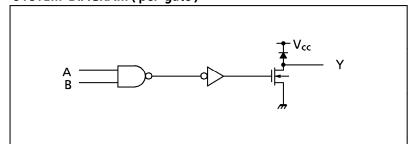
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

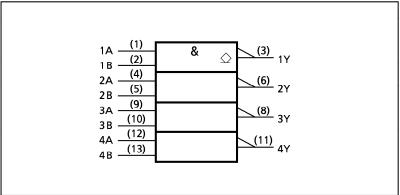
TC74HC03AP, TC74HC03AF, TC74HC03AFN

QUAD 2-INPUT NAND GATE (OPEN DRAIN)

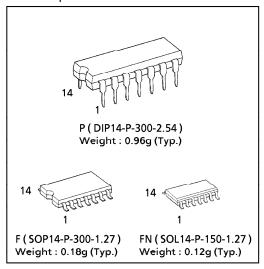
The TC74HC03A is a high speed CMOS 2-INPUT NAND GATE fabricated with silicon gate C2MOS technology.

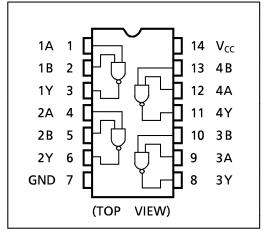

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the TC74HC00A. But the TC74HC03A has, as its outputs, high performance MOS N-channel transistors. (OPEN-DRAIN outputs)This device can, thefore, with a suitable pull-up resistors, be used in wired-AND, LED driver and other application.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


FEATURES:

- High Speed······ $t_{pz} = 5ns(typ.)$ at $V_{CC} = 5V$
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Output Drive Capability 10 LSTTL Loads
- Wide Operating Voltage Range.... V_{CC} (opr.) = 2V~6V
- Open Drain Structure
- Pin and Function Compatible with 74LS03


SYSTEM DIAGRAM (per gate)


IEC LOGIC SYMBOL

(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT

TRUTH TABLE

Λ	В	V	l
A I	ь	7	
L	L	Z	
L	Н	Z	
Н	L	Z	
Н	Н	L	
Z : High	Impedar	ice	

961001EBA2

[■] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specifical operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	− 0.5~7	V
DC Input Voltage	V _{IN}	−0.5~V _{CC} + 0.5	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 20	mA
DC Output Current	I _{OUT}	+ 25	mA
DC V _{CC} / Ground Current	I _{cc}	± 50	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T _{stg}	−65~150	°C

*500mW in the range of Ta= $-40^{\circ}\text{C}\sim65^{\circ}\text{C}$. From Ta= 65°C to 85°C a derating factor of $-10\text{mW}/^{\circ}\text{C}$ shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	2~6	V
Input Voltage	V _{IN}	0~V _{cc}	٧
Output Voltage	V _{OUT}	0~V _{CC}	>
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	t _r , t _f	$0 \sim 1000 (V_{CC} = 2.0V)$ $0 \sim 500 (V_{CC} = 4.5V)$ $0 \sim 400 (V_{CC} = 6.0V)$	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER SYMBOL		. TEST CONDITION		V _{cc}	7	Ta = 25°C			Ta = -40~85°C		
				(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High - Level Input Voltage	V _{IH}			2.0 4.5 6.0	1.50 3.15 4.20	_ 	_ 	1.50 3.15 4.20	_ 	<	
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80	_	0.50 1.35 1.80	>	
Low - Level Output Voltage	Vol	V _{IN} =	$I_{OL} = 20 \mu A$	2.0 4.5 6.0	_ _ _	0.0 0.0 0.0	0.1 0.1 0.1	_	0.1 0.1 0.1	V	
		V _{IH} or V _{IL}	$I_{OL} = 4$ mA $I_{OL} = 5.2$ mA	4.5 6.0	_	0.17 0.18	0.26 0.26	_	0.33 0.33		
Output Off - State Current	l _{oz}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC}$		6.0	_	_	± 0.5	_	± 5.0		
Input Leakage Current	I _{I N}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	± 0.1	_	± 1.0	$\mid \mu A \mid$	
Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	1.0	_	10.0		

961001EBA2'

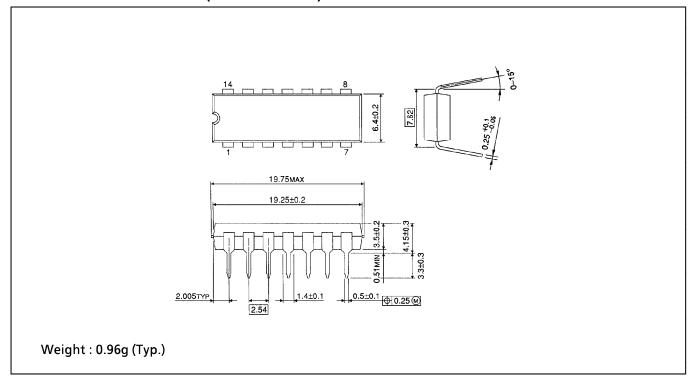
The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, $Ta = 25^{\circ}C$, Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{THL}		_	4	8	
Propagation Delay Time	t _{pLZ}	$R_L = 1k\Omega$	_	5	12	ns
Propagation Delay Time	t _{pZL}	$R_L = 1k\Omega$	_	5	12	

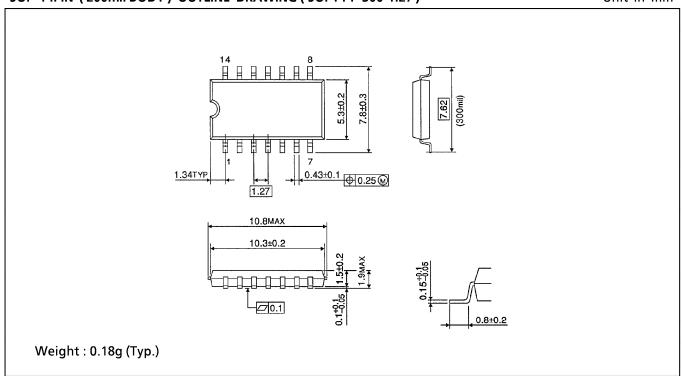
AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

PARAMETER	CVMPOL	TEST CONDITION		Ta = 25°C			Ta = -40~85°C		UNIT
	SYMBOL	TEST CONDITION	V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
			2.0	_	30	75	_	95	
Output Transition Time	t _{THL}		4.5	_	8	15	_	19	
			6.0	_		13	_	16	1
			2.0	_	20	75	_	95	
Propagation Delay Time	t _{pLZ}	$R_L = 1k\Omega$	4.5	_	10	15	_	19	ns
	ļ		6.0	_	9	13	_	16	
			2.0	_	24	75	_	95	
Propagation Delay Time	t _{pZL}	$R_L = 1k\Omega$	4.5	_	8	15	_	19	
	P==	_	6.0	_	7	13	_	16	
Input Capacitance	C _{IN}			_	5	10	_	10	
Output Capacitance	C _{OUT}			_	3	_	_	_	pF
Power Dissipation Capacitance	C _{PD} (1)			_	5	_	_	_	

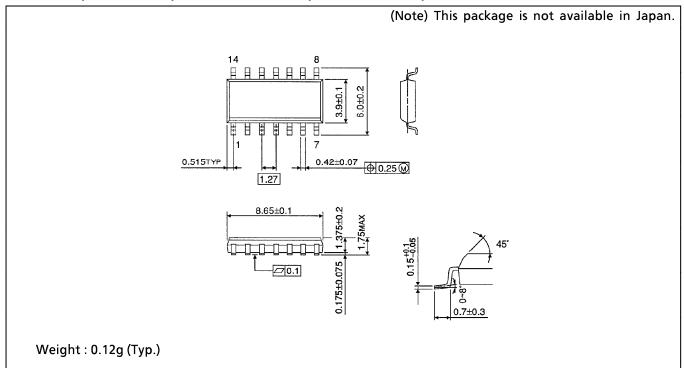

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4$ (per Gate)


DIP 14PIN OUTLINE DRAWING (DIP14-P-300-2.54)

Unit in mm


SOP 14PIN (200mil BODY) OUTLINE DRAWING (SOP14-P-300-1.27)

Unit in mm

SOP 14PIN (150mil BODY) OUTLINE DRAWING (SOL14-P-150-1.27)

Unit in mm

