

Features:

- V_{DS}, 100V
- R_{DS(on)}, 300 mΩ
- I_D, 2.5 A
- Optimized eGaN[®] FET for high frequency applications
- Pb-Free (RoHS Compliant), Halogen Free

Applications:

- Ultra high speed DC-DC conversion
- RF Envelope Tracking

MAXIMUM RATINGS

- Wireless Power Transfer
- Game console and industrial movement sensing (LiDAR)

EPC8003 eGaN FETs are supplied only in passivated die form with solder bars

Parameter	Value
Maximum Drain – Source Voltage	100 V
Gate – Source Maximum Voltage Range	-5 V < V _{GS} < 6 V
Continuous Drain Current, 25 °C, θ_{JA} = 33	2.5 A
Maximum Pulsed Drain Current, 25 °C, Τ _{pulse} = 300 μs	5 A
Operating Temperature Range	-40 °C < T _J < 125 °C

STATIC CHARACTERISTICS

Parameter	Conditions	Value
Maximum Drain – Source Leakage	V _{DS} = 80 V, V _{GS} = 0 V	0.1 mA
R _{DS(ON)}	V _{GS} = 5 V, I _D = 0.5 A	300 mΩ
Gate – Source Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 0.25 \text{ mA}$	$0.7 \text{ V} < \text{V}_{\text{GS(TH)}} < 2.5 \text{ V}$
Gate – Source Maximum Positive Leakage	V _{GS} = 5 V	0.5 mA
Gate – Source Maximum Negative Leakage	V _{GS} = -5 V	-0.1 mA

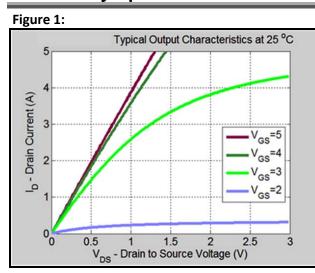
 T_J = 25 °C unless otherwise stated

Specifications are with Substrate shorted to Source where applicable

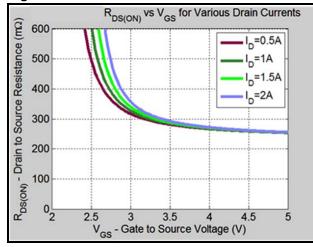
DYNAMIC CHARACTERISTICS

Parameter	Conditions	Typical Value
C _{ISS} (Input Capacitance)		38 pF
C _{OSS} (Output Capacitance)	V _{DS} = 50 V; V _{GS} = 0 V	18 pF
C _{RSS} (Reverse Transfer Capacitance)		0.2 pF
Q _G (Total Gate Charge)		315 pC
Q _{GD} (Gate to Drain Charge)	V _{DS} = 50 V; I _D = 1 A	34 pC
Q _{GS} (Gate to Source Charge)		110 pC
Q _{OSS} (Output Charge)	V_{DS} = 50 V; V_{GS} = 0 V	1110 pC
Q _{RR} (Source-Drain Recovery Charge)		0 pC

 $T_J = 25$ °C unless otherwise stated


Specifications are with Substrate shorted to Source where applicable

THERMAL CHARACTERISTICS


		TYP	
R _{eJC}	Thermal Resistance, Junction to Case	6.7	°C/W
R _{eJB}	Thermal Resistance, Junction to Board	33	°C/W
R _{eJA}	Thermal Resistance, Junction to Ambient (Note 1)	82	°C/W

Note 1: R_{0JA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See <u>http://epc-co.com/epc/documents/product-training/Appnote Thermal Performance of eGaN FETs.pdf</u> for details.

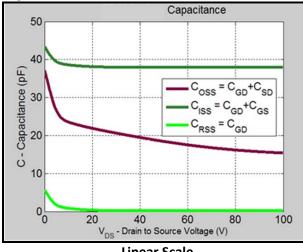


Figure 3:

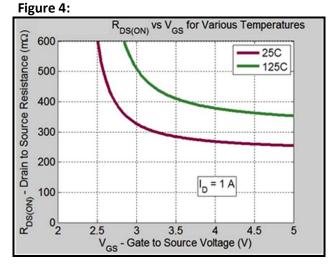
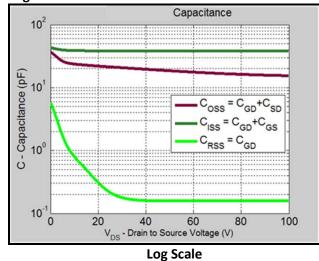
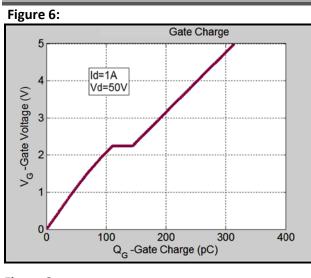
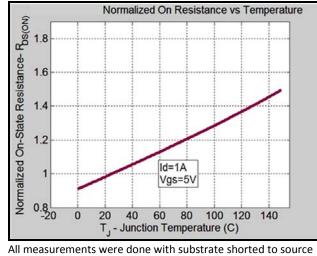


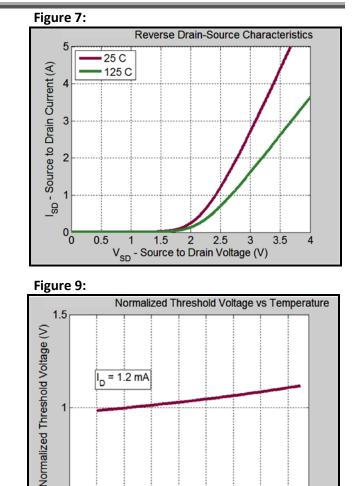
Figure 5a:



Linear Scale





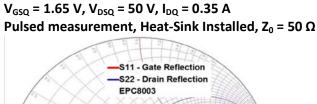

100 120 140

EPC8003 – Enhancement Mode Power Transistor Preliminary Specification Sheet

0.5∟ -20

0

40


20

60 80

T₁ - Junction Temperature (C)

S-PARAMETER CHARACTERISTICS

3 GHz

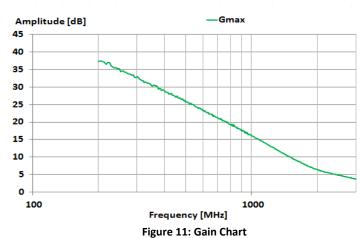
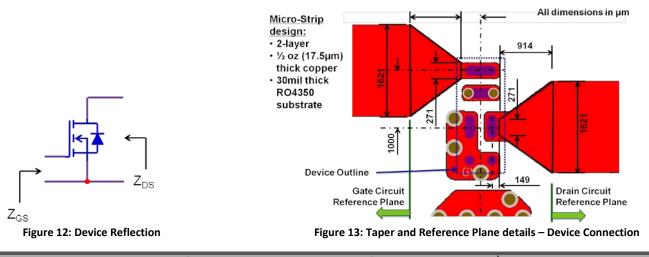
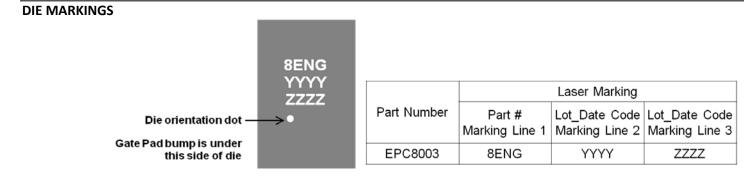
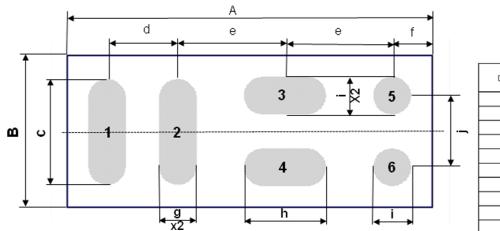
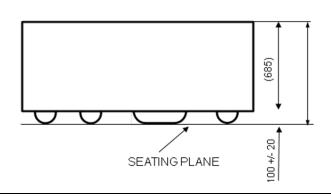



Figure 10: Smith Chart


200 MHz

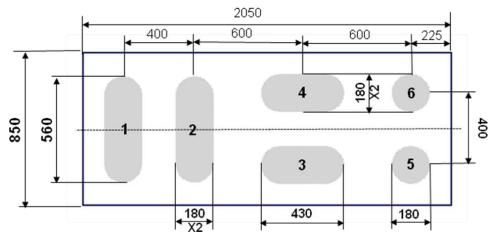
Frequency	Gate (Z _{GS})	Drain (Z _{DS})	
[MHz]	[Ω]	[Ω]	
200	2.20 – j14.48	12.63 – j40.14	
500	1.02 – j5.15	1.71 – j16.51	
1000	0.79 – j0.40	0.61 – j6.05	
1200	0.85 + j0.79	0.80 – j4.20	
1500	0.95 + j2.37	1.15 - j1.93	
2000	1.21 + j5.01	2.14 + j0.68	
2400	1.43 + j7.05	2.79 + j2.56	
3000	2.21 + j11.18	3.52 + j5.39	


Table 1: S-Parameter Table Download S-parameter files at <u>www.epc-co.com</u>



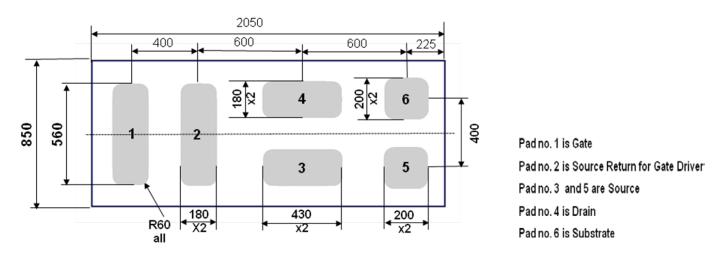
DIE OUTLINE Solder Bar View

DIM	MICROMETERS		
DIM	MIN	Nominal	MAX
А	2020	2050	2080
В	820	850	880
с	555	580	605
d	400	400	400
e	600	600	600
f	200	225	250
g	175	200	225
h	425	450	475
i	175	200	225
j	400	400	400


Side View

RECOMMENDED LAND PATTERN

(units in μm)



Pad no. 1 is Gate Pad no. 2 is Source Return for Gate Driver Pad no. 3 and 5 are Source Pad no. 4 is Drain Pad no. 6 is Substrate

Land pattern is solder mask defined Solder mask opening is 10 μm smaller per side than bump

RECOMMENDED STENCIL

(units in µm)

Recommended stencil should be 4mil ($100\mu m$) thick, must be laser cut, openings per drawing. Note that openings for pads 5 & 6 are larger than solder mask opening.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein. Preliminary specification sheet contains informaton regarding a product EPC is considering for production release. EPC does not assume any liability arising out of the application or use of any product or circuit described herin; neither does it convey any license under its patent rights, nor the rights of other.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398

Revised September, 2013