = 00MSEO = 01 MSEO = 11
MSEO = 01MSEO = 11

MSEO = 00MSEO = 10

MSEO = 11

MSEO = 01 MSEO = 00

MSEO = 10

MSEO = 01
MSEO = 11

MDO:
Invalid

MDO:
Invalid

MSEO = 10

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-19

35.5.5.2.2 Output Messages

In addition to sending out messages generated in other Nexus modules, the NPC can also output the device
ID message contained in the device ID register on the MDO pins. The device ID message can also be sent
out serially through TDO.

Table 35-10 describes the device ID message that the NPC can transmit on the auxiliary port. The TCODE
is the first packet transmitted.

Figure 35-9 shows the various message formats that the pin interface formatter has to encounter.

The double edges in Figure 35-9 indicate the starts and ends of messages. Fields without shaded areas
between them are grouped into super-fields and can be transmitted together without end-of-packet
indications between them.

Rules of Messages

The rules of messages include the following:

• A variable-sized field within a message must end on a port boundary. (Port boundaries depend on
the number of MDO pins active with the current reset configuration.)

• A variable-sized field may start within a port boundary only when following a fixed-length field.

• Super-fields must end on a port boundary.

• When a variable-length field is sized such that it does not end on a port boundary, it is necessary
to extend and zero fill the remaining bits after the highest order bit so that it can end on a port
boundary.

• Multiple fixed-length packets may start and/or end on a single clock.

• When any packet follows a variable-length packet, it must start on a port boundary.

• The field containing the TCODE number is always transferred out first, followed by subsequent
fields of information.

• Within a field, the lowest significant bits are shifted out first. Figure 35-10 shows the transmission
sequence of a message that is made up of a TCODE followed by three fields.

Table 35-10. NPC Output Messages

Message Name
Min. Packet
Size (bits)

Max Packet
Size (bits)

Packet
Type

Packet Name Packet Description

Device ID Message 6 6 Fixed TCODE Value = 1

32 32 Fixed ID DID register contents

Figure 35-9. Message Field Sizes

Message TCODE Field #1 Field #2 Field #3 Field #4 Field #5
Min.
Size1
(bits)

1 Minimum information size. The actual number of bits transmitted depends on the number of MDO pins

Max
Size2
(bits)

2 Maximum information size. The actual number of bits transmitted depends on the number of MDO pins

Device ID Message 1 Fixed = 32 NA NA NA NA 38 38

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-20 Freescale Semiconductor

Figure 35-10. Transmission Sequence of Messages

Detailed message descriptions for the Nexus3+ module are described in Section 35.6.10. Detailed message
descriptions for the Nexus2+ module are described in Section 35.7.9.

35.5.5.2.3 NPC IEEE 1149.1-2001 (JTAG) TAP

The NPC uses the IEEE1149.1-2001 TAP, which uses the state machine shown in Figure 34-6 for
accessing registers. The NPC also implements the Nexus controller state machine as defined by the
IEEE-ISTO 5001-2003 standard as shown in Figure 35-11.

The instructions implemented by the NPC TAP controller are listed in Table 35-2.

Enabling the NPC TAP Controller

Assertion of the power-on reset signal, or negating JCOMP resets the NPC TAP controller. When not in
power-on reset, the NPC TAP controller is enabled by asserting JCOMP and loading the
ACCESS_AUX_TAP_NPC instruction in the JTAGC. Loading the NEXUS-ENABLE instruction then
grants access to NPC registers.

Retrieving Device IDCODE

The Nexus TAP controller does not implement the IDCODE instruction. However, the device
identification message can be output by the NPC through the auxiliary output port or shifted out serially
by accessing the NPC device ID register through the TAP. If the NPC is enabled, transmission of the device
identification message on the auxiliary output port MDO pins occurs immediately after a write to the PCR.
Transmission of the device identification message serially through TDO is achieved by performing a read
of the register contents.

Loading NEXUS-ENABLE Instruction

Access to the NPC registers is enabled by loading the NPC NEXUS-ENABLE instruction when NPC has
ownership of the TAP. This instruction is shifted in via the SELECT-IR-SCAN path and loaded in the
UPDATE-IR state. At this point, the Nexus controller state machine, shown in Figure 35-11, transitions to
the REG_SELECT state. The Nexus controller has three states: idle, register select, and data access.
Table 35-11 illustrates the IEEE 1149.1 sequence to load the NEXUS-ENABLE instruction.

FIELD #3

MSB LSB

123

FIELD #2 FIELD #1 TCODE

4

6 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-21

Figure 35-11. NEXUS Controller State Machine

Selecting a Nexus Client Register

When the NEXUS-ENABLE instruction is decoded by the TAP controller, the input port allows
development tool access to all Nexus registers. Each register has a 7-bit address index.

All register access is performed via the SELECT-DR-SCAN path of the IEEE 1149.1–2001 TAP
controller state machine. The Nexus controller defaults to the REG_SELECT state when enabled.
Accessing a register requires two passes through the SELECT-DR-SCAN path: one pass to select the
register and the second pass to read/write the register.

The first pass through the SELECT-DR-SCAN path is used to enter an 8-bit Nexus command consisting
of a read/write control bit in the LSB followed by a 7-bit register address index, as illustrated in
Figure 35-12. The read/write control bit is set to 1 for writes and 0 for reads.

Table 35-11. Loading NEXUS-ENABLE Instruction

Clock TDI TMS IEEE 1149.1 State Nexus State Description

0 — 0 RUN-TEST/IDLE IDLE IEEE 1149.1-2001 TAP controller in idle state

1 — 1 SELECT-DR-SCAN IDLE Transitional state

2 — 1 SELECT-IR-SCAN IDLE Transitional state

3 — 0 CAPTURE-IR IDLE Internal shifter loaded with current instruction

4 — 0 SHIFT-IR IDLE TDO becomes active, and the IEEE 1149.1-2001
shifter is ready. Shift in all but the last bit of the
NEXUS_ENABLE instruction.5-7 0 0 3 TCKS in SHIFT-IR IDLE

8 0 1 EXIT1-IR IDLE Last bit of instruction shifted in

9 — 1 UPDATE-IR IDLE NEXUS-ENABLE loaded into instruction register

10 — 0 RUN-TEST/IDLE REG_SELECT Ready to be read/write Nexus registers

Figure 35-12. IEEE 1149.1 Controller Command Input

MSB LSB

7-bit register index R/W

IDLE

NEXUS-ENABLE = 1

REG_SELECT

UPDATE-DR = 1

DATA_ACCESS

UPDATE-DR = 1
NEXUS-ENABLE = 1 &&

NEXUS-ENABLE = 0

TEST-LOGIC-RESET = 1

UPDATE-IR = 1

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-22 Freescale Semiconductor

The second pass through the SELECT-DR-SCAN path is used to read or write the register data by shifting
in the data (LSB first) during the SHIFT-DR state. When reading a register, the register value is loaded into
the IEEE 1149.1-2001 shifter during the CAPTURE-DR state. When writing a register, the value is
loaded from the IEEE 1149.1-2001 shifter to the register during the UPDATE-DR state. When reading
a register, no requirement exists to shift out the entire register contents. Shifting may be terminated once
the required number of bits have been acquired.

Table 35-12 illustrates a sequence that writes a 32-bit value to a register.

35.5.5.2.4 Nexus Auxiliary Port Sharing

Each of the Nexus modules on the MCU implements a request/grant scheme to arbitrate for control of the
Nexus auxiliary port when Nexus data is ready to be transmitted.

All modules arbitrating for the port are given fixed priority levels relative to each other. If multiple
modules have the same request level, this priority level is used as a tie-breaker. To avoid monopolization
of the port, the module given the highest priority level alternates following each grant. Immediately out of
reset the order of priority, from highest to lowest, is: NPC, Nexus3+, and Nexus2+. This arbitration
mechanism is controlled internally and is not programmable by tools or the user.

35.5.5.2.5 Nexus JTAG Port Sharing

Each of the individual Nexus modules on the device implements a TAP controller for accessing its
registers. When JCOMP is asserted, only the module whose ACCESS_AUX_TAP instruction is loaded

Table 35-12. Write to a 32-Bit Nexus Client Register

Clock TMS IEEE 1149.1 State Nexus State Description

0 0 RUN-TEST/IDLE REG_SELECT IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN REG_SELECT First pass through SELECT-DR-SCAN path

2 0 CAPTURE-DR REG_SELECT Internal shifter loaded with current value of controller
command input.

3 0 SHIFT-DR REG_SELECT TDO becomes active, and write bit and 6 bits of register
index shifted in.

7 TCKs

11 1 EXIT1-DR REG_SELECT Last bit of register index shifted into TDI

12 1 UPDATE-DR REG_SELECT Controller decodes and selects register

13 1 SELECT-DR-SCAN DATA_ACCESS Second pass through SELECT-DR-SCAN path

14 0 CAPTURE-DR DATA_ACCESS Internal shifter loaded with current value of register

15 0 SHIFT-DR DATA_ACCESS TDO becomes active, and outputs current value of register
while new value is shifted in through TDI

31 TCKs

47 1 EXIT1-DR DATA_ACCESS Last bit of current value shifted out TDO. Last bit of new
value shifted in TDI.

48 1 UPDATE-DR DATA_ACCESS Value written to register

49 0 RUN-TEST/IDLE REG_SELECT Controller returned to idle state. It could also return to
SELECT-DR-SCAN to write another register.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-23

has control of the TAP (see Section 34.4.4, “JTAGC Instructions”). This allows the interface to all of these
individual TAP controllers to appear to be a single port from outside the device. Once a Nexus module has
ownership of the TAP, that module acts like a single-bit shift register, or bypass register, if no register is
selected as the shift path.

35.5.5.2.6 MCKO

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock and its frequency is determined by the value of the
MCKO_DIV[2:0] field in the PCR. Possible operating frequencies include full, one-half, one-quarter, and
one-eighth SYS_CLK speed. MCKO is enabled by setting the MCKO_EN bit in the PCR.

The NPC also controls dynamic MCKO clock gating. The setting of the MCKO_GT bit inside the PCR
determines whether or not MCKO gating control is enabled. The MCKO_GT bit resets to a logic 0. In this
state gating of MCKO is disabled. To enable gating of MCKO, the MCKO_GT bit in the PCR is written
to a logic 1. When MCKO gating is enabled, MCKO is driven to a logic 0 if the auxiliary port is enabled
but not transmitting messages and there are no pending messages from Nexus clients.

35.5.5.2.7 EVTO Sharing

The NPC controls sharing of the EVTO output between all Nexus clients that produce an EVTO signal.
EVTO is driven for one MCKO period whenever any module drives its EVTO. The sharing mechanism is
a logical AND of all incoming EVTO signals from Nexus blocks, thereby asserting EVTO whenever any
block drives its EVTO. The order these signals are connected at the NPC input does not matter. When no
MCKO is active, such as in disabled mode, the NPC assumes an MCKO frequency of one-half system
clock speed when driving EVTO. EVTO sharing is active as long as the NPC is not in reset.

35.5.5.2.8 Nexus Reset Control

The JCOMP input that is used as the primary reset signal for the NPC is also used by the NPC to generate
a single-bit reset signal for other Nexus blocks. If JCOMP is negated, an internal reset signal is asserted,
indicating that all Nexus modules should be held in reset. This internal reset signal is also asserted during
a power-on-reset. The single bit reset signal functions much like the IEEE 1149.1-2001 defined TRST
signal and allows JCOMP reset information to be provided to the Nexus blocks without each block having
to sense the JCOMP signal directly.

35.5.5.2.9 Processor Status (PSTAT) Muxing

PSTAT mode is intended for factory processor debug only.

35.5.6 NPC Initialization/Application Information

To initialize the TAP for NPC register accesses, the following sequence is required:

1. Enable the NPC TAP controller. This is achieved by asserting JCOMP and loading the
ACCESS_AUX_TAP_NPC instruction in the JTAGC.

2. Load the TAP controller with the NEXUS-ENABLE instruction.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-24 Freescale Semiconductor

To write control data to NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and set the write bit to select the register with a pass through the
SELECT-DR-SCAN path in the TAP controller state machine.

2. Write the register value with a second pass through the SELECT-DR-SCAN path. Note that the
prior value of this register is shifted out during the write.

To read status and control data from NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and clear the write bit to select register with a pass through
SELECT-DR-SCAN path in the TAP controller state machine.

2. Read the register value with a second pass through the SELECT-DR-SCAN path. Data shifted in
is ignored.

See the IEEE-ISTO 5001-2003 standard for more detail.

35.6 e200z6 Class 3 Nexus Module (Nexus3+)
The Nexus3+ module provides real-time development capabilities for the device core in compliance with
the IEEE-ISTO Nexus 5001-2003 standard. This module provides development support capabilities
without requiring the use of address and data pins for internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE / Nexus 1 unit. The
IEEE-ISTO 5001-2003 standard defines an extensible auxiliary port which is used in conjunction with
the JTAG port in e200z6 processors.

35.6.1 Nexus3+ Introduction

This section defines the auxiliary pin functions, transfer protocols and standard development features of
the Nexus3+ module. The development features supported are Program Trace, Data Trace, Watchpoint
Messaging, Ownership Trace, and Read/Write access via the JTAG interface. The Nexus3+ module also
supports two Class 4 features: Watchpoint Triggering and Processor Overrun Control.

NOTE
Throughout this section references are made to the auxiliary port and its
specific signals, such as MCKO, MSEO[1:0], MDO[11:0] and others. In
actual use, the device NPC module arbitrates the access of the single
auxiliary port. To simplify the description of the function of the Nexus3+
module, the interaction of the NPC is omitted and the behavior described as
if the module has its own dedicated auxiliary port.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-25

35.6.2 Nexus3+ Block Diagram

Figure 35-13. e200z6 Nexus3 Functional Block Diagram

35.6.3 Nexus3+ Overview

Table 35-13 contains a set of terms and definitions associated with the Nexus3+ module.

Table 35-13. Terms and Definitions

Term Description

IEEE-ISTO 5001 Consortium and standard for real-time embedded system design. World wide Web
documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary Port Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1 JTAG interface.

Branch Trace Messaging
(BTM)

Visibility of addresses for taken branches and exceptions, and the number of sequential
instructions executed between each taken branch.

Client A functional block on an embedded processor that requires development visibility and
controllability. Examples are a central processing unit (CPU) or an intelligent peripheral.

Data Read Message (DRM) External visibility of data reads to memory-mapped resources.

Data Write Message (DWM) External visibility of data writes to memory-mapped resources.

Data Trace Messaging (DTM) External visibility of how data flows through the embedded system. This may include DRM
and/or DWM.

Message
Queues

NPC
Control and

I/O Logic

Memory Control

Control/Status
Registers

Registers

DMA Registers

DMA
(Read/Write)

Arbitration

Data
Snoop

Instruction
Snoop 12

MDO[11:0]

MSEO0

MSEO1

MCKO

EVTO

EVTI

TDI

TDO

TMS

TCLK

TRST

Breakpoint/
Watchpoint

Control

OnCE Debug

Nexus3 Module
Nexus1 Module (within core CPU)

C
or

e
C

P
U

 V
ir

tu
al

 B
us

S
ys

te
m

 B
us

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-26 Freescale Semiconductor

35.6.4 Nexus3+ Features

The Nexus3+ module is compliant with Class 3 of the IEEE-ISTO 5001-2003 standard. The following
features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code may be traced.

• Data trace via data write messaging (DWM) and data read messaging (DRM). This provides the
capability for the development tool to trace reads and/or writes to selected internal memory
resources.

• Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership trace
message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to embedded processor registers and memory map via the JTAG port. This allows
for enhanced download/upload capabilities.

• Watchpoint messaging via the auxiliary pins.

• Watchpoint trigger enable of Program and/or Data Trace Messaging.

• Higher speed data input/output via the auxiliary port.

• Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger.

• All features controllable and configurable via the JTAG port.

JTAG Compliant Device complying to IEEE 1149.1 JTAG standard

JTAG IR & DR Sequence JTAG instruction register (IR) scan to load an opcode value for selecting a development
register. The JTAG IR corresponds to the OnCE command register (OCMD). The selected
development register is then accessed via a JTAG data register (DR) scan.

Nexus1 The e200z6 (OnCE) debug module. This module integrated with each e200z6 processor
provides all static (core halted) debug functionality. This module is compliant with Class1 of the
IEEE-ISTO 5001 standard.

Ownership Trace
Message (OTM)

Visibility of process/function that is currently executing.

Public Messages Messages on the auxiliary pins for accomplishing common visibility and controllability
requirements

Standard The phrase ‘according to the standard’ is used to indicate according to the IEEE-ISTO 5001
standard.

Transfer Code (TCODE) Message header that identifies the number and/or size of packets to be transferred, and how
to interpret each of the packets.

Watchpoint A data or instruction breakpoint that does not cause the processor to halt. Instead, a pin is used
to signal that the condition occurred. A watchpoint message is also generated.

Table 35-13. Terms and Definitions (continued)

Term Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-27

35.6.5 Enabling Nexus3+ Operation

The Nexus3+ module is enabled by loading a single instruction (ACCESS_AUX_TAP_ONCE, as shown
in Table 34-2) into the JTAGC instruction register (IR), and then loading the corresponding OnCE OCMD
register with the NEXUS3_ACCESS instruction (refer to Table 35-2). For the e200z6 Class 3+ Nexus
module, the OCMD value is 0b00_0111_1100. Once enabled, the module is ready to accept control input
via the JTAG pins. See Section 35.4.1.1, “Enabling Nexus Clients for TAP Access” for more information.

Enabling the Nexus3+ module automatically enables the generation of Debug Status Messages.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset state. This state
can be reached by the negation of the JCOMP pin or by cycling through the state machine using the TMS
pin. The Nexus module also is disabled if a power-on-reset (POR) event occurs. If the Nexus3+ module is
disabled, no trace output is provided, and the module disables (drives inactive) auxiliary port output pins
MDO[11:0], MSEO[1:0], and MCKO. Nexus registers are not available for reads or writes.

35.6.6 TCODEs Supported by Nexus3+

The Nexus3+ pins allow for flexible transfer operations via public messages. A TCODE defines the
transfer format, the number and/or size of the packets to be transferred, and the purpose of each packet.
The IEEE-ISTO 5001-2003 standard defines a set of public messages. The Nexus3+ module supports the
public TCODEs seen in Table 35-14. Each message contains multiple packets transmitted in the order
shown in the table.

Table 35-14. Public TCODEs Supported by Nexus3+

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Debug Status 6 6 TCODE Fixed TCODE number = 0 (0x00)

4 4 SRC Fixed source processor identifier

8 8 STATUS Fixed Debug status register (DS[31:24])

Ownership Trace
Message

6 6 TCODE Fixed TCODE number = 2 (0x02)

4 4 SRC Fixed source processor identifier

32 32 PROCESS Fixed Task/Process ID tag

Program Trace —
Direct Branch

Message1

6 6 TCODE Fixed TCODE number = 3 (0x03)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

Program Trace —
Indirect Branch

Message1

6 6 TCODE Fixed TCODE number = 4 (0x04)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 U-ADDR Variable unique part of target address for taken branches/exceptions

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-28 Freescale Semiconductor

Data Trace —
Data Write Message

6 6 TCODE Fixed TCODE number = 5 (0x05)

4 4 SRC Fixed source processor identifier

3 3 DSIZ Fixed data size (Refer to Table 35-18)

1 32 U-ADDR Variable unique portion of the data write address

1 64 DATA Variable data write values (see Section 35.6.10.4, “Data Trace,” for
details)

Data Trace —
Data Read Message

6 6 TCODE Fixed TCODE number = 6 (0x06)

4 4 SRC Fixed source processor identifier

3 3 DSIZ Fixed data size (Refer to Table 35-18)

1 32 U-ADDR Variable unique portion of the data read address

1 64 DATA Variable data read values (see Section 35.6.10.4, “Data Trace,” for
details)

Error Message 6 6 TCODE Fixed TCODE number = 8 (0x08)

4 4 SRC Fixed source processor identifier

5 5 ECODE Fixed error code

Program Trace —
Direct Branch

Message w/ Sync1

6 6 TCODE Fixed TCODE number = 11 (0x0B)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zeros truncated)

Program Trace —
Indirect Branch

Message w/ Sync1

6 6 TCODE Fixed TCODE number = 12 (0x0C)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zeros truncated)

Data Trace —
Data Write Message

w/ Sync

6 6 TCODE Fixed TCODE number = 13 (0x0D)

4 4 SRC Fixed source processor identifier

3 3 DSZ Fixed data size (Refer to Table 35-18)

1 32 F-ADDR Variable full access address (leading zeros truncated)

1 64 DATA Variable data write values (see Section 35.6.10.4, “Data Trace,” for
details)

Table 35-14. Public TCODEs Supported by Nexus3+ (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-29

Data Trace —
Data Read Message

w/ Sync

6 6 TCODE Fixed TCODE number = 14 (0x0E)

4 4 SRC Fixed source processor identifier

3 3 DSZ Fixed data size (Refer to Table 35-18)

1 32 F-ADDR Variable full access address (leading zeros truncated)

1 64 DATA Variable data read values (see Section 35.6.10.4, “Data Trace,” for
details)

Watchpoint
Message

6 6 TCODE Fixed TCODE number = 15 (0x0F)

4 4 SRC Fixed source processor identifier

4 4 WPHIT Fixed # indicating watchpoint sources

Resource Full
Message

6 6 TCODE Fixed TCODE number = 27 (0x1B)

4 4 SRC Fixed source processor identifier

4 4 RCODE Fixed resource code (Refer to RCODE values in Table 35-17) -
indicates which resource is the cause of this message

1 32 RDATA Variable branch / predicate instruction history (see
Section 35.6.10.3.1, “Branch Trace Messaging (BTM)”)

Program Trace —
Indirect Branch

History Message

6 6 TCODE Fixed TCODE number = 28 (0x1C) (see footnote 1 below)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 U-ADDR Variable unique part of target address for taken branches/exceptions

1 32 HIST Variable branch / predicate instruction history (see
Section 35.6.10.3.1, “Branch Trace Messaging (BTM)”)

Program Trace —
Indirect Branch

History Message w/
Sync

6 6 TCODE Fixed TCODE number = 29 (0x1D) (see footnote 1 below)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zero (0) truncated)

1 32 HIST Variable branch / predicate instruction history (see
Section 35.6.10.3.1, “Branch Trace Messaging (BTM)”)

Program Trace —
Program Correlation

Message

6 6 TCODE Fixed TCODE number = 33 (0x21)

4 4 SRC Fixed source processor identifier

4 4 EVCODE Fixed event correlated w/ program flow (Refer to Table 35-17)

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 HIST Variable branch / predicate instruction history (see
Section 35.6.10.3.1, “Branch Trace Messaging (BTM)”)

Table 35-14. Public TCODEs Supported by Nexus3+ (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-30 Freescale Semiconductor

Table 35-15 shows the error code encodings used when reporting an error via the Nexus3 Error Message.

Table 35-16 shows the encodings used for resource codes for certain messages.

Table 35-17 shows the event code encodings used for certain messages.

1 The user can select between the two types of program trace. The advantages for each are discussed in Section 35.6.10.3.1,
“Branch Trace Messaging (BTM). If the branch history method is selected, the shaded TCODEs are not messaged out.

Table 35-15. Error Code Encoding (TCODE = 8)

Error Code
(ECODE)

Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Data trace overrun

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 (Program Trace or Data Trace) and Ownership Trace overrun

01000 (Program Trace or Data Trace or Ownership Trace) and Watchpoint overrun

01001–0111 Reserved

11000 BTM lost due to collision w/ higher priority message

11001–11111 Reserved

Table 35-16. RCODE values (TCODE = 27)

Resource Code
(RCODE)

Description
Resource Data

(RDATA)

0000 Program Trace Instruction Counter overflow (reached 255 and was reset) 0xFF

0001 Program Trace, Branch / Predicate Instruction History. This type of packet is
terminated by a stop bit set to 1 after the last history bit.

Branch History. This type of
packet is terminated by a
stop bit set to a 1 after the
last history bit.

Table 35-17. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)1

0010–0011 Reserved for future functionality

0100 Disabling Program Trace

0101–1101 Reserved for future functionality

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-31

Table 35-18 shows the data trace size encodings used for certain messages.

35.6.7 Nexus3+ Memory Map

This section describes the Nexus3+ programmer’s model. Nexus3+ registers are accessed using the
JTAG/OnCE port in compliance with IEEE 1149.1. See Section 35.6.9, “ Nexus3+ Register Access via
JTAG / OnCE” for details on Nexus3+ register access.

NOTE
Nexus3+ registers and output signals are numbered using bit 0 as the least
significant bit. This bit ordering is consistent with the ordering defined by
the IEEE-ISTO 5001 standard.

Table 35-19 details the register map for the Nexus3+ module.

1110 Entry into a VLE page from a non-VLE page

1111 Entry into a non-VLE page from a VLE page

1 The device enters Low Power Mode when the Nexus stall mode is enabled
(Nexus3_DC1[OVC] = 0b011) and a trace message is in danger of over-flowing
the Nexus queue.

Table 35-18. Data Trace Size Encodings (TCODE = 5, 6, 13, 14)

DTM Size Encoding Transfer Size

000 Byte

001 Half-word (2 bytes)

010 Word (4 bytes)

011 Double-word (8 bytes)

100 String (3 bytes)

101–111 Reserved

Table 35-19. Nexus3+ Memory Map

 Access
Opcode

Register Name Register Description Read Address Write Address

0x2 DC1 Development control 1 0x04 0x05

0x3 DC2 Development control 2 0x06 0x07

0x4 DS Development status 0x08 —

0x7 RWCS Read/write access control/status 0x0E 0x0F

0x9 RWA Read/write access address 0x12 0x13

0xA RWD Read/write access data 0x14 0x15

Table 35-17. Event Code Encoding (TCODE = 33)

Event Code Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-32 Freescale Semiconductor

35.6.8 Nexus3+ Register Definition

35.6.8.1 Development Control Register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the Nexus module.
Figure 35-14 shows DC1 and Table 35-20 describes the register’s fields.

0xB WT Watchpoint trigger 0x16 0x17

0xD DTC Data trace control 0x1A 0x1B

0xE DTSA1 Data trace start address 1 0x1C 0x1D

0xF DTSA2 Data trace start address 2 0x1E 0x1F

0x12 DTEA1 Data trace end address 1 0x24 0x25

0x13 DTEA2 Data trace end address 2 0x26 0x27

0x14 -> 0x3F — Reserved 0x28->0x7E 0x29->0x7F

Nexus Reg: 0x02 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OPC MCK_DIV
EOC

0
PTM WEN

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-14. Development Control Register 1 (DC1)

Table 35-20. DC1 Field Descriptions

Field Description

OPC1 Output Port Mode Control.
0 Reduced-port mode configuration (4 MDO pins).
1 Full-port mode configuration (8 MDO pins).

MCK_DIV1 MCKO Clock Divide Ratio (see note below).
00 MCKO is 1x processor clock freq.
01 MCKO is 1/2x processor clock freq.
10 MCKO is 1/4x processor clock freq.
11 MCKO is 1/8x processor clock freq.

Table 35-19. Nexus3+ Memory Map (continued)

 Access
Opcode

Register Name Register Description Read Address Write Address

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-33

DC2 is shown in Figure 35-15 and its fields are described in Table 35-21.

EOC EVTO Control.
00 EVTO upon occurrence of watchpoints (configured in DC2).
01 EVTO upon entry into debug mode.
10 EVTO upon timestamping event.
11 Reserved.

PTM Program Trace Method.
0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

WEN Watchpoint Trace Enable.
0 Watchpoint messaging disabled.
1 Watchpoint messaging enabled.

OVC Overrun Control.
000 Generate overrun messages.
001–010 Reserved.
011 Delay processor for BTM / DTM / OTM overruns.
1XX Reserved.

EIC EVTI Control.
00 EVTI is used for synchronization (program trace/ data trace).
01 EVTI is used for debug request.
1X Reserved.

TM Trace Mode. Any or all of the TM bits may set, enabling one or more traces.
000 No trace.
1XX Program trace enabled.
X1X Data trace enabled.
XX1 Ownership trace enabled.

1 The output port mode control bit (OPC) and MCKO divide bits (MCK_DIV) are shown for clarity. These functions are controlled
globally by the NPC port control register (PCR). These bits are writable in the PCR but have no effect.

Nexus Reg: 0x3 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EWC

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-15. Development Control Register 2 (DC2)

Table 35-20. DC1 Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-34 Freescale Semiconductor

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

35.6.8.2 Development Status Register (DS)

The development status register is used to report system debug status. When debug mode is entered or
exited, or an e200z6-defined low-power mode is entered, a debug status message is transmitted with
DS[31:24]. The external tool can read this register at any time. The DS register is shown in Figure 35-16
and its fields are described in Table 35-22.

Table 35-21. DC2 Field Descriptions

Field Description

EWC EVTO Watchpoint Configuration. Any or all of the bits in EWC may be set to configure the EVTO watchpoint.
0000_0000 No Watchpoints trigger EVTO
1xxx_xxxx Watchpoint #0 (IAC1 from Nexus1) triggers EVTO.
x1xx_xxxx Watchpoint #1 (IAC2 from Nexus1) triggers EVTO.
xx1x_xxxx Watchpoint #2 (IAC3 from Nexus1) triggers EVTO.
xxx1_xxxx Watchpoint #3 (IAC4 from Nexus1) triggers EVTO.
xxxx_1xxx Watchpoint #4 (DAC1 from Nexus1) triggers EVTO.
xxxx_x1xx Watchpoint #5 (DAC2 from Nexus1) triggers EVTO.
xxxx_xx1x Watchpoint #6 (DCNT1 from Nexus1) triggers EVTO.
xxxx__xxx1 Watchpoint #7 (DCNT2 from Nexus1) triggers EVTO.

Nexus Reg: 0x4 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DBG 0 0 0 LPC CHK 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-16. Development Status Register (DS)

Table 35-22. DS Field Descriptions

Field Description

DBG CPU Debug Mode Status.
0 CPU not in debug mode.
1 CPU in debug mode.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-35

35.6.8.3 Read/Write Access Control/Status (RWCS)

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus while the processor is halted
or during runtime. The RWCS register is shown in Figure 35-17 and its fields are described in Table 35-23.
The RWCS register also provides read/write access status information as shown in Table 35-24.

LPC CPU Low-Power Mode Status.
00 Normal (run) mode.
01 CPU in halted state.
10 CPU in stopped state.
11 Reserved.

CHK CPU Checkstop Status.
0 CPU not in checkstop state.
1 CPU in checkstop state.

Nexus Reg: 0x7 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AC RW SZ MAP PR BST

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-17. Read/Write Access Control/Status Register (RWCS)

Table 35-23. RWCS Field Description

Field Description

AC Access Control.
0 End access.
1 Start access.

RW Read/Write Select.
0 Read access.
1 Write access.

SZ Word Size.
000 8-bit (byte.)
001 16-bit (halfword).
010 32-bit (word).
011 64-bit (doubleword—only in burst mode).
100–111 Reserved (default to word).

Table 35-22. DS Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-36 Freescale Semiconductor

Table 35-24 details the status bit encodings.

35.6.8.4 Read/Write Access Address (RWA)

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

35.6.8.5 Read/Write Access Data (RWD)

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

MAP MAP Select.
000 Primary memory map.
001–111 Reserved.

PR Read/Write Access Priority.
00 Lowest access priority.
01 Reserved (default to lowest priority).
10 Reserved (default to lowest priority).
11 Highest access priority.

BST Burst Control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

CNT Access Control Count. Number of accesses of word size SZ.

ERR Read/Write Access Error. See Table 35-24.

DV Read/Write Access Data Valid. See Table 35-24.

Table 35-24. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x9 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Address

W

Reset 0

Figure 35-18. Read/Write Access Address Register (RWA)

Table 35-23. RWCS Field Description (continued)

Field Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-37

Table 35-25 shows the proper placement of data into the RWD. The “X” in the RWD column indicate byte
lanes with valid data.

Table 35-26 shows the mapping of RWD bytes to byte lanes of the AHB read and write data buses.

Nexus Reg: 0xA Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Data

W

Reset 0

Figure 35-19. Read/Write Access Data Register (RWD)

Table 35-25. RWD Data Placement for Transfers

Transfer Size and byte offset RWA[2:0 RWCS[SZ]
RWD

31:24 23:16 15:8 7:0

Byte xxx 000 — — — X

Half Word xx0 001 — — X X

Word x00 010 X X X X

Double Word 000 011

first RWD pass (low order data) X X X X

second RWD pass (high order data) X X X X

Table 35-26. RWD data placement for Transfers

Transfer Size and
byte offset

RWA[2:0]
RWD

31:24 23:16 15:8 7:0

Byte @000 000 — — — AHB[7:0]

Byte @001 001 — — — AHB[15:8]

Byte @010 010 — — — AHB[23:16]

Byte @011 011 — — — AHB[31:24]

Byte @100 100 — — — AHB[39:32]

Byte @101 101 — — — AHB[[47:40]

Byte @110 110 — — — AHB[55:48]

Byte @111 111 — — — AHB[63:56]

Half@000 000 — — AHB[15:8] AHB[7:0]

Half@010 010 — — AHB[31:24] AHB[23:16]

Half@100 100 — — AHB[[47:40] AHB[39:32]

Half@110 110 — — AHB[63:56] AHB[55:48]

Word@000 000 AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-38 Freescale Semiconductor

NOTE
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS)
write (to begin a read access) or the write to the Read/Write Access Data
Register (RWD)(to begin a write access) does not actually begin its action
until one JTAG clock (TCK) after leaving the JTAG Update-DR state. This
prevents the access from being performed and therefore will not signal its
completion via the READY (RDY) output unless the JTAG controller
receives an additional TCK. In addition, EVTI is not latched into the device
unless there are clock transitions on TCK.

Therefore, the tool/debugger must provide at least one TCK clock for the
EVTI signal to be recognized by the MCU. When using the RDY signal to
indicate the end of a Nexus read/write access, ensure that TCK continues to
run for at least one TCK after leaving the Update-DR state. This can be just
a TCK with TMS low while in the Run-Test/Idle state or by continuing with
the next Nexus/JTAG command. Expect the affect of EVTI and RDY to be
delayed by edges of TCK. RDY is not available in all packages of all
devices.

35.6.8.6 Watchpoint Trigger Register (WT)

The watchpoint trigger register allows the watchpoints defined within the e200z6 Nexus1 logic to trigger
actions. These watchpoints can control program and/or data trace enable and disable. The WT bits can be
used to produce an address-related window for triggering trace messages. The WT register is shown in
Figure 35-20 and its fields are described in Table 35-27.

Word@100 100 AHB[63:56] AHB[55:48] AHB[[47:40] AHB[39:32]

Doubleword@000 000

first RWD pass AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

second RWD pass AHB[63:56] AHB[55:48] AHB[[47:40] AHB[39:32]

Table 35-26. RWD data placement for Transfers

Transfer Size and
byte offset

RWA[2:0]
RWD

31:24 23:16 15:8 7:0

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-39

Nexus Reg: 0xB Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PTS PTS DTS DTE

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-20. Watchpoint Trigger Register (WT)

Table 35-27. WT Field Descriptions

Field Description

PTS Program Trace Start Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

PTE Program Trace End Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-40 Freescale Semiconductor

NOTE
The WT bits can control program/data trace only if the TM bits in the
development control register 1 (DC1) have not already been set to enable
program and data trace, respectively.

35.6.8.7 Data Trace Control Register (DTC)

The data trace control register controls whether DTM messages are restricted to reads, writes, or both for
a user programmable address range. Two data trace channels are controlled by the DTC for the Nexus3
module. Each channel can also be programmed to trace data accesses or instruction accesses.

Table 35-28 details the data trace control register fields.

DTS Data Trace Start Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

DTE Data Trace End Control.
000 Trigger disabled.
001 Use watchpoint #0 (IAC1 from Nexus1).
010 Use watchpoint #1 (IAC2 from Nexus1).
011 Use watchpoint #2 (IAC3 from Nexus1).
100 Use watchpoint #3 (IAC4 from Nexus1).
101 Use watchpoint #4 (DAC1 from Nexus1).
110 Use watchpoint #5 (DAC2 from Nexus1).
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1).

Nexus Reg: 0xD Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RWT1 RWT2

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
RC1 RC2

0 0
DI1 DI2

0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-21. Data Trace Control Register (DTC)

Table 35-27. WT Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-41

35.6.8.8 Data Trace Start Address Registers 1 and 2 (DTSAn)

The data trace start address registers define the start addresses for each trace channel.

35.6.8.9 Data Trace End Address Registers 1 and 2 (DTEAn)

The data trace end address registers define the end addresses for each trace channel.

Table 35-28. DTC Field Description

Field Description

31–30
RWT1[1:0]

Read/write trace 1.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

29–28
RWT2[1:0]

Read/write trace 2.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

7
RC1

Range control 1.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

6
RC2

Range control 2.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

3
DI1

Data access/instruction access trace 1.
0 Condition trace on data accesses.
1 Condition trace on instruction accesses.

2
DI2

Data access/instruction access trace 2.
0 Condition trace on data accesses.
1 Condition trace on instruction accesses.

Nexus Reg: 0xE Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace Start Address

W

Reset 0

Figure 35-22. Data Trace Start Address Register 1 (DTSA1)

Nexus Reg: 0xF Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace Start Address

W

Reset 0

Figure 35-23. Data Trace Start Address Register 2 (DTSA2)

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-42 Freescale Semiconductor

Table 35-29 illustrates the range that selected for data trace for various cases of DTSA being less than,
greater than, or equal to DTEA.

NOTE
DTSA must be less than DTEA in order to guarantee correct data write/read
traces. Data trace ranges are inclusive of the DTSA and DTEA addresses for
Range Control settings indicating “within range”, and are exclusive of the
DTSA and DTEA addresses for Range Control settings indicating “outside
of range.”

35.6.9 Nexus3+ Register Access via JTAG / OnCE

Access to Nexus3 register resources is enabled by loading a single instruction (ACCESS_AUX_TAP_Z6)
into the JTAGC instruction register (IR), and then loading the corresponding OnCE OCMD register with
the NEXUS3_ACCESS instruction (refer to Table 35-2). For the Nexus3+ module, the OCMD value is
0b00_0111_1100.

Once the ACCESS_AUX_TAP_Z6 instruction has been loaded, the JTAG/OnCE port allows tool/target
communications with all Nexus3 registers according to the register map in Table 35-19.

Nexus Reg: 0x12 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace End Address

W

Reset 0

Figure 35-24. Data Trace End Address Register 1 (DTEA1)

Nexus Reg: 0x13 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace End Address

W

Reset 0

Figure 35-25. Data Trace End Address Register 2 (DTEA2)

Table 35-29. Data Trace—Address Range Options

Programmed Values Range Control Bit Value Range Selected

DTSA < DTEA 0 DTSA DTEA

DTSA < DTEA 1 DTSA DTEA

DTSA > DTEA N/A Invalid range—no trace

DTSA = DTEA N/A Invalid range—no trace

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-43

Reading/writing of a Nexus3+ register then requires two (2) passes through the data-scan (DR) path of the
JTAG state machine (see 35.6.10.8).

1. The first pass through the DR selects the Nexus3+ register to be accessed by providing an index
(see Table 35-19), and the direction (read/write). This is achieved by loading an 8-bit value into the
JTAG data register (DR). This register has the following format:

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state
machine passes through the CAPTURE-DR state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state
machine passes through the UPDATE-DR state.

35.6.10 Nexus3+ Functional Description

35.6.10.1 Debug Status Messages

Debug Status Messages report low power mode and debug status. Debug Status Messages are enabled
when Nexus 3+ is enabled. Entering/exiting Debug Mode as well as entering a Low Power Mode triggers
a Debug Status Message, indicating the value of the most significant byte in the Development Status
register. Debug status information is sent out in the following format:

35.6.10.2 Ownership Trace

This section details the ownership trace features of the Nexus3+ module.

35.6.10.2.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. This is especially useful when the developer is not interested in
debugging at lower levels.

Nexus Register Index: Selected from values in Table 35-19

Read/Write (R/W) 0 Read
1 Write

Table 35-30. Debug Status Message Format

(8 bits) (4 bits) (6 bits)

DS[31:24] Source Processor TCODE (000000)

Fixed Length = 18 bits

Nexus Register Index

(7 bits) (1 bit)

R/W

RESET Value: 0x00

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-44 Freescale Semiconductor

35.6.10.2.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an ownership trace message (OTM).
The e200z6 processor contains a Power Architecture Book E defined process ID register within the CPU.

The process ID register is updated by the operating system software to provide task/process ID
information. The contents of this register are replicated on the pins of the processor and connected to
Nexus. The process ID register value can be accessed using the mfspr/mtspr instructions. Please refer to
the e200z6 Power ArchitectureTM Core Reference Manual for more details on the process ID register.

One condition causes an ownership trace message: When new information is updated in the OTR register
or process ID register by the e200z6 processor, the data is latched within Nexus, and is messaged out via
the auxiliary port, allowing development tools to trace ownership flow.

Ownership trace information is messaged out in the following format:

Figure 35-26. Ownership Trace Message Format

35.6.10.2.3 OTM Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an error
message is queued. The error encoding indicates which types of messages attempted to be queued while
the FIFO was being emptied.

If only an OTM message attempts to enter the queue while it is being emptied, the error message
incorporates the OTM only error encoding (00000). If both OTM and either BTM or DTM messages
attempt to enter the queue, the error message incorporates the OTM and (program or data) trace error
encoding (00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the
error message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 35-15)

Figure 35-27. Error Message Format

PROCESS

MSB LSB

12

SRC TCODE (000010)

3

6 bits4 bits32 bits

Fixed length = 42 bits

ECODE (00000 / 00111 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-45

35.6.10.2.4 OTM Flow

Ownership trace messages are generated when the operating system writes to the e200z6 process ID
register or the memory mapped ownership trace register.

The following flow describes the OTM process:

1. The process ID register is a system control register. It is internal to the e200z6 processor and can
be accessed by using PPC instructions mtspr and mfspr. The contents of this register are replicated
on the pins of the processor and connected to Nexus.

2. OTR/process ID register reads do not cause ownership trace messages to be transmitted by the
Nexus3+ module.

3. If the periodic OTM message counter expires (after 255 queued messages without an OTM), an
OTM is sent using the latched data from the previous OTM or process ID register write.

35.6.10.3 Program Trace

This section details the program trace mechanism supported by Nexus3+ for the e200z6 processor.
Program trace is implemented via branch trace messaging (BTM) as per the Class 3 IEEE-ISTO
5001-2003 standard definition. Branch trace messaging for e200z6 processors is accomplished by
snooping the e200z6 virtual address bus (between the CPU and MMU), attribute signals, and CPU status.

35.6.10.3.1 Branch Trace Messaging (BTM)

Traditional branch trace messaging facilitates program trace by providing the following types of
information:

• Messaging for taken direct branches includes how many sequential instructions were executed
since the last taken branch or exception. Direct (or indirect) branches not taken are counted as
sequential instructions.

• Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last taken branch or exception and the unique portion of the branch target
address or exception vector address.

Branch history messaging facilitates program trace by providing the following information:

• Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last predicate instruction, taken indirect branch, or exception, the unique
portion of the branch target address or exception vector address, as well as a branch/predicate
instruction history field. Each bit in the history field represents a direct branch or predicated
instruction where a value of one (1) indicates taken, and a value of zero (0) indicates not taken.
Certain instructions (evsel) generate a pair of predicate bits that are both reported as consecutive
bits in the history field.

e200z6 Indirect Branch Message Instructions (Power Architecture Book E)

Table 35-31 shows the types of instructions and events that cause indirect branch messages or branch
history messages to be encoded.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-46 Freescale Semiconductor

e200z6 Direct Branch Message Instructions (Power Architecture Book E)

Table 35-32 shows the types of instructions that cause direct branch messages or toggle a bit in the
instruction history buffer to be messaged out in a resource full message or branch history message.

BTM Using Branch History Messages

Traditional BTM messaging can accurately track the number of sequential instructions between branches,
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch history messaging solves this problem by providing a predicated instruction history field in each
indirect branch message. Each bit in the history represents a predicated instruction or direct branch. A
value of one (1) indicates the conditional instruction was executed or the direct branch was taken. A value
of zero (0) indicates the conditional instruction was not executed or the direct branch was not taken.
Certain instructions (evsel) generate a pair of predicate bits that are both reported as consecutive bits in the
history field.

Branch history messages solve predicated instruction tracking and save bandwidth since only indirect
branches cause messages to be queued.

BTM Using Traditional Program Trace Messages

Based on the PTM bit in the DC register (DC[PTM]), program tracing can utilize either branch history
messages (DC[PTM] = 1) or traditional direct/indirect branch messages (DC[PTM] = 0).

Branch history saves bandwidth and keeps consistency between methods of program trace, yet may lose
temporal order between BTM messages and other types of messages. Since direct branches are not
messaged, but are instead included in the history field of the indirect branch history message, other types
of messages may enter the FIFO between branch history messages. The development tool cannot
determine the ordering of “events” that occurred with respect to direct branches simply by the order in
which messages are sent out.

Table 35-31. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions

Taken branch relative to a register value bcctr, bcctrl, bclr, bclrl, se_bctr,
se_bctrl, se_blr, se_blrl

System Call / Trap exceptions taken sc, tw, twi, se_sc

Return from interrupts / exceptions rfi, rfci, rfdi, se_rfi, se_rfci,
se_rfdi

Table 35-32. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions b, ba, bl, bla, bc, bca, bcl, bcla,
se_b. se_bc, se_bl, e_b, e_bc,

e_bl, e_bcl,

Instruction Synchronize isync, se_isync

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-47

Traditional BTM messages maintain their temporal ordering because each event that can cause a message
to be queued enters the FIFO in the order it occurred and is messaged out in that same order.

35.6.10.3.2 BTM Message Formats

The e200z6 Nexus3 module supports three types of traditional BTM messages—direct, indirect, and
synchronization messages. It supports two types of branch history BTM messages—indirect branch
history, and indirect branch history with synchronization messages. Debug status messages and error
messages are also supported.

35.6.10.3.3 Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time, interrupts and
exceptions. If DC[PTM] is set, indirect branch information is messaged out in the following format:

Figure 35-28. Indirect Branch Message (History) Format

Indirect Branch Messages (Traditional)

If DC[PTM] is cleared, indirect branch information is messaged out in the following format:

Figure 35-29. Indirect Branch Message Format

Direct Branch Messages (Traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the
instruction opcode. Direct branch information is messaged out in the following format:

Figure 35-30. Direct Branch Message Format

HIST

MSB LSB

234

U-ADDR I-CNT SRC

5

4 bits

1

TCODE (011100)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

MSB LSB

234

U-ADDR I-CNT SRC

4 bits

1

TCODE (000100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

I-CNT

MSB LSB

12

SRC TCODE (000011)

3

6 bits4 bits1–8 bits

Max length = 18 bits; Min length = 11 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-48 Freescale Semiconductor

NOTE
When DC[PTM] is set, direct branch messages are not transmitted. Instead,
each direct branch or predicated instruction toggles a bit in the history
buffer.

Resource Full Messages

The resource full message is used in conjunction with the branch history messages. The resource full
message is generated when the internal branch/predicate history buffer is full, or if the BTM Instruction
sequence counter (I-CNT) overflows. If synchronization is needed at the time this message is generated,
the synchronization is delayed until the next branch trace message that is not a resource full message.

The current value of the history buffer is transmitted as part of the resource full message. This information
can be concatenated by the tool with the branch/predicate history information from subsequent messages
to obtain the complete branch history for a message. The internal history value is reset by this message,
and the I-CNT value is reset as a result of a bit being added to the history buffer.

Figure 35-31. Resource Full Message Format

Table 35-33 shows the RCODE encodings and RDATA information used for Resource Full messages

Program Correlation Messages

Program correlation messages are used to correlate events to the program flow that may not be associated
with the instruction stream. The following events result in a PCM when program trace is enabled:

• When the CPU enters debug mode, a PCM is generated. The instruction count and history
information provided by the PCM can be used to determine the last sequence of instructions
executed prior to debug mode entry.

• When the CPU enters a low power mode in which instructions are no longer executed, a PCM is
generated. The instruction count and history information provided by the PCM can be used to
determine the last sequence of instructions executed prior to low power mode entry.

• Whenever program trace is disabled by any means, a PCM is generated. The instruction count and
history information provided by the PCM can be used to determine the last sequence of instructions
executed prior to disabling program trace. A second PCM is generated on this event if there has

Table 35-33. RCODE Encoding

RCODE Description RDATA field

0000 Program Trace Instruction counter reached 255 and
was reset.

0xFF

0001 Program Trace, Branch / Predicate Instruction History
full.

Branch HIstory.
This type of packet is terminated by a stop bit set to 1
after the last history bit.

TCODE (011011)RCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 46 bits; Min length = 15 bits

(1-32 bits)

RDATA

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-49

been an execution mode switch into or out of a sequence of VLE instructions. This VLE state
information allows the development tool to interpret any preceding instruction count or history
information in the proper context.

• Whenever the CPU crosses a page boundary that results in an execution mode switch into or out
of a sequence of VLE instructions, a PCM is generated. The PCM effectively breaks up any
running instruction count and history information between the two modes of operation so that the
instruction count and history information can be processed by the development tool in the proper
context.

• When using program trace in history mode, when a direct branch results in an execution mode
switch into or out of a sequence of VLE instructions, a PCM is generated. The PCM effectively
breaks up any running history information between the two modes of operation so that the history
information can be processed by the development tool in the proper context.

Program correlation is messaged out in the following format:

Figure 35-32. Program Correlation Message Format

BTM Overflow Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an error
message is queued. The error encoding indicates which types of messages attempted to be queued while
the FIFO was being emptied.

If only a program trace message attempts to enter the queue while it is being emptied, the error message
incorporates the program trace only error encoding (00001). If both OTM and program trace messages
attempt to enter the queue, the error message incorporates the OTM and program trace error encoding
(00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the error
message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format

HIST

MSB LSB

234

I-CNT EVCODE SRC

5

4 bits

1

TCODE (100001)

4 bits1–8 bits1–32 bits 6 bits

Max length = 54 bits; Min length = 16 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-50 Freescale Semiconductor

:

Figure 35-33. Error Message Format

Program Trace Synchronization Messages

A program trace direct/indirect branch with sync message is messaged via the auxiliary port (provided
program trace is enabled) for the following conditions (see Table 35-34):

• Initial program trace message upon the first direct/indirect branch after exit from system reset or
whenever program trace is enabled

• Upon direct/indirect branch after returning from a CPU low power state

• Upon direct/indirect branch after returning from debug mode

• Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace
message), provided program trace is enabled

• Upon direct/indirect branch after the periodic program trace counter has expired indicating 255
without-sync program trace messages have occurred since the last with-sync message occurred

• Upon direct/indirect branch after assertion of the event in (EVTI) pin if the EIC bits within the DC1
register have enabled this feature

• Upon direct/indirect branch after the sequential instruction counter has expired indicating 255
instructions have occurred between branches

• Upon direct/indirect branch after a BTM message was lost due to an attempted access to a secure
memory location.

• Upon direct/indirect branch after a BTM message was lost due to a collision entering the FIFO
between the BTM message and either a watchpoint message or an ownership trace message

• Upon the first direct/indirect branch message after an execution mode switch

If the Nexus3+ module is enabled at reset, a EVTI assertion initiates a program trace direct/indirect branch
with sync message (if program trace is enabled) upon the first direct/indirect branch. The format for
program trace direct/indirect branch with sync messages is as follows:

Figure 35-34. Direct/Indirect Branch with Sync Message Format

The formats for program trace direct/indirect branch with sync. messages and indirect branch history with
sync. messages are as follows

ECODE (00001 / 00111 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

MSB LSB

234

F-ADDR I-CNT SRC

4 bits

1

TCODE (001011 or 001100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-51

:

Figure 35-35. Indirect Branch History with Sync. Message Format

Exception conditions that result in program trace synchronization are summarized in Table 35-34.

Table 35-34. Program Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation At the negation of JTAG reset (JCOMP), queue pointers, counters, state machines, and registers
within the Nexus3+ module are reset. Upon the first branch out of system reset (if program trace
is enabled), the first program trace message is a direct/indirect branch with sync. message.

Program Trace Enabled The first program trace message (after program trace has been enabled) is a synchronization
message.

Exit from Low Power/Debug Upon exit from a low power mode or debug mode, the next direct/indirect branch is converted to
a direct/indirect branch with sync. message.

Queue Overrun An error message occurs when a new message cannot be queued due to the message queue
being full. The FIFO discards messages until it has completely emptied the queue. Once
emptied, an error message is queued. The error encoding indicates which types of messages
attempted to be queued while the FIFO was being emptied. The next BTM message in the queue
is a direct/indirect branch with sync. message.

Periodic Program Trace
Sync.

A forced synchronization occurs periodically after 255 program trace messages have been
queued. A direct/indirect branch with sync. message is queued. The periodic program trace
message counter then resets.

Event In If the Nexus module is enabled, an EVTI assertion initiates a direct/indirect branch with sync.
message upon the next direct/indirect branch (if program trace is enabled and the EIC bits of the
DC1 register have enabled this feature).

Sequential Instruction Count
Overflow

When the sequential instruction counter reaches its maximum count (as many as 255 sequential
instructions may be executed), a forced synchronization occurs. The sequential counter then
resets. A program trace direct/indirect branch with sync.message is queued upon execution of
the next branch.

Attempted Access to Secure
Memory

For devices that implement security, any attempted branch to secure memory locations
temporarily disables program trace, and causes the corresponding BTM to be lost. The following
direct/indirect branch queues a direct/indirect branch with sync. message. The count value within
this message is inaccurate since the re-enable of program trace is not necessarily aligned on an
instruction boundary.

Collision Priority All messages have the following priority: WPM OTM BTM DTM. A BTM message that
attempts to enter the queue at the same time as a watchpoint message or ownership trace
message is lost. An error message is sent indicating the BTM was lost. The following
direct/indirect branch queues a direct/indirect branch with sync. message. The count value within
this message reflects the number of sequential instructions executed after the last successful
BTM Message was generated. This count includes the branch that did not generate a message
due to the collision.

Execution Mode Switch Whenever the CPU switches execution mode into or out of a sequence of VLE instructions, the
next branch trace message is a Direct/Indirect Branch w/ Sync Message.

HIST

MSB LSB

234

F-ADDR I-CNT SRC

5

4 bits

1

TCODE (011101)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-52 Freescale Semiconductor

35.6.10.3.4 BTM Operation

Enabling Program Trace

Both types of branch trace messaging are enabled using one of the following methods:

• Setting the TM field of the DC1 register to enable program trace (DC1[TM])

• Using the PTS field of the WT register to enable program trace on watchpoint hits (e200z6 watch
points are configured within the CPU)

Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard recommendations, and
is designed to reduce the number of bits transmitted for addresses of indirect branch messages.

The address transmitted is relative to the target address of the instruction that triggered the previous
indirect branch (or sync) message. It is generated by XOR-ing the new address with the previous address,
and then using only the results up to the most significant 1 in the result. To recreate this address, an XOR
of the (most-significant 0-padded) message address with the previously decoded address gives the current
address.

Previous address (A1) = 0x0003_FC01, New address (A2) = 0x0003_F365

Figure 35-36. Relative Address Generation and Re-creation

Execution Mode Indication

In order for a development tool to properly interpret instruction count and history information, it must be
aware of the execution mode context of that information. VLE instructions are interpreted differently from
non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the reconstructed
address field. A value of ‘0’ indicates that preceding instruction count and history information should be
interpreted in a non-VLE context. A value of ‘1’ indicates that the preceding instruction count and history
information should be interpreted in a VLE context. Note that when a branch results in an execution mode

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1 A2 = 0000 0000 0000 0000 0000 1111 0110 0100

Address Message (M1) = 1111 0110 0100

Address Re-creation:

A1 M1 = A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-53

switch, the program trace message resulting from that branch indicates the previous execution state. The
new state is not signaled until the next program trace message.

In some cases, a Program Correlation Message is generated to indicate execution mode status Refer to
Program Correlation Messages on page 35-88 for more information on these cases.

Branch/Predicate Instruction History (HIST)

If DC[PTM] is set, BTM messaging uses the branch history format. The branch history (HIST) packet in
these messages provides a history of direct branch execution used for reconstructing the program flow.
This packet is implemented as a left-shifting shift register. The register is always pre-loaded with a value
of one (1). This bit acts as a stop bit so that the development tools can determine which bit is the end of
the history information. The pre-loaded bit itself is not part of the history, but is transmitted with the
packet.

A value of one (1) is shifted into the history buffer on a taken branch (condition or unconditional) and on
any instruction whose predicate condition executed as true. A value of zero (0) is shifted into the history
buffer on any instruction whose predicate condition executed as false as well as on branches not taken.
This includes indirect as well as direct branches not taken. For the evsel instruction, two bits are shifted
in, corresponding to the low element (shifted in first) and the high element (shifted in second) conditions.

Sequential Instruction Count (I-CNT)

The I-CNT packet is present in all BTM messages. For traditional branch messages, I-CNT represents the
number of sequential instructions, or non-taken branches in between direct/indirect branch messages.

For branch history messages, I-CNT represents the number of instructions executed since the last
taken/non-taken direct branch, last taken indirect branch or exception. Not taken indirect branches are
considered sequential instructions and cause the instruction count to increment. I-CNT also represents the
number of instructions executed since the last predicate instruction.

The sequential instruction counter overflows when its value reaches 255. The next BTM message is
converted to a synchronization type message.

Program Trace Queueing

Nexus3+ implements a message queue. Messages that enter the queue are transmitted via the auxiliary pins
in the order in which they are queued.

NOTE
If multiple trace messages need to be queued at the same time, Watchpoint
Messages have the highest priority (WPM OTM BTM DTM).

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-54 Freescale Semiconductor

35.6.10.3.5 Program Trace Timing Diagrams

Figure 35-37. Program Trace (MDO = 12)—Indirect Branch Message (Traditional)

Figure 35-38. Program Trace (MDO = 2)—Indirect Branch Message (History)

Figure 35-39. Program Trace—Direct Branch (Traditional) and Error Messages

MDO[11:0]

MCKO

MSEO[1:0]

TCODE = 4
Source Processor = 0b0000
Number of Sequence Instructions = 128
Relative Address = 0xA5

01 1100

0000 0010 0000 0000 1010 01010000 0000 0100

MDO[1:0]

TCODE = 28

MCKO

MSEO

Source Processor = 0b0000
Number of Sequential Instructions = 0
Relative Address = 0xA5
Branch History = 0b1010_0101 (with Stop)

11 01 00 00 00 01 01 10 10 01 01 10 1000 00

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

MDO[1:0]

DBM:

MCKO

MSEO

TCODE = 3
Source Processor = 0b0000
Number of Sequential Instructions = 3

00 00 00 00 11 00 00 10 00 00 00 01 00 00

Error:
TCODE = 8
Source Processor = 0b0000
Error Code = 1 (Queue Overrun – BTM Only)

ErrorDirect Branch

11

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-55

Figure 35-40. Program Trace—Indirect Branch with Sync. Message

35.6.10.4 Data Trace

This section deals with the data trace mechanism supported by the Nexus3+ module. Data trace is
implemented via data write messaging (DWM) and data read messaging (DRM), as per the IEEE-ISTO
5001-2003 standard.

35.6.10.4.1 Data Trace Messaging (DTM)

Data trace messaging for e200z6 is accomplished by snooping the e200z6 virtual data bus (between the
CPU and MMU), and storing the information for qualifying accesses (based on enabled features and
matching target addresses). The Nexus3+ module traces all data access that meet the selected range and
attributes.

NOTE
Data trace is only performed on the e200z6 virtual data bus. This allows for
data visibility for the incorporated data cache. Only e200z6 CPU initiated
accesses are traced.

Data trace messaging can be enabled in one of two ways:

• Setting the TM field of the DC1 register to enable data trace (DC1[TM]).

• Using WT[DTS] to enable data trace on watchpoint hits (e200z6 watch points are configured
within the Nexus1 module)

35.6.10.4.2 DTM Message Formats

The Nexus3 module supports five types of DTM messages: data write, data read, data write
synchronization, data read synchronization and error messages.

Data Write Messages

The data write message contains the data write value and the address of the write access, relative to the
previous data trace message. Data write message information is messaged out in the following format:

MDO[1:0]

TCODE = 12

MCKO

MSEO[

Source Processor = 0b0000
Number of Sequential Instructions = 3
Full Target Address = 0xDEAD_FACE

00 11 00 00 00 11 10 11 00 11 10 10 11 11 01 11 10 10 10 11 01 11 00

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-56 Freescale Semiconductor

Figure 35-41. Data Write Message Format

Data Read Messages

The data read message contains the data read value and the address of the read access, relative to the
previous data trace message. Data read message information is messaged out in the following format:

Figure 35-42. Data Read Message Format

NOTE
The e200z6 Z5XX based CPUs are capable of generating two (2) reads or
writes per clock cycle in cases where multiple registers are accessed with a
single instruction (lmw/stmw). These have a double word pair size encoding
(DSZ = 0b000). In these cases, the Nexus3 module sends one (1) Data Trace
Message with the two 32-bit data values as one combined 64-bit value for
each message.

For the e200z6 based CPU, the double-word encoding (data size = 0b000)
indicates a double-word access and is sent out as a single data trace message
with a single 64-bit data value.

The debug/development tool needs to distinguish the two cases based on the
family of Zen processor.

DTM Overflow Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an error
message is queued. The error encoding indicates which types of messages attempted to be queued while
the FIFO was being emptied.

If only a data trace message attempts to enter the queue while it is being emptied, the error message
incorporates the data trace only error encoding (00010). If both OTM and data trace messages attempt to
enter the queue, the error message incorporates the OTM and data trace error encoding (00111). If a
watchpoint also attempts to be queued while the FIFO is being emptied, then the error message
incorporates error encoding (01000).

DATA

MSB LSB

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000101)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

DATA

MSB LSB

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-57

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format:

Figure 35-43. Error Message Format

Data Trace Synchronization Messages

A data trace write/read with sync. message is messaged via the auxiliary port (provided data trace is
enabled) for the following conditions (see Table 35-35):

• Initial data trace message after exit from system reset or whenever data trace is enabled

• Upon returning from a CPU Low Power state.

• Upon exiting debug mode

• After occurrence of queue overrun (can be caused by any trace message), provided data trace is
enabled

• After the periodic data trace counter has expired indicating 255 without-sync data trace messages
have occurred since the last with-sync message occurred

• Upon assertion of the event in (EVTI) pin, the first data trace message is a synchronization message
if the EIC bits of the DC1 register have enabled this feature

• Upon data trace write/read after the previous DTM message was lost due to an attempted access to
a secure memory location

• Upon data trace write/read after the previous DTM message was lost due to a collision entering the
FIFO between the DTM message and any of the following: watchpoint message, ownership trace
message, or branch trace message

Data trace synchronization messages provide the full address (without leading zeros) and ensure that
development tools fully synchronize with data trace regularly. Synchronization messages provide a
reference address for subsequent data messages, in which only the unique portion of the data trace address
is transmitted. The format for data trace write/read with sync. messages is as follows:

Figure 35-44. Data Write/Read with Sync. Message Format

DATA

MSB LSB

234

U-ADDR DSZ SRC

5

4 bits

1

TCODE (000110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

DATA

MSB LSB

234

F-ADDR DSZ SRC

5

4 bits

1

TCODE (001101 or 001110)

3 bits1–32 bits1–64 bits 6 bits

Max length = 109 bits; Min length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-58 Freescale Semiconductor

Exception conditions that result in data trace synchronization are summarized in Table 35-35.

35.6.10.4.3 DTM Operation

DTM Queueing

Nexus3+ implements a message queue for DTM messages. Messages that enter the queue are transmitted
via the auxiliary pins in the order in which they are queued.

NOTE
If multiple trace messages need to be queued at the same time, watchpoint
messages have the highest priority (WPM OTM BTM DTM).

Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard recommendations, and
is designed to reduce the number of bits transmitted for addresses of data trace messages. Refer to Section ,
“Relative Addressing for details.

Table 35-35. Data Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation At the negation of JTAG reset (JCOMP), queue pointers, counters, state machines, and registers
within the Nexus3+ module are reset. If data trace is enabled, the first data trace message is a
data write/read with sync. message.

Data Trace Enabled The first data trace message (after data trace has been enabled) is a synchronization message.

Exit from Low Power/Debug Upon exit from a low power mode or debug mode, the next data trace message is converted to a
data write/read with sync. message.

Queue Overrun An error message occurs when a new message cannot be queued due to the message queue
being full. The FIFO discards messages until it has completely emptied the queue. Once emptied,
an error message is queued. The error encoding indicates which types of messages attempted
to be queued while the FIFO was being emptied. The next DTM message in the queue is a data
write/read with sync. message.

Periodic Data Trace Sync. A forced synchronization occurs periodically after 255 data trace messages have been queued.
A data write/read with sync. message is queued. The periodic data trace message counter then
resets.

Event In If the Nexus module is enabled, a EVTI assertion initiates a data trace write/read with sync.
message upon the next data write/read (if data trace is enabled and the EIC bits of the DC1
register have enabled this feature).

Attempted Access to Secure
Memory

For devices that implement security, any attempted read or write to secure memory locations
temporarily disables data trace and causes the corresponding DTM to be lost. A subsequent
read/write queues a data trace read/write with sync. message.

Collision Priority All messages have the following priority: WPM OTM BTM DTM. A DTM message that
attempts to enter the queue at the same time as a watchpoint message or ownership trace
message or branch trace message is lost. A subsequent read/write queues a data trace
read/write with sync. message.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-59

Data Trace Windowing

Data write/read messages are enabled via the RWT1(2) field in the data trace control register (DTC) for
each DTM channel. Data trace windowing is achieved via the address range defined by the DTEA and
DTSA registers and by the RC1(2) field in the DTC. All e200z6 initiated read/write accesses that fall
inside or outside these address ranges, as programmed, are candidates to be traced.

Data Access/Instruction Access Data Tracing

The Nexus3 module is capable of tracing both instruction access data or data access data. Each trace
window can be configured for either type of data trace by setting the DI1(2) field within the data trace
control register for each DTM channel.

e200z6 Bus Cycle Special Cases

NOTE
For misaligned accesses (crossing 64-bit boundary), the access is broken
into two accesses. If both accesses are within the data trace range, two
DTMs are sent: one with a size encoding indicating the size of the original
access (that is, word), and one with a size encoding for the portion that
crossed the boundary (that is, 3-byte).

NOTE
An STM to the cache’s store buffer within the data trace range initiates a
DTM message. If the corresponding memory access causes an error, a
checkstop condition occurs. Use the checkstop condition in the
debug/development tool to invalidate the previous DTM.

Table 35-36. e200z6 Bus Cycle Cases

Special Case Action

e200z6 bus cycle aborted Cycle ignored

e200z6 bus cycle with data error (TEA) Data Trace Message discarded

e200z6 bus cycle completed without error Cycle captured & transmitted

e200z6 bus cycle initiated by Nexus3+ Cycle ignored

e200z6 bus cycle is an instruction fetch Cycle ignored

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—both 1st & 2nd transactions within data trace
range

1st & 2nd cycle captured, and 2 DTMs
transmitted (see Note)

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—1st transaction within data trace range; 2nd
transaction out of data trace range

1st cycle captured and transmitted; 2nd cycle
ignored

e200z6 bus cycle accesses misaligned data (across 64-bit
boundary)—1st transaction out of data trace range; 2nd
transaction within data trace range

1st cycle ignored; 2nd cycle capture and
transmitted

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-60 Freescale Semiconductor

35.6.10.4.4 Data Trace Timing Diagrams (12 MDO Configuration)

Figure 35-45. Data Trace—Data Write Message

Figure 35-46. Data Trace—Data Read with Sync Message

Figure 35-47. Error Message (Data Trace only encoded)

35.6.10.5 Watchpoint Support

This section details the watchpoint features of the Nexus3+ module.

35.6.10.5.1 Overview

The Nexus3+ module provides watchpoint messaging via the auxiliary pins, as defined by the IEEE-ISTO
5001-2003 standard.

Nexus3+ is not compliant with Class4 breakpoint/watchpoint requirements defined in the standard. The
breakpoint/watchpoint control register is not implemented.

MCKO

MSEO[1:0]

TCODE = 5
Source Processor = 0b0000
Data Size = 010 (Half-Word)
Relative Address = 0xA5

00

MDO[11:0]

11 00 01 00 11

000000000101 000010101000 000000010100 000011101111 000010111110

Write Data = 0xBEEF

000000001110 000011000000 000001011001 000011010001 000000101000 000000000000 000001011100

MCKO

MSEO[1:0]

TCODE = 14
Source Processor = 0b0000
Data Size = 000 (Byte)
Full Access Address = 0x0146_8ACE

00

MDO[11:0]

11

Write Data = 0x5C

01 11

MCKO

MSEO[1:0]

TCODE = 8
Source Processor = 0b0000
Error Code = 2 (Queue Overrun – DTM Only)

00

MDO[11:0]

11 11 xx

000000001000 000000001000 xxxxxxxxxxxx

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-61

35.6.10.5.2 Watchpoint Messaging

Enabling watchpoint messaging is done by setting the watchpoint enable bit in the DC1 register. Setting
the individual watchpoint sources is supported through the e200z6 Nexus1 module. The e200z6 Nexus1
module is capable of setting multiple address and/or data watch points. Please refer to the e200z6 Core
Reference Manual for more information on watchpoint initialization.

When these watch points occur, a watchpoint event signal from the Nexus1 module causes a message to
be sent to the queue to be messaged out. This message includes the watchpoint number indicating which
watchpoint caused the message.

The occurrence of any of the e200z6 defined watch points can be programmed to assert the event out
EVTO pin for one (1) period of the output clock (MCKO).

Watchpoint information is messaged out in the following format

Figure 35-48. Watchpoint Message Format.

35.6.10.5.3 Watchpoint Error Message

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards messages until it has completely emptied the queue. Once emptied, an error message is
queued. The error encoding indicates the type of messages queued to the FIFO while it was emptying.

If only a watchpoint message attempts to enter the queue while it is being emptied, the error message
incorporates the watchpoint only error encoding (00110). If an OTM and/or program trace and/or data
trace message also attempts to enter the queue while it is being emptied, the error message incorporates
error encoding (01000).

Table 35-37. Watchpoint Source Encoding

Watchpoint Source (8 bits) Watchpoint Description

0b0000_0001 e200z6 Watchpoint #0 (IAC1 from Nexus1)

0b0000_0010 e200z6 Watchpoint #1 (IAC2 from Nexus1)

0b0000_0100 e200z6 Watchpoint #2 (IAC3 from Nexus1)

0b0000_1000 e200z6 Watchpoint #3 (IAC4 from Nexus1)

0b0001_0000 e200z6 Watchpoint #4 (DAC1 from Nexus1)

0b0010_0000 e200z6 Watchpoint #5 (DAC2 from Nexus1)

0b0100_0000 e200z6 Watchpoint #6 (DCNT1 from Nexus1)

0b1000_0000 e200z6 Watchpoint #7 (DCNT2 from Nexus1)

WPHIT

MSB LSB

12

SRC TCODE (001111)

3

6 bits4 bits4 bits

Fixed length = 14 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-62 Freescale Semiconductor

NOTE
Set the OVC bits within the DC1 register to delay the CPU to alleviate (but
not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 35-15)
:

Figure 35-49. Error Message Format

35.6.10.5.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)

Figure 35-50. Watchpoint Message and Watchpoint Error Message

35.6.10.6 Nexus3+ Read/Write Access to Memory-Mapped Resources

The read/write access feature allows access to memory-mapped resources via the JTAG/OnCE port. The
read/write mechanism supports single as well as block reads and writes to e200z6 system bus resources.

The Nexus3+ module is capable of accessing resources on the e200z6 system bus, with multiple
configurable priority levels. Memory-mapped registers and other non-cached memory can be accessed via
the standard memory map settings.

All accesses are setup and initiated by the read/write access control/status register (RWCS), as well as the
read/write access address (RWA) and read/write access data registers (RWD).

Using the read/write access registers (RWCS/RWA/RWD), memory-mapped e200z6 system bus resources
can be accessed through Nexus3+. The following subsections describe the steps required to access
memory-mapped resources.

NOTE
Read/write access can only access memory mapped resources when system
reset is de-asserted.

ECODE (00110 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

MDO[1:0]

WPM:

MCKO

MSEO

TCODE = 15
Source Processor = 0b00
Watchpoint Number = 2

11 00 00 10 00 00 00 10 00 00 10 01 00

Error:
TCODE = 8
Source Processor = 0b00
Error Code = 6 (Queue Overrun – WPM Only)

ErrorWatchpoint

11

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-63

Misaligned accesses are NOT supported in the e200z6 Nexus3 module.

35.6.10.6.1 Single Write Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE” using the Nexus register index of
0x9 (see Table 35-19). Configure as follows:

– Write Address 0xnnnn_nnnn (write address)

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus Register Index
of 0x7(see Table 35-19). Configure the bits as follows:

– Access Control RWCS[AC] 0b1 (to indicate start access)

– Map Select RWCS[MAP] 0b000 (primary memory map)

– Access Priority RWCS[PR] 0b00 (lowest priority)

– Read/Write RWCS[RW] 0b1 (write access)

– Word Size RWCS[SZ] 0b0xx (32-bit, 16-bit, 8-bit)

– Access Count RWCS[CNT] 0x0000 or 0x0001 (single access)

NOTE
Access count RWCS[CNT] of 0x0000 or 0x0001 performs a single access.

3. Initialize the read/write access data register (RWD) through the access method outlined in
Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus register index of
0xA (see Table 35-19). Configure as follows:

– Write Data 0xnnnn_nnnn (write data)

4. The Nexus3+ module then arbitrates for the system bus and transfer the data value from the data
buffer RWD register to the memory mapped address in the read/write access address register
(RWA). When the access has completed without error (ERR = 0), Nexus3+ clears the DV bit in the
RWCS register. This indicates that the device is ready for the next access.

NOTE
The DV and ERR bits within the RWCS provide read/write access status to
the external development tool.

35.6.10.6.2 Block Write Access (Non-Burst Mode)

1. For a non-burst block write access, follow Steps 1, 2, and 3 outlined in Section 35.6.10.6.1, “Single
Write Access to initialize the registers,” but using a value greater than one (0x1) for the
RWCS[CNT] field.

2. The Nexus3+ module then arbitrates for the system bus and transfer the first data value from the
RWD register to the memory mapped address in the read/write access address register (RWA).
When the transfer has completed without error (ERR = 0), the address from the RWA register is
incremented to the next word size (specified in the SZ field) and the number from the CNT field is
decremented.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-64 Freescale Semiconductor

3. Repeat step 3 in Section 35.6.10.6.1, “Single Write Access” until the internal CNT value is zero
(0). When this occurs, the DV bit within the RWCS is cleared to indicate the end of the block write
access.

35.6.10.6.3 Block Write Access (Burst Mode)

1. For a burst block write access, follow Steps 1 and 2 outlined in Section 35.6.10.6.1, “Single Write
Access” to initialize the registers, using a value of four (double-words) for the CNT field and a
RWCS[SZ] field indicating 64-bit access.

2. Initialize the burst data buffer (read/write access data register) through the access method outlined
in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus register Index
of 0xA (see Table 35-19).

3. Repeat step 2 until all double-word values are written to the buffer.

NOTE
The data values must be shifted in 32-bits at a time LSB first (that is,
double-word write = two word writes to the RWD).

4. The Nexus module then arbitrates for the system bus and transfer the burst data values from the
data buffer to the system bus beginning from the memory mapped address in the read/write access
address register (RWA). For each access within the burst, the address from the RWA register is
incremented to the next double-word size (specified in the SZ field) modulo the length of the burst,
and the number from the CNT field is decremented.

5. When the entire burst transfer has completed without error (ERR = 0), the DV bit within the RWCS
is cleared to indicate the end of the block write access.

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block write access (burst or non-burst). The
original values can be read by the external development tool at any time.

35.6.10.6.4 Single Read Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus register index of
0x9 (see Table 35-19). Configure as follows:

– Read Address 0xnnnn_nnnn (read address)

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus register index
of 0x7 (see Table 35-19). Configure the bits as follows:

– Access Control RWCS[AC] 0b1 (to indicate start access)

– Map Select RWCS[MAP] 0b000 (primary memory map)

– Access Priority RWCS[PR] 0b00 (lowest priority)

– Read/Write RWCS[RW] 0b0 (read access)

– Word Size RWCS[SZ] 0b0xx (32-bit, 16-bit, 8-bit)

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-65

– Access Count RWCS[CNT] 0x0000 or 0x0001 (single access)

NOTE
Access Count (CNT) of 0x0000 or 0x0001 performs a single access.

3. The Nexus3+ module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer is completed without error (ERR = 0), Nexus
sets the DV bit in the RWCS register. This indicates that the device is ready for the next access.

4. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus
register index of 0xA (see Table 35-19).

NOTE
The DV and ERR bits within the RWCS provide Read/Write Access status
to the external development tool.

35.6.10.6.5 Block Read Access (Non-Burst Mode)

1. For a non-burst block read access, follow Steps 1 and 2 outlined in Section 35.6.10.6.4, “Single
Read Access” to initialize the registers, but using a value greater than one (0x1) for the CNT field
in the RWCS register.

2. The Nexus3+ module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer has completed without error (ERR = 0), the
address from the RWA register is incremented to the next word size (specified in the SZ field) and
the number from the CNT field is decremented.

3. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using the Nexus
register index of 0xA (see Table 35-19).

4. Repeat steps 3 and 4 in Section 35.6.10.6.4, “Single Read Access” until the CNT value is zero (0).
When this occurs, the DV bit within the RWCS is set to indicate the end of the block read access.

35.6.10.6.6 Block Read Access (Burst Mode)

1. For a burst block read access, follow Steps 1 and 2 outlined in Section 35.6.10.6.4, “Single Read
Access” to initialize the registers, using a value of four (double-words) for the CNT field and an
RWCS[SZ] field indicating 64-bit access.

2. The Nexus3+ module then arbitrates for the system bus and the burst read data is transferred from
the system bus to the data buffer (RWD register). For each access within the burst, the address from
the RWA register is incremented to the next double-word (specified in the SZ field) and the number
from the CNT field is decremented.

3. When the entire burst transfer has completed without error (ERR = 0), the DV bit within the RWCS
is set to indicate the end of the block read access.

4. The data can then be read from the burst data buffer (read/write access data register) through the
access method outlined in Section 35.6.9, “ Nexus3+ Register Access via JTAG / OnCE,” using
the Nexus register index of 0xA (see Table 35-19).

5. Repeat step 3 until all double-word values are read from the buffer.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-66 Freescale Semiconductor

NOTE
The data values must be shifted out 32-bits at a time LSB first (that is,
double-word read = two word reads from the RWD).

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block read access (burst or non-burst). The
original values can be read by the external development tool at any time.

35.6.10.6.7 Error Handling

The Nexus3+ module handles various error conditions as follows:

System Bus Read/Write Error

All address and data errors that occur on read/write accesses to the e200z6 system bus returns a transfer
error. If this occurs:

1. The access is terminated without re-trying (AC bit is cleared).

2. The ERR bit in the RWCS register is set.

3. The error message is sent (TCODE = 8) indicating read/write error.

Access Termination

The following cases are defined for sequences of the read/write protocol that differ from those described
in the above sections:

1. If the AC bit in the RWCS register is set to start read/write accesses and invalid values are loaded
into the RWD and/or RWA, then a system bus access error may occur. This is handled as described
above.

2. If a block access is in progress (all cycles not completed), and the RWCS register is written, then
the original block access is terminated at the boundary of the nearest completed access.

a) If the RWCS is written with the AC bit set, the next read/write access begins and the RWD can
be written to/ read from.

b) If the RWCS is written with the AC bit cleared, the read/write access is terminated at the nearest
completed access. This method can be used to break (early terminate) block accesses.

35.6.10.6.8 Read/Write Access Error Message

The read/write access error message is sent out when an system bus access error (read or write) has
occurred.

Error information is messaged out in the following format:

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-67

Figure 35-51. Error Message Format

35.6.10.7 Examples

The following are examples of program trace and data trace messages.

Table 35-38 illustrates an example indirect branch message with an 12 MDO / 2 MSEO configuration.

Note that T0 and S0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

• Ax = Unique portion of the address (variable)

Table 35-39 illustrates an example of direct branch message with 12 MDO / 2 MSEO.

Note that T0 and I0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

Table 35-38. Indirect Branch Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 0 I5 I4 I3 I2 0 1 End Packet

3 0 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End Packet/End Message

4 X X S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next Message

Table 35-39. Direct Branch Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

ECODE (00011)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-68 Freescale Semiconductor

Table 35-40 is an example data write message with 12 MDO / 2 MSEO configuration

Note that T0, A0, D0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Zx = Data size (fixed)

• Ax = Unique portion of the address (variable)

• Dx = Write data (variable - 8, 16 or 32-bit)

35.6.10.8 IEEE 1149.1 (JTAG) RD/WR Sequences

This section contains example JTAG/OnCE sequences used to access resources.

35.6.10.8.1 JTAG Sequence for Accessing Internal Nexus Registers

2 0 0 0 0 0 0 0 0 0 0 I3 I2 1 1 End Packet/End Message

3 X X X X S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next Message

Table 35-40. Direct Write Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last message)

1 Z1 Z0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 A3 A2 A1 A0 Z2 0 1 End Packet

3 X X X X D7 D6 D5 D4 D3 D2 D1 D0 1 1 End Packet/End Message

Table 35-41. Accessing Internal Nexus3 Registers via JTAG/OnCE

Step # TMS Pin Description

1 1 IDLE SELECT-DR_SCAN

2 0 SELECT-DR_SCAN CAPTURE-DR (Nexus command register value loaded in shifter)

3 0 CAPTURE-DR SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (rd/wr) bit and first 6 bits of Nexus reg. addr.

5 1 SHIFT-DR EXIT1-DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR UPDATE-DR (Nexus shifter is transferred to Nexus command register)

7 1 UPDATE-DR SELECT-DR_SCAN

8 0 SELECT-DR_SCAN CAPTURE-DR (Register value is transferred to Nexus shifter)

Table 35-39. Direct Branch Message Example (12 MDO / 2 MSEO) (continued)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-69

35.6.10.8.2 JTAG Sequence for Read Access of Memory-Mapped Resources

35.6.10.8.3 JTAG Sequence for Write Access of Memory-Mapped Resources

9 0 CAPTURE-DR SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR EXIT1-DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR UPDATE -DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR RUN-TEST/IDLE (transfer complete - Nexus controller to reg. select state)

Table 35-42. Accessing Memory-Mapped Resources (Reads)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access address register (RWA)

2 37 Write RWA (initialize starting read address—data input on TDI)

3 13 Nexus Command = write to read/write control/status register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value—data input on TDI)

5 13 Nexus Command = read read/write access data register (RWD)

6 37 Read RWD (data output on TDO)

7 — If CNT > 0, go back to Step #5

Table 35-43. Accessing Memory-Mapped Resources (Writes)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access control/status register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value—data input on TDI)

3 13 Nexus Command = write to read/write address register (RWA)

4 37 Write RWA (initialize starting write address—data input on TDI)

5 13 Nexus Command = read read/write access data register (RWD)

6 37 Write RWD (data output on TDO)

7 — If CNT > 0, go back to Step #5

Table 35-41. Accessing Internal Nexus3 Registers via JTAG/OnCE (continued)

Step # TMS Pin Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-70 Freescale Semiconductor

35.7 e200z0 Class 2+ Nexus Module (Nexus2+)
The Nexus2+ module provides real-time development capabilities for the device core in compliance with
the IEEE-ISTO Nexus 5001-2003 standard. This module provides development support capabilities
without requiring the use of address and data pins for internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE / Nexus 1 unit. The IEEE-ISTO
5001-2003 standard defines an extensible auxiliary port that is used in conjunction with the JTAG port in
e200z0 processors.

35.7.1 Nexus2+ Introduction

This section defines the auxiliary pin functions, transfer protocols and standard development features of
the Nexus2+ module. The development features supported are Program trace, watchpoint messaging,
ownership trace, and read/write access via the JTAG interface. The Nexus2+ module also supports two
class four features: Watchpoint Triggering and Processor Overrun Control.

NOTE
Throughout this section references are made to the auxiliary port and its
specific signals, such as MCKO, MSEO[1:0], MDO[11:0], and others. In
actual use, the device NPC module arbitrates the access of the single
auxiliary port. To simplify the description of the function of the Nexus2+
module, the interaction of the NPC is omitted and the behavior described as
if the module has its own dedicated auxiliary port.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-71

35.7.2 Nexus2+ Block Diagram

Figure 35-52. e200z0 Nexus2+ Functional Block Diagram

35.7.3 Nexus2+ Features

The Nexus2+ module is compliant with Class 2 of the IEEE-ISTO 5001-2003 standard, with additional
Class 3 and 4 features available. The following features are implemented:

• Program trace via branch trace messaging (BTM). Branch trace messaging displays program flow
discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool to
interpolate what transpires between the discontinuities. Thus static code may be traced.

• Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An ownership trace
message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to embedded processor registers and memory map via the JTAG port. This allows
for enhanced download/upload capabilities.

• Watchpoint messaging via the auxiliary pins.

• Watchpoint trigger enable of program and/or data trace messaging.

• Higher speed data input/output via the auxiliary port.

• Registers for program trace, ownership trace and watchpoint trigger.

• All features controllable and configurable via the JTAG port.

Message
Queues

NPC
Control and

I/O Logic

Memory Control

Control/Status
Registers

Registers

DMA Registers

DMA
(Read/Write)

Arbitration
Instruction

Snoop 12
MDO[12:0]

MSEO0

MSEO1

MCKO

EVTO

EVTI

TDI

TDO

TMS

TCLK

TRST

Breakpoint/
Watchpoint

Control

OnCE Debug

Nexus2+ Module
Nexus1 Module (within core CPU)

C
or

e
C

P
U

 V
ir

tu
al

 B
us

S
ys

te
m

 B
us

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-72 Freescale Semiconductor

35.7.4 Enabling Nexus2+ Operation

The Nexus module is enabled by loading a single instruction (ACCESS_AUX_TAP_Z0, as shown in
Table 34-2) into the JTAGC instruction register (IR), and then loading the corresponding OnCE OCMD
register with the NEXUS2_ACCESS instruction (refer to Table 35-2). For the e200z0 Class 2+ Nexus
module, the OCMD value is 0b00_0111_1100. Once enabled, the module is ready to accept control input
via the JTAG pins. See Section 35.4.1.1, “Enabling Nexus Clients for TAP Access” for more information.

Enabling the Nexus 2+ module automatically enables the generation of Debug Status Messages.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset state. This state
can be reached by the negation of the JCOMP pin or by cycling through the state machine using the TMS
pin. The Nexus module also is disabled if a power-on-reset (POR) event occurs. If the Nexus2+ module is
disabled, no trace output is provided, and the module disables (drives inactive) auxiliary port output pins
MDO[11:0], MSEO[1:0], MCKO. Nexus registers are not available for reads or writes.

35.7.5 TCODEs Supported by Nexus2+

The Nexus2+ pins allow for flexible transfer operations via public messages. A TCODE defines the
transfer format, the number and/or size of the packets to be transferred, and the purpose of each packet.
The IEEE-ISTO 5001-2003 standard defines a set of public messages. The Nexus2+ module supports the
public TCODEs seen in Table 35-44. Each message contains multiple packets transmitted in the order
shown in the table.

Table 35-44. Public TCODEs Supported by Nexus2+

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Debug Status 6 6 TCODE Fixed TCODE number = 0 (0x00)

4 4 SRC Fixed source processor identifier

8 8 STATUS Fixed Debug status register (DS[31:24])

Ownership Trace
Message

6 6 TCODE Fixed TCODE number = 2 (0x02)

4 4 SRC Fixed source processor identifier

32 32 PROCESS Fixed Task/Process ID tag

Program Trace —
Direct Branch

Message1

6 6 TCODE Fixed TCODE number = 3 (0x03)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

Program Trace —
Indirect Branch

Message1

6 6 TCODE Fixed TCODE number = 4 (0x04)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 U-ADDR Variable unique part of target address for taken branches/exceptions

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-73

Error Message 6 6 TCODE Fixed TCODE number = 8 (0x08)

4 4 SRC Fixed source processor identifier

5 5 ECODE Fixed error code

Program Trace —
Direct Branch

Message w/ Sync1

6 6 TCODE Fixed TCODE number = 11 (0x0B)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zeros truncated)

Program Trace —
Indirect Branch

Message w/ Sync1

6 6 TCODE Fixed TCODE number = 12 (0x0C)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zeros truncated)

Watchpoint
Message

6 6 TCODE Fixed TCODE number = 15 (0x0F)

4 4 SRC Fixed source processor identifier

4 4 WPHIT Fixed # indicating watchpoint sources

Resource Full
Message

6 6 TCODE Fixed TCODE number = 27 (0x1B)

4 4 SRC Fixed source processor identifier

4 4 RCODE Fixed resource code (Refer to RCODE values in Table 35-46) -
indicates which resource is the cause of this message

1 32 RDATA Variable branch / predicate instruction history (see Section 35.7.9.3.1,
“Branch Trace Messaging (BTM)”)

Program Trace —
Indirect Branch

History Message

6 6 TCODE Fixed TCODE number = 28 (0x1C) (see footnote 1 below)

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 U-ADDR Variable unique part of target address for taken branches/exceptions

1 32 HIST Variable branch / predicate instruction history (see Section 35.7.9.3.1,
“Branch Trace Messaging (BTM)”)

Program Trace —
Indirect Branch

History Message w/
Sync

6 6 TCODE Fixed TCODE number = 29 (0x1D)1

4 4 SRC Fixed source processor identifier

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 F-ADDR Variable full target address (leading zero (0) truncated)

1 32 HIST Variable branch / predicate instruction history (see Section 35.7.9.3.1,
“Branch Trace Messaging (BTM)”)

Table 35-44. Public TCODEs Supported by Nexus2+ (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-74 Freescale Semiconductor

Table 35-45 shows the error code encodings used when reporting an error via the Nexus2+ Error Message.

Table 35-46 shows the encodings used for resource codes for certain messages.

Program Trace —
Program Correlation

Message

6 6 TCODE Fixed TCODE number = 33 (0x21)

4 4 SRC Fixed source processor identifier

4 4 EVCODE Fixed event correlated w/ program flow (Refer to Table 35-47)

1 8 I-CNT Variable # sequential instructions executed since last taken branch

1 32 HIST Variable branch / predicate instruction history (see Section 35.7.9.3.1,
“Branch Trace Messaging (BTM)”)

1 The user can select between the two types of program trace. The advantages for each are discussed in Section 35.7.9.3.1,
“Branch Trace Messaging (BTM).” If the branch history method is selected, the shaded TCODEs above are not messaged out.

Table 35-45. Error Code Encoding (TCODE = 8)

Error Code
(ECODE)

Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Reserved

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 Program trace and ownership trace overrun

01000 (Program trace or ownership trace) and watchpoint overrun

01001–0111 Reserved

11000 BTM lost due to collision w/ higher priority message

11001–11111 Reserved

Table 35-46. RCODE values (TCODE = 27)

Resource Code
(RCODE)

Description
Resource Data

(RDATA)

0000 Program Trace Instruction Counter overflow (reached 255 and was reset) 0xFF

0001 Program Trace, Branch / Predicate Instruction History. This type of packet
is terminated by a stop bit set to 1 after the last history bit.

Branch History. This type of
packet is terminated by a stop bit
set to a 1 after the last history bit.

Table 35-44. Public TCODEs Supported by Nexus2+ (continued)

Message Name

Packet Size
(bits) Packet

Name
Packet
Type

Packet Description

Min Max

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-75

Table 35-47 shows the event code encodings used for certain messages.

35.7.6 Nexus2+ Memory Map

This section describes the Nexus2+ programmer’s model. Nexus2+ registers are accessed using the
JTAG/OnCE port in compliance with IEEE 1149.1. See Section 35.7.8, “Nexus2+ Register Access via
JTAG / OnCE” for details on Nexus2+ register access.

NOTE
Nexus2+ registers and output signals are numbered using bit 0 as the least
significant bit. This bit ordering is consistent with the ordering defined by
the IEEE-ISTO 5001 standard.

Table 35-48 details the register map for the Nexus2+ module.

Table 35-47. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)1

1 The device enters Low Power Mode when the Nexus stall mode is enabled
(NEXUS2_DC1[OVC] = 0b011) and a trace message is in danger of over-flowing
the Nexus queue.

0010–0011 Reserved for future functionality

0100 Disabling Program Trace

0101–1111 Reserved for future functionality

Table 35-48. Nexus2+ Memory Map

Index Register Description Read Address1

1 See Section 35.5.5.2.3, “NPC IEEE 1149.1-2001 (JTAG) TAP,” for a description of the read and write address usage for the
e200z6 and e200z0 Nexus Control/Status registers.

Write Address1 Section/Page

0x02 e200z0 Development Control1 (PPC_DC1) 0x04 0x05 35.7.7.1/35-76

0x03 e200z0 Development Control2 (PPC_DC2) 0x06 0x07 35.7.7.1/35-76

0x04 e200z0 Development Status (PPC_DS) 0x08 — 35.7.7.2/35-78

0x07 e200z0 Read/Write Access Control/Status (Nexus2_RWCS) 0x0E 0x0F 35.7.7.3/35-78

0x09 e200z0 Read/Write Access Address (Nexus2_RWA) 0x12 0x13 35.7.7.4/35-80

0x0A e200z0 Read/Write Access Data (Nexus2_RWD) 0x14 0x15 35.7.7.5/35-80

0x0B e200z0 Watchpoint Trigger (PPC_WT) 0x16 0x17 35.7.7.6/35-81

0xC – 0x3F Reserved

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-76 Freescale Semiconductor

35.7.7 Nexus2+ Register Definition

35.7.7.1 Development Control Register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the Nexus2+
module. Development control register 1 is shown in Figure 35-53 and its fields are described in
Table 35-49.

Nexus Reg: 0x2 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OPC MCK_DIV
EOC

0
PTM WEN

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
OVC EIC TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-53. Development Control Register 1 (DC1)

Table 35-49. DC1 Field Descriptions

Field Description

OPC1 Output port mode control.
0 Reduced-port mode configuration (not available on MPC5668x)
1 Full-port mode configuration (12 MDO pins)

MCK_DIV [1:0]1 MCKO clock divide ratio (see note below).
00 MCKO is 1x processor clock freq.
01 MCKO is 1/2x processor clock freq.
10 MCKO is 1/4x processor clock freq.
11 MCKO is 1/8x processor clock freq.

EOC[1:0] EVTO control.
00 EVTO upon occurrence of watchpoints (configured in DC2)
01 EVTO upon entry into debug mode
10 EVTO upon timestamping event
11 Reserved

PTM Program trace method.
0 Program trace uses traditional branch messages
1 Program trace uses branch history messages

WEN Watchpoint trace enable.
0 Watchpoint Messaging disabled
1 Watchpoint Messaging enabled

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-77

Development control register 2 is shown in Figure 35-54 and its fields are described in Table 35-50.

NOTE
The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

OVC[2:0] Overrun control.
000 Generate overrun messages
001–010 Reserved
011 Delay processor for BTM / DTM / OTM overruns
1XX Reserved

EIC[1:0] EVTI control.
00 EVTI is used for synchronization (program trace/ data trace)
01 EVTI is used for debug request
1X Reserved

TM[2:0] Trace mode. Any or all of the TM bits may set, enabling one or more traces.
000 No trace
1XX Program trace enabled
X1X Data trace enabled
XX1 Ownership trace enabled

1 The output port mode control bit (OPC) and MCKO divide bits (MCK_DIV) are shown for clarity. These functions are controlled
globally by the NPC port control register (PCR). These bits are writable in the PCR but have no effect.

Nexus Reg: 0x3 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EWC

0 0

W

Reset 0

Figure 35-54. Development Control Register 2 (DC2)

Table 35-50. DC2 Field Descriptions

Field Description

EWC[7:0] EVTO watchpoint configuration. Any or all of the bits in EWC may be set to configure the EVTO watchpoint.
00000000No Watchpoints trigger EVTO
1XXXXXXXWatchpoint #0 (IAC1 from Nexus1) triggers EVTO
X1XXXXXXWatchpoint #1 (IAC2 from Nexus1) triggers EVTO
XX1XXXXXWatchpoint #2 (IAC3 from Nexus1) triggers EVTO
XXX1XXXXWatchpoint #3 (IAC4 from Nexus1) triggers EVTO
XXXX1XXXWatchpoint #4 (DAC1 from Nexus1) triggers EVTO
XXXXX1XXWatchpoint #5 (DAC2 from Nexus1) triggers EVTO

Table 35-49. DC1 Field Descriptions (continued)

Field Description

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-78 Freescale Semiconductor

35.7.7.2 Development Status Register (DS)

The development status register is used to report system debug status. When debug mode is entered or
exited, or an e200z0-defined low power mode is entered, a debug status message is transmitted with
DS[31:24]. The external tool can read this register at any time.

35.7.7.3 Read/Write Access Control/Status (RWCS)

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus either while the processor is
halted, or during runtime. The RWCS register also provides read/write access status information as shown
in Table 35-52.

Nexus Reg: 0x4 Access: User read only

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DBG 0 0 0 LPC CHK 0

W

Reset 0

Figure 35-55. Development Status Register (DS)

Table 35-51. DS Field Descriptions

Field Description

DBG e200z0 CPU debug mode status.
0 CPU not in debug mode
1 CPU in debug mode (jd_debug_b signal asserted)

LPC[1:0] e200z0 CPU low power mode status.
00 Normal (run) mode
01 CPU in halted state
10 CPU in stopped state
11 Reserved

CHK e200z0 CPU checkstop status.
0 CPU not in checkstop state
1 CPU in checkstop state

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-79

Table 35-53 details the status bit encodings.

Nexus Reg: 0x7 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AC RW SZ MAP PR BST

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-56. Read/Write Access Control/Status Register (RWCS)

Table 35-52. RWCS Field Description

Field Description

AC Access control.
0 End access
1 Start access

RW Read/write select.
0 Read access
1 Write access

SZ[2:0] Word size.
000 8-bit (byte)
001 16-bit (half-word)
010 32-bit (word)
011 Reserved
100–111 Reserved (default to word)

MAP[2:0] MAP select.
000 Primary memory map
001-111 Reserved

PR[1:0] Read/write access priority.
00 Lowest access priority
01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

BST Burst control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

CNT[13:0] Access control count. Number of accesses of word size SZ

ERR Read/write access error. See Table 35-53.

DV Read/write access data valid. See Table 35-53.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-80 Freescale Semiconductor

35.7.7.4 Read/Write Access Address (RWA)

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

35.7.7.5 Read/Write Access Data (RWD)

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

Table 35-54 shows the proper placement of data into the RWD. The “X” in the RWD column indicate byte
lanes with valid data.

Table 35-53. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x9 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Address

W

Reset 0

Figure 35-57. Read/Write Access Address Register (RWA)

Nexus Reg: 0xA Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Data

W

Reset 0

Figure 35-58. Read/Write Access Data Register (RWD)

Table 35-54. RWD Data Placement for Transfers

Transfer Size and byte
offset

RWA[2:0 RWCS[SZ]
RWD

31:24 23:16 15:8 7:0

Byte XXX 000 — — — X

Half Word XX0 001 — — X X

Word X00 010 X X X X

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-81

Table 35-55 shows the mapping of RWD bytes to byte lanes of the AHB read and write data buses.

35.7.7.6 Watchpoint Trigger Register (WT)

The watchpoint trigger register allows the watch points defined within the e200z0 Nexus1 logic to trigger
actions. These watch points can control program trace enable and disable. The WT bits can be used to
produce an address related ‘window’ for triggering trace messages.

Table 35-56 details the watchpoint trigger register fields.

Table 35-55. RWD data placement for Transfers

Transfer Size and
byte offset

RWA[2:0]
RWD

31:24 23:16 15:8 7:0

Byte @000 000 — — — AHB[7:0]

Byte @001 001 — — — AHB[15:8]

Byte @010 010 — — — AHB[23:16]

Byte @011 011 — — — AHB[31:24]

Half@000 000 — — AHB[15:8] AHB[7:0]

Half@010 010 - - AHB[31:24] AHB[23:16]

Word@000 000 AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

Nexus Reg: 0xB Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTS PTE

0 0

W

Reset 0

Figure 35-59. Watchpoint Trigger Register (WT)

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-82 Freescale Semiconductor

NOTE
The WT bits control program trace only if the TM bits in the development
control register 1 (DC1) have not already been set to enable program trace.

35.7.8 Nexus2+ Register Access via JTAG / OnCE

Access to Nexus2+ register resources is enabled by loading a single instruction
(ACCESS_AUX_TAP_Z0) into the JTAGC instruction register (IR), and then loading the corresponding
OnCE OCMD register with the NEXUS2_ACCESS instruction (refer to Table 35-2). For the Nexus2+
module, the OCMD value is 0b00_0111_1100.

Once the ACCESS_AUX_TAP_Z0 instruction has been loaded, the JTAG/OnCE port allows tool/target
communications with all Nexus2+ registers according to the register map in Table 35-48.

Reading/writing of a Nexus2+ register then requires two (2) passes through the data-scan (DR) path of the
JTAG state machine (see 35.6.10.8).

1. The first pass through the DR selects the Nexus2+ register to be accessed by providing an index
(see Table 35-48), and the direction (read/write). This is achieved by loading an 8-bit value into the
JTAG data register (DR). This register has the following format:

Table 35-56. WT Field Descriptions

Field Description

PTS[2:0] Program trace start control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Reserved

PTE[2:0] Program trace end control.
000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)
111 Reserved

Nexus Register Index

(7 bits) (1 bit)

R/W

RESET Value: 0x00

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-83

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state
machine passes through the CAPTURE-DR state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state
machine passes through the UPDATE-DR state.

35.7.9 Nexus2+ Functional Description

35.7.9.1 Debug Status Messages

Debug Status Messages

NOTE
Debug Status Messages (DSMs) are enabled if the Nexus module is enabled.

Debug status messages report low power mode and debug status. Entering/exiting debug mode as well as
entering a low power mode triggers a debug status message. Debug status information is sent out in the
following format:

Figure 35-60. Debug Status Message Format

35.7.9.2 Ownership Trace

This section details the ownership trace features of the Nexus2+ module.

35.7.9.2.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. This is especially useful when the developer is not interested in
debugging at lower levels.

Nexus Register Index: Selected from values in Table 35-48

Read/Write (R/W): 0 Read
1 Write

STATUS [31:24]

MSB LSB

12

SRC TCODE (000000)

3

6 bits4 bits8 bits

Fixed length = 18 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-84 Freescale Semiconductor

35.7.9.2.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an ownership trace message (OTM).
The e200z0 processor contains a Power Architecture Book E defined process ID register within the CPU.

The process ID register is updated by the operating system software to provide task/process ID
information. The contents of this register are replicated on the pins of the processor and connected to
Nexus. The process ID register value can be accessed using the se_mfspr/se_mtspr instructions. Please
refer to the e200z0 Power ArchitectureTM Core Reference Manual for more details on the process ID
register.

One condition causes an ownership trace message: When new information is updated in the OTR register
or process ID register by the e200z0 processor, the data is latched within Nexus, and is messaged out via
the auxiliary port, allowing development tools to trace ownership flow.

Ownership trace information is messaged out in the following format:

Figure 35-61. Ownership Trace Message Format

35.7.9.2.3 OTM Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an error
message is queued. The error encoding indicates which types of messages attempted to be queued while
the FIFO was being emptied.

If only an OTM message attempts to enter the queue while it is being emptied, the error message
incorporates the OTM only error encoding (00000). If both OTM and either BTM or DTM messages
attempt to enter the queue, the error message incorporates the OTM and (program or data) trace error
encoding (00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the
error message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 35-45):

Figure 35-62. Error Message Format

PROCESS

MSB LSB

12

SRC TCODE (000010)

3

6 bits4 bits32 bits

Fixed length = 42 bits

ECODE (00000 / 00111 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-85

35.7.9.2.4 OTM Flow

Ownership trace messages are generated when the operating system writes to the e200z0 process ID
register or the memory mapped ownership trace register.

The following flow describes the OTM process:

1. The process ID register is a system control register. It is internal to the e200z0 processor and can
be accessed by using PPC instructions se_mtspr and se_mfspr. The contents of this register are
replicated on the pins of the processor and connected to Nexus.

2. OTR/process ID register reads do not cause ownership trace messages to be transmitted by the
Nexus2+ module.

3. If the periodic OTM message counter expires (after 255 queued messages without an OTM), an
OTM is sent using the latched data from the previous OTM or process ID register write.

35.7.9.3 Program Trace

This section details the program trace mechanism supported by Nexus2+ for the e200z0 processor.
Program trace is implemented via branch trace messaging (BTM) as per the Class 3 IEEE-ISTO
5001-2003 standard definition. Branch trace messaging for e200z0 processors is accomplished by
snooping the e200z0 address bus, attribute signals, and CPU status.

35.7.9.3.1 Branch Trace Messaging (BTM)

Traditional branch trace messaging facilitates program trace by providing the following types of
information:

• Messaging for taken direct branches includes how many sequential instructions were executed
since the last taken branch or exception. Direct (or indirect) branches not taken are counted as
sequential instructions.

• Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last taken branch or exception and the unique portion of the branch target
address or exception vector address.

Branch history messaging facilitates program trace by providing the following information:

• Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last predicate instruction, taken indirect branch, or exception, the unique
portion of the branch target address or exception vector address, as well as a branch/predicate
instruction history field. Each bit in the history field represents a direct branch or predicated
instruction where a value of one (1) indicates taken, and a value of zero (0) indicates not taken.
Certain instructions (evsel) generate a pair of predicate bits that are both reported as consecutive
bits in the history field.

e200z0 Indirect Branch Message Instructions

Table 35-57 shows the types of instructions and events that cause indirect branch messages or branch
history messages to be encoded.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-86 Freescale Semiconductor

e200z6 Direct Branch Message Instructions

Table 35-58 shows the types of instructions that cause direct branch messages or toggle a bit in the
instruction history buffer to be messaged out in a resource full message or branch history message.

BTM Using Branch History Messages

Traditional BTM messaging can accurately track the number of sequential instructions between branches,
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch history messaging solves this problem by providing a predicated instruction history field in each
indirect branch message. Each bit in the history represents a predicated instruction or direct branch. A
value of one (1) indicates the conditional instruction was executed or the direct branch was taken. A value
of zero (0) indicates the conditional instruction was not executed or the direct branch was not taken.
Certain instructions (evsel) generate a pair of predicate bits that are both reported as consecutive bits in the
history field.

Branch history messages solve predicated instruction tracking and save bandwidth since only indirect
branches cause messages to be queued.

BTM Using Traditional Program Trace Messages

Based on the PTM bit in the DC register (DC[PTM]), program tracing can utilize either branch history
messages (DC[PTM] = 1) or traditional direct/indirect branch messages (DC[PTM] = 0).

Branch history saves bandwidth and keeps consistency between methods of program trace, yet may lose
temporal order between BTM messages and other types of messages. Since direct branches are not
messaged, but are instead included in the history field of the indirect branch history message, other types
of messages may enter the FIFO between branch history messages. The development tool cannot
determine the ordering of “events” that occurred with respect to direct branches simply by the order in
which messages are sent out.

Table 35-57. Indirect Branch Message Sources

Source of Indirect Branch Message Instructions

Taken branch relative to a register value se_bctr, se_bctrl, se_blr, se_blrl

System Call / Trap exceptions taken sc, se_sc, tw

Return from interrupts / exceptions se_rfi, se_rfci, se_rfdi

Exit from reset with Program Trace Enabled Indirect branch with Sync,
target address is initial instruction, count = 1

Table 35-58. Direct Branch Message Sources

Source of Direct Branch Message Instructions

Taken direct branch instructions se_b. se_bc, se_bl, e_b, e_bc,
e_bl, e_bcl

Instruction Synchronize se_isync

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-87

Traditional BTM messages maintain their temporal ordering because each event that can cause a message
to be queued enters the FIFO in the order it occurred and is messaged out in that same order.

35.7.9.3.2 BTM Message Formats

The e200z0 Nexus2+ module supports three types of traditional BTM messages—direct, indirect, and
synchronization messages. It supports two types of branch history BTM messages—indirect branch
history, and indirect branch history with synchronization messages. Debug status messages and error
messages are also supported.

Indirect Branch Messages (History)

Indirect branches include all taken branches whose destination is determined at run time, interrupts and
exceptions. If DC[PTM] is set, indirect branch information is messaged out in the following format:

Figure 35-63. Indirect Branch Message (History) Format

Indirect Branch Messages (Traditional)

If DC[PTM] is cleared, indirect branch information is messaged out in the following format:

Figure 35-64. Indirect Branch Message Format

Direct Branch Messages (Traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the
instruction opcode. Direct branch information is messaged out in the following format:

Figure 35-65. Direct Branch Message Format

HIST

MSB LSB

234

U-ADDR I-CNT SRC

5

4 bits

1

TCODE (011100)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

MSB LSB

234

U-ADDR I-CNT SRC

4 bits

1

TCODE (000100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

I-CNT

MSB LSB

12

SRC TCODE (000011)

3

6 bits4 bits1–8 bits

Max length = 18 bits; Min length = 11 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-88 Freescale Semiconductor

NOTE
When DC[PTM] is set, direct branch messages are not transmitted. Instead,
each direct branch or predicated instruction toggles a bit in the history
buffer.

Resource Full Messages

The resource full message is used in conjunction with the branch history messages. The resource full
message is generated when the internal branch/predicate history buffer is full, or if the BTM Instruction
sequence counter (I-CNT) overflows. If synchronization is needed at the time this message is generated,
the synchronization is delayed until the next branch trace message that is not a resource full message.

The current value of the history buffer is transmitted as part of the resource full message. This information
can be concatenated by the tool with the branch/predicate history information from subsequent messages
to obtain the complete branch history for a message. The internal history value is reset by this message,
and the I-CNT value is reset as a result of a bit being added to the history buffer.

Figure 35-66. Resource Full Message Format

Table 35-59 shows the RCODE encodings and RDATA information used for Resource Full messages.

Program Correlation Messages

Program correlation messages are used to correlate events to the program flow that may not be associated
with the instruction stream. The following events result in a PCM when program trace is enabled:

• When the CPU enters debug mode, a PCM is generated. The instruction count and history
information provided by the PCM can be used to determine the last sequence of instructions
executed prior to debug mode entry.

• When the CPU enters a low power mode in which instructions are no longer executed, a PCM is
generated. The instruction count and history information provided by the PCM can be used to
determine the last sequence of instructions executed prior to low power mode entry.

• Whenever program trace is disabled by any means, a PCM is generated. The instruction count and
history information provided by the PCM can be used to determine the last sequence of instructions
executed prior to disabling program trace. A second PCM is generated on this event if there has
been an execution mode switch into or out of a sequence of VLE instructions. This VLE state

Table 35-59. RCODE Encoding

RCODE Description RDATA field

0000 Program Trace Instruction counter reached 255 and was reset. 0xFF

0001 Program Trace, Branch / Predicate Instruction History full. Branch HIstory.
This type of packet is terminated by a stop bit set to
1 after the last history bit.

TCODE (011011)RCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 46 bits; Min length = 15 bits

(1–32 bits)

RDATA

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-89

information allows the development tool to interpret any preceding instruction count or history
information in the proper context.

• Whenever the CPU crosses a page boundary that results in an execution mode switch into or out
of a sequence of VLE instructions, a PCM is generated. The PCM effectively breaks up any
running instruction count and history information between the two modes of operation so that the
instruction count and history information can be processed by the development tool in the proper
context.

• When using program trace in history mode, when a direct branch results in an execution mode
switch into or out of a sequence of VLE instructions, a PCM is generated. The PCM effectively
breaks up any running history information between the two modes of operation so that the history
information can be processed by the development tool in the proper context.

Program correlation is messaged out in the following format:

Figure 35-67. Program Correlation Message Format

BTM Overflow Error Messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards incoming messages until it has completely emptied the queue. Once emptied, an error
message is queued. The error encoding indicates which types of messages attempted to be queued while
the FIFO was being emptied.

If only a program trace message attempts to enter the queue while it is being emptied, the error message
incorporates the program trace only error encoding (00001). If both OTM and program trace messages
attempt to enter the queue, the error message incorporates the OTM and program trace error encoding
(00111). If a watchpoint also attempts to be queued while the FIFO is being emptied, then the error
message incorporates error encoding (01000).

NOTE
The OVC bits within the DC1 register can be set to delay the CPU in order
to alleviate (but not eliminate) potential overrun situations.

 Error information is messaged out in the following format:
:

Figure 35-68. Error Message Format

HIST

MSB LSB

234

I-CNT EVCODE SRC

5

4 bits

1

TCODE (100001)

4 bits1–8 bits1–32 bits 6 bits

Max length = 54 bits; Min length = 16 bits

ECODE (00001 / 00111 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-90 Freescale Semiconductor

Program Trace Synchronization Messages

A program trace direct/indirect branch with sync message is messaged via the auxiliary port (provided
program trace is enabled) for the following conditions (see Table 35-60):

• Initial program trace message upon the first direct/indirect branch after exit from system reset or
whenever program trace is enabled

• Upon direct/indirect branch after returning from a CPU low power state

• Upon direct/indirect branch after returning from debug mode

• Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace
message), provided program trace is enabled

• Upon direct/indirect branch after the periodic program trace counter has expired indicating 255
without-sync program trace messages have occurred since the last with-sync message occurred

• Upon direct/indirect branch after assertion of the event in (EVTI) pin if the EIC bits within the DC1
register have enabled this feature

• Upon direct/indirect branch after the sequential instruction counter has expired indicating 255
instructions have occurred between branches

• Upon direct/indirect branch after a BTM message was lost due to an attempted access to a secure
memory location.

• Upon direct/indirect branch after a BTM message was lost due to a collision entering the FIFO
between the BTM message and either a watchpoint message or an ownership trace message

If the Nexus2+ module is enabled at reset, a EVTI assertion initiates a program trace direct/indirect branch
with sync message (if program trace is enabled) upon the first direct/indirect branch. The format for
program trace direct/indirect branch with sync messages is as follows:

Figure 35-69. Direct/Indirect Branch with Sync Message Format

The formats for program trace direct/indirect branch with sync. messages and indirect branch history with
sync. messages are as follows

:

Figure 35-70. Indirect Branch History with Sync. Message Format

Exception conditions that result in program trace synchronization are summarized in Table 35-60.

MSB LSB

234

F-ADDR I-CNT SRC

4 bits

1

TCODE (001011 or 001100)

1–8 bits1–32 bits 6 bits

Max length = 50 bits; Min length = 12 bits

HIST

MSB LSB

234

F-ADDR I-CNT SRC

5

4 bits

1

TCODE (011101)

1–8 bits1–32 bits1–32 bits 6 bits

Max length = 82 bits; Min length = 13 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-91

35.7.9.3.3 BTM Operation

Enabling Program Trace

Both types of branch trace messaging are enabled using one of the following methods:

• Setting the TM field of the DC1 register to enable program trace (DC1[TM])

• Using the PTS field of the WT register to enable program trace on watchpoint hits (e200z0 watch
points are configured within the CPU)

Table 35-60. Program Trace Exception Summary

Exception Condition Exception Handling

System Reset Negation At the negation of JTAG reset (JCOMP), queue pointers, counters, state machines, and
registers within the Nexus2+ module are reset. Upon the first branch out of system
reset (if program trace is enabled), the first program trace message is a direct/indirect
branch with sync. message.

Program Trace Enabled The first program trace message (after program trace has been enabled) is a
synchronization message.

Exit from Low Power/Debug Upon exit from a low power mode or debug mode, the next direct/indirect branch is
converted to a direct/indirect branch with sync. message.

Queue Overrun An error message occurs when a new message cannot be queued due to the message
queue being full. The FIFO discards messages until it has completely emptied the
queue. Once emptied, an error message is queued. The error encoding indicates which
types of messages attempted to be queued while the FIFO was being emptied. The
next BTM message in the queue is a direct/indirect branch with sync. message.

Periodic Program Trace Sync. A forced synchronization occurs periodically after 255 program trace messages have
been queued. A direct/indirect branch with sync. message is queued. The periodic
program trace message counter then resets.

Event In If the Nexus module is enabled, an EVTI assertion initiates a direct/indirect branch with
sync. message upon the next direct/indirect branch (if program trace is enabled and the
EIC bits of the DC1 register have enabled this feature).

Sequential Instruction Count Overflow When the sequential instruction counter reaches its maximum count (as many as 255
sequential instructions may be executed), a forced synchronization occurs. The
sequential counter then resets. A program trace direct/indirect branch with
sync.message is queued upon execution of the next branch.

Attempted Access to Secure Memory For devices that implement security, any attempted branch to secure memory locations
temporarily disables program trace and causes the corresponding BTM to be lost. The
following direct/indirect branch queues a direct/indirect branch with sync. message. The
count value within this message is inaccurate since the re-enable of program trace is
not necessarily aligned on an instruction boundary.

Collision Priority All messages have the following priority: WPM OTM BTM DTM. A BTM
message that attempts to enter the queue at the same time as a watchpoint message
or ownership trace message is lost, and an error message is sent indicating the BTM
was lost. The following direct/indirect branch queues a direct/indirect branch with sync.
message. The count value within this message reflects the number of sequential
instructions executed after the last successful BTM Message was generated. This
count includes the branch that did not generate a message due to the collision.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-92 Freescale Semiconductor

Relative Addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard recommendations, and
is designed to reduce the number of bits transmitted for addresses of indirect branch messages.

The address transmitted is relative to the target address of the instruction that triggered the previous
indirect branch (or sync) message. It is generated by XOR-ing the new address with the previous address,
and then using only the results up to the most significant 1 in the result. To recreate this address, an XOR
of the (most-significant 0-padded) message address with the previously decoded address gives the current
address.

Previous address (A1) = 0x0003_FC01, New address (A2) = 0x0003_F365

Figure 35-71. Relative Address Generation and Re-creation

Execution Mode Indication

In order for a development tool to properly interpret instruction count and history information, it must be
aware of the execution mode context of that information. VLE instructions are interpreted differently from
non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the reconstructed
address field. A value of ‘0’ indicates that preceding instruction count and history information should be
interpreted in a non-VLE context. A value of ‘1’ indicates that the preceding instruction count and history
information should be interpreted in a VLE context. Note that when a branch results in an execution mode
switch, the program trace message resulting from that branch indicates the previous execution state. The
new state is not signaled until the next program trace message.

In some cases, a Program Correlation Message is generated to indicate execution mode status.

Refer to Section , “Program Correlation Messages for more information on these cases.

Branch/Predicate Instruction History (HIST)

If DC[PTM] is set, BTM messaging uses the branch history format. The branch history (HIST) packet in
these messages provides a history of direct branch execution used for reconstructing the program flow.
This packet is implemented as a left-shifting shift register. The register is always pre-loaded with a value

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1 A2 = 0000 0000 0000 0000 0000 1111 0110 0100

Address Message (M1) = 1111 0110 0100

Address Re-creation:

A1 M1 = A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-93

of one (1). This bit acts as a stop bit so that the development tools can determine which bit is the end of
the history information. The pre-loaded bit itself is not part of the history, but is transmitted with the
packet.

A value of one (1) is shifted into the history buffer on a taken branch (condition or unconditional) and on
any instruction whose predicate condition executed as true. A value of zero (0) is shifted into the history
buffer on any instruction whose predicate condition executed as false as well as on branches not taken.
This includes indirect as well as direct branches not taken. For the evsel instruction, two bits are shifted
in, corresponding to the low element (shifted in first) and the high element (shifted in second) conditions.

Sequential Instruction Count (I-CNT)

The I-CNT packet, is present in all BTM messages. For traditional branch messages, I-CNT represents the
number of sequential instructions, or non-taken branches in between direct/indirect branch messages.

For branch history messages, I-CNT represents the number of instructions executed since the last
taken/non-taken direct branch, last taken indirect branch or exception. Not taken indirect branches are
considered sequential instructions and cause the instruction count to increment. I-CNT also represents the
number of instructions executed since the last predicate instruction.

The sequential instruction counter overflows when its value reaches 255. The next BTM message is
converted to a synchronization type message.

Program Trace Queueing

Nexus2+ implements a message queue. Messages that enter the queue are transmitted via the auxiliary pins
in the order in which they are queued.

NOTE
If multiple trace messages need to be queued at the same time, Watchpoint
Messages have the highest priority (WPM OTM BTM DTM).

35.7.9.3.4 Program Trace Timing Diagrams

Figure 35-72. Program Trace (MDO = 12)—Indirect Branch Message (Traditional)

MCKO

MSEO[1:0]

TCODE = 4
Source Processor = 0b0000
Number of Sequence Instructions = 128
Relative Address = 0xA5

01 1100

MDO[11:0] 0000 0010 0000 0000 1010 01010000 0000 0100

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-94 Freescale Semiconductor

Figure 35-73. Program Trace (MDO = 2)—Indirect Branch Message (History)

Figure 35-74. Program Trace—Direct Branch (Traditional) and Error Messages

Figure 35-75. Program Trace—Indirect Branch with Sync. Message

35.7.9.4 Watchpoint Support

This section details the watchpoint features of the Nexus2+ module.

35.7.9.4.1 Overview

The Nexus2+ module provides watchpoint messaging via the auxiliary pins, as defined by the IEEE-ISTO
5001-2003 standard.

MDO[1:0]

TCODE = 28

MCKO

MSEO

Source Processor = 0b0000
Number of Sequential Instructions = 0
Relative Address = 0xA5
Branch History = 0b1010_0101 (with Stop)

11 01 00 00 00 01 01 10 10 01 01 10 1000 00

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

MDO[1:0]

DBM:

MCKO

MSEO

TCODE = 3
Source Processor = 0b0000
Number of Sequential Instructions = 3

00 00 00 00 11 00 00 10 00 00 00 01 00 00

Error:
TCODE = 8
Source Processor = 0b0000
Error Code = 1 (Queue Overrun – BTM Only)

ErrorDirect Branch

11

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

MDO[1:0]

TCODE = 12

MCKO

MSEO

Source Processor = 0b0000
Number of Sequential Instructions = 3
Full Target Address = 0xDEAD_FACE

00 11 00 00 00 11 10 11 00 11 10 10 11 11 01 11 10 10 10 11 01 11 00

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-95

Nexus2+ is not compliant with Class4 breakpoint/watchpoint requirements defined in the standard. The
breakpoint/watchpoint control register is not implemented.

35.7.9.4.2 Watchpoint Messaging

Enabling watchpoint messaging is done by setting the watchpoint enable bit in the DC1 register. Setting
the individual watchpoint sources is supported through the e200z0 Nexus1 module. The e200z0 Nexus1
module is capable of setting multiple address and/or data watch points. Please refer to the e200z0Core
Reference Manual for more information on watchpoint initialization.

When these watch points occur, a watchpoint event signal from the Nexus1 module causes a message to
be sent to the queue to be messaged out. This message includes the watchpoint number indicating which
watchpoint caused the message.

The occurrence of any of the e200z0 defined watch points can be programmed to assert the event out
EVTO pin for one (1) period of the output clock (MCKO).

Watchpoint information is messaged out in the following format

Figure 35-76. Watchpoint Message Format.

35.7.9.4.3 Watchpoint Error Message

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO discards messages until it has completely emptied the queue. Once emptied, an error message is
queued. The error encoding indicates the type of messages queued to the FIFO while it was emptying.

If only a watchpoint message attempts to enter the queue while it is being emptied, the error message
incorporates the watchpoint only error encoding (00110). If an OTM and/or program trace and/or data
trace message also attempts to enter the queue while it is being emptied, the error message incorporates
error encoding (01000).

Table 35-61. Watchpoint Source Encoding

Watchpoint Source (8 bits) Watchpoint Description

0b0000_0001 e200z0 Watchpoint #0 (IAC1 from Nexus1)

0b0000_0010 e200z0 Watchpoint #1 (IAC2 from Nexus1)

0b0000_0100 e200z0 Watchpoint #2 (IAC3 from Nexus1)

0b0000_1000 e200z0 Watchpoint #3 (IAC4 from Nexus1)

0b0001_0000 e200z0 Watchpoint #4 (DAC1 from Nexus1)

0b0010_0000 e200z0 Watchpoint #5 (DAC2 from Nexus1)

WPHIT

MSB LSB

12

SRC TCODE (001111)

3

6 bits4 bits8 bits

Fixed length = 18 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-96 Freescale Semiconductor

NOTE
Set the OVC bits within the DC1 register to delay the CPU to alleviate (but
not eliminate) potential overrun situations.

Error information is messaged out in the following format (see Table 35-47)
:

Figure 35-77. Error Message Format

35.7.9.4.4 Watchpoint Timing Diagram (2 MDO/1 MSEO Configuration)

Figure 35-78. Watchpoint Message and Watchpoint Error Message

35.7.9.5 Nexus2+ Read/Write Access to Memory-Mapped Resources

The read/write access feature allows access to memory-mapped resources via the JTAG/OnCE port. The
read/write mechanism supports single as well as block reads and writes to e200z0 system bus resources.

The Nexus2+ module is capable of accessing resources on the e200z0 system bus, with multiple
configurable priority levels. Memory-mapped registers and other non-cached memory can be accessed via
the standard memory map settings.

All accesses are setup and initiated by the read/write access control/status register (RWCS), as well as the
read/write access address (RWA) and read/write access data registers (RWD).

Using the read/write access registers (RWCS/RWA/RWD), memory-mapped e200z0 system bus resources
can be accessed through Nexus2+. The following subsections describe the steps required to access
memory-mapped resources.

NOTE
Read/write access can only access memory mapped resources when system
reset is de-asserted.

ECODE (00110 / 01000)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

MDO[1:0]

WPM:

MCKO

MSEO

TCODE = 15
Source Processor = 0b00
Watchpoint Number = 2

11 00 00 10 00 00 00 10 00 00 10 01 00

Error:
TCODE = 8
Source Processor = 0b00
Error Code = 6 (Queue Overrun – WPM Only)

ErrorWatchpoint

11

Note: This is representative only. MPC5668x supports only Full-Port Mode with 12 MDO pins.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-97

Misaligned accesses are NOT supported in the e200z0 Nexus2+ module.

35.7.9.5.1 Single Write Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE” using the Nexus register index of
0x9 (see Table 35-48). Configure as follows:

– Write Address 0xnnnn_nnnn (write address)

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus Register Index
of 0x7(see Table 35-48). Configure the bits as follows:

– Access Control RWCS[AC] 0b1 (to indicate start access)

– Map Select RWCS[MAP] 0b000 (primary memory map)

– Access Priority RWCS[PR] 0b00 (lowest priority)

– Read/Write RWCS[RW] 0b1 (write access)

– Word Size RWCS[SZ] 0b0xx (32-bit, 16-bit, 8-bit)

– Access Count RWCS[CNT] 0x0000 or 0x0001 (single access)

NOTE
Access count RWCS[CNT] of 0x0000 or 0x0001 performs a single access.

3. Initialize the read/write access data register (RWD) through the access method outlined in
Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus register index of
0xA (see Table 35-48). Configure as follows:

– Write Data 0xnnnn_nnnn (write data)

4. The Nexus2+ module then arbitrates for the system bus and transfer the data value from the data
buffer RWD register to the memory mapped address in the read/write access address register
(RWA). When the access has completed without error (ERR = 0), Nexus2+ clears the DV bit in the
RWCS register. This indicates that the device is ready for the next access.

NOTE
The DV and ERR bits within the RWCS provide read/write access status to
the external development tool.

35.7.9.5.2 Block Write Access

1. For a non-burst block write access, follow Steps 1, 2, and 3 outlined in Section 35.7.9.5.1, “Single
Write Access to initialize the registers,” but using a value greater than one (0x1) for the
RWCS[CNT] field.

2. The Nexus2+ module then arbitrates for the system bus and transfer the first data value from the
RWD register to the memory mapped address in the read/write access address register (RWA).
When the transfer has completed without error (ERR = 0), the address from the RWA register is
incremented to the next word size (specified in the SZ field) and the number from the CNT field is
decremented.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-98 Freescale Semiconductor

3. Repeat step 3 in Section 35.7.9.5.1, “Single Write Access” until the internal CNT value is zero (0).
When this occurs, the DV bit within the RWCS is cleared to indicate the end of the block write
access.

35.7.9.5.3 Single Read Access

1. Initialize the read/write access address register (RWA) through the access method outlined in
Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus register index of
0x9 (see Table 35-48). Configure as follows:

– Read Address 0xnnnn_nnnn (read address)

2. Initialize the read/write access control/status register (RWCS) through the access method outlined
in Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus register index of
0x7 (see Table 35-48). Configure the bits as follows:

– Access Control RWCS[AC] 0b1 (to indicate start access)

– Map Select RWCS[MAP] 0b000 (primary memory map)

– Access Priority RWCS[PR] 0b00 (lowest priority)

– Read/Write RWCS[RW] 0b0 (read access)

– Word Size RWCS[SZ] 0b0xx (32-bit, 16-bit, 8-bit)

– Access Count RWCS[CNT] 0x0000 or 0x0001 (single access)

NOTE
Access Count (CNT) of 0x0000 or 0x0001 performs a single access.

3. The Nexus2+ module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer is completed without error (ERR = 0), Nexus
sets the DV bit in the RWCS register. This indicates that the device is ready for the next access.

4. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus
register index of 0xA (see Table 35-48).

NOTE
The DV and ERR bits within the RWCS provide Read/Write Access status
to the external development tool.

35.7.9.5.4 Block Read Access

1. For a non-burst block read access, follow Steps 1 and 2 outlined in Section 35.7.9.5.3, “Single
Read Access” to initialize the registers, but using a value greater than one (0x1) for the CNT field
in the RWCS register.

The Nexus2+ module then arbitrates for the system bus and the read data is transferred from the
system bus to the RWD register. When the transfer has completed without error (ERR = 0), the
address from the RWA register is incremented to the next word size (specified in the SZ field) and
the number from the CNT field is decremented.

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-99

2. The data can then be read from the read/write access data register (RWD) through the access
method outlined in Section 35.7.8, “Nexus2+ Register Access via JTAG / OnCE,” using the Nexus
register index of 0xA (see Table 35-48).

3. Repeat steps 3 and 4 in Section 35.7.9.5.3, “Single Read Access” until the CNT value is zero (0).
When this occurs, the DV bit within the RWCS is set to indicate the end of the block read access.

35.7.9.5.5 Error Handling

The Nexus2+ module handles various error conditions as follows:

System Bus Read/Write Error

All address and data errors that occur on read/write accesses to the e200z0 system bus return a transfer
error. If this occurs:

1. The access is terminated without re-trying (AC bit is cleared).

2. The ERR bit in the RWCS register is set.

3. The error message is sent (TCODE = 8) indicating read/write error.

Access Termination

The following cases are defined for sequences of the read/write protocol that differ from those described
in the above sections:

1. If the AC bit in the RWCS register is set to start read/write accesses and invalid values are loaded
into the RWD and/or RWA, then a system bus access error may occur. This is handled as described
above.

2. If a block access is in progress (all cycles not completed), and the RWCS register is written, then
the original block access is terminated at the boundary of the nearest completed access.

a) If the RWCS is written with the AC bit set, the next read/write access begins and the RWD can
be written to/ read from.

b) If the RWCS is written with the AC bit cleared, the read/write access is terminated at the nearest
completed access. This method can be used to break (early terminate) block accesses.

35.7.9.5.6 Read/Write Access Error Message

The read/write access error message is sent out when an system bus access error (read or write) has
occurred.

Error information is messaged out in the following format:

Figure 35-79. Error Message Format

ECODE (00011)

MSB LSB

12

SRC TCODE (001000)

3

6 bits4 bits5 bits

Fixed length = 15 bits

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-100 Freescale Semiconductor

35.7.9.6 Examples

The following are examples of program trace and data trace messages.

Table 35-62 illustrates an example indirect branch message with an 12MDO / 2 MSEO configuration.

Note that T0 and S0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

• Ax = Unique portion of the address (variable)

Table 35-63 illustrates an example of direct branch message with 12 MDO / 2 MSEO.

Note that T0 and I0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of instructions (variable)

Table 35-64 an example data write message with 12 MDO / 2 MSEO configuration.

Table 35-62. Indirect Branch Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last
message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 0 I5 I4 I3 I2 0 1 End Packet

3 0 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End Packet/End
Message

4 X X S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next
Message

Table 35-63. Direct Branch Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last
message)

1 I1 I0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 0 0 0 I3 I2 1 1 End Packet/End
Message

3 X X X X S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start of Next
Message

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-101

Note that T0, A0, D0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Zx = Data size (fixed)

• Ax = Unique portion of the address (variable)

• Dx = Write data (variable 8-bit, 16-bit, or 32-bit)

35.7.9.7 IEEE 1149.1 (JTAG) RD/WR Sequences

This section contains example JTAG/OnCE sequences used to access resources.

35.7.9.7.1 JTAG Sequence for Accessing Internal Nexus Registers

Table 35-64. Direct Write Message Example (12 MDO / 2 MSEO)

Clock
MDO[11:0]

MSEO[1:0] State
11 10 9 8 7 6 5 4 3 2 1 0

0 X X X X X X X X X X X X 1 1 Idle (or end of last
message)

1 Z1 Z0 S3 S2 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 0 0 0 A3 A2 A1 A0 Z2 0 1 End Packet

3 X X X X D7 D6 D5 D4 D3 D2 D1 D0 1 1 End Packet/End
Message

Table 35-65. Accessing Internal Nexus2+ Registers via JTAG/OnCE

Step # TMS Pin Description

1 1 IDLE SELECT-DR_SCAN

2 0 SELECT-DR_SCAN CAPTURE-DR (Nexus command register value loaded in shifter)

3 0 CAPTURE-DR SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (rd/wr) bit and first 6 bits of Nexus reg. addr.

5 1 SHIFT-DR EXIT1-DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR UPDATE-DR (Nexus shifter is transferred to Nexus command register)

7 1 UPDATE-DR SELECT-DR_SCAN

8 0 SELECT-DR_SCAN CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR EXIT1-DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR UPDATE -DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR RUN-TEST/IDLE (transfer complete - Nexus controller to reg. select state)

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-102 Freescale Semiconductor

35.7.9.7.2 JTAG Sequence for Read Access of Memory-Mapped Resources

35.7.9.7.3 JTAG Sequence for Write Access of Memory-Mapped Resources

35.8 Debug Implementation
This section describes the practical implementation of the debug port, its management, and the
multiplexing strategy of its pads.

Standard JTAG (compliant to IEEE 1149.1) support is provided on all versions of the MPC5668x, and is
described in Chapter 34, “IEEE 1149.1 Test Access Port Controller (JTAGC).” The Nexus Debug Interface
(NDI), which is composed of the Nexus2+ (N2+) and Nexus3 (N3) clients running on the two cores, is
available on the 256-pin package. This provides real-time development capabilities in compliance with the
IEEE-ISTO 5001-2003 standard.

35.9 Debug Capabilities

The debug classifications according to the Nexus consortium are shown in Figure 35-80.

Table 35-66. Accessing Memory-Mapped Resources (Reads)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access address register (RWA)

2 37 Write RWA (initialize starting read address—data input on TDI)

3 13 Nexus Command = write to read/write control/status register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value—data input on TDI)

5 13 Nexus Command = read read/write access data register (RWD)

6 37 Read RWD (data output on TDO)

7 — If CNT > 0, go back to Step #5

Table 35-67. Accessing Memory-Mapped Resources (Writes)

Step # TCLK clocks Description

1 13 Nexus Command = write to read/write access control/status register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value—data input on TDI)

3 13 Nexus Command = write to read/write address register (RWA)

4 37 Write RWA (initialize starting write address—data input on TDI)

5 13 Nexus Command = read read/write access data register (RWD)

6 37 Write RWD (data output on TDO)

7 — If CNT > 0, go back to Step #5

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-103

Figure 35-80. Nexus Debug Classifications

The MPC5668x supports the Class 2+ and Class 3 debug features listed in Table 35-68

These debug capabilities are available at room temperature (25° C) and high temperature (125° C) when
the MPC5668x is at maximum speed.

Table 35-68. Debug Requirements

Feature Class 1 Class 2 Class 2+ Class 3 Class 3+ Class 4

Static debug X X X X X X

Set breakpoints/watchpoints X X X X X X

Watchpoint messaging X X X X X X

Ownership trace — X X X X X

Program trace (BTM) — X X X X X

Port replacement — optional — optional optional optional

Data trace (write only) — — — X X X

Dynamic memory read/write — — X X X X

Data trace (read/write) — — — optional optional optional

Data acquisition — — — optional optional optional

Memory substitution — — — — — X

Complex triggering — — X — X X

External memory substitution — — — — — optional

Optional
feature

Static Debug
r/w regs & mem

start/stop processor
enter/exit debug mode

Set break-/watchpoints

Watchpoint messaging

Ownership trace

Program Trace Port replacement

Data trace (write only)

Dynamic memory r/w

Data trace (read/write)

Data acquisition

Complex triggering

Memory substitution Ext. mem. substitution

Class 3

Class 4

Class 2

Class 1

Mandatory
feature

Optional
feature

Static Debug
r/w regs & mem

start/stop processor
enter/exit debug mode

Set break-/watchpoints

Watchpoint messaging

Ownership trace

Program Trace Port replacement

Data trace (write only)

Dynamic memory r/w

Data trace (read/write)

Data acquisition

Complex triggering

Memory substitution Ext. mem. substitution

Class 3

Class 4

Class 2

Class 1

Mandatory
feature

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-104 Freescale Semiconductor

The TAP controller operates at both 3.3 V and 5 V, according to the device power supply, but the Nexus
output port operates only at 3.3 V maximum and is provided only on the 256MAPBGA emulation
package.

Based on the following assumptions:

• Average message length: 20 bits

• 1 jump every 10 instructions

• MCKO capable of supporting 1/2 the system clock frequency (64 MHz maximum)

• MDO pins operate at half of the system clock speed

It is required to have 12 dedicated medium MDO pins. The N3/N2+ auxiliary port is bonded out only in
the 256-pin MAPBGA package.

Boundary scan test is supported.

35.10 Debug Port

The debug port is composed of a total number of 22 pads as described in the following Table 35-69. The
five JTAG pads are available on every device of the family and are not multiplexed.

The EVTO and EVTI functions are bonded out on dedicated 3.3 V pads on the 256MAPBGA. They are
provided on the 208MAPBGA on 5 V pads multiplexed with GPIO. The remaining NDI pins are available
as dedicated 3.3 V pads only on the 256MAPBGA package.

Table 35-69. Pin/Pad Multiplexing

Pin Debug Port Multiplexed?
Available on
208 MPABGA

Available on
256 MAPBGA

TDI JTAG Dedicated Dedicated Dedicated

TDO JTAG Dedicated Dedicated Dedicated

TMS/ JTAG Dedicated Dedicated Dedicated

TCK JTAG Dedicated Dedicated Dedicated

JCOMP JTAG Dedicated Dedicated Dedicated

MCKO N2+/3 Aux port Dedicated NO Dedicated

MDO[0] N2+/3 Aux port Dedicated NO Dedicated

MDO[1] N2+/3 Aux port Dedicated NO Dedicated

MDO[2] N2+/3 Aux port Dedicated NO Dedicated

MDO[3] N2+/3 Aux port Dedicated NO Dedicated

MDO[4] N2+/3 Aux port Dedicated NO Dedicated

MDO[5] N2+/3 Aux port Dedicated NO Dedicated

MDO[6] N2+/3 Aux port Dedicated NO Dedicated

MDO[7] N2+/3 Aux port Dedicated NO Dedicated

MDO[8] N2+/3 Aux port Dedicated NO Dedicated

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

Freescale Semiconductor 35-105

The reset and ready pins that are often present as extensions to the JTAG port are not implemented.
Figure 35-81 shows the complete specification for the debug port in terms of pads.

Figure 35-81. Debug Port Pads

35.10.1 Nexus2+/3 Auxiliary Port

The N2+/3 port provides real-time development class 2+ and class 3 capabilities in compliance with the
IEEE-ISTO 5001-2003 standard. This development support is supplied without requiring external address
and data pins for internal visibility.

The Nexus pads are ready to be used for debug purposes only after the activation of the Nexus controller.
Such activation is consequent to a certain sequence given by the debugger.

MDO[9] N2+/3 Aux port Dedicated NO Dedicated

MDO[10] N2+/3 Aux port Dedicated NO Dedicated

MDO[11] N2+/3 Aux port Dedicated NO Dedicated

MSEO[0] N2+/3 Aux port Dedicated NO Dedicated

MSEO[1] N2+/3 Aux port Dedicated NO Dedicated

EVTO N2+/3 Aux port Dedicated
(could MUX with I/O)

YES
(MUX with I/O)

Dedicated

EVTI N2+/3Aux port Dedicated
(could MUX with I/O)

YES
(MUX with I/O)

Dedicated

Table 35-69. Pin/Pad Multiplexing

Pin Debug Port Multiplexed?
Available on
208 MPABGA

Available on
256 MAPBGA

JC
O

M
P

T
C

K

T
M

S

T
D

I

T
D

O

E
V

TO

E
V

T
I

E
V

TO

E
V

T
I

M
D

O
[11:0]

M
C

K
O

M
S

E
O

[1:0]

JTAG Optional
JTAG+
muxed
w/GPIO

(5 V pads)

Aux Nexus 2+/3 port

All packages

256 BGA only

3.3 V Fast Pads

Combined JTAG N2+/3 Port

Nexus Development Interface (NDI)

MPC5668x Microcontroller Reference Manual, Rev. 4

35-106 Freescale Semiconductor

By default, after power-on reset, N2+/3 circuitry (controller) and the dedicated pad are disabled to avoid
power consumption. It can only be enabled via a certain sequence given by the debugger. As soon as the
N2+/3 port is enabled even the N2+/3 pads are enabled.

35.11 Debug Methods

This section describes the debug methods for the available packages for the MPC5668x. The Nexus1
debug method applies to the 208MAPBGA, while the Nexus2+/3 applies to and is available only with the
256MAPBGA package.

35.11.1 208 MAPBGA Package Debug Method

The 208MAPBGA package provides only the Nexus class 1 debug method, based on IEEE1149.1
standard. Figure 35-82 shows an example.

Figure 35-82. Nexus Class 1 Debugging Method Using JTAG Pins

35.11.2 256 MAPBGA Package Debug Method

The 256MAPBGA package provide allows the Nexus Class 2+/3 debug method as shown in Figure 35-83.

Figure 35-83. Nexus Class 2+/3 Debugging Method Using JTAG Pins

As 3.3 V fast pads are used for the N2+/3 port, an adapter board could provide buffers between the N2+/3
pads and the connector.

Development
Tool

JTAG Connector

3-wire

Customer application board

208 MAPBGA production package cable

Development
Tool

Nexus

Ribbon

Customer application board

256 MAPBGA production package cable

Adapter board Connector

208MAPBGA
socket/interface

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-1

Appendix A
Memory Map

A.1 Introduction
This appendix lists the memory-mapped registers and addresses for the MPC5668x device.

A.2 MPC5668x Register Map
Table A-1. Module Base Addresses

Module Name Base Address Page

Program/Data Flash 0x0000_3FFF Page A-3

Flash Emulation Mapping 0x0100_0000 Page A-3

SRAM 0x4000_0000 Page A-3

MLB_DIM Configuration 0xC3F8_4000 Page A-8

I2C_C 0xC3F8_8000 Page A-11

I2C_D 0xC3F8_C000 Page A-11

DSPI_C 0xC3F9_0000 Page A-12

DSPI_D 0xC3F9_4000 Page A-13

eSCI_J 0xC3FA_0000 Page A-14

eSCI_K 0xC3FA_4000 Page A-14

eSCI_L 0xC3FA_8000 Page A-15

eSCI_M 0xC3FA_C000 Page A-16

FlexRay 0xC3FD_C000 Page A-16

AXBS 0xFFF0_4000 Page A-38

Sema4 0xFFF1_0000 Page A-39

MPU 0xFFF1_4000 Page A-40

SWT 0xFFF3_8000 Page A-42

STM 0xFFF3_C000 Page A-42

ECSM 0xFFF4_0000 Page A-43

eDMA 0xFFF4_4000 Page A-43

INTC 0xFFF4_8000 Page A-46

FEC 0xFFF4_C000 Page A-49

ADC_A 0xFFF8_0000 Page A-51

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-2 Freescale Semiconductor

I2C_A 0xFFF8_8000 Page A-55

I2C_B 0xFFF8_C000 Page A-56

DSPI_A 0xFFF9_0000 Page A-56

DSPI_B 0xFFF9_4000 Page A-57

eSCI_A 0xFFFA_0000 Page A-58

eSCI_B 0xFFFA_4000 Page A-58

eSCI_C 0xFFFA_8000 Page A-59

eSCI_D 0xFFFA_C000 Page A-59

eSCI_E 0xFFFB_0000 Page A-60

eSCI_F 0xFFFB_4000 Page A-60

eSCI_G 0xFFFB_8000 Page A-61

eSCI_H 0xFFFB_C000 Page A-61

FlexCan_A 0xFFFC_0000 Page A-62

FlexCan_B 0xFFFC_4000 Page A-66

FlexCan_C 0xFFFC_8000 Page A-71

FlexCan_D 0xFFFC_C000 Page A-76

FlexCan_E 0xFFFD_0000 Page A-80

FlexCan_F 0xFFFD_4000 Page A-85

CTU_A 0xFFFD_8000 Page A-89

DMA Multiplexer 0xFFFD_C000 Page A-91

PIT 0xFFFE_0000 Page A-92

eMIOS_A 0xFFFE_4000 Page A-93

SIU 0xFFFE_8000 Page A-100

CRP 0xFFFE_C000 Page A-110

FMPLL 0xFFFF_0000 Page A-111

PFlash Configuration 0xFFFF_8000 Page A-111

BAM 0xFFFF_C000 Page A-112

Table A-1. Module Base Addresses (continued)

Module Name Base Address Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-3

Table A-2. MPC5668x System Memory Map

Address
Size
{KB}

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Flash (AXBS Port S0 and S1)

0x0000_0000 0x0000_3FFF 16 Program/Data Flash or Test
Row

Test Row is
accessible if the

TST0[TRE] bit in the
Flash configuration

block is set

0x0000_4000 0x0000_7FFF 16 Program/Data Flash

0x0000_8000 0x0000_BFFF 16 Program/Data Flash

0x0000_C000 0x0000_FFFF 16 Program/Data Flash

0x0001_0000 0x0001_3FFF 16 Program/Data Flash

0x0001_4000 0x0001_7FFF 16 Program/Data Flash

0x0001_8000 0x0001_BFFF 16 Program/Data Flash

0x0001_C000 0x0001_FFFF 16 Program/Data Flash

0x0002_0000 0x0002_FFFF 64 Program/Data Flash

0x0003_0000 0x0003_FFFF 64 Program/Data Flash

0x0004_0000 0x0005_FFFF 128 Program/Data Flash

0x0006_0000 0x0007_FFFF 128 Program/Data Flash

0x0008_0000 0x000B_FFFF 256 Program/Data Flash

0x000C_0000 0x000F_FFFF 256 Program/Data Flash

0x0010_0000 0x0013_FFFF 256 Program/Data Flash

0x0014_0000 0x0017_FFFF 256 Program/Data Flash

0x0018_0000 0x001B_FFFF 256 Program/Data Flash

0x001C_0000 0x001F_FFFF 256 Program/Data Flash

0x0020_0000 0x00FF_BFFF 14,320 Reserved

0x00FF_C000 0x00FF_FFFF 16 Shadow Row

0x0100_0000 0x1FFF_FFFF 507,904 Flash Emulation Mapping

0x2000_0000 0x3FFF_FFFF 524,288 Reserved

SRAM (AXBS Ports S2 and S3)

0x4000_0000 0x4007_FFFF 512 SRAM (AXBS Port S2) This 1Mbyte address
space is mirrored
512 times in the
address range

0x4000_0000 to
0x5FFF_FFFF

> 128 KB

0x4008_0000 0x4009_3FFF 80 SRAM (AXBS Port S3) X

0x4009_4000 0x400F_FFFF 432 Reserved

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-4 Freescale Semiconductor

0x4010_0000 0xBFFF_FFFF Reserved

Peripherals AIPS_A (AXBS Port S6)

0xC000_0000 0xC3EF_FFFF 64,512 Reserved

0xC3F0_0000 0xC3F0_3FFF 16 Reserved

0xC3F0_4000 0xC3F7_FFFF 496 Reserved

0xC3F8_0000 0xC3F8_3FFF 16 Reserved

0xC3F8_4000 0xC3F8_7FFF 16 MLB_DIM Configuration X

0xC3F8_8000 0xC3F8_BFFF 16 I2C_C

0xC3F8_C000 0xC3F8_FFFF 16 I2C_D

0xC3F9_0000 0xC3F9_3FFF 16 DSPI_C

0xC3F9_4000 0xC3F9_7FFF 16 DSPI_D

0xC3F9_8000 0xC3F9_BFFF 16 Reserved

0xC3F9_C000 0xC3F9_FFFF 16 Reserved

0xC3FA_0000 0xC3FA_3FFF 16 eSCI_J X

0xC3FA_4000 0xC3FA_7FFF 16 eSCI_K X

0xC3FA_8000 0xC3FA_BFFF 16 eSCI_L X

0xC3FA_C000 0xC3FA_FFFF 16 eSCI_M X

0xC3FB_0000 0xC3FB_3FFF 16 Reserved

0xC3FB_4000 0xC3FB_7FFF 16 Reserved

0xC3FB_8000 0xC3FB_BFFF 16 Reserved

0xC3FB_C000 0xC3FB_FFFF 16 Reserved

0xC3FC_0000 0xC3FC_3FFF 16 Reserved

0xC3FC_4000 0xC3FC_7FFF 16 Reserved

0xC3FC_8000 0xC3FC_BFFF 16 Reserved

0xC3FC_C000 0xC3FC_FFFF 16 Reserved

0xC3FD_0000 0xC3FD_3FFF 16 Reserved

0xC3FD_4000 0xC3FD_7FFF 16 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 Reserved

0xC3FD_C000 0xC3FD_FFFF 16 FlexRay X

0xC3FE_0000 0xC3FE_3FFF 16 Reserved

0xC3FE_4000 0xC3FE_7FFF 16 Reserved

Table A-2. MPC5668x System Memory Map (continued)

Address
Size
{KB}

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-5

0xC3FE_8000 0xC3FF_3FFF 48 Reserved

0xC3FF_4000 0xC3FF_7FFF 16 Reserved

0xC3FF_8000 0xDFFF_FFFF 458,752 Reserved

Peripherals AIPS_B (AXBS Port S7)

0xE000_0000 0xFFEF_FFFF 523,264 Reserved

0xFFF0_0000 0xFFF0_3FFF 16 Reserved

0xFFF0_4000 0xFFF0_7FFF 16 AXBS

0xFFF0_8000 0xFFF0_FFFF 32 Reserved

0xFFF1_0000 0xFFF1_3FFF 16 Sema4

0xFFF1_4000 0xFFF1_7FFF 16 MPU X

0xFFF1_8000 0xFFF3_7FFF 128 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

0xFFF4_4000 0xFFF4_7FFF 16 eDMA Channels
16-31

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF4_FFFF 16 FEC X

0xFFF5_0000 0xFFF7_FFFF 192 Reserved

0xFFF8_0000 0xFFF8_3FFF 16 ADC_A

0xFFF8_4000 0xFFF8_7FFF 16 Reserved

0xFFF8_8000 0xFFF8_BFFF 16 I2C_A

0xFFF8_C000 0xFFF8_FFFF 16 I2C_B

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_A

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_B

0xFFF9_8000 0xFFF9_BFFF 16 Reserved

0xFFF9C000 0xFFF9_FFFF 16 Reserved

0xFFFA_0000 0xFFFA_3FFF 16 eSCI_A

0xFFFA_4000 0xFFFA_7FFF 16 eSCI_B

0xFFFA_8000 0xFFFA_BFFF 16 eSCI_C

0xFFFA_C000 0xFFFA_FFFF 16 eSCI_D

0xFFFB_0000 0xFFFB_3FFF 16 eSCI_E

Table A-2. MPC5668x System Memory Map (continued)

Address
Size
{KB}

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-6 Freescale Semiconductor

0xFFFB_4000 0xFFFB_7FFF 16 eSCI_F

0xFFFB_8000 0xFFFB_BFFF 16 eSCI_G X

0xFFFB_C000 0xFFFB_FFFF 16 eSCI_H X

0xFFFC_0000 0xFFFC_3FFF 16 FlexCan_A

0xFFFC_4000 0xFFFC_7FFF 16 FlexCan_B

0xFFFC_8000 0xFFFC_BFFF 16 FlexCan_C

0xFFFC_C000 0xFFFC_FFFF 16 FlexCan_D

0xFFFD_0000 0xFFFD_3FFF 16 FlexCan_E

0xFFFD_4000 0xFFFD_7FFF 16 FlexCan_F X

0xFFFD_8000 0xFFFD_BFFF 16 CTU_A X

0xFFFD_C000 0xFFFD_FFFF 16 DMA Multiplexer

0xFFFE_0000 0xFFFE_3FFF 16 PIT

0xFFFE_4000 0xFFFE_7FFF 16 eMIOS_A Channels
24-31

0xFFFE_8000 0xFFFE_BFFF 16 SIU

0xFFFE_C000 0xFFFE_FFFF 16 CRP

0xFFFF_0000 0xFFFF_3FFF 16 PLL

0xFFFF_4000 0xFFFF_7FFF 16 Reserved

0xFFFF_8000 0xFFFF_BFFF 16 PFlash Configuration

0xFFFF_C000 0xFFFF_FFFF 16 BAM (upper 8K)

Table A-2. MPC5668x System Memory Map (continued)

Address
Size
{KB}

Region Name Comments
Unimple-

mented on
MPC5668G

Unimple-
mented on
MPC5668EStart End

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-7

Table A-3. Flash Memory Map

Offset from FLASH_BASE
(0x0000_0000)

Use Block Partition

0x0000_0000 Low-address space L0 1

0x0000_4000 L1

0x0000_8000 L2

0x0000_C000 L3

0x0001_0000 L4 2

0x0001_4000 L5

0x0001_8000 L6

0x0001_C000 L7

0x0002_0000 L8 3

0x0003_0000 L9

0x0004_0000 Mid-address space M0 4

0x0006_0000 M1

0x0008_0000 High-address space H0 5

0x000A_0000 H1

0x000C_0000 H2 6

0x000E_0000 H3

0x0010_0000 H4 7

0x0012_0000 H5

0x0014_0000 H6 8

0x0016_0000 H7

0x0018_0000–0xF0_FFFF Reserved

0x00FF_8000–0x00FF_FDD7 General use S All1

1 For read while write operations, the shadow row behaves as if it is in all partitions.

0x00FF_FDD8 Serial passcode (0xFEED_FACE_CAFE_BEEF)

0x00FF_FDE0 Censorship control word (0x55AA_55AA)

0x00FF_FDE4 General use

0x00FF_FDE8 LML reset configuration (0x0010_0000)

0x00FF_FDEC General use

0x00FF_FDF0 HBL reset configuration (0x0FFF_FFFF)

0x00FF_FDF4 General use

0x00FF_FDF8 SLL reset configuration (0x000F_FFFF)

0x00FF_FDFC– 0x00FF_FFFF General use

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-8 Freescale Semiconductor

0x0020_0000 0x00FF_BFFF 14,320 Reserved

0x00FF_C000 0x00FF_FFFF 16 Shadow Row

0x0100_0000 0x1FFF_FFFF 507,904 Flash Emulation Mapping

Table A-4. MPC5668x Detailed Register Map

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

SRAM (AXBS Ports S2 and S3)

0x4000_0000 –
0x4007_FFFF

SRAM (AXBS Port S2) R/W

Peripherals AIPS_A (AXBS Port S6)
0xC000_0000– 0xDFFF_FFFF

0xC000_0000–
0xC3F7_FFFF

Reserved

 0xC3F8_4000
Media Local Bus

Chapter 26, “Media Local Bus (MLB)”

0x0000 DCCR—Device Control Configuration Register R/W 0x0000_0000 26.3.2.1/26-8

0x0004 SSCR—System Status Configuration Register R/W 0x0000_0000 26.3.2.2/26-10

0x0008 SDCR—System Data Configuration Register R 0x0000_0000 26.3.2.3/26-11

0x000C SMCR—System Mask Configuration Register R/W 0x0000_0060 26.3.2.4/26-12

0x001C VCCR—Version Control Configuration Register R 0x0300_0202 26.3.2.5/26-13

0x0020 SBCR—Synchronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.6/26-14

0x0024 ABCR—Asynchronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.7/26-14

0x0028 CBCR—Control Base Address Configuration Register R/W 0x0000_0000 26.3.2.8/26-15

0x002C IBCR—Isochronous Base Address Configuration Register R/W 0x0000_0000 26.3.2.9/26-16

0x0030 CICR—Channel Interrupt Configuration Register R 0x0000_0000 26.3.2.10/26-16

0x0040 CECR0—Channel 0 Entry Configuration Register R/W 0x0000_0000 26.3.2.11/26-17

0x0044 CSCR0—Channel 0 Status Configuration Register R/W 0x8000_0000 26.3.2.12/26-19

0x0048 CCBCR0—Channel 0 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x004C CNBCR0—Channel 0 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0050 CECR1—Channel 1 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0054 CSCR1—Channel 1 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0058 CCBCR1—Channel 1 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x005C CNBCR1—Channel 1 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-9

0x0060 CECR2—Channel 2 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0064 CSCR2—Channel 2 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0068 CCBCR2—Channel 2 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x006C CNBCR2—Channel 2 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0070 CECR3—Channel 3 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0074 CSCR3—Channel 3 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0078 CCBCR3—Channel 3 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x007C CNBCR3—Channel 3 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0080 CECR4—Channel 4 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0084 CSCR4—Channel 4 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0088 CCBCR4—Channel 4 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x008C CNBCR4—Channel 4 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0090 CECR5—Channel 5 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0094 CSCR5—Channel 5 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0098 CCBCR5—Channel 5 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x009C CNBCR5—Channel 5 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00A0 CECR6—Channel 6 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00A4 CSCR6—Channel 6 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00A8 CCBCR6—Channel 6 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x00AC CNBCR6—Channel 6 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00B0 CECR7—Channel 7 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00B4 CSCR7—Channel 7 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00B8 CCBCR7—Channel 7 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x00BC CNBCR7—Channel 7 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00C0 CECR8—Channel 8 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00C4 CSCR8—Channel 8 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00C8 CCBCR8—Channel 8 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x00CC CNBCR8—Channel 8 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00D0 CECR9—Channel 9 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00D4 CSCR9—Channel 9 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00D8 CCBCR9—Channel 9 Current Buffer Configuration Register R/W 0x0000_0000 26.3.2.12/26-19

0x00DC CNBCR9—Channel 9 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-10 Freescale Semiconductor

0x00E0 CECR10—Channel 10 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00E4 CSCR10—Channel 10 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00E8 CCBCR10—Channel 10 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x00EC CNBCR10—Channel 10 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x00F0 CECR11—Channel 11 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x00F4 CSCR11—Channel 11 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x00F8 CCBCR11—Channel 11 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x00FC CNBCR11—Channel 11 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0100 CECR12—Channel 12 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0104 CSCR12—Channel 12 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0108 CCBCR12—Channel 12 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x010C CNBCR12—Channel 12 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0110 CECR13—Channel 13 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0114 CSCR13—Channel 13 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0118 CCBCR13—Channel 13 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x011C CNBCR13—Channel 13 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0120 CECR14—Channel 14 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0124 CSCR14—Channel 14 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0128 CCBCR14—Channel 14 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x012C CNBCR14—Channel 14 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0130 CECR15—Channel 15 Entry Configuration Register R/W 0x0000_0000 26.3.2.14/26-23

0x0134 CSCR15—Channel 15 Status Configuration Register R/W 0x8000_0000 26.3.2.11/26-17

0x0138 CCBCR15—Channel 15 Current Buffer Configuration
Register

R/W 0x0000_0000 26.3.2.12/26-19

0x013C CNBCR15—Channel 15 Next Buffer Configuration Register R/W 0x0000_0000 26.3.2.13/26-22

0x0140–0x027F Reserved

0x0280 LCBCR0—Local Channel 0 Buffer Configuration Register R/W 0x0803_E000

0x0284 LCBCR1—Local Channel 1 Buffer Configuration Register R/W 0x0803_E020 26.3.2.15/26-24

0x0288 LCBCR2—Local Channel 2 Buffer Configuration Register R/W 0x0803_E040 26.3.2.15/26-24

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-11

0x028C LCBCR3—Local Channel 3 Buffer Configuration Register R/W 0x0803_E060 26.3.2.15/26-24

0x0290 LCBCR4—Local Channel 4 Buffer Configuration Register R/W 0x0803_E080 26.3.2.15/26-24

0x0294 LCBCR5—Local Channel 5 Buffer Configuration Register R/W 0x0803_E0A0 26.3.2.15/26-24

0x0298 LCBCR6—Local Channel 6 Buffer Configuration Register R/W 0x0803_E0C0 26.3.2.15/26-24

0x029C LCBCR7—Local Channel 7 Buffer Configuration Register R/W 0x0803_E0E0 26.3.2.15/26-24

0x02A0 LCBCR8—Local Channel 8 Buffer Configuration Register R/W 0x0803_E100 26.3.2.15/26-24

0x02A4 LCBCR9—Local Channel 9 Buffer Configuration Register R/W 0x0803_E120 26.3.2.15/26-24

0x02A8 LCBCR10—Local Channel 10 Buffer Configuration Register R/W 0x0803_E140 26.3.2.15/26-24

0x02AC LCBCR11—Local Channel 11 Buffer Configuration Register R/W 0x0803_E160 26.3.2.15/26-24

0x02B0 LCBCR12—Local Channel 12 Buffer Configuration Register R/W 0x0803_E180 26.3.2.15/26-24

0x02B4 LCBCR13—Local Channel 13 Buffer Configuration Register R/W 0x0803_E1A0 26.3.2.15/26-24

0x02B8 LCBCR14—Local Channel 14 Buffer Configuration Register R/W 0x0803_E1C0 26.3.2.15/26-24

0x02BC LCBCR15—Local Channel 15 Buffer Configuration Register R/W 0x0803_E1E0 26.3.2.15/26-24

0x02BC LCBCR15—Local channel 15 buffer configuration register R/W 0x0003_E1E0 26.3.2.15/26-24

0x02C0–0x3FFF Reserved

0xC3F8_8000
I2C_C

Chapter 31, “Inter-Integrated Circuit Bus Controller Module (I2C)”

0x0000 IBAD—I2C bus address register R/W 0x00 31.3.2.1/31-5

0x0001 IBFD—I2C bus frequency divider register R/W 0x00 31.3.2.2/31-5

0x0002 IBCR—I2C bus control register R/W 0x80 31.3.2.3/31-8

0x0003 IBSR—I2C bus status register R/W 0x80 31.3.2.4/31-9

0x0004 IBDR—I2C bus data I/O register R/W 0x00 31.3.2.5/31-10

0x0005 IBIC—I2C bus interrupt configuration register R/W 0x00 31.3.2.6/31-11

0x0006–0x3FFF Reserved

0xC3F8_C000
I2C_D

Chapter 31, “Inter-Integrated Circuit Bus Controller Module (I2C)”

0x0000 IBAD—I2C bus address register R/W 0x00 31.3.2.1/31-5

0x0001 IBFD—I2C bus frequency divider register R/W 0x00 31.3.2.2/31-5

0x0002 IBCR—I2C bus control register R/W 0x80 31.3.2.3/31-8

0x0003 IBSR—I2C bus status register R/W 0x80 31.3.2.4/31-9

0x0004 IBDR—I2C bus data I/O register R/W 0x00 31.3.2.5/31-10

0x0005 IBIC—I2C bus interrupt configuration register R/W 0x00 31.3.2.6/31-11

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-12 Freescale Semiconductor

0x0006–0x3FFF Reserved

0xC3F9_0000
DSPI_C

Chapter 29, “Deserial – Serial Peripheral Interface (DSPI)”

0x0000 DSPI_MCR—DSPI module configuration register R/W 0x0000_4001 29.3.2.1/29-7

0x0004 Reserved

0x0008 DSPI_TCR—DSPI transfer count register R/W 0x0000_0000 29.3.2.2/29-9

0x000C DSPI_CTAR0—DSPI clock and transfer attributes register 0 R/W 0x7800_0000 29.3.2.3/29-10

0x0010 DSPI_CTAR1—DSPI clock and transfer attributes register 1 R/W 0x7800_0000 29.3.2.3/29-10

0x0014 DSPI_CTAR2—DSPI clock and transfer attributes register 2 R/W 0x7800_0000 29.3.2.3/29-10

0x0018 DSPI_CTAR3—DSPI clock and transfer attributes register 3 R/W 0x7800_0000 29.3.2.3/29-10

0x001C DSPI_CTAR4—DSPI clock and transfer attributes register 4 R/W 0x7800_0000 29.3.2.3/29-10

0x0020 DSPI_CTAR5—DSPI clock and transfer attributes register 5 R/W 0x7800_0000 29.3.2.3/29-10

0x0024 DSPI_CTAR6—DSPI clock and transfer attributes register 6 R/W 0x7800_0000 29.3.2.3/29-10

0x0028 DSPI_CTAR7—DSPI clock and transfer attributes register 7 R/W 0x7800_0000 29.3.2.3/29-10

0x002C DSPI_SR—DSPI status register R 0x0000_0000 29.3.2.4/29-16

0x0030 DSPI_RSER—DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 29.3.2.5/29-18

FIFO Registers

0x0034 DSPI_PUSHR—DSPI push TX FIFO register R/W 0x0000_0000 29.3.2.6/29-19

0x0038 DSPI_POPR—DSPI pop RX FIFO register R 0x0000_0000 29.3.2.7/29-21

0x003C DSPI_TXFR0—DSPI transmit FIFO register 0 R 0x0000_0000 29.3.2.8/29-21

0x0040 DSPI_TXFR1—DSPI transmit FIFO register 1 R 0x0000_0000 29.3.2.8/29-21

0x0044 DSPI_TXFR2—DSPI transmit FIFO register 2 R 0x0000_0000 29.3.2.8/29-21

0x0048 DSPI_TXFR3—DSPI transmit FIFO register 3 R 0x0000_0000 29.3.2.8/29-21

0x004C–0x0078 Reserved

0x007C DSPI_RXFR0—DSPI receive FIFO register 0 R 0x0000_0000 29.3.2.9/29-22

0x0080 DSPI_RXFR1—DSPI receive FIFO register 1 R 0x0000_0000 29.3.2.9/29-22

0x0084 DSPI_RXFR2—DSPI receive FIFO register 2 R 0x0000_0000 29.3.2.9/29-22

0x0088 DSPI_RXFR3—DSPI receive FIFO register 3 R 0x0000_0000 29.3.2.9/29-22

0x008C–0x00B8 Reserved

DSI Registers

0x00BC DSPI_DSICR—DSPI DSI configuration register R/W 0x0000_0000 29.3.2.10/29-23

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-13

0x00C0 DSPI_SDR—DSPI DSI serialization data register R 0x0000_0000 29.3.2.11/29-24

0x00C4 DSPI_ASDR—DSPI DSI alternate serialization data register R/W 0x0000_0000 29.3.2.12/29-25

0x00C8 DSPI_COMPR—DSPI DSI transmit comparison register R 0x0000_0000 29.3.2.13/29-26

0x00CC DSPI_DDR—DSPI DSI deserialization data register R 0x0000_0000 29.3.2.14/29-26

0x00D0 DSPI_DSICR1—DSPI DSI TSB configuration register 1 R/W 0x0000_0000 29.3.2.15/29-27

0x00D4–0x3FFF Reserved

0xC3F9_4000
DSPI_D

Chapter 29, “Deserial – Serial Peripheral Interface (DSPI)”

0x0000 DSPI_MCR—DSPI module configuration register R/W 0x0000_4001 29.3.2.1/29-7

0x0004 Reserved

0x0008 DSPI_TCR—DSPI transfer count register R/W 0x0000_0000 29.3.2.2/29-9

0x000C DSPI_CTAR0—DSPI clock and transfer attributes register 0 R/W 0x7800_0000 29.3.2.3/29-10

0x0010 DSPI_CTAR1—DSPI clock and transfer attributes register 1 R/W 0x7800_0000 29.3.2.3/29-10

0x0014 DSPI_CTAR2—DSPI clock and transfer attributes register 2 R/W 0x7800_0000 29.3.2.3/29-10

0x0018 DSPI_CTAR3—DSPI clock and transfer attributes register 3 R/W 0x7800_0000 29.3.2.3/29-10

0x001C DSPI_CTAR4—DSPI clock and transfer attributes register 4 R/W 0x7800_0000 29.3.2.3/29-10

0x0020 DSPI_CTAR5—DSPI clock and transfer attributes register 5 R/W 0x7800_0000 29.3.2.3/29-10

0x0024 DSPI_CTAR6—DSPI clock and transfer attributes register 6 R/W 0x7800_0000 29.3.2.3/29-10

0x0028 DSPI_CTAR7—DSPI clock and transfer attributes register 7 R/W 0x7800_0000 29.3.2.3/29-10

0x002C DSPI_SR—DSPI status register R 0x0200_0000 29.3.2.4/29-16

0x0030 DSPI_RSER—DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 29.3.2.5/29-18

FIFO Registers

0x0034 DSPI_PUSHR—DSPI push TX FIFO register R/W 0x0000_0000 29.3.2.6/29-19

0x0038 DSPI_POPR—DSPI pop RX FIFO register R 0x0000_0000 29.3.2.7/29-21

0x003C DSPI_TXFR0—DSPI transmit FIFO register 0 R 0x0000_0000 29.3.2.8/29-21

0x0040 DSPI_TXFR1—DSPI transmit FIFO register 1 R 0x0000_0000 29.3.2.8/29-21

0x0044 DSPI_TXFR2—DSPI transmit FIFO register 2 R 0x0000_0000 29.3.2.8/29-21

0x0048 DSPI_TXFR3—DSPI transmit FIFO register 3 R 0x0000_0000 29.3.2.8/29-21

0x004C–0x0078 Reserved

0x007C DSPI_RXFR0—DSPI receive FIFO register 0 R 0x0000_0000 29.3.2.9/29-22

0x0080 DSPI_RXFR1—DSPI receive FIFO register 1 R 0x0000_0000 29.3.2.9/29-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-14 Freescale Semiconductor

0x0084 DSPI_RXFR2—DSPI receive FIFO register 2 R 0x0000_0000 29.3.2.9/29-22

0x0088 DSPI_RXFR3—DSPI receive FIFO register 3 R 0x0000_0000 29.3.2.9/29-22

0x008C–0x00B8 Reserved

DSI Registers

0x00BC DSPI_DSICR—DSPI DSI configuration register R/W 0x0000_0000 29.3.2.10/29-23

0x00C0 DSPI_SDR—DSPI DSI serialization data register R 0x0000_0000 29.3.2.11/29-24

0x00C4 DSPI_ASDR—DSPI DSI alternate serialization data register R/W 0x0000_0000 29.3.2.12/29-25

0x00C8 DSPI_COMPR—DSPI DSI transmit comparison register R 0x0000_0000 29.3.2.13/29-26

0x00CC DSPI_DDR—DSPI DSI deserialization data register R 0x0000_0000 29.3.2.14/29-26

0x00D0 DSPI_DSICR1—DSPI DSI TSB configuration register 1 R/W 0x0000_0000 29.3.2.15/29-27

0x00D4–0x3FFF Reserved

0xC3F9_8000–
0xC3F9_FFFF

Reserved

0xC3FA_0000
eSCI_J

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x8000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xC3FA_4000
eSCI_K

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-15

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x8000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x4000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xC3FA_8000
eSCI_L

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-16 Freescale Semiconductor

0xC3FA_C000
eSCI_M

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xC3FB_0000–
0xC3FD_BFFF

Reserved

0xC3FD_C000
FlexRay

Chapter 25, “FlexRay Communication Controller (FlexRAY)

0x0000 MVR—Module version register R 0x9E66 25.5.2.3/25-13

0x0002 MCR—Module configuration register R/W 0x0000 25.5.2.4/25-14

0x0004 SYMBADHR—System memory base address high register R/W 0x0000 25.5.2.5/25-15

0x0006 SYMBADLR—System memory base address low register R/W 0x0000 25.5.2.5/25-15

0x0008 STBSCR—Strobe signal control register R/W 0x0000 25.5.2.6/25-16

0x000A Reserved

0x000C MBDSR—Message buffer data size register R/W 0x0000 25.5.2.7/25-18

0x000E MBSSUTR—Message buffer segment size and utilization
register

R/W 0x7F7F 25.5.2.8/25-18

0x0010–0x0013 Reserved

0x0014 POCR—Protocol operation control register R/W 0x0000 25.5.2.9/25-19

0x0016 GIFER—Global interrupt flag and enable register R/W 0x0000 25.5.2.10/25-20

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-17

0x0018 PIFR0—Protocol interrupt flag register 0 R/W 0x0000 25.5.2.11/25-23

0x001A PIFR1—Protocol interrupt flag register 1 R/W 0x0000 25.5.2.12/25-25

0x001C PIER0—Protocol interrupt enable register 0 R/W 0x0000 25.5.2.13/25-26

0x001E PIER1—Protocol interrupt enable register 1 R/W 0x0000 25.5.2.14/25-27

0x0020 CHIERFR—CHI error flag register R/W 0x0000 25.5.2.15/25-28

0x0022 MBIVEC—Message buffer interrupt vector register R 0x0000 25.5.2.16/25-30

0x0024 CASERCR—Channel A status error counter register R 0x0000 25.5.2.17/25-31

0x0026 CBSERCR—Channel B status error counter register R 0x0000 25.5.2.18/25-31

0x0028 PSR0—Protocol status register 0 R 0x0000 25.5.2.19/25-32

0x002A PSR1—Protocol status register 1 R 0x0000 25.5.2.20/25-33

0x002C PSR2—Protocol status register 2 R 0x0000 25.5.2.21/25-34

0x002E PSR3—Protocol status register 3 R/W 0x0000 25.5.2.22/25-36

0x0030 MTCTR—Macrotick counter register R 0x0000 25.5.2.23/25-37

0x0032 CYCTR—Cycle counter register R 0x0000 25.5.2.24/25-38

0x0034 SLTCTAR—Slot counter channel A register R 0x0000 25.5.2.25/25-38

0x0036 SLTCTBR—Slot counter channel B register R 0x0000 25.5.2.26/25-39

0x0038 RTCORVR—Rate correction value register R 0x0000 25.5.2.27/25-39

0x003A OFCORVR—Offset correction value register R 0x0000 25.5.2.28/25-40

0x003C CIFRR—Combined interrupt flag register R 0x0000 25.5.2.29/25-40

0x003E SYMATOR—System memory access time-out register R/W 0x0004 25.5.2.30/25-41

0x0040 SFCNTR—Sync frame counter register R 0x0000 25.5.2.31/25-42

0x0042 SFTOR—Sync frame table offset register R/W 0x0000 25.5.2.32/25-42

0x0044 SFTCCSR—Sync frame table configuration, control, status
register

R/W 0x0000 25.5.2.33/25-43

0x0046 SFIDRFR—Sync frame ID rejection filter register R/W 0x0000 25.5.2.34/25-44

0x0048 SFIDAFVR—Sync frame ID acceptance filter value register R/W 0x0000 25.5.2.35/25-45

0x004A SFIDAFMR—Sync frame ID acceptance filter mask register R/W 0x0000 25.5.2.36/25-45

0x004C NMVR0—Network management vector register 0 R 0x0000 25.5.2.37/25-45

0x004E NMVR1—Network management vector register 1 R 0x0000 25.5.2.37/25-45

0x0050 NMVR2—Network management vector register 2 R 0x0000 25.5.2.37/25-45

0x0052 NMVR3—Network management vector register 3 R 0x0000 25.5.2.37/25-45

0x0054 NMVR4—Network management vector register 4 R 0x0000 25.5.2.37/25-45

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-18 Freescale Semiconductor

0x0056 NMVR5—Network management vector register 5 R 0x0000 25.5.2.37/25-45

0x0058 NMVLR—Network management vector length register R/W 0x0000 25.5.2.38/25-46

0x005A TICCR—Timer configuration and control register R/W 0x0000 25.5.2.39/25-47

0x005C TI1CYSR—Timer 1 cycle set register R/W 0x0000 25.5.2.40/25-48

0x005E TI1MTOR—Timer 1 macrotick offset register R/W 0x0000 25.5.2.41/25-48

0x0060 TI2CR0—Timer 2 configuration register 0 R/W 0x0000 25.5.2.42/25-49

0x0062 TI2CR1—Timer 2 configuration register 1 R/W 0x0000 25.5.2.43/25-49

0x0064 SSSR—Slot status selection register R/W 0x0000 25.5.2.44/25-50

0x0066 SSCCR—Slot status counter condition register R/W 0x0000 25.5.2.45/25-51

0x0068 SSR0—Slot status register 0 R 0x0000 25.5.2.46/25-53

0x006A SSR1—Slot status register 1 R 0x0000 25.5.2.46/25-53

0x006C SSR2—Slot status register 2 R 0x0000 25.5.2.46/25-53

0x006E SSR3—Slot status register 3 R 0x0000 25.5.2.46/25-53

0x0070 SSR4—Slot status register 4 R 0x0000 25.5.2.46/25-53

0x0072 SSR5—Slot status register 5 R 0x0000 25.5.2.46/25-53

0x0074 SSR6—Slot status register 6 R 0x0000 25.5.2.46/25-53

0x0076 SSR7—Slot status register 7 R 0x0000 25.5.2.46/25-53

0x0078 SSCR0—Slot status counter register 0 R 0x0000 25.5.2.47/25-54

0x007A SSCR1—Slot status counter register 1 R 0x0000 25.5.2.47/25-54

0x007C SSCR2—Slot status counter register 2 R 0x0000 25.5.2.47/25-54

0x007E SSCR3—Slot status counter register 3 R 0x0000 25.5.2.47/25-54

0x0080 MTSACFR—MTS A configuration register R/W 0x0000 25.5.2.48/25-55

0x0082 MTSBCFR—MTS B configuration register R/W 0x0000 25.5.2.49/25-55

0x0084 RSBIR—Receive shadow buffer index register R/W 0x0000 25.5.2.50/25-56

0x0086 RFWMSR—Receive FIFO watermark and selection register R/W 0x0000 25.5.2.53/25-58

0x0088 RFSIR—Receive FIFO start index register R/W 0x0000 25.5.2.54/25-58

0x008A RFDSR—Receive FIFO depth and size register R/W 0x0000 25.5.2.55/25-59

0x008C RFARIR—Receive FIFO A read index register R 0x0000 25.5.2.56/25-59

0x008E RFBRIR—Receive FIFO B read index register R 0x0000 25.5.2.57/25-60

0x0090 RFMIDAFVR—Receive FIFO message ID acceptance filter
value register

R/W 0x0000 25.5.2.59/25-61

0x0092 RFMIAFMR—Receive FIFO message ID acceptance filter
mask register

R/W 0x0000 25.5.2.60/25-61

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-19

0x0094 RFFIDRFVR—Receive FIFO frame ID rejection filter value
register

R/W 0x0000 25.5.2.61/25-62

0x0096 RFFIDRFMR—Receive FIFO frame ID rejection filter mask
register

R/W 0x0000 25.5.2.62/25-62

0x0098 RFRFCFR—Receive FIFO range filter configuration register R/W 0x0000 25.5.2.63/25-62

0x009A RFRFCTR—Receive FIFO range filter control register R/W 0x0000 25.5.2.64/25-63

0x009C LDTXSLAR—Last dynamic transmit slot channel A register R 0x0000 25.5.2.65/25-64

0x009E LDTXSLBR—Last dynamic transmit slot channel B register R 0x0000 25.5.2.66/25-64

0x00A0 PCR0—Protocol configuration register 0 R/W 0x0000 25.5.2.67.1/25-67

0x00A2 PCR1—Protocol configuration register 1 R/W 0x0000 25.5.2.67.2/25-67

0x00A4 PCR2—Protocol configuration register 2 R/W 0x0000 25.5.2.67.3/25-67

0x00A6 PCR3—Protocol configuration register 3 R/W 0x0000 25.5.2.67.4/25-67

0x00A8 PCR4—Protocol configuration register 4 R/W 0x0000 25.5.2.67.5/25-67

0x00AA PCR5—Protocol configuration register 5 R/W 0x0000 25.5.2.67.6/25-68

0x00AC PCR6—Protocol configuration register 6 R/W 0x0000 25.5.2.67.7/25-68

0x00AE PCR7—Protocol configuration register 7 R/W 0x0000 25.5.2.67.8/25-68

0x00B0 PCR8—Protocol configuration register 8 R/W 0x0000 25.5.2.67.9/25-68

0x00B2 PCR9—Protocol configuration register 9 R/W 0x0000 25.5.2.67.10/25-68

0x00B4 PCR10—Protocol configuration register 10 R/W 0x0000 25.5.2.67.11/25-69

0x00B6 PCR11—Protocol configuration register 11 R/W 0x0000 25.5.2.67.12/25-69

0x00B8 PCR12—Protocol configuration register 12 R/W 0x0000 25.5.2.67.13/25-69

0x00BA PCR13—Protocol configuration register 13 R/W 0x0000 25.5.2.67.14/25-69

0x00BC PCR14—Protocol configuration register 14 R/W 0x0000 25.5.2.67.15/25-70

0x00BE PCR15—Protocol configuration register 15 R/W 0x0000 25.5.2.67.16/25-70

0x00C0 PCR16—Protocol configuration register 16 R/W 0x0000 25.5.2.67.17/25-70

0x00C2 PCR17—Protocol configuration register 17 R/W 0x0000 25.5.2.67.18/25-70

0x00C4 PCR18—Protocol configuration register 18 R/W 0x0000 25.5.2.67.19/25-70

0x00C6 PCR19—Protocol configuration register 19 R/W 0x0000 25.5.2.67.20/25-71

0x00C8 PCR20—Protocol configuration register 20 R/W 0x0000 25.5.2.67.21/25-71

0x00CA PCR21—Protocol configuration register 21 R/W 0x0000 25.5.2.67.22/25-71

0x00CC PCR22—Protocol configuration register 22 R/W 0x0000 25.5.2.67.23/25-71

0x00CE PCR23—Protocol configuration register 23 R/W 0x0000 25.5.2.67.24/25-71

0x00D0 PCR24—Protocol configuration register 24 R/W 0x0000 25.5.2.67.25/25-72

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-20 Freescale Semiconductor

0x00D2 PCR25—Protocol configuration register 25 R/W 0x0000 25.5.2.67.26/25-72

0x00D4 PCR26—Protocol configuration register 26 R/W 0x0000 25.5.2.67.27/25-72

0x00D6 PCR27—Protocol configuration register 27 R/W 0x0000 25.5.2.67.28/25-72

0x00D8 PCR28—Protocol configuration register 28 R/W 0x0000 25.5.2.67.29/25-72

0x00DA PCR29—Protocol configuration register 29 R/W 0x0000 25.5.2.67.30/25-73

0x00DC PCR30—Protocol configuration register 30 R/W 0x0000 25.5.2.67.31/25-73

0x00DE–0x00E6 Reserved

0x00E8 RFSYMBADHR—Receive FIFO system memory base
address high register

R/W 0x0000 25.5.2.51/25-56

0x00EA RFSYMBADLR—Receive FIFO system memory base
address low register

R/W 0x0000 25.5.2.51/25-56

0x00EC RFPTR—Receive FIFO periodic timer register R/W 0x0000 25.5.2.52/25-57

0x00EE RFFLPCR—Receive FIFO fill level and pop count register R/W 0x0000 25.5.2.58/25-60

0x00F0–0x00FF Reserved

0x0100 MBCCSR0–Message buffer configuration, control, status register 0 R/W 0x0000 25.5.2.68/25-73

0x0102 MBCCFR0–Message buffer cycle counter filter register 0 R/W —3 25.5.2.69/25-75

0x0104 MBFIDR0–Message buffer frame ID register 0 R/W 0x0UUU 25.5.2.70/25-76

0x0106 MBIDXR0–Message buffer index register 0 R/W 0x00UU 25.5.2.71/25-76

0x0108 MBCCSR1–Message buffer configuration, control, status register 1 R/W 0x0000 25.5.2.68/25-73

0x010A MBCCFR1–Message buffer cycle counter filter register 1 R/W —3 25.5.2.69/25-75

0x010C MBFIDR1–Message buffer frame ID register 1 R/W 0x0UUU 25.5.2.70/25-76

0x010E MBIDXR1–Message buffer index register 1 R/W 0x00UU 25.5.2.71/25-76

0x0110 MBCCSR2–Message buffer configuration, control, status register 2 R/W 0x0000 25.5.2.68/25-73

0x0112 MBCCFR2–Message buffer cycle counter filter register 2 R/W —3 25.5.2.69/25-75

0x0114 MBFIDR2–Message buffer frame ID register 2 R/W 0x0UUU 25.5.2.70/25-76

0x0116 MBIDXR2–Message buffer index register 2 R/W 0x00UU 25.5.2.71/25-76

0x0118 MBCCSR3–Message buffer configuration, control, status register 3 R/W 0x0000 25.5.2.68/25-73

0x011A MBCCFR3–Message buffer cycle counter filter register 3 R/W —3 25.5.2.69/25-75

0x011C MBFIDR3–Message buffer frame ID register 3 R/W 0x0UUU 25.5.2.70/25-76

0x011E MBIDXR3–Message buffer index register 3 R/W 0x00UU 25.5.2.71/25-76

0x0120 MBCCSR4–Message buffer configuration, control, status register 4 R/W 0x0000 25.5.2.68/25-73

0x0122 MBCCFR4–Message buffer cycle counter filter register 4 R/W —3 25.5.2.69/25-75

0x0124 MBFIDR4–Message buffer frame ID register 4 R/W 0x0UUU 25.5.2.70/25-76

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-21

0x0126 MBIDXR4–Message buffer index register 4 R/W 0x00UU 25.5.2.71/25-76

0x0128 MBCCSR5–Message buffer configuration, control, status register 5 R/W 0x0000 25.5.2.68/25-73

0x012A MBCCFR5–Message buffer cycle counter filter register 5 R/W —3 25.5.2.69/25-75

0x012C MBFIDR5–Message buffer frame ID register 5 R/W 0x0UUU 25.5.2.70/25-76

0x012E MBIDXR5–Message buffer index register 5 R/W 0x00UU 25.5.2.71/25-76

0x0130 MBCCSR6–Message buffer configuration, control, status register 6 R/W 0x0000 25.5.2.68/25-73

0x0132 MBCCFR6–Message buffer cycle counter filter register 6 R/W —3 25.5.2.69/25-75

0x0134 MBFIDR6–Message buffer frame ID register 6 R/W 0x0UUU 25.5.2.70/25-76

0x0136 MBIDXR6–Message buffer index register 6 R/W 0x00UU 25.5.2.71/25-76

0x0138 MBCCSR7–Message buffer configuration, control, status register 7 R/W 0x0000 25.5.2.68/25-73

0x013A MBCCFR7–Message buffer cycle counter filter register 7 R/W —3 25.5.2.69/25-75

0x013C MBFIDR7–Message buffer frame ID register 7 R/W 0x0UUU 25.5.2.70/25-76

0x013E MBIDXR7–Message buffer index register 7 R/W 0x00UU 25.5.2.71/25-76

0x0140 MBCCSR8–Message buffer configuration, control, status register 8 R/W 0x0000 25.5.2.68/25-73

0x0142 MBCCFR8–Message buffer cycle counter filter register 8 R/W —3 25.5.2.69/25-75

0x0144 MBFIDR8–Message buffer frame ID register 8 R/W 0x0UUU 25.5.2.70/25-76

0x0146 MBIDXR8–Message buffer index register 8 R/W 0x00UU 25.5.2.71/25-76

0x0148 MBCCSR9–Message buffer configuration, control, status register 9 R/W 0x0000 25.5.2.68/25-73

0x014A MBCCFR9–Message buffer cycle counter filter register 9 R/W —3 25.5.2.69/25-75

0x014C MBFIDR9–Message buffer frame ID register 9 R/W 0x0UUU 25.5.2.70/25-76

0x014E MBIDXR9–Message buffer index register 9 R/W 0x00UU 25.5.2.71/25-76

0x0150 MBCCSR10–Message buffer configuration, control, status
register 10

R/W 0x0000 25.5.2.68/25-73

0x0152 MBCCFR10–Message buffer cycle counter filter register 10 R/W —3 25.5.2.69/25-75

0x0154 MBFIDR10–Message buffer frame ID register 10 R/W 0x0UUU 25.5.2.70/25-76

0x0156 MBIDXR10–Message buffer index register 10 R/W 0x00UU 25.5.2.71/25-76

0x0158 MBCCSR11–Message buffer configuration, control, status
register 11

R/W 0x0000 25.5.2.68/25-73

0x015A MBCCFR11–Message buffer cycle counter filter register 11 R/W —3 25.5.2.69/25-75

0x015C MBFIDR11–Message buffer frame ID register 11 R/W 0x0UUU 25.5.2.70/25-76

0x015E MBIDXR11–Message buffer index register 11 R/W 0x00UU 25.5.2.71/25-76

0x0160 MBCCSR12–Message buffer configuration, control, status
register 12

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-22 Freescale Semiconductor

0x0162 MBCCFR12–Message buffer cycle counter filter register 12 R/W —3 25.5.2.69/25-75

0x0164 MBFIDR12–Message buffer frame ID register 12 R/W 0x0UUU 25.5.2.70/25-76

0x0166 MBIDXR12–Message buffer index register 12 R/W 0x00UU 25.5.2.71/25-76

0x0168 MBCCSR13–Message buffer configuration, control, status
register 13

R/W 0x0000 25.5.2.68/25-73

0x016A MBCCFR13–Message buffer cycle counter filter register 13 R/W —3 25.5.2.69/25-75

0x016C MBFIDR13–Message buffer frame ID register 13 R/W 0x0UUU 25.5.2.70/25-76

0x016E MBIDXR13–Message buffer index register 13 R/W 0x00UU 25.5.2.71/25-76

0x0170 MBCCSR14–Message buffer configuration, control, status
register 14

R/W 0x0000 25.5.2.68/25-73

0x0172 MBCCFR14–Message buffer cycle counter filter register 14 R/W —3 25.5.2.69/25-75

0x0174 MBFIDR14–Message buffer frame ID register 14 R/W 0x0UUU 25.5.2.70/25-76

0x0176 MBIDXR14–Message buffer index register 14 R/W 0x00UU 25.5.2.71/25-76

0x0178 MBCCSR15–Message buffer configuration, control, status
register 15

R/W 0x0000 25.5.2.68/25-73

0x017A MBCCFR15–Message buffer cycle counter filter register 15 R/W —3 25.5.2.69/25-75

0x017C MBFIDR15–Message buffer frame ID register 15 R/W 0x0UUU 25.5.2.70/25-76

0x017E MBIDXR15–Message buffer index register 15 R/W 0x00UU 25.5.2.71/25-76

0x0180 MBCCSR16–Message buffer configuration, control, status
register 16

R/W 0x0000 25.5.2.68/25-73

0x0182 MBCCFR16–Message buffer cycle counter filter register 16 R/W —3 25.5.2.69/25-75

0x0184 MBFIDR16–Message buffer frame ID register 16 R/W 0x0UUU 25.5.2.70/25-76

0x0186 MBIDXR16–Message buffer index register 16 R/W 0x00UU 25.5.2.71/25-76

0x0188 MBCCSR17–Message buffer configuration, control, status
register 17

R/W 0x0000 25.5.2.68/25-73

0x018A MBCCFR17–Message buffer cycle counter filter register 17 R/W —3 25.5.2.69/25-75

0x018C MBFIDR17–Message buffer frame ID register 17 R/W 0x0UUU 25.5.2.70/25-76

0x018E MBIDXR17–Message buffer index register 17 R/W 0x00UU 25.5.2.71/25-76

0x0190 MBCCSR18–Message buffer configuration, control, status
register 18

R/W 0x0000 25.5.2.68/25-73

0x0192 MBCCFR18–Message buffer cycle counter filter register 18 R/W —3 25.5.2.69/25-75

0x0194 MBFIDR18–Message buffer frame ID register 18 R/W 0x0UUU 25.5.2.70/25-76

0x0196 MBIDXR18–Message buffer index register 18 R/W 0x00UU 25.5.2.71/25-76

0x0198 MBCCSR19–Message buffer configuration, control, status
register 19

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-23

0x019A MBCCFR19–Message buffer cycle counter filter register 19 R/W —3 25.5.2.69/25-75

0x019C MBFIDR19–Message buffer frame ID register 19 R/W 0x0UUU 25.5.2.70/25-76

0x019E MBIDXR19–Message buffer index register 19 R/W 0x00UU 25.5.2.71/25-76

0x01A0 MBCCSR20–Message buffer configuration, control, status
register 20

R/W 0x0000 25.5.2.68/25-73

0x01A2 MBCCFR20–Message buffer cycle counter filter register 20 R/W —3 25.5.2.69/25-75

0x01A4 MBFIDR20–Message buffer frame ID register 20 R/W 0x0UUU 25.5.2.70/25-76

0x01A6 MBIDXR20–Message buffer index register 20 R/W 0x00UU 25.5.2.71/25-76

0x01A8 MBCCSR21–Message buffer configuration, control, status
register 21

R/W 0x0000 25.5.2.68/25-73

0x01AA MBCCFR21–Message buffer cycle counter filter register 21 R/W —3 25.5.2.69/25-75

0x01AC MBFIDR21–Message buffer frame ID register 21 R/W 0x0UUU 25.5.2.70/25-76

0x01AE MBIDXR21–Message buffer index register 21 R/W 0x00UU 25.5.2.71/25-76

0x01B0 MBCCSR22–Message buffer configuration, control, status
register 22

R/W 0x0000 25.5.2.68/25-73

0x01B2 MBCCFR22–Message buffer cycle counter filter register 22 R/W —3 25.5.2.69/25-75

0x01B4 MBFIDR22–Message buffer frame ID register 22 R/W 0x0UUU 25.5.2.70/25-76

0x01B6 MBIDXR22–Message buffer index register 22 R/W 0x00UU 25.5.2.71/25-76

0x01B8 MBCCSR23–Message buffer configuration, control, status
register 23

R/W 0x0000 25.5.2.68/25-73

0x01BA MBCCFR23–Message buffer cycle counter filter register 23 R/W —3 25.5.2.69/25-75

0x01BC MBFIDR23–Message buffer frame ID register 23 R/W 0x0UUU 25.5.2.70/25-76

0x01BE MBIDXR23–Message buffer index register 23 R/W 0x00UU 25.5.2.71/25-76

0x01C0 MBCCSR24–Message buffer configuration, control, status
register 24

R/W 0x0000 25.5.2.68/25-73

0x01C2 MBCCFR24–Message buffer cycle counter filter register 24 R/W —3 25.5.2.69/25-75

0x01C4 MBFIDR24–Message buffer frame ID register 24 R/W 0x0UUU 25.5.2.70/25-76

0x01C6 MBIDXR24–Message buffer index register 24 R/W 0x00UU 25.5.2.71/25-76

0x01C8 MBCCSR25–Message buffer configuration, control, status
register 25

R/W 0x0000 25.5.2.68/25-73

0x01CA MBCCFR25–Message buffer cycle counter filter register 25 R/W —3 25.5.2.69/25-75

0x01CC MBFIDR25–Message buffer frame ID register 25 R/W 0x0UUU 25.5.2.70/25-76

0x01CE MBIDXR25–Message buffer index register 25 R/W 0x00UU 25.5.2.71/25-76

0x01D0 MBCCSR26–Message buffer configuration, control, status
register 26

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-24 Freescale Semiconductor

0x01D2 MBCCFR26–Message buffer cycle counter filter register 26 R/W —3 25.5.2.69/25-75

0x01D4 MBFIDR26–Message buffer frame ID register 26 R/W 0x0UUU 25.5.2.70/25-76

0x01D6 MBIDXR26–Message buffer index register 26 R/W 0x00UU 25.5.2.71/25-76

0x01D8 MBCCSR27–Message buffer configuration, control, status
register 27

R/W 0x0000 25.5.2.68/25-73

0x01DA MBCCFR27–Message buffer cycle counter filter register 27 R/W —3 25.5.2.69/25-75

0x01DC MBFIDR27–Message buffer frame ID register 27 R/W 0x0UUU 25.5.2.70/25-76

0x01DE MBIDXR27–Message buffer index register 27 R/W 0x00UU 25.5.2.71/25-76

0x01E0 MBCCSR28–Message buffer configuration, control, status
register 28

R/W 0x0000 25.5.2.68/25-73

0x01E2 MBCCFR28–Message buffer cycle counter filter register28 R/W —3 25.5.2.69/25-75

0x01E4 MBFIDR28–Message buffer frame ID register 28 R/W 0x0UUU 25.5.2.70/25-76

0x01E6 MBIDXR28–Message buffer index register 28 R/W 0x00UU 25.5.2.71/25-76

0x01E8 MBCCSR29–Message buffer configuration, control, status
register 29

R/W 0x0000 25.5.2.68/25-73

0x01EA MBCCFR29–Message buffer cycle counter filter register 29 R/W —3 25.5.2.69/25-75

0x01EC MBFIDR29–Message buffer frame ID register 29 R/W 0x0UUU 25.5.2.70/25-76

0x01EE MBIDXR29–Message buffer index register 29 R/W 0x00UU 25.5.2.71/25-76

0x01F0 MBCCSR30–Message buffer configuration, control, status
register 30

R/W 0x0000 25.5.2.68/25-73

0x01F2 MBCCFR30–Message buffer cycle counter filter register 30 R/W —3 25.5.2.69/25-75

0x01F4 MBFIDR30–Message buffer frame ID register 30 R/W 0x0UUU 25.5.2.70/25-76

0x01F6 MBIDXR30–Message buffer index register 30 R/W 0x00UU 25.5.2.71/25-76

0x01F8 MBCCSR31–Message buffer configuration, control, status
register 31

R/W 0x0000 25.5.2.68/25-73

0x01FA MBCCFR31–Message buffer cycle counter filter register 31 R/W —3 25.5.2.69/25-75

0x01FC MBFIDR31–Message buffer frame ID register 31 R/W 0x0UUU 25.5.2.70/25-76

0x01FE MBIDXR31–Message buffer index register 31 R/W 0x00UU 25.5.2.71/25-76

0x0200 MBCCSR32–Message buffer configuration, control, status
register 32

R/W 0x0000 25.5.2.68/25-73

0x0202 MBCCFR32–Message buffer cycle counter filter register 32 R/W —3 25.5.2.69/25-75

0x0204 MBFIDR32–Message buffer frame ID register 32 R/W 0x0UUU 25.5.2.70/25-76

0x0206 MBIDXR32–Message buffer index register 32 R/W 0x00UU 25.5.2.71/25-76

0x0208 MBCCSR33–Message buffer configuration, control, status
register 33

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-25

0x020A MBCCFR33–Message buffer cycle counter filter register33 R/W —3 25.5.2.69/25-75

0x020C MBFIDR33–Message buffer frame ID register 33 R/W 0x0UUU 25.5.2.70/25-76

0x020E MBIDXR33–Message buffer index register 33 R/W 0x00UU 25.5.2.71/25-76

0x0210 MBCCSR34–Message buffer configuration, control, status
register 34

R/W 0x0000 25.5.2.68/25-73

0x0212 MBCCFR34–Message buffer cycle counter filter register 34 R/W —3 25.5.2.69/25-75

0x0214 MBFIDR34–Message buffer frame ID register 34 R/W 0x0UUU 25.5.2.70/25-76

0x0216 MBIDXR34–Message buffer index register 34 R/W 0x00UU 25.5.2.71/25-76

0x0218 MBCCSR35–Message buffer configuration, control, status
register 35

R/W 0x0000 25.5.2.68/25-73

0x021A MBCCFR35–Message buffer cycle counter filter register 35 R/W —3 25.5.2.69/25-75

0x021C MBFIDR35–Message buffer frame ID register 35 R/W 0x0UUU 25.5.2.70/25-76

0x021E MBIDXR35–Message buffer index register 35 R/W 0x00UU 25.5.2.71/25-76

0x0220 MBCCSR36–Message buffer configuration, control, status
register 36

R/W 0x0000 25.5.2.68/25-73

0x0222 MBCCFR36–Message buffer cycle counter filter register 36 R/W —3 25.5.2.69/25-75

0x0224 MBFIDR36–Message buffer frame ID register 36 R/W 0x0UUU 25.5.2.70/25-76

0x0226 MBIDXR36–Message buffer index register 36 R/W 0x00UU 25.5.2.71/25-76

0x0228 MBCCSR37–Message buffer configuration, control, status
register 37

R/W 0x0000 25.5.2.68/25-73

0x022A MBCCFR37–Message buffer cycle counter filter register 37 R/W —3 25.5.2.69/25-75

0x022C MBFIDR37–Message buffer frame ID register 37 R/W 0x0UUU 25.5.2.70/25-76

0x022E MBIDXR37–Message buffer index register 37 R/W 0x00UU 25.5.2.71/25-76

0x0230 MBCCSR38–Message buffer configuration, control, status
register 38

R/W 0x0000 25.5.2.68/25-73

0x0232 MBCCFR38–Message buffer cycle counter filter register 38 R/W —3 25.5.2.69/25-75

0x0234 MBFIDR38–Message buffer frame ID register 38 R/W 0x0UUU 25.5.2.70/25-76

0x0236 MBIDXR38–Message buffer index register 38 R/W 0x00UU 25.5.2.71/25-76

0x0238 MBCCSR39–Message buffer configuration, control, status
register 39

R/W 0x0000 25.5.2.68/25-73

0x023A MBCCFR39–Message buffer cycle counter filter register 39 R/W —3 25.5.2.69/25-75

0x023C MBFIDR39–Message buffer frame ID register 39 R/W 0x0UUU 25.5.2.70/25-76

0x023E MBIDXR39–Message buffer index register 39 R/W 0x00UU 25.5.2.71/25-76

0x0240 MBCCSR40–Message buffer configuration, control, status
register 40

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-26 Freescale Semiconductor

0x0242 MBCCFR40–Message buffer cycle counter filter register40 R/W —3 25.5.2.69/25-75

0x0244 MBFIDR40–Message buffer frame ID register 40 R/W 0x0UUU 25.5.2.70/25-76

0x0246 MBIDXR40–Message buffer index register 40 R/W 0x00UU 25.5.2.71/25-76

0x0248 MBCCSR41–Message buffer configuration, control, status
register 41

R/W 0x0000 25.5.2.68/25-73

0x024A MBCCFR41–Message buffer cycle counter filter register 41 R/W —3 25.5.2.69/25-75

0x024C MBFIDR41–Message buffer frame ID register 41 R/W 0x0UUU 25.5.2.70/25-76

0x024E MBIDXR41–Message buffer index register 41 R/W 0x00UU 25.5.2.71/25-76

0x0250 MBCCSR42–Message buffer configuration, control, status
register 42

R/W 0x0000 25.5.2.68/25-73

0x0252 MBCCFR42–Message buffer cycle counter filter register 42 R/W —3 25.5.2.69/25-75

0x0254 MBFIDR42–Message buffer frame ID register 42 R/W 0x0UUU 25.5.2.70/25-76

0x0256 MBIDXR42–Message buffer index register 42 R/W 0x00UU 25.5.2.71/25-76

0x0258 MBCCSR43–Message buffer configuration, control, status
register 43

R/W 0x0000 25.5.2.68/25-73

0x025A MBCCFR43–Message buffer cycle counter filter register 43 R/W —3 25.5.2.69/25-75

0x025C MBFIDR43–Message buffer frame ID register 43 R/W 0x0UUU 25.5.2.70/25-76

0x025E MBIDXR43–Message buffer index register 43 R/W 0x00UU 25.5.2.71/25-76

0x0260 MBCCSR44–Message buffer configuration, control, status
register 44

R/W 0x0000 25.5.2.68/25-73

0x0262 MBCCFR44–Message buffer cycle counter filter register 44 R/W —3 25.5.2.69/25-75

0x0264 MBFIDR44–Message buffer frame ID register 44 R/W 0x0UUU 25.5.2.70/25-76

0x0266 MBIDXR44–Message buffer index register 44 R/W 0x00UU 25.5.2.71/25-76

0x0268 MBCCSR45–Message buffer configuration, control, status
register 45

R/W 0x0000 25.5.2.68/25-73

0x026A MBCCFR45–Message buffer cycle counter filter register45 R/W —3 25.5.2.69/25-75

0x026C MBFIDR45–Message buffer frame ID register 45 R/W 0x0UUU 25.5.2.70/25-76

0x026E MBIDXR45–Message buffer index register 45 R/W 0x00UU 25.5.2.71/25-76

0x0270 MBCCSR46–Message buffer configuration, control, status
register 46

R/W 0x0000 25.5.2.68/25-73

0x0272 MBCCFR46–Message buffer cycle counter filter register 46 R/W —3 25.5.2.69/25-75

0x0274 MBFIDR46–Message buffer frame ID register 46 R/W 0x0UUU 25.5.2.70/25-76

0x0276 MBIDXR46–Message buffer index register 46 R/W 0x00UU 25.5.2.71/25-76

0x0278 MBCCSR47–Message buffer configuration, control, status
register 47

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-27

0x027A MBCCFR47–Message buffer cycle counter filter register 47 R/W —3 25.5.2.69/25-75

0x027C MBFIDR47–Message buffer frame ID register 47 R/W 0x0UUU 25.5.2.70/25-76

0x027E MBIDXR47–Message buffer index register 47 R/W 0x00UU 25.5.2.71/25-76

0x0280 MBCCSR48–Message buffer configuration, control, status
register 48

R/W 0x0000 25.5.2.68/25-73

0x0282 MBCCFR48–Message buffer cycle counter filter register 48 R/W —3 25.5.2.69/25-75

0x0284 MBFIDR48–Message buffer frame ID register 48 R/W 0x0UUU 25.5.2.70/25-76

0x0286 MBIDXR48–Message buffer index register 48 R/W 0x00UU 25.5.2.71/25-76

0x0288 MBCCSR49–Message buffer configuration, control, status
register 49

R/W 0x0000 25.5.2.68/25-73

0x028A MBCCFR49–Message buffer cycle counter filter register49 R/W —3 25.5.2.69/25-75

0x028C MBFIDR49–Message buffer frame ID register 49 R/W 0x0UUU 25.5.2.70/25-76

0x028E MBIDXR49–Message buffer index register 49 R/W 0x00UU 25.5.2.71/25-76

0x0290 MBCCSR50–Message buffer configuration, control, status
register 50

R/W 0x0000 25.5.2.68/25-73

0x0292 MBCCFR50–Message buffer cycle counter filter register 50 R/W —3 25.5.2.69/25-75

0x0294 MBFIDR50–Message buffer frame ID register 50 R/W 0x0UUU 25.5.2.70/25-76

0x0296 MBIDXR50–Message buffer index register 50 R/W 0x00UU 25.5.2.71/25-76

0x0298 MBCCSR51–Message buffer configuration, control, status
register 51

R/W 0x0000 25.5.2.68/25-73

0x029A MBCCFR51–Message buffer cycle counter filter register 51 R/W —3 25.5.2.69/25-75

0x029C MBFIDR51–Message buffer frame ID register 51 R/W 0x0UUU 25.5.2.70/25-76

0x029E MBIDXR51–Message buffer index register 51 R/W 0x00UU 25.5.2.71/25-76

0x02A0 MBCCSR52–Message buffer configuration, control, status
register 52

R/W 0x0000 25.5.2.68/25-73

0x02A2 MBCCFR52–Message buffer cycle counter filter register 52 R/W —3 25.5.2.69/25-75

0x02A4 MBFIDR52–Message buffer frame ID register 52 R/W 0x0UUU 25.5.2.70/25-76

0x02A6 MBIDXR52–Message buffer index register 52 R/W 0x00UU 25.5.2.71/25-76

0x02A8 MBCCSR53–Message buffer configuration, control, status
register 53

R/W 0x0000 25.5.2.68/25-73

0x02AA MBCCFR53–Message buffer cycle counter filter register 53 R/W —3 25.5.2.69/25-75

0x02AC MBFIDR53–Message buffer frame ID register 53 R/W 0x0UUU 25.5.2.70/25-76

0x02AE MBIDXR53–Message buffer index register 53 R/W 0x00UU 25.5.2.71/25-76

0x02B0 MBCCSR54–Message buffer configuration, control, status
register 54

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-28 Freescale Semiconductor

0x02B2 MBCCFR54–Message buffer cycle counter filter register 54 R/W —3 25.5.2.69/25-75

0x02B4 MBFIDR54–Message buffer frame ID register 54 R/W 0x0UUU 25.5.2.70/25-76

0x02B6 MBIDXR54–Message buffer index register 54 R/W 0x00UU 25.5.2.71/25-76

0x02B8 MBCCSR55–Message buffer configuration, control, status
register 55

R/W 0x0000 25.5.2.68/25-73

0x02BA MBCCFR55–Message buffer cycle counter filter register 55 R/W —3 25.5.2.69/25-75

0x02BC MBFIDR55–Message buffer frame ID register 55 R/W 0x0UUU 25.5.2.70/25-76

0x02BE MBIDXR55–Message buffer index register 55 R/W 0x00UU 25.5.2.71/25-76

0x02C0 MBCCSR56–Message buffer configuration, control, status
register 56

R/W 0x0000 25.5.2.68/25-73

0x02C2 MBCCFR56–Message buffer cycle counter filter register 56 R/W —3 25.5.2.69/25-75

0x02C4 MBFIDR56–Message buffer frame ID register 56 R/W 0x0UUU 25.5.2.70/25-76

0x02C6 MBIDXR56–Message buffer index register 56 R/W 0x00UU 25.5.2.71/25-76

0x02C8 MBCCSR57–Message buffer configuration, control, status
register 57

R/W 0x0000 25.5.2.68/25-73

0x02CA MBCCFR57–Message buffer cycle counter filter register57 R/W —3 25.5.2.69/25-75

0x02CC MBFIDR57–Message buffer frame ID register 57 R/W 0x0UUU 25.5.2.70/25-76

0x02CE MBIDXR57–Message buffer index register 57 R/W 0x00UU 25.5.2.71/25-76

0x02D0 MBCCSR58–Message buffer configuration, control, status
register 58

R/W 0x0000 25.5.2.68/25-73

0x02D2 MBCCFR58–Message buffer cycle counter filter register 58 R/W —3 25.5.2.69/25-75

0x02D4 MBFIDR58–Message buffer frame ID register 58 R/W 0x0UUU 25.5.2.70/25-76

0x02D6 MBIDXR58–Message buffer index register 58 R/W 0x00UU 25.5.2.71/25-76

0x02D8 MBCCSR59–Message buffer configuration, control, status
register 59

R/W 0x0000 25.5.2.68/25-73

0x02DA MBCCFR59–Message buffer cycle counter filter register 59 R/W —3 25.5.2.69/25-75

0x02DC MBFIDR59–Message buffer frame ID register 59 R/W 0x0UUU 25.5.2.70/25-76

0x02DE MBIDXR59–Message buffer index register 59 R/W 0x00UU 25.5.2.71/25-76

0x02E0 MBCCSR60–Message buffer configuration, control, status
register 60

R/W 0x0000 25.5.2.68/25-73

0x02E2 MBCCFR60–Message buffer cycle counter filter register 60 R/W —3 25.5.2.69/25-75

0x02E4 MBFIDR60–Message buffer frame ID register 60 R/W 0x0UUU 25.5.2.70/25-76

0x02E6 MBIDXR60–Message buffer index register 60 R/W 0x00UU 25.5.2.71/25-76

0x02E8 MBCCSR61–Message buffer configuration, control, status
register 61

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-29

0x02EA MBCCFR61–Message buffer cycle counter filter register 61 R/W —3 25.5.2.69/25-75

0x02EC MBFIDR61–Message buffer frame ID register 61 R/W 0x0UUU 25.5.2.70/25-76

0x02EE MBIDXR61–Message buffer index register 61 R/W 0x00UU 25.5.2.71/25-76

0x02F0 MBCCSR62–Message buffer configuration, control, status
register 62

R/W 0x0000 25.5.2.68/25-73

0x02F2 MBCCFR62–Message buffer cycle counter filter register 62 R/W —3 25.5.2.69/25-75

0x02F4 MBFIDR62–Message buffer frame ID register 62 R/W 0x0UUU 25.5.2.70/25-76

0x02F6 MBIDXR62–Message buffer index register 62 R/W 0x00UU 25.5.2.71/25-76

0x02F8 MBCCSR63–Message buffer configuration, control, status
register 63

R/W 0x0000 25.5.2.68/25-73

0x02FA MBCCFR63–Message buffer cycle counter filter register 63 R/W —3 25.5.2.69/25-75

0x02FC MBFIDR63–Message buffer frame ID register 63 R/W 0x0UUU 25.5.2.70/25-76

0x02FE MBIDXR63–Message buffer index register 63 R/W 0x00UU 25.5.2.71/25-76

0x0300 MBCCSR64–Message buffer configuration, control, status
register 64

R/W 0x0000 25.5.2.68/25-73

0x0302 MBCCFR64–Message buffer cycle counter filter register 64 R/W —3 25.5.2.69/25-75

0x0304 MBFIDR64–Message buffer frame ID register 64 R/W 0x0UUU 25.5.2.70/25-76

0x0306 MBIDXR64–Message buffer index register 64 R/W 0x00UU 25.5.2.71/25-76

0x0308 MBCCSR65–Message buffer configuration, control, status
register 65

R/W 0x0000 25.5.2.68/25-73

0x030A MBCCFR65–Message buffer cycle counter filter register 65 R/W —3 25.5.2.69/25-75

0x030C MBFIDR65–Message buffer frame ID register 65 R/W 0x0UUU 25.5.2.70/25-76

0x030E MBIDXR65–Message buffer index register 65 R/W 0x00UU 25.5.2.71/25-76

0x0310 MBCCSR66–Message buffer configuration, control, status
register 66

R/W 0x0000 25.5.2.68/25-73

0x0312 MBCCFR66–Message buffer cycle counter filter register 66 R/W —3 25.5.2.69/25-75

0x0314 MBFIDR66–Message buffer frame ID register 66 R/W 0x0UUU 25.5.2.70/25-76

0x0316 MBIDXR66–Message buffer index register 66 R/W 0x00UU 25.5.2.71/25-76

0x0318 MBCCSR67–Message buffer configuration, control, status
register 67

R/W 0x0000 25.5.2.68/25-73

0x031A MBCCFR67–Message buffer cycle counter filter register 67 R/W —3 25.5.2.69/25-75

0x031C MBFIDR67–Message buffer frame ID register 67 R/W 0x0UUU 25.5.2.70/25-76

0x031E MBIDXR67–Message buffer index register 67 R/W 0x00UU 25.5.2.71/25-76

0x0320 MBCCSR68–Message buffer configuration, control, status
register 68

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-30 Freescale Semiconductor

0x0322 MBCCFR68–Message buffer cycle counter filter register 68 R/W —3 25.5.2.69/25-75

0x0324 MBFIDR68–Message buffer frame ID register 68 R/W 0x0UUU 25.5.2.70/25-76

0x0326 MBIDXR68–Message buffer index register 68 R/W 0x00UU 25.5.2.71/25-76

0x0328 MBCCSR69–Message buffer configuration, control, status
register 69

R/W 0x0000 25.5.2.68/25-73

0x032A MBCCFR69–Message buffer cycle counter filter register 69 R/W —3 25.5.2.69/25-75

0x032C MBFIDR69–Message buffer frame ID register 69 R/W 0x0UUU 25.5.2.70/25-76

0x032E MBIDXR69–Message buffer index register 69 R/W 0x00UU 25.5.2.71/25-76

0x0330 MBCCSR70–Message buffer configuration, control, status
register 70

R/W 0x0000 25.5.2.68/25-73

0x0332 MBCCFR70–Message buffer cycle counter filter register 70 R/W —3 25.5.2.69/25-75

0x0334 MBFIDR70–Message buffer frame ID register 70 R/W 0x0UUU 25.5.2.70/25-76

0x0336 MBIDXR70–Message buffer index register 70 R/W 0x00UU 25.5.2.71/25-76

0x0338 MBCCS71–Message buffer configuration, control, status register
71

R/W 0x0000 25.5.2.68/25-73

0x033A MBCCFR71–Message buffer cycle counter filter register 71 R/W —3 25.5.2.69/25-75

0x033C MBFIDR71–Message buffer frame ID register 71 R/W 0x0UUU 25.5.2.70/25-76

0x033E MBIDXR71–Message buffer index register 71 R/W 0x00UU 25.5.2.71/25-76

0x0340 MBCCSR72–Message buffer configuration, control, status
register 72

R/W 0x0000 25.5.2.68/25-73

0x0342 MBCCFR72–Message buffer cycle counter filter register72 R/W —3 25.5.2.69/25-75

0x0344 MBFIDR72–Message buffer frame ID register 72 R/W 0x0UUU 25.5.2.70/25-76

0x0346 MBIDXR72–Message buffer index register 72 R/W 0x00UU 25.5.2.71/25-76

0x0348 MBCCSR73–Message buffer configuration, control, status
register 73

R/W 0x0000 25.5.2.68/25-73

0x034A MBCCFR73–Message buffer cycle counter filter register 73 R/W —3 25.5.2.69/25-75

0x034C MBFIDR73–Message buffer frame ID register 73 R/W 0x0UUU 25.5.2.70/25-76

0x034E MBIDXR73–Message buffer index register 73 R/W 0x00UU 25.5.2.71/25-76

0x0350 MBCCSR74–Message buffer configuration, control, status
register 74

R/W 0x0000 25.5.2.68/25-73

0x0352 MBCCFR74–Message buffer cycle counter filter register 74 R/W —3 25.5.2.69/25-75

0x0354 MBFIDR74–Message buffer frame ID register 74 R/W 0x0UUU 25.5.2.70/25-76

0x0356 MBIDXR74–Message buffer index register 74 R/W 0x00UU 25.5.2.71/25-76

0x0358 MBCCSR75–Message buffer configuration, control, status
register 75

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-31

0x035A MBCCFR75–Message buffer cycle counter filter register 75 R/W —3 25.5.2.69/25-75

0x035C MBFIDR75–Message buffer frame ID register 75 R/W 0x0UUU 25.5.2.70/25-76

0x035E MBIDXR75–Message buffer index register 75 R/W 0x00UU 25.5.2.71/25-76

0x0360 MBCCSR76–Message buffer configuration, control, status
register 76

R/W 0x0000 25.5.2.68/25-73

0x0362 MBCCFR76–Message buffer cycle counter filter register 76 R/W —3 25.5.2.69/25-75

0x0364 MBFIDR76–Message buffer frame ID register 76 R/W 0x0UUU 25.5.2.70/25-76

0x0366 MBIDXR76–Message buffer index register 76 R/W 0x00UU 25.5.2.71/25-76

0x0368 MBCCSR77–Message buffer configuration, control, status
register 77

R/W 0x0000 25.5.2.68/25-73

0x036A MBCCFR77–Message buffer cycle counter filter register 77 R/W —3 25.5.2.69/25-75

0x036C MBFIDR77–Message buffer frame ID register 77 R/W 0x0UUU 25.5.2.70/25-76

0x036E MBIDXR77–Message buffer index register 77 R/W 0x00UU 25.5.2.71/25-76

0x0370 MBCCSR78–Message buffer configuration, control, status
register 78

R/W 0x0000 25.5.2.68/25-73

0x0372 MBCCFR78–Message buffer cycle counter filter register 78 R/W —3 25.5.2.69/25-75

0x0374 MBFIDR78–Message buffer frame ID register 78 R/W 0x0UUU 25.5.2.70/25-76

0x0376 MBIDXR78–Message buffer index register 78 R/W 0x00UU 25.5.2.71/25-76

0x0378 MBCCSR79–Message buffer configuration, control, status
register 79

R/W 0x0000 25.5.2.68/25-73

0x037A MBCCFR79–Message buffer cycle counter filter register 79 R/W —3 25.5.2.69/25-75

0x037C MBFIDR79–Message buffer frame ID register 79 R/W 0x0UUU 25.5.2.70/25-76

0x037E MBIDXR79–Message buffer index register 79 R/W 0x00UU 25.5.2.71/25-76

0x0380 MBCCSR80–Message buffer configuration, control, status
register 80

R/W 0x0000 25.5.2.68/25-73

0x0382 MBCCFR80–Message buffer cycle counter filter register 80 R/W —3 25.5.2.69/25-75

0x0384 MBFIDR80–Message buffer frame ID register 80 R/W 0x0UUU 25.5.2.70/25-76

0x0386 MBIDXR80–Message buffer index register 80 R/W 0x00UU 25.5.2.71/25-76

0x0388 MBCCSR81–Message buffer configuration, control, status
register 81

R/W 0x0000 25.5.2.68/25-73

0x038A MBCCFR81–Message buffer cycle counter filter register 81 R/W —3 25.5.2.69/25-75

0x038C MBFIDR81–Message buffer frame ID register 81 R/W 0x0UUU 25.5.2.70/25-76

0x038E MBIDXR81–Message buffer index register 81 R/W 0x00UU 25.5.2.71/25-76

0x0390 MBCCSR82–Message buffer configuration, control, status
register 82

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-32 Freescale Semiconductor

0x0392 MBCCFR82–Message buffer cycle counter filter register 82 R/W —3 25.5.2.69/25-75

0x0394 MBFIDR82–Message buffer frame ID register 82 R/W 0x0UUU 25.5.2.70/25-76

0x0396 MBIDXR82–Message buffer index register 82 R/W 0x00UU 25.5.2.71/25-76

0x0398 MBCCSR83–Message buffer configuration, control, status
register 83

R/W 0x0000 25.5.2.68/25-73

0x039A MBCCFR83–Message buffer cycle counter filter register 83 R/W —3 25.5.2.69/25-75

0x039C MBFIDR83–Message buffer frame ID register 83 R/W 0x0UUU 25.5.2.70/25-76

0x039E MBIDXR83–Message buffer index register 83 R/W 0x00UU 25.5.2.71/25-76

0x03A0 MBCCSR84–Message buffer configuration, control, status
register 84

R/W 0x0000 25.5.2.68/25-73

0x03A2 MBCCFR84–Message buffer cycle counter filter register84 R/W —3 25.5.2.69/25-75

0x03A4 MBFIDR84–Message buffer frame ID register 84 R/W 0x0UUU 25.5.2.70/25-76

0x03A6 MBIDXR84–Message buffer index register 84 R/W 0x00UU 25.5.2.71/25-76

0x03A8 MBCCSR85–Message buffer configuration, control, status
register 85

R/W 0x0000 25.5.2.68/25-73

0x03AA MBCCFR85–Message buffer cycle counter filter register 85 R/W —3 25.5.2.69/25-75

0x03AC MBFIDR85–Message buffer frame ID register 85 R/W 0x0UUU 25.5.2.70/25-76

0x03AE MBIDXR85–Message buffer index register 85 R/W 0x00UU 25.5.2.71/25-76

0x03B0 MBCCSR86–Message buffer configuration, control, status
register 86

R/W 0x0000 25.5.2.68/25-73

0x03B2 MBCCFR86–Message buffer cycle counter filter register 86 R/W —3 25.5.2.69/25-75

0x03B4 MBFIDR86–Message buffer frame ID register 86 R/W 0x0UUU 25.5.2.70/25-76

0x03B6 MBIDXR86–Message buffer index register 86 R/W 0x00UU 25.5.2.71/25-76

0x03B8 MBCCSR87–Message buffer configuration, control, status
register 87

R/W 0x0000 25.5.2.68/25-73

0x03BA MBCCFR87–Message buffer cycle counter filter register 87 R/W —3 25.5.2.69/25-75

0x03BC MBFIDR87–Message buffer frame ID register 87 R/W 0x0UUU 25.5.2.70/25-76

0x03BE MBIDXR87–Message buffer index register 87 R/W 0x00UU 25.5.2.71/25-76

0x03C0 MBCCSR88–Message buffer configuration, control, status
register 88

R/W 0x0000 25.5.2.68/25-73

0x03C2 MBCCFR88–Message buffer cycle counter filter register 88 R/W —3 25.5.2.69/25-75

0x03C4 MBFIDR88–Message buffer frame ID register 88 R/W 0x0UUU 25.5.2.70/25-76

0x03C6 MBIDXR88–Message buffer index register 88 R/W 0x00UU 25.5.2.71/25-76

0x03C8 MBCCSR89–Message buffer configuration, control, status
register 89

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-33

0x03CA MBCCFR89–Message buffer cycle counter filter register 89 R/W —3 25.5.2.69/25-75

0x03CC MBFIDR89–Message buffer frame ID register 89 R/W 0x0UUU 25.5.2.70/25-76

0x03CE MBIDXR89–Message buffer index register 89 R/W 0x00UU 25.5.2.71/25-76

0x03D0 MBCCSR90–Message buffer configuration, control, status
register 90

R/W 0x0000 25.5.2.68/25-73

0x03D2 MBCCFR90–Message buffer cycle counter filter register 90 R/W —3 25.5.2.69/25-75

0x03D4 MBFIDR90–Message buffer frame ID register 90 R/W 0x0UUU 25.5.2.70/25-76

0x03D6 MBIDXR90–Message buffer index register 90 R/W 0x00UU 25.5.2.71/25-76

0x03D8 MBCCSR91–Message buffer configuration, control, status
register 91

R/W 0x0000 25.5.2.68/25-73

0x03DA MBCCFR91–Message buffer cycle counter filter register 91 R/W —3 25.5.2.69/25-75

0x03DC MBFIDR91–Message buffer frame ID register 91 R/W 0x0UUU 25.5.2.70/25-76

0x03DE MBIDXR91–Message buffer index register 91 R/W 0x00UU 25.5.2.71/25-76

0x03E0 MBCCSR92–Message buffer configuration, control, status
register 92

R/W 0x0000 25.5.2.68/25-73

0x03E2 MBCCFR92–Message buffer cycle counter filter register 92 R/W —3 25.5.2.69/25-75

0x03E4 MBFIDR92–Message buffer frame ID register 92 R/W 0x0UUU 25.5.2.70/25-76

0x03E6 MBIDXR92–Message buffer index register 92 R/W 0x00UU 25.5.2.71/25-76

0x03E8 MBCCSR93–Message buffer configuration, control, status
register 93

R/W 0x0000 25.5.2.68/25-73

0x03EA MBCCFR93–Message buffer cycle counter filter register 93 R/W —3 25.5.2.69/25-75

0x03EC MBFIDR93–Message buffer frame ID register 93 R/W 0x0UUU 25.5.2.70/25-76

0x03EE MBIDXR93–Message buffer index register 93 R/W 0x00UU 25.5.2.71/25-76

0x03F0 MBCCSR94–Message buffer configuration, control, status
register 94

R/W 0x0000 25.5.2.68/25-73

0x03F2 MBCCFR94–Message buffer cycle counter filter register 94 R/W —3 25.5.2.69/25-75

0x03F4 MBFIDR94–Message buffer frame ID register 94 R/W 0x0UUU 25.5.2.70/25-76

0x03F6 MBIDXR94–Message buffer index register 94 R/W 0x00UU 25.5.2.71/25-76

0x03F8 MBCCSR95–Message buffer configuration, control, status
register 95

R/W 0x0000 25.5.2.68/25-73

0x03FA MBCCFR95–Message buffer cycle counter filter register 95 R/W —3 25.5.2.69/25-75

0x03FC MBFIDR95–Message buffer frame ID register 95 R/W 0x0UUU 25.5.2.70/25-76

0x03FE MBIDXR95–Message buffer index register 95 R/W 0x00UU 25.5.2.71/25-76

0x0400 MBCCSR96–Message buffer configuration, control, status
register 96

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-34 Freescale Semiconductor

0x0402 MBCCFR96–Message buffer cycle counter filter register 96 R/W —3 25.5.2.69/25-75

0x0404 MBFIDR96–Message buffer frame ID register 96 R/W 0x0UUU 25.5.2.70/25-76

0x0406 MBIDXR96–Message buffer index register 96 R/W 0x00UU 25.5.2.71/25-76

0x0408 MBCCSR97–Message buffer configuration, control, status
register 97

R/W 0x0000 25.5.2.68/25-73

0x040A MBCCFR97–Message buffer cycle counter filter register 97 R/W —3 25.5.2.69/25-75

0x040C MBFIDR97–Message buffer frame ID register 97 R/W 0x0UUU 25.5.2.70/25-76

0x040E MBIDXR97–Message buffer index register 97 R/W 0x00UU 25.5.2.71/25-76

0x0410 MBCCSR98–Message buffer configuration, control, status
register 98

R/W 0x0000 25.5.2.68/25-73

0x0412 MBCCFR98–Message buffer cycle counter filter register 98 R/W —3 25.5.2.69/25-75

0x0414 MBFIDR98–Message buffer frame ID register 98 R/W 0x0UUU 25.5.2.70/25-76

0x0416 MBIDXR98–Message buffer index register 98 R/W 0x00UU 25.5.2.71/25-76

0x0418 MBCCSR99–Message buffer configuration, control, status
register 99

R/W 0x0000 25.5.2.68/25-73

0x041A MBCCFR99–Message buffer cycle counter filter register 99 R/W —3 25.5.2.69/25-75

0x041C MBFIDR99–Message buffer frame ID register 99 R/W 0x0UUU 25.5.2.70/25-76

0x041E MBIDXR99–Message buffer index register 99 R/W 0x00UU 25.5.2.71/25-76

0x0420 MBCCSR100–Message buffer configuration, control, status
register 100

R/W 0x0000 25.5.2.68/25-73

0x0422 MBCCFR100–Message buffer cycle counter filter register 100 R/W —3 25.5.2.69/25-75

0x0424 MBFIDR100–Message buffer frame ID register 100 R/W 0x0UUU 25.5.2.70/25-76

0x0426 MBIDXR100–Message buffer index register 100 R/W 0x00UU 25.5.2.71/25-76

0x0428 MBCCSR101–Message buffer configuration, control, status
register 101

R/W 0x0000 25.5.2.68/25-73

0x042A MBCCFR101–Message buffer cycle counter filter register 101 R/W —3 25.5.2.69/25-75

0x042C MBFIDR101–Message buffer frame ID register 101 R/W 0x0UUU 25.5.2.70/25-76

0x042E MBIDXR101–Message buffer index register 101 R/W 0x00UU 25.5.2.71/25-76

0x0430 MBCCSR102–Message buffer configuration, control, status
register 102

R/W 0x0000 25.5.2.68/25-73

0x0432 MBCCFR102–Message buffer cycle counter filter register 102 R/W —3 25.5.2.69/25-75

0x0434 MBFIDR102–Message buffer frame ID register 102 R/W 0x0UUU 25.5.2.70/25-76

0x0436 MBIDXR102–Message buffer index register 102 R/W 0x00UU 25.5.2.71/25-76

0x0438 MBCCSR103–Message buffer configuration, control, status
register 103

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-35

0x043A MBCCFR103–Message buffer cycle counter filter register 103 R/W —3 25.5.2.69/25-75

0x043C MBFIDR103–Message buffer frame ID register 103 R/W 0x0UUU 25.5.2.70/25-76

0x043E MBIDXR103–Message buffer index register 103 R/W 0x00UU 25.5.2.71/25-76

0x0440 MBCCSR104–Message buffer configuration, control, status
register 104

R/W 0x0000 25.5.2.68/25-73

0x0442 MBCCFR104–Message buffer cycle counter filter register 104 R/W —3 25.5.2.69/25-75

0x0444 MBFIDR104–Message buffer frame ID register 104 R/W 0x0UUU 25.5.2.70/25-76

0x0446 MBIDXR104–Message buffer index register 104 R/W 0x00UU 25.5.2.71/25-76

0x0448 MBCCSR105–Message buffer configuration, control, status
register 105

R/W 0x0000 25.5.2.68/25-73

0x044A MBCCFR105–Message buffer cycle counter filter register 105 R/W —3 25.5.2.69/25-75

0x044C MBFIDR105–Message buffer frame ID register 105 R/W 0x0UUU 25.5.2.70/25-76

0x044E MBIDXR105–Message buffer index register 105 R/W 0x00UU 25.5.2.71/25-76

0x0450 MBCCSR106–Message buffer configuration, control, status
register 106

R/W 0x0000 25.5.2.68/25-73

0x0452 MBCCFR106–Message buffer cycle counter filter register 106 R/W —3 25.5.2.69/25-75

0x0454 MBFIDR106–Message buffer frame ID register 106 R/W 0x0UUU 25.5.2.70/25-76

0x0456 MBIDXR106–Message buffer index register 106 R/W 0x00UU 25.5.2.71/25-76

0x0458 MBCCSR107–Message buffer configuration, control, status
register 107

R/W 0x0000 25.5.2.68/25-73

0x045A MBCCFR107–Message buffer cycle counter filter register 107 R/W —3 25.5.2.69/25-75

0x045C MBFIDR107–Message buffer frame ID register 107 R/W 0x0UUU 25.5.2.70/25-76

0x045E MBIDXR107–Message buffer index register 107 R/W 0x00UU 25.5.2.71/25-76

0x0460 MBCCSR108–Message buffer configuration, control, status
register 108

R/W 0x0000 25.5.2.68/25-73

0x0462 MBCCFR108–Message buffer cycle counter filter register 108 R/W —3 25.5.2.69/25-75

0x0464 MBFIDR108–Message buffer frame ID register 108 R/W 0x0UUU 25.5.2.70/25-76

0x0466 MBIDXR108–Message buffer index register 108 R/W 0x00UU 25.5.2.71/25-76

0x0468 MBCCSR109–Message buffer configuration, control, status
register 109

R/W 0x0000 25.5.2.68/25-73

0x046A MBCCFR109–Message buffer cycle counter filter register 109 R/W —3 25.5.2.69/25-75

0x046C MBFIDR109–Message buffer frame ID register 109 R/W 0x0UUU 25.5.2.70/25-76

0x046E MBIDXR109–Message buffer index register 109 R/W 0x00UU 25.5.2.71/25-76

0x0470 MBCCSR110–Message buffer configuration, control, status
register 110

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-36 Freescale Semiconductor

0x0472 MBCCFR110–Message buffer cycle counter filter register 110 R/W —3 25.5.2.69/25-75

0x0474 MBFIDR110–Message buffer frame ID register 110 R/W 0x0UUU 25.5.2.70/25-76

0x0476 MBIDXR110–Message buffer index register 110 R/W 0x00UU 25.5.2.71/25-76

0x0478 MBCCSR111–Message buffer configuration, control, status
register 111

R/W 0x0000 25.5.2.68/25-73

0x047A MBCCFR111–Message buffer cycle counter filter register 111 R/W —3 25.5.2.69/25-75

0x047C MBFIDR111–Message buffer frame ID register 111 R/W 0x0UUU 25.5.2.70/25-76

0x047E MBIDXR111–Message buffer index register 111 R/W 0x00UU 25.5.2.71/25-76

0x0480 MBCCSR112–Message buffer configuration, control, status
register 112

R/W 0x0000 25.5.2.68/25-73

0x0482 MBCCFR112–Message buffer cycle counter filter register 112 R/W —3 25.5.2.69/25-75

0x0484 MBFIDR112–Message buffer frame ID register 112 R/W 0x0UUU 25.5.2.70/25-76

0x0486 MBIDXR112–Message buffer index register 112 R/W 0x00UU 25.5.2.71/25-76

0x0488 MBCCSR113–Message buffer configuration, control, status
register 113

R/W 0x0000 25.5.2.68/25-73

0x048A MBCCFR13–Message buffer cycle counter filter register 113 R/W —3 25.5.2.69/25-75

0x048C MBFIDR113–Message buffer frame ID register 113 R/W 0x0UUU 25.5.2.70/25-76

0x048E MBIDXR113–Message buffer index register 113 R/W 0x00UU 25.5.2.71/25-76

0x0490 MBCCSR114–Message buffer configuration, control, status
register 114

R/W 0x0000 25.5.2.68/25-73

0x0492 MBCCFR14–Message buffer cycle counter filter register 114 R/W —3 25.5.2.69/25-75

0x0494 MBFIDR114–Message buffer frame ID register 114 R/W 0x0UUU 25.5.2.70/25-76

0x0496 MBIDXR114–Message buffer index register 114 R/W 0x00UU 25.5.2.71/25-76

0x0498 MBCCSR115–Message buffer configuration, control, status
register 115

R/W 0x0000 25.5.2.68/25-73

0x049A MBCCFR115–Message buffer cycle counter filter register 115 R/W —3 25.5.2.69/25-75

0x049C MBFIDR115–Message buffer frame ID register 115 R/W 0x0UUU 25.5.2.70/25-76

0x049E MBIDXR115–Message buffer index register 115 R/W 0x00UU 25.5.2.71/25-76

0x04A0 MBCCSR116–Message buffer configuration, control, status
register 116

R/W 0x0000 25.5.2.68/25-73

0x04A2 MBCCFR116–Message buffer cycle counter filter register 116 R/W —3 25.5.2.69/25-75

0x04A4 MBFIDR116–Message buffer frame ID register 161 R/W 0x0UUU 25.5.2.70/25-76

0x04A6 MBIDXR116–Message buffer index register 116 R/W 0x00UU 25.5.2.71/25-76

0x04A8 MBCCSR117–Message buffer configuration, control, status
register 117

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-37

0x04AA MBCCFR117–Message buffer cycle counter filter register 117 R/W —3 25.5.2.69/25-75

0x04AC MBFIDR117–Message buffer frame ID register 117 R/W 0x0UUU 25.5.2.70/25-76

0x04AE MBIDXR117–Message buffer index register 117 R/W 0x00UU 25.5.2.71/25-76

0x04B0 MBCCSR118–Message buffer configuration, control, status
register 118

R/W 0x0000 25.5.2.68/25-73

0x04B2 MBCCFR118–Message buffer cycle counter filter register 118 R/W —3 25.5.2.69/25-75

0x04B4 MBFIDR118–Message buffer frame ID register 118 R/W 0x0UUU 25.5.2.70/25-76

0x04B6 MBIDXR118–Message buffer index register 118 R/W 0x00UU 25.5.2.71/25-76

0x04B8 MBCCSR119–Message buffer configuration, control, status
register 119

R/W 0x0000 25.5.2.68/25-73

0x04BA MBCCFR119–Message buffer cycle counter filter register 119 R/W —3 25.5.2.69/25-75

0x04BC MBFIDR119–Message buffer frame ID register 119 R/W 0x0UUU 25.5.2.70/25-76

0x04BE MBIDXR119–Message buffer index register 119 R/W 0x00UU 25.5.2.71/25-76

0x04C0 MBCCSR120–Message buffer configuration, control, status
register 120

R/W 0x0000 25.5.2.68/25-73

0x04C2 MBCCFR120–Message buffer cycle counter filter register 120 R/W —3 25.5.2.69/25-75

0x04C4 MBFIDR120–Message buffer frame ID register 120 R/W 0x0UUU 25.5.2.70/25-76

0x04C6 MBIDXR120–Message buffer index register 120 R/W 0x00UU 25.5.2.71/25-76

0x04C8 MBCCSR121–Message buffer configuration, control, status
register 121

R/W 0x0000 25.5.2.68/25-73

0x04CA MBCCFR121–Message buffer cycle counter filter register 121 R/W —3 25.5.2.69/25-75

0x04CC MBFIDR121–Message buffer frame ID register 121 R/W 0x0UUU 25.5.2.70/25-76

0x04CE MBIDXR121–Message buffer index register 121 R/W 0x00UU 25.5.2.71/25-76

0x04D0 MBCCSR122–Message buffer configuration, control, status
register 122

R/W 0x0000 25.5.2.68/25-73

0x04D2 MBCCFR122–Message buffer cycle counter filter register 122 R/W —3 25.5.2.69/25-75

0x04D4 MBFIDR122–Message buffer frame ID register122 R/W 0x0UUU 25.5.2.70/25-76

0x04D6 MBIDXR122–Message buffer index register 122 R/W 0x00UU 25.5.2.71/25-76

0x04D8 MBCCSR123–Message buffer configuration, control, status
register 123

R/W 0x0000 25.5.2.68/25-73

0x04DA MBCCFR123–Message buffer cycle counter filter register 123 R/W —3 25.5.2.69/25-75

0x04DC MBFIDR123–Message buffer frame ID register 123 R/W 0x0UUU 25.5.2.70/25-76

0x04DE MBIDXR123–Message buffer index register 123 R/W 0x00UU 25.5.2.71/25-76

0x04E0 MBCCSR124–Message buffer configuration, control, status
register 124

R/W 0x0000 25.5.2.68/25-73

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-38 Freescale Semiconductor

0x04E2 MBCCFR124–Message buffer cycle counter filter register 124 R/W —3 25.5.2.69/25-75

0x04E4 MBFIDR124–Message buffer frame ID register 124 R/W 0x0UUU 25.5.2.70/25-76

0x04E6 MBIDXR124–Message buffer index register 124 R/W 0x00UU 25.5.2.71/25-76

0x04E8 MBCCSR125–Message buffer configuration, control, status
register 125

R/W 0x0000 25.5.2.68/25-73

0x04EA MBCCFR125–Message buffer cycle counter filter register 125 R/W —3 25.5.2.69/25-75

0x04EC MBFIDR125–Message buffer frame ID register 125 R/W 0x0UUU 25.5.2.70/25-76

0x04EE MBIDXR125–Message buffer index register 125 R/W 0x00UU 25.5.2.71/25-76

0x04F0 MBCCSR126–Message buffer configuration, control, status
register 126

R/W 0x0000 25.5.2.68/25-73

0x04F2 MBCCFR26–Message buffer cycle counter filter register 126 R/W —3 25.5.2.69/25-75

0x04F4 MBFIDR126–Message buffer frame ID register 126 R/W 0x0UUU 25.5.2.70/25-76

0x04F6 MBIDXR126–Message buffer index register 126 R/W 0x00UU 25.5.2.71/25-76

0x04F8 MBCCSR127–Message buffer configuration, control, status
register 127

R/W 0x0000 25.5.2.68/25-73

0x04FA MBCCFR127–Message buffer cycle counter filter register 127 R/W —3 25.5.2.69/25-75

0x04FC MBFIDR127–Message buffer frame ID register 127 R/W 0x0UUU 25.5.2.70/25-76

0x04FE MBIDXR127–Message buffer index register 127 R/W 0x00UU 25.5.2.71/25-76

0x0500–0x07FF Reserved

0x0800–0x3FFF FlexRay memory R/W —3

0xC3FE_0000–
0xDFFF_FFFF

Reserved

Peripherals AIPS_B (AXBS Port S7)
0xFFF0_4000–0xFFFF_FFFF

0xE000_0000–
0xFFF0_3FFF

Reserved

0xFFF0_4000
.AXBS_BASE

Chapter 15, “AMBA Crossbar Switch (AXBS)”

0x0000 XBAR_MPR0—Master priority register, slave port 0 R/W 0x5400_3210 15.2.1.1/15-4

0x0004–0x000F Reserved

0x0010 XBAR_SGPCR0—General-purpose control register, slave
port 0

R/W 0x0000_0000 15.2.1.2/15-6

0x0004–0x000F Reserved

0x0100 XBAR_MPR1—Master priority register, slave port 1 R/W 0x5400_3210 15.2.1.1/15-4

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-39

0x0104–0x010F Reserved

0x0110 XBAR_SGPCR1—General-purpose control register, slave
port 1

R/W 0x0000_0000 15.2.1.2/15-6

0x0114– 0x01FF Reserved

0x0200 XBAR_MPR2—Master priority register, slave port 2 R/W 0x5400_3210 15.2.1.1/15-4

0x0204–0x020F Reserved

0x0210 XBAR_SGPCR2—General-purpose control register, slave
port 2

R/W 0x0000_0000 15.2.1.2/15-6

0x0214– 0x02FF Reserved

0x0300 XBAR_MPR3—Master priority register, slave port 3 R/W 0x5400_3210 15.2.1.1/15-4

0x0304–0x030F Reserved

0x0310 XBAR_SGPCR3—General-purpose control register, slave
port 3

R/W 0x0000_0000 15.2.1.2/15-6

0x0314–0x05FF Reserved

0x0600 XBAR_MPR6—Master priority register, slave port 6 R/W 0x5400_3210 15.2.1.1/15-4

0x0604–0x060F Reserved

0x0610 XBAR_SGPCR6—General-purpose control register, slave
port 6

R/W 0x0000_0000 15.2.1.2/15-6

0x0614–0x06FF Reserved

 0x0700 XBAR_MPR7—Master priority register, slave port 7 R/W 0x5400_3210 15.2.1.1/15-4

 0x0704–0x070F Reserved

0x0710 XBAR_SGPCR7— General-purpose control register, slave
port 7

R/W 0x0000_0000 15.2.1.2/15-6

0x0714–0x0EFF Reserved

 0x0F00 XBAR_MGPCR7—Master General Purpose Register, Master
Port 7

R/W 0x0000_0000 15.2.1.3/15-8

0x0F04–0x_3FFF Reserved

 0xFFF0_8000 –
0xFFF0_FFFF

Reserved

0xFFF1_0000
SEMAPHORES

Chapter 14, “Semaphores”

0x0000 SEMA4_Gate00—Semaphores gate 0 R/W 0x00 14.3.2.1/14-4

0x0001 SEMA4_Gate01—Semaphores gate 1 R/W 0x00 14.3.2.1/14-4

0x0002 SEMA4_Gate02—Semaphores gate 2 R/W 0x00 14.3.2.1/14-4

0x0003 SEMA4_Gate03—Semaphores gate 3 R/W 0x00 14.3.2.1/14-4

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-40 Freescale Semiconductor

0x0004 SEMA4_Gate04—Semaphores gate 4 R/W 0x00 14.3.2.1/14-4

0x0005 SEMA4_Gate05—Semaphores gate 5 R/W 0x00 14.3.2.1/14-4

0x0006 SEMA4_Gate06—Semaphores gate 6 R/W 0x00 14.3.2.1/14-4

0x0007 SEMA4_Gate07—Semaphores gate 7 R/W 0x00 14.3.2.1/14-4

0x0008 SEMA4_Gate08—Semaphores gate 8 R/W 0x00 14.3.2.1/14-4

0x0009 SEMA4_Gate09—Semaphores gate 9 R/W 0x00 14.3.2.1/14-4

0x000A SEMA4_Gate10—Semaphores gate 10 R/W 0x00 14.3.2.1/14-4

0x000B SEMA4_Gate11—Semaphores gate 11 R/W 0x00 14.3.2.1/14-4

0x000C SEMA4_Gate12—Semaphores gate 12 R/W 0x00 14.3.2.1/14-4

0x000D SEMA4_Gate13—Semaphores gate 13 R/W 0x00 14.3.2.1/14-4

0x000E SEMA4_Gate14—Semaphores gate 14 R/W 0x00 14.3.2.1/14-4

0x000F SEMA4_Gate15—Semaphores gate 15 R/W 0x00 14.3.2.1/14-4

0x0010–0x003F Reserved

00x040 SEMA4_CP0INE—Semaphores CP0 IRQ notification enable R/W 0x0000 14.3.2.2/14-5

0x0042–0x0047 Reserved

0x0048 SEMA4_CP1INE—Semaphores CP1 IRQ notification enable R/W 0x0000 14.3.2.2/14-5

0x004A–0x07F Reserved

0x0080 SEMA4_CP0NTF—Semaphores CP0 IRQ notification R 0x0000 14.3.2.3/14-6

0x008 2–00x087 Reserved

0x0088 SEMA4_CP1NTF—Semaphores CP1 IRQ notification R 0x0000 14.3.2.3/14-6

0x008A–0x00FF Reserved

0x0100 SEMA4_RSTGT—Semaphores reset gate R/W 0x0000 14.3.2.4/14-6

0x0102 Reserved

0x0104 SEMA4_RSTNTF—Semaphores reset IRQ notification R/W 0x00000 14.3.2.5/14-8

0x0106–0x3FFF Reserved

0xFFF1_4000
MPU

Chapter 17, “Memory Protection Unit (MPU)”

0x0000 MPU_CESR—MPU control/error status register R/W 0x0080_3200 17.3.2.1/17-5

0x0004–0x000F Reserved

0x0010 MPU_EAR0—MPU error address register, MPU port 0 R —3 17.3.2.2/17-6

0x0014 MPU_EDR0—MPU error detail register, MPU port 0 R —3 17.3.2.3/17-7

0x0018 MPU_EAR1—MPU error address register, MPU port 1 R —3 17.3.2.2/17-6

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-41

0x001C MPU_EDR1—MPU error detail register, MPU port 1 R —3 17.3.2.3/17-7

0x0020 MPU_EAR2—MPU error address register, MPU port 2 R —3 17.3.2.2/17-6

0x0024 MPU_EDR2—MPU error detail register, MPU port 2 R —3 17.3.2.3/17-7

0x0028 MPU_EAR3— MPU error address register, MPU port 3 R —3 17.3.2.2/17-6

0x002C MPU_EDR3—MPU error detail register, MPU port 3 R —3 17.3.2.3/17-7

0x0030–0x03FF Reserved

0x0400 MPU_RGD0—MPU region descriptor 0 R/W —3 17.3.2.4/17-8

0x0410 MPU_RGD1—MPU region descriptor 1 R/W —3 17.3.2.4/17-8

0x0420 MPU_RGD2—MPU region descriptor 2 R/W —3 17.3.2.4/17-8

0x0430 MPU_RGD3—MPU region descriptor 3 R/W —3 17.3.2.4/17-8

0x0440 MPU_RGD4—MPU region descriptor 4 R/W —3 17.3.2.4/17-8

0x0450 MPU_RGD5—MPU region descriptor 5 R/W —3 17.3.2.4/17-8

0x0460 MPU_RGD6—MPU region descriptor 6 R/W —3 17.3.2.4/17-8

0x0470 MPU_RGD7—MPU region descriptor 7 R/W —3 17.3.2.4/17-8

0x0480 MPU_RGD8—MPU region descriptor 8 R/W —3 17.3.2.4/17-8

0x0490 MPU_RGD9—MPU region descriptor 9 R/W —3 17.3.2.4/17-8

0x04A0 MPU_RGD10—MPU region descriptor 10 R/W —3 17.3.2.4/17-8

0x04B0 MPU_RGD11—MPU region descriptor 11 R/W —3 17.3.2.4/17-8

0x04C0 MPU_RGD12—MPU region descriptor 12 R/W —3 17.3.2.4/17-8

0x04D0 MPU_RGD13—MPU region descriptor 13 R/W —3 17.3.2.4/17-8

0x04E0 MPU_RGD14—MPU region descriptor 14 R/W —3 17.3.2.4/17-8

0x04F0 MPU_RGD15—MPU region descriptor 15 R/W —3 17.3.2.4/17-8

0x00500–0x07FF Reserved

0x0800 MPU_RGDAAC0—MPU RGD alternate access control 0 R/W —3 17.3.2.5/17-13

0x0804 MPU_RGDAAC1—MPU RGD alternate access control 1 R/W —3 17.3.2.5/17-13

0x0808 MPU_RGDAAC2—MPU RGD alternate access control 2 R/W —3 17.3.2.5/17-13

0x080C MPU_RGDAAC3—MPU RGD alternate access control 3 R/W —3 17.3.2.5/17-13

0x0810 MPU_RGDAAC4—MPU RGD alternate access control 4 R/W —3 17.3.2.5/17-13

0x0814 MPU_RGDAAC5—MPU RGD alternate access control 5 R/W —3 17.3.2.5/17-13

0x0818 MPU_RGDAAC6—MPU RGD alternate access control 6 R/W —3 17.3.2.5/17-13

0x081C MPU_RGDAAC7—MPU RGD alternate access control 7 R/W —3 17.3.2.5/17-13

0x0820 MPU_RGDAAC8—MPU RGD alternate access control 8 R/W —3 17.3.2.5/17-13

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-42 Freescale Semiconductor

0x0824 MPU_RGDAAC9—MPU RGD alternate access control 9 R/W —3 17.3.2.5/17-13

0x0828 MPU_RGDAAC10—MPU RGD alternate access control 10 R/W —3 17.3.2.5/17-13

0x082C MPU_RGDAAC11—MPU RGD alternate access control 11 R/W —3 17.3.2.5/17-13

0x0830 MPU_RGDAAC12—MPU RGD alternate access control 12 R/W —3 17.3.2.5/17-13

0x0834 MPU_RGDAAC13—MPU RGD alternate access control 13 R/W —3 17.3.2.5/17-13

0x0838 MPU_RGDAAC14—MPU RGD alternate access control 14 R/W —3 17.3.2.5/17-13

0x083C MPU_RGDAAC15—MPU RGD alternate access control 15 R/W —3 17.3.2.5/17-13

0x0840–0x3FFF Reserved

0xFFF1_8000–
0xFFF3_7FFF

Reserved

0xFFF3_8000
SWT

Chapter 19, “Software Watchdog Timer (SWT)”

0x0000 SWT_CR – SWT control register R/W 0xFF00_011B 19.3.2.1/19-2

0x0004 SWT_IR – SWT interrupt register R/W 0x0000_0000 19.3.2.2/19-4

0x0008 SWT_TO – SWT time-out register R/W 0x0002_7FFF 19.3.2.3/19-4

0x000C SWT_WN – SWT window register R/W 0x0000_0000 19.3.2.4/19-5

0x0010 SWT_SR – SWT service register R/W 0x0000_0000 19.3.2.5/19-6

0x0014 SWT_CO – SWT counter output register R 0x0000_0000 19.3.2.6/19-6

0x0018 SWT_SK – SWT service key register R/W 0x0000_0000 19.3.2.7/19-7

0x001C– 0x3FFF Reserved

0xFFF3_C000
STM

Chapter 20, “System Timer Module (STM)”

 0x0000 STM_CR – STM control register R/W 0x0000_0000 20.3.2.1/20-3

 0x0004 STM_CNT – STM counter value R/W 0x0000_0000 20.3.2.2/20-3

 0x0008–0x000F Reserved

 0x0010 STM_CCR0 – STM channel 0 control register R/W 0x0000_0000 20.3.2.3/20-4

 0x0014 STM_CIR0 – STM channel 0 interrupt register R/W 0x0000_0000 20.3.2.4/20-4

 0x0018 STM_CMP0 – STM channel 0 compare register R/W 0x0000_0000 20.3.2.5/20-5

 0x001C Reserved

 0x0020 STM_CCR1 – STM channel 1 control register R/W 0x0000_0000 20.3.2.3/20-4

 0x0024 STM_CIR1 – STM channel 1 interrupt register R/W 0x0000_0000 20.3.2.4/20-4

 0x0028 STM_CMP1 – STM channel 1 compare register R/W 0x0000_0000 20.3.2.5/20-5

 0x002C Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-43

 0x0030 STM_CCR2 – STM channel 2 control register R/W 0x0000_0000 20.3.2.3/20-4

 0x0034 STM_CIR2 – STM channel 2 interrupt register R/W 0x0000_0000 20.3.2.4/20-4

 0x0038 STM_CMP2 – STM channel 2 compare register R/W 0x0000_0000 20.3.2.5/20-5

 0x003C Reserved

 0x0040 STM_CCR3 – STM channel 3 control register R/W 0x0000_0000 20.3.2.3/20-4

 0x0044 STM_CIR3 – STM channel 3 interrupt register R/W 0x0000_0000 20.3.2.4/20-4

 0x0048 STM_CMP3 – STM channel 3 compare register R/W 0x0000_0000 20.3.2.5/20-5

 0x004C–0x3FFF Reserved

0xFFF4_0000
ECSM

Chapter 18, “Error Correction Status Module (ECSM)”

0x0000–0x0023 Reserved

0x0024 FBOMCR—FEC burst optimization master control register R/W 0x0000_0000 18.2.2.1/18-3

0x0028–0x0042 Reserved

0x0043 ECR—ECC Configuration R/W 0x00 18.2.2.2/18-5

0x0047 ESR—ECC status R/W 0x00 18.2.2.3/18-6

0x004A EEGR—ECC error generation R/W 0x0000 18.2.2.4/18-7

0x0050 PFEAR—PFlash ECC address R —3 18.2.2.5/18-9

0x0056 PFEMR—PFlash ECC master R 0x0U 18.2.2.6/18-10

0x0057 PFEAT—PFlash ECC attributes register R —3 18.2.2.7/18-10

0x0058 PFEDRH—PFlash ECC data register high R —3 18.2.2.8/18-11

0x005C PFEDRL—PFlash ECC data register low R —3 18.2.2.8/18-11

0x0060 PREAR—PRAM ECC address R —3 18.2.2.9/18-12

0x0065 PRESR—PRAM ECC syndrome register R —3 18.2.2.10/18-13

0x0066 PREMR—PRAM ECC master R 0x0U 18.2.2.11/18-14

0x0067 PREAT—PRAM ECC attributes R —3 18.2.2.12/18-15

0x0068 PREDRH—PRAM ECC data register high R —3 18.2.2.13/18-16

0x006C PREDRL—PRAM ECC data register low R —3 18.2.2.13/18-16

0x0070–0x3FFF Reserved

0xFFF4_4000
eDMA

Chapter 23, “Enhanced Direct Memory Access Controller (eDMA)”

0x0000 EDMA_CR—eDMA control register R/W 0x0000_0400 23.3.2.1/23-8

0x0004 EDMA_ESR—eDMA error status register R 0x0000_0000 23.3.2.2/23-10

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-44 Freescale Semiconductor

0x0008 Reserved

0x000C EDMA_ERQRL—eDMA enable request low register
(channels 31–00)

R/W 0x0000_0000 23.3.2.3/23-12

0x0010 Reserved

0x0014 EDMA_EEIRL—eDMA enable error interrupt low register
(channels 31–00)

R/W 0x0000_0000 23.3.2.4/23-13

0x0018 EDMA_SERQR—eDMA set enable request register W 0x00 23.3.2.5/23-14

0x0019 EDMA_CERQR—eDMA clear enable request register W 0x00 23.3.2.6/23-15

0x001A EDMA_SEEIR—eDMA set enable error interrupt register W 0x00 23.3.2.7/23-15

0x001B EDMA_CEEIR—eDMA clear enable error interrupt register W 0x00 23.3.2.8/23-16

0x001C EDMA_CIRQR—eDMA clear interrupt request register W 0x00 23.3.2.9/23-17

0x001D EDMA_CER—eDMA clear error register W 0x00 23.3.2.10/23-18

0x001E EDMA_SSBR—eDMA set start bit register W 0x00 23.3.2.11/23-18

0x001F EDMA_CDSBR—eDMA clear done status bit register W 0x00 23.3.2.12/23-19

0x0020 Reserved

0x0024 EDMA_IRQRL—eDMA interrupt request low register
(channels 31–00)

R/W 0x0000_0000 23.3.2.13/23-19

0x0028 Reserved

0x002C EDMA_ERL—eDMA error low register (channels 31–00) R/W 0x0000_0000 23.3.2.14/23-20

0x0030 Reserved

0x0034 EDMA_HRSL—eDMA hardware request status register
(channels 31–00)

R/W 0x0000_0000 23.3.2.15/23-21

0x0038–0x00FF Reserved

0x0100 EDMA_CPR0—eDMA channel 0 priority register R/W 0x00 23.3.2.16/23-22

0x0101 EDMA_CPR1—eDMA channel 1 priority register R/W 0x01 23.3.2.16/23-22

0x0102 EDMA_CPR2—eDMA channel 2 priority register R/W 0x02 23.3.2.16/23-22

0x0103 EDMA_CPR3—eDMA channel 3 priority register R/W 0x03 23.3.2.16/23-22

0x0104 EDMA_CPR4—eDMA channel 4 priority register R/W 0x04 23.3.2.16/23-22

0x0105 EDMA_CPR5—eDMA channel 5 priority register R/W 0x05 23.3.2.16/23-22

0x0106 EDMA_CPR6—eDMA channel 6 priority register R/W 0x06 23.3.2.16/23-22

0x0107 EDMA_CPR7—eDMA channel 7 priority register R/W 0x07 23.3.2.16/23-22

0x0108 EDMA_CPR8—eDMA channel 8 priority register R/W 0x08 23.3.2.16/23-22

0x0109 EDMA_CPR9—eDMA channel 9 priority register R/W 0x09 23.3.2.16/23-22

0x010A EDMA_CPR10—eDMA channel 10 priority register R/W 0x0A 23.3.2.16/23-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-45

0x010B EDMA_CPR11—eDMA channel 11 priority register R/W 0x0B 23.3.2.16/23-22

0x010C EDMA_CPR12—eDMA channel 12 priority register R/W 0x0C 23.3.2.16/23-22

0x010D EDMA_CPR13—eDMA channel 13 priority register R/W 0x0D 23.3.2.16/23-22

0x010E EDMA_CPR14—eDMA channel 14 priority register R/W 0x0E 23.3.2.16/23-22

0x010F EDMA_CPR15—eDMA channel 15 priority register R/W 0x0F 23.3.2.16/23-22

0x0110 EDMA_CPR16—eDMA channel 16 priority register R/W 0x10 23.3.2.16/23-22

0x0111 EDMA_CPR17—eDMA channel 17 priority register R/W 0x11 23.3.2.16/23-22

0x0112 EDMA_CPR18—eDMA channel 18 priority register R/W 0x12 23.3.2.16/23-22

0x0113 EDMA_CPR19—eDMA channel 19 priority register R/W 0x13 23.3.2.16/23-22

0x0114 EDMA_CPR20—eDMA channel 20 priority register R/W 0x14 23.3.2.16/23-22

0x0115 EDMA_CPR21—eDMA channel 21 priority register R/W 0x15 23.3.2.16/23-22

0x0116 EDMA_CPR22—eDMA channel 22 priority register R/W 0x16 23.3.2.16/23-22

0x0117 EDMA_CPR23—eDMA channel 23 priority register R/W 0x17 23.3.2.16/23-22

0x0118 EDMA_CPR24—eDMA channel 24 priority register R/W 0x18 23.3.2.16/23-22

0x0119 EDMA_CPR25—eDMA channel 25 priority register R/W 0x19 23.3.2.16/23-22

0x011A EDMA_CPR26—eDMA channel 26 priority register R/W 0x1A 23.3.2.16/23-22

0x011B EDMA_CPR27—eDMA channel 27 priority register R/W 0x1B 23.3.2.16/23-22

0x011C EDMA_CPR28—eDMA channel 28 priority register R/W 0x1C 23.3.2.16/23-22

0x011D EDMA_CPR29—eDMA channel 29 priority register R/W 0x1D 23.3.2.16/23-22

0x011E EDMA_CPR30—eDMA channel 30 priority register R/W 0x1E 23.3.2.16/23-22

0x011F EDMA_CPR31—eDMA channel 31 priority register R/W 0x1F 23.3.2.16/23-22

0x0120–0x0FFF Reserved

0x1000 TCD00—eDMA transfer control descriptor 00 R/W —1 23.3.2.17/23-23

0x1020 TCD01—eDMA transfer control descriptor 01 R/W —1 23.3.2.17/23-23

0x1040 TCD02—eDMA transfer control descriptor 02 R/W —1 23.3.2.17/23-23

0x1060 TCD03—eDMA transfer control descriptor 03 R/W —1 23.3.2.17/23-23

0x1080 TCD04—eDMA transfer control descriptor 04 R/W —1 23.3.2.17/23-23

0x10A0 TCD05—eDMA transfer control descriptor 05 R/W —1 23.3.2.17/23-23

0x10C0 TCD06—eDMA transfer control descriptor 06 R/W —1 23.3.2.17/23-23

0x10E0 TCD07—eDMA transfer control descriptor 07 R/W —1 23.3.2.17/23-23

0x1100 TCD08—eDMA transfer control descriptor 08 R/W —1 23.3.2.17/23-23

0x1120 TCD09—eDMA transfer control descriptor 09 R/W —1 23.3.2.17/23-23

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-46 Freescale Semiconductor

0x1140 TCD10—eDMA transfer control descriptor 10 R/W —1 23.3.2.17/23-23

0x1160 TCD11—eDMA transfer control descriptor 11 R/W —1 23.3.2.17/23-23

0x1180 TCD12—eDMA transfer control descriptor 12 R/W —1 23.3.2.17/23-23

0x11A0 TCD13—eDMA transfer control descriptor 13 R/W —1 23.3.2.17/23-23

0x11C0 TCD14—eDMA transfer control descriptor 14 R/W —1 23.3.2.17/23-23

0x11E0 TCD15—eDMA transfer control descriptor 15 R/W —1 23.3.2.17/23-23

0x1200 TCD16—eDMA transfer control descriptor 16 R/W —1 23.3.2.17/23-23

0x1220 TCD17—eDMA transfer control descriptor 17 R/W —1 23.3.2.17/23-23

0x1240 TCD18—eDMA transfer control descriptor 18 R/W —1 23.3.2.17/23-23

0x1260 TCD19—eDMA transfer control descriptor 19 R/W —1 23.3.2.17/23-23

0x1280 TCD20—eDMA transfer control descriptor 20 R/W —1 23.3.2.17/23-23

0x12A0 TCD21—eDMA transfer control descriptor 21 R/W —1 23.3.2.17/23-23

0x12C0 TCD22—eDMA transfer control descriptor 22 R/W —1 23.3.2.17/23-23

0x12E0 TCD23—eDMA transfer control descriptor 23 R/W —1 23.3.2.17/23-23

0x1300 TCD24—eDMA transfer control descriptor 24 R/W —1 23.3.2.17/23-23

0x1320 TCD25—eDMA transfer control descriptor 25 R/W —1 23.3.2.17/23-23

0x1340 TCD26—eDMA transfer control descriptor 26 R/W —1 23.3.2.17/23-23

0x1360 TCD27—eDMA transfer control descriptor 27 R/W —1 23.3.2.17/23-23

0x1380 TCD28—eDMA transfer control descriptor 28 R/W —1 23.3.2.17/23-23

0x13A0 TCD29—eDMA transfer control descriptor 29 R/W —1 23.3.2.17/23-23

0x13C0 TCD30—eDMA transfer control descriptor 30 R/W —1 23.3.2.17/23-23

0x13E0 TCD31—eDMA transfer control descriptor 31 R/W —1 23.3.2.17/23-23

0x1400–0x3FFF Reserved

0xFFF4_8000
INTC

Chapter 9, “Interrupts and Interrupt Controller (INTC)”

0x0000 INTC_MCR—INTC module configuration register R/W 0x0000_0000 9.3.2.1/9-9

0x0004 Reserved

0x0008 INTC_CPR_PRC0—INTC current priority register for
processor 0 (Z6)

R/W 0x0000_000F 9.3.2.2/9-10

0x00C INTC_CPR_PRC1—INTC current priority register for
processor 1 (Z0)

R/W 0x0000_000F 9.3.2.3/9-11

0x0010 INTC_IACKR_PRC0—INTC interrupt acknowledge register
for processor 0 (Z6)

R/W 0x0000_0000 9.3.2.4/9-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-47

0x0014 INTC_IACKR_PRC1—INTC interrupt acknowledge register
for processor 1 (Z0)

R/W 0x0000_0000 9.3.2.5/9-13

0x0018 INTC_EOIR_PRC0—INTC end of interrupt register for
processor 0 (Z6)

W 0x0000_0000 9.3.2.6/9-14

0x001C INTC_EOIR_PRC1—INTC end of interrupt register for
processor 1 (Z0)

W 0x0000_0000 9.3.2.7/9-14

0x0020 INTC_SSCIR0_3—INTC software set/clear interrupt register
0–3

R/W 0x0000_0000 9.3.2.8/9-15

0x0024 INTC_SSCIR4_7—INTC software set/clear interrupt register
4–7

R/W 0x0000_0000 9.3.2.8/9-15

0x0028–0x003F Reserved

0x0040 INTC_PSR0_3—INTC priority select register 0–3 R/W 0x0000_0000 9.3.2.9/9-16

0x0044 INTC_PSR4_7—INTC priority select register 4–7 R/W 0x0000_0000 9.3.2.9/9-16

0x0048 INTC_PSR8_11—INTC priority select register 8–11 R/W 0x0000_0000 9.3.2.9/9-16

0x004C INTC_PSR12_15—INTC priority select register 12–15 R/W 0x0000_0000 9.3.2.9/9-16

0x0050 INTC_PSR16_19—INTC priority select register 16–19 R/W 0x0000_0000 9.3.2.9/9-16

0x0054 INTC_PSR20_23—INTC priority select register 20–23 R/W 0x0000_0000 9.3.2.9/9-16

0x0058 INTC_PSR24_27—INTC priority select register 24–27 R/W 0x0000_0000 9.3.2.9/9-16

0x005C INTC_PSR28_31—INTC priority select register 24–27 R/W 0x0000_0000 9.3.2.9/9-16

0x0060 INTC_PSR32_35—INTC priority select register 32–35 R/W 0x0000_0000 9.3.2.9/9-16

0x0064 INTC_PSR36_39—INTC priority select register 36–39 R/W 0x0000_0000 9.3.2.9/9-16

0x0068 INTC_PSR40_43—INTC priority select register 40–43 R/W 0x0000_0000 9.3.2.9/9-16

0x006C INTC_PSR44_47—INTC priority select register 44–47 R/W 0x0000_0000 9.3.2.9/9-16

0x0070 INTC_PSR48_51—INTC priority select register 48–51 R/W 0x0000_0000 9.3.2.9/9-16

0x0074 INTC_PSR52_55—INTC priority select register 52–55 R/W 0x0000_0000 9.3.2.9/9-16

0x0078 INTC_PSR56_59—INTC priority select register 56–59 R/W 0x0000_0000 9.3.2.9/9-16

0x007C INTC_PSR60_63—INTC priority select register 60–63 R/W 0x0000_0000 9.3.2.9/9-16

0x0080 INTC_PSR64_67—INTC priority select register 64–67 R/W 0x0000_0000 9.3.2.9/9-16

0x0084 INTC_PSR68_71—INTC priority select register 68–71 R/W 0x0000_0000 9.3.2.9/9-16

0x0088 INTC_PSR72_75—INTC priority select register 72–75 R/W 0x0000_0000 9.3.2.9/9-16

0x008C INTC_PSR76_79—INTC priority select register 76–79 R/W 0x0000_0000 9.3.2.9/9-16

0x0090 INTC_PSR80_83—INTC priority select register 80–83 R/W 0x0000_0000 9.3.2.9/9-16

0x0094 INTC_PSR84_87—INTC priority select register 84–87 R/W 0x0000_0000 9.3.2.9/9-16

0x0098 INTC_PSR88_91—INTC priority select register 88–91 R/W 0x0000_0000 9.3.2.9/9-16

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-48 Freescale Semiconductor

0x009C INTC_PSR92_95—INTC priority select register 92–95 R/W 0x0000_0000 9.3.2.9/9-16

0x00A0 INTC_PSR96_99—INTC priority select register 96–99 R/W 0x0000_0000 9.3.2.9/9-16

0x00A4 INTC_PSR100_103—INTC priority select register 100–103 R/W 0x0000_0000 9.3.2.9/9-16

0x00A8 INTC_PSR104_107—INTC priority select register 104–107 R/W 0x0000_0000 9.3.2.9/9-16

0x00AC INTC_PSR108_111—INTC priority select register 108–111 R/W 0x0000_0000 9.3.2.9/9-16

0x00B0 INTC_PSR112_115—INTC priority select register 112–115 R/W 0x0000_0000 9.3.2.9/9-16

0x00B4 INTC_PSR116_119—INTC priority select register 116–119 R/W 0x0000_0000 9.3.2.9/9-16

0x00B8 INTC_PSR120_123—INTC priority select register 120–123 R/W 0x0000_0000 9.3.2.9/9-16

0x00BC INTC_PSR124_127—INTC priority select register 124–127 R/W 0x0000_0000 9.3.2.9/9-16

0x00C0 INTC_PSR128_131—INTC priority select register 128–131 R/W 0x0000_0000 9.3.2.9/9-16

0x00C4 INTC_PSR132_135—INTC priority select register 132–135 R/W 0x0000_0000 9.3.2.9/9-16

0x00C8 INTC_PSR136_139—INTC priority select register 136–139 R/W 0x0000_0000 9.3.2.9/9-16

0x00CC INTC_PSR140_143—INTC priority select register 140–143 R/W 0x0000_0000 9.3.2.9/9-16

0x00D0 INTC_PSR144_147—INTC priority select register 144–147 R/W 0x0000_0000 9.3.2.9/9-16

0x00D4 INTC_PSR148_151—INTC priority select register 148–151 R/W 0x0000_0000 9.3.2.9/9-16

0x00D8 INTC_PSR152_155—INTC priority select register 152–155 R/W 0x0000_0000 9.3.2.9/9-16

0x00DC INTC_PSR156_159—INTC priority select register 156–159 R/W 0x0000_0000 9.3.2.9/9-16

0x00E0 INTC_PSR160_163—INTC priority select register 160–163 R/W 0x0000_0000 9.3.2.9/9-16

0x00E4 INTC_PSR164_167—INTC priority select register 164–167 R/W 0x0000_0000 9.3.2.9/9-16

0x00E8 INTC_PSR168_171—INTC priority select register 168–171 R/W 0x0000_0000 9.3.2.9/9-16

0x00EC INTC_PSR172_175—INTC priority select register 172–175 R/W 0x0000_0000 9.3.2.9/9-16

0x00F0 INTC_PSR176_179—INTC priority select register 176–179 R/W 0x0000_0000 9.3.2.9/9-16

0x00F4 INTC_PSR180_183—INTC priority select register 180–183 R/W 0x0000_0000 9.3.2.9/9-16

0x00F8 INTC_PSR184_187—INTC priority select register 184–187 R/W 0x0000_0000 9.3.2.9/9-16

0x00FC INTC_PSR188_191—INTC priority select register 188–191 R/W 0x0000_0000 9.3.2.9/9-16

0x0100 INTC_PSR192_195—INTC priority select register 192–195 R/W 0x0000_0000 9.3.2.9/9-16

0x0104 INTC_PSR196_199—INTC priority select register 196–199 R/W 0x0000_0000 9.3.2.9/9-16

0x0108 INTC_PSR200_203—INTC priority select register 200–203 R/W 0x0000_0000 9.3.2.9/9-16

0x010C INTC_PSR204_207—INTC priority select register 204–207 R/W 0x0000_0000 9.3.2.9/9-16

0x0110 INTC_PSR208_211—INTC priority select register 208–211 R/W 0x0000_0000 9.3.2.9/9-16

0x0114 INTC_PSR212_215—INTC priority select register 212–215 R/W 0x0000_0000 9.3.2.9/9-16

0x0118 INTC_PSR216_219—INTC priority select register 216–219 R/W 0x0000_0000 9.3.2.9/9-16

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-49

0x011C INTC_PSR220_223—INTC priority select register 220–223 R/W 0x0000_0000 9.3.2.9/9-16

0x0120 INTC_PSR224_227—INTC priority select register 224–227 R/W 0x0000_0000 9.3.2.9/9-16

0x0124 INTC_PSR228_231—INTC priority select register 228–231 R/W 0x0000_0000 9.3.2.9/9-16

0x0128 INTC_PSR232_235—INTC priority select register 232–235 R/W 0x0000_0000 9.3.2.9/9-16

0x012C INTC_PSR236_239—INTC priority select register 236–239 R/W 0x0000_0000 9.3.2.9/9-16

0x0130 INTC_PSR240_243—INTC priority select register 240–243 R/W 0x0000_0000 9.3.2.9/9-16

0x0134 INTC_PSR244_247—INTC priority select register 244–247 R/W 0x0000_0000 9.3.2.9/9-16

0x0138 INTC_PSR248_251—INTC priority select register 248–251 R/W 0x0000_0000 9.3.2.9/9-16

0x013C INTC_PSR252_255—INTC priority select register 252–255 R/W 0x0000_0000 9.3.2.9/9-16

0x0140 INTC_PSR256_259—INTC priority select register 256–259 R/W 0x0000_0000 9.3.2.9/9-16

0x0144 INTC_PSR260_263—INTC priority select register 260–263 R/W 0x0000_0000 9.3.2.9/9-16

0x0148 INTC_PSR264_267—INTC priority select register 264–267 R/W 0x0000_0000 9.3.2.9/9-16

0x014C INTC_PSR268_271—INTC priority select register 268–271 R/W 0x0000_0000 9.3.2.9/9-16

0x0150 INTC_PSR272_275—INTC priority select register 272–275 R/W 0x0000_0000 9.3.2.9/9-16

0x0154 INTC_PSR276_279—INTC priority select register 276–279 R/W 0x0000_0000 9.3.2.9/9-16

0x0158 INTC_PSR280_283—INTC priority select register 280–283 R/W 0x0000_0000 9.3.2.9/9-16

0x015C INTC_PSR284_287—INTC priority select register 284–287 R/W 0x0000_0000 9.3.2.9/9-16

0x0160 INTC_PSR288_291—INTC priority select register 288–291 R/W 0x0000_0000 9.3.2.9/9-16

0x0164 INTC_PSR292_295—INTC priority select register 292–295 R/W 0x0000_0000 9.3.2.9/9-16

0x0168 INTC_PSR296_299—INTC priority select register 296–299 R/W 0x0000_0000 9.3.2.9/9-16

0x016C INTC_PSR300_303—INTC priority select register 300–303 R/W 0x0000_0000 9.3.2.9/9-16

0x0170 INTC_PSR304_307—INTC priority select register 304–307 R/W 0x0000_0000 9.3.2.9/9-16

0x0174 INTC_PSR308_311—INTC priority select register 308–311 R/W 0x0000_0000 9.3.2.9/9-16

0x0178 INTC_PSR312_315—INTC priority select register 312–315 R/W 0x0000_0000 9.3.2.9/9-16

0x017A–0x3FFF Reserved

0xFFF4_C000
FEC

Chapter 24, “Fast Ethernet Controller (FEC)”

0x0000–0x0003 Reserved

0x0004 EIR—Interrupt event register R/W 0x0000_0000 24.3.4.3/24-12

0x0008 EIMR—Interrupt mask register R/W 0x0000_0000 24.3.4.3/24-12

0x000C–0x000F Reserved

0x0010 RDAR—Receive descriptor active register R/W 0x0000_0000 24.3.4.4/24-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-50 Freescale Semiconductor

0x0014 TDAR—Transmit descriptor active register R/W 0x0000_0000 24.3.4.5/24-13

0x0018–0x0023 Reserved

0x0024 ECR—Ethernet control register R/W 0xF000_0000 24.3.4.6/24-14

0x0028–0x003F Reserved

0x0040 MMFR—MII management frame register R/W —3 24.3.4.7/24-15

0x0044 MSCR—MII speed control register R/W 0x0000_0000 24.3.4.8/24-16

0x0048–0x0063 Reserved

0x0064 MIBC—MIB control/status register R/W 0xC000_0000 24.3.4.9/24-18

0x0068–0x0083 Reserved

0x0084 RCR—Receive control register R/W 0x05EE_0001 24.3.4.10/24-18

0x0088–0x00C3 Reserved

0x00C4 TCR—Transmit control register R/W 0x0000_0000 24.3.4.11/24-20

0x00C8–0x00E3 Reserved

0x00E4 PALR—MAC address low register R/W —3 24.3.4.12/24-21

0x00E8 PAUR—MAC address upper register + type field R/W 0xUUUU_8808 24.3.4.13/24-21

0x00EC OPD—Opcode + pause duration fields R/W 0x0001_UUUU 24.3.4.14/24-22

0x00F0–0x0117 Reserved

0x0118 IAUR—Upper 32 bits of individual hash table R/W —3 24.3.4.15/24-23

0x011C IALR—Lower 32 bits of individual hash table R/W —3 24.3.4.16/24-23

0x0120 GAUR—Upper 32 bits of group hash table R/W —3 24.3.4.17/24-24

0x0124 GALR—Lower 32 bits of group hash table R/W —3 24.3.4.18/24-25

0x0128–0x0143 Reserved

0x0144 TFWR—Transmit FIFO watermark R/W 0x0000_0000 24.3.4.19/24-25

0x0148–0x014B Reserved

0x014C FRBR—FIFO receive bound register R/W 0x0000_0500 24.3.4.20/24-26

0x0150 FRSR—FIFO receive FIFO start registers R/W 0x0000_0500 24.3.4.21/24-27

0x0154–0x017F Reserved

0x0180 ERDSR—Pointer to receive descriptor ring R/W —3 24.3.4.22/24-27

0x0184 ETDSR—Transmit buffer descriptor ring start register R/W —3 24.3.4.23/24-28

0x0188 EMRBR—Receive buffer size register R/W —3 24.3.4.24/24-29

0x018C–0x3FFF Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-51

0xFFF5_0000–
0xFFF7_FFFF

Reserved

0xFFF8_0000
ADC_A

Chapter 33, “Analog-to-Digital Converter (ADC)”

0x0000 MCR — Main configuration register R/W4 0x0000_0001 33.3.2.1/33-8

0x0004 MSR — Main status register R/W1 0x0000_0001 33.3.2.2/33-10

0x0008–0x000C Reserved

0x0010 ISR — Interrupt status register R/W1 0x0000_0000 33.3.2.3/33-11

0x0014 CEOCFR0 — Channel pending register 0 R/W1 0x0000_0000 33.3.2.4/33-12

0x0018 CEOCFR1 — Channel pending register 1 R/W1 0x0000_0000 33.3.2.5/33-13

0x001C CEOCFR2 — Channel pending register 2 R/W1 0x0000_0000 33.3.2.6/33-13

0x0020 IMR — Interrupt mask register R/W1 0x0000_0000 33.3.2.7/33-14

0x0024 CIMR0 — Channel Interrupt mask register 0 R/W1 0x0000_0000 33.3.2.8/33-15

0x0028 CIMR1 — Channel Interrupt mask register 1 R/W1 0x0000_0000 33.3.2.9/33-15

0x002C CIMR2 — Channel Interrupt mask register 2 R/W1 0x0000_0000 33.3.2.10/33-16

0x0030 WTISR — Watchdog interrupt threshold register R/W1 0x0000_0000 33.3.2.11/33-16

0x0034 WTIMR — Watchdog interrupt threshold mask register R/W1 0x0000_0000 33.3.2.12/33-17

0x0038–0x003C Reserved

0x0040 DMAE — DMA enable register R/W1 0x0000_0000 33.3.2.13/33-18

0x0044 DMAR0 — DMA channel select register 0 R/W1 0x0000_0000 33.3.2.14/33-18

0x0048 DMAR1 — DMA channel select register 1 R/W1 0x0000_0000 33.3.2.15/33-19

0x004C DMAR2 — DMA channel select register 2 R/W1 0x0000_0000 33.3.2.16/33-19

0x0050 TRC0 — Threshold control register 0 R/W1 0x0000_0000 33.3.2.17/33-20

0x0054h TRC1 — Threshold control register 1 R/W1 0x0000_0000 33.3.2.17/33-20

0x0058 TRC2 — Threshold control register 2 R/W1 0x0000_0000 33.3.2.17/33-20

0x005C TRC3 — Threshold control register 3 R/W1 0x0000_0000 33.3.2.17/33-20

0x0060 THRHLR0 — Threshold register 0 R/W1 0x0FFF_0000 33.3.2.18/33-21

0x0064 THRHLR1 — Threshold register 1 R/W1 0x0FFF_0000 33.3.2.18/33-21

0x0068 THRHLR2 — Threshold register 2 R/W1 0x0FFF_0000 33.3.2.18/33-21

0x006C THRHLR3 — Threshold register 3 R/W1 0x0FFF_0000 33.3.2.18/33-21

0x0070–0x007C Reserved

0x0080 PSCR — Presampling control register R/W1 0x0000_0000 33.3.2.19/33-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-52 Freescale Semiconductor

0x0084 PSR0 — Presampling register 0 R/W1 0x0000_0000 33.3.2.20/33-22

0x0088 PSR1 — Presampling register 1 R/W1 0x0000_0000 33.3.2.21/33-23

0x008C PSR2 — Presampling register 2 R/W1 0x0000_0000 33.3.2.22/33-23

0x0090 Reserved

0x0094 CTR0 — Conversion timing register 0 R/W1 0x0000_0203 33.3.2.23/33-24

0x0098 CTR1— Conversion timing register 1 R/W1 0x0000_0203 33.3.2.24/33-24

0x009C CTR2 — Conversion timing register 2 R/W1 0x0000_0203 33.3.2.25/33-25

0x00A0 Reserved

0x00A4 NCMR0 — Normal conversion mask register 0 R/W1 0x0000_0000 33.3.2.26/33-33

0x00A8 NCMR1 — Normal conversion mask register 1 R/W1 0x0000_0000 33.3.2.27/33-34

0x00AC NCMR2 — Normal conversion mask register 2 R/W1 0x0000_0000 33.3.2.28/33-34

0x00B0 Reserved

0x00B4 JCMR0 — Injected conversion mask register 0 R/W1 0x0000_0000 33.3.2.29/33-35

0x00B8 JCMR1 — Injected conversion mask register 1 R/W1 0x0000_0000 33.3.2.30/33-35

0x00BC JCMR2 — Injected conversion mask register 2 R/W1 0x0000_0000 33.3.2.31/33-36

0x00C0 OFFWR — Offset word register R/W1 0x0000_0000 33.3.2.32/33-36

0x00C4 DSD — Decode signals delay register R/W1 0x0000_0000 33.3.2.33/33-37

0x00C8 PDEDR — Power down exit delay register R/W1 0x0000_0000 33.3.2.34/33-38

0x00CC – 0x00FC Reserved

0x0100 PRECDATAREG0 — Channel 0 data register R 0x0000_0000 33.3.2.35/33-38

0x0104 PRECDATAREG1 — Channel 1 data register R 0x0000_0000 33.3.2.35/33-38

0x0108 PRECDATAREG2 — Channel 2 data register R 0x0000_0000 33.3.2.35/33-38

0x010C PRECDATAREG3 — Channel 3 data register R 0x0000_0000 33.3.2.35/33-38

0x0110 PRECDATAREG4 — Channel 4 data register R 0x0000_0000 33.3.2.35/33-38

0x0114 PRECDATAREG5 — Channel 5 data register R 0x0000_0000 33.3.2.35/33-38

0x0118 PRECDATAREG6 — Channel 6 data register R 0x0000_0000 33.3.2.35/33-38

0x011C PRECDATAREG7 — Channel 7 data register R 0x0000_0000 33.3.2.35/33-38

0x0120 PRECDATAREG8 — Channel 8 data register R 0x0000_0000 33.3.2.35/33-38

0x0124 PRECDATAREG9 — Channel 9 data register R 0x0000_0000 33.3.2.35/33-38

0x0128 PRECDATAREG10 — Channel 10 data register R 0x0000_0000 33.3.2.35/33-38

0x012C PRECDATAREG11 — Channel 11 data register R 0x0000_0000 33.3.2.35/33-38

0x0130 PRECDATAREG12 — Channel 12 data register R 0x0000_0000 33.3.2.35/33-38

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-53

0x0134 PRECDATAREG13 — Channel 13 data register R 0x0000_0000 33.3.2.35/33-38

0x0138 PRECDATAREG14 — Channel 14 data register R 0x0000_0000 33.3.2.35/33-38

0x013C PRECDATAREG15 — Channel 15 data register R 0x0000_0000 33.3.2.35/33-38

0x0140 PRECDATAREG16 — Channel 16 data register R 0x0000_0000 33.3.2.35/33-38

0x0144 PRECDATAREG17 — Channel 17 data register R 0x0000_0000 33.3.2.35/33-38

0x0148 PRECDATAREG18 — Channel 18 data register R 0x0000_0000 33.3.2.35/33-38

0x014C PRECDATAREG19 — Channel 19 data register R 0x0000_0000 33.3.2.35/33-38

0x0150 PRECDATAREG20 — Channel 20 data register R 0x0000_0000 33.3.2.35/33-38

0x0154 PRECDATAREG21 — Channel 21 data register R 0x0000_0000 33.3.2.35/33-38

0x0158 PRECDATAREG22 — Channel 22 data register R 0x0000_0000 33.3.2.35/33-38

0x015C PRECDATAREG23 — Channel 23 data register R 0x0000_0000 33.3.2.35/33-38

0x0160 PRECDATAREG24 — Channel 24 data register R 0x0000_0000 33.3.2.35/33-38

0x0164 PRECDATAREG25 — Channel 25 data register R 0x0000_0000 33.3.2.35/33-38

0x0168 PRECDATAREG26 — Channel 26 data register R 0x0000_0000 33.3.2.35/33-38

0x016C PRECDATAREG27 — Channel 27 data register R 0x0000_0000 33.3.2.35/33-38

0x0170 PRECDATAREG28 — Channel 28 data register R 0x0000_0000 33.3.2.35/33-38

0x0174 PRECDATAREG29 — Channel 29 data register R 0x0000_0000 33.3.2.35/33-38

0x0178 PRECDATAREG30 — Channel 30 data register R 0x0000_0000 33.3.2.35/33-38

0x017C PRECDATAREG31 — Channel 31 data register R 0x0000_0000 33.3.2.35/33-38

0x0180 INTDATAREG0 — Channel 32 data register R 0x0000_0000 33.3.2.36/33-39

0x0184 INTDATAREG1 — Channel 33 data register R 0x0000_0000 33.3.2.36/33-39

0x0188 INTDATAREG2 — Channel 34 data register R 0x0000_0000 33.3.2.36/33-39

0x018C INTDATAREG3 — Channel 35 data register R 0x0000_0000 33.3.2.36/33-39

0x0190 INTDATAREG4 — Channel 36 data register R 0x0000_0000 33.3.2.36/33-39

0x0194 INTDATAREG5 — Channel 37 data register R 0x0000_0000 33.3.2.36/33-39

0x0198 INTDATAREG6 — Channel 38 data register R 0x0000_0000 33.3.2.36/33-39

0x019C INTDATAREG7 — Channel 39 data register R 0x0000_0000 33.3.2.36/33-39

0x01A0 INTDATAREG8 — Channel 40 data register R 0x0000_0000 33.3.2.36/33-39

0x01A4 INTDATAREG9 — Channel 41 data register R 0x0000_0000 33.3.2.36/33-39

0x01A8 INTDATAREG10 — Channel 42 data register R 0x0000_0000 33.3.2.36/33-39

0x01AC INTDATAREG11 — Channel 43 data register R 0x0000_0000 33.3.2.36/33-39

0x01B0 INTDATAREG12 — Channel 44 data register R 0x0000_0000 33.3.2.36/33-39

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-54 Freescale Semiconductor

0x01B4 INTDATAREG13 — Channel 45 data register) R 0x0000_0000 33.3.2.36/33-39

0x01B8 INTDATAREG14 — Channel 46 data register R 0x0000_0000 33.3.2.36/33-39

0x01BC INTDATAREG15 — Channel 47 data register R 0x0000_0000 33.3.2.36/33-39

0x01C0 INTDATAREG16 — Channel 48 data register R 0x0000_0000 33.3.2.36/33-39

0x01C4 INTDATAREG17 — Channel 49 data register R 0x0000_0000 33.3.2.36/33-39

0x01C8 INTDATAREG18 — Channel 50 data register R 0x0000_0000 33.3.2.36/33-39

0x01CC INTDATAREG19 — Channel 51 data register R 0x0000_0000 33.3.2.36/33-39

0x01D0 INTDATAREG20 — Channel 52 data register R 0x0000_0000 33.3.2.36/33-39

0x01D4 INTDATAREG21 — Channel 53 data register R 0x0000_0000 33.3.2.36/33-39

0x01D8 INTDATAREG22 — Channel 54 data register R 0x0000_0000 33.3.2.36/33-39

0x01DC INTDATAREG23 — Channel 55 data register R 0x0000_0000 33.3.2.36/33-39

0x01E0 INTDATAREG24 — Channel 56 data register R 0x0000_0000 33.3.2.36/33-39

0x01E4 INTDATAREG25 — Channel 57 data register R 0x0000_0000 33.3.2.36/33-39

0x01E8 INTDATAREG26 — Channel 58 data register R 0x0000_0000 33.3.2.36/33-39

0x01EC INTDATAREG27 — Channel 59 data register R 0x0000_0000 33.3.2.36/33-39

0x01F0 INTDATAREG28 — Channel 60 data register R 0x0000_0000 33.3.2.36/33-39

0x01F4 INTDATAREG29 — Channel 61 data register R 0x0000_0000 33.3.2.36/33-39

0x01F8 INTDATAREG30 — Channel 62 data register R 0x0000_0000 33.3.2.36/33-39

0x01FC INTDATAREG31 — Channel 63 data register R 0x0000_0000 33.3.2.36/33-39

0x0200 EXTDATAREG0 — Channel 64 data register R 0x0000_0000 33.3.2.37/33-39

0x0204 EXTDATAREG1 — Channel 65 data register R 0x0000_0000 33.3.2.37/33-39

0x0208 EXTDATAREG2 — Channel 66 data register R 0x0000_0000 33.3.2.37/33-39

0x020C EXTDATAREG3 — Channel 67 data register R 0x0000_0000 33.3.2.37/33-39

0x0210 EXTDATAREG4 — Channel 68 data register R 0x0000_0000 33.3.2.37/33-39

0x0214 EXTDATAREG5 — Channel 69 data register R 0x0000_0000 33.3.2.37/33-39

0x0218 EXTDATAREG6 — Channel 70 data register R 0x0000_0000 33.3.2.37/33-39

0x021C EXTDATAREG7 — Channel 71 data register R 0x0000_0000 33.3.2.37/33-39

0x0220 EXTDATAREG8 — Channel 72 data register R 0x0000_0000 33.3.2.37/33-39

0x0224 EXTDATAREG9 — Channel 73 data register R 0x0000_0000 33.3.2.37/33-39

0x0228 EXTDATAREG10 — Channel 74 data register R 0x0000_0000 33.3.2.37/33-39

0x022C EXTDATAREG11 — Channel 75 data register R 0x0000_0000 33.3.2.37/33-39

0x0230 EXTDATAREG12 — Channel 76 data register R 0x0000_0000 33.3.2.37/33-39

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-55

0x0234 EXTDATAREG13 — Channel 77 data register R 0x0000_0000 33.3.2.37/33-39

0x0238 EXTDATAREG14 — Channel 78 data register R 0x0000_0000 33.3.2.37/33-39

0x023C EXTDATAREG15 — Channel 79 data register R 0x0000_0000 33.3.2.37/33-39

0x0240 EXTDATAREG16 — Channel 80 data register R 0x0000_0000 33.3.2.37/33-39

0x0244 EXTDATAREG17 — Channel 81 data register R 0x0000_0000 33.3.2.37/33-39

0x0248 EXTDATAREG18 — Channel 82 data register R 0x0000_0000 33.3.2.37/33-39

0x024C EXTDATAREG19 — Channel 83 data register R 0x0000_0000 33.3.2.37/33-39

0x0250 EXTDATAREG20 — Channel 84 data register R 0x0000_0000 33.3.2.37/33-39

0x0254 Reserved

0x0258 EXTDATAREG21 — Channel 85 data register R 0x0000_0000 33.3.2.37/33-39

0x025C EXTDATAREG22 — Channel 86 data register R 0x0000_0000 33.3.2.37/33-39

0x0260 EXTDATAREG23 — Channel 87 data register R 0x0000_0000 33.3.2.37/33-39

0x0264 EXTDATAREG24 — Channel 88 data register R 0x0000_0000 33.3.2.37/33-39

0x0268 EXTDATAREG25 — Channel 89 data register R 0x0000_0000 33.3.2.37/33-39

0x026C EXTDATAREG26 — Channel 90 data register R 0x0000_0000 33.3.2.37/33-39

0x0270 EXTDATAREG27 — Channel 91 data register R 0x0000_0000 33.3.2.37/33-39

0x0274 EXTDATAREG28 — Channel 92 data register R 0x0000_0000 33.3.2.37/33-39

0x0278 EXTDATAREG29 — Channel 93 data register R 0x0000_0000 33.3.2.37/33-39

0x027C EXTDATAREG30 — Channel 94 data register R 0x0000_0000 33.3.2.37/33-39

0x0280 EXTDATAREG31 — Channel 95 data register R 0x0000_0000 33.3.2.37/33-39

0x0284– 0x3FFF Reserved

0xFFF8_4000 –
0xFFF8_7FFF

Reserved

0xFFF8_8000
I2C_A

Chapter 31, “Inter-Integrated Circuit Bus Controller Module (I2C)”

0x0000 IBAD—I2C bus address register R/W 0x00 31.3.2.1/31-5

0x0001 IBFD—I2C bus frequency divider register R/W 0x00 31.3.2.2/31-5

0x0002 IBCR—I2C bus control register R/W 0x80 31.3.2.3/31-8

0x0003 IBSR—I2C bus status register R/W 0x80 31.3.2.4/31-9

0x0004 IBDR—I2C bus data I/O register R/W 0x00 31.3.2.5/31-10

0x0005 IBIC—I2C bus interrupt configuration register R/W 0x00 31.3.2.6/31-11

0x0006–0x3FFF Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-56 Freescale Semiconductor

0xFFF8_C000
I2C_B

Chapter 31, “Inter-Integrated Circuit Bus Controller Module (I2C)”

0x0000 IBAD—I2C bus address register R/W 0x00 31.3.2.1/31-5

0x0001 IBFD—I2C bus frequency divider register R/W 0x00 31.3.2.2/31-5

0x0002 IBCR—I2C bus control register R/W 0x80 31.3.2.3/31-8

0x0003 IBSR—I2C bus status register R/W 0x80 31.3.2.4/31-9

0x0004 IBDR—I2C bus data I/O register R/W 0x00 31.3.2.5/31-10

0x0005 IBIC—I2C bus interrupt configuration register R/W 0x00 31.3.2.6/31-11

0x0006–0x3FFF Reserved

0xFFF9_0000
DSPI_A

Chapter 29, “Deserial – Serial Peripheral Interface (DSPI)”

0x0000 DSPI_MCR—DSPI module configuration register R/W 0x0000_4001 29.3.2.1/29-7

0x0004 Reserved

0x0008 DSPI_TCR—DSPI transfer count register R/W 0x0000_0000 29.3.2.2/29-9

0x000C DSPI_CTAR0—DSPI clock and transfer attributes register 0 R/W 0x7800_0000 29.3.2.3/29-10

0x0010 DSPI_CTAR1—DSPI clock and transfer attributes register 1 R/W 0x7800_0000 29.3.2.3/29-10

0x0014 DSPI_CTAR2—DSPI clock and transfer attributes register 2 R/W 0x7800_0000 29.3.2.3/29-10

0x0018 DSPI_CTAR3—DSPI clock and transfer attributes register 3 R/W 0x7800_0000 29.3.2.3/29-10

0x001C DSPI_CTAR4—DSPI clock and transfer attributes register 4 R/W 0x7800_0000 29.3.2.3/29-10

0x0020 DSPI_CTAR5—DSPI clock and transfer attributes register 5 R/W 0x7800_0000 29.3.2.3/29-10

0x0024 DSPI_CTAR6—DSPI clock and transfer attributes register 6 R/W 0x7800_0000 29.3.2.3/29-10

0x0028 DSPI_CTAR7—DSPI clock and transfer attributes register 7 R/W 0x7800_0000 29.3.2.3/29-10

0x002C DSPI_SR—DSPI status register R 0x0200_0000 29.3.2.4/29-16

0x0030 DSPI_RSER—DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 29.3.2.5/29-18

FIFO Registers

0x0034 DSPI_PUSHR—DSPI push TX FIFO register R/W 0x0000_0000 29.3.2.6/29-19

0x0038 DSPI_POPR—DSPI pop RX FIFO register R 0x0000_0000 29.3.2.7/29-21

0x003C DSPI_TXFR0—DSPI transmit FIFO register 0 R 0x0000_0000 29.3.2.8/29-21

0x0040 DSPI_TXFR1—DSPI transmit FIFO register 1 R 0x0000_0000 29.3.2.8/29-21

0x0044 DSPI_TXFR2—DSPI transmit FIFO register 2 R 0x0000_0000 29.3.2.8/29-21

0x0048 DSPI_TXFR3—DSPI transmit FIFO register 3 R 0x0000_0000 29.3.2.8/29-21

0x004C–0x0078 Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-57

0x007C DSPI_RXFR0—DSPI receive FIFO register 0 R 0x0000_0000 29.3.2.9/29-22

0x0080 DSPI_RXFR1—DSPI receive FIFO register 1 R 0x0000_0000 29.3.2.9/29-22

0x0084 DSPI_RXFR2—DSPI receive FIFO register 2 R 0x0000_0000 29.3.2.9/29-22

0x0088 DSPI_RXFR3—DSPI receive FIFO register 3 R 0x0000_0000 29.3.2.9/29-22

0x008C–0x00B8 Reserved

0xFFF9_4000
DSPI_B

Chapter 29, “Deserial – Serial Peripheral Interface (DSPI)”

0x0000 DSPI_MCR—DSPI module configuration register R/W 0x0000_4001 29.3.2.1/29-7

0x0004 Reserved

0x0008 DSPI_TCR—DSPI transfer count register R/W 0x0000_0000 29.3.2.2/29-9

0x000C DSPI_CTAR0—DSPI clock and transfer attributes register 0 R/W 0x7800_0000 29.3.2.3/29-10

0x0010 DSPI_CTAR1—DSPI clock and transfer attributes register 1 R/W 0x7800_0000 29.3.2.3/29-10

0x0014 DSPI_CTAR2—DSPI clock and transfer attributes register 2 R/W 0x7800_0000 29.3.2.3/29-10

0x0018 DSPI_CTAR3—DSPI clock and transfer attributes register 3 R/W 0x7800_0000 29.3.2.3/29-10

0x001C DSPI_CTAR4—DSPI clock and transfer attributes register 4 R/W 0x7800_0000 29.3.2.3/29-10

0x0020 DSPI_CTAR5—DSPI clock and transfer attributes register 5 R/W 0x7800_0000 29.3.2.3/29-10

0x0024 DSPI_CTAR6—DSPI clock and transfer attributes register 6 R/W 0x7800_0000 29.3.2.3/29-10

0x0028 DSPI_CTAR7—DSPI clock and transfer attributes register 7 R/W 0x7800_0000 29.3.2.3/29-10

0x002C DSPI_SR—DSPI status register R 0x0200_0000 29.3.2.4/29-16

0x0030 DSPI_RSER—DSPI DMA/interrupt request select and
enable register

R/W 0x0000_0000 29.3.2.5/29-18

FIFO Registers

0x0034 DSPI_PUSHR—DSPI push TX FIFO register R/W 0x0000_0000 29.3.2.6/29-19

0x0038 DSPI_POPR—DSPI pop RX FIFO register R 0x0000_0000 29.3.2.7/29-21

0x003C DSPI_TXFR0—DSPI transmit FIFO register 0 R 0x0000_0000 29.3.2.8/29-21

0x0040 DSPI_TXFR1—DSPI transmit FIFO register 1 R 0x0000_0000 29.3.2.8/29-21

0x0044 DSPI_TXFR2—DSPI transmit FIFO register 2 R 0x0000_0000 29.3.2.8/29-21

0x0048 DSPI_TXFR3—DSPI transmit FIFO register 3 R 0x0000_0000 29.3.2.8/29-21

0x004C–0x0078 Reserved

0x007C DSPI_RXFR0—DSPI receive FIFO register 0 R 0x0000_0000 29.3.2.9/29-22

0x0080 DSPI_RXFR1—DSPI receive FIFO register 1 R 0x0000_0000 29.3.2.9/29-22

0x0084 DSPI_RXFR2—DSPI receive FIFO register 2 R 0x0000_0000 29.3.2.9/29-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-58 Freescale Semiconductor

0x0088 DSPI_RXFR3—DSPI receive FIFO register 3 R 0x0000_0000 29.3.2.9/29-22

0x008C–0x00B8 Reserved

0xFFF9_8000 –
0xFFF9_FFFF

Reserved

0xFFFA_0000
eSCI_A

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFA_4000
eSCI_B

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-59

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFA_8000
eSCI_C

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFA_C000
eSCI_D

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-60 Freescale Semiconductor

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFB_0000
eSCI_E

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFB_4000
eSCI_F

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-61

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFB_8000
eSCI_G

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFB_C000
eSCI_H

Chapter 30, “Enhanced Serial Communication Interface (eSCI)”

0x0000 eSCI_BRR—eSCI baud rate register R/W 0x0004 30.3.2.1/30-6

0x0002 eSCI_CR1—eSCI control register 1 R/W 0x0000 30.3.2.2/30-6

0x0004 eSCI_CR2—eSCI control register 2 R/W 0x0200 30.3.2.3/30-8

0x0006 eSCI_SDR—eSCI data register R/W 0x0000 30.3.2.4/30-10

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-62 Freescale Semiconductor

0x0008 eSCI_IFSR1—eSCI interrupt flag and status register 1 R/W 0x0000 30.3.2.5/30-11

0x000A eSCI_IFSR2—eSCI interrupt flag and status register 2 R/W 0x0000 30.3.2.6/30-12

0x000C eSCI_LCR1—eSCI LIN control register 1 R/W 0x0000 30.3.2.7/30-13

0x000E eSCI_LCR2—eSCI LIN control register 2 R/W 0x0000 30.3.2.8/30-15

0x00010 eSCI_LTR— eSCI LIN transmit register R/W 0x0000 30.3.2.9/30-15

0x0012 Reserved

0x0014 eSCI_LRR—eSCI LIN receive register R/W 0x0000 30.3.2.10/30-17

0x0016 Reserved

0x0018 eSCI_LPR—eSCI LIN CRC polynomial register R/W 0xC599 30.3.2.11/30-18

0x001A eSCI_CR3—eSCI control register 3 R/W 0x0000 30.3.2.12/30-18

0x001C–0x3FFF Reserved

0xFFFC_0000
FlexCAN_A

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CANA_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CANA_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANA_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANA_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANA_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANA_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANA_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANA_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANA_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANA_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CANA_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANA_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-63

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-64 Freescale Semiconductor

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

0x0880 CANA_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CANA_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CANA_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CANA_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-65

0x0890 CANA_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CANA_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CANA_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CANA_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CANA_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CANA_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

0x08A8 CANA_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CANA_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CANA_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CANA_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

0x08B8 CANA_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CANA_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CANA_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CANA_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

0x08C8 CANA_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CANA_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CANA_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CANA_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CANA_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CANA_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CANA_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CANA_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CANA_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CANA_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

0x08F0 CANA_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CANA_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CANA_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CANA_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

0x0900 CANA_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CANA_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CANA_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CANA_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-66 Freescale Semiconductor

0x0910 CANA_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CANA_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CANA_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CANA_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CANA_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CANA_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

0x0928 CANA_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CANA_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CANA_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CANA_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

0x0938 CANA_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CANA_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CANA_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CANA_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

0x0948 CANA_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CANA_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CANA_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CANA_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CANA_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CANA_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CANA_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CANA_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CANA_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CANA_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

0x0970 CANA_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CANA_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CANA_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CANA_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

0x0980–0x3FFF Reserved

0xFFFC_4000
FlexCAN_B

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CANB_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-67

0x0004 CANB_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANB_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANB_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANB_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANB_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANB_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANB_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANB_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANB_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CANB_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANB_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-68 Freescale Semiconductor

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-69

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

0x0880 CANB_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CANB_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CANB_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CANB_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

0x0890 CANB_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CANB_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CANB_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CANB_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CANB_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CANB_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

0x08A8 CANB_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CANB_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CANB_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CANB_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

0x08B8 CANB_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CANB_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CANB_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CANB_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-70 Freescale Semiconductor

0x08C8 CANB_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CANB_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CANB_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CANB_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CANB_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CANB_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CANB_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CANB_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CANB_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CANB_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

0x08F0 CANB_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CANB_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CANB_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CANB_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

0x0900 CANB_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CANB_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CANB_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CANB_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

0x0910 CANB_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CANB_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CANB_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CANB_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CANB_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CANB_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

0x0928 CANB_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CANB_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CANB_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CANB_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

0x0938 CANB_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CANB_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CANB_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CANB_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-71

0x0948 CANB_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CANB_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CANB_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CANB_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CANB_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CANB_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CANB_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CANB_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CANB_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CANB_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

0x0970 CANB_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CANB_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CANB_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CANB_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

0x0980–0x3FFF Reserved

0xFFFC_8000
FlexCAN_C

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CANC_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CANC_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANC_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANC_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANC_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANC_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANC_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANC_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANC_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANC_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CANC_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANC_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-72 Freescale Semiconductor

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-73

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-74 Freescale Semiconductor

0x0880 CANC_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CANC_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CANC_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CANC_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

0x0890 CANC_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CANC_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CANC_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CANC_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CANC_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CANC_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

0x08A8 CANC_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CANC_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CANC_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CANC_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

0x08B8 CANC_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CANC_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CANC_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CANC_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

0x08C8 CANC_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CANC_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CANC_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CANC_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CANC_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CANC_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CANC_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CANC_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CANC_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CANC_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

0x08F0 CANC_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CANC_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CANC_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CANC_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-75

0x0900 CANC_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CANC_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CANC_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CANC_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

0x0910 CANC_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CANC_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CANC_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CANC_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CANC_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CANC_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

0x0928 CANC_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CANC_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CANC_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CANC_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

0x0938 CANC_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CANC_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CANC_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CANC_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

0x0948 CANC_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CANC_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CANC_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CANC_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CANC_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CANC_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CANC_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CANC_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CANC_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CANC_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

0x0970 CANC_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CANC_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CANC_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CANC_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-76 Freescale Semiconductor

0x0980–0x3FFF Reserved

0xFFFC_C000
FlexCAN_D

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CAND_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CAND_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CAND_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CAND_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CAND_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CAND_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CAND_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CAND_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CAND_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CAND_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CAND_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CAND_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-77

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-78 Freescale Semiconductor

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

0x0880 CAND_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CAND_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CAND_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CAND_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

0x0890 CAND_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CAND_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CAND_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CAND_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CAND_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CAND_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

0x08A8 CAND_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CAND_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CAND_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CAND_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-79

0x08B8 CAND_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CAND_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CAND_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CAND_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

0x08C8 CAND_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CAND_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CAND_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CAND_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CAND_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CAND_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CAND_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CAND_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CAND_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CAND_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

0x08F0 CAND_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CAND_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CAND_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CAND_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

0x0900 CAND_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CAND_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CAND_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CAND_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

0x0910 CAND_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CAND_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CAND_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CAND_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CAND_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CAND_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

0x0928 CAND_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CAND_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CAND_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CAND_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-80 Freescale Semiconductor

0x0938 CAND_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CAND_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CAND_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CAND_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

0x0948 CAND_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CAND_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CAND_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CAND_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CAND_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CAND_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CAND_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CAND_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CAND_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CAND_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

0x0970 CAND_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CAND_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CAND_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CAND_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

0x0980–0x3FFF Reserved

0xFFFD_0000
FlexCAN_E

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CANE_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CANE_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANE_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANE_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANE_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANE_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANE_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANE_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANE_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANE_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-81

0x002C CANE_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANE_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-82 Freescale Semiconductor

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-83

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

0x0880 CANE_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CANE_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CANE_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CANE_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

0x0890 CANE_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CANE_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CANE_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CANE_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CANE_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CANE_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

0x08A8 CANE_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CANE_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CANE_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CANE_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

0x08B8 CANE_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CANE_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CANE_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CANE_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

0x08C8 CANE_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CANE_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CANE_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CANE_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CANE_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CANE_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CANE_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CANE_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CANE_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CANE_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-84 Freescale Semiconductor

0x08F0 CANE_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CANE_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CANE_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CANE_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

0x0900 CANE_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CANE_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CANE_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CANE_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

0x0910 CANE_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CANE_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CANE_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CANE_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CANE_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CANE_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

0x0928 CANE_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CANE_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CANE_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CANE_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

0x0938 CANE_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CANE_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CANE_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CANE_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

0x0948 CANE_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CANE_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CANE_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CANE_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CANE_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CANE_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CANE_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CANE_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CANE_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CANE_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-85

0x0970 CANE_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CANE_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CANE_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CANE_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

0x0980–0x3FFF Reserved

0xFFFD_4000
FlexCAN_F

Chapter 28, “Controller Area Network (FlexCAN)”

0x0000 CANF_MCR—Module configuration register R/W 0x9890_000F 28.3.4.1/28-11

0x0004 CANF_CTRL—control register R/W 0x0000_0000 28.3.4.2/28-14

0x0008 CANF_TIMER—Free-running timer R/W 0x0000_0000 28.3.4.3/28-17

0x000C Reserved

0x0010 CANF_RXGMASK—Rx global mask R/W 0xFFFF_FFFF 28.3.4.4.1/28-18

0x0014 CANF_RX14MASK—Rx buffer 14 mask R/W 0xFFFF_FFFF 28.3.4.4.2/28-19

0x0018 CANF_RX15MASK—Rx buffer 15 mask R/W 0xFFFF_FFFF 28.3.4.4.3/28-19

0x001C CANF_ECR—Error counter register R/W 0x0000_0000 28.3.4.5/28-20

0x0020 CANF_ESR—Error and status register R/W 0x0000_0000 28.3.4.6/28-21

0x0024 CANF_IMASK2—Interrupt masks 2 R/W 0x0000_0000 28.3.4.7/28-23

0x0028 CANF_IMASK1—Interrupt masks 1 R/W 0x0000_0000 28.3.4.8/28-24

0x002C CANF_IFLAG2—Interrupt flags 2 R/W 0x0000_0000 28.3.4.9/28-24

0x0030 CANF_IFLAG1—Interrupt flags 1 R/W 0x0000_0000 28.3.4.10/28-25

0x0034–0x007F Reserved

0x0080 MB0—Message buffer 0 R/W 0x0000_0000 28.3.2/28-7

0x0090 MB1—Message buffer 1 R/W 0x0000_0000 28.3.2/28-7

0x00AO MB2—Message buffer 2 R/W 0x0000_0000 28.3.2/28-7

0x00B0 MB3—Message buffer 3 R/W 0x0000_0000 28.3.2/28-7

0x00C0 MB4—Message buffer 4 R/W 0x0000_0000 28.3.2/28-7

0x00D0 MB5—Message buffer 5 R/W 0x0000_0000 28.3.2/28-7

0x00E0 MB6—Message buffer 6 R/W 0x0000_0000 28.3.2/28-7

0x00F0 MB7—Message buffer 7 R/W 0x0000_0000 28.3.2/28-7

0x0100 MB8—Message buffer 8 R/W 0x0000_0000 28.3.2/28-7

0x0110 MB9—Message buffer 9 R/W 0x0000_0000 28.3.2/28-7

0x0120 MB10—Message buffer 10 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-86 Freescale Semiconductor

0x0130 MB11—Message buffer 11 R/W 0x0000_0000 28.3.2/28-7

0x0140 MB12—Message buffer 12 R/W 0x0000_0000 28.3.2/28-7

0x0150 MB13—Message buffer 13 R/W 0x0000_0000 28.3.2/28-7

0x0160 MB14—Message buffer 14 R/W 0x0000_0000 28.3.2/28-7

0x0170 MB15—Message buffer 15 R/W 0x0000_0000 28.3.2/28-7

0x0180 MB16—Message buffer 16 R/W 0x0000_0000 28.3.2/28-7

0x0190 MB17—Message buffer 17 R/W 0x0000_0000 28.3.2/28-7

0x01A0 MB18—Message buffer 18 R/W 0x0000_0000 28.3.2/28-7

0x01B0 MB19—Message buffer 19 R/W 0x0000_0000 28.3.2/28-7

0x01C0 MB20—Message buffer 20 R/W 0x0000_0000 28.3.2/28-7

0x01D0 MB21—Message buffer 21 R/W 0x0000_0000 28.3.2/28-7

0x01E0 MB22—Message buffer 22 R/W 0x0000_0000 28.3.2/28-7

0x01F0 MB23—Message buffer 23 R/W 0x0000_0000 28.3.2/28-7

0x0200 MB24—Message buffer 24 R/W 0x0000_0000 28.3.2/28-7

0x0210 MB25—Message buffer 25 R/W 0x0000_0000 28.3.2/28-7

0x0220 MB26—Message buffer 26 R/W 0x0000_0000 28.3.2/28-7

0x0230 MB27—Message buffer 27 R/W 0x0000_0000 28.3.2/28-7

0x0240 MB28—Message buffer 28 R/W 0x0000_0000 28.3.2/28-7

0x0250 MB29—Message buffer 29 R/W 0x0000_0000 28.3.2/28-7

0x0260 MB30—Message buffer 30 R/W 0x0000_0000 28.3.2/28-7

0x0270 MB31—Message buffer 31 R/W 0x0000_0000 28.3.2/28-7

0x0280 MB32—Message buffer 32 R/W 0x0000_0000 28.3.2/28-7

0x0290 MB33—Message buffer 33 R/W 0x0000_0000 28.3.2/28-7

0x02A0 MB34—Message buffer 34 R/W 0x0000_0000 28.3.2/28-7

0x02B0 MB35—Message buffer 35 R/W 0x0000_0000 28.3.2/28-7

0x02C0 MB36—Message buffer 36 R/W 0x0000_0000 28.3.2/28-7

0x02D0 MB37—Message buffer 37 R/W 0x0000_0000 28.3.2/28-7

0x02E0 MB38—Message buffer 38 R/W 0x0000_0000 28.3.2/28-7

0x02F0 MB39—Message buffer 39 R/W 0x0000_0000 28.3.2/28-7

0x0300 MB40—Message buffer 40 R/W 0x0000_0000 28.3.2/28-7

0x0310 MB41—Message buffer 41 R/W 0x0000_0000 28.3.2/28-7

0x0320 MB42—Message buffer 42 R/W 0x0000_0000 28.3.2/28-7

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-87

0x0330 MB43—Message buffer 43 R/W 0x0000_0000 28.3.2/28-7

0x0340 MB44—Message buffer 44 R/W 0x0000_0000 28.3.2/28-7

0x0350 MB45—Message buffer 45 R/W 0x0000_0000 28.3.2/28-7

0x0360 MB46—Message buffer 46 R/W 0x0000_0000 28.3.2/28-7

0x0370 MB47—Message buffer 47 R/W 0x0000_0000 28.3.2/28-7

0x0380 MB48—Message buffer 48 R/W 0x0000_0000 28.3.2/28-7

0x0390 MB49—Message buffer 49 R/W 0x0000_0000 28.3.2/28-7

0x03A0 MB50—Message buffer 50 R/W 0x0000_0000 28.3.2/28-7

0x03B0 MB51—Message buffer 51 R/W 0x0000_0000 28.3.2/28-7

0x03C0 MB52—Message buffer 52 R/W 0x0000_0000 28.3.2/28-7

0x03D0 MB53—Message buffer 53 R/W 0x0000_0000 28.3.2/28-7

0x03E0 MB54—Message buffer 54 R/W 0x0000_0000 28.3.2/28-7

0x03F0 MB55—Message buffer 55 R/W 0x0000_0000 28.3.2/28-7

0x0400 MB56—Message buffer 56 R/W 0x0000_0000 28.3.2/28-7

0x0410 MB57—Message buffer 57 R/W 0x0000_0000 28.3.2/28-7

0x0420 MB58—Message buffer 58 R/W 0x0000_0000 28.3.2/28-7

0x0430 MB59—Message buffer 59 R/W 0x0000_0000 28.3.2/28-7

0x0440 MB60—Message buffer 60 R/W 0x0000_0000 28.3.2/28-7

0x0450 MB61—Message buffer 61 R/W 0x0000_0000 28.3.2/28-7

0x0460 MB62—Message buffer 62 R/W 0x0000_0000 28.3.2/28-7

0x0470 MB63—Message buffer 63 R/W 0x0000_0000 28.3.2/28-7

0x0480–087F Reserved

0x0880 CANF_RXIMR0—Rx individual mask register 0 R/W 0x0000_0000 28.3.4.11/28-26

0x0884 CANF_RXIMR1—Rx individual mask register 1 R/W 0x0000_0000 28.3.4.11/28-26

0x0888 CANF_RXIMR2—Rx individual mask register 2 R/W 0x0000_0000 28.3.4.11/28-26

0x088C CANF_RXIMR3—Rx individual mask register 3 R/W 0x0000_0000 28.3.4.11/28-26

0x0890 CANF_RXIMR4—Rx individual mask register 4 R/W 0x0000_0000 28.3.4.11/28-26

0x0894 CANF_RXIMR5—Rx individual mask register 5 R/W 0x0000_0000 28.3.4.11/28-26

0x0898 CANF_RXIMR6—Rx individual mask register 6 R/W 0x0000_0000 28.3.4.11/28-26

0x089C CANF_RXIMR7—Rx individual mask register 7 R/W 0x0000_0000 28.3.4.11/28-26

0x08A0 CANF_RXIMR8—Rx individual mask register 8 R/W 0x0000_0000 28.3.4.11/28-26

0x08A4 CANF_RXIMR9—Rx individual mask register 9 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-88 Freescale Semiconductor

0x08A8 CANF_RXIMR10—Rx individual mask register 10 R/W 0x0000_0000 28.3.4.11/28-26

0x08AC CANF_RXIMR11—Rx individual mask register 11 R/W 0x0000_0000 28.3.4.11/28-26

0x08B0 CANF_RXIMR12—Rx individual mask register 12 R/W 0x0000_0000 28.3.4.11/28-26

0x08B4 CANF_RXIMR13—Rx individual mask register 13 R/W 0x0000_0000 28.3.4.11/28-26

0x08B8 CANF_RXIMR14—Rx individual mask register 14 R/W 0x0000_0000 28.3.4.11/28-26

0x08BC CANF_RXIMR15—Rx individual mask register 15 R/W 0x0000_0000 28.3.4.11/28-26

0x08C0 CANF_RXIMR16—Rx individual mask register 16 R/W 0x0000_0000 28.3.4.11/28-26

0x08C4 CANF_RXIMR17—Rx individual mask register 17 R/W 0x0000_0000 28.3.4.11/28-26

0x08C8 CANF_RXIMR18—Rx individual mask register 18 R/W 0x0000_0000 28.3.4.11/28-26

0x08CC CANF_RXIMR19—Rx individual mask register 19 R/W 0x0000_0000 28.3.4.11/28-26

0x08D0 CANF_RXIMR20—Rx individual mask register 20 R/W 0x0000_0000 28.3.4.11/28-26

0x08D4 CANF_RXIMR21—Rx individual mask register 21 R/W 0x0000_0000 28.3.4.11/28-26

0x08D8 CANF_RXIMR22—Rx individual mask register 22 R/W 0x0000_0000 28.3.4.11/28-26

0x08DC CANF_RXIMR23—Rx individual mask register 23 R/W 0x0000_0000 28.3.4.11/28-26

0x08E0 CANF_RXIMR24—Rx individual mask register 24 R/W 0x0000_0000 28.3.4.11/28-26

0x08E4 CANF_RXIMR25—Rx individual mask register 25 R/W 0x0000_0000 28.3.4.11/28-26

0x08E8 CANF_RXIMR26—Rx individual mask register 26 R/W 0x0000_0000 28.3.4.11/28-26

0x08EC CANF_RXIMR27—Rx individual mask register 27 R/W 0x0000_0000 28.3.4.11/28-26

0x08F0 CANF_RXIMR28—Rx individual mask register 28 R/W 0x0000_0000 28.3.4.11/28-26

0x08F4 CANF_RXIMR29—Rx individual mask register 29 R/W 0x0000_0000 28.3.4.11/28-26

0x08F8 CANF_RXIMR30—Rx individual mask register 30 R/W 0x0000_0000 28.3.4.11/28-26

0x08FC CANF_RXIMR31—Rx individual mask register 31 R/W 0x0000_0000 28.3.4.11/28-26

0x0900 CANF_RXIMR32—Rx individual mask register 32 R/W 0x0000_0000 28.3.4.11/28-26

0x0904 CANF_RXIMR33—Rx individual mask register 33 R/W 0x0000_0000 28.3.4.11/28-26

0x0908 CANF_RXIMR34—Rx individual mask register 34 R/W 0x0000_0000 28.3.4.11/28-26

0x090C CANF_RXIMR35—Rx individual mask register 35 R/W 0x0000_0000 28.3.4.11/28-26

0x0910 CANF_RXIMR36—Rx individual mask register 36 R/W 0x0000_0000 28.3.4.11/28-26

0x0914 CANF_RXIMR37—Rx individual mask register 37 R/W 0x0000_0000 28.3.4.11/28-26

0x0918 CANF_RXIMR38—Rx individual mask register 38 R/W 0x0000_0000 28.3.4.11/28-26

0x091C CANF_RXIMR39—Rx individual mask register 39 R/W 0x0000_0000 28.3.4.11/28-26

0x0920 CANF_RXIMR40—Rx individual mask register 40 R/W 0x0000_0000 28.3.4.11/28-26

0x0924 CANF_RXIMR41—Rx individual mask register 41 R/W 0x0000_0000 28.3.4.11/28-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-89

0x0928 CANF_RXIMR42—Rx individual mask register 42 R/W 0x0000_0000 28.3.4.11/28-26

0x092C CANF_RXIMR43—Rx individual mask register 43 R/W 0x0000_0000 28.3.4.11/28-26

0x0930 CANF_RXIMR44—Rx individual mask register 44 R/W 0x0000_0000 28.3.4.11/28-26

0x0934 CANF_RXIMR45—Rx individual mask register 45 R/W 0x0000_0000 28.3.4.11/28-26

0x0938 CANF_RXIMR46—Rx individual mask register 46 R/W 0x0000_0000 28.3.4.11/28-26

0x093C CANF_RXIMR47—Rx individual mask register 47 R/W 0x0000_0000 28.3.4.11/28-26

0x0940 CANF_RXIMR48—Rx individual mask register 48 R/W 0x0000_0000 28.3.4.11/28-26

0x0944 CANF_RXIMR49—Rx individual mask register 49 R/W 0x0000_0000 28.3.4.11/28-26

0x0948 CANF_RXIMR50—Rx individual mask register 50 R/W 0x0000_0000 28.3.4.11/28-26

0x094C CANF_RXIMR51—Rx individual mask register 51 R/W 0x0000_0000 28.3.4.11/28-26

0x0950 CANF_RXIMR52—Rx individual mask register 52 R/W 0x0000_0000 28.3.4.11/28-26

0x0954 CANF_RXIMR53—Rx individual mask register 53 R/W 0x0000_0000 28.3.4.11/28-26

0x0958 CANF_RXIMR54—Rx individual mask register 54 R/W 0x0000_0000 28.3.4.11/28-26

0x095C CANF_RXIMR55—Rx individual mask register 55 R/W 0x0000_0000 28.3.4.11/28-26

0x0960 CANF_RXIMR56—Rx individual mask register 56 R/W 0x0000_0000 28.3.4.11/28-26

0x0964 CANF_RXIMR57—Rx individual mask register 57 R/W 0x0000_0000 28.3.4.11/28-26

0x0968 CANF_RXIMR58—Rx individual mask register 58 R/W 0x0000_0000 28.3.4.11/28-26

0x096C CANF_RXIMR59—Rx individual mask register 59 R/W 0x0000_0000 28.3.4.11/28-26

0x0970 CANF_RXIMR60—Rx individual mask register 60 R/W 0x0000_0000 28.3.4.11/28-26

0x0974 CANF_RXIMR61—Rx individual mask register 61 R/W 0x0000_0000 28.3.4.11/28-26

0x0978 CANF_RXIMR62—Rx individual mask register 62 R/W 0x0000_0000 28.3.4.11/28-26

0x097C CANF_RXIMR63—Rx individual mask register 63 R/W 0x0000_0000 28.3.4.11/28-26

0x0980–0x3FFF Reserved

0xFFFD_8000
CTU

Chapter 32, “Cross Triggering Unit (CTU)”

0x0000 CTU_CSR – Control status register R/W 0x0000_0000 32.4.1.1/32-4

0x0004 CTU_SVR1 – Start value register 1 R/W 0x0000_0000 32.4.1.2/32-5

0x0008 CTU_SVR2 – Start value register 2 R/W 0x0000_0000 32.4.1.2/32-5

0x000C CTU_SVR3 – Start value register 3 R/W 0x0000_0000 32.4.1.2/32-5

0x0010 CTU_SVR4 – Start value register 4 R/W 0x0000_0000 32.4.1.2/32-5

0x0014 CTU_SVR5 – Start value register 5 R/W 0x0000_0000 32.4.1.2/32-5

0x0018 CTU_SVR6 – Start value register 6 R/W 0x0000_0000 32.4.1.2/32-5

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-90 Freescale Semiconductor

0x001C CTU_SVR7 – Start value register 7 R/W 0x0000_0000 32.4.1.2/32-5

0x0020 CTU_CVR0 – current value register 0 R/W 0x0000_0000 32.4.1.3/32-5

0x0024 CTU_CVR1 – current value register 1 R/W 0x0000_0000 32.4.1.3/32-5

0x0028 CTU_CVR2 – current value register 2 R/W 0x0000_0000 32.4.1.3/32-5

0x002C CTU_CVR3 – current value register 3 R/W 0x0000_0000 32.4.1.3/32-5

0x0030 CTU_EVTCFGR0 – Event configuration register 0 R/W 0x0000_0000 32.4.1.4/32-6

0x0034 CTU_EVTCFGR1 – Event configuration register 1 R/W 0x0000_0000 32.4.1.4/32-6

0x0038 CTU_EVTCFGR2 – Event configuration register 2 R/W 0x0000_0000 32.4.1.4/32-6

0x003C CTU_EVTCFGR3 – Event configuration register 3 R/W 0x0000_0000 32.4.1.4/32-6

0x0040 CTU_EVTCFGR4 – Event configuration register 4 R/W 0x0000_0000 32.4.1.4/32-6

0x0044 CTU_EVTCFGR5 – Event configuration register 5 R/W 0x0000_0000 32.4.1.4/32-6

0x0048 CTU_EVTCFGR6 – Event configuration register 6 R/W 0x0000_0000 32.4.1.4/32-6

0x004C CTU_EVTCFGR7 – Event configuration register 7 R/W 0x0000_0000 32.4.1.4/32-6

0x0050 CTU_EVTCFGR8 – Event configuration register 8 R/W 0x0000_0000 32.4.1.4/32-6

0x0054 CTU_EVTCFGR9 – Event configuration register 9 R/W 0x0000_0000 32.4.1.4/32-6

0x0058 CTU_EVTCFGR10 – Event configuration register 10 R/W 0x0000_0000 32.4.1.4/32-6

0x005C CTU_EVTCFGR11 – Event configuration register 11 R/W 0x0000_0000 32.4.1.4/32-6

0x0060 CTU_EVTCFGR12 – Event configuration register 12 R/W 0x0000_0000 32.4.1.4/32-6

0x0064 CTU_EVTCFGR13 – Event configuration register 13 R/W 0x0000_0000 32.4.1.4/32-6

0x0068 CTU_EVTCFGR14 – Event configuration register 14 R/W 0x0000_0000 32.4.1.4/32-6

0x006C CTU_EVTCFGR15 – Event configuration register 15 R/W 0x0000_0000 32.4.1.4/32-6

0x0070 CTU_EVTCFGR16 – Event configuration register 16 R/W 0x0000_0000 32.4.1.4/32-6

0x0074 CTU_EVTCFGR17 – Event configuration register 17 R/W 0x0000_0000 32.4.1.4/32-6

0x0078 CTU_EVTCFGR18 – Event configuration register 18 R/W 0x0000_0000 32.4.1.4/32-6

0x007C CTU_EVTCFGR19 – Event configuration register 19 R/W 0x0000_0000 32.4.1.4/32-6

0x0080 CTU_EVTCFGR20 – Event configuration register 20 R/W 0x0000_0000 32.4.1.4/32-6

0x0084 CTU_EVTCFGR21 – Event configuration register 21 R/W 0x0000_0000 32.4.1.4/32-6

0x0088 CTU_EVTCFGR22 – Event configuration register 22 R/W 0x0000_0000 32.4.1.4/32-6

0x008C CTU_EVTCFGR23 – Event configuration register 23 R/W 0x0000_0000 32.4.1.4/32-6

0x0090 CTU_EVTCFGR24 – Event configuration register 24 R/W 0x0000_0000 32.4.1.4/32-6

0x0094 CTU_EVTCFGR25 – Event configuration register 25 R/W 0x0000_0000 32.4.1.4/32-6

0x0098 CTU_EVTCFGR26 – Event configuration register 26 R/W 0x0000_0000 32.4.1.4/32-6

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-91

0x009C CTU_EVTCFGR27 – Event configuration register 27 R/W 0x0000_0000 32.4.1.4/32-6

0x00A0 CTU_EVTCFGR28 – Event configuration register 28 R/W 0x0000_0000 32.4.1.4/32-6

0x00A4 CTU_EVTCFGR29 – Event configuration register 29 R/W 0x0000_0000 32.4.1.4/32-6

0x00A8 CTU_EVTSELR30 – Event configuration register 30 R/W 0x0000_0000 32.4.1.4/32-6

0x00AC CTU_EVTSELR31 – Event configuration register 31 R/W 0x0000_0000 32.4.1.4/32-6

0x00B0 CTU_EVTSELR32 – Event configuration register 32 R/W 0x0000_0000 32.4.1.4/32-6

0x00B4–0x3FFF Reserved

0xFFFD_C000
DMA_MUX

Chapter 22, “DMA Channel Multiplexer (DMA_MUX)”

0x0000 CHCONFIG0—Channel #0 configuration R/W 0x00 22.3.2.1/22-4

0x0001 CHCONFIG1—Channel #1 configuration R/W 0x00 22.3.2.1/22-4

0x0002 CHCONFIG2—Channel #2 configuration R/W 0x00 22.3.2.1/22-4

0x0003 CHCONFIG3—Channel #3 configuration R/W 0x00 22.3.2.1/22-4

0x0004 CHCONFIG4—Channel #4 configuration R/W 0x00 22.3.2.1/22-4

0x0005 CHCONFIG5—Channel #5 configuration R/W 0x00 22.3.2.1/22-4

0x0006 CHCONFIG6—Channel #6 configuration R/W 0x00 22.3.2.1/22-4

0x0007 CHCONFIG7—Channel #7 configuration R/W 0x00 22.3.2.1/22-4

0x0008 CHCONFIG8—Channel #8 configuration R/W 0x00 22.3.2.1/22-4

0x0009 CHCONFIG9—Channel #9 configuration R/W 0x00 22.3.2.1/22-4

0x000A CHCONFIG10—Channel #10 configuration R/W 0x00 22.3.2.1/22-4

0x000B CHCONFIG11—Channel #11 configuration R/W 0x00 22.3.2.1/22-4

0x000C CHCONFIG12—Channel #12 configuration R/W 0x00 22.3.2.1/22-4

0x000D CHCONFIG13—Channel #13 configuration R/W 0x00 22.3.2.1/22-4

0x000E CHCONFIG14—Channel #14 configuration R/W 0x00 22.3.2.1/22-4

0x000F CHCONFIG15—Channel #15 configuration R/W 0x00 22.3.2.1/22-4

0x0010 CHCONFIG16—Channel #16 configuration R/W 0x00 22.3.2.1/22-4

0x0011 CHCONFIG17—Channel #17 configuration R/W 0x00 22.3.2.1/22-4

0x0012 CHCONFIG18—Channel #18 configuration R/W 0x00 22.3.2.1/22-4

0x0013 CHCONFIG19—Channel #19 configuration R/W 0x00 22.3.2.1/22-4

0x0014 CHCONFIG20—Channel #20 configuration R/W 0x00 22.3.2.1/22-4

0x0015 CHCONFIG21—Channel #21 configuration R/W 0x00 22.3.2.1/22-4

0x0016 CHCONFIG22—Channel #22 configuration R/W 0x00 22.3.2.1/22-4

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-92 Freescale Semiconductor

0x0017 CHCONFIG23—Channel #23 configuration R/W 0x00 22.3.2.1/22-4

0x0018 CHCONFIG24—Channel #24 configuration R/W 0x00 22.3.2.1/22-4

0x0019 CHCONFIG25—Channel #25 configuration R/W 0x00 22.3.2.1/22-4

0x001A CHCONFIG26—Channel #26 configuration R/W 0x00 22.3.2.1/22-4

0x001B CHCONFIG27—Channel #27 configuration R/W 0x00 22.3.2.1/22-4

0x001C CHCONFIG28—Channel #28 configuration R/W 0x00 22.3.2.1/22-4

0x001D CHCONFIG29—Channel #29 configuration R/W 0x00 22.3.2.1/22-4

0x001E CHCONFIG30—Channel #30 configuration R/W 0x00 22.3.2.1/22-4

0x001F CHCONFIG31—Channel #31 configuration R/W 0x00 22.3.2.1/22-4

0x0020–0x3FFF Reserved

0xFFFE_0000
PIT

Chapter 21, “Periodic Interrupt Timer (PIT)”

0x0000 PITMCR—PIT module control register R/W 0x0000_0002 21.3.2.1/21-4

0x0004–0x00FF Reserved

0x0100 LDVAL1—Timer 1 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0104 CVAL1—Timer 1 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0108 TCTRL1—Timer 1 control register R/W 0x0000_0000 21.3.2.4/21-6

0x010C TFLG1—Timer 1 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0110 LDVAL2—Timer 2 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0114 CVAL2—Timer 2 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0118 TCTRL2—Timer 2 control register R/W 0x0000_0000 21.3.2.4/21-6

0x011C TFLG2—Timer 2 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0120 LDVAL3—Timer 3 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0124 CVAL3—Timer 3 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0128 TCTRL3—Timer 3 control register R/W 0x0000_0000 21.3.2.4/21-6

0x012C TFLG3—Timer 3 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0130 LDVAL4—Timer 4 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0134 CVAL4—Timer 4 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0138 TCTRL4—Timer 4 control register R/W 0x0000_0000 21.3.2.4/21-6

0x013C TFLG4—Timer 4 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0140 LDVAL5—Timer 5 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0144 CVAL5—Timer 5 current value register R/W 0x0000_0000 21.3.2.3/21-5

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-93

0x0148 TCTRL5—Timer 5 control register R/W 0x0000_0000 21.3.2.4/21-6

0x014C TFLG5—Timer 5 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0150 LDVAL6—Timer 6 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0154 CVAL6—Timer 6 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0158 TCTRL6—Timer 6 control register R/W 0x0000_0000 21.3.2.4/21-6

0x015C TFLG6—Timer 6 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0160 LDVAL7—Timer 7 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0164 CVAL7—Timer 7 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0168 TCTRL7—Timer 7 control register R/W 0x0000_0000 21.3.2.4/21-6

0x016C TFLG7—Timer 7 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0170 LDVAL8—Timer 8 load value register R/W 0x0000_0000 21.3.2.2/21-5

0x0174 CVAL8—Timer 8 current value register R/W 0x0000_0000 21.3.2.3/21-5

0x0178 TCTRL8—Timer 8 control register R/W 0x0000_0000 21.3.2.4/21-6

0x017C TFLG8—Timer 8 flag register R/W 0x0000_0000 21.3.2.5/21-7

0x0180–0x3FFF Reserved

0xFFFE_4000
eMIOS_A

Chapter 27, “Enhanced Modular Input/Output Subsystem (eMIOS200)”

0x0000 EMIOS_MCR—Module configuration register R/W 0x0000_0000 27.3.2.1/27-9

0x0004 EMIOS_GFR—Global flag register R 0x0000_0000 27.3.2.2/27-10

0x0008 EMIOS_OUDR—Output update disable register R/W 0x0000_0000 27.3.2.3/27-11

0x000C EMIOS_UCDIS—Stop (disable) channel register R/W 0x0000_0000 27.3.2.4/27-11

0x0010–0x001F Reserved

0x0020 EMIOS_CADR[0]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0024 EMIOS_CBDR[0]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0028 EMIOS_CCNTR[0]—Channel counter register R 0x0000_0000 27.3.2.7/27-13

0x002C EMIOS_CCR[0]—Channel control register R/W 0x0000_0000 27.3.2.8/27-14

0x0030 EMIOS_CSR[0]—Channel status register R 0x0000_0000 27.3.2.9/27-19

0x0034 EMIOS_ALTA[0]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0038–0x003F Reserved

0x0040 EMIOS_CADR[1]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0044 EMIOS_CBDR[1]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0048 EMIOS_CCNTR[1]—Counter register R 0x0000_0000 27.3.2.7/27-13

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-94 Freescale Semiconductor

0x004C EMIOS_CCR[1]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0050 EMIOS_CSR[1]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0054 EMIOS_ALTA[1]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0058–0x005F Reserved

0x0060 EMIOS_CADR[2]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0064 EMIOS_CBDR[2]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0068 EMIOS_CCNTR[2]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x006C EMIOS_CCR[2]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0070 EMIOS_CSR[2]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0074 EMIOS_ALTA[2]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0078–0x007F Reserved

0x0080 EMIOS_CADR[3]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0084 EMIOS_CBDR[3]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0086 EMIOS_CCNTR[3]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x008C EMIOS_CCR[3]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0090 EMIOS_CSR[3]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0094 EMIOS_ALTA[3]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0098–0x009F Reserved

0x00A0 EMIOS_CADR[4]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x00A4 EMIOS_CBDR[4]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x00A6 EMIOS_CCNTR[4]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x00AC EMIOS_CCR[4]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x00B0 EMIOS_CSR[4]—Status register R 0x0000_0000 27.3.2.9/27-19

0x00B4 EMIOS_ALTA[4]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x00B8–0x00BF Reserved

0x00C0 EMIOS_CADR[5]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x00C4 EMIOS_CBDR[5]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x00C6 EMIOS_CCNTR[5]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x00CC EMIOS_CCR[5]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x00D0 EMIOS_CSR[5]—Status register R 0x0000_0000 27.3.2.9/27-19

0x00D4 EMIOS_ALTA[5]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x00D8–0x00DF Reserved

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-95

0x00E0 EMIOS_CADR[6]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x00E4 EMIOS_CBDR[6]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x00E6 EMIOS_CCNTR[6]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x00EC EMIOS_CCR[6]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x00F0 EMIOS_CSR[6]—Status register R 0x0000_0000 27.3.2.9/27-19

0x00F4 EMIOS_ALTA[6]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x00F8–0x00FF Reserved

0x0100 EMIOS_CADR[7]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0104 EMIOS_CBDR[7]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0106 EMIOS_CCNTR[7]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x010C EMIOS_CCR[7]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0110 EMIOS_CSR[7]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0114 EMIOS_ALTA[7]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0118–0x011F Reserved

0x0120 EMIOS_CADR[8]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0124 EMIOS_CBDR[8]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0126 EMIOS_CCNTR[8]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x012C EMIOS_CCR[8]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0130 EMIOS_CSR[8]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0134 EMIOS_ALTA[8]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0138–0x013F Reserved

0x0140 EMIOS_CADR[9]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0144 EMIOS_CBDR[9]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0146 EMIOS_CCNTR[9]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x014C EMIOS_CCR[9]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0150 EMIOS_CSR[9]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0154 EMIOS_ALTA[9]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0158–0x015F Reserved

0x0160 EMIOS_CADR[10]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0164 EMIOS_CBDR[10]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0166 EMIOS_CCNTR[10]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x016C EMIOS_CCR[10]—Control register R/W 0x0000_0000 27.3.2.8/27-14

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-96 Freescale Semiconductor

0x0170 EMIOS_CSR[10]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0174 EMIOS_ALTA[10]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0178–0x017F Reserved

0x0180 EMIOS_CADR[11]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0184 EMIOS_CBDR[11]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0168 EMIOS_CCNTR[11]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x018C EMIOS_CCR[11]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0190 EMIOS_CSR[11]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0194 EMIOS_ALTA[11]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0198–0x019F Reserved

0x01A0 EMIOS_CADR[12]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x01A4 EMIOS_CBDR[12]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x01A6 EMIOS_CCNTR[12]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x01AC EMIOS_CCR[12]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x01B0 EMIOS_CSR[12]—Status register R 0x0000_0000 27.3.2.9/27-19

0x01B4 EMIOS_ALTA[12]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x01B8–0x01BF Reserved

0x01C0 EMIOS_CADR[13]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x01C4 EMIOS_CBDR[13]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x01C6 EMIOS_CCNTR[13]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x01CC EMIOS_CCR[13]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x01D0 EMIOS_CSR[13]—Status register R 0x0000_0000 27.3.2.9/27-19

0x01D4 EMIOS_ALTA[13]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x01D8–0x01DF Reserved

0x01E0 EMIOS_CADR[14]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x01E4 EMIOS_CBDR[14]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x01E6 EMIOS_CCNTR[14]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x01EC EMIOS_CCR[14]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x01F0 EMIOS_CSR[14]—Status register R 0x0000_0000 27.3.2.9/27-19

0x01F4 EMIOS_ALTA[14]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x01F8–0x01FF Reserved

0x0200 EMIOS_CADR[15]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-97

0x0204 EMIOS_CBDR[15]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0206 EMIOS_CCNTR[15]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x020C EMIOS_CCR[15]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0210 EMIOS_CSR[15]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0214 EMIOS_ALTA[15]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0218–0x021F Reserved

0x0220 EMIOS_CADR[16]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0224 EMIOS_CBDR[16]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0226 EMIOS_CCNTR[16]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x022C EMIOS_CCR[16]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0230 EMIOS_CSR[16]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0234 EMIOS_ALTA[16]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0238–0x023F Reserved

0x0240 EMIOS_CADR[17]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0244 EMIOS_CBDR[17]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0248 EMIOS_CCNTR[17]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x024C EMIOS_CCR[17]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0250 EMIOS_CSR[17—Status register R 0x0000_0000 27.3.2.9/27-19

0x0254 EMIOS_ALTA[17]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0258–0x025F Reserved

0x0260 EMIOS_CADR[18]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0264 EMIOS_CBDR[18]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0268 EMIOS_CCNTR[18]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x026C EMIOS_CCR[18]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0270 EMIOS_CSR[18]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0274 EMIOS_ALTA[18]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0278–0x027F Reserved

0x0280 EMIOS_CADR[19]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0284 EMIOS_CBDR[19]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0288 EMIOS_CCNTR[19]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x028C EMIOS_CCR[19]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0290 EMIOS_CSR[19]—Status register R 0x0000_0000 27.3.2.9/27-19

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-98 Freescale Semiconductor

0x0294 EMIOS_ALTA[19]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0298–0x029F Reserved

0x02A0 EMIOS_CADR[20]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x02A4 EMIOS_CBDR[20]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x02A8 EMIOS_CCNTR[20]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x02AC EMIOS_CCR[20]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x02B0 EMIOS_CSR[20]—Status register R 0x0000_0000 27.3.2.9/27-19

0x02B4 EMIOS_ALTA[20]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x02B8–0x02BF Reserved

0x02C0 EMIOS_CADR[21]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x02C4 EMIOS_CBDR[21]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x02C8 EMIOS_CCNTR[21]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x02CC EMIOS_CCR[21]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x02D0 EMIOS_CSR[21]—Status register R 0x0000_0000 27.3.2.9/27-19

0x02D4 EMIOS_ALTA[21]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x02D8–0x02DF Reserved

0x02E0 EMIOS_CADR[22]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x02E4 EMIOS_CBDR[22]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x02E8 EMIOS_CCNTR[22]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x02EC EMIOS_CCR[22]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x02F0 EMIOS_CSR[22]—Status register R 0x0000_0000 27.3.2.9/27-19

0x02F4 EMIOS_ALTA[22]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x02F8–0x02FF Reserved

0x0300 EMIOS_CADR[23]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0304 EMIOS_CBDR[23]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0308 EMIOS_CCNTR[23]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x030C EMIOS_CCR[23]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0310 EMIOS_CSR[23]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0314 EMIOS_ALTA[23]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0318–0x031F Reserved

0x0320 EMIOS_CADR[24]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0324 EMIOS_CBDR[24]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-99

0x0328 EMIOS_CCNTR[24]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x032C EMIOS_CCR[24]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0330 EMIOS_CSR[24]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0334 EMIOS_ALTA[24]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0338–0x033F Reserved

0x0340 EMIOS_CADR[25]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0344 EMIOS_CBDR[25]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0348 EMIOS_CCNTR[25]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x034C EMIOS_CCR[25]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0350 EMIOS_CSR[25]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0354 EMIOS_ALTA[25]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0358–0x035F Reserved

0x0360 EMIOS_CADR[26]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0364 EMIOS_CBDR[26]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0368 EMIOS_CCNTR[26]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x036C EMIOS_CCR[26]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0370 EMIOS_CSR[26]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0374 EMIOS_ALTA[26]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0378–0x037F Reserved

0x0380 EMIOS_CADR[27]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0384 EMIOS_CBDR[27]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0388 EMIOS_CCNTR[27]—Counter register R 0x0000_0000 27.3.2.7/27-13

8C0x03 EMIOS_CCR[27]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0390 EMIOS_CSR[27]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0394 EMIOS_ALTA[27]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0398–0x039F Reserved

0x03A0 EMIOS_CADR[28]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x03A4 EMIOS_CBDR[28]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x03A8 EMIOS_CCNTR[28]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x03AC EMIOS_CCR[28]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x03B0 EMIOS_CSR[28]—Status register R 0x0000_0000 27.3.2.9/27-19

0x03B4 EMIOS_ALTA[28]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-100 Freescale Semiconductor

0x03B8–0x03BF Reserved

0x03C0 EMIOS_CADR[29]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x03C4 EMIOS_CBDR[29]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x03C8 EMIOS_CCNTR[29]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x03CC EMIOS_CCR[29]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x03D0 EMIOS_CSR[29]—Status register R 0x0000_0000 27.3.2.9/27-19

0x03D4 EMIOS_ALTA[29]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x03D8–0x03DF Reserved

0x03E0 EMIOS_CADR[30]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x03E4 EMIOS_CBDR[30]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x03E8 EMIOS_CCNTR[30]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x03EC EMIOS_CCR[30]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x03F0 EMIOS_CSR[30]—Status register R 0x0000_0000 27.3.2.9/27-19

0x03F4 EMIOS_ALTA[30]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x03F8–0x03FF Reserved

0x0400 EMIOS_CADR[31]—Channel A data register R/W 0x0000_0000 27.3.2.5/27-12

0x0404 EMIOS_CBDR[31]—Channel B data register R/W 0x0000_0000 27.3.2.6/27-12

0x0408 EMIOS_CCNTR[31]—Counter register R 0x0000_0000 27.3.2.7/27-13

0x040C EMIOS_CCR[31]—Control register R/W 0x0000_0000 27.3.2.8/27-14

0x0410 EMIOS_CSR[31]—Status register R 0x0000_0000 27.3.2.9/27-19

0x0414 EMIOS_ALTA[31]—Alternate A register R/W 0x0000_0000 27.3.2.10/27-20

0x0418–0x3FFF Reserved

0xFFFE_8000
SIU

Chapter 7, “System Integration Unit (SIU)”

0x0000–0x0003 Reserved

0x0004 SIU_MIDR—MCU ID register R —5 7.3.2.1/7-13

0x0008–0x000B Reserved

0x000C SIU_RSR—Reset status register R/W 0x8000_000U 7.3.2.2/7-14

0x0010 SIU_SRCR—System reset control register R/W 0x0800_C000 7.3.2.3/7-15

0x0014 SIU_EISR—SIU External Interrupt Status Register R/W 0x0000_0000 7.3.2.4/7-16

0x0018 SIU_DIRER—DMA/interrupt request enable register R/W 0x0000_0000 7.3.2.5/7-17

0x001C SIU_DIRSR—DMA/interrupt request select register R/W 0x0000_0000 7.3.2.6/7-18

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-101

0x0020 SIU_OSR—Overrun status register R/W 0x0000_0000 7.3.2.7/7-19

0x0024 SIU_ORER—Overrun request enable register R/W 0x0000_0000 7.3.2.8/7-19

0x0028 SIU_IREER—External IRQ rising-edge event enable register R/W 0x0000_0000 7.3.2.9/7-20

0x002C SIU_IFEER—External IRQ falling-edge event enable register R/W 0x0000_0000 7.3.2.10/7-20

0x0030 SIU_IDFR—External IRQ digital filter register R/W 0x0000_0000 7.3.2.11/7-21

0x0034 SIU_IFIR—External IRQ filtered input register R/W 0x0000_0000 7.3.2.12/7-22

0x0038–0x003F Reserved

0x0040 SIU_PCR0 —Pad configuration register 0 (PA0) R/W 0x0000 7.3.2.13/7-22

0x0042 SIU_PCR1—Pad configuration register 1 (PA1) R/W 0x0000 7.3.2.13/7-22

0x0044 SIU_PCR2—Pad configuration register 2 (PA2) R/W 0x0000 7.3.2.13/7-22

0x0046 SIU_PCR3—Pad configuration register 3 (PA3) R/W 0x0000 7.3.2.13/7-22

0x0048 SIU_PCR4—Pad configuration register 4 (PA4) R/W 0x0000 7.3.2.13/7-22

0x004A SIU_PCR5—Pad configuration register 5 (PA5) R/W 0x0000 7.3.2.13/7-22

0x004C SIU_PCR6—Pad configuration register 6 (PA6) R/W 0x0000 7.3.2.13/7-22

0x004E SIU_PCR7—Pad configuration register 7 (PA7) R/W 0x0000 7.3.2.13/7-22

0x0050 SIU_PCR8—Pad configuration register 8 (PA8) R/W 0x0000 7.3.2.13/7-22

0x0052 SIU_PCR9—Pad configuration register 9 (PA9) R/W 0x0000 7.3.2.13/7-22

0x0054 SIU_PCR10—Pad configuration register 10 (PA10) R/W 0x0000 7.3.2.13/7-22

0x0056 SIU_PCR11—Pad configuration register 11 (PA11) R/W 0x0000 7.3.2.13/7-22

0x0058 SIU_PCR12—Pad configuration register 12 (PA12) R/W 0x0000 7.3.2.13/7-22

0x005A SIU_PCR13—Pad configuration register 13 (PA13) R/W 0x0000 7.3.2.13/7-22

0x005C SIU_PCR14—Pad configuration register 14 (PA14) R/W 0x0000 7.3.2.13/7-22

0x005E SIU_PCR15—Pad configuration register 15 (PA15) R/W 0x0000 7.3.2.13/7-22

0x0060 SIU_PCR16—Pad configuration register 16 (PB0) R/W 0x0000 7.3.2.13/7-22

0x0062 SIU_PCR17—Pad configuration register 17 (PB1) R/W 0x0000 7.3.2.13/7-22

0x0064 SIU_PCR18—Pad configuration register 18 (PB2) R/W 0x0000 7.3.2.13/7-22

0x0066 SIU_PCR19—Pad configuration register 19 (PB3) R/W 0x0000 7.3.2.13/7-22

0x0068 SIU_PCR20—Pad configuration register 20 (PB4) R/W 0x0000 7.3.2.13/7-22

0x006A SIU_PCR21—Pad configuration register 21 (PB5) R/W 0x0000 7.3.2.13/7-22

0x006C SIU_PCR22—Pad configuration register 22 (PB6) R/W 0x0000 7.3.2.13/7-22

0x006E SIU_PCR23—Pad configuration register 23 (PB7) R/W 0x0000 7.3.2.13/7-22

0x0070 SIU_PCR24—Pad configuration register 24 (PB8) R/W 0x0000 7.3.2.13/7-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-102 Freescale Semiconductor

0x0072 SIU_PCR25—Pad configuration register 25 (PB9) R/W 0x0000 7.3.2.13/7-22

0x0074 SIU_PCR26—Pad configuration register 26 (PB10) R/W 0x0000 7.3.2.13/7-22

0x0076 SIU_PCR27—Pad configuration register 27 (PB11) R/W 0x0000 7.3.2.13/7-22

0x0078 SIU_PCR28—Pad configuration register 28 (PB12) R/W 0x0000 7.3.2.13/7-22

0x007A SIU_PCR29—Pad configuration register 29 (PB13) R/W 0x0000 7.3.2.13/7-22

0x007C SIU_PCR30—Pad configuration register 30 (PB14) R/W 0x0000 7.3.2.13/7-22

0x007E SIU_PCR31—Pad configuration register 31 (PB15) R/W 0x0000 7.3.2.13/7-22

0x0080 SIU_PCR32—Pad configuration register 32 (PC0) R/W 0x0000 7.3.2.13/7-22

0x0082 SIU_PCR33—Pad configuration register 33 (PC1) R/W 0x0000 7.3.2.13/7-22

0x0084 SIU_PCR34—Pad configuration register 34 (PC2) R/W 0x0000 7.3.2.13/7-22

0x0086 SIU_PCR35—Pad configuration register 35 (PC3) R/W 0x0000 7.3.2.13/7-22

0x0088 SIU_PCR36—Pad configuration register 36 (PC4) R/W 0x0000 7.3.2.13/7-22

0x008A SIU_PCR37—Pad configuration register 37 (PC5) R/W 0x0000 7.3.2.13/7-22

0x008C SIU_PCR38—Pad configuration register 38 (PC6) R/W 0x0000 7.3.2.13/7-22

0x008E SIU_PCR39—Pad configuration register 39 (PC7) R/W 0x0000 7.3.2.13/7-22

0x0090 SIU_PCR40—Pad configuration register 40 (PC8) R/W 0x0000 7.3.2.13/7-22

0x0092 SIU_PCR41—Pad configuration register 41 (PC9) R/W 0x0000 7.3.2.13/7-22

0x0094 SIU_PCR42—Pad configuration register 42 (PC10) R/W 0x0000 7.3.2.13/7-22

0x0096 SIU_PCR43—Pad configuration register 43 (PC11) R/W 0x0000 7.3.2.13/7-22

0x0098 SIU_PCR44—Pad configuration register 44 (PC12) R/W 0x0000 7.3.2.13/7-22

0x009A SIU_PCR45—Pad configuration register 45 (PC13) R/W 0x0000 7.3.2.13/7-22

0x009C SIU_PCR46—Pad configuration register 46 (PC14) R/W 0x0000 7.3.2.13/7-22

0x009E SIU_PCR47—Pad configuration register 47 (PC15) R/W 0x0000 7.3.2.13/7-22

0x00A0 SIU_PCR48—Pad configuration register 48 (PD0) R/W 0x0000 7.3.2.13/7-22

0x00A2 SIU_PCR49—Pad configuration register 49 (PD1) R/W 0x0000 7.3.2.13/7-22

0x00A4 SIU_PCR50—Pad configuration register 50 (PD2) R/W 0x0000 7.3.2.13/7-22

0x00A6 SIU_PCR51—Pad configuration register 51 (PD3) R/W 0x0000 7.3.2.13/7-22

0x00A8 SIU_PCR52—Pad configuration register 52 (PD4) R/W 0x0000 7.3.2.13/7-22

0x00AA SIU_PCR53—Pad configuration register 53 (PD5) R/W 0x0000 7.3.2.13/7-22

0x00AC SIU_PCR54—Pad configuration register 54 (PD6) R/W 0x0000 7.3.2.13/7-22

0x00AE SIU_PCR55—Pad configuration register 55 (PD7) R/W 0x0000 7.3.2.13/7-22

0x00B0 SIU_PCR56—Pad configuration register 56 (PD8) R/W 0x0000 7.3.2.13/7-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-103

0x00B2 SIU_PCR57—Pad configuration register 57 (PD9) R/W 0x0000 7.3.2.13/7-22

0x00B4 SIU_PCR58—Pad configuration register 58 (PD10) R/W 0x0000 7.3.2.13/7-22

0x00B6 SIU_PCR59—Pad configuration register 59 (PD11) R/W 0x0000 7.3.2.13/7-22

0x00B8 SIU_PCR60—Pad configuration register 60 (PD12) R/W 0x0000 7.3.2.13/7-22

0x00BA SIU_PCR61—Pad configuration register 61 (PD13) R/W 0x0000 7.3.2.13/7-22

0x00BC SIU_PCR62—Pad configuration register 62 (PD14) R/W 0x0000 7.3.2.13/7-22

0x00BE SIU_PCR63—Pad configuration register 63 (PD15) R/W 0x0000 7.3.2.13/7-22

0x00C0 SIU_PCR64—Pad configuration register 64 (PE0) R/W 0x0000 7.3.2.13/7-22

0x00C2 SIU_PCR65—Pad configuration register 65 (PE1) R/W 0x0000 7.3.2.13/7-22

0x00C4 SIU_PCR66—Pad configuration register 66 (PE2) R/W 0x0000 7.3.2.13/7-22

0x00C6 SIU_PCR67—Pad configuration register 67 (PE3) R/W 0x0000 7.3.2.13/7-22

0x00C8 SIU_PCR68—Pad configuration register 68 (PE4) R/W 0x0000 7.3.2.13/7-22

0x00CA SIU_PCR69—Pad configuration register 69 (PE5) R/W 0x0000 7.3.2.13/7-22

0x00CC SIU_PCR70—Pad configuration register 70 (PE6) R/W 0x0000 7.3.2.13/7-22

0x00CE SIU_PCR71—Pad configuration register 71 (PE7) R/W 0x0000 7.3.2.13/7-22

0x00D0 SIU_PCR72—Pad configuration register 72 (PE8) R/W 0x0000 7.3.2.13/7-22

0x00D2 SIU_PCR73—Pad configuration register 73 (PE9) R/W 0x0000 7.3.2.13/7-22

0x00D4 SIU_PCR74—Pad configuration register 74 (PE10) R/W 0x0000 7.3.2.13/7-22

0x00D6 SIU_PCR75—Pad configuration register 75 (PE11) R/W 0x0000 7.3.2.13/7-22

0x00D8 SIU_PCR76—Pad configuration register 76 (PE12) R/W 0x0000 7.3.2.13/7-22

0x00DA SIU_PCR77—Pad configuration register 77 (PE13) R/W 0x0000 7.3.2.13/7-22

0x00DC SIU_PCR78—Pad configuration register 78 (PE14) R/W 0x0000 7.3.2.13/7-22

0x00DE SIU_PCR79—Pad configuration register 79 (PE15) R/W 0x0000 7.3.2.13/7-22

0x00E0 SIU_PCR80—Pad configuration register 80 (PF0) R/W 0x0000 7.3.2.13/7-22

0x00E2 SIU_PCR81—Pad configuration register 81 (PF1) R/W 0x0000 7.3.2.13/7-22

0x00E4 SIU_PCR82—Pad configuration register 82 (PF2) R/W 0x0000 7.3.2.13/7-22

0x00E6 SIU_PCR83—Pad configuration register 83 (PF3) R/W 0x0000 7.3.2.13/7-22

0x00E8 SIU_PCR84—Pad configuration register 84 (PF4) R/W 0x0000 7.3.2.13/7-22

0x00EA SIU_PCR85—Pad configuration register 85 (PF5) R/W 0x0000 7.3.2.13/7-22

0x00EC SIU_PCR86—Pad configuration register 86 (PF6) R/W 0x0000 7.3.2.13/7-22

0x00EE SIU_PCR87—Pad configuration register 87 (PF7) R/W 0x0000 7.3.2.13/7-22

0x00F0 SIU_PCR88—Pad configuration register 88 (PF8) R/W 0x0000 7.3.2.13/7-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-104 Freescale Semiconductor

0x00F2 SIU_PCR89—Pad configuration register 89 (PF9) R/W 0x0000 7.3.2.13/7-22

0x00F4 SIU_PCR90—Pad configuration register 90 (PF10) R/W 0x0000 7.3.2.13/7-22

0x00F6 SIU_PCR91—Pad configuration register 91 (PF11) R/W 0x0000 7.3.2.13/7-22

0x00F8 SIU_PCR92—Pad configuration register 92 (PF12) R/W 0x0000 7.3.2.13/7-22

0x00FA SIU_PCR93—Pad configuration register 93 (PF13) R/W 0x0000 7.3.2.13/7-22

0x00FC SIU_PCR94—Pad configuration register 94 (PF14) R/W 0x0000 7.3.2.13/7-22

0x00FE SIU_PCR95—Pad configuration register 95 (PF15) R/W 0x0000 7.3.2.13/7-22

0x0100 SIU_PCR96—Pad configuration register 96 (PG0) R/W 0x0000 7.3.2.13/7-22

0x0102 SIU_PCR97—Pad configuration register 97 (PG1) R/W 0x0000 7.3.2.13/7-22

0x0104 SIU_PCR98—Pad configuration register 98 (PG2) R/W 0x0000 7.3.2.13/7-22

0x0106 SIU_PCR99—Pad configuration register 99 (PG3) R/W 0x0000 7.3.2.13/7-22

0x0108 SIU_PCR100—Pad configuration register 100 (PG4) R/W 0x0000 7.3.2.13/7-22

0x010A SIU_PCR101—Pad configuration register 101 (PG5) R/W 0x0000 7.3.2.13/7-22

0x010C SIU_PCR102—Pad configuration register 102 (PG6) R/W 0x0000 7.3.2.13/7-22

0x010E SIU_PCR103—Pad configuration register 103 (PG7) R/W 0x0000 7.3.2.13/7-22

0x0110 SIU_PCR104—Pad configuration register 104 (PG8) R/W 0x0000 7.3.2.13/7-22

0x0112 SIU_PCR105—Pad configuration register 105 (PG9) R/W 0x0000 7.3.2.13/7-22

0x0114 SIU_PCR106—Pad configuration register 106 (PG10) R/W 0x0000 7.3.2.13/7-22

0x0116 SIU_PCR107—Pad configuration register 107 (PG11) R/W 0x0000 7.3.2.13/7-22

0x0118 SIU_PCR108—Pad configuration register 108 (PG12) R/W 0x0000 7.3.2.13/7-22

0x011A SIU_PCR109—Pad configuration register 109 (PG13) R/W 0x0000 7.3.2.13/7-22

0x011C SIU_PCR110—Pad configuration register 110 (PG14) R/W 0x0000 7.3.2.13/7-22

0x011E SIU_PCR111—Pad configuration register 111 (PG15) R/W 0x0000 7.3.2.13/7-22

0x0120 SIU_PCR112—Pad 4configuration register 112 (PH0) R/W 0x0000 7.3.2.13/7-22

0x0122 SIU_PCR113—Pad configuration register 113 (PH1) R/W 0x0000 7.3.2.13/7-22

0x0124 SIU_PCR114—Pad configuration register 114 (PH2) R/W 0x0000 7.3.2.13/7-22

0x0126 SIU_PCR115—Pad configuration register 115 (PH3) R/W 0x0000 7.3.2.13/7-22

0x0128 SIU_PCR116—Pad configuration register 116 (PH4) R/W 0x0000 7.3.2.13/7-22

0x012A SIU_PCR117—Pad configuration register 117 (PH5) R/W 0x0000 7.3.2.13/7-22

0x012C SIU_PCR118—Pad configuration register 118 (PH6) R/W 0x0000 7.3.2.13/7-22

0x012E SIU_PCR119—Pad configuration register 119 (PH7) R/W 0x0000 7.3.2.13/7-22

0x0130 SIU_PCR120—Pad configuration register 120 (PH8) R/W 0x0000 7.3.2.13/7-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-105

0x0132 SIU_PCR121—Pad configuration register 121 (PH9) R/W 0x0000 7.3.2.13/7-22

0x0134 SIU_PCR122—Pad configuration register 122 (PH10) R/W 0x0000 7.3.2.13/7-22

0x0136 SIU_PCR123—Pad configuration register 123 (PH11) R/W 0x0000 7.3.2.13/7-22

0x0138 SIU_PCR124—Pad configuration register 124 (PH12) R/W 0x0000 7.3.2.13/7-22

0x013A SIU_PCR125—Pad configuration register 125 (PH13) R/W 0x0000 7.3.2.13/7-22

0x013C SIU_PCR126—Pad configuration register 126 (PH14) R/W 0x0000 7.3.2.13/7-22

0x013E SIU_PCR127—Pad configuration register 127 (PH15) R/W 0x0000 7.3.2.13/7-22

0x0140 SIU_PCR128—Pad configuration register 128 (PJ0) R/W 0x0000 7.3.2.13/7-22

0x0142 SIU_PCR129—Pad configuration register 129 (PJ1) R/W 0x0000 7.3.2.13/7-22

0x0144 SIU_PCR130—Pad configuration register 130 (PJ2) R/W 0x0000 7.3.2.13/7-22

0x0146 SIU_PCR131—Pad configuration register 131 (PJ3) R/W 0x0000 7.3.2.13/7-22

0x0148 SIU_PCR132—Pad configuration register 132 (PJ4) R/W 0x0000 7.3.2.13/7-22

0x014A SIU_PCR133—Pad configuration register 133 (PJ5) R/W 0x0000 7.3.2.13/7-22

0x014C SIU_PCR134—Pad configuration register 134 (PJ6) R/W 0x0000 7.3.2.13/7-22

0x014E SIU_PCR135—Pad configuration register 135 (PJ7) R/W 0x0000 7.3.2.13/7-22

0x0150 SIU_PCR136—Pad configuration register 136 (PJ8) R/W 0x0000 7.3.2.13/7-22

0x0152 SIU_PCR137—Pad configuration register 137 (PJ9) R/W 0x0000 7.3.2.13/7-22

0x0154 SIU_PCR138—Pad configuration register 138 (PJ10) R/W 0x0000 7.3.2.13/7-22

0x0156 SIU_PCR139—Pad configuration register 139 (PJ11) R/W 0x0000 7.3.2.13/7-22

0x0158 SIU_PCR140—Pad configuration register 140 (PJ12) R/W 0x0000 7.3.2.13/7-22

0x015A SIU_PCR141—Pad configuration register 141 (PJ13) R/W 0x0000 7.3.2.13/7-22

0x015C SIU_PCR142—Pad configuration register 142 (PJ14) R/W 0x0000 7.3.2.13/7-22

0x015E SIU_PCR143—Pad configuration register 143 (PJ15) R/W 0x0000 7.3.2.13/7-22

0x0160 SIU_PCR144—Pad configuration register 144 (PK0) R/W 0x0000 7.3.2.13/7-22

0x0162 SIU_PCR145—Pad configuration register 145 (PK1) R/W 0x0000 7.3.2.13/7-22

0x0164 SIU_PCR146—Pad configuration register 146 (PK2) R/W 0x0000 7.3.2.13/7-22

0x0166 SIU_PCR147—Pad configuration register 147 (PK3) R/W 0x0000 7.3.2.13/7-22

0x0168 SIU_PCR148—Pad configuration register 148 (PK4) R/W 0x0000 7.3.2.13/7-22

0x016A SIU_PCR149—Pad configuration register 149 (PK5) R/W 0x0000 7.3.2.13/7-22

0x016C SIU_PCR150—Pad configuration register 150 (PK6) R/W 0x0000 7.3.2.13/7-22

0x016E SIU_PCR151—Pad configuration register 151 (PK7) R/W 0x0000 7.3.2.13/7-22

0x0170 SIU_PCR152—Pad configuration register 152 (PK8) R/W 0x0000 7.3.2.13/7-22

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-106 Freescale Semiconductor

0x0172 SIU_PCR153—Pad configuration register 153 (PK9) R/W 0x0101 7.3.2.13/7-22

0x0174 SIU_PCR154—Pad configuration register 154 (PK10) R/W 0x0000 7.3.2.13/7-22

0x0176–0x060F Reserved

0x0610 SIU_GPDO16_19—GPIO pin data output register 16 – 19 R/W 0x0000_0000 7.3.2.14/7-26

0x0614 SIU_GPDO20_23—GPIO pin data output register 20 – 23 R/W 0x0000_0000 7.3.2.14/7-26

0x0618 SIU_GPDO24_27—GPIO pin data output register 24 – 27 R/W 0x0000_0000 7.3.2.14/7-26

0x061C SIU_GPDO28_31—GPIO pin data output register 28 – 31 R/W 0x0000_0000 7.3.2.14/7-26

0x0620 SIU_GPDO32_35—GPIO pin data output register 32 – 35 R/W 0x0000_0000 7.3.2.14/7-26

0x0624 SIU_GPDO36_39—GPIO pin data output register 36 – 39 R/W 0x0000_0000 7.3.2.14/7-26

0x0628 SIU_GPDO40_43—GPIO pin data output register 40 – 43 R/W 0x0000_0000 7.3.2.14/7-26

0x062C SIU_GPDO44_47—GPIO pin data output register 44 – 47 R/W 0x0000_0000 7.3.2.14/7-26

0x0630 SIU_GPDO48_51—GPIO pin data output register 48 – 51 R/W 0x0000_0000 7.3.2.14/7-26

0x0634 SIU_GPDO52_55—GPIO pin data output register 52 – 55 R/W 0x0000_0000 7.3.2.14/7-26

0x0638 SIU_GPDO56_59—GPIO pin data output register 56 – 59 R/W 0x0000_0000 7.3.2.14/7-26

0x063C SIU_GPDO60_63—GPIO pin data output register 60 – 63 R/W 0x0000_0000 7.3.2.14/7-26

0x0640 SIU_GPDO64_67 —GPIO pin data output register 64 – 67 R/W 0x0000_0000 7.3.2.14/7-26

0x0644 SIU_GPDO68_71—GPIO pin data output register 68 – 71 R/W 0x0000_0000 7.3.2.14/7-26

0x0648 SIU_GPDO72_75—GPIO pin data output register 72 – 75 R/W 0x0000_0000 7.3.2.14/7-26

0x064C SIU_GPDO76_79—GPIO pin data output register 76 – 79 R/W 0x0000_0000 7.3.2.14/7-26

0x0650 SIU_GPDO80_83—GPIO pin data output register 80 – 83 R/W 0x0000_0000 7.3.2.14/7-26

0x0654 SIU_GPDO84_87—GPIO pin data output register 84 – 87 R/W 0x0000_0000 7.3.2.14/7-26

0x0658 SIU_GPDO88_91—GPIO pin data output register 88 – 91 R/W 0x0000_0000 7.3.2.14/7-26

0x065C SIU_GPDO92_95—GPIO pin data output register 92 – 95 R/W 0x0000_0000 7.3.2.14/7-26

0x0660 SIU_GPDO96_99—GPIO pin data output register 96 – 99 R/W 0x0000_0000 7.3.2.14/7-26

0x0664 SIU_GPDO100_103—GPIO pin data output register 100 – 103 R/W 0x0000_0000 7.3.2.14/7-26

0x0668 SIU_GPDO104_107—GPIO pin data output register 104 – 107 R/W 0x0000_0000 7.3.2.14/7-26

0x066C SIU_GPDO108_111—GPIO pin data output register 108 – 111 R/W 0x0000_0000 7.3.2.14/7-26

0x0670 SIU_GPDO112_115—GPIO pin data output register 112 – 115 R/W 0x0000_0000 7.3.2.14/7-26

0x0674 SIU_GPDO116_119—GPIO pin data output register 116 – 119 R/W 0x0000_0000 7.3.2.14/7-26

0x0678 SIU_GPDO120_123—GPIO pin data output register 120 – 123 R/W 0x0000_0000 7.3.2.14/7-26

0x067C SIU_GPDO124_127 —GPIO pin data output register 124 – 127 R/W 0x0000_0000 7.3.2.14/7-26

0x0680 SIU_GPDO128_131—GPIO pin data output register 128 – 131 R/W 0x0000_0000 7.3.2.14/7-26

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-107

0x0684 SIU_GPDO132_135—GPIO pin data output register 132 – 135 R/W 0x0000_0000 7.3.2.14/7-26

0x0688 SIU_GPDO136_139 —GPIO pin data output register 136 – 139 R/W 0x0000_0000 7.3.2.14/7-26

0x068C SIU_GPDO140_143 —GPIO pin data output register 140 – 143 R/W 0x0000_0000 7.3.2.14/7-26

0x0690 SIU_GPDO144_147 —GPIO pin data output register 144 – 147 R/W 0x0000_0000 7.3.2.14/7-26

0x0694 SIU_GPDO148_151—GPIO pin data output register 148 – 151 R/W 0x0000_0000 7.3.2.14/7-26

0x0698 SIU_GPDO152_154 —GPIO pin data output register 152 – 154 R/W 0x0000_0000 7.3.2.14/7-26

0x0690–0x07FF Reserved

0x0800 SIU_GPDI0_3—GPIO pin data input register 0 – 3 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0804 SIU_GPDI4_7—GPIO pin data input register 4 – 7 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0808 SIU_GPDI8_11—GPIO pin data input register 8 – 11 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x080C SIU_GPDI12_15—GPIO pin data input register 12 – 15 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0810 SIU_GPDI16_19—GPIO pin data input register 16 – 19 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0814 SIU_GPDI20_23—GPIO pin data input register 20 – 23 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0818 SIU_GPDI24_27—GPIO pin data input register 24 – 27 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x081C SIU_GPDI28_31—GPIO pin data input register 28 – 31 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0820 SIU_GPDI32_35—GPIO pin data input register 32 – 35 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0824 SIU_GPDI36_39—GPIO pin data input register 36 – 39 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0828 SIU_GPDI40_43—GPIO pin data input register 40 – 43 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x082C SIU_GPDI44_47—GPIO pin data input register 44 – 47 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0830 SIU_GPDI48_51—GPIO pin data input register 48 – 51 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0834 SIU_GPDI52_55—GPIO pin data input register 52 – 55 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0838 SIU_GPDI56_59—GPIO pin data input register 56 – 59 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x083C SIU_GPDI60_63—GPIO pin data input register 60 – 63 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0840 SIU_GPDI64_67—GPIO pin data input register 64 – 67 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0844 SIU_GPDI68_71—GPIO pin data input register 68 – 71 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0848 SIU_GPDI72_75—GPIO pin data input register 72 – 75 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x084C SIU_GPDI76_79—GPIO pin data input register 76 – 79 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0850 SIU_GPDI80_83—GPIO pin data input register 80 – 83 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0854 SIU_GPDI84_87—GPIO pin data input register 84 – 87 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0858 SIU_GPDI88_91—GPIO pin data input register 88 – 91 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x085C SIU_GPDI92_95—GPIO pin data input register 92 – 95 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0860 SIU_GPDI96_99—GPIO pin data input register 96 – 99 R/W 0x0U0U_0U0U 7.3.2.15/7-28

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-108 Freescale Semiconductor

0x0864 SIU_GPDI100_103—GPIO pin data input register 100 – 103 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0868 SIU_GPDI104_107—GPIO pin data input register 104 – 107 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x086C SIU_GPDI108_111—GPIO pin data input register 108 – 111 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0870 SIU_GPDI112_115—GPIO pin data input register 112 – 115 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0874 SIU_GPDI116_119—GPIO pin data input register 116 – 119 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0878 SIU_GPDI120_123—GPIO pin data input register 120 – 123 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x087C SIU_GPDI124_127—GPIO pin data input register 124 – 127 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0880 SIU_GPDI128_131—GPIO pin data input register 128 – 131 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0884 SIU_GPDI132_135—GPIO pin data input register 132 – 135 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0888 SIU_GPDI136_139—GPIO pin data input register 136 – 139 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x088C SIU_GPDI140_143—GPIO pin data input register 140 – 143 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0890 SIU_GPDI144_147—GPIO pin data input register 144 – 147 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0894 SIU_GPDI148_151—GPIO pin data input register 148 – 151 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x0898 SIU_GPDI152_154—GPIO pin data input register 152 – 154 R/W 0x0U0U_0U0U 7.3.2.15/7-28

0x089C–0x0903 Reserved

0x0904 SIU_ISEL1—IMUX select register 1 R/W 0x0000_0000 7.3.2.16/7-29

0x0908 SIU_ISEL2—IMUX select register 2 R/W 0x0000_0000 7.3.2.17/7-33

0x090C–0x090F Reserved

0x0910 SIU_ISEL4—IMUX select register 4 R/W 0x0000_0000 7.3.2.18/7-35

0x0914–0x097F Reserved

0x0980 SIU_CCR—Chip configuration register R/W 0x000U_0000 7.3.2.19/7-36

0x0984 SIU_ECCR—External clock control register R/W 0x0000_1001 7.3.2.20/7-37

0x0988 SIU_GPR0—General purpose register 0 R/W 0x0000_0000 7.3.2.21/7-38

0x098C SIU_GPR1—General purpose register 1 R/W 0x0000_0000 7.3.2.21/7-38

0x0990 SIU_GPR2—General purpose register 2 R/W 0x0000_0000 7.3.2.21/7-38

0x0994 SIU_GPR3—General purpose register 3 R/W 0x0000_0000 7.3.2.21/7-38

0x0998–0x099B Reserved

0x09A0 SIU_SYSCLK—System clock register R/W 0x0000_0000 7.3.2.22/7-38

0x09A4 SIU_HLT0—Halt request 0 R/W 0x0000_0000 7.3.2.23/7-39

0x09A8 SIU_HLT1—Halt request 1 R/W 0x0000_0000 7.3.2.23/7-39

0x09AC SIU_HLTACK0—Halt acknowledge 0 R/W 0x0000_0000 7.3.2.24/7-41

0x09B0 SIU_HLTACK1—Halt acknowledge 1 R/W 0x0000_0000 7.3.2.24/7-41

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-109

0x09AC–0x0BFF Reserved

0x09B4 SIU_EMIOS_ISEL0—eMIOS select register 0 R/W 0x0000_0000 7.3.2.25/7-44

0x09B8 SIU_EMIOS_ISEL1—eMIOS select register 1 R/W 0x0000_0000 7.3.2.25/7-44

0x09BC SIU_EMIOS_ISEL2—eMIOS select register 2 R/W 0x0000_0000 7.3.2.25/7-44

0x09C0 SIU_EMIOS_ISEL3—eMIOS select register 3 R/W 0x0000_0000 7.3.2.25/7-44

0x09C4 SIU_ISEL2A—External interrupt select register 2A R/W 0x0000_0000 7.3.2.26/7-45

0x09C8–0x0BFF Reserved

0x0C00 SIU_PGPDO0—Parallel GPIO pin data output register 0 R/W 0x0000_0000 7.3.2.27/7-48

0x0C04 SIU_PGPDO1—Parallel GPIO pin data output register 1 R/W 0x0000_0000 7.3.2.28/7-48

0x0C08 SIU_PGPDO2—Parallel GPIO pin data output register 2 R/W 0x0000_0000 7.3.2.29/7-49

0x0C0C SIU_PGPDO3—Parallel GPIO pin data output register 3 R/W 0x0000_0000 7.3.2.30/7-49

0x0C10 SIU_PGPDO4—Parallel GPIO pin data output register 4 R/W 0x0000_0000 7.3.2.31/7-49

0x0C14–0x0C3F Reserved

0x0C40 SIU_PGPDI0—Parallel GPIO pin data input register 0 R/W —3 7.3.2.32/7-50

0x0C44 SIU_PGPDI1—Parallel GPIO pin data input register 1 R/W —3 7.3.2.33/7-50

0x0C48 SIU_PGPDI2—Parallel GPIO pin data input register 2 R/W —3 7.3.2.34/7-51

0x0C4C SIU_PGPDI3—Parallel GPIO pin data input register 3 R/W —3 7.3.2.35/7-51

0x0C50 SIU_PGPDI4—Parallel GPIO pin data input register 4 R/W —3 7.3.2.36/7-52

0x0C54–0x0C83 Reserved

0x0C84 SIU_MPGPDO1—Masked parallel GPIO data output register 1 R 0x0000_0000 7.3.2.37/7-52

0x0C88 SIU_MPGPDO2—Masked parallel GPIO data output register 2 R 0x0000_0000 7.3.2.38/7-53

0x0C8C SIU_MPGPDO3—Masked parallel GPIO data output register 3 R 0x0000_0000 7.3.2.39/7-53

0x0C90 SIU_MPGPDO4—Masked parallel GPIO data output register 4 R 0x0000_0000 7.3.2.40/7-54

0x0C94 SIU_MPGPDO5—Masked parallel GPIO data output register 5 R 0x0000_0000 7.3.2.41/7-54

0x0C98 SIU_MPGPDO6—Masked parallel GPIO data output register 6 R 0x0000_0000 7.3.2.42/7-55

0x0C9C SIU_MPGPDO7—Masked parallel GPIO data output register 7 R 0x0000_0000 7.3.2.43/7-55

0x0CA0 SIU_MPGPDO8—Masked parallel GPIO data output register 8 R 0x0000_0000 7.3.2.44/7-56

0x0CA4 SIU_MPGPDO9—Masked parallel GPIO data output register 9 R 0x0000_0000 7.3.2.45/7-56

0x0CA8–0x0CFF Reserved

0x0D00 SIU_DSPIAH—Masked serial GPO register for DSPI_A High R/W 0x0000_0000 7.3.2.46/7-57

0x0D04 SIU_DSPIAL—Masked serial GPO register for DSPI_A Low R/W 0x0000_0000 7.3.2.47/7-58

0x0D08 SIU_DSPIBH—Masked serial GPO register for DSPI_B High R/W 0x0000_0000 7.3.2.48/7-58

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-110 Freescale Semiconductor

0x0D0C SIU_DSPIBL—Masked serial GPO register for DSPI_B Low R/W 0x0000_0000 7.3.2.49/7-59

0x0D10 SIU_DSPICH—Masked serial GPO register for DSPI_C High R/W 0x0000_0000 7.3.2.50/7-60

0x0D14 SIU_DSPICL—Masked serial GPO register for DSPI_C Low R/W 0x0000_0000 7.3.2.51/7-60

0x0D18 SIU_DSPIDH—Masked serial GPO register for DSPI_D High R/W 0x0000_0000 7.3.2.52/7-61

0x0D1C SIU_DSPIDL—Masked serial GPO register for DSPI_D Low R/W 0x0000_0000 7.3.2.53/7-62

0x0D20–0x0D43 Reserved

0x0D44 SIU_EMIOSA—eMIOS select register for DSPI_A R/W 0x0000_0000 7.3.2.54/7-62

0x0D48 SIU_DSPIAHLA—SIU_DSPIAH/L select register for DSPI_A R/W 0x0000_0000 7.3.2.55/7-63

0x0D4C–0x0D53 Reserved

0x0D54 SIU_EMIOSB—eMIOS select register for DSPI_B R/W 0x0000_0000 7.3.2.56/7-64

0x0D58 SIU_DSPIBHLB—SIU_DSPIBH/L select register for DSPI_B R/W 0x0000_0000 7.3.2.57/7-64

0x0D5C–0x0D63 Reserved

0x0D64 SIU_EMIOSC—eMIOS select register for DSPI_C R/W 0x0000_0000 7.3.2.58/7-65

0x0D68 SIU_DSPICHLC—H/L select register for DSPI_C R/W 0x0000_0000 7.3.2.59/7-65

0x0D6C–0x0D73 Reserved

0x0D74 SIU_EMIOSD—eMIOS select register for DSPI_D R/W 0x0000_0000 7.3.2.60/7-66

0x0D78–0x0D7B SIU_DSPIDHLD—SIU_DSPIDH/L select register for DSPI_D R/W 0x0000_0000 7.3.2.61/7-67

0x0D7C–0x3FFF Reserved

0xFFFE_C000
CRP

Chapter 5, “Clocks, Reset, and Power (CRP)”

0x0000 CRP_CLKSRC—Clock source register R/W 0x0001_1F3F 5.2.2.1/5-5

0x0004–0x000F Reserved

0x0010 CRP_RTCC—RTC control register R/W 0x0000_0000 5.2.2.2/5-6

0x0014 CRP_RTSC—RTC status register R 0x0000_0000 5.2.2.3/5-8

0x0018 CRP_RTCCNT—RTC counter register R 0x0000_0000 5.2.2.4/5-9

0x001C–0x003F Reserved

0x0040 CRP_PWKENH—Pin wakeup enable high register R/W 0x0000_0000 5.2.2.5/5-9

0x0044 CRP_PWKENL—Pin Wakeup enable low register R/W 0x0000_0000 5.2.2.5/5-9

0x0048 CRP_PWKSRCIE—Pin wakeup source interrupt enable
register

R/W 0x0000_0000 5.2.2.6/5-11

0x004C CRP_PWKSRCF—Pin wakeup source flag register R 0x0000_0000 5.2.2.7/5-11

0x0050 CRP_Z6VEC—Z6 reset vector register R/W 0xFFFF_0001 5.2.2.8/5-12

0x0054 CRP_Z0VEC—Z0 reset vector register R/W 0xFFFF_FFFE 5.2.2.9/5-12

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-111

0x0058 CRP_RECPTR—Recovery pointer register R/W 0xFFFF_FFFC 5.2.2.10/5-13

0x005C–0x005F Reserved

0x0060 CRP_PSCR—Power status and control register R/W 0x0000_0000 5.2.2.11/5-14

0x0064–0x006F Reserved

0x0070 CRP_SOCSC—SoC status and control register R/W 0x4000_0020 5.2.2.12/5-15

0x0074–0x03FF Reserved

0xFFFF_0000
PLL

Chapter 6, “Frequency Modulated Phase-Locked Loop (FMPLL)”

0x0000 SYNCR—FMPLL synthesizer control register R/W — 6.3.2.1/6-3

0x0004 SYNSR—FMPLL synthesizer status register R/W —6 6.3.2.1/6-3

0x0008 ESYNCR1—FMPLL enhanced synthesizer control register 1 R/W 0x8000_0030 6.3.2.2/6-5

0x000C ESYNCR2—FMPLL enhanced synthesizer control register 2 R/W 0x0000_0003 6.3.2.3/6-7

0x0010–0x3FFF Reserved

 0xFFFF_4000 –
0xFFFF_7FFF

Reserved

0xFFFF_8000
PFlash Configuration

Chapter 11, “Flash Memory Array and Control”

0x0000 MCR—Module configuration register R/W 0x0540_0600 11.3.2.1/11-6

0x0004 LML—Low-/Mid-address space block locking register R/W 0x0013_03FF 11.3.2.2/11-10

0x0008 HBL—High-address space block locking register R/W 0x0000_003F 11.3.2.3/11-12

0x000C SLL—Secondary low-/mid-address space block locking
register

R/W 0x0013_03FF 11.3.2.4/11-13

0x0010 LMS—Low-/mid-address space block select register R/W 0x0000_0000 11.3.2.5/11-14

0x0014 HBS—High-address space block select register R/W 0x0000_0000 11.3.2.6/11-15

0x0018 ADR—Address register R/W 0x0000_0000 11.3.2.7/11-16

0x001C PFCRP0—Platform flash configuration register for port 0 R/W 0x0800_FF00 11.3.2.8/11-17

0x0020 PFCRP1—Platform flash configuration register for port 1 R/W 0x3000_FF00 11.3.2.8/11-17

0x0024 PFAPR—Platform flash access protection register R/W 0x00FF_FE00 11.3.2.9/11-20

0x0028 PFSACC—Platform flash supervisor access control register R/W 0x00FF_FE08 11.3.2.10/11-21

0x002C PFDACC—Platform flash data access control register R/W 0x00FF_FE10 11.3.2.11/11-23

0x0030 – 0x0038 Reserved

0x003C UT0—UTest register 0 R/W 0x0000_0001 11.3.2.12/11-23

0x0040 UT0—UTest register 1 R/W 0x0000_0000 11.3.2.13/11-25

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-112 Freescale Semiconductor

A.3 e200z6 Core SPR Numbers

0x0044 UT0—UTest register 2 R/W 0x0000_0000 11.3.2.14/11-26

0x0048 UM0—User multiple input signature register 0 R/W 0x0000_0000 11.3.2.15/11-26

0x004C UM1—User multiple input signature register 1 R/W 0x0000_0000 11.3.2.15/11-26

0x0050 UM2—User multiple input signature register 2 R/W 0x0000_0000 11.3.2.15/11-26

0x0054 UM3—User multiple input signature register 3 R/W 0x0000_0000 11.3.2.15/11-26

0x0058 UM4—User multiple input signature register 4 R/W 0x0000_0000 11.3.2.15/11-26

0x0048 – 0x3FFF Reserved

0xFFFF_C000
BAM

Chapter 8, “Boot Assist Module (BAM)”

0x3FFC BAM reset vector—first executed address after the reset R —3 8.2.1/8-2

0x3000 BAM start address R —3 8.2.1/8-2

0x3004 Internal boot start address R —3 8.2.1/8-2

0x3008 External boot start address R —3 8.2.1/8-2

0x300C Parallel loader/serial boot start address R —3 8.2.1/8-2

1 In this column, R/W indicates a read/write register, R indicates a read-only register, and W indicates a write-only register. Note
that R/W registers may contain some read-only or write-only bits.

2 In this column, the symbol “U” indicates one or more bits in a byte are undefined at reset. See the associated description for
more information.

3 Reset value is indeterminate.
4 Some bits are read-only.
5 See register description for reset value.
6 See specific register description.

Table A-5. e200z6 Core SPR Numbers (Supervisor Mode)

Register Description SPR (decimal)

General Registers

XER Integer Exception Register 1

LR Link Register 8

CTR Count Register 9

GPR0–GPR31 General Purpose Registers N/A

Special Purpose Registers

SPRG0 Special Purpose Register 0 272

SPRG1 Special Purpose Register 1 273

Table A-4. MPC5668x Detailed Register Map (continued)

Address Offset
from Module Base

Register Access1 Reset Value2 Section/Page

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-113

SPRG2 Special Purpose Register 2 274

SPRG3 Special Purpose Register 3 275

SPRG4 Special Purpose Register 4 276

SPRG5 Special Purpose Register 5 277

SPRG6 Special Purpose Register 6 278

SPRG7 Special Purpose Register 7 279

USPRG0 User Special Purpose Register 256

BUCSR Branch Unit Control and Status Register 1013

Exception Handling/Control Registers

SRR0 Save and Restore Register 0 26

SRR1 Save and Restore Register 1 27

CSRR0 Critical Save and Restore Register 0 58

CSRR1 Critical Save and Restore Register 1 59

DSRR0 Debug Save and Restore Register 0 574

DSRR1 Debug Save and Restore Register 1 575

ESR Exception Syndrome Register 62

MCSR Machine Check Syndrome Register 572

DEAR Data Exception Address Register 61

IVPR Interrupt Vector Prefix Register 63

IVOR1 Interrupt Vector Offset Register 1 401

IVOR2 Interrupt Vector Offset Register 2 402

IVOR3 Interrupt Vector Offset Register 3 403

IVOR4 Interrupt Vector Offset Register 4 404

IVOR5 Interrupt Vector Offset Register 5 405

IVOR6 Interrupt Vector Offset Register 6 406

IVOR7 Interrupt Vector Offset Register 7 407

IVOR8 Interrupt Vector Offset Register 8 408

IVOR9 Not Supported —

IVOR10 Interrupt Vector Offset Register 10 410

IVOR11 Interrupt Vector Offset Register 11 411

IVOR12 Interrupt Vector Offset Register 12 412

IVOR13 Interrupt Vector Offset Register 13 413

IVOR14 Interrupt Vector Offset Register 14 414

Table A-5. e200z6 Core SPR Numbers (Supervisor Mode) (continued)

Register Description SPR (decimal)

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-114 Freescale Semiconductor

IVOR15 Interrupt Vector Offset Register 15 415

IVOR32 Interrupt Vector Offset Register 32 528

IVOR33 Interrupt Vector Offset Register 33 529

IVOR34 Interrupt Vector Offset Register 34 530

Processor Control Registers

MSR Machine State Register N/A

PVR Processor Version Register 287

PIR Processor ID Register 286

SVR System Version Register 1023

HID0 Hardware Implementation Dependent Register 0 1008

HID1 Hardware Implementation Dependent Register 1 1009

Timer Registers

TBL Time Base Lower Register 284

TBU Time Base Upper Register 285

TCR Timer Control Register 340

TSR Timer Status Register 336

DEC Decrementer Register 22

DECAR Decrementer Auto-reload Register 54

Debug Registers

DBCR0 Debug Control Register 0 308

DBCR1 Debug Control Register 1 309

DBCR2 Debug Control Register 2 310

DBCR3 Debug Control Register 3 561

DBSR Debug Status Register 304

DBCNT Debug Counter Register 562

IAC1 Instruction Address Compare Register 1 312

IAC2 Instruction Address Compare Register 2 313

IAC3 Instruction Address Compare Register 3 314

IAC4 Instruction Address Compare Register 4 315

DAC1 Data Address Compare Register 1 316

DAC2 Data Address Compare Register 2 317

Memory Management Registers

MAS0 MMU Assist Register 0 624

Table A-5. e200z6 Core SPR Numbers (Supervisor Mode) (continued)

Register Description SPR (decimal)

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4

Freescale Semiconductor A-115

MAS1 MMU Assist Register 1 625

MAS2 MMU Assist Register 2r 626

MAS3 MMU Assist Register 3 627

MAS4 MMU Assist Register 4 628

MAS6 MMU Assist Register 6 630

PID0 Process ID Register 48

MMUCSR0 MMU Control and Status Register 0 1012

MMUCFG MMU Configuration Register 1015

TLB0CFG TLB 0 Configuration Register 688

TLB1CFG TLB 1 Configuration Register 689

Cache Registers

L1CFG0 L1 Cache Configuration Register 515

L1CSR0 L1 Cache Control and Status Register 0 1010

L1FINV0 L1 Cache Flush and Invalidate Control Register 0 1016

APU Registers

SPEFSCR SPE APU Status and Control Register 512

Table A-6. e200z6 Core SPR Numbers (User Mode)

Register Description SPR (decimal)

General Registers

CTR Count Register 9

LR Link Register 8

XER Integer Exception Register 1

GPR0–GPR31 General Purpose Registers N/A

Special Purpose Registers

SPRG4 Special Purpose Register 4 260

SPRG5 Special Purpose Register 5 261

SPRG6 Special Purpose Register 6 262

SPRG7 Special Purpose Register 7 263

USPRG0 User Special Purpose Register 256

Timer Registers

TBL Time Base Lower Register 268

TBU Time Base Upper Register 269

Table A-5. e200z6 Core SPR Numbers (Supervisor Mode) (continued)

Register Description SPR (decimal)

Memory Map

MPC5668x Microcontroller Reference Manual, Rev 4, Draft B

A-116 Freescale Semiconductor

Cache Registers

L1CFG0 L1 Cache Configuration Register 515

APU Registers

SPEFSCR SPE APU Status and Control Register 512

Table A-6. e200z6 Core SPR Numbers (User Mode) (continued)

Register Description SPR (decimal)

	About This Book
	Chapter 1 Introduction
	1.1 Overview
	1.2 MPC5668G/E Features
	1.3 MPC5668G Block Diagram
	1.4 MPC5668E Block Diagram
	1.4.1 Critical Performance Parameters
	1.4.1.1 Low Power Operation

	1.4.2 Packages
	1.4.3 Module Features
	1.4.3.1 High Performance e200z650 Core Processor
	1.4.3.2 I/O Processor (IOP) High Performance e200z0 Core
	1.4.3.3 Semaphores
	1.4.3.4 On-Chip Voltage Regulator (VREG)
	1.4.3.5 Enhanced Direct Memory Access Controller (eDMA)
	1.4.3.6 Fast Ethernet Controller (FEC)
	1.4.3.7 Media Local Bus (MLB)
	1.4.3.8 Crossbar Switch (XBAR)
	1.4.3.9 Memory Protection Unit (MPU)
	1.4.3.10 Interrupt Controller (INTC)
	1.4.3.11 System Clocks and Clock Generation
	1.4.3.12 System Integration Unit (SIU)
	1.4.3.13 Software Watchdog Timer (SWT)
	1.4.3.14 On-Chip Flash
	1.4.3.15 On-Chip SRAM
	1.4.3.16 Error Correction Status Module (ECSM)
	1.4.3.17 Boot Assist Module (BAM)
	1.4.3.18 Enhanced Modular Input Output System (eMIOS200)
	1.4.3.19 Analog to Digital Converter Module (ADC)
	1.4.3.20 Cross Triggering Unit (CTU)
	1.4.3.21 Deserial Serial Peripheral Interface Module (DSPI)
	1.4.3.22 Serial Communication Interface Module (eSCI)
	1.4.3.23 Controller Area Network Module (FlexCAN)
	1.4.3.24 Inter IC Communications Module (I2C)
	1.4.3.25 Dual-Channel FlexRay Controller (FR)
	1.4.3.26 Periodic Interrupt Timer Module (PIT)
	1.4.3.27 System Timer Module
	1.4.3.28 Real Time Counter (RTC)
	1.4.3.29 JTAG Controller (JTAGC)
	1.4.3.30 Nexus Development Interface (NDI)

	1.5 Developer Environment
	1.6 MPC5668G/E Memory Map

	Chapter 2 Signal Description
	2.1 Introduction
	2.2 Signal Properties Summary
	2.2.1 I/O Power and Ground Segmentation

	2.3 Pinout
	2.4 Detailed Signal Description
	2.4.1 Port A Pins
	2.4.1.1 PA0 to PA13 - GPI (PA[0:13]) / Analog Input (AN[0:13])
	2.4.1.2 PA14 - GPI (PA[14]) / Analog Input (AN[14]) / 32 kHz Crystal Input (EXTAL32)
	2.4.1.3 PA15 - GPI (PA[15]) / Analog Input (AN[15]) / 32 kHz Crystal Output (XTAL32)

	2.4.2 Port B Pins
	2.4.2.1 PB0 - GPIO (PB[0]) / Analog Input (AN[16]) / Analog Input Channel for External Mux (ANW)
	2.4.2.2 PB1 - GPIO (PB[1]) / Analog Input (AN[17]) / Analog Input Channel for External Mux (ANX)
	2.4.2.3 PB2 - GPIO (PB[2]) / Analog Input (AN[18]) / Analog Input Channel for External Mux (ANY)
	2.4.2.4 PB3 - GPIO (PB[3]) / Analog Input (AN[19]) / Analog Input Channel for External Mux (ANZ)
	2.4.2.5 PB4 to PB7 - GPIO (PB[4:7]) / Analog Input (AN[20:23])
	2.4.2.6 PB8 - GPIO (PB[8]) / Analog Input (AN[24]) / DSPI_A Peripheral Chip Select (PCS_A[2])
	2.4.2.7 PB9 - GPIO (PB[9]) / Analog Input (AN[25]) / DSPI_A Peripheral Chip Select (PCS_A[3])
	2.4.2.8 PB10 - GPIO (PB[10]) / Analog Input (AN[26]) / DSPI_B Peripheral Chip Select (PCS_B[4])
	2.4.2.9 PB11 - GPIO (PB[11]) / Analog Input (AN[27]) / DSPI_B Peripheral Chip Select (PCS_B[5])
	2.4.2.10 PB12 - GPIO (PB[12]) / Analog Input (AN[28]) / DSPI_C Peripheral Chip Select (PCS_C[1])
	2.4.2.11 PB13 - GPIO (PB[13]) / Analog Input (AN[29]) / DSPI_C Peripheral Chip Select (PCS_C[2])
	2.4.2.12 PB14 - GPIO (PB[14]) / Analog Input (AN[30]) / DSPI_D Peripheral Chip Select (PCS_D[3])
	2.4.2.13 PB15 - GPIO (PB[15]) / Analog Input (AN[31]) / DSPI_D Peripheral Chip Select (PCS_D[4])

	2.4.3 Port C Pins
	2.4.3.1 PC0 to PC1 - GPIO (PC[0:1]) / Analog Input (AN[32:33])
	2.4.3.2 PC2 - GPIO (PC[2]) / Analog Input (AN[34]) / Nexus Event In (EVTI)
	2.4.3.3 PC3 - GPIO (PC[3]) / Analog Input (AN[35]) / Nexus Event Out (EVTO)
	2.4.3.4 PC4 - GPIO (PC[4]) / Analog Input (AN[36])
	2.4.3.5 PC5 - GPIO (PC[5]) / Analog Input (AN[37]) / Z6 Non-Maskable Interrupt (Z6_NMI)
	2.4.3.6 PC6 - GPIO (PC[6]) / Analog Input (AN[38]) / Z0 Non-Maskable Interrupt (Z0_NMI)
	2.4.3.7 PC7 - GPIO (PC[7]) / Analog Input (AN[39]) / FlexRay Debug 3 (FR_DBG[3])
	2.4.3.8 PC8 - GPIO (PC[8]) / Analog Input (AN[40]) / FlexRay Debug 2 (FR_DBG[2])
	2.4.3.9 PC9 - GPIO (PC[9]) / Analog Input (AN[41]) / FlexRay Debug 1 (FR_DBG[1])
	2.4.3.10 PC10 - GPIO (PC[10]) / Analog Input (AN[42]) / FlexRay Debug 0 (FR_DBG[0])
	2.4.3.11 PC11 - GPIO (PC[11]) / Analog Input (AN[43]) / I2C_C Serial Clock Line (SCL_C)
	2.4.3.12 PC12 - GPIO (PC[12]) / Analog Input (AN[44]) / I2C_C Serial Data Line (SDA_C)
	2.4.3.13 PC13 - GPIO (PC[13]) / Analog Input (AN[45]) / External Analog Mux Address Output (MA[0])
	2.4.3.14 PC14 - GPIO (PC[14]) / Analog Input (AN[46]) / External Analog Mux Address Output (MA[1])
	2.4.3.15 PC15 - GPIO (PC[15]) / Analog Input (AN[47]) / External Analog Mux Address Output (MA[2])

	2.4.4 Port D Pins
	2.4.4.1 PD0 - GPIO (PD[0]) / CAN_A Transmit (CNTX_A)
	2.4.4.2 PD1 - GPIO (PD[1]) / CAN_A Receive (CNRX_A)
	2.4.4.3 PD2 - GPIO (PD[2]) / CAN_B Transmit (CNTX_B)
	2.4.4.4 PD3 - GPIO (PD[3]) / CAN_B Receive (CNRX_B)
	2.4.4.5 PD4 - GPIO (PD[4]) / CAN_C Transmit (CNTX_C)
	2.4.4.6 PD5 - GPIO (PD[5]) / CAN_C Receive (CNRX_C)
	2.4.4.7 PD6 - GPIO (PD[6]) / CAN_D Transmit (CNTX_D) / TXD_K / I2C_B Serial Clock Line (SCL_B)
	2.4.4.8 PD7 - GPIO (PD[7]) / CAN_D Receive (CNRX_D) / RXD_K / I2C_B Serial Data Line (SDA_B)
	2.4.4.9 PD8 - GPIO (PD[8]) / CAN_E Transmit (CNTX_E) / TXD_LK / I2C_C Serial Clock Line (SCL_C)
	2.4.4.10 PD9 - GPIO (PD[9]) / CAN_E Receive (CNRX_E) / RXD_L / I2C_C Serial Data Line (SDA_C)
	2.4.4.11 PD10 - GPIO (PD[10]) / CAN_F Transmit (CNTX_F) / TXD_M / I2C_D Serial Clock Line (SCL_D)
	2.4.4.12 PD11 - GPIO (PD[11]) / CAN_F Receive (CNRX_F) / RXD_M / I2C_D Serial Data Line (SDA_D)
	2.4.4.13 PD12 - GPIO (PD[12]) / eSCI_A Transmit (TXD_A)
	2.4.4.14 PD13 - GPIO (PD[13]) / eSCI_A Receive (RXD_A)
	2.4.4.15 PD14 - GPIO (PD[14]) / eSCI_B Transmit (TXD_B)
	2.4.4.16 PD15 - GPIO (PD[15]) / eSCI_B Receive (RXD_B)

	2.4.5 Port E Pins
	2.4.5.1 PE0 - GPIO (PE[0]) / eSCI_C Transmit (TXD_C) / eMIOS Channel (eMIOS[31])
	2.4.5.2 PE1 - GPIO (PE[1]) / eSCI_C Receive (RXD_C) / eMIOS Channel (eMIOS[30])
	2.4.5.3 PE2 - GPIO (PE[2]) / eSCI_D Transmit (TXD_D) / eMIOS Channel (eMIOS[29])
	2.4.5.4 PE3 - GPIO (PE[3]) / eSCI_D Receive (RXD_D) / eMIOS Channel (eMIOS[28])
	2.4.5.5 PE4 - GPIO (PE[4]) / eSCI_E Transmit (TXD_E) / eMIOS Channel (eMIOS[27])
	2.4.5.6 PE5 - GPIO (PE[5]) / eSCI_E Receive (RXD_E) / eMIOS Channel (eMIOS[26])
	2.4.5.7 PE6 - GPIO (PE[6]) / eSCI_F Transmit (TXD_F) / eMIOS Channel (eMIOS[25])
	2.4.5.8 PE7 - GPIO (PE[7]) / eSCI_F Receive (RXD_F) / eMIOS Channel (eMIOS[24])
	2.4.5.9 PE8 - GPIO (PE[8]) / eSCI_G Transmit (TXD_G) / DSPI_A Peripheral Chip Select (PCS_A[1])
	2.4.5.10 PE9 - GPIO (PE[9]) / eSCI_G Receive (RXD_G) / DSPI_A Peripheral Chip Select (PCS_A[4])
	2.4.5.11 PE10 - GPIO (PE[10]) / eSCI_H Transmit (TXD_H) / DSPI_B Peripheral Chip Select (PCS_B[3])
	2.4.5.12 PE11 - GPIO (PE[11]) / eSCI_H Receive (RXD_H) / DSPI_B Peripheral Chip Select (PCS_B[2])
	2.4.5.13 PE12 - GPIO (PE[12]) / eSCI_J Transmit (TXD_J) / DSPI_C Peripheral Chip Select (PCS_C[5])
	2.4.5.14 PE13 - GPIO (PE[13]) / eSCI_J Receive (RXD_J) / DSPI_C Peripheral Chip Select (PCS_C[3])
	2.4.5.15 PE14 - GPIO (PE[14]) / I2C_A Serial Clock Line (SCL_A) / DSPI_D Peripheral Chip Select (PCS_D[2])
	2.4.5.16 PE15 - GPIO (PE[15]) / I2C_A Serial Data Line (SDA_A) / DSPI_D Peripheral Chip Select (PCS_D[5])

	2.4.6 Port F Pins
	2.4.6.1 PF0 - GPIO (PF[0]) / DSPI_A Clock (SCK_A)
	2.4.6.2 PF1 - GPIO (PF[1]) / DSPI_A Data Output (SOUT_A)
	2.4.6.3 PF2 - GPIO (PF[2]) / DSPI_A Data Input (SIN_A)
	2.4.6.4 PF3 - GPIO (PF[3]) / DSPI_A Peripheral Chip Select (PCS_A[0]) / DSPI_B Peripheral Chip Select (PCS_B[5]) / DSPI_C Peripheral Chip Select (PCS_C[4])
	2.4.6.5 PF4 - GPIO (PF[4]) / DSPI_B Clock (SCK_B) / DSPI_A Peripheral Chip Select (PCS_A[1]) / DSPI_C Peripheral Chip Select (PCS_C[2])
	2.4.6.6 PF5 - GPIO (PF[5]) / DSPI_B Data Output (SOUT_B) / DSPI_A Peripheral Chip Select (PCS_A[2]) / DSPI_C Peripheral Chip Select (PCS_C[3])
	2.4.6.7 PF6 - GPIO (PF[6]) / DSPI_B Data Input (SIN_B) / DSPI_A Peripheral Chip Select (PCS_A[3]) / DSPI_C Peripheral Chip Select (PCS_C[5])
	2.4.6.8 PF7 - GPIO (PF[7]) / DSPI_B Peripheral Chip Select (PCS_B[0]) / DSPI_C Peripheral Chip Select / (PCS_C[5]) / DSPI_D Peripheral Chip Select (PCS_D[4])
	2.4.6.9 PF8 - GPIO (PF[8]) / DSPI_C Clock (SCK_C)
	2.4.6.10 PF9 - GPIO (PF[9]) / DSPI_C Data Output (SOUT_C)
	2.4.6.11 PF10 - GPIO (PF[10]) / DSPI_C Data Input (SIN_C)
	2.4.6.12 PF11 - GPIO (PF[11]) / DSPI_C Peripheral Chip Select (PCS_C[0]) / DSPI_D Peripheral Chip Select / (PCS_D[5]) / DSPI_A Peripheral Chip Select (PCS_A[4])
	2.4.6.13 PF12 - GPIO (PF[12]) / DSPI_D Clock (SCK_D)
	2.4.6.14 PF13 - GPIO (PF[13]) / DSPI_D Data Output (SOUT_D)
	2.4.6.15 PF14 - GPIO (PF[14]) / DSPI_D Data Input (SIN_D)
	2.4.6.16 PF15 - GPIO (PF[15]) / DSPI_D Peripheral Chip Select (PCS_D[0]) / DSPI_A Peripheral Chip Select (PCS_A[5]) / DSPI_B Peripheral Chip Select (PCS_B[4])

	2.4.7 Port G Pins
	2.4.7.1 PG0 - GPIO (PG[0]) / DSPI_A Peripheral Chip Select (PCS_A[4]) / DSPI_B Peripheral Chip Select (PCS_B[3]) / Analog Input (AN[48])
	2.4.7.2 PG1 - GPIO (PG[1]) / DSPI_A Peripheral Chip Select (PCS_A[5]) / DSPI_B Peripheral Chip Select (PCS_B[4]) / Analog Input (AN[49])
	2.4.7.3 PG2 - GPIO (PG[2]) / DSPI_D Peripheral Chip Select (PCS_D[1]) / I2C_C Serial Clock Line (SCL_C) / Analog Input (AN[50])
	2.4.7.4 PG3 - GPIO (PG[3]) / DSPI_D Peripheral Chip Select (PCS_D[2]) / I2C_C Serial Data Line (SDA_C) / Analog Input (AN[51])
	2.4.7.5 PG4 - GPIO (PG[4]) / DSPI_D Peripheral Chip Select (PCS_D[3]) / I2C_B Serial Clock Line (SCL_B) / Analog Input (AN[52])
	2.4.7.6 PG5 - GPIO (PG[5]) / DSPI_D Peripheral Chip Select (PCS_D[4]) / I2C_B Serial Data Line (SDA_B) / Analog Input (AN[53])
	2.4.7.7 PG6 - GPIO (PG[6]) / DSPI_C Peripheral Chip Select (PCS_C[1]) / Ethernet Management Data Clock (FEC_MDC) / Analog Input (AN[54])
	2.4.7.8 PG7 - GPIO (PG[7]) / DSPI_C Peripheral Chip Select (PCS_C[2]) / Ethernet Management Data I/O (FEC_MDIO) / Analog Input (AN[55])
	2.4.7.9 PG8 - GPIO (PG[8]) / eMIOS Channel (eMIOS[7]) / Ethernet Transmit Clock (FEC_TX_CLK) / Analog Input (AN[56])
	2.4.7.10 PG9 - GPIO (PG[9]) / eMIOS Channel (eMIOS[6]) / Ethernet Carrier Sense (FEC_CRS) / Analog Input (AN[57])
	2.4.7.11 PG10 - GPIO (PG[10]) / eMIOS Channel (eMIOS[5]) / Ethernet Transmit Error (FEC_TX_ER) / Analog Input (AN[58])
	2.4.7.12 PG11 - GPIO (PG[11]) / eMIOS Channel (eMIOS[4]) / Ethernet Receive Clock (FEC_RX_CLK) / Analog Input (AN[59])
	2.4.7.13 PG12 - GPIO (PG[12]) / eMIOS Channel (eMIOS[3]) / Ethernet Transmit Data (FEC_TXD[0]) / Analog Input (AN[60])
	2.4.7.14 PG13 - GPIO (PG[13]) / eMIOS Channel (eMIOS[2]) / Ethernet Transmit Data (FEC_TXD[1]) / Analog Input (AN[61])
	2.4.7.15 PG14 - GPIO (PG[14]) / eMIOS Channel (eMIOS[1] / Ethernet Transmit Data (FEC_TXD[2]) / Analog Input (AN[62])
	2.4.7.16 PG15 - GPIO (PG[15]) / eMIOS Channel (eMIOS[0]) / Ethernet Transmit Data (FEC_TXD[3]) / Analog Input (AN[63])

	2.4.8 Port H Pins
	2.4.8.1 PH0 - GPIO (PH[0]) / eMIOS Channel (eMIOS[31]) / Ethernet Collision (FEC_COL)
	2.4.8.2 PH1 - GPIO (PH[1]) / eMIOS Channel (eMIOS[30]) / Ethernet Receive Data Valid (FEC_RX_DV)
	2.4.8.3 PH2 - GPIO (PH[2]) / eMIOS Channel (eMIOS[29]) / Ethernet Transmit Enable (FEC_TX_EN)
	2.4.8.4 PH3 - GPIO (PH[3]) / eMIOS Channel (eMIOS[28]) / Ethernet Receive Error (FEC_RX_ER)
	2.4.8.5 PH4 - GPIO (PH[4]) / eMIOS Channel (eMIOS[27]) / Ethernet Receive Data (FEC_RXD[0])
	2.4.8.6 PH5 - GPIO (PH[5]) / eMIOS Channel (eMIOS[26]) / Ethernet Receive Data (FEC_RXD[1])
	2.4.8.7 PH6 - GPIO (PH[6]) / eMIOS Channel (eMIOS[25]) / Ethernet Receive Data (FEC_RXD[2])
	2.4.8.8 PH7 - GPIO (PH[7]) / eMIOS Channel (eMIOS[24]) / Ethernet Receive Data (FEC_RXD[3])
	2.4.8.9 PH8 - GPIO (PH[8]) / eMIOS Channel (eMIOS[23])
	2.4.8.10 PH9 - GPIO (PH[9]) / eMIOS Channel (eMIOS[22])
	2.4.8.11 PH10 - GPIO (PH[10]) / eMIOS Channel (eMIOS[21])
	2.4.8.12 PH11 - GPIO (PH[11]) / eMIOS Channel (eMIOS[20])
	2.4.8.13 PH12 - GPIO (PH[12]) / eMIOS Channel (eMIOS[19])
	2.4.8.14 PH13 - GPIO (PH[13]) / eMIOS Channel (eMIOS[18])
	2.4.8.15 PH14 - GPIO (PH[14]) / eMIOS Channel (eMIOS[17])
	2.4.8.16 PH15 - GPIO (PH[15]) / eMIOS Channel (eMIOS[16])

	2.4.9 Port J Pins
	2.4.9.1 PJ0 - GPIO (PJ[0]) / eMIOS Channel (eMIOS[15]) / DSPI_A Peripheral Chip Select (PCS_A[4])
	2.4.9.2 PJ1 - GPIO (PJ[1]) / eMIOS Channel (eMIOS[14]) / DSPI_A Peripheral Chip Select (PCS_A[5])
	2.4.9.3 PJ2 - GPIO (PJ[2]) / eMIOS Channel (eMIOS[13]) / DSPI_B Peripheral Chip Select (PCS_B[1])
	2.4.9.4 PJ3 - GPIO (PJ[3]) / eMIOS Channel (eMIOS[12]) / DSPI_B Peripheral Chip Select (PCS_B[2])
	2.4.9.5 PJ4 - GPIO (PJ[4]) / eMIOS Channel (eMIOS[11]) / DSPI_C Peripheral Chip Select (PCS_C[3])
	2.4.9.6 PJ5 - GPIO (PJ[5]) / eMIOS Channel (eMIOS[10]) / DSPI_C Peripheral Chip Select (PCS_C[4])
	2.4.9.7 PJ6 - GPIO (PJ[6]) / eMIOS Channel (eMIOS[9]) / DSPI_D Peripheral Chip Select (PCS_D[5])
	2.4.9.8 PJ7 - GPIO (PJ[7]) / eMIOS Channel (eMIOS[8]) / DSPI_D Peripheral Chip Select (PCS_D[1])
	2.4.9.9 PJ8 - GPIO (PJ[8]) / eMIOS Channel (eMIOS[7])
	2.4.9.10 PJ9 - GPIO (PJ[9]) / eMIOS Channel (eMIOS[6])
	2.4.9.11 PJ10 - GPIO (PJ[10]) / eMIOS Channel (eMIOS[5])
	2.4.9.12 PJ11 - GPIO (PJ[11]) / eMIOS Channel (eMIOS[4])
	2.4.9.13 PJ12 - GPIO (PJ[12]) / eMIOS Channel (eMIOS[3])
	2.4.9.14 PJ13 - GPIO (PJ[13]) / eMIOS Channel (eMIOS[2])
	2.4.9.15 PJ14 - GPIO (PJ[14]) / eMIOS Channel (eMIOS[1])
	2.4.9.16 PJ15 - GPIO (PJ[15]) / eMIOS Channel (eMIOS[0])

	2.4.10 Port K Pins
	2.4.10.1 PK0 - GPIO (PK[0]) / Media Local Bus Clock (MLBCLK) / DSPI_B Clock (SCK_B) / Clock Output (CLKOUT)
	2.4.10.2 PK1 - GPIO (PK[1]) / Media Local Bus Signal (MLBSIG) / DSPI_B Data Output (SOUT_B) / DSPI_D Peripheral Chip Select (PCS_D[4])
	2.4.10.3 PK2 - GPIO (PK[2]) / Media Local Bus Data (MLBDAT) / DSPI_B Data Input (SIN_B) / DSPI_D Peripheral Chip Select (PCS_D[5])
	2.4.10.4 PK3 - GPIO (PK[3]) / FlexRay Channel A Receive (FR_A_RX) / External Analog Mux Address Output (MA[0]) / DSPI_C Peripheral Chip Select (PCS_C[1])
	2.4.10.5 PK4 - GPIO (PK[4]) / FlexRay Channel A Transmit (FR_A_TX) / External Analog Mux Address Output (MA[1]) / DSPI_C Peripheral Chip Select (PCS_C[2])
	2.4.10.6 PK5 - GPIO (PK[5]) / FlexRay Channel A Transmit Enable (FR_A_TX_EN) / External Analog Mux Address Output (MA[2]) / DSPI_C Peripheral Chip Select (PCS_C[3])
	2.4.10.7 PK6 - GPIO (PK[6]) / FlexRay Channel B Receive (FR_B_RX) / DSPI_B Peripheral Chip Select (PCS_B[1]) / DSPI_C Peripheral Chip Select (PCS_C[4])
	2.4.10.8 PK7 - GPIO (PK[7]) / FlexRay Channel B Transmit (FR_B_TX) / DSPI_B Peripheral Chip Select (PCS_B[2]) / DSPI_C Peripheral Chip Select (PCS_C[5])
	2.4.10.9 PK8 - GPIO (PK[8]) / FlexRay Channel B Transmit Enable (FR_B_TX_EN) / DSPI_B Peripheral Chip Select (PCS_B[3]) / DSPI_A Peripheral Chip Select (PCS_A[1])
	2.4.10.10 PK9 - GPIO (PK[9]) / Clock Output (CLKOUT) / DSPI_D Peripheral Chip Select (PCS_D[1]) / DSPI_A Peripheral Chip Select (PCS_A[2]) / Boot Configuration (BOOTCFG)
	2.4.10.11 PK10 - GPIO (PK[10]) / DSPI_B Peripheral Chip Select (PCS_B[5]) / DSPI_D Peripheral Chip Select (PCS_D[2]) / DSPI_A Peripheral Chip Select (PCS_A[3])

	2.4.11 Nexus Signals
	2.4.11.1 Nexus Event In EVTI
	2.4.11.2 Nexus Event Out EVTO
	2.4.11.3 Nexus Message Clock Out MCKO
	2.4.11.4 Nexus Message Data Out MDO[0]
	2.4.11.5 Nexus Message Data Out MDO[11:1]
	2.4.11.6 Nexus Message Start/End Out MSEO[1:0]

	2.4.12 Reset and Configuration Signals
	2.4.12.1 External Reset Input RESET

	2.4.13 JTAG Signals
	2.4.13.1 JTAG Test Clock Input TCK
	2.4.13.2 JTAG Test Data Input TDI
	2.4.13.3 JTAG Test Data Output TDO
	2.4.13.4 JTAG Test Mode Select Input TMS
	2.4.13.5 JTAG Compliance Input JCOMP
	2.4.13.6 Test Mode Enable Input TEST

	2.4.14 Clock Synthesizer Signals
	2.4.14.1 Crystal Oscillator Input / External Clock Input EXTAL
	2.4.14.2 Crystal Oscillator Output XTAL
	2.4.14.3 System Clock Output CLKOUT

	2.4.15 Power / Ground Signals
	2.4.15.1 Internal Logic Supply Input VDD
	2.4.15.2 Fixed 3.3V Internal Supply Input VDD33
	2.4.15.3 Analog Supply VDDA
	2.4.15.4 External I/O Supply Input VDDEn
	2.4.15.5 Media Local Bus Supply Input VDDEMLB
	2.4.15.6 Nexus Interface Supply Input VDDENEX
	2.4.15.7 Clock Synthesizer Power Input VDDSYN
	2.4.15.8 Voltage Regulator Control Voltage VRC
	2.4.15.9 Voltage Regulator Control Output VRCCTL
	2.4.15.10 Supply VRCSEL
	2.4.15.11 Analog High Voltage Reference VRH
	2.4.15.12 Analog Low Voltage Reference VRL
	2.4.15.13 Ground VSS
	2.4.15.14 Analog Ground VSSA
	2.4.15.15 Clock Synthesizer Ground Input VSSSYN

	Chapter 3 Resets
	3.1 Introduction
	3.2 External Signal Description
	3.2.1 Reset (RESET)
	3.2.2 Boot Configuration (BOOTCFG)

	3.3 Functional Description
	3.3.1 Z6, Z0 Cores Reset Vectors
	3.3.2 Reset Sources
	3.3.2.1 Power-on Reset (POR)
	3.3.2.2 Low-Voltage Inhibit (LVI) Resets
	3.3.2.3 External Reset
	3.3.2.4 Loss-of-Lock Reset
	3.3.2.5 Loss-of-Clock Reset
	3.3.2.6 Watchdog Timer Reset
	3.3.2.7 Z6 Core Checkstop Reset
	3.3.2.8 Z0 Core Checkstop Reset
	3.3.2.9 JTAG Reset
	3.3.2.10 Software System Reset

	3.4 Reset Configuration
	3.4.1 Reset Configuration Timing

	Chapter 4 System Clock Description
	4.1 Introduction
	4.1.1 Features
	4.1.2 Clock Sources
	4.1.3 External High-Frequency Crystal (4 - 40 MHz XTAL)
	4.1.3.1 4 - 40 MHz XTAL Features

	4.1.4 Internal High-Frequency RC Oscillator (16 MHz_IRC)
	4.1.4.1 16 MHz_IRC Features

	4.1.5 Internal Low-Frequency RC Oscillator (128 kHz_IRC)
	4.1.5.1 128 kHz_IRC Features

	4.1.6 External Low-Frequency Crystal (32 kHz_XTAL)
	4.1.6.1 32 kHz_XTAL Features

	4.1.7 FMPLL
	4.1.7.1 FMPLL Features

	4.2 System Clock Architecture
	4.3 Clock Dividers
	4.3.1 System Clock Select
	4.3.2 System Clock Dividers
	4.3.3 External Bus Clock (CLKOUT) Divider
	4.3.4 Nexus Message Clock (MCKO) Divider
	4.3.5 Peripheral Clock Dividers

	4.4 Software-Controlled Power Management
	4.4.1 Module Disable (MDIS) Clock Gating
	4.4.2 Halt Clock Gating
	4.4.3 Core WAIT Clock Gating

	4.5 Alternate Module Clock Domains
	4.5.1 FlexCAN Clock Domains
	4.5.2 FlexRay Clock Domains
	4.5.3 API / RTC Clock Domains
	4.5.4 SWT Clock Domain
	4.5.5 Input/Output Processor (IOP) Clocking
	4.5.6 FEC Clocking
	4.5.7 Media Local Bus (MLB) DIM Clocking

	Chapter 5 Clocks, Reset, and Power (CRP)
	5.1 Introduction
	5.1.1 Block Diagram
	5.1.2 Features
	5.1.3 Modes of Operation

	5.2 Memory Map and Registers
	5.2.1 Module Memory Map
	5.2.2 Register Descriptions
	5.2.2.1 Clock Source Register (CRP_CLKSRC)
	5.2.2.2 RTC Control Register (CRP_RTCC)
	5.2.2.3 RTC Status Register (CRP_RTSC)
	5.2.2.4 RTC Counter Register (CRP_RTCCNT)
	5.2.2.5 Pin Wakeup Enable Registers (CRP_PWKENH/L)
	5.2.2.6 Pin Wakeup Source Interrupt Enable Register (CRP_PWKSRCIE)
	5.2.2.7 Pin Wakeup Source Flag Register (CRP_PWKSRCF)
	5.2.2.8 Z6 Reset Vector Register (CRP_Z6VEC)
	5.2.2.9 Z0 Reset Vector Register (CRP_Z0VEC)
	5.2.2.10 Reset Recovery Pointer Register (CRP_RECPTR)
	5.2.2.11 Power Status and Control Register (CRP_PSCR)
	5.2.2.12 SoC Status and Control Register (CRP_SOCSC)

	5.3 Functional Description
	5.3.1 Low-Power Mode
	5.3.2 Wake-Up Lines
	5.3.3 Low-Power Mode Entry
	5.3.3.1 CRP Clock Selection
	5.3.3.2 Sleep Mode RAM Retention

	5.3.4 Low-Power Operation
	5.3.4.1 Sleep Mode Reset Operation

	5.3.5 Low-Power Wakeup
	5.3.5.1 Low Power Mode Debug Support

	5.4 Real-Time Counter (RTC)
	5.4.1 RTC Features
	5.4.2 RTC Functional Description
	5.4.3 Register Description

	5.5 Power Supply Monitors
	5.5.1 Power-On Reset (POR)
	5.5.2 Low-Voltage Monitors (LVI)

	Chapter 6 Frequency Modulated Phase-Locked Loop (FMPLL)
	6.1 Introduction
	6.1.1 Block Diagram
	6.1.2 Features
	6.1.3 Modes of Operation

	6.2 External Signal Description
	6.3 Memory Map and Registers
	6.3.1 Module Memory Map
	6.3.2 Register Descriptions
	6.3.2.1 FMPLL Synthesizer Status Register (SYNSR)
	6.3.2.2 FMPLL Enhanced Synthesizer Control Register 1 (ESYNCR1)
	6.3.2.3 FMPLL Enhanced Synthesizer Control Register 2 (ESYNCR2)

	6.4 Functional Description
	6.4.1 General
	6.4.2 PLL Off Mode
	6.4.3 Normal Mode
	6.4.3.1 PLL Lock Detection
	6.4.3.2 Loss-of-Clock Detection
	6.4.3.3 PLL Normal Mode Without FM
	6.4.3.4 PLL Normal Mode With Frequency Modulation

	6.5 Resets
	6.5.1 Clock Mode Selection
	6.5.1.1 Power-On Reset (POR)
	6.5.1.2 External Reset

	6.5.2 PLL Loss-of-Lock Reset
	6.5.3 PLL Loss-of-Clock Reset

	6.6 Interrupts
	6.6.1 Loss-of-Lock Interrupt Request
	6.6.2 Loss-of-Clock Interrupt Request

	Chapter 7 System Integration Unit (SIU)
	7.1 Introduction
	7.1.1 Block Diagram
	7.1.2 Features
	7.1.3 Modes of Operation
	7.1.3.1 Normal Mode
	7.1.3.2 Debug Mode

	7.2 External Signal Description
	7.2.1 Ports vs. General-Purpose I/O Pins

	7.3 Memory Map and Registers
	7.3.1 Module Memory Map
	7.3.2 Register Descriptions
	7.3.2.1 MCU ID Register (SIU_MIDR)
	7.3.2.2 Reset Status Register (SIU_RSR)
	7.3.2.3 System Reset Control Register (SIU_SRCR)
	7.3.2.4 External Interrupt Status Register (SIU_EISR)
	7.3.2.5 DMA/Interrupt Request Enable Register (SIU_DIRER)
	7.3.2.6 DMA/Interrupt Request Select Register (SIU_DIRSR)
	7.3.2.7 Overrun Status Register (SIU_OSR)
	7.3.2.8 Overrun Request Enable Register (SIU_ORER)
	7.3.2.9 IRQ Rising-Edge Event Enable Register (SIU_IREER)
	7.3.2.10 IRQ Falling-Edge Event Enable Register (SIU_IFEER)
	7.3.2.11 External IRQ Digital Filter Register (SIU_IDFR)
	7.3.2.12 IRQ Filtered Input Register (SIU_IFIR)
	7.3.2.13 Pad Configuration Registers (SIU_PCR)
	7.3.2.14 GPIO Pin Data Output Registers (SIU_GPDO16_19-SIU_GPDO152_154)
	7.3.2.15 GPIO Pin Data Input Registers (SIU_GPDI0_3-SIU_GPDI152_154)
	7.3.2.16 IMUX Select Register 1 (SIU_ISEL1)
	7.3.2.17 IMUX Select Register 2 (SIU_ISEL2)
	7.3.2.18 IMUX Select Register 4 (SIU_ISEL4)
	7.3.2.19 Chip Configuration Register (SIU_CCR)
	7.3.2.20 External Clock Control Register (SIU_ECCR)
	7.3.2.21 General Purpose Register 0-3 (SIU_GPRn)
	7.3.2.22 System Clock Register (SIU_SYSCLK)
	7.3.2.23 Halt Register (SIU_HLTn)
	7.3.2.24 Halt Acknowledge Register (SIU_HLTACKn)
	7.3.2.25 eMIOS Select Register n (SIU_EMIOS_SELn)
	7.3.2.26 External Interrupt Select Register 2A (SIU_ISEL2A)
	7.3.2.27 Parallel GPIO Pin Data Output Register 0 (SIU_PGPDO0)
	7.3.2.28 Parallel GPIO Pin Data Output Register 1 (SIU_PGPDO1)
	7.3.2.29 Parallel GPIO Pin Data Output Register 2 (SIU_PGPDO2)
	7.3.2.30 Parallel GPIO Pin Data Output Register 3 (SIU_PGPDO3)
	7.3.2.31 Parallel GPIO Pin Data Output Register 4 (SIU_PGPDO4)
	7.3.2.32 Parallel GPIO Pin Data Input Register 0 (SIU_PGPDI0)
	7.3.2.33 Parallel GPIO Pin Data Input Register 1 (SIU_PGPDI1)
	7.3.2.34 Parallel GPIO Pin Data Input Register 2 (SIU_PGPDI2)
	7.3.2.35 Parallel GPIO Pin Data Input Register 3 (SIU_PGPDI3)
	7.3.2.36 Parallel GPIO Pin Data Input Register 4 (SIU_PGPDI4)
	7.3.2.37 Masked Parallel GPIO Pin Data Output Register 1 (SIU_MPGPDO1)
	7.3.2.38 Masked Parallel GPIO Pin Data Output Register 2 (SIU_MPGPDO2)
	7.3.2.39 Masked Parallel GPIO Pin Data Output Register 3 (SIU_MPGPDO3)
	7.3.2.40 Masked Parallel GPIO Pin Data Output Register 4 (SIU_MPGPDO4)
	7.3.2.41 Masked Parallel GPIO Pin Data Output Register 5 (SIU_MPGPDO5)
	7.3.2.42 Masked Parallel GPIO Pin Data Output Register 6 (SIU_MPGPDO6)
	7.3.2.43 Masked Parallel GPIO Pin Data Output Register 7 (SIU_MPGPDO7)
	7.3.2.44 Masked Parallel GPIO Pin Data Output Register 8 (SIU_MPGPDO8)
	7.3.2.45 Masked Parallel GPIO Pin Data Output Register 9 (SIU_MPGPDO9)
	7.3.2.46 Masked Serial GPO Register for DSPI_A High (SIU_DSPIAH)
	7.3.2.47 Masked Serial GPO Register for DSPI_A Low (SIU_DSPIAL)
	7.3.2.48 Masked Serial GPO Register for DSPI_B High (SIU_DSPIBH)
	7.3.2.49 Masked Serial GPO Register for DSPI_B Low (SIU_DSPIBL)
	7.3.2.50 Masked Serial GPO Register for DSPI_C High (SIU_DSPICH)
	7.3.2.51 Masked Serial GPO Register for DSPI_C Low (SIU_DSPICL)
	7.3.2.52 Masked Serial GPO Register for DSPI_D High (SIU_DSPIDH)
	7.3.2.53 Masked Serial GPO Register for DSPI_D Low (SIU_DSPIDL)
	7.3.2.54 eMIOS Select Register for DSPI_A (SIU_EMIOSA)
	7.3.2.55 SIU_DSPIAH/L Select Register for DSPI_A (SIU_DSPIAHLA)
	7.3.2.56 eMIOS Select Register for DSPI_B (SIU_EMIOSB)
	7.3.2.57 SIU_DSPIBH/L Select Register for DSPI_B (SIU_DSPIAHLB)
	7.3.2.58 eMIOS Select Register for DSPI_C (SIU_EMIOSC)
	7.3.2.59 SIU_DSPICH/L Select Register for DSPI_C (SIU_DSPICHLC)
	7.3.2.60 eMIOS Select Register for DSPI_D (SIU_EMIOSD)
	7.3.2.61 SIU_DSPIDH/L Select Register for DSPI_D (SIU_DSPIDHLD)

	7.4 Functional Description
	7.4.1 System Configuration
	7.4.1.1 Boot Configuration
	7.4.1.2 Pad Configuration

	7.4.2 Reset Control
	7.4.3 External Interrupt
	7.4.4 GPIO Operation
	7.4.5 Internal Multiplexing
	7.4.5.1 ADC External Trigger Input Multiplexing
	7.4.5.2 SIU External Interrupt Input Multiplexing
	7.4.5.3 SIU EMIOS/DSPI Multiplexing

	Chapter 8 Boot Assist Module (BAM)
	8.1 Introduction
	8.1.1 Features
	8.1.2 Modes of Operation
	8.1.2.1 Normal Mode
	8.1.2.2 Debug Mode
	8.1.2.3 Internal-Boot Mode
	8.1.2.4 Serial-Boot Mode

	8.2 Memory Map and Registers
	8.2.1 Module Memory Map
	8.2.2 Register Descriptions

	8.3 Functional Description
	8.3.1 BAM Program Resources
	8.3.2 BAM Program Operation
	8.3.3 Features
	8.3.3.1 Internal-Boot Mode
	8.3.3.2 Serial-Boot Mode Features

	Chapter 9 Interrupts and Interrupt Controller (INTC)
	9.1 Introduction
	9.1.1 Block Diagram
	9.1.2 Interrupt Controller Features
	9.1.3 Modes of Operation
	9.1.3.1 Software Vector Mode
	9.1.3.2 Hardware Vector Mode

	9.2 External Signal Description
	9.3 Memory Map and Registers
	9.3.1 INTC Memory Map
	9.3.2 Register Descriptions
	9.3.2.1 INTC Module Configuration Register (INTC_MCR)
	9.3.2.2 INTC Current Priority Register for Processor 0 (Z6) (INTC_CPR_PRC0)
	9.3.2.3 INTC Current Priority Register for Processor 1 (Z0) (INTC_CPR_PRC1)
	9.3.2.4 INTC Interrupt Acknowledge Register for Processor 0 (Z6) (INTC_IACKR_PRC0)
	9.3.2.5 INTC Interrupt Acknowledge Register for Processor 1 (Z0) (INTC_IACKR_PRC1)
	9.3.2.6 INTC End-of-Interrupt Register for Processor 0 (Z6) (INTC_EOIR_PRC0)
	9.3.2.7 INTC End-of-Interrupt Register for Processor 1 (Z0) (INTC_EOIR_PRC1)
	9.3.2.8 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-INTC_SSCIR4_7)
	9.3.2.9 INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR312_315)

	9.4 Functional Description
	9.4.1 External Interrupt Request Sources
	9.4.1.1 Peripheral Interrupt Requests
	9.4.1.2 Software Settable Interrupt Requests
	9.4.1.3 Unique Vector for Each Interrupt Request Source

	9.4.2 Priority Management
	9.4.2.1 Current Priority and Preemption
	9.4.2.2 Last-In First-Out (LIFO)

	9.4.3 Details on Handshaking with Processor
	9.4.3.1 Software Vector Mode Handshaking
	9.4.3.2 Hardware Vector Mode Handshaking

	9.5 Initialization/Application Information
	9.5.1 Initialization Flow
	9.5.2 Interrupt Exception Handler
	9.5.2.1 Software Vector Mode
	9.5.2.2 Hardware Vector Mode

	9.5.3 ISR, RTOS, and Task Hierarchy
	9.5.4 Order of Execution
	9.5.5 Priority Ceiling Protocol
	9.5.5.1 Elevating Priority
	9.5.5.2 Ensuring Coherency

	9.5.6 Selecting Priorities According to Request Rates and Deadlines
	9.5.7 Software Settable Interrupt Requests
	9.5.7.1 Scheduling a Lower Priority Portion of an ISR
	9.5.7.2 Scheduling an ISR on Another Processor

	9.5.8 Lowering Priority Within an ISR
	9.5.9 Negating an Interrupt Request Outside of its ISR
	9.5.9.1 Negating an Interrupt Request as a Side Effect of an ISR
	9.5.9.2 Negating Multiple Interrupt Requests in One ISR
	9.5.9.3 Proper Setting of Interrupt Request Priority

	9.5.10 Examining LIFO Contents

	9.6 Non-Maskable Interrupt (NMI)
	9.7 Dynamic Interrupt Priority Elevation
	9.7.1 e200z6 Dynamic Priority Elevation
	9.7.2 e200z0 Dynamic Priority Elevation
	9.7.3 eDMA Dynamic Interrupt Priority Elevation

	Chapter 10 General-Purpose Static RAM (SRAM)
	10.1 Introduction
	10.1.1 Block Diagram
	10.1.2 Features
	10.1.3 Modes of Operation
	10.1.3.1 Normal (Functional) Mode
	10.1.3.2 Sleep Mode

	10.2 External Signal Description
	10.3 Memory Map and Registers
	10.4 Functional Description
	10.5 SRAM ECC Mechanism
	10.5.1 Access Timing
	10.5.2 Reset Operation

	10.6 DMA Requests
	10.7 Interrupt Requests
	10.8 Initialization and Application Information
	10.8.1 Example Code

	Chapter 11 Flash Memory Array and Control
	11.1 Introduction
	11.1.1 Block Diagram
	11.1.2 Features
	11.1.3 Modes of Operation
	11.1.3.1 Flash User Mode
	11.1.3.2 Sleep Mode
	11.1.3.3 User Test Mode (UTest)

	11.2 External Signal Description
	11.3 Memory Map and Registers
	11.3.1 Module Memory Map
	11.3.2 Register Descriptions
	11.3.2.1 Module Configuration Register (MCR)
	11.3.2.2 Low/Mid Address Space Block Locking Register (LML)
	11.3.2.3 High Address Space Block Locking Register (HBL)
	11.3.2.4 Secondary Low/Mid Address Space Block Locking Register (SLL)
	11.3.2.5 Low/Mid Address Space Block Select Register (LMS)
	11.3.2.6 High Address Space Block Select Register (HBS)
	11.3.2.7 Address Register (ADR)
	11.3.2.8 Platform Flash Configuration Register for Port n (PFCRPn)
	11.3.2.9 Platform Flash Access Protection Register (PFAPR)
	11.3.2.10 PFlash Supervisor Access Control Register (PFSACC)
	11.3.2.11 PFlash Data Access Control Register (PFDACC)
	11.3.2.12 User Test Register 0 (UT0)
	11.3.2.13 User Test Register 1 (UT1)
	11.3.2.14 User Test Register 2 (UT2)
	11.3.2.15 User Multiple Input Signature Register [0:4] (UMn)

	11.4 Functional Description
	11.4.1 Flash User Mode
	11.4.1.1 Flash Read and Write
	11.4.1.2 Read While Write (RWW)
	11.4.1.3 Flash Programming
	11.4.1.4 Flash Erase
	11.4.1.5 Flash Erase Suspend/Resume

	11.4.2 UTest Mode
	11.4.2.1 Array Integrity Self Check
	11.4.2.2 Factory Margin Read
	11.4.2.3 ECC Logic Check

	11.4.3 Flash Shadow Block
	11.4.4 Flash Sleep Mode
	11.4.5 Flash Reset
	11.4.6 DMA Requests
	11.4.7 Interrupt Requests

	Chapter 12 e200z6 Core (Z6)
	12.1 Introduction
	12.1.1 Block Diagram
	12.1.2 Overview
	12.1.3 Features
	12.1.3.1 Instruction Unit Features
	12.1.3.2 Integer Unit Features
	12.1.3.3 Load/Store Unit Features
	12.1.3.4 MMU Features
	12.1.3.5 L1 Cache Features
	12.1.3.6 BIU Features

	12.1.4 Microarchitecture Summary

	12.2 Core Registers and Programmer’s Model
	12.2.1 Power Architecture Registers
	12.2.1.1 User-Level Registers
	12.2.1.2 Supervisor-Level Only Registers

	12.2.2 Core-Specific Registers
	12.2.2.1 User-Level Registers
	12.2.2.2 Supervisor-Level Registers

	12.2.3 e200z6 Core Complex Features Not Supported in the Device

	12.3 Functional Description
	12.3.1 Memory Management Unit (MMU)
	12.3.1.1 Translation Lookaside Buffer (TLB)
	12.3.1.2 Translation Flow
	12.3.1.3 Effective to Real Address Translation
	12.3.1.4 Permissions
	12.3.1.5 MMU Assist Registers (MAS[0:4], MAS[6])

	12.3.2 L1 Cache
	12.3.2.1 Cache Organization
	12.3.2.2 Cache Lookup
	12.3.2.3 Cache Line Replacement Algorithm
	12.3.2.4 Cache Power Reduction
	12.3.2.5 L1 Cache Control and Status Register 0 (L1CSR0)
	12.3.2.6 L1 Cache Configuration Register 0 (L1CFG0)

	12.3.3 Interrupt Types
	12.3.4 Bus Interface Unit (BIU)
	12.3.5 Timer Facilities
	12.3.6 Signal Processing Extension APU (SPE APU)
	12.3.6.1 Overview

	12.3.7 SPE Programming Model
	12.3.8 12.3.8 Wait Instruction

	12.4 Power Architecture Instruction Extensions - VLE
	12.5 External References

	Chapter 13 e200z0 Core (Z0)
	13.1 Introduction
	13.1.1 Features

	13.2 Microarchitecture Summary
	13.2.1 Instruction Unit Features
	13.2.2 Integer Unit Features
	13.2.3 Load/Store Unit Features
	13.2.4 e200z0 System Bus Features
	13.2.5 Nexus 2+ Features

	13.3 Core Registers and Programmer’s Model
	13.3.1 Power Architecture Book E Registers
	13.3.1.1 User-Level Registers
	13.3.1.2 Supervisor-Level Registers

	13.3.2 e200-Specific Special Purpose Registers
	13.3.2.1 User-Level Registers
	13.3.2.2 Supervisor-Level Registers

	13.3.3 e200z0 Core Complex Features not Supported on the MPC5668x

	13.4 Interrupt Types
	13.5 Bus Interface Unit (BIU)

	Chapter 14 Semaphores
	14.1 Introduction
	14.1.1 Block Diagram
	14.1.2 Features
	14.1.3 Modes of Operation

	14.2 Signal Description
	14.3 Memory Map and Registers
	14.3.1 Module Memory Map
	14.3.2 Register Descriptions
	14.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)
	14.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)
	14.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)
	14.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)
	14.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

	14.4 Functional Description
	14.4.1 Semaphore Usage

	14.5 Initialization Information
	14.6 Application Information
	14.7 DMA Requests
	14.8 Interrupt Requests

	Chapter 15 AMBA Crossbar Switch (AXBS)
	15.1 Introduction
	15.1.1 Block Diagram
	15.1.2 AXBS Controller Configuration
	15.1.3 Overview
	15.1.4 Features
	15.1.5 Modes of Operation
	15.1.5.1 Normal Mode
	15.1.5.2 Debug Mode

	15.2 Memory Map and Register Definition
	15.2.1 Register Descriptions
	15.2.1.1 Master Priority Registers (XBAR_MPRn)
	15.2.1.2 Slave General-Purpose Control Registers (XBAR_SGPCRn)
	15.2.1.3 Master General Purpose Control Registers (XBAR_MGPCRn)

	15.3 Functional Description
	15.3.1 Overview
	15.3.2 General Operation
	15.3.3 Master Ports
	15.3.4 Slave Ports
	15.3.5 Priority Assignment
	15.3.6 Arbitration
	15.3.6.1 Fixed Priority Operation
	15.3.6.2 Round-Robin Priority Operation

	Chapter 16 Peripheral Bridge (AIPS-lite)
	16.1 Introduction
	16.1.1 Block Diagram
	16.1.2 Features
	16.1.3 Modes of Operation

	16.2 External Signal Description
	16.3 Memory Map and Register Description
	16.4 Functional Description
	16.4.1 Read Cycles
	16.4.2 Write Cycles

	Chapter 17 Memory Protection Unit (MPU)
	17.1 Introduction
	17.1.1 Block Diagram
	17.1.2 Features
	17.1.3 Modes of Operation

	17.2 Signal Description
	17.3 Memory Map and Registers
	17.3.1 Module Memory Map
	17.3.2 Register Descriptions
	17.3.2.1 MPU Control/Error Status Register (MPU_CESR)
	17.3.2.2 MPU Error Address Register, MPU Port 0 to 3 (MPU_EARn)
	17.3.2.3 MPU Error Detail Register, MPU Port 0 to 3 (MPU_EDRn)
	17.3.2.4 MPU Region Descriptor n (MPU_RGDn)
	17.3.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

	17.4 Functional Description
	17.4.1 Access Evaluation Macro
	17.4.1.1 Access Evaluation-Hit Determination
	17.4.1.2 Access Evaluation-Privilege Violation Determination

	17.4.2 Putting It All Together and AHB Error Terminations

	17.5 Initialization Information
	17.6 Application Information

	Chapter 18 Error Correction Status Module (ECSM)
	18.1 Introduction
	18.1.1 Features

	18.2 Memory Map and Registers
	18.2.1 Module Memory Map
	18.2.2 Register Descriptions
	18.2.2.1 FEC Burst Optimization Master Control Register (FBOMCR)
	18.2.2.2 ECC Configuration Register (ECR)
	18.2.2.3 ECC Status Register (ESR)
	18.2.2.4 ECC Error Generation Register (EEGR)
	18.2.2.5 Platform Flash ECC Address Register (PFEAR)
	18.2.2.6 Platform Flash ECC Master Number Register (PFEMR)
	18.2.2.7 Platform Flash ECC Attributes Register (PFEAT)
	18.2.2.8 Platform Flash ECC Data Register (PFEDR)
	18.2.2.9 Platform RAM ECC Address Register (PREAR)
	18.2.2.10 Platform RAM ECC Syndrome Register (PRESR)
	18.2.2.11 Platform RAM ECC Master Number Register (PREMR)
	18.2.2.12 Platform RAM ECC Attributes Register (PREAT)
	18.2.2.13 Platform RAM ECC Data Register (PREDR)

	Chapter 19 Software Watchdog Timer (SWT)
	19.1 Introduction
	19.1.1 Features
	19.1.2 Modes of Operation

	19.2 External Signal Description
	19.3 Memory Map and Register Definition
	19.3.1 Memory Map
	19.3.2 Register Descriptions
	19.3.2.1 SWT Control Register (SWT_CR)
	19.3.2.2 SWT Interrupt Register (SWT_IR)
	19.3.2.3 SWT Time-Out Register (SWT_TO)
	19.3.2.4 SWT Window Register (SWT_WN)
	19.3.2.5 SWT Service Register (SWT_SR)
	19.3.2.6 SWT Counter Output Register (SWT_CO)
	19.3.2.7 SWT Service Key Register (SWT_SK)

	19.4 Functional Description

	Chapter 20 System Timer Module (STM)
	20.1 Overview
	20.1.1 Features
	20.1.2 Modes of Operation
	20.1.3 Clocking
	20.1.4 Interrupts

	20.2 External Signal Description
	20.3 Memory Map and Register Definition
	20.3.1 Memory Map
	20.3.2 Register Descriptions
	20.3.2.1 STM Control Register (STM_CR)
	20.3.2.2 STM Count Register (STM_CNT)
	20.3.2.3 STM Channel Control Register (STM_CCRn)
	20.3.2.4 STM Channel Interrupt Register (STM_CIRn)
	20.3.2.5 STM Channel Compare Register (STM_CMPn)

	20.4 Functional Description

	Chapter 21 Periodic Interrupt Timer (PIT)
	21.1 Introduction
	21.1.1 Block Diagram
	21.1.2 Features
	21.1.3 Modes of Operation

	21.2 Signal Description
	21.2.1 External Signal Description

	21.3 Memory Map and Registers
	21.3.1 Module Memory Map
	21.3.2 Register Descriptions
	21.3.2.1 PIT Module Control Register (PITMCR)
	21.3.2.2 Timer n Load Value Register (LDVALn)
	21.3.2.3 Timer n Current Value Register (CVALn)
	21.3.2.4 Timer n Control Register (TCTRLn)
	21.3.2.5 Timer n Flag Register (TFLGn)

	21.4 Functional Description
	21.4.1 Timers
	21.4.2 Debug Mode
	21.4.3 Interrupts

	21.5 Initialization and Application Information
	21.5.1 Example Configuration

	Chapter 22 DMA Channel Multiplexer (DMA_MUX)
	22.1 Introduction
	22.1.1 Block Diagram
	22.1.2 Features
	22.1.3 Modes of Operation

	22.2 External Signal Description
	22.3 Memory Map and Registers
	22.3.1 Module Memory Map
	22.3.2 Register Descriptions
	22.3.2.1 Channel Configuration Registers (CHCONFIGx)

	22.4 Functional Description
	22.4.1 DMA Channels 0-7
	22.4.2 DMA Channels 8-31
	22.4.3 Always Enabled DMA Sources

	22.5 Initialization/Application Information
	22.5.1 Reset
	22.5.2 Enabling and Configuring Sources
	22.5.2.1 Enabling a Source with Periodic Triggering
	22.5.2.2 Enabling a Source without Periodic Triggering
	22.5.2.3 Disabling a Source
	22.5.2.4 Switching the Source of a DMA Channel

	22.6 Interrupts

	Chapter 23 Enhanced Direct Memory Access Controller (eDMA)
	23.1 Introduction
	23.1.1 Block Diagram
	23.1.2 Features
	23.1.3 Modes of Operation
	23.1.3.1 Normal Mode
	23.1.3.2 Debug Mode

	23.2 External Signal Description
	23.3 Memory Map and Registers
	23.3.1 Module Memory Map
	23.3.2 Register Descriptions
	23.3.2.1 eDMA Control Register (EDMA_CR)
	23.3.2.2 eDMA Error Status Register (EDMA_ESR)
	23.3.2.3 eDMA Enable Request Register (EDMA_ERQRL)
	23.3.2.4 eDMA Enable Error Interrupt Register (EDMA_EEIRL)
	23.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)
	23.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)
	23.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)
	23.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)
	23.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)
	23.3.2.10 eDMA Clear Error Register (EDMA_CER)
	23.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)
	23.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)
	23.3.2.13 eDMA Interrupt Request Register (EDMA_IRQRL)
	23.3.2.14 eDMA Error Register (EDMA_ERL)
	23.3.2.15 DMA Hardware Request Status (EDMA_HRSL)
	23.3.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)
	23.3.2.17 Transfer Control Descriptor (TCD)

	23.4 Functional Description
	23.4.1 eDMA Basic Data Flow

	23.5 Initialization / Application Information
	23.5.1 eDMA Initialization
	23.5.2 DMA Programming Errors
	23.5.3 DMA Request Assignments
	23.5.4 DMA Arbitration Mode Considerations
	23.5.4.1 Fixed-Group Arbitration, Fixed-Channel Arbitration
	23.5.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration
	23.5.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration
	23.5.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

	23.5.5 DMA Transfer
	23.5.5.1 Single Request
	23.5.5.2 Multiple Requests
	23.5.5.3 Modulo Feature

	23.5.6 TCD Status
	23.5.6.1 Minor Loop Complete
	23.5.6.2 Active Channel TCD Reads
	23.5.6.3 Preemption Status

	23.5.7 Channel Linking
	23.5.8 Dynamic Programming
	23.5.8.1 Dynamic Channel Linking and Dynamic Scatter-Gather Operation

	Chapter 24 Fast Ethernet Controller (FEC)
	24.1 Introduction
	24.1.1 Block Diagram
	24.1.2 Overview
	24.1.3 Features

	24.2 Modes of Operation
	24.2.1 Full and Half Duplex Operation
	24.2.2 Interface Options
	24.2.2.1 10 Mbps and 100 Mbps MII Interface
	24.2.2.2 10 Mbps 7-Wire Interface Operation

	24.2.3 Address Recognition Options
	24.2.4 Internal Loopback

	24.3 Programming Model
	24.3.1 Top Level Module Memory Map
	24.3.2 Detailed Memory Map (Control/Status Registers)
	24.3.3 MIB Block Counters Memory Map
	24.3.4 Registers
	24.3.4.1 FEC Burst Optimization Master Control Register (FBOMCR)
	24.3.4.2 Ethernet Interrupt Event Register (EIR)
	24.3.4.3 Ethernet Interrupt Mask Register (EIMR)
	24.3.4.4 Receive Descriptor Active Register (RDAR)
	24.3.4.5 Transmit Descriptor Active Register (TDAR)
	24.3.4.6 Ethernet Control Register (ECR)
	24.3.4.7 MII Management Frame Register (MMFR)
	24.3.4.8 MII Speed Control Register (MSCR)
	24.3.4.9 MIB Control Register (MIBC)
	24.3.4.10 Receive Control Register (RCR)
	24.3.4.11 Transmit Control Register (TCR)
	24.3.4.12 Physical Address Low Register (PALR)
	24.3.4.13 Physical Address Upper Register (PAUR)
	24.3.4.14 Opcode/Pause Duration Register (OPD)
	24.3.4.15 Descriptor Individual Upper Address Register (IAUR)
	24.3.4.16 Descriptor Individual Lower Address (IALR)
	24.3.4.17 Descriptor Group Upper Address (GAUR)
	24.3.4.18 Descriptor Group Lower Address (GALR)
	24.3.4.19 FIFO Transmit FIFO Watermark Register (TFWR)
	24.3.4.20 FIFO Receive Bound Register (FRBR)
	24.3.4.21 FIFO Receive Start Register (FRSR)
	24.3.4.22 Receive Descriptor Ring Start (ERDSR)
	24.3.4.23 Transmit Buffer Descriptor Ring Start Register (ETDSR)
	24.3.4.24 Receive Buffer Size Register (EMRBR)

	24.4 Functional Description
	24.4.1 Initialization Sequence
	24.4.1.1 Hardware Controlled Initialization

	24.4.2 User Initialization (Prior to Asserting ECR[ETHER_EN])
	24.4.3 Microcontroller Initialization
	24.4.4 User Initialization (After Asserting ECR[ETHER_EN])
	24.4.5 Network Interface Options
	24.4.6 FEC Frame Transmission
	24.4.7 FEC Frame Reception
	24.4.8 Ethernet Address Recognition
	24.4.9 Hash Algorithm
	24.4.10 Full Duplex Flow Control
	24.4.11 Inter-Packet Gap (IPG) Time
	24.4.12 Collision Handling
	24.4.13 Internal and External Loopback
	24.4.14 Ethernet Error-Handling Procedure
	24.4.14.1 Transmission Errors
	24.4.14.2 Reception Errors

	24.5 Buffer Descriptors
	24.5.1 Driver/DMA Operation with Buffer Descriptors
	24.5.1.1 Driver/DMA Operation with Transmit BDs
	24.5.1.2 Driver/DMA Operation with Receive BDs

	24.5.2 Ethernet Receive Buffer Descriptor (RxBD)
	24.5.3 Ethernet Transmit Buffer Descriptor (TxBD)

	Chapter 25 FlexRay Communication Controller (FlexRAY)
	25.1 Introduction
	25.1.1 Reference
	25.1.2 Glossary
	25.1.3 Color Coding
	25.1.4 Overview
	25.1.5 Features
	25.1.6 Modes of Operation
	25.1.6.1 Disabled Mode
	25.1.6.2 Normal Mode

	25.2 External Signal Description
	25.2.1 Detailed Signal Descriptions
	25.2.1.1 FR_A_RX - Receive Data Channel A
	25.2.1.2 FR_A_TX - Transmit Data Channel A
	25.2.1.3 FR_A_TX_EN - Transmit Enable Channel A
	25.2.1.4 FR_B_RX - Receive Data Channel B
	25.2.1.5 FR_B_TX - Transmit Data Channel B
	25.2.1.6 FR_B_TX_EN - Transmit Enable Channel B
	25.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1] - , FR_DBG[0] - Strobe Signals

	25.3 Controller Host Interface Clocking
	25.4 Protocol Engine Clocking
	25.4.1 Oscillator Clocking
	25.4.2 PLL Clocking

	25.5 Memory Map and Register Description
	25.5.1 Memory Map
	25.5.2 Register Descriptions
	25.5.2.1 Register Reset
	25.5.2.2 Register Write Access
	25.5.2.3 Module Version Register (MVR)
	25.5.2.4 Module Configuration Register (MCR)
	25.5.2.5 System Memory Base Address Register (SYMBADR)
	25.5.2.6 Strobe Signal Control Register (STBSCR)
	25.5.2.7 Message Buffer Data Size Register (MBDSR)
	25.5.2.8 Message Buffer Segment Size and Utilization Register (MBSSUTR)
	25.5.2.9 Protocol Operation Control Register (POCR)
	25.5.2.10 Global Interrupt Flag and Enable Register (GIFER)
	25.5.2.11 Protocol Interrupt Flag Register 0 (PIFR0)
	25.5.2.12 Protocol Interrupt Flag Register 1 (PIFR1)
	25.5.2.13 Protocol Interrupt Enable Register 0 (PIER0)
	25.5.2.14 Protocol Interrupt Enable Register 1 (PIER1)
	25.5.2.15 CHI Error Flag Register (CHIERFR)
	25.5.2.16 Message Buffer Interrupt Vector Register (MBIVEC)
	25.5.2.17 Channel A Status Error Counter Register (CASERCR)
	25.5.2.18 Channel B Status Error Counter Register (CBSERCR)
	25.5.2.19 Protocol Status Register 0 (PSR0)
	25.5.2.20 Protocol Status Register 1 (PSR1)
	25.5.2.21 Protocol Status Register 2 (PSR2)
	25.5.2.22 Protocol Status Register 3 (PSR3)
	25.5.2.23 Macrotick Counter Register (MTCTR)
	25.5.2.24 Cycle Counter Register (CYCTR)
	25.5.2.25 Slot Counter Channel A Register (SLTCTAR)
	25.5.2.26 Slot Counter Channel B Register (SLTCTBR)
	25.5.2.27 Rate Correction Value Register (RTCORVR)
	25.5.2.28 Offset Correction Value Register (OFCORVR)
	25.5.2.29 Combined Interrupt Flag Register (CIFRR)
	25.5.2.30 System Memory Access Time-Out Register (SYMATOR)
	25.5.2.31 Sync Frame Counter Register (SFCNTR)
	25.5.2.32 Sync Frame Table Offset Register (SFTOR)
	25.5.2.33 Sync Frame Table Configuration, Control, Status Register (SFTCCSR)
	25.5.2.34 Sync Frame ID Rejection Filter Register (SFIDRFR)
	25.5.2.35 Sync Frame ID Acceptance Filter Value Register (SFIDAFVR)
	25.5.2.36 Sync Frame ID Acceptance Filter Mask Register (SFIDAFMR)
	25.5.2.37 Network Management Vector Registers (NMVR0-NMVR5)
	25.5.2.38 Network Management Vector Length Register (NMVLR)
	25.5.2.39 Timer Configuration and Control Register (TICCR)
	25.5.2.40 Timer 1 Cycle Set Register (TI1CYSR)
	25.5.2.41 Timer 1 Macrotick Offset Register (TI1MTOR)
	25.5.2.42 Timer 2 Configuration Register 0 (TI2CR0)
	25.5.2.43 Timer 2 Configuration Register 1 (TI2CR1)
	25.5.2.44 Slot Status Selection Register (SSSR)
	25.5.2.45 Slot Status Counter Condition Register (SSCCR)
	25.5.2.46 Slot Status Registers (SSR0-SSR7)
	25.5.2.47 Slot Status Counter Registers (SSCR0-SSCR3)
	25.5.2.48 MTS A Configuration Register (MTSACFR)
	25.5.2.49 MTS B Configuration Register (MTSBCFR)
	25.5.2.50 Receive Shadow Buffer Index Register (RSBIR)
	25.5.2.51 Receive FIFO System Memory Base Address Register (RFSYMBADR)
	25.5.2.52 Receive FIFO Periodic Timer Register (RFPTR)
	25.5.2.53 Receive FIFO Watermark and Selection Register (RFWMSR)
	25.5.2.54 Receive FIFO Start Index Register (RFSIR)
	25.5.2.55 Receive FIFO Depth and Size Register (RFDSR)
	25.5.2.56 Receive FIFO A Read Index Register (RFARIR)
	25.5.2.57 Receive FIFO B Read Index Register (RFBRIR)
	25.5.2.58 Receive FIFO Fill Level and POP Count Register (RFFLPCR)
	25.5.2.59 Receive FIFO Message ID Acceptance Filter Value Register (RFMIDAFVR)
	25.5.2.60 Receive FIFO Message ID Acceptance Filter Mask Register (RFMIAFMR)
	25.5.2.61 Receive FIFO Frame ID Rejection Filter Value Register (RFFIDRFVR)
	25.5.2.62 Receive FIFO Frame ID Rejection Filter Mask Register (RFFIDRFMR)
	25.5.2.63 Receive FIFO Range Filter Configuration Register (RFRFCFR)
	25.5.2.64 Receive FIFO Range Filter Control Register (RFRFCTR)
	25.5.2.65 Last Dynamic Transmit Slot Channel A Register (LDTXSLAR)
	25.5.2.66 Last Dynamic Transmit Slot Channel B Register (LDTXSLBR)
	25.5.2.67 Protocol Configuration Registers
	25.5.2.68 Message Buffer Configuration, Control, Status Registers (MBCCSRn)
	25.5.2.69 Message Buffer Cycle Counter Filter Registers (MBCCFRn)
	25.5.2.70 Message Buffer Frame ID Registers (MBFIDRn)
	25.5.2.71 Message Buffer Index Registers (MBIDXRn)

	25.6 Functional Description
	25.6.1 Message Buffer Concept
	25.6.2 Physical Message Buffer
	25.6.2.1 Message Buffer Header Field
	25.6.2.2 Message Buffer Data Field

	25.6.3 Message Buffer Types
	25.6.3.1 Individual Message Buffers
	25.6.3.2 Receive Shadow Buffers
	25.6.3.3 Receive FIFO
	25.6.3.4 Message Buffer Configuration and Control Data
	25.6.3.5 Individual Message Buffer Control Data
	25.6.3.6 Receive Shadow Buffer Configuration Data
	25.6.3.7 Receive FIFO Control and Configuration Data

	25.6.4 FlexRay Memory Layout
	25.6.4.1 FlexRay Memory Layout (MCR[FAM] = 0)
	25.6.4.2 FlexRay Memory Layout (MCR[FAM] = 1)
	25.6.4.3 Message Buffer Header Area (MCR[FAM] = 0)
	25.6.4.4 Message Buffer Header Area (MCR[FAM] = 1)
	25.6.4.5 FIFO Message Buffer Header Area (MCR[FAM] = 1)
	25.6.4.6 Message Buffer Data Area
	25.6.4.7 Sync Frame Table Area

	25.6.5 Physical Message Buffer Description
	25.6.5.1 Message Buffer Protection and Data Consistency
	25.6.5.2 Message Buffer Header Field Description
	25.6.5.3 Message Buffer Data Field Description

	25.6.6 Individual Message Buffer Functional Description
	25.6.6.1 Individual Message Buffer Configuration
	25.6.6.2 Single Transmit Message Buffers
	25.6.6.3 Receive Message Buffers
	25.6.6.4 Double Transmit Message Buffer

	25.6.7 Individual Message Buffer Search
	25.6.7.1 Message Buffer Cycle Counter Filtering
	25.6.7.2 Message Buffer Channel Assignment Consistency
	25.6.7.3 Node Related Slot Multiplexing
	25.6.7.4 Message Buffer Search Error

	25.6.8 Individual Message Buffer Reconfiguration
	25.6.8.1 Reconfiguration Schemes

	25.6.9 Receive FIFOs
	25.6.9.1 Overview
	25.6.9.2 FIFO Configuration
	25.6.9.3 FIFO Periodic Timer
	25.6.9.4 FIFO Reception
	25.6.9.5 FIFO Almost-Full Interrupt Generation
	25.6.9.6 FIFO Overflow Error Generation
	25.6.9.7 FIFO Message Access
	25.6.9.8 FIFO Update
	25.6.9.9 FIFO Filtering

	25.6.10 Channel Device Modes
	25.6.10.1 Dual Channel Device Mode
	25.6.10.2 Single Channel Device Mode

	25.6.11 External Clock Synchronization
	25.6.12 Sync Frame ID and Sync Frame Deviation Tables
	25.6.12.1 Sync Frame ID Table Content
	25.6.12.2 Sync Frame Deviation Table Content
	25.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup
	25.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation
	25.6.12.5 Sync Frame Table Access

	25.6.13 MTS Generation
	25.6.14 Key Slot Transmission
	25.6.14.1 Key Slot Assignment
	25.6.14.2 Key Slot Transmission in POC:startup
	25.6.14.3 Key Slot Transmission in POC:normal active

	25.6.15 Sync Frame Filtering
	25.6.15.1 Sync Frame Acceptance Filtering
	25.6.15.2 Sync Frame Rejection Filtering

	25.6.16 Strobe Signal Support
	25.6.16.1 Strobe Signal Assignment
	25.6.16.2 Strobe Signal Timing

	25.6.17 Timer Support
	25.6.17.1 Absolute Timer T1
	25.6.17.2 Absolute / Relative Timer T2

	25.6.18 Slot Status Monitoring
	25.6.18.1 Channel Status Error Counter Registers
	25.6.18.2 Protocol Status Registers
	25.6.18.3 Slot Status Registers
	25.6.18.4 Slot Status Counter Registers
	25.6.18.5 Message Buffer Slot Status Field

	25.6.19 System Bus Access
	25.6.19.1 System Bus Illegal Address Access
	25.6.19.2 System Bus Access Timeout
	25.6.19.3 Continue after System Bus Failure
	25.6.19.4 Freeze after System Bus Failure

	25.6.20 Interrupt Support
	25.6.20.1 Individual Interrupt Sources
	25.6.20.2 Combined Interrupt Sources

	25.6.21 Lower Bit Rate Support

	25.7 Application Information
	25.7.1 Initialization Sequence
	25.7.1.1 Module Initialization
	25.7.1.2 Protocol Initialization

	25.7.2 Shut Down Sequence
	25.7.3 Number of Usable Message Buffers
	25.7.4 Protocol Control Command Execution
	25.7.5 Message Buffer Search on Simple Message Buffer Configuration
	25.7.5.1 Simple Message Buffer Configuration
	25.7.5.2 Behavior in Static Segment
	25.7.5.3 Behavior in Dynamic Segment

	Chapter 26 Media Local Bus (MLB)
	26.1 Introduction
	26.1.1 Block Diagram
	26.1.2 Features
	26.1.3 Overview
	26.1.4 Modes of Operation

	26.2 External Signal Description
	26.3 Memory Map and Register Description
	26.3.1 Memory Map
	26.3.2 Register Descriptions
	26.3.2.1 Device Control Configuration Register (DCCR)
	26.3.2.2 System Status Configuration Register (SSCR)
	26.3.2.3 System Data Configuration Register (SDCR)
	26.3.2.4 System Mask Configuration Register (SMCR)
	26.3.2.5 Version Control Configuration Register (VCCR)
	26.3.2.6 Synchronous Base Address Configuration Register (SBCR)
	26.3.2.7 Asynchronous Base Address Configuration Register (ABCR)
	26.3.2.8 Control Base Address Configuration Register (CBCR)
	26.3.2.9 Isochronous Base Address Configuration Register (IBCR)
	26.3.2.10 Channel Interrupt Configuration Register (CICR)
	26.3.2.11 Channel n Entry Configuration Register
	26.3.2.12 Channel n Status Configuration Register
	26.3.2.13 Channel n Current Buffer Configuration Register
	26.3.2.14 Channel n Next Buffer Configuration Register
	26.3.2.15 Local Channel n Buffer Configuration Register

	26.4 Functional Description
	26.4.1 Clocking Requirements
	26.4.1.1 Reset

	26.4.2 Interrupts
	26.4.3 System Memory Buffers
	26.4.4 Local Channel Buffer RAM
	26.4.4.1 Local Buffer Start Address
	26.4.4.2 Local Channel Buffer Depth

	26.4.5 Channel Arbiter
	26.4.5.1 Round Robin Arbitration

	26.4.6 DMA Controller (Ping-Pong Buffering)
	26.4.6.1 Asynchronous and Control Packet Handling
	26.4.6.2 Isochronous and Synchronous Data Handling

	26.4.7 DMA Controller (Circular Buffering)
	26.4.8 Streaming Channel Frame Synchronization
	26.4.9 Loop Back Test Mode

	26.5 Initialization Information
	26.5.1 Main Loop
	26.5.2 Initialize Device
	26.5.3 Initialize Channel
	26.5.4 Channel Interrupts
	26.5.5 System Interrupts

	Chapter 27 Enhanced Modular Input/Output Subsystem (eMIOS200)
	27.1 Introduction
	27.1.1 Block Diagram
	27.1.2 Features
	27.1.3 Modes of Operation
	27.1.4 eMIOS200 Channel Configurations
	27.1.4.1 Type A: Counter Channels
	27.1.4.2 Type B: Complex Channels
	27.1.4.3 Type C: Lighting Channels

	27.2 External Signal Description
	27.2.1 eMIOS[n]
	27.2.2 Output Disable Input - eMIOS200 Output Disable Input Signal

	27.3 Memory Map and Register Description
	27.3.1 Memory Map
	27.3.2 Register Descriptions
	27.3.2.1 eMIOS200 Module Configuration Register (EMIOS_MCR)
	27.3.2.2 eMIOS200 Global Flag Register (EMIOS_GFR)
	27.3.2.3 eMIOS200 Output Update Disable Register (EMIOS_OUDR)
	27.3.2.4 eMIOS200 Disable Channel Register (EMIOS_UCDIS)
	27.3.2.5 eMIOS200 A Register (EMIOS_CADR[n])
	27.3.2.6 eMIOS200 B Register (EMIOS_CBDR[n])
	27.3.2.7 eMIOS200 Counter Register (EMIOS_CCNTR[n])
	27.3.2.8 eMIOS200 Control Register (EMIOS_CCR[n])
	27.3.2.9 eMIOS200 Status Register (EMIOS_CSR[n])
	27.3.2.10 eMIOS200 Alternate A Register (EMIOS_ALTA[n])

	27.4 Functional Description
	27.4.1 Unified Channel (UC)
	27.4.1.1 Unified Channel Modes of Operation
	27.4.1.2 Input Programmable Filter (IPF)
	27.4.1.3 Clock Prescaler (CP)
	27.4.1.4 Effect of Freeze on the Unified Channel

	27.4.2 IP Bus Interface Unit (BIU)
	27.4.2.1 Effect of Freeze on the BIU

	27.4.3 Global Clock Prescaler Submodule (GCP)
	27.4.3.1 Effect of Freeze on the GCP

	27.5 Reset
	27.6 Interrupts
	27.7 DMA Requests
	27.8 Initialization/Application Information
	27.8.1 Considerations
	27.8.2 Application Information
	27.8.3 Time Base Generation
	27.8.4 Coherent Accesses

	Chapter 28 Controller Area Network (FlexCAN)
	28.1 Introduction
	28.1.1 Block Diagram
	28.1.2 Features
	28.1.3 Modes of Operation
	28.1.3.1 Normal Mode
	28.1.3.2 Freeze Mode
	28.1.3.3 Listen-Only Mode
	28.1.3.4 Loop-Back Mode
	28.1.3.5 Module-Disabled Mode
	28.1.3.6 Halt Mode

	28.2 External Signal Description
	28.3 Memory Map and Registers
	28.3.1 Module Memory Map
	28.3.2 Message Buffer Structure
	28.3.3 Rx FIFO Structure
	28.3.4 Register Descriptions
	28.3.4.1 Module Configuration Register (CANx_MCR)
	28.3.4.2 Control Register (CANx_CTRL)
	28.3.4.3 Free-Running Timer (CANx_TIMER)
	28.3.4.4 Rx Mask Registers
	28.3.4.5 Error Counter Register (CANx_ECR)
	28.3.4.6 Error and Status Register (CANx_ESR)
	28.3.4.7 Interrupt Masks 2 Register (CANx_IMASK2)
	28.3.4.8 Interrupt Masks 1 Register (CANx_IMASK1)
	28.3.4.9 Interrupt Flags 2 Register (CANx_IFLAG2)
	28.3.4.10 Interrupt Flags 1 Register (CANx_IFLAG1)
	28.3.4.11 Rx Individual Mask Registers (CANx_RXIMR0 - CANx_RXIMR63)

	28.4 Functional Description
	28.4.1 Transmit Process
	28.4.2 Arbitration Process
	28.4.3 Receive Process
	28.4.4 Matching Process
	28.4.5 Data Coherence
	28.4.5.1 Transmission Abort Mechanism
	28.4.5.2 Message Buffer Deactivation
	28.4.5.3 Message Buffer Lock Mechanism

	28.4.6 Rx FIFO
	28.4.7 CAN Protocol Related Features
	28.4.7.1 Remote Frames
	28.4.7.2 Overload Frames
	28.4.7.3 Time Stamp
	28.4.7.4 Protocol Timing
	28.4.7.5 Arbitration and Matching Timing

	28.4.8 Modes of Operation Details
	28.4.8.1 Freeze Mode
	28.4.8.2 Module Disabled Mode

	28.4.9 Interrupts
	28.4.10 Bus Interface

	28.5 Initialization and Application Information
	28.5.1 FlexCAN Initialization Sequence

	Chapter 29 Deserial - Serial Peripheral Interface (DSPI)
	29.1 Introduction
	29.1.1 Block Diagram
	29.1.2 Features
	29.1.3 DSPI Configurations
	29.1.3.1 SPI Configuration
	29.1.3.2 DSI Configuration
	29.1.3.3 CSI Configuration

	29.1.4 Modes of Operation
	29.1.4.1 Master Mode
	29.1.4.2 Slave Mode
	29.1.4.3 Module Disable Mode
	29.1.4.4 Halt Mode
	29.1.4.5 Debug Mode

	29.2 External Signal Description
	29.3 Memory Map and Registers
	29.3.1 Module Memory Map
	29.3.2 Register Descriptions
	29.3.2.1 DSPI Module Configuration Register (DSPI_MCR)
	29.3.2.2 DSPI Transfer Count Register (DSPI_TCR)
	29.3.2.3 DSPI Clock and Transfer Attributes Registers 0-7 (DSPI_CTARn)
	29.3.2.4 DSPI Status Register (DSPI_SR)
	29.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)
	29.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)
	29.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)
	29.3.2.8 DSPI Transmit FIFO Registers 0-15 (DSPI_TXFRn)
	29.3.2.9 DSPI Receive FIFO Registers 0-3 (DSPI_RXFRn)
	29.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)
	29.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)
	29.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)
	29.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)
	29.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)
	29.3.2.15 DSPI DSI Configuration Register 1 (DSPI_DSICR1)

	29.4 Functional Description
	29.4.1 Modes of Operation
	29.4.1.1 Master Mode
	29.4.1.2 Slave Mode
	29.4.1.3 Module Disable Mode
	29.4.1.4 Halt Mode
	29.4.1.5 Debug Mode

	29.4.2 Start and Stop of DSPI Transfers
	29.4.3 Serial Peripheral Interface (SPI) Configuration
	29.4.3.1 SPI Master Mode
	29.4.3.2 SPI Slave Mode
	29.4.3.3 FIFO Disable Operation
	29.4.3.4 Transmit First-In First-Out (TX FIFO) Buffering Mechanism
	29.4.3.5 Receive First-In First-Out (RX FIFO) Buffering Mechanism

	29.4.4 Deserial Serial Interface (DSI) Configuration
	29.4.4.1 DSI Master Mode
	29.4.4.2 DSI Slave Mode
	29.4.4.3 DSI Serialization
	29.4.4.4 DSI Deserialization
	29.4.4.5 DSI Transfer Initiation Control

	29.4.5 Combined Serial Interface (CSI) Configuration
	29.4.5.1 CSI Serialization
	29.4.5.2 CSI Deserialization

	29.4.6 Buffered SPI Operation
	29.4.7 DSPI Baud Rate and Clock Delay Generation
	29.4.7.1 Baud Rate Generator
	29.4.7.2 PCS to SCK Delay (tCSC)
	29.4.7.3 After SCK Delay (tASC)
	29.4.7.4 Delay after Transfer (tDT)
	29.4.7.5 Peripheral Chip Select Strobe Enable (PCSS)

	29.4.8 Transfer Formats
	29.4.8.1 Classic SPI Transfer Format (CPHA = 0)
	29.4.8.2 Classic SPI Transfer Format (CPHA = 1)
	29.4.8.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)
	29.4.8.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)
	29.4.8.5 Continuous Selection Format
	29.4.8.6 Clock Polarity Switching Between DSPI Transfers

	29.4.9 Continuous Serial Communications Clock
	29.4.10 Timed Serial Bus (TSB)
	29.4.10.1 PCS Switch Over Timing
	29.4.10.2 TSB Command Frame Format
	29.4.10.3 TSB Data Frame Format

	29.4.11 Peripheral Chip Select Expansion and Deglitching
	29.4.12 DMA and Interrupt Conditions
	29.4.12.1 End of Queue Interrupt Request (EOQF)
	29.4.12.2 Transmit FIFO Fill Interrupt or DMA Request (TFFF)
	29.4.12.3 Transfer Complete Interrupt Request (TCF)
	29.4.12.4 Transmit FIFO Underflow Interrupt Request (TFUF)
	29.4.12.5 Receive FIFO Drain Interrupt or DMA Request (RFDF)
	29.4.12.6 Receive FIFO Overflow Interrupt Request
	29.4.12.7 DMA Requests
	29.4.12.8 Interrupt Requests

	29.4.13 Power Saving Features
	29.4.13.1 Halt Mode
	29.4.13.2 Module Disable Mode
	29.4.13.3 Slave Interface Signal Gating

	29.5 Initialization/Application Information
	29.5.1 How to Change Queues
	29.5.2 Baud Rate Settings
	29.5.3 Delay Settings
	29.5.4 Oak Family Compatibility with the DSPI
	29.5.5 Calculation of FIFO Pointer Addresses
	29.5.5.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO
	29.5.5.2 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

	Chapter 30 Enhanced Serial Communication Interface (eSCI)
	30.1 Introduction
	30.1.1 Block Diagram
	30.1.2 Features
	30.1.3 Modes of Operation
	30.1.3.1 SCI Mode
	30.1.3.2 LIN Mode
	30.1.3.3 Disabled Mode
	30.1.3.4 Halt Mode

	30.2 External Signal Description
	30.3 Memory Map and Registers
	30.3.1 Memory Map
	30.3.2 Register Descriptions
	30.3.2.1 eSCI Baud Rate Register (eSCI_BRR)
	30.3.2.2 eSCI Control Register 1 (eSCI_CR1)
	30.3.2.3 eSCI Control Register 2 (eSCI_CR2)
	30.3.2.4 eSCI Data Register (eSCI_DR)
	30.3.2.5 eSCI Interrupt Flag and Status Register 1 (eSCI_IFSR1)
	30.3.2.6 eSCI Interrupt Flag and Status Register 2 (eSCI_IFSR2)
	30.3.2.7 eSCI LIN Control Register 1 (eSCI_LCR1)
	30.3.2.8 eSCI LIN Control Register 2 (eSCI_LCR2)
	30.3.2.9 eSCI LIN Transmit Register (eSCI_LTR)
	30.3.2.10 eSCI LIN Receive Register (eSCI_LRR)
	30.3.2.11 eSCI LIN CRC Polynomial Register (eSCI_LPR)
	30.3.2.12 eSCI Control Register 3 (eSCI_CR3)

	30.4 Functional Description
	30.4.1 Module Control
	30.4.2 Frame Formats
	30.4.2.1 Data Frame Formats
	30.4.2.2 Break Character Formats
	30.4.2.3 Idle Character Formats

	30.4.3 Baud Rate and Clock Generation
	30.4.3.1 Module Clock
	30.4.3.2 Transmitter Clock
	30.4.3.3 Receiver Clock

	30.4.4 Baud Rate Tolerance
	30.4.4.1 Faster Receiver Tolerance
	30.4.4.2 Slower Receiver Tolerance

	30.4.5 SCI Mode
	30.4.5.1 SCI Mode Configuration
	30.4.5.2 Transmitter
	30.4.5.3 Receiver
	30.4.5.4 Reception Error Reporting
	30.4.5.5 Multiprocessor Communication

	30.4.6 LIN Mode
	30.4.6.1 LIN Mode Configuration
	30.4.6.2 LIN Frame Formats
	30.4.6.3 LIN TX Frame Generation
	30.4.6.4 LIN RX Frame Generation
	30.4.6.5 LIN Error Reporting
	30.4.6.6 LIN Wakeup
	30.4.6.7 LIN Protocol Engine Reset

	30.4.7 Interrupts
	30.4.7.1 Interrupt Flags and Enables
	30.4.7.2 Interrupt Request Generation

	30.5 Application Information
	30.5.1 SCI Data Frames Separated by Preamble

	Chapter 31 Inter-Integrated Circuit Bus Controller Module (I2C)
	31.1 Introduction
	31.1.1 Block Diagram
	31.1.2 DMA Interface
	31.1.3 Features
	31.1.4 Modes of Operation

	31.2 External Signal Description
	31.3 Memory Map and Registers
	31.3.1 Module Memory Map
	31.3.2 Register Descriptions
	31.3.2.1 I2C Bus Address Register (IBAD)
	31.3.2.2 I2C Bus Frequency Divider Register (IBFD)
	31.3.2.3 I2C Bus Control Register (IBCR)
	31.3.2.4 I2C Bus Status Register (IBSR)
	31.3.2.5 I2C Bus Data I/O Register (IBDR)
	31.3.2.6 I2C Bus Interrupt Configuration Register (IBIC)

	31.4 Functional Description
	31.4.1 I-Bus Protocol
	31.4.1.1 START Signal
	31.4.1.2 Slave Address Transmission
	31.4.1.3 Data Transfer
	31.4.1.4 STOP Signal
	31.4.1.5 Repeated START Signal
	31.4.1.6 Arbitration Procedure
	31.4.1.7 Clock Synchronization
	31.4.1.8 Handshaking
	31.4.1.9 Clock Stretching

	31.4.2 Interrupts
	31.4.2.1 General
	31.4.2.2 Interrupt Description

	31.5 Initialization/Application Information
	31.5.1 I2C Programming Examples
	31.5.1.1 Initialization Sequence
	31.5.1.2 Generation of START
	31.5.1.3 Post-Transfer Software Response
	31.5.1.4 Generation of STOP
	31.5.1.5 Generation of Repeated START
	31.5.1.6 Slave Mode
	31.5.1.7 Arbitration Lost

	31.5.2 DMA Application Information
	31.5.2.1 DMA Mode, Master Transmit
	31.5.2.2 DMA Mode, Master RX
	31.5.2.3 Exiting DMA Mode, System Requirement Considerations

	Chapter 32 Cross Triggering Unit (CTU)
	32.1 Introduction
	32.2 Main Features
	32.3 Block Diagram
	32.4 Memory Map and Register Description
	32.4.1 Module Memory Map
	32.4.1.1 Control Status Register (CTU_CSR)
	32.4.1.2 Start Value Register (CTU_SVRn)
	32.4.1.3 Current Value Register (CTU_CVRm)
	32.4.1.4 Event Configuration Register (CTU_EVTCFGRn)

	32.5 Functional Description
	32.5.1 Pending Request
	32.5.2 Counter
	32.5.3 Prescaler
	32.5.4 Trigger Interrupt Request
	32.5.5 Halt Request
	32.5.6 Channel Value

	Chapter 33 Analog-to-Digital Converter (ADC)
	33.1 Introduction
	33.1.1 Block Diagram
	33.1.2 Features

	33.2 External Signals
	33.3 Memory Map and Register Definition
	33.3.1 ADC Memory Map
	33.3.2 ADC Register Descriptions
	33.3.2.1 Main Configuration Register (MCR)
	33.3.2.2 Main Status Register (MSR)
	33.3.2.3 Interrupt Status Register (ISR)
	33.3.2.4 Channel Pending Register 0 (CEOCFR0)
	33.3.2.5 Channel Pending Register 1 (CEOCFR1)
	33.3.2.6 Channel Pending Register 2 (CEOCFR2)
	33.3.2.7 Interrupt Mask Register (IMR)
	33.3.2.8 Channel Interrupt Mask Register 0 (CIMR0)
	33.3.2.9 Channel Interrupt Mask Register 1 (CIMR1)
	33.3.2.10 Channel Interrupt Mask Register 2 (CIMR2)
	33.3.2.11 Watchdog Threshold Interrupt Status Register (WTISR)
	33.3.2.12 Watchdog Threshold Interrupt Mask Register (WTIMR)
	33.3.2.13 DMA Enable Register (DMAE)
	33.3.2.14 DMA Channel Select Register 0 (DMAR0)
	33.3.2.15 DMA Channel Select Register 1 (DMAR1)
	33.3.2.16 DMA Channel Select Register 2 (DMAR2)
	33.3.2.17 Threshold Control Registers 0 - 3 (TRCn)
	33.3.2.18 Threshold Registers 0 - 3 (THRHLRn)
	33.3.2.19 Presampling Control Register (PSCR)
	33.3.2.20 Presampling Register 0 (PSR0)
	33.3.2.21 Presampling Register 1 (PSR1)
	33.3.2.22 Presampling Register 2 (PSR2)
	33.3.2.23 Conversion Timing Register 0 (CTR0)
	33.3.2.24 Conversion Timing Register 1 (CTR1)
	33.3.2.25 Conversion Timing Register 2 (CTR2)
	33.3.2.26 Normal Conversion Mask Register 0 (NCMR0)
	33.3.2.27 Normal Conversion Mask Register 1 (NCMR1)
	33.3.2.28 Normal Conversion Mask Register 2 (NCMR2)
	33.3.2.29 Injected Conversion Mask Register 0 (JCMR0)
	33.3.2.30 Injected Conversion Mask Register 1 (JCMR1)
	33.3.2.31 Injected Conversion Mask Register 2 (JCMR2)
	33.3.2.32 Offset Word Register (OFFWR)
	33.3.2.33 Decode Signals Delay Register (DSDR)
	33.3.2.34 Power Down Exit Delay Register (PDEDR)
	33.3.2.35 Precision Channel n Data Register (PRECDATAREGn)
	33.3.2.36 Internal Channel n Data Register (INTDATAREGn)
	33.3.2.37 External Channel n Data Register (EXTDATAREGn)

	33.4 Functional Description
	33.4.1 Analog Channel Conversion
	33.4.1.1 Normal Conversion
	33.4.1.2 Start of Normal Conversion
	33.4.1.3 Normal Conversion Operating Modes
	33.4.1.4 Injected Channel Conversion
	33.4.1.5 Abort Conversion

	33.4.2 Analog Clock Generator and Conversion Timings
	33.4.3 ADC Cross Triggering Unit
	33.4.3.1 CTU Trigger Mode
	33.4.3.2 CTU Control Mode

	33.4.4 Presampling
	33.4.4.1 Presampling Channel Enable Signals

	33.4.5 Programmable Analog Watchdog
	33.4.5.1 Analog Watchdog Pulse Width Modulation Bus

	33.4.6 DMA Functionality
	33.4.7 Interrupts
	33.4.8 External Decode Signals Delay
	33.4.9 Power Down Mode
	33.4.10 Auto Clock Off Mode

	Chapter 34 IEEE 1149.1 Test Access Port Controller (JTAGC)
	34.1 Introduction
	34.1.1 Block Diagram
	34.1.1.1 Individual and Multi-Core Debug

	34.1.2 Features
	34.1.3 Modes of Operation
	34.1.3.1 Reset
	34.1.3.2 IEEE 1149.1-2001 Defined Test Modes
	34.1.3.3 Bypass Mode
	34.1.3.4 TAP Sharing Mode

	34.2 External Signal Description
	34.3 Memory Map and Registers
	34.3.1 Instruction Register
	34.3.2 Bypass Register
	34.3.3 Device Identification Register
	34.3.4 Boundary Scan Register

	34.4 Functional Description
	34.4.1 JTAGC Reset Configuration
	34.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port
	34.4.3 TAP Controller State Machine
	34.4.3.1 Enabling the TAP Controller
	34.4.3.2 Selecting an IEEE 1149.1-2001 Register

	34.4.4 JTAGC Instructions
	34.4.4.1 BYPASS Instruction
	34.4.4.2 ACCESS_AUX_TAP_x Instructions
	34.4.4.3 CLAMP Instruction
	34.4.4.4 EXTEST-External Test Instruction
	34.4.4.5 HIGHZ Instruction
	34.4.4.6 IDCODE Instruction
	34.4.4.7 SAMPLE Instruction
	34.4.4.8 SAMPLE/PRELOAD Instruction

	34.4.5 Boundary Scan

	34.5 e200z0 and e200z6 OnCE Controllers
	34.5.1 e200z0 OnCE Controller Block Diagram
	34.5.2 e200z0 OnCE Controller Functional Description
	34.5.2.1 Enabling the TAP Controller

	34.5.3 e200z0 OnCE Controller Register Descriptions
	34.5.3.1 OnCE Command Register (OCMD)

	34.6 Initialization/Application Information

	Chapter 35 Nexus Development Interface (NDI)
	35.1 Introduction
	35.2 Block Diagram
	35.2.1 NDI Features
	35.2.2 Modes of Operation
	35.2.2.1 Nexus Reset Mode
	35.2.2.2 Full-Port Mode
	35.2.2.3 Reduced-Port Mode
	35.2.2.4 Disabled-Port Mode
	35.2.2.5 Censored Mode
	35.2.2.6 Halt Mode

	35.3 External Signal Description
	35.4 Memory Map and Registers
	35.4.1 NDI Functional Description
	35.4.1.1 Enabling Nexus Clients for TAP Access
	35.4.1.2 TAP Sharing
	35.4.1.3 Configuring the NDI for Nexus Messaging
	35.4.1.4 Programmable MCKO Frequency
	35.4.1.5 Nexus Messaging
	35.4.1.6 e200z6 and e200z0 Cross Triggering Control

	35.5 Nexus Port Controller (NPC)
	35.5.1 NPC Overview
	35.5.2 NPC Features
	35.5.3 Control of the device-wide debug mode NPC Memory Map
	35.5.4 NPC Register Descriptions
	35.5.4.1 Bypass Register
	35.5.4.2 Instruction Register
	35.5.4.3 Nexus Device ID Register (DID)
	35.5.4.4 Port Configuration Register (PCR)

	35.5.5 NPC Functional Description
	35.5.5.1 NPC Reset Configuration
	35.5.5.2 Auxiliary Output Port

	35.5.6 NPC Initialization/Application Information

	35.6 e200z6 Class 3 Nexus Module (Nexus3+)
	35.6.1 Nexus3+ Introduction
	35.6.2 Nexus3+ Block Diagram
	35.6.3 Nexus3+ Overview
	35.6.4 Nexus3+ Features
	35.6.5 Enabling Nexus3+ Operation
	35.6.6 TCODEs Supported by Nexus3+
	35.6.7 Nexus3+ Memory Map
	35.6.8 Nexus3+ Register Definition
	35.6.8.1 Development Control Register 1, 2 (DC1, DC2)
	35.6.8.2 Development Status Register (DS)
	35.6.8.3 Read/Write Access Control/Status (RWCS)
	35.6.8.4 Read/Write Access Address (RWA)
	35.6.8.5 Read/Write Access Data (RWD)
	35.6.8.6 Watchpoint Trigger Register (WT)
	35.6.8.7 Data Trace Control Register (DTC)
	35.6.8.8 Data Trace Start Address Registers 1 and 2 (DTSAn)
	35.6.8.9 Data Trace End Address Registers 1 and 2 (DTEAn)

	35.6.9 Nexus3+ Register Access via JTAG / OnCE
	35.6.10 Nexus3+ Functional Description
	35.6.10.1 Debug Status Messages
	35.6.10.2 Ownership Trace
	35.6.10.3 Program Trace
	35.6.10.4 Data Trace
	35.6.10.5 Watchpoint Support
	35.6.10.6 Nexus3+ Read/Write Access to Memory-Mapped Resources
	35.6.10.7 Examples
	35.6.10.8 IEEE 1149.1 (JTAG) RD/WR Sequences

	35.7 e200z0 Class 2+ Nexus Module (Nexus2+)
	35.7.1 Nexus2+ Introduction
	35.7.2 Nexus2+ Block Diagram
	35.7.3 Nexus2+ Features
	35.7.4 Enabling Nexus2+ Operation
	35.7.5 TCODEs Supported by Nexus2+
	35.7.6 Nexus2+ Memory Map
	35.7.7 Nexus2+ Register Definition
	35.7.7.1 Development Control Register 1, 2 (DC1, DC2)
	35.7.7.2 Development Status Register (DS)
	35.7.7.3 Read/Write Access Control/Status (RWCS)
	35.7.7.4 Read/Write Access Address (RWA)
	35.7.7.5 Read/Write Access Data (RWD)
	35.7.7.6 Watchpoint Trigger Register (WT)

	35.7.8 Nexus2+ Register Access via JTAG / OnCE
	35.7.9 Nexus2+ Functional Description
	35.7.9.1 Debug Status Messages
	35.7.9.2 Ownership Trace
	35.7.9.3 Program Trace
	35.7.9.4 Watchpoint Support
	35.7.9.5 Nexus2+ Read/Write Access to Memory-Mapped Resources
	35.7.9.6 Examples
	35.7.9.7 IEEE 1149.1 (JTAG) RD/WR Sequences

	35.8 Debug Implementation
	35.9 Debug Capabilities
	35.10 Debug Port
	35.10.1 Nexus2+/3 Auxiliary Port

	35.11 Debug Methods
	35.11.1 208 MAPBGA Package Debug Method
	35.11.2 256 MAPBGA Package Debug Method

	Appendix A Memory Map

