STM32F102x8 STM32F102xB Medium-density USB access line, ARM®-based 32-bit MCU with 64/128KB Flash, USB FS, 6 timers, ADC & 8 com. interfaces Datasheet - production data #### **Features** - Core: ARM[®] 32-bit Cortex[®]-M3 CPU - 48 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 WS memory access - Single-cycle multiplication and hardware division - Memories - 64 or 128 Kbytes of Flash memory - 10 or 16 Kbytes of SRAM - · Clock, reset and supply management - 2.0 to 3.6 V application supply and I/Os - POR, PDR and programmable voltage detector (PVD) - 4-to-16 MHz crystal oscillator - Internal 8 MHz factory-trimmed RC - Internal 40 kHz RC - PLL for CPU clock - 32 kHz oscillator for RTC with calibration - Low power - Sleep, Stop and Standby modes - V_{BAT} supply for RTC and backup registers - · Debug mode - Serial wire debug (SWD) and JTAG interfaces - DMA - 7-channel DMA controller - Peripherals supported: timers, ADC, SPIs, I²Cs and USARTs - 1 × 12-bit, 1.2 μs A/D converter (up to 16 channels) - Conversion range: 0 to 3.6 V - Temperature sensor - Up to 51 fast I/O ports - 37/51 I/Os all mappable on 16 external interrupt vectors and almost all 5 V-tolerant - Up to 6 timers - Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter - 2 watchdog timers (Independent and Window) - SysTick timer: 24-bit downcounter - Up to 8 communication interfaces - Up to 2 x I²C interfaces (SMBus/PMBus) - Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) - Up to 2 SPIs (12 Mbit/s) - One USB 2.0 full speed interface - CRC calculation unit, 96-bit unique ID - ECOPACK[®] packages Table 1. Device summary | Reference | Part number | |-------------|--------------------------| | STM32F102x8 | STM32F102C8, STM32F102R8 | | STM32F102xB | STM32F102CB, STM32F102RB | # **Contents** | 1 | Intro | duction | 1 | 7 | |---|-------|---------------------|--|----| | 2 | Desc | cription | | 8 | | | 2.1 | Device | overview | 9 | | | 2.2 | Full co | empatibility throughout the family | 12 | | | 2.3 | Overvi | ew | 12 | | 3 | Pino | ut and _l | pin description | 19 | | 4 | Mem | ory ma | pping | 23 | | 5 | Elec | trical ch | naracteristics | 24 | | | 5.1 | Param | eter conditions | 24 | | | | 5.1.1 | Minimum and maximum values | 24 | | | | 5.1.2 | Typical values | 24 | | | | 5.1.3 | Typical curves | 24 | | | | 5.1.4 | Loading capacitor | 24 | | | | 5.1.5 | Pin input voltage | 24 | | | | 5.1.6 | Power supply scheme | 25 | | | | 5.1.7 | Current consumption measurement | 26 | | | 5.2 | Absolu | ute maximum ratings | 26 | | | 5.3 | Operat | ting conditions | 28 | | | | 5.3.1 | General operating conditions | 28 | | | | 5.3.2 | Operating conditions at power-up / power-down | 28 | | | | 5.3.3 | Embedded reset and power control block characteristics | 29 | | | | 5.3.4 | Embedded reference voltage | 29 | | | | 5.3.5 | Supply current characteristics | 30 | | | | 5.3.6 | External clock source characteristics | 39 | | | | 5.3.7 | Internal clock source characteristics | 44 | | | | 5.3.8 | PLL characteristics | 45 | | | | 5.3.9 | Memory characteristics | 46 | | | | 5.3.10 | EMC characteristics | 47 | | | | 5.3.11 | Absolute maximum ratings (electrical sensitivity) | 48 | | | | 5.3.12 | I/O current injection characteristics | 49 | | | | | | | | Orde | ering inf | ormation scheme | 76 | |------|-------------------|--|--| | | | | | | | 6.4.1 | Evaluating the maximum junction temperature for an application . | 75 | | 6.4 | Refere | nce document | 74 | | 6.3 | Therma | al characteristics | 74 | | 6.2 | LQFP4 | 8 package information | 71 | | 6.1 | LQFP6 | 4 package information | 68 | | Pacl | kage cha | aracteristics | 68 | | | 5.3.18 | Temperature sensor characteristics | 67 | | | 5.3.17 | | | | | 5.3.16 | Communications interfaces | 57 | | | 5.3.15 | TIM timer characteristics | 57 | | | 5.3.14 | NRST pin characteristics | 55 | | | 5.3.13 | I/O port characteristics | 49 | | | 6.1
6.2
6.3 | 5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
Package cha
6.1 LQFP6
6.2 LQFP4
6.3 Therma
6.4 Refere
6.4.1 | 5.3.14 NRST pin characteristics 5.3.15 TIM timer characteristics 5.3.16 Communications interfaces 5.3.17 12-bit ADC characteristics 5.3.18 Temperature sensor characteristics Package characteristics 6.1 LQFP64 package information 6.2 LQFP48 package information 6.3 Thermal characteristics 6.4 Reference document 6.4.1 Evaluating the maximum junction temperature for an application | # List of tables | Table 1. | Device summary | 1 | |-----------|---|-----| | Table 2. | STM32F102x8 and STM32F102xB medium-density USB access line | | | | features and peripheral counts | 9 | | Table 3. | STM32F102xx USB access line family | 12 | | Table 4. | Medium-density STM32F102xx pin definitions | 20 | | Table 5. | Voltage characteristics | 26 | | Table 6. | Current characteristics | 27 | | Table 7. | Thermal characteristics | 27 | | Table 8. | General operating conditions | 28 | | Table 9. | Operating conditions at power-up / power-down | 28 | | Table 10. | Embedded reset and power control block characteristics | | | Table 11. | Embedded internal reference voltage | | | Table 12. | Maximum current consumption in Run mode, code with data processing running from Flash | | | Table 13. | Maximum current consumption in Run mode, code with data processing | 0 . | | 14510 10. | running from RAM | 31 | | Table 14. | Maximum current consumption in Sleep mode, code running from Flash or RAM | | | Table 15. | Typical and maximum current consumptions in Stop and Standby modes | | | Table 16. | Typical current consumption in Run mode, code with data processing | | | 145.0 10. | running from Flash | 36 | | Table 17. | Typical current consumption in Sleep mode, code running from Flash or RAM | | | Table 18. | Peripheral current consumption | | | Table 19. | High-speed external user clock characteristics | | | Table 20. | Low-speed external user clock characteristics | | | Table 21. | HSE 4-16 MHz oscillator characteristics | | | Table 22. | LSE oscillator characteristics (f _{LSE} = 32.768 kHz) | | | Table 23. | HSI oscillator characteristics | | | Table 24. | LSI oscillator characteristics | | | Table 25. | Low-power mode wakeup timings | | | Table 26. | PLL characteristics | | | Table 27. | Flash memory characteristics | | | Table 28. | Flash memory endurance and data retention | | | Table 29. | EMS characteristics | | | Table 30. | EMI characteristics | | | Table 31. | ESD absolute maximum ratings | | | Table 32. | Electrical sensitivities | | | Table 33. | I/O current injection susceptibility | | | Table 34. | I/O static characteristics | | | Table 35. | Output voltage characteristics | | | Table 36. | I/O AC characteristics | | | Table 37. | NRST pin characteristics | | | Table 38. | TIMx characteristics | | | Table 39. | I ² C characteristics | | | Table 40. | SCL frequency (f _{PCLK1} = 36 MHz, V _{DD 12C} = 3.3 V) | | | Table 41. | SPI characteristics | | | Table 42. | USB startup time. | | | Table 43. | USB DC electrical characteristics | | | Table 44 | USB: Full speed electrical characteristics of the driver | | ### STM32F102x8, STM32F102xB ### List of tables | Table 45. | ADC characteristics | 34 | |-----------|---|----| | Table 46. | R_{AIN} max for f_{ADC} = 12 MHz6 | 35 | | Table 47. | ADC accuracy - limited test conditions | 35 | | Table 48. | ADC accuracy | 35 | | Table 49. | TS characteristics | 37 | | Table 50. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat | | | | package mechanical data | 38 | | Table 51. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package | | | | mechanical data | 72 | | Table 52. | Package thermal characteristics | 74 | | Table 53. | Ordering information scheme | 76 | | Table 54. | Document revision history | 77 | # List of figures | Figure 1. | STM32F102T8 medium-density USB access line block diagram | . 10 | |------------|---|------| | Figure 2. | Clock tree | . 11 | | Figure 3. | STM32F102xx medium-density USB access line LQFP48 pinout | . 19 | | Figure 4. | STM32F102xx medium-density USB access line LQFP64 pinout | . 19 | | Figure 5. | Memory map | . 23 | | Figure 6. | Pin loading conditions | . 25 | | Figure 7. | Pin input voltage | . 25 | | Figure 8. | Power supply scheme | | | Figure 9. | Current consumption measurement scheme | . 26 | | Figure 10. | Typical current consumption in Run mode versus temperature (at 3.6 V) - | | | J | code with data processing running from RAM, peripherals enabled | . 32 | | Figure 11. | Typical current consumption in Run mode versus temperature (at 3.6 V) - | | | J | | . 32 | | Figure 12. | Typical current consumption on V _{BAT} with RTC on versus temperature at different | | | _ | V _{BAT} values | . 34 | | Figure 13. | Typical current consumption in Stop mode with regulator in Run mode versus | | | _ | temperature at V _{DD} = 3.3 V and 3.6 V | . 34 | | Figure 14. | Typical current consumption in Stop mode with regulator in Low-power mode versus | | | _ | temperature at V _{DD} = 3.3 V and 3.6 V | . 35 | | Figure 15. | Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and | | | _ | 3.6 V | . 35 | | Figure 16. | High-speed external clock
source AC timing diagram | 40 | | Figure 17. | Low-speed external clock source AC timing diagram | . 41 | | Figure 18. | Typical application with an 8 MHz crystal | 43 | | Figure 19. | Typical application with a 32.768 kHz crystal | . 44 | | Figure 20. | Standard I/O input characteristics - CMOS port | | | Figure 21. | Standard I/O input characteristics - TTL port | | | Figure 22. | 5 V tolerant I/O input characteristics - CMOS port | . 52 | | Figure 23. | 5 V tolerant I/O input characteristics - TTL port | | | Figure 24. | I/O AC characteristics definition | | | Figure 25. | Recommended NRST pin protection | . 56 | | Figure 26. | I ² C bus AC waveforms and measurement circuit ⁽¹⁾ | | | Figure 27. | SPI timing diagram - slave mode and CPHA=0 | | | Figure 28. | SPI timing diagram - slave mode and CPHA=1 ⁽¹⁾ | | | Figure 29. | SPI timing diagram - master mode ⁽¹⁾ | . 62 | | Figure 30. | USB timings: definition of data signal rise and fall time | | | Figure 31. | ADC accuracy characteristics | | | Figure 32. | Typical connection diagram using the ADC | . 66 | | Figure 33. | Power supply and reference decoupling | | | Figure 34. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline | | | Figure 35. | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package | | | J | recommended footprint | . 69 | | Figure 36. | LQFP64 marking example (package top view) | | | Figure 37. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline | | | Figure 38. | LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package | | | 33 00. | recommended footprint | . 73 | | Figure 39. | LQFP48 marking example (package top view) | . 73 | | Figure 40. | LQFP64 P _D max vs. T _A | | 7/80 ### 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of STM32F102x8 and STM32F102xB medium-density USB access line microcontrollers. For more details on the whole STMicroelectronics STM32F102xx family. please refer to Section 2.2: Full compatibility throughout the family. The medium-density STM32F102xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx Flash programming manual*. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*. For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the ARM[®] website. DocID15056 Rev 6 ## 2 Description The STM32F102xx medium-density USB access line incorporates the high-performance ARM® Cortex®-M3 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (Flash memory of 64 or 128 Kbytes and SRAM of 10 or 16 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (two I²Cs, two SPIs, one USB and three USARTs), one 12-bit ADC and three general-purpose 16-bit timers. The STM32F102xx family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F102xx medium-density USB access line is delivered in the LQFP48 7×7 mm and LQFP64 10 \times 10 mm packages. The STM32F102xx medium-density USB access line microcontrollers are suitable for a wide range of applications. - Application control and user interface - Medical and handheld equipment - PC peripherals, gaming and GPS platforms - Industrial applications: PLC, inverters, printers, and scanners - Alarm systems, Video intercom, and HVAC Figure 1 shows the general block diagram of the device family. ### 2.1 Device overview Table 2. STM32F102x8 and STM32F102xB medium-density USB access line features and peripheral counts | Peri | Peripheral | | STM32F102Cx | | -102Rx | |---------------------------------------|------------------|------------------|---------------|----------------------------------|--------| | Flash - Kbytes | | 64 | 128 | 64 | 128 | | SRAM - Kbytes | | 10 | 16 | 10 | 16 | | Timers | General-purpose | 3 | 3 | 3 | 3 | | | SPI | 2 | 2 | 2 | 2 | | Communication | I ² C | 2 | 2 | 2 | 2 | | interfaces | USART | 3 | 3 | 3 | 3 | | | USB | 1 | 1 | 1 | 1 | | 12-bit synchronized number of channel | | 1
10 channels | | 1
16 channels | | | GPIOs | | 37 51 | | 1 | | | CPU frequency | | 48 MHz | | | | | Operating voltage | | 2.0 to 3.6 V | | | | | Operating temperatures | | | | to +85 °C (see
to +105 °C (se | | | Packages | | LQF | LQFP48 LQFP64 | | P64 | Figure 1. STM32F102T8 medium-density USB access line block diagram - 1. AF = alternate function on I/O port pin. - 2. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C). Figure 2. Clock tree - For the USB function to be available, both HSE and PLL must be enabled, with the USB clock output (USBCLK) at 48 MHz. - 2. To have an ADC conversion time of 1.2 μs, APB2 must be at 12 MHz, 24 MHz or 48 MHz. - 3. The Flash memory programming interface clock (FLITFCLK) is always the HSI clock. 577 ### 2.2 Full compatibility throughout the family The STM32F102xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F102x4 and STM32F102x6 are referred to as low-density devices and the STM32F102x8 and STM32F102xB are referred to as medium-density devices. Low-density devices are an extension of the STM32F102x8/B devices, they are specified in the STM32F102x4/6 datasheet. Low-density devices feature lower Flash memory and RAM capacities, a timer and a few communication interfaces less. The STM32F102x4 and STM32F102x6 are a drop-in replacement for the STM32F102x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle. Moreover the STM32F102xx family is fully compatible with all existing STM32F101xx access line and STM32F103xx performance line devices. | | Low-density STM | 32F102xx devices | Medium-density STM32F102xx devices | | | |--------|------------------------------------|----------------------------|--|---------------------------|--| | Pinout | 16 KB Flash | 32 KB Flash ⁽¹⁾ | 64 KB Flash | 128 KB Flash
16 KB RAM | | | | 4 KB RAM | 6 KB RAM | 10 KB RAM | | | | 64 | 2 × USARTs, 2 × 16 | | 3 × USARTs, 3 × 16-bit timers | | | | 48 | 1 × SPI, 1 × I ² C, 1 × | × ADC, 1 × USB | 2 × SPIs, 2 × I2Cs, 1 | × ADC, 1 × USB | | | 36 | - | - | 2 × USARTs, 3 × 16-
bit timers
1× SPI, 1× I2C, 1 ×
ADC, 1 × USB | - | | Table 3. STM32F102xx USB access line family #### 2.3 Overview ### ARM® Cortex®-M3 core with embedded Flash and SRAM The ARM® Cortex®-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM® core in the memory size usually associated with 8- and 16-bit devices. The STM32F102xx medium-density USB access line having an embedded ARM[®] core is therefore compatible with all ARM[®] tools and software. #### **Embedded Flash memory** 64 or 128 Kbytes of embedded Flash is available for storing programs and data. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F102x8/B medium-density devices. #### CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity, In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. #### **Embedded SRAM** 10 or 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. #### **Nested vectored interrupt controller (NVIC)** The STM32F102xx medium-density USB access line embeds a nested vectored interrupt controller able to handle up to 36 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels. - Closely coupled NVIC gives low latency interrupt processing - Interrupt entry vector table address passed directly to the core - Closely coupled NVIC core interface - Allows early processing of interrupts - Processing of late arriving higher priority interrupts - Support for tail-chaining - Processor state automatically saved - Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. #### External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detectors lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect external line with pulse width lower than the Internal APB2 clock period. Up to 51 GPIOs are connected to the 16 external interrupt lines. #### Clocks and startup System clock selection is performed on startup. however the internal
RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the High Speed APB (APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 48 MHz. See *Figure 2* for details on the clock tree. #### **Boot modes** At startup, boot pins are used to select one of five boot options: - Boot from User Flash - Boot from System Memory - Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. #### Power supply schemes - V_{DD} = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins. - V_{SSA}, V_{DDA} = 2.0 to 3.6 V: External analog power supplies for ADC. Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively. - V_{BAT} = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present. For more details on how to connect power pins, refer to Figure 8: Power supply scheme. #### Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 10: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} . #### Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. - MR is used in the nominal regulation mode (Run) - LPR is used in the Stop mode - Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. #### Low-power modes The STM32F102xx medium-density USB access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: #### Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. #### Stop mode The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. #### Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. #### **DMA** The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I²C, USART, general purpose timers TIMx and ADC. #### RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare 57 register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. #### Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock. it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. #### Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. #### SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: - A 24-bit down counter - Autoreload capability - Maskable system interrupt generation when the counter reaches 0. - Programmable clock source #### General-purpose timers (TIMx) There are 3 synchronizable general-purpose timers embedded in the STM32F102xx medium-density USB access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, output compare, PWM or one-pulse mode output. This gives up to 12 input captures / output compares / PWMs on the LQFP48 and LQFP64 packages. The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. #### I²C bus Two I²C bus interfaces can operate in multi-master and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. #### Universal synchronous/asynchronous receiver transmitter (USART) The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. #### Serial peripheral interface (SPI) Two SPIs are able to communicate up to 12 Mbit/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. #### Universal serial bus (USB) The STM32F102xx medium-density USB access line embeds an USB device peripheral compatible with the USB Full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). #### **GPIOs** (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable. The I/Os alternate function
configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. #### ADC (analog to digital converter) The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. #### **Temperature sensor** The temperature sensor has to generate a a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. #### Serial wire JTAG debug port (SWJ-DP) The ARM® SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. # 3 Pinout and pin description Figure 3. STM32F102xx medium-density USB access line LQFP48 pinout Figure 4. STM32F102xx medium-density USB access line LQFP64 pinout Table 4. Medium-density STM32F102xx pin definitions | Pi | ns | | | 2) | | Alternate functions ^{(3) (4)} | | | |--------|--------|--------------------------------|---------------------|----------------------------|--|---|--------------------|--| | LQFP48 | LQFP64 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | | 1 | 1 | V_{BAT} | S | - | V_{BAT} | - | - | | | 2 | 2 | PC13-TAMPER-RTC ⁽⁵⁾ | I/O | - | PC13 ⁽⁶⁾ | TAMPER-RTC | - | | | 3 | 3 | PC14-OSC32_IN ⁽⁵⁾ | I/O | - | PC14 ⁽⁶⁾ | OSC32_IN | - | | | 4 | 4 | PC15-OSC32_OUT ⁽⁵⁾ | I/O | - | PC15 ⁽⁶⁾ | OSC32_OUT | - | | | 5 | 5 | OSC_IN | I/O | FT | OSC_IN | - | PD0 ⁽⁷⁾ | | | 6 | 6 | OSC_OUT | I/O | FT | OSC_OUT | - | PD1 ⁽⁷⁾ | | | 7 | 7 | NRST | I/O | - | NRST | - | - | | | - | 8 | PC0 | I/O | - | PC0 | ADC_IN10 | - | | | - | 9 | PC1 | I/O | - | PC1 | ADC_IN11 | - | | | - | 10 | PC2 | I/O | - | PC2 | ADC_IN12 | - | | | - | 11 | PC3 | I/O | - | PC3 | ADC_IN13 | - | | | 8 | 12 | V _{SSA} | S | - | V _{SSA} | - | - | | | 9 | 13 | V_{DDA} | S | - | V_{DDA} | - | - | | | 10 | 14 | PA0-WKUP | I/O | - | PA0 | WKUP/USART2_CTS/
ADC_IN0/
TIM2_CH1_ETR ⁽⁸⁾ | - | | | 11 | 15 | PA1 | I/O | - | PA1 | USART2_RTS/
ADC_IN1/TIM2_CH2 ⁽⁸⁾ | - | | | 12 | 16 | PA2 | I/O | - | PA2 | USART2_TX/
ADC_IN2/TIM2_CH3 ⁽⁸⁾ | - | | | 13 | 17 | PA3 | I/O | ı | PA3 | USART2_RX/
ADC_IN3/TIM2_CH4 ⁽⁸⁾ | • | | | - | 18 | V _{SS_4} | S | 1 | V _{SS_4} | - | - | | | - | 19 | V _{DD_4} | S | 1 | V _{DD_4} | - | - | | | 14 | 20 | PA4 | I/O | - | PA4 | SPI1_NSS ⁽⁸⁾ /ADC_IN4
USART2_CK/ | - | | | 15 | 21 | PA5 | I/O | - | PA5 | SPI1_SCK ⁽⁸⁾ /ADC_IN5 | - | | | 16 | 22 | PA6 | I/O | - | PA6 | SPI1_MISO ⁽⁸⁾ /ADC_IN6/
TIM3_CH1 ⁽⁸⁾ | - | | | 17 | 23 | PA7 | I/O | - | PA7 | SPI1_MOSI ⁽⁸⁾ /ADC_IN7/
TIM3_CH2 ⁽⁸⁾ | - | | | - | 24 | PC4 | I/O | - | PC4 | ADC_IN14 | - | | | - | 25 | PC5 | I/O | - | PC5 | ADC_IN15 | - | | | 18 | 26 | PB0 | I/O | - | PB0 | ADC_IN8/TIM3_CH3 ⁽⁸⁾ | - | | | 19 | 27 | PB1 | I/O | - | PB1 | ADC_IN9/TIM3_CH4 ⁽⁸⁾ | - | | Table 4. Medium-density STM32F102xx pin definitions (continued) | Pi | ns | Table 4. Medidili- | | | | Alternate functions ^{(3) (4)} | | | |--------|--------|--------------------|---------------------|----------------------------|--|---|-------------------------------------|--| | LQFP48 | LQFP64 | Pin name | Type ⁽¹⁾ | I / O level ⁽²⁾ | Main
function ⁽³⁾
(after reset) | Default | Remap | | | 20 | 28 | PB2 | I/O | FT | PB2/BOOT1 | - | - | | | 21 | 29 | PB10 | I/O | FT | PB10 | I2C2_SCL/USART3_TX ⁽⁸⁾ | TIM2_CH3 | | | 22 | 30 | PB11 | I/O | FT | PB11 | I2C2_SDA/
USART3_RX ⁽⁸⁾ | TIM2_CH4 | | | 23 | 31 | V _{SS_1} | S | - | V _{SS_1} | - | - | | | 24 | 32 | V _{DD_1} | S | - | V _{DD_1} | - | - | | | 25 | 33 | PB12 | I/O | FT | PB12 | SPI2_NSS / I2C2_SMBA/
USART3_CK ⁽⁸⁾ | - | | | 26 | 34 | PB13 | I/O | FT | PB13 | SPI2_SCK ⁽⁸⁾ /
USART3_CTS | - | | | 27 | 35 | PB14 | I/O | FT | PB14 | SPI2_MISO/
USART3_RTS | - | | | 28 | 36 | PB15 | I/O | FT | PB15 | SPI2_MOSI | - | | | - | 37 | PC6 | I/O | FT | PC6 | - | TIM3_CH1 | | | - | 38 | PC7 | I/O | FT | PC7 | - | TIM3_CH2 | | | - | 39 | PC8 | I/O | FT | PC8 | - | TIM3_CH3 | | | - | 40 | PC9 | I/O | FT | PC9 | - | TIM3_CH4 | | | 29 | 41 | PA8 | I/O | FT | PA8 | USART1_CK/MCO | - | | | 30 | 42 | PA9 | I/O | FT | PA9 | USART1_TX ⁽⁸⁾ | - | | | 31 | 43 | PA10 | I/O | FT | PA10 | USART1_RX ⁽⁸⁾ | - | | | 32 | 44 | PA11 | I/O | FT | PA11 | USART1_CTS/USB_DM | - | | | 33 | 45 | PA12 | I/O | FT | PA12 | USART1_RTS/USB_DP | - | | | 34 | 46 | PA13 | I/O | FT | JTMS-
SWDIO | - | PA13 | | | 35 | 47 | V _{SS_2} | S | - | V _{SS_2} | - | - | | | 36 | 48 | V _{DD_2} | S | - | V _{DD_2} | - | - | | | 37 | 49 | PA14 | I/O | FT | JTCK/
SWCLK | - | PA14 | | | 38 | 50 | PA15 | I/O | FT | JTDI | - | TIM2_CH1_ETR
/ PA15
/SPI1_NSS | | | - | 51 | PC10 | I/O | FT | PC10 | - | USART3_TX | | | - | 52 | PC11 | I/O | FT | PC11 | - | USART3_RX | | | - | 53 | PC12 | I/O | FT | PC12 | - | USART3_CK | | | - | 54 | PD2 | I/O | FT | PD2 | TIM3_ETR | - | | Alternate functions(3) (4) **Pins** level⁽²⁾ Type⁽¹⁾ Main function⁽³⁾ QFP64 Pin name 0 (after reset) **Default** Remap TIM2 CH2/PB3/ 39 55 PB3 I/O FT **JTDO** TRACESWO/ SPI1 SCK TIM3 CH1/PB4 **JNTRST** 40 56 PB4 I/O FT SPI1 MISO TIM3 CH2/ 41 57 PB5 I/O PB5 I2C1_SMBA SPI1 MOSI I2C1 SCL⁽⁸⁾/ TIM4_CH1 42 58 PB6 I/O FT PB6 USART1_TX 12C1 SDA⁽⁸⁾/ TIM4 CH2 43 59 PB7 I/O FT PB7 USART1 RX 44 BOOT0 BOOT0 60 1 45 61 PB8 I/O FT PB8 TIM4_CH3 I2C1_SCL 46 PB9 I/O FT PB9 62 TIM4 CH4 I2C1 SDA S 47 63 V_{SS} 3 $V_{\rm SS~3}$ S 48 64 V_{DD_3} V_{DD_3} Table 4. Medium-density STM32F102xx pin definitions (continued) - Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 9Table 3 on page 12. - 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). - PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). - 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F102xx reference manual, available from the STMicroelectronics website: www.st.com. - 7. The pins number 5 and 6 in the LQFP48 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual. The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode. - 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com. ^{1.} I = input, O = output, S = supply. ^{2.} FT= 5 V tolerant. # 4 Memory mapping The memory map is shown in Figure 5. Figure 5. Memory map ### 5 Electrical characteristics #### 5.1 Parameter conditions Unless otherwise specified, all voltages are referred to V_{SS}. #### 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 σ). #### 5.1.2 Typical values Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$). ### 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. ### 5.1.4 Loading
capacitor The loading conditions used for pin parameter measurement are shown in Figure 6. #### 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 7. ### 5.1.6 Power supply scheme Figure 8. Power supply scheme Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers) Ю GP I/Os Logic Kernel logic (CPU, Digital & Memories) V_{DD} 1/2/3/4 Regulator $3 \times 100 \text{ nF}$ Vss + 1 \times 4.7 μF V_{DDA} √_{REF+} Analog: 10 nF ADC RCs, PLL V_{REF-} VSSA ai14882c Caution: In Figure 8, the 4.7 μ F capacitor must be connected to V_{DD3} . ### 5.1.7 Current consumption measurement IDD_VBAT — IDD VDD VDDA Figure 9. Current consumption measurement scheme ### 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in *Table 5: Voltage characteristics*, *Table 6: Current characteristics*, and *Table 7: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. | Symbol | Ratings | Min | Max | Unit | |------------------------------------|---|---|-----------------------|------| | V _{DD} - V _{SS} | External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾ | -0.3 | 4.0 | | | V _{IN} ⁽²⁾ | Input voltage on five volt tolerant pin | V _{SS} - 0.3 | V _{DD} + 4.0 | V | | V _{IN} , | Input voltage on any other pin | V _{SS} - 0.3 | 4.0 | | | ∆V _{DDx} | Variations between different V _{DD} power pins | - | 50 | | | V _{SSX} - V _{SS} | Variations between all the different ground pins | - | 50 | mV | | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | see Section 5.3.11: Absolute maximul ratings (electrical sensitivity) | | | Table 5. Voltage characteristics All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. V_{IN} maximum must always be respected. Refer to Table 6: Current characteristics for the maximum allowed injected current values. **Table 6. Current characteristics** | Symbol | Ratings | Max. | Unit | |---------------------------|--|-------|------| | I _{VDD} | Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾ | 150 | | | l _{vss} | Total current out of V _{SS} ground lines (sink) ⁽¹⁾ | 150 | | | | Output current sunk by any I/O and control pin | 25 | | | I _{IO} | Output current source by any I/Os and control pin | -25 | mA | | (2) | Injected current five volt tolerant pins ⁽³⁾ | -5/+0 | | | I _{INJ(PIN)} (2) | Injected current on any other pin ⁽⁴⁾ | ± 5 | | | Σl _{INJ(PIN)} | Total injected current (sum of all I/O and control pins) ⁽⁵⁾ | ± 25 | | - All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. - 2. Negative injection disturbs the analog performance of the device. - 3. Positive injection is not possible on these I/Os. A negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 5* for maximum allowed input voltage values. - 4. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 5* for maximum allowed input voltage values. - When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). **Table 7. Thermal characteristics** | Symbol | Ratings | Value | Unit | |------------------|------------------------------|-------------|------| | T _{STG} | Storage temperature range | -65 to +150 | °C | | T _J | Maximum junction temperature | 150 | °C | ### 5.3 Operating conditions ### 5.3.1 General operating conditions Table 8. General operating conditions | Symbol | Parameter | Co | onditions | Min | Max | Unit | |---------------------------------|--|--------------------------------------|---|------|--------------------------|-------| | f _{HCLK} | Internal AHB clock frequency | - | | 0 | 48 | | | f _{PCLK1} | Internal APB1 clock frequency | | - | 0 | 24 | MHz | | f _{PCLK2} | Internal APB2 clock frequency | - | | 0 | 48 | | | V_{DD} | Standard operating voltage | | - | 2 | 3.6 | V | | V _{DDA} ⁽¹⁾ | Analog operating voltage (ADC not used) | | Must be the same potential | | 3.6 | | | VDDA. | Analog operating voltage (ADC used) | as V _{DD} ⁽²⁾ | | 2.4 | 3.6 | | | | | Standard IO | | -0.3 | V _{DD} +
0.3 | V | | V _{IN} | I/O input voltage | FTIO ⁽³⁾ | $2 \text{ V} < \text{V}_{DD} \le 3.6 \text{ V}$ | -0.3 | 5.5 | | | | | 1110 | V _{DD} = 2 V | -0.3 | 5.2 | | | | | воото | | 0 | 5.5 | | | P _D | Power dissipation at T _A = 85 °C ⁽⁴⁾ | LQFP48 | | - | 363 | mW | | l D | Tower dissipation at 1 _A = 05°C··· | LQFP64 | | - | 444 | 11100 | | TA | Ambient temperature | Maximum power dissipation | | -40 | 85 | °C | | IA | Ambient temperature | Low power dissipation ⁽⁵⁾ | | -40 | 105 | °C | | TJ | Junction temperature range | | - | -40 | 105 | °C | ^{1.} When the ADC is used, refer to *Table 45: ADC characteristics*. ### 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for T_A. Table 9. Operating conditions at power-up / power-down | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------|------------|-----|-----|-------| | t _{VDD} | V _{DD} rise time rate | | 0 | ~ | μs/V | | | V _{DD} fall time rate | - | 20 | 8 | μ5/ ν | ^{2.} It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation. ^{3.} To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Section 6.3: Thermal characteristics). In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Section 6.3: Thermal characteristics). ### 5.3.3 Embedded reset and power control block characteristics The parameters given in *Table 10* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 10. Embedded reset and power control block characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------------|---|-----------------------------|--------------------|------|------|------| | | | PLS[2:0]=000 (rising edge) | 2.1 | 2.18 | 2.26 | V | | | | PLS[2:0]=000 (falling edge) | 2.0 | 2.08 | 2.16 | V | | | | PLS[2:0]=001 (rising edge) | 2.19 | 2.28 | 2.37 | V | | | | PLS[2:0]=001 (falling edge) | 2.09 | 2.18 | 2.27 | ٧ | | | | PLS[2:0]=010 (rising edge) | 2.28 | 2.38 | 2.48 | V | | | | PLS[2:0]=010 (falling edge) | 2.18 | 2.28 | 2.38 | V | | | | PLS[2:0]=011 (rising edge) | 2.38 | 2.48 | 2.58 | V | | \ \/ | Programmable voltage detector level selection | PLS[2:0]=011 (falling edge) | 2.28 | 2.38 | 2.48 | V | | V_{PVD} | | PLS[2:0]=100 (rising edge) | 2.47 | 2.58 | 2.69 | V | | | | PLS[2:0]=100 (falling edge) | 2.37 | 2.48 | 2.59 | V | | | | PLS[2:0]=101 (rising edge) | 2.57 | 2.68 | 2.79 | V | | | | PLS[2:0]=101 (falling edge) | 2.47 | 2.58 | 2.69 | V | | | | PLS[2:0]=110 (rising edge) | 2.66 | 2.78 | 2.9 | V | | | | PLS[2:0]=110 (falling edge) | 2.56 | 2.68 | 2.8 | V | | | | PLS[2:0]=111 (rising edge) | 2.76 | 2.88 | 3 | V | | | | PLS[2:0]=111 (falling edge) | 2.66 | 2.78 | 2.9 | V | | V _{PVDhyst} ⁽²⁾ | PVD hysteresis | - | - | 100 | - | mV | | | Power on/power down | Falling edge | 1.8 ⁽¹⁾ | 1.88 | 1.96 | V | | V _{POR/PDR} | reset threshold | Rising edge | 1.84 | 1.92 | 2.0 | V | | V _{PDRhyst} | PDR hysteresis | - | - | 40 | - | mV | | t _{RSTTEMPO} ⁽²⁾ | Reset temporization | - | 1.5 | 2.5 | 4.5 | ms | ^{1.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{POR}/\mbox{PDR}}$ value. ### 5.3.4 Embedded reference voltage The parameters given in *Table 11* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. ^{2.} Guaranteed by design, not tested in production. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------------------------|---|----------------------------------|------|------|---------------------|------------| | V _{REFINT} | Internal reference voltage | -40 °C < T _A < +85 °C | 1.16 | 1.20 | 1.24 | V | | T _{S_vrefint} (1) | ADC sampling time when reading the internal reference voltage | - | - | 5.1 | 17.1 ⁽²⁾ | μs | | V _{RERINT} ⁽²⁾ | Internal reference voltage spread over the temperature range | V _{DD} = 3 V ±10 mV | - | - | 10 | mV | | T _{Coeff} ⁽²⁾ | Temperature coefficient | - | ı | - | 100 | ppm/
°C | Table 11. Embedded internal reference voltage ### 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 9: Current consumption measurement scheme*. All Run-mode current consumption
measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code. ### **Maximum current consumption** The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - All peripherals are disabled except if it is explicitly mentioned - The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz) - Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled f_{PCLK1} = f_{HCLK/2}, f_{PCLK2} = f_{HCLK} The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. ^{1.} Shortest sampling time can be determined in the application by multiple iterations. ^{2.} Guaranteed by design, not tested in production. Table 12. Maximum current consumption in Run mode, code with data processing running from Flash | Symala al | Domonoston | Conditions | f _{HCLK} | Max ⁽¹⁾ | l lmi4 | |-----------------|----------------------------|--|-------------------|------------------------|--------| | Symbol | Parameter | arameter Conditions | | T _A = 85 °C | Unit | | | | | 48 MHz | 36.1 | | | | | (2) | 36 MHz | 28.6 | | | | Supply current in Run mode | External clock ⁽²⁾ , all peripherals enabled | 24 MHz | 19.9 | | | | | | 16 MHz | 14.7 | | | | | | 8 MHz | 8.6 | mA | | I _{DD} | | (0) | 48 MHz | 24.4 | IIIA | | | | | 36 MHz | 19.8 | | | | | External clock ⁽²⁾ , all peripherals Disabled | 24 MHz | 13.9 | | | | | periprierais Bisablea | 16 MHz | 10.7 | | | | | | 8 MHz | 6.8 | | - 1. Based on characterization results, not tested in production. - 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Table 13. Maximum current consumption in Run mode, code with data processing running from RAM | Symbol | Parameter | Conditions | £ | Max | Unit | | |-----------------|-------------------------------|---|-------------------|---------------------------------------|------|--| | Symbol | Parameter | Conditions | f _{HCLK} | T _A = 85 °C ⁽¹⁾ | Uill | | | | | | 48 MHz | 31.5 | | | | | | (2) | 36 MHz | 24 | | | | | Supply current in
Run mode | External clock ⁽²⁾ , all peripherals enabled | 24 MHz | 17.5 | | | | | | | 16 MHz | 12.5 | | | | | | | 8 MHz | 7.5 | mA | | | I _{DD} | | (0) | 48 MHz | 20.5 | IIIA | | | | | | 36 MHz | 16 | 1 | | | | | External clock ⁽²⁾ all peripherals disabled | 24 MHz | 11.5 | | | | | | F - F | 16 MHz | 8.5 | | | | | | | 8 MHz | 5.5 | | | - 1. Based on characterization, tested in production at V_{DD} max, f_{HCLK} max. - 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Figure 10. Typical current consumption in Run mode versus temperature (at 3.6 V) - code with data processing running from RAM, peripherals enabled Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM | Symbol | Downston | Conditions | | Max ⁽¹⁾ | Unit | |-----------------|------------------------------|--|-------------------|------------------------|------| | Symbol | Parameter | Conditions | f _{HCLK} | T _A = 85 °C | Onit | | | | | 48 MHz | 20 | | | | | (2) | 36 MHz | 15.5 | | | | Supply current in Sleep mode | External clock ⁽²⁾ , all peripherals enabled | 24 MHz | 11.5 | | | | | | 16 MHz | 8.5 | | | | | | 8 MHz | 5.5 | mA | | I _{DD} | | | 48 MHz | 6 | | | | | | 36 MHz | 5 | | | | | External clock ⁽²⁾ , all peripherals disabled | 24 MHz | 4.5 | | | | | peripricials disabled | 16 MHz | 4 | | | | | | 8 MHz | 3 | | ^{1.} Based on characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled. Table 15. Typical and maximum current consumptions in Stop and Standby modes | | | | | Typ ⁽¹⁾ | | Max | | |----------------------|---|---|--|--|--|---------------------------|-------------| | Symbol | Parameter | Conditions | V _{DD} /
V _{BAT} =
2.4 V | V _{DD} /V _{BAT}
= 3.3 V | V _{DD} /V _{BAT}
= 2.0 V | T _A =
85 °C | Unit | | | Supply current in Stop mode | Regulator in Run mode. Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) | 23.5 | 24 | - | 200 | пΔ | | | | Regulator in Low Power mode.
Low-speed and high-speed internal
RC oscillators and high-speed
oscillator OFF (no independent
watchdog) | 13.5 | 14 | 1 | 180 | – μΑ | | | Supply current
in Standby
mode ⁽²⁾ | Low-speed internal RC oscillator and independent watchdog ON | 2.6 | 3.4 | - | - | | | | | Low-speed internal RC oscillator ON, independent watchdog OFF | 2.4 | 3.2 | - | - | mA | | | | Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF | 1.7 | 2 | - | 4 | | | I _{DD_VBAT} | Backup
domain supply
current | Low-speed oscillator and RTC ON | 1.1 | 1.4 | 0.9 | 1.9 ⁽³⁾ | μA | ^{1.} Typical values are measured at T_A = 25 °C. ^{2.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. - To have the Standby consumption with RTC ON, add I_{DD_VBAT} (Low-speed oscillator and RTC ON) to I_{DD} Standby (when V_{DD} is present the Backup Domain is powered by V_{DD} supply). - 3. Based on characterization, not tested in production. Figure 12. Typical current consumption on V_{BAT} with RTC on versus temperature at different V_{BAT} values Figure 13. Typical current consumption in Stop mode with regulator in Run mode versus temperature at V_{DD} = 3.3 V and 3.6 V Figure 14. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at V_{DD} = 3.3 V and 3.6 V Figure 15. Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and 3.6 V #### **Typical current consumption** The MCU is placed under the following conditions: - All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - All peripherals are disabled except if it is explicitly mentioned - The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz) - Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling) - When the peripherals are enabled f_{PCLK1} = f_{HCLK/4}, f_{PCLK2} = f_{HCLK/2}, f_{ADCCLK} = f_{PCLK2}/4 The parameters given in *Table 16* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 16. Typical current consumption in Run mode, code with data processing running from Flash | | | | | Typ ⁽¹⁾ | Typ ⁽¹⁾ | | | | | |-----------------|-------------------|------------------------|-------------------|---|-----------------------------|---------|-----|------|--| | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals
enabled ⁽²⁾ | All peripherals
disabled | Unit | | | | | | | | 48 MHz | 24.2 | 18.6 | | | | | | | | | 36 MHz | 19 | 14.8 | | | | | | | | | 24 MHz | 12.9 | 10.1 | | | | | | | | | 16 MHz | 9.3 | 7.4 | | | | | | | | External | 8 MHz | 5.5 | 4.6 | | | | | | | | clock ⁽³⁾ | 4 MHz | 3.3 | 2.8 | | | | | | | | | 2 MHz | 2.2 | 1.9 | mA | | | | | | Supply current in | | 1 MHz | 1.6 | 1.45 | | | | | | | | | 500 kHz | 1.3 | 1.25 | | | | | | | | | 125 kHz | 1.08 | 1.06 | | | | | | I _{DD} | Run mode | Running on | 48 MHz | 23.5 | 17.9 | | | | | | | | | 36 MHz | 18.3 | 14.1 | | | | | | | | | 24 MHz | 12.2 | 9.5 | | | | | | | | high speed internal RC | 16 MHz | 8.5 | 6.8 | | | | | | | | (HSI), AHB | 8 MHz | 4.9 | 4 | | | | | | | | prescaler used to | 4 MHz | 2.7 | 2.2 | | | | | | | | reduce the | 2 MHz | 1.6 | 1.4 | | | | | | | | frequency | 1 MHz | 1.02 | 0.9 | | | | | | | | | 500 kHz | 0.73 | 0.67 | | | | | | | | | | | | 125 kHz | 0.5 | 0.48 | | ^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V. ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM | | | | | Typ ⁽¹⁾ | Typ ⁽¹⁾ | | | |-----------------|------------------------------------|-----------------------------------|-------------------|--|--------------------------|------|--| | Symbol | Parameter | Conditions | f _{HCLK} | All peripherals enabled ⁽²⁾ | All peripherals disabled | Unit | | | | | | 48 MHz | 9.9 | 3.9 | | | | | | | 36 MHz | 7.6 | 3.1 | | | | | | | 24 MHz | 5.3 | 2.3 | | | | | | | 16 MHz | 3.8 | 1.8 | | | | | | External clock ⁽³⁾ | 8 MHz | 2.1 | 1.2 | | | | | | External clock | 4 MHz | 1.6 | 1.1 | | | | | Supply
current in
Sleep mode | | 2 MHz | 1.3 | 1 | | | | | | | | 1 MHz | 1.11 | 0.98 | | | | | | | 500 kHz | 1.04 | 0.96 | | | | | | 125 kHz | 0.98 | 0.95 | mA | | | I _{DD} | | | 48 MHz | 9.3 | 3.3 | ША | | | | | | 36 MHz | 7 | 2.5 | | | | | | | 24 MHz | 4.8 | 1.8 | | | | | | Running on High
Speed Internal | 16 MHz | 3.2 | 1.2 | | | | | | RC (HSI), AHB | 8 MHz | 1.6 | 0.6 | | | | | | prescaler used to reduce the | 4 MHz | 1 | 0.5 | | | | | | frequency | 2 MHz | 0.72 | 0.47 | | | | | | | 1 MHz | 0.56 | 0.44 | | | | | | | 500 kHz | 0.49 | 0.42 | | | | | | | 125 kHz | 0.43 | 0.41 | | | ^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3
V. ^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). ^{3.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz. # On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in *Table 18*. The MCU is placed under the following conditions: - $\bullet \hspace{0.5cm}$ all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load) - all peripherals are disabled unless otherwise mentioned - the given value is calculated by measuring the current consumption - with all peripherals clocked off - with only one peripheral clocked on - ambient operating temperature and V_{DD} supply voltage conditions as summarized in Table 5. Table 18. Peripheral current consumption⁽¹⁾ | | Peripheral | μ A/MHz | |-------------------------|--|----------------| | AUD (up to 49 MUz) | DMA1 | 16.53 | | AHB (up to 48 MHz) | BusMatrix ⁽²⁾ | 8.33 | | | APB1-Bridge | 10.28 | | | TIM2 | 32.50 | | | TIM3 | 31.39 | | | TIM4 | 31.94 | | | SPI2 | 4.17 | | | USART2 | 12.22 | | APB1 (up to 24 MHz) | USART3 | 12.22 | | Al B1 (up to 24 Mil 12) | I2C1 | 10.00 | | | I2C2 | 10.00 | | | USB | 17.78 | | | WWDG | 2.50 | | | PWR | 1.67 | | | ВКР | 2.50 | | | BusMatrix ⁽²⁾ APB1-Bridge TIM2 TIM3 TIM4 SPI2 USART2 USART3 I2C1 I2C2 USB WWDG PWR | 11.67 | | | APB2-Bridge | 3.75 | | | GPIOA | 6.67 | | | GPIOB | 6.53 | | ADR2 (up to 49 MUz) | GPIOC | 6.53 | | APB2 (up to 48 MHz) | GPIOD | 6.53 | | | SPI1 | 4.72 | | | USART1 | 11.94 | | | ADC1 ⁽³⁾ (4) | 17.50 | ^{1.} f_{HCLK} = 48 MHz, f_{APB1} = $f_{HCLK}/2$, f_{APB2} = f_{HCLK} , default prescaler value for each peripheral. - 2. The BusMatrix is automatically active when at least one master is ON. - 3. Specific conditions for ADC: $f_{HCLK} = 48$ MHz, $f_{APB1} = f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2}/4$. - 4. When ADON bit in the ADC_CR2 register is set to 1, there is an additional current consumption equal to 0, 65 mA. When we enable the ADC, there is an additional current consumption of 0,05 mA. #### 5.3.6 External clock source characteristics # High-speed external user clock generated from an external source The characteristics given in *Table 19* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 8*. Table 19. High-speed external user clock characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------------|---|----------------------------------|--------------------|-----|--------------------|------| | f _{HSE_ext} | User external clock source frequency ⁽¹⁾ | | 1 | 8 | 25 | MHz | | V _{HSEH} | OSC_IN input pin high level voltage | | 0.7V _{DD} | - | V_{DD} | V | | V _{HSEL} | OSC_IN input pin low level voltage | | V _{SS} | ı | 0.3V _{DD} | V | | $t_{w(HSE)} \ t_{w(HSE)}$ | OSC_IN high or low time ⁽¹⁾ | - | 5 | ı | - | ns | | t _{r(HSE)} | OSC_IN rise or fall time ⁽¹⁾ | | - | - | 20 | 113 | | C _{in(HSE)} | OSC_IN input capacitance ⁽¹⁾ | | - | 5 | - | pF | | DuCy _(HSE) | Duty cycle | | 45 | - | 55 | % | | Ι _L | OSC_IN Input leakage current | $V_{SS} \leq V_{IN} \leq V_{DD}$ | | - | ±1 | μΑ | ^{1.} Guaranteed by design, not tested in production. ### Low-speed external user clock generated from an external source The characteristics given in *Table 20* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 8*. Table 20. Low-speed external user clock characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---|---|----------------------------------|--------------------|--------|--------------------|------| | f _{LSE_ext} | User external clock source frequency ⁽¹⁾ | | - | 32.768 | 1000 | kHz | | V _{LSEH} | OSC32_IN input pin high level voltage | | 0.7V _{DD} | - | V_{DD} | V | | V _{LSEL} | OSC32_IN input pin low level voltage | | V _{SS} | - | 0.3V _{DD} | V | | $\begin{array}{c} t_{\text{w(LSE)}} \\ t_{\text{w(LSE)}} \end{array}$ | OSC32_IN high or low time ⁽¹⁾ | - | 450 | - | 1 | ns | | $t_{r(LSE)}$ $t_{f(LSE)}$ | OSC32_IN rise or fall time ⁽¹⁾ | | - | - | 50 | 113 | | C _{in(LSE)} | OSC32_IN input capacitance ⁽¹⁾ | | - | 5 | - | pF | | DuCy _(LSE) | Duty cycle | | 30 | - | 70 | % | | Ι _L | OSC32_IN Input leakage current | $V_{SS} \leq V_{IN} \leq V_{DD}$ | - | - | ±1 | μΑ | ^{1.} Guaranteed by design, not tested in production. Figure 16. High-speed external clock source AC timing diagram Figure 17. Low-speed external clock source AC timing diagram 47/ # High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 21*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------------------------|--|---|-----|-----|-----|------| | f _{OSC_IN} | Oscillator frequency | - | 4 | 8 | 16 | MHz | | R _F | Feedback resistor | - | - | 200 | - | kΩ | | С | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾ | R _S = 30 Ω | - | 30 | - | pF | | i ₂ | HSE driving current | V_{DD} = 3.3 V
V_{IN} = V_{SS} with 30 pF load | ı | ı | 1 | mA | | 9 _m | Oscillator transconductance | Startup | 25 | - | ı | mA/V | | t _{SU(HSE)} ⁽⁴⁾ | Startup time | V _{DD} is stabilized | - | 2 | - | ms | Table 21. HSE 4-16 MHz oscillator characteristics⁽¹⁾⁽²⁾ For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 18*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*. ^{1.} Resonator characteristics given by the crystal/ceramic resonator manufacturer. ^{2.} Based on characterization results, not tested in production. ^{3.} The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. ^{4.} t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 18. Typical application with an 8 MHz crystal 1. R_{EXT} value depends on the crystal characteristics. #### Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 22*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | | | (LOL , | | | | | | |-------------------------------------|---|------------------------------------|-------------------------|-----|------|-----|------| | Symbol | Parameter | Condition | ıs | Min | Тур | Max | Unit | | R_{F} | Feedback resistor | - | | - | 5 | - | MΩ | | C ⁽¹⁾ | Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) | R _S = 30 kΩ | | - | - | 15 | pF | | l ₂ | LSE driving current | $V_{DD} = 3.3 V$ $V_{IN} = V_{SS}$ | | - | - | 1.4 | μA | | 9 _m | Oscillator transconductance | - | - | | - | - | μA/V | | | | | T _A = 50 °C | - | 1.5 | - | | | | | | T _A = 25 °C | - | 2.5 | - | | | | | | T _A = 10 °C | - | 4.0 | - | | | . (2) | Ctartus tima | | T _A = 0 °C | - | 6.0 | - | | | t _{SU(LSE)} ⁽²⁾ | Startup time | V _{DD} is stabilized | T _A = -10 °C | - | 10.0 | - | S | | | | | T _A = -20 °C | - | 17.0 | - | | | | | | T _A = -30 °C | - | 32.0 | - | | | | | | T _A = -40 °C | - | 60.0 | - | | Table 22. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$) Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers". t_{SU(LSE)} is
the startup time measured from the moment it is enabled by software to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and can vary significantly with the crystal manufacturer, PCB layout and humidity. Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: $CL = CL1 \times CL2 / (CL1 + CL2) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance $CL \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Figure 19. Typical application with a 32.768 kHz crystal #### 5.3.7 Internal clock source characteristics The parameters given in *Table 23* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. #### High-speed internal (HSI) RC oscillator **Symbol Parameter Conditions** Min Тур Max Unit Frequency 8 MHz f_{HSI} $DuCy_{(HSI)}$ % Duty cycle 45 55 User-trimmed with the RCC CR 1(3) % register(2) $T_{\Delta} = -40 \text{ to } 105 \,^{\circ}\text{C}$ -2.0 2.5 % Accuracy of the HSI **ACC**_{HSI} oscillator $= -10 \text{ to } 85 \,^{\circ}\text{C}$ -1.52.2 % Factorycalibrated⁽⁴⁾⁽⁵⁾ $T_A = 0 \text{ to } 70 \,^{\circ}\text{C}$ -1.32 % = 25 °C -1.11.8 % HSI oscillator $t_{\text{su(HSI)}}^{\rm (4)}$ 1 2 μs startup time HSI oscillator power I_{DD(HSI)}⁽⁴⁾ 80 100 μΑ consumption Table 23. HSI oscillator characteristics⁽¹⁾ ^{1.} V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified. - Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com. - 3. Guaranteed by design, not tested in production. - 4. Based on characterization, not tested in production. - 5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range. ### Low-speed internal (LSI) RC oscillator Table 24. LSI oscillator characteristics (1) | Symbol | Parameter | Min ⁽²⁾ | Тур | Max | Unit | |-------------------------------------|----------------------------------|--------------------|------|-----|------| | f _{LSI} | Frequency | 30 | 40 | 60 | kHz | | t _{su(LSI)} (3) | LSI oscillator startup time | - | - | 85 | μs | | I _{DD(LSI)} ⁽³⁾ | LSI oscillator power consumption | - | 0.65 | 1.2 | μA | - 1. V_{DD} = 3 V, T_A = -40 to 85 °C unless otherwise specified. - 2. Based on characterization, not tested in production. - 3. Guaranteed by design, not tested in production. #### Wakeup time from low-power mode The wakeup times given in *Table 25* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: - Stop or Standby mode: the clock source is the RC oscillator - Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 25. Low-power mode wakeup timings | Symbol | Parameter | | Unit | |-------------------------------------|---|-----|------| | t _{WUSLEEP} (1) | Wakeup from Sleep mode | 1.8 | μs | | | Wakeup from Stop mode (regulator in run mode) | 3.6 | | | t _{wustop} (1) | Wakeup from Stop mode (regulator in low-power mode) | 5.4 | μs | | t _{WUSTDBY} ⁽¹⁾ | Wakeup from Standby mode | 50 | μs | The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction. # 5.3.8 PLL characteristics The parameters given in *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. | Symbol | Dozometez | | Unit | | | | |----------------------|--------------------------------|--------------------|------|--------------------|-------|--| | Symbol | Parameter | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Oilit | | | f | PLL input clock ⁽²⁾ | 1 | 8.0 | 25 | MHz | | | f _{PLL_IN} | PLL input clock duty cycle | 40 | - | 60 | % | | | f _{PLL_OUT} | PLL multiplier output clock | 16 | - | 48 | MHz | | | t _{LOCK} | PLL lock time | - | - | 200 | μs | | | Jitter | Cycle-to-cycle jitter | - | - | 300 | ps | | Table 26. PLL characteristics # 5.3.9 Memory characteristics # Flash memory The characteristics are given at T_A = -40 to 85 °C unless otherwise specified. Table 27. Flash memory characteristics | Symbol | Parameter | Conditions | Min ⁽¹⁾ | Тур | Max ⁽¹⁾ | Unit | |--------------------|-------------------------|--|--------------------|------|--------------------|------| | t _{prog} | 16-bit programming time | $T_A = -40 \text{ to } +85 ^{\circ}\text{C}$ | 40 | 52.5 | 70 | μs | | t _{ERASE} | Page (1 KB) erase time | $T_A = -40 \text{ to } +85 ^{\circ}\text{C}$ | 20 | - | 40 | ms | | t _{ME} | Mass erase time | $T_A = -40 \text{ to } +85 ^{\circ}\text{C}$ | 20 | ı | 40 | ms | | | | Read mode
f _{HCLK} = 48 MHz with 2
wait states, V _{DD} = 3.3 V | - | - | 20 | mA | | I _{DD} | Supply current | Write / Erase modes
f _{HCLK} = 48 MHz, V _{DD} =
3.3 V | - | - | 5 | mA | | | | Power-down mode / Halt,
V _{DD} = 3.0 to 3.6 V | - | - | 50 | μΑ | | V _{prog} | Programming voltage | - | 2 | - | 3.6 | V | ^{1.} Guaranteed by design, not tested in production. Table 28. Flash memory endurance and data retention | Symbol Parameter | | Conditions | | Unit | | | |------------------|----------------|-------------------------------------|--------------------|------|-----|---------| | Symbol | raiailletei | Conditions | Min ⁽¹⁾ | Тур | Max | Offic | | N _{END} | Endurance | | 10 | ı | - | kcycles | | t _{RET} | Data retention | T _A = 85 °C, 1000 cycles | 30 | ı | - | Years | ^{1.} Based on characterization not tested in production. ^{1.} Based on characterization, not tested in production. ^{2.} Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}. #### 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. #### Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: - **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. - FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in *Table 29*. They are based on the EMS levels and classes defined in application note AN1709. | Symbol | Parameter | Conditions | Level/Class | |-------------------|---|---|-------------| | V _{FESD} | Voltage limits to be applied on any I/O pin to induce a functional disturbance | $\begin{split} V_{DD} = 3.3 \text{ V, } T_{A} = +25 \text{ °C,} \\ f_{HCLK} = 48 \text{ MHz} \\ \text{conforms to IEC 61000-4-2} \end{split}$ | 2B | | V _{EFTB} | Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance | V_{DD} = 3.3 V, T_A = +25 °C, f_{HCLK} = 48 MHz conforms to IEC 61000-4-4 | 4A | Table 29. EMS characteristics ### Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. **Software recommendations:** the software flowchart must include the management of runaway conditions such as: - Corrupted program counter - Unexpected reset - Critical data corruption (control registers, etc.) ### Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). # **Electromagnetic Interference (EMI)** The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports), This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Max vs. [f_{HSE}/f_{HCLK}]
Monitored Symbol **Parameter Conditions** Unit frequency band 8/48 MHz 0.1 MHz to 30 MHz 7 30 MHz to 130 MHz 8 dBµV S_{EMI} Peak level $V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C}.$ 130 MHz to 1GHz 13 SAE EMI Level 3.5 Table 30. EMI characteristics # 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. # Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. | | | | , - | _ | | |-----------------------|---|--|-------|------------------------------|------| | Symbol | Ratings | Conditions | Class | Maximum value ⁽¹⁾ | Unit | | V _{ESD(HBM)} | Electrostatic discharge voltage (human body model) | T _A = +25 °C, conforming to JESD22-A114 | 2 | 2000 | V | | V _{ESD(CDM)} | Electrostatic discharge voltage (charge device model) | T _A = +25 °C, conforming to ANSI/ESD STM5.3.1 | II | 500 | V | Table 31. ESD absolute maximum ratings #### Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: - A supply overvoltage is applied to each power supply pin - A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78 IC latch-up standard. Table 32. Electrical sensitivities | Symbol | Parameter | Conditions | Class | |--------|-----------------------|--|------------| | LU | Static latch-up class | T _A = +105 °C conforming to JESD78A | II level A | ^{1.} Based on characterization results, not tested in production. # 5.3.12 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. ### Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 33. **Functional susceptibility Symbol** Description Unit **Negative Positive** injection injection Injected current on OSC IN32, -0 +0 OSC_OUT32, PA4, PA5, PC13 I_{INJ} mΑ Injected current on all FT pins -5 +0 -5 Injected current on any other pin +5 Table 33. I/O current injection susceptibility # 5.3.13 I/O port characteristics 49/80 #### General input/output characteristics Unless otherwise specified, the parameters given in *Table 34* are derived from tests performed under the conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant. Table 34. I/O static characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---|---|--|-----|--|------| | | | Standard IO input low level voltage | - | - | 0.28*(V _{DD} -2 V)+0.8 V ⁽¹⁾ | | | V _{IL} | Low level input voltage | IO FT ⁽³⁾ input low level voltage | - | - | 0.32*(V _{DD} -2V)+0.75 V ⁽¹⁾ | | | | | All I/Os except
BOOT0 | - | - | 0.35V _{DD} ⁽²⁾ | | | | | Standard IO input high level voltage | 0.41*(V _{DD} -2 V)+1.3 V ⁽¹⁾ | - | - | V | | V_{IH} | High level input voltage | IO FT ⁽³⁾ input
high level
voltage | 0.42*(V _{DD} -2 V)+1 V ⁽¹⁾ | - | - | | | | | All I/Os except
BOOT0 | 0.65V _{DD} ⁽²⁾ | - | - | | | V_{hys} | Standard IO Schmitt
trigger voltage
hysteresis ⁽⁴⁾ | - | 200 | - | - | mV | | ,- | IO FT Schmitt trigger voltage hysteresis ⁽⁴⁾ | - | 5% V _{DD} ⁽⁵⁾ | - | - | | | | Input leakage current | $V_{SS} \le V_{IN} \le V_{DD}$
Standard I/Os | - | - | ±1 | | | l _{lkg} | (6) | V _{IN} = 5 V
I/O FT | - | - | 3 | μA | | R _{PU} | Weak pull-up equivalent resistor ⁽⁷⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | R _{PD} | Weak pull-down equivalent resistor ⁽⁷⁾ | $V_{IN} = V_{DD}$ | 30 | 40 | 50 | K77 | | C _{IO} | I/O pin capacitance | - | - | 5 | - | pF | - 1. Data based on design simulation. - 2. Tested in production. - 3. FT = Five-volt tolerant, In order to sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled. - 4. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. - 5. With a minimum of 100 mV. - 6. Leakage could be higher than max, if negative current is injected on adjacent pins. - Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required), Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 20* and *Figure 21* for standard I/Os, and in *Figure 22* and *Figure 23* for 5 V tolerant I/Os. Figure 20. Standard I/O input characteristics - CMOS port Figure 22. 5 V tolerant I/O input characteristics - CMOS port # **Output driving current** The GPIOs (general purpose input/outputs) can sink or source up to \pm 8 mA, and sink or source up to \pm 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to \pm 3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum ratings specified in *Section 5.2*. - The sum of the currents sourced by all the I/Os on V_{DD} , plus the maximum Run consumption of the MCU sourced on V_{DD} , cannot exceed the absolute maximum rating I_{VDD} (see *Table 6*). - The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 6*). # **Output voltage levels** Unless otherwise specified, the parameters given in *Table 35* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. All I/Os are CMOS and TTL compliant. Table 35. Output voltage characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------------------|---|--|----------------------|-----|------| | V _{OL} ⁽¹⁾ | Output Low level voltage for an I/O pin when 8 pins are sunk at the same time | CMOS port ⁽²⁾ .
I _{IO} = +8 mA. | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output High level voltage for an I/O pin when 8 pins are sourced at the same time | 2.7 V < V _{DD} < 3.6 V | V _{DD} -0.4 | - | V | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | TTL port ⁽²⁾
I _{IO} = +8 mA | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2.7 V < V _{DD} < 3.6 V | 2.4 | - | | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | I _{IO} = +20 mA ⁽⁴⁾ | - | 1.3 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2.7 V < V _{DD} < 3.6 V | V _{DD} -1.3 | - | V | | V _{OL} ⁽¹⁾ | Output low level voltage for an I/O pin when 8 pins are sunk at the same time | I _{IO} = +6 mA ⁽⁴⁾ | - | 0.4 | V | | V _{OH} ⁽³⁾ | Output high level voltage for an I/O pin when 8 pins are sourced at the same time | 2.0 V < V _{DD} < 2.7 V | V _{DD} -0.4 | - | V | ^{1.} The $I_{\rm IO}$ current sunk by the device must always respect the absolute maximum rating specified in *Table* 6 and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VSS}$. ^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. ^{3.} The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 6 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} . ^{4.} Based on characterization data, not tested in production. # Input/output AC characteristics The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 36*, respectively. Unless otherwise specified, the parameters given in *Table 36* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. Table 36. I/O AC characteristics⁽¹⁾ | MODEx
[1:0] bit
value ⁽¹⁾ | Symbol | Parameter | Conditions | Max | Unit | | |--|-------------------------|---
---|---|------|-----| | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$ | 2 | MHz | | | 10 | t _{f(IO)out} | Output high to low level fall time | C = 50 pF V = 2 V to 2 6 V | 125 ⁽³⁾ | 20 | | | | t _{r(IO)out} | Output low to high level rise time | C _L = 50 pF, V _{DD} = 2 V to 3.6 V | | ns | | | | f _{max(IO)out} | Maximum frequency ⁽²⁾ | C _L = 50 pF, V _{DD} = 2 V to 3.6 V | 10 | MHz | | | 01 | t _{f(IO)out} | Output high to low level fall time | C = 50 pF V = 2 V/to 2 6 V | 25 ⁽³⁾ | 20 | | | | t _{r(IO)out} | Output low to high level rise time | C_L = 50 pF, V_{DD} = 2 V to 3.6 V | 25 ⁽³⁾ | ns | | | | F _{max(IO)out} | | C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V | 50 | MHz | | | | | F _{max(IO)out} | F _{max(IO)out} Maximum Frequency ⁽²⁾ | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 30 | MHz | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | 20 | MHz | | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 5 ⁽³⁾ | | | | 11 | t _{f(IO)out} | Output high to low level fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 8(3) | | | | | | | $C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ | 12 ⁽³⁾ | ns | | | | | | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 5 ⁽³⁾ | 115 | | | | t _{r(IO)out} | Output low to high level rise time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | 8 ⁽³⁾ | | | | | , , | ume | C _L = 50 pF, V _{DD} = 2 V to 2.7 V | 12 ⁽³⁾ | | | | - | t _{EXTIPW} | Pulse width of external signals detected by the EXTI controller | - | 10 | ns | | The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. ^{2.} The maximum frequency is defined in Figure 24. ^{3.} Guaranteed by design, not tested in production. Figure 24. I/O AC characteristics definition # 5.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 34*). Unless otherwise specified, the parameters given in *Table 37* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 8*. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--------------------------------------|---|-------------------|------|-----|----------------------|------| | V _{IL(NRST)} ⁽¹⁾ | NRST Input low level voltage | - | -0.5 | - | 0.8 | V | | V _{IH(NRST)} ⁽¹⁾ | NRST Input high level voltage | - | 2 | - | V _{DD} +0.5 | ľ | | V _{hys(NRST)} | NRST Schmitt trigger voltage hysteresis | - | - | 200 | - | mV | | R _{PU} | Weak pull-up equivalent resistor ⁽²⁾ | $V_{IN} = V_{SS}$ | 30 | 40 | 50 | kΩ | | V _{F(NRST)} ⁽¹⁾ | NRST Input filtered pulse | - | - | - | 100 | ns | | V _{NF(NRST)} ⁽¹⁾ | NRST Input not filtered pulse | - | 300 | - | - | ns | Table 37. NRST pin characteristics 47/ ^{1.} Guaranteed by design, not tested in production. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 25. Recommended NRST pin protection - 1. The reset network protects the device against parasitic resets. - The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 39. Otherwise the reset will not be taken into account by the device. #### 5.3.15 TIM timer characteristics The parameters given in *Table 38* are guaranteed by design. Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------------|---------------------------------|-------------------------------|--------|-------------------------|----------------------| | 1 | Timer resolution time | - | 1 | - | t _{TIMxCLK} | | ^t res(TIM) | Timer resolution time | f _{TIMxCLK} = 48 MHz | 20.84 | - | ns | | f | Timer external clock | - | 0 | f _{TIMxCLK} /2 | MHz | | f _{EXT} | frequency on CH1 to CH4 | f _{TIMxCLK} = 48 MHz | 0 | 24 | MHz | | Res _{TIM} | Timer resolution | - | - | 16 | bit | | | 16-bit counter clock period | - | 1 | 65536 | t _{TIMxCLK} | | ^t COUNTER | when internal clock is selected | f _{TIMxCLK} = 48 MHz | 0.0208 | 1365 | μs | | t | Maximum possible count | - | - | 65536 × 65536 | t _{TIMxCLK} | | t _{MAX_COUNT} | waxiinum possible count | f _{TIMxCLK} = 48 MHz | - | 89.48 | s | Table 38. TIMx⁽¹⁾ characteristics # 5.3.16 Communications interfaces # I²C interface characteristics The STM32F102xx medium-density USB access line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. The I²C characteristics are described in *Table 39*. Refer also to *Section 5.3.13: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL). ^{1.} TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers. Table 39. I²C characteristics | Symbol | Parameter | Standard m | ode I ² C ⁽¹⁾⁽²⁾ | Fast mode I ² C ⁽¹⁾⁽²⁾ | | Unit | |---------------------------|--|------------|--|--|--------------------|-------| | Symbol | Farameter | Min | Max | Min | Max | Ullit | | t _{w(SCLL)} | SCL clock low time | 4.7 | - | 1.3 | - | 116 | | t _{w(SCLH)} | SCL clock high time | 4.0 | - | 0.6 | - | μs | | t _{su(SDA)} | SDA setup time | 250 | - | 100 | - | | | t _{h(SDA)} | SDA data hold time | - | 3450 ⁽³⁾ | - | 900 ⁽³⁾ | | | t _{r(SDA)} | SDA and SCL rise time | - | 1000 | - | 300 | ns | | $t_{f(SDA)} \ t_{f(SCL)}$ | SDA and SCL fall time | - | 300 | - | 300 | | | t _{h(STA)} | Start condition hold time | 4.0 | - | 0.6 | - | | | t _{su(STA)} | Repeated Start condition setup time | 4.7 | - | 0.6 | - | μs | | t _{su(STO)} | Stop condition setup time | 4.0 | - | 0.6 | - | μs | | t _{w(STO:STA)} | Stop to Start condition time (bus free) | 4.7 | - | 1.3 | - | μs | | t _{SP} | Pulse width of spikes that are suppressed by the analog filter | 0 | 50 ⁽⁴⁾ | 0 | 50 ⁽⁴⁾ | ns | | C _b | Capacitive load for each bus line | | 400 | - | 400 | pF | ^{1.} Values guaranteed by design, not tested in production. f_{PCLK1} must be at least 2 MHz to achieve standard mode I^2C frequencies. It must be at least 4 MHz to achieve fast mode I^2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. The maximum Data hold time has only to be met if the interface does not stretch the low period of the SCL The analog filter minimum filtered spikes is above $t_{SP(max)}$ to ensure that spikes width up to $t_{SP(max)}$ are filtered. Figure 26. I²C bus AC waveforms and measurement circuit⁽¹⁾ Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}. Table 40. SCL frequency (f_{PCLK1} = 36 MHz, V_{DD_I2C} = 3.3 V)⁽¹⁾⁽²⁾ | f _{SCL} | I2C_CCR value | |------------------|------------------------| | (kHz) | R_P = 4.7 k Ω | | 400 | 0x801E | | 300 | 0x8028 | | 200 | 0x803C | | 100 | 0x00B4 | | 50 | 0x0168 | | 20 | 0x0384 | ^{1.} R_P = External pull-up resistance, f_{SCL} = I^2C speed. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. #### **SPI** interface characteristics Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 8*. Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 41. SPI characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | |--|----------------------------------|---|--------------------|--------------------|---------| | f _{SCK} | SPI clock frequency | Master mode | - | 18 | MHz | | 1/t _{c(SCK)} | SFI Clock frequency | Slave mode | - | 18 | IVII IZ | | t _{r(SCK)} | SPI clock rise and fall time | Capacitive load: C = 30 pF | - | 8 | ns | | DuCy(SCK) | SPI slave input clock duty cycle | Slave mode | 30 | 70 | % | | t _{su(NSS)} ⁽¹⁾ | NSS setup time | Slave mode | 4t _{PCLK} | - | | | t _{h(NSS)} ⁽¹⁾ | NSS hold time | Slave mode | 2t _{PCLK} | - | | | $t_{\text{w(SCKL)}}^{(1)}$ | SCK high and low time | Master mode, f _{PCLK} = 36 MHz,
presc = 4 | 50 | 60 | | | | Data input setup time | Master mode | 5 | - | | | t _{su(MI)} (1)
t _{su(SI)} (1) | Data input setup time | Slave mode | 5 | - | | | t _{h(MI)} (1) | Data input hold time | Master mode | 5 | - | | | t _{h(SI)} ⁽¹⁾ | Data input noid time | Slave mode | 4 | - | ns | | t _{a(SO)} (1)(2) | Data output access time | Slave mode, f _{PCLK} = 20 MHz | 0 | 3t _{PCLK} | | | t _{dis(SO)} (1)(3) | Data output disable time | Slave mode | 2 | 10 | | | t _{v(SO)} (1) | Data output valid time | Slave mode (after enable edge) | - | 25 | | | t _{v(MO)} ⁽¹⁾ | Data output valid time | Master mode (after enable edge) | - | 5 | | | t _{h(SO)} ⁽¹⁾ | | Slave mode (after enable edge) | 15 | - | | | t
{h(MO)} ⁽¹⁾ | Data output hold time | Master mode (after enable edge) | 2 | - | | ^{1.} Based on characterization, not tested in production. ^{2.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. ^{3.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Figure 27. SPI timing diagram - slave mode and CPHA=0 1. Measurement points are done at CMOS levels: $0.3V{DD}$ and $0.7V_{DD}$. 57 Figure 29. SPI timing diagram - master mode⁽¹⁾ 1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$. ### **USB** characteristics The USB interface is USB-IF certified (Full Speed). Table 42. USB startup time | Symbol | Parameter | Max | Unit | |----------------------|------------------------------|-----|------| | t _{STARTUP} | USB transceiver startup time | 1 | μs | | Symbol | | Parameter | Conditions | Min. ⁽¹⁾ | Max. ⁽¹⁾ | Unit | |--------|--------------------------------|--------------------------------------|--|---------------------|---------------------|-------| | | V_{DD} | USB operating voltage ⁽²⁾ | - | $3.0^{(3)}$ | 3.6 | V | | Input | V _{DI} ⁽⁴⁾ | Differential input sensitivity | I(USB_DP, USB_DM) | 0.2 | - | | | levels | V _{CM} ⁽⁴⁾ | Differential common mode range | Includes V _{DI} range | 8.0 | 2.5 | V | | | V _{SE} ⁽⁴⁾ | Single ended receiver threshold | - | 1.3 | 2.0 | | | Output | V_{OL} | Static output level low | R_L of 1.5 k Ω to 3.6 $V^{(5)}$ | - | 0.3 | V | | levels | V _{OH} | Static output level high | R_L of 15 k Ω to $V_{SS}^{(5)}$ | 2.8 | 3.6 | V
 | Table 43. USB DC electrical characteristics - 1. All the voltages are measured from the local ground potential. - 2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range. - 3. The STM32F102xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range. - 4. Guaranteed by design, not tested in production. - 5. RI is the load connected on the USB drivers Differential Data Lines VCRS VSS tf tr ai14137 Figure 30. USB timings: definition of data signal rise and fall time Table 44. USB: Full speed electrical characteristics of the driver⁽¹⁾ | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|---------------------------------|---------------------------------|-----|-----|------| | t _r | Rise time ⁽²⁾ | C _L = 50 pF | 4 | 20 | ns | | t _f | Fall time ⁽²⁾ | C _L = 50 pF | 4 | 20 | ns | | t _{rfm} | Rise/ fall time matching | t _r / t _f | 90 | 110 | % | | V _{CRS} | Output signal crossover voltage | - | 1.3 | 2.0 | V | - 1. Guaranteed by design, not tested in production. - Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). ### 5.3.17 12-bit ADC characteristics Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 8*. Note: It is recommended to perform a calibration after each power-up. | Table | 15 | ADC | characteristics | | |-------|-----|-----|-----------------|--| | rabie | 40. | ADG | Characteristics | | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------------------|---|---|--|-----|--------------------|--------------------| | V_{DDA} | Power supply | - | 2.4 | - | 3.6 | V | | f _{ADC} | ADC clock frequency | - | 0.6 | - | 12 | MHz | | f _S ⁽¹⁾ | Sampling rate | - | 0.05 | - | 0.85 | Msps | | £ (1) | External trigger frequency | f _{ADC} = 12 MHz | - | - | 823 | kHz | | f _{TRIG} ⁽¹⁾ | External trigger frequency | - | - | - | 17 | 1/f _{ADC} | | V _{AIN} | Conversion voltage range ⁽²⁾ | - | 0 (V _{SSA} or
V _{REF-} tied to
ground) | - | V _{REF+} | V | | R _{AIN} ⁽¹⁾ | External input impedance | See Equation 1
and Table 46
for details | - | - | 50 | κΩ | | R _{ADC} ⁽¹⁾ | Sampling switch resistance | - | - | - | 1 | κΩ | | C _{ADC} ⁽¹⁾ | Internal sample and hold capacitor | - | - | - | 8 | pF | | t _{CAL} ⁽¹⁾ | Calibration time | f _{ADC} = 12 MHz | 5.9 | | | μs | | CAL` | Calibration time | - | 83 | | | 1/f _{ADC} | | t _{lat} (1) | Injection trigger conversion | f _{ADC} = 12 MHz | - | - | 0.214 | μs | | Yat` ′ | latency | - | - | - | 3 ⁽³⁾ | 1/f _{ADC} | | t _{latr} (1) | Regular trigger conversion | f _{ADC} = 12 MHz | - | - | 0.143 | μs | | 'latr' | latency | - | - | ı | 2 ⁽³⁾ | 1/f _{ADC} | | t _S ⁽¹⁾ | Sampling time | f _{ADC} = 12 MHz | 0.125 | - | 19.95 | μs | | '১ | Camping unio | - | 1.5 | - | 239.5 | 1/f _{ADC} | | t _{STAB} ⁽¹⁾ | Power-up time | - | 0 | 0 | 1 | μs | | | Total conversion time | f _{ADC} = 12 MHz | 1.2 | ı | 21 | μs | | t _{CONV} ⁽¹⁾ | (including sampling time) | - | 14 to 252 (t _S for sampling +12.5 for successive approximation) | | 1/f _{ADC} | | - 1. Guaranteed by design, not tested in production. - 2. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. - 3. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 46*. $$\begin{aligned} & \textbf{Equation 1: R_{AIN} max formula:} \\ & R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC} \end{aligned}$$ The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). | T _s (cycles) | t _S (μs) | R_{AIN} max ($k\Omega$) | |-------------------------|---------------------|-----------------------------| | 1.5 | 0.13 | 0.4 | | 7.5 | 0.63 | 5.9 | | 13.5 | 1.13 | 11.4 | | 28.5 | 2.38 | 25.2 | | 41.5 | 3.46 | 37.2 | | 55.5 | 4.63 | 50 | | 71.5 | 5.96 | NA | | 239.5 | 19.96 | NA | Table 46. R_{AIN} max for $f_{ADC} = 12 \text{ MHz}^{(1)}$ Table 47. ADC accuracy - limited test conditions⁽¹⁾ | Symbol | Parameter | Test conditions | Тур | Max ⁽²⁾ | Unit | |--------|------------------------------|---|------|--------------------|------| | ET | Total unadjusted error | f _{PCLK2} = 48 MHz. | ±1.3 | ±2 | | | EO | Offset error | f_{ADC} = 12 MHz, R_{AIN} < 10 kΩ. | ±1 | ±1.5 | | | EG | Gain error | $V_{DDA} = 3 \text{ V to } 3.6 \text{ V}$
$T_{\Delta} = 25 \text{ °C}$ | ±0.5 | ±1.5 | LSB | | ED | Differential linearity error | Measurements made after | ±0.7 | ±1 | | | EL | Integral linearity error | ADC calibration | ±0.8 | ±1.5 | | ^{1.} ADC DC accuracy values are measured after internal calibration. Table 48. ADC accuracy⁽¹⁾ (2) (3) | Symbol | Parameter | Test conditions | Тур | Max ⁽⁴⁾ | Unit | |--------|------------------------------|--|------|--------------------|------| | ET | Total unadjusted error | f 40 MUL | ±2 | ±5 | | | EO | Offset error | f _{PCLK2} = 48 MHz.
f _{ADC} = 12 MHz, R _{AIN} < 10 kΩ. | ±1.5 | ±2.5 | | | EG | Gain error | V _{DDA} = 2.4 V to 3.6 V | ±1.5 | ±3 | LSB | | ED | Differential linearity error | Measurements made after ADC calibration | ±1 | ±2 | | | EL | Integral linearity error | 7 DO GUIDIGUOII | ±1.5 | ±3 | | ^{1.} ADC DC accuracy values are measured after internal calibration. ^{1.} Data guaranteed by design, not tested in production. ^{2.} Based on characterization, not tested in production. ^{2.} Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges. ^{3.} ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.13 does not affect the ADC accuracy. ^{4.} Based on characterization, not tested in production. Figure 31. ADC accuracy characteristics Figure 32. Typical connection diagram using the ADC - Refer to Table 46 for the values of R_{AIN}, R_{ADC} and C_{ADC}. - C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. # General PCB design guidelines Power supply decoupling should be performed as shown in *Figure 33*. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip. STM32F102xx V_{DDA} 1 μF // 10 nF V_{SSA} Figure 33. Power supply and reference decoupling # 5.3.18 Temperature sensor characteristics **Parameter** Unit **Symbol** Min Max Тур $T_L^{(1)}$ V_{SENSE} linearity with temperature °C ±1.5 mV/°C Avg_Slope⁽¹⁾ Average slope 4.35 V₂₅⁽¹⁾ Voltage at 25°C 1.42 V t_{START}(2) Startup time 4 10 μs T_{S_temp}(3)(2) ADC sampling time when reading the 17.1 μs temperature Table 49. TS characteristics - 1. Guaranteed by characterization, not tested in production. - 2. Data guaranteed by design, not tested in production. - 3. Shortest sampling time can be determined in the application by multiple iterations. #### Package characteristics 6 In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and
product status are available at: www.st.com. ECOPACK[®] is an ST trademark. #### LQFP64 package information 6.1 Figure 34. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline 1. Drawing is not to scale. Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data | Symbol | millimeters | | | inches ⁽¹⁾ | | | |--------|-------------|-------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | Α | - | - | 1.600 | - | - | 0.0630 | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 | | b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 | | packago mochamour data (continuos) | | | | | | | | |------------------------------------|-------|-------------|-------|--------|--------|----------------------|--| | O | | millimeters | | inch | | nches ⁽¹⁾ | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | | D | - | 12.000 | - | - | 0.4724 | - | | | D1 | - | 10.000 | - | - | 0.3937 | - | | | D3 | - | 7.500 | - | - | 0.2953 | - | | | E | - | 12.000 | - | - | 0.4724 | - | | | E1 | - | 10.000 | - | - | 0.3937 | - | | | E3 | - | 7.500 | - | - | 0.2953 | - | | | е | - | 0.500 | - | - | 0.0197 | - | | | K | 0° | 3.5° | 7° | 0° | 3.5° | 7° | | | L | 0.450 | 0.600 | 0.750 | 0.0177 | 0.0236 | 0.0295 | | | L1 | - | 1.000 | - | - | 0.0394 | - | | | CCC | - | - | 0.080 | - | - | 0.0031 | | Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 35. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint 1. Dimensions are expressed in millimeters. 577 # **Device marking for LQFP64** Figure 36 is an example of topside marking orientation versus pin 1 identifier location. Figure 36. LQFP64 marking example (package top view) 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. # 6.2 LQFP48 package information Figure 37. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 1. Drawing is not to scale. Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data | Symphol | | millimeters | | inches ⁽¹⁾ | | | |---------|-------|-------------|-------|-----------------------|--------|--------| | Symbol | Min | Тур | Max | Min | Тур | Max | | А | - | - | 1.600 | - | - | 0.0630 | | A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 | | A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 | | b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 | | С | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 | | D | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 | | D1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 | | D3 | - | 5.500 | - | - | 0.2165 | - | | E | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 | | E1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 | | E3 | - | 5.500 | - | - | 0.2165 | - | | е | - | 0.500 | - | - | 0.0197 | - | | L | 0.450 | 0.600 | 0.750 | 0.0177 | 0.0236 | 0.0295 | | L1 | - | 1.000 | - | - | 0.0394 | - | | k | 0° | 3.5° | 7° | 0° | 3.5° | 7° | | ccc | - | - | 0.080 | - | - | 0.0031 | ^{1.} Values in inches are converted from mm and rounded to 4 decimal digits. Figure 38. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint 1. Dimensions are expressed in millimeters. #### **Device marking for LQFP48** Figure 39 gives an example of topside marking orientation versus pin 1 identifier location. Figure 39. LQFP48 marking example (package top view) 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. # 6.3 Thermal characteristics The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 8: General operating conditions*. The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation: $$T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$$ #### Where: - T_A max is the maximum ambient temperature in °C, - Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W, - P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max), - P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power. P_{I/O} max represents the maximum power dissipation on output pins where: $$P_{I/O}$$ max = $\Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH})$, taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application. | rabio 52.1 ackago merma enaracteriones | | | | | | |--|--|-------|------|--|--| | Symbol | Parameter | Value | Unit | | | | Θ. | Thermal resistance junction-ambient LQFP48 - 7 × 7 mm / 0.5 mm pitch | 55 | °C/W | | | | Θ_{JA} | Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch | 45 | C/VV | | | Table 52. Package thermal characteristics ### 6.4 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. # 6.4.1 Evaluating the maximum junction temperature for an application When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 53: Ordering information scheme*. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (–40 to 85 °C). The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F102xx junction temperature range. # **Example: High-performance application** Assuming the following application conditions: Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$ $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$ This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW $P_{Dmax} = 175 + 272 = 447 \text{ mW}$ Thus: P_{Dmax} = 447 mW Using the values obtained in *Table 52* T_{Jmax} is calculated as follows: For LQFP64, 45 °C/W T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C This is within the junction temperature range of the STM32F102xx ($-40 < T_J < 105$ °C). # 7 Ordering information scheme Table 53. Ordering information scheme **57**/ # 8 Revision history Table 54. Document revision history | Date | Revision | Changes | |-------------|----------|--| | 23-Sep-2008 | 1 | Initial release. | | 23-Apr-2009 | 2 | I/O information clarified <i>on page 1. Figure 1: STM32F102T8 medium-density USB access line block diagram</i> and <i>Figure 5: Memory map</i> modified. In <i>Table 4: Medium-density STM32F102xx pin definitions</i> : PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column. P _D value added for LQFP64 package in <i>Table 8: General operating conditions</i> . Note modified in <i>Table 13: Maximum current consumption in Run mode, code with data processing running from Flash</i> and <i>Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 13, Figure 14</i> and <i>Figure 15</i> show typical curves. <i>Figure 31:
ADC accuracy characteristics</i> modified. <i>Figure 33: Power supply and reference decoupling</i> modified. <i>Table 20: High-speed external user clock characteristics</i> and <i>Table 21: Low-speed external user clock characteristics</i> modified. ACC _{HSI} max values modified in <i>Table 24: HSI oscillator characteristics</i> . Small text changes. | | 22-Sep-2009 | 3 | Note 5. updated in Table 4: Medium-density STM32F102xx pin definitions. VRERINT and T _{Coeff} added to Table 12: Embedded internal reference voltage. Typical I _{DD_VBAT} value added in Table 16: Typical and maximum current consumptions in Stop and Standby modes. Figure 12: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added. f _{HSE_ext} min modified in Table 20: High-speed external user clock characteristics. C _{L1} and C _{L2} replaced by C in Table 22: HSE 4-16 MHz oscillator characteristics and Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Table 24: HSI oscillator characteristics modified. Conditions removed from Table 26: Low-power mode wakeup timings. Note 1. modified below Figure 18: Typical application with an 8 MHz crystal. Figure 25: Recommended NRST pin protection modified. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 48. Jitter added to Table 27: PLL characteristics. Table 43: SPI characteristics modified. C _{ADC} and R _{AIN} parameters modified in Table 47: ADC characteristics. R _{AIN} max values modified in Table 48: RAIN max for fADC = 12 MHz. Small text changes. | Table 54. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|--| | | | , and the second | | | | Figure 2: Clock tree: added FLITFCLK and Note 3., and modified Note 1 | | | | Updated Note 2. in Table 41: I2C characteristics. | | | | Updated Figure 25: Recommended NRST pin protection. | | | | Changed $t_{w(SCKH)}$ to $t_{w(SCLH)}$, $t_{w(SCKL)}$ to $t_{w(SCLL)}$, $t_{r(SCK)}$ to $t_{r(SCL)}$, $t_{r(SCK)}$ to $t_{r(SCL)}$, and $t_{su(STA:STO)}$ to $t_{w(STO:STA)}$ in Figure 26: I2C bus AC waveforms and measurement circuit(1). | | | | Changed note for I _{lkg} and R _{PU} and updated <i>Note 1</i> .content in <i>Table 36: I/O</i> static characteristics. Updated text related to CMOS and TTL compliance and added <i>Figure 20</i> , <i>Figure 21</i> , <i>Figure 22</i> , and <i>Figure 23</i> . | | | | Updated Section : Output driving current. | | | | In Table 43: SPI characteristics, removed note 1 related to SPI1 | | | | remapped characteristics. | | | | Added DuCy _(HSI) in <i>Table 24: HSI oscillator characteristics</i> . | | | | Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz): removed note 2 related to oscillator selection, updated Note 2., and t _{SU(LSE)} specified for various ambient temperature values. | | | 4 | Updated Note 2. and Note 3. below Figure 35: Recommended footprint (dimensions in mm) ⁽¹⁾⁽²⁾⁽³⁾ . | | 27-Sep-2012 | | Table 37: Output voltage characteristics: updated V_{OL} and V_{OH} conditions for TTL and CMOS outputs and added <i>Note 2.</i> . | | | | Replaced "TBD" by "-" for "max" specification of "Supply current in Standby mode" in <i>Table 16: Typical and maximum current consumptions in Stop and Standby modes</i> . | | | | Removed "except for analog inputs" from paragraph "GPIOS (general-purpose inputs/outputs) in <i>Chapter 2.3: Overview</i> . | | | | Updated $t_{w(HSE)}$ min value in <i>Table 20: High-speed external user clock characteristics</i> . | | | | Added Note 2. in Table 5: Voltage characteristics. | | | | Updated Note 3., Note 4. and Note 5. in Table 6: Current characteristics. | | | | Updated Note 1. in Table 38: I/O AC characteristics. | | | | Added Chapter 5.3.12: I/O current injection characteristics. | | | | Updated Note 2. in Table 41: I2C characteristics. | | | | Updated "Output driving current" paragraph in <i>Chapter 5.3.13: I/O port characteristics</i> . | | | | Removed Note 4 and updated Note 3. in Table 41: I2C characteristics. | | | | Updated <i>Figure 29: SPI timing diagram - master mode(1)</i> (SCK Output instead of Input). | | | | Replaced every occurrence of USBDP or USBDM by USB_DP or USB_DM, respectively. | Table 54. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|---| | 02-Aug-2013 | 5 | Removed sentence in "Unless otherwise specified the parameters" in <i>I2C interface characteristics</i> section. Added V_{IN} in <i>Table 8: General operating conditions</i> . Added note 5 in <i>Table 23: HSI oscillator characteristics</i> Modified charge device model in <i>Table 33: ESD absolute maximum ratings</i> Updated ' V_{IL} ' and ' V_{IH} ' in <i>Table 34: I/O static characteristics</i> Added notes to <i>Figure 20: Standard I/O input characteristics - CMOS port, Figure 21: Standard I/O input characteristics - TTL port, Figure 22: 5 V tolerant I/O input characteristics - CMOS port and Figure 23: 5 V tolerant I/O input characteristics - TTL port</i> Updated <i>Figure 24: I/O AC characteristics definition</i> Updated note 2. and 3. in <i>Table 39: I</i> ² C characteristics Updated Figure 26: I2C bus AC waveforms and measurement circuit(1) Updated title of <i>Table 40: SCL frequency (f</i> _{PCLK1} = 36 MHz, V_{DD_I2C} = 3.3 V) Updated <i>Table 47: ADC characteristics</i> Updated <i>Section 6.1: Package mechanical data</i> | | 03-Jun-2015 | 6 | Updated Table 18: Peripheral current consumption and Table 39: I ² C characteristics Updated Section 6: Package characteristics Updated Section 6.1: LQFP64 package information with addition of Device marking for LQFP64 and Figure 36. Updated Section 6.2: LQFP48 package information with addition of Device marking for LQFP48 and Figure 39. Updated Disclaimer. | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of
their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics - All rights reserved