

PI6C2502A

Phase-Locked Loop Clock Driver

Product Features

- High-Performance Phase-Locked-Loop Clock Distribution for Networking,
- Synchronous DRAM modules for server/workstation/ PC applications
- Allows Clock Input to have Spread Spectrum modulation for EMI reduction
- Zero Input-to-Output delay
- Low jitter: Cycle-to-Cycle jitter ±75ps max.
- On-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- Wide range of Clock Frequencies 80 to 134 MHz
- Package: Plastic 8-pin SOIC Package (W)

Product Description

The PI6C2502A features a low-skew, low-jitter, phase-locked loop (PLL) clock driver. By connecting the feedback FB_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to any clock output will be nearly zero.

Application

If a system designer needs more than 16 outputs with the features just described, using two or more zero-delay buffers such as PI6C2509Q, and PI6C2510Q, is likely to be impractical. The device-to-device skew introduced can significantly reduce the performance. Pericom recommends the use of a zero-delay buffer and an eighteen output non-zero-delay buffer. As shown in Figure 1, this combination produces a zero-delay buffer, but with all the signal characteristics of the original zero-delay buffer, but with as many outputs as the non-zero-delay buffer part. For example, when combined with an eighteen output non-zero delay buffer, a system designer can create a seventeen-output zero-delay buffer.

Logic Block Diagram

Figure 1. This Combination Provides Zero-Delay Between the Reference Clocks Signal and 17 Outputs.

Product Pin Configuration

Pin Functions

Pin Name	Pin Number	Туре	Description
CLK_IN	8	Ι	Reference Clock input. CLK_IN allows spread spectrum clock input.
FB_IN	5	Ι	Feedback input. FB_IN provides the feedback signal to the internal PLL.
FB_OUT	2	0	Feedback output FB_OUT is dedicated for external feedback. FB_OUT has an embedded series-damping resistor of the same value as the clock outputs CLK_OUT.
CLK_OUT	3	0	Clock outputs. These outputs provide low-skew copies of CLK_IN. Each output has an embedded series-damping resistor.
AV _{CC}	7	Power	Analog power supply. AV_{CC} can be also used to bypass the PLL for test purposes. When AV_{CC} is strapped to ground, PLL is bypassed and CLK_IN is buffered directly to the device outputs.
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.
V _{CC}	4	Power	Power supply.
GND	6	Ground	Ground.

DC Specifications (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
VI	Input voltage range	– V _{CC} +0.5		
V _O	Output voltage range	-0.5	V _{CC} +0.5	V
V _{I_DC}	DC input voltage		3.8	
I _{O_DC}	DC output current		100	mA
Power	Maximum power dissipation at $T_A = 55^{\circ}C$ in still air		1.0	W
T _{STG}	Storage temperature	-65	150	°C

Note:

Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	V _{CC}	Min.	Тур.	Max.	Units
I _{CC}	$V_{I} = V_{CC}$ or GND; $I_{O} = 0^{(1)}$ Standby Current	3.6V			10	μΑ
CI	$V_{I} = V_{CC}$ or GND	3.3V		4		ъЕ
CO	$V_{O} = V_{CC}$ or GND	5.5V		6		pF

Note:

1. Continuous Output Current

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply voltage	3.0	3.6	
V _{IH}	High level input voltage	2.0		17
V _{IL}	Low level input voltage		0.8	v
VI	Input voltage	0	V _{CC}	
T _A	Operating free-air temperature	0	70	°C

Electrical Characteristics (Over Recommended Operating Free-Air Temperature Range

Pull Up/Down Currents of PI6C2502A, V_{CC} = 3.0V)

Symbol	Parameter	Condition	Min.	Max.	Units	
I	Pull-up current	Vout = 2.4V		-13.6		
I _{OH}	Pull-up current	Vout = 2.0V		-22	A	
Ī.,	Pull-down current	Vout = 0.8V	19		mA	
I _{OL}	Pull-down current	Vout = 0.55V	13			

AC Specifications

(Timing requirements over recommended ranges of supply voltage and operating free-air temperature)

Symbol	Parameter	Min.	Max.	Units
F _{CLK}	Clock frequency PI6C2502A	80	134	MHz
D _{CYI}	Input clock duty cycle	40	60	%
	Stabilization Time after power up		1	ms

Switching Characteristics

(Over recommended ranges of supply voltage and operating free-air temperature, CL = 30 pF)

Parameter	From (Input)	To (Output)	$V_{CC} = 3.3V \pm 0.3V, 0.70^{\circ}C$			Units
rarameter			Min.	Тур.	Max.	Units
tphase error without jitter	CLK_IN↑ at 100 & 66 MHz	FB_IN↑	-150		+150	ps
Jitter, cycle-to-cycle	At 100 & 66 MHz		-75		+75	P5
Duty cycle			45		55	%
tr, rise-time, 0.4V to 2.0V		CLK_OUT		1.0		
tf, fall-time, 2.0V to 0.4V				1.1		ns

Note:

These switching parameters are guaranteed by design.

Package Mechanical Information

Plastic 8-pin SOIC Package

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
PI6C2502AW	W8	8-pin 150-mil SOIC	Commercial