PCM-3640 PC/104 4-port RS-232 Module

Introduction

The PCM-3640 is a PC/104-compatible 4-port RS-232 serial interface module. It works with PC/104 CPU modules or CPU cards which accept PC/104 expansion modules. It provides four independent serial interfaces, accessed through male DB-9 connectors.

The module's industry-standard 16C550 asynchronous communication chip is fully programmable. The module requires no special commands or control codes if you use the standard COM1 ~ COM4 port addresses.

Features

- · Four RS-232 serial interfaces
- High speed data transmission-up to 115,200 Bps.
- Switch selectable addresses (COM1 ~ COM4 or any other address from hex 200 to 3F8)
- · 16 bytes FIFOs
- · Jumper selectable interrupt level
- Eight LEDs indicate status of TX, RX lines (red LED represents TX, green LED represents RX)
- Supported by PC-ComLib serial communication programming library (optional)

Specifications

- Dimensions: 3.775" x 3.550" (9.6 cm x 9.0 cm)
- Bus: PC/104
- Baud rate: 50 to 115,200 bps
- Character length: 5, 6, 7 or 8 bits
- · Parity: Even, odd or none
- Stop bit: 1, 1.5 (5-bit data only) or 2
- I/O connectors: Four male DB-9
- Interrupt level: IRQ 3, 4, 5, 6, 7 or 9
- Clock input: 1.8432 MHz
- Power consumption: +5 V @ 220 mA max.

Initial inspection

We carefully inspected the PCM-3640 both mechanically and electrically before we shipped it. It should be free of marks and scratches and in perfect electrical order on receipt.

Handle the board only by its edges. The static charge on your body may damage its integrated circuits. Keep the card in its anti-static package whenever it is not installed. You can use this package to return the card if it should need repair.

Switches and jumpers

The following chart shows the switches and jumpers used to configure the PCM-3640:

Switch Function	
SW1	I/O base address (enhanced mode)
JP1	Channel 1 Interrupt level
JP2	Channel 2 Interrupt level
JP3	Channel 3 Interrupt level
JP4	Channel 4 Interrupt level

Board Layout

Default jumper settings

The PCM-3640 will be shipped in standard mode, with the following I/O address and IRQ settings:

Port	I/O address	IRQ no.
Port 1	3F8	IRQ4
Port 2	2F8	IRQ3
Port 3	3E8	IRQ12
Port 4	2E8	IRQ15

Jumper and Switch settings

The PCM-3640 can be used in two modes: standard or enhanced mode. In standard mode the I/O addresses are compatible with the standard PC communication ports, COM1 ~ COM4. In enhanced mode you can select a different base address. The offset of each port from the base address is fixed.

Standard / Enhanced mode selection

Switch 7 of DIP switch SW1 selects between standard and enhanced mode.

Standard mode

In standard mode, the I/O address of the ports are as follows:

Port	I/O address	Interrupt No
Port1 p.3)	3F8	Selectable (see
Port2 p.3)	2F8	Selectable (see
Port3 p.3)	3E8	Selectable (see
Port4 p.3)	2E8	Selectable (see

Enhanced mode

Base address selection(SW1)

In enhanced mode, you can select a different base address. The base address determines the address for each of the four ports.

The I/O addresses for the four ports are as follows:

Port	I/O address	
Port 1	Base + 00H	
Port 2	Base + 08H	
Port 3	Base + 10H	
Port 4	Base + 18H	

You use switches 1~6 of DIP switch SW1, a 7-position DIP switch, to set the base address. You can set the base address anywhere from hex 200 to 3F8.

To set the base address, you have to calculate the base address as follows:

NOTE: On the PCM-3640 the address line A9 does not appear on the DIP switch as it is permanently hard-wired to HEX 200 on the card.

The following table shows different base address settings.

Port base address (SW1)						
Base Addre	ss					
	A3	A4	A5	A6	A7	A8
200-207	•	•	٠	٠	•	•
208-20F	0	•	٠	٠	٠	٠
2E8-2EF	0	•	0	0	0	٠
3E8-3EF	0	•	0	0	0	0
*3F8-3FF	0	0	0	0	0	0
	●:OI	N	0:0	FF	*:De	fault

Note:

If your CPU module or card has serial interface ports, you will need to adjust the I/O port addresses (or disable the ports) to avoid conflicts.

Interrupt level selection (JP1 ~ JP4)

You can set the interrupt level for each port from 3 to15, except 8, 13 and 14. Jumpers JP1, JP2, JP3 and JP4 sets the interrupt level for port 1, port 2, port 3 and port 4 respectively.

Simply short the pins on the jumper corresponding to the interrupt level required (as illustrated below).

Note:

Do not use interrupts that are used by other cards/ports, unless you have made provision for interrupt sharing in your programs.

RS-232 Signal wiring

Since the RS-232 interface is not strictly defined, many devices have their own connection methods which may ignore some signal lines or define reserved lines to other functions. It is best to refer to the user's manual for your device for installation instructions. You may find the following helpful.

In general, DTE (Data Terminal Equipment) refers to the device that is leading the communication. Examples include PC's, terminals and some printers. DCE refers to the device being communicated with or controlled. Examples include modems, DSU's (digital service units), printers and lab/factory equipment.

In some situations you may be able to get by with just three lines: data on TxD, a Signal Ground and a handshaking line. Examples are printer or plotter connections, troubleshooting and situations where you require only one-wire communication.

Terminal or PC (DTE) connections

PCM-3640 (DTE): (DB-9)		Terminal (DTE):DB-25	
Pin	Signal	Pin	Signal
3	TxD	3	RxD
2	RxD	2	TxD
7	RTS	5	CTS
8	CTS	4	RTS
6	DSR	20	DTR
5	GND	7	GND
4	DTR	6	DSR
1	DCD	8	DCD

Signal wiring

Connector pin assignments

You access the PCM-3640's ports through four external male DB-9 connectors. RS-232 connector pin assignments are as follows :

1	DCD	receive line signal detector
2	RD	received data
3	TD	transmitted data
4	DTR	data terminal ready
5	GND	ground
6	DSR	data set ready
7	RTS	request to send
8	CTS	clear to send
9	RI	ring indicator

Modem connections

640: DB-9 Male Modem (DC	E)	
Signal	Pin	Signal
TxD	2	RxD
RxD	3	TxD
RTS	4	CTS
CTS	5	RTS
DSR	6	DTR
GND	7	GND
	Modem (DC Signal TxD RxD RTS CTS DSR	Modem (DCE) Signal Pin TxD 2 RxD 3 RTS 4 CTS 5 DSR 6

4	DTR	20	DSR	
1	DCD	8	DCD	

For DTE to DCE connection, use straight through cable connections, i.e. you don't have to reverse lines 2 and 3, lines 4 and 5, and lines 6 and 20. Because in general DCE RS-232 interfaces are reversed themselves.

Terminal without handshake

PCM-3640: DB-9 MALE		Terminal (DTE)	
Pin	Signal	Pin	Signal
3	TxD	3	RxD
2	RxD	2	TxD
7	RTS		
8	CTS		
6	DSR		
5	GND	7	GND
4	DTR		
1	DCD		

The maximum length of a RS-232 cable is 100 ft. If you need to connect over longer distances, (longer than 100 ft), you will have to use another standard (like RS-422 or RS-485).

If you do not use CTS, RTS, DSR, DTR signals, please loop them back, otherwise the PC-ComLIB software will not function correctly. PC-ComLIB always checks for handshake signals.

Hardware installation

TURN OFF your PC power supply whenever you install or remove the PCM-3640 or connect and disconnect cables.

Installing the module on a CPU card

- 1. Turn the PC's power off. Turn the power off to any peripheral devices such as printers and monitors.
- 2. Disconnect the power cord and any other cables from the back of the computer.
- 3. Remove the system unit cover (see the user's guide for your chassis if necessary).
- 4. Remove the CPU card from the chassis (if necessary) to gain access to the card's PC/104 connector.
- Screw the brass spacer (included with the module) into the threaded hole on the CPU card. Do not tighten too much, or the threads may be damaged.
- Carefully align the pins of the PCM-3640 with the PC/ 104 connector. Slide the module into the connector. The module pins may not slide all the way into the connector; do not push too hard or the module may be damaged.
- 7. Secure the module to the CPU card to the threaded hole in the CPU card using the included screw.
- 8. Attach any accessories to the PCM-3640.
- Reinstall the CPU card and replace the system unit cover. Reconnect the cables you removed in step 2. Turn the power on.

Connecting to another PC/104 module

1. Insert the pins of connector JP6 (on the end of the PCM-3640 module) into the piggyback connector on the other PC/104 module.

2. Screw the PCM-3640 to the brass spacer.

This completes the hardware installation.

Programming

Programming with COM1 or COM2

If you set the PCM-3640's ports as COM1 and COM2, you can send and receive data using the normal communication functions found in high-level languages. The following examples use BASIC to demonstrate PCM-3640 programming.

The BASIC communication process starts with the <code>OPEN "COMn: , , ..."</code> statement. This statement assigns a buffer for communication purposes and sets up the communication parameters.

Command format

OPEN "COMn: [speed][,parity][,data][,stop]
[,RS][,CS[n]][,DS[n]][,CD[n]][,LF][,PE]"
AS [#]filenum

Example:

OPEN "COM1:9600,N,8,,CS,DS,CD" AS #1

Where:

- COMn: n is 1 or 2, indicating either COM1 or COM2
- speed: An integer constant specifying the baud rate in bits per second
- parity: One of the following characters:
 - S: space
 - O: odd
 - M: mark E: even
 - N: none
- data: An integer constant indicating the number of data bits. Valid values are 4, 5, 6, 7 and 8. The default is 7.
- stop: The number of stop bits. Valid values are 1 and 2. The default is 2 for 75 and 110 bps, 1 for all others.
- RS: Suppresses RTS

- CS: Controls CTS
- DS: Controls DSR
- CD: Controls CD

10

- LF: Sends a line feed following each carriage return
- PE: Enables parity checking
- filenum: filenum is an integer expression which evaluates to a valid file number

You must put the speed, parity, data and stop parameters in this position and order, but you can put the RS, CS, DS, CD, LF and PE parameters in any order. The n argument in the CS, DS and CD parameters specifies the number of milliseconds to wait for the signal before returning a "device timeout" error. n may range from 0 to 65535. If you omit n or set it equal to 0, then the line status is not checked at all.

Refer to the IBM BASIC reference manual for more detailed information.

Programming example — standard COM ports

You can use the following BASIC program to test the PCM-3640's send and receive functions.

20 '* Program: DEMO01.BAS 3.0 '* Description: This demo program transmits a '* string through COM1 and receives it through 40 50 * COM2 70 . 160 'Set the proper parameters 170 'COM1 & COM2: baud rate=9600 ; no parity check; 180 'Data bit=8; stop bit=1 190 'Ignore the CTS, RTS and DSR signals. 200 OPEN "COM1:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS #1 210 OPEN "COM2:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS #1 220 INPUT "INPUT COMMAND:";CMDS 230 IF CMDS="O" OR "g" THEN CLOSE:END ELSE GOSUB 250 240 GOSUB 300:GOTO 220 250 '****** Transmit data sub-routine ****** 260 PRINT #1,CMD\$ 270 RETURN 300 `****** Receive data sub-routine ****** 310 T=TIMER:TEMPS="":RXS="" 320 IF TIMER>T+.5 THEN PRINT "TIMEOUT ERROR":RETURN 330 IF LOC(2)>0 THEN TEMP\$=INPUT\$(1,#2) ELSE GOTO 320 340 RX\$=RX\$+TEMP\$ 350 IF TEMPS=CHRS(13) THEN GOTO 360 ELSE GOTO 320 360 PRINT "RECEIVE DATA:";RX\$:RETURN

Using other I/O port addresses

If you are going to use I/O ports other than COM1 or COM2, you will need to directly program the registers of the PCM3640's 16C550 chip.

See page 7 for information on the format and programming of these registers. See page 8 if you have trouble finding a free I/O port base address.

You can use the following program as a base as you develop your own driver. The program exchanges data (the numbers 0 to 256) between two ports. It uses I/O port addresses hex 2E8 and 3E8. Set JP4, JP5 and JP10 for RS485 or RS-422 mode (described on page 2).

Programming example—arbitrary I/O ports

30 CLS 40 'Set the I/O port base addresses for 50 'both cards 60 PORT1%=&H2E8 70 PORT2%=&H3E8 80 'Read all registers once to 9.0 'clear any random data 100 FOR I=PORT1% TO PORT1%+6 110 DIM=TNP(T) 120 NEXT I FOR I=PORT2% TO PORT2%+6 130 140 DUM=INP(I) 150 NEXT I 'Initialize the registers of 160 170 'portl. First, set DLAB = 1 so the 'desired baud rate can be programmed. 180 190 OUT PORT1%+3,&H80 200 'Write the value of divisor into 'registers: hex 180 = dec 384 = 300 BAUD 210 220 OUT PORT1%, &H80:OUT PORT1%+1, &H1 230 'Set word length = 8 bits, stop bits = 2, 240 'even parity, DLAB = 0. 250 OUT PORT1%+3,&H1F 260 'Do the same thing for port2. 270 OUT PORT2%+3,&H80 280 OUT PORT2%, &H80:OUT PORT2%+1, &H1 290 OUT PORT2%+3,&H1F 'Loop over data (0-255) and send it 300 'from port1 to port2 310 320 FOR BYTE=0 TO 255 'Wait until the transmitter buffer 330 'is empty. 340 350 IF (INP(PORT1%+5) AND 32)=0 GOTO 350 'Output the data through portl. 360 370 OUT PORT1%, BYTE 380 'See if the data is available by checking 390 'the Data Ready bit. 400 IF (INP(PORT2%+5) AND 1)=0 GOTO 400 410 J=INP(PORT2%) 420 'Print out the data byte received 430 PRINT "port "; HEX\$(PORT2%)" = "; HEX\$(J) 440 'If the value sent <> the received value then error 450 IF J<>BYTE GOTO 620 460 NEXT BYTE 470 'Loop over data (0-255) and send it 480 'from port2 to port1. 490 FOR BYTE=0 TO 255 500 'See if the transmitter buffer is empty. 510 IF (INP(PORT2%+5) AND 32)=0 GOTO 510 520 OUT PORT2%, BYTE 530 'See if the data is available by 540 'checking the Data Ready bit. 550 IF (INP(PORT1%+5) AND 1)=0 GOTO 550 560 J=INP(PORT1%) 570 PRINT "port ";HEX\$(PORT1%)" = ";HEX\$(J) 580 IF J<>BYTE GOTO 620 590 NEXT BYTE 600 'If everything is OK, then stop. 610 END 620 PRINT "Data transmission error!": BEEP: END

Programming example—communication

The following pair of example programs show how you can set up communication between two computers. The first program sends data then receives data. The second program receives data then sends data. Run the first program on one computer and the second on another.

Program for first computer

10 'Clear screen 20 CLS 30 40 'Define variables A to Z as integer DEFINT A-Z 50 'Set port base address (must match hardware) 60 70 PORT = &H3F8 'Set baud rate to 300 80 90 OUT PORT + 3, &H80 100 OUT PORT, &H80 110 OUT PORT, 1 120 OUT PORT + 3, &H1F 130 ******** STEP 2: SEND DATA ******* 150 FOR I = 65 TO 90 160 170 GOSUB 200 180 NEXT I 190 GOTO 260

```
200 STATUS = INP(PORT + 5) AND &H20

210 IF STATUS = 0 THEN 200

220 OUT PORT, I

230 FOR J = 0 TO 1200: NEXT J

240 RETURN

250 '***** STEP 3: RECEIVE DATA *****

260 FOR I = 65 TO 90: GOSUB 280: NEXT I

270 END

280 STATUS = INP(PORT + 5)

290 IF (STATUS AND &H1E) THEN 280

300 IF (STATUS AND &H1) = 0 THEN 280

310 D = INP(PORT)

320 PRINT "DATA= "; CHR$(D)

330 RETURN
```

Program for second computer

10 `********* STEP1: INITIALIZATION ********* 20 'Clear screen 30 CLC 4.0 'Define variables A TO Z as integer 5.0 DEFINT A-Z 60 'Set port base address (must match hardware) 70 PORT = &H2F8 'Set baud rate to 300 80 9.0 OUT PORT + 3, &H80 100 OUT PORT, &H80 110 OUT PORT, 1 120 OUT PORT + 3, &H1F 130 '***** STEP 2: RECEIVE DATA FROM ANOTHER PC ***** 140 FOR I = 65 TO 90: GOSUB 190: NEXT I 150 PRINT: PRINT: PRINT 160 PRINT"DATA RECEIVES END, THEN DATA SEND BEGIN-NING." 170 PRINT: PRINT "PRESS ANY KEY..." 180 IF INKEY\$ = "" THEN 180 ELSE 260 190 STATUS = INP(PORT + 5) 200 IF STATUS AND &HIE THEN GOTO 190 210 IF (STATUS AND &H1) = 0 THEN 190 220 d = INP(PORT)230 PRINT "DATA= "; CHR\$(d) 240 RETURN 260 FOR I = 65 TO 90 270 d = T 280 GOSUB 310 290 NEXT T 300 END 310 STATUS = INP(PORT + 5) AND &H20 320 IF STATUS = 0 THEN 310 330 OUT PORT, d 340 FOR J = 0 TO 1200: NEXT J 350 RETURN

C language test program

You can use the following C program to test the PCM-3640's send and receive functions.

```
/* Program: DEMO01.C
* /
/*
   Description: This demo program transmits a string
* /
/*
   to COM1 and receives a string from COM2
* /
   Compiler: Turbo C 2.0
/*
* /
#include <dos.h>
#include <io.h>
#include <stdio.h>
#include <conio.h>
#define TIME_OUT 10000
static int base0 = 0x3f8; /* Base address of port 0
static int basel = 0x2f8; /* Base address of port 1
*/
       char rec[16]; /* Buffer for received string */
static
       char cmd[16]; /* Buffer for transmitted string
static
void main()
  int i; /* Counter for character being sent/received
```

```
char flag; /* Flag for end of output/input data */
int timeout; /* Timeout counter */
outport((base0+2), 0xc9); /* enable port 0 FIF0 */
outport((base1+2), 0xc9); /* enable port 1 FIF0 */
/* Set communication parameters for port 0 */
outp(base0+3, 0x80); /* Set DLAB=1 */
/* Set baud = 115200 */
outp(base0, 0x01);
outp(base1+1, 0);
/* Set data=8, stop=1, no parity */
outp(base0+3, 0x03);
/* Disable port 0 interrupt */
outp(base0+1, 0x00);
/* Set communication parameters for port 1 */
outp(base1+3, 0x80); /* Set DLAB=1 */
/* Set baud = 115200 */
outp(basel, 0x01);
outp(base1+1, 0);
/* Set data=8, stop=1, no parity */
   outp(base1+3, 0x03);
/* Disable port 1 interrupt */
outp(base1+1, 0x00);
printf("\nEnter a string to be transmitted "
         "(15 characters or less) or Q to quit:");
gets(cmd);
while (cmd[0] != 'q' && cmd[0] != 'Q')
{
   i=0:
   cmd[strlen(cmd)] = 0x0d;
  flag=1;
   while (flag)
   {
       outportb(base0, cmd[i]); /* Send data */
      if (cmd[i] == 0x0d)
         flag=0;
      i++;
   }
   i=0:
   flag=1;
    timeout=TIME_OUT;
   while (flag)
       /* Check if receiver data is ready */
       if ((inportb(base1+5) & 1) !=0)
           rec[i]=inportb(basel); /* Receive data */
          if (rec[i] == 0x0d)
             rec[i+1]='\0';
```

```
flag=0;
                printf("\nReceived data: %s\n", rec);
            ļ
            i++;
         else
             /* Check timeout */
            timeout--;
            if (timeout == 0)
            {
                flag = 0;
                printf("\nTimeout error\n");
            }
         }
      }
   printf("\nEnter a string to be transmitted "
          "(15 characters or less) or Q to quit:");
   gets(cmd);
1
```

Register structure and format

This section gives short description of each of the module's registers. For more information please refer to the data book for the STARTECH 16C550 UART chip.

All registers are one byte. Bit 0 is the least significant bit, and bit 7 is the most significant bit. The address of each register is specified as an offset from the port base address (BASE), selected with DIP switch SW1.

DLAB is the "Divisor Latch Access Bit", bit 7 of BASE+3.

- BASE+0 Receiver buffer register when DLAB=0 and the operation is a read.
- BASE+0 Transmitter holding register when DLAB=0 and the operation is a write.
- BASE+0 Divisor latch bits 0 - 7 when DLAB=1.
- BASE+1 Divisor latch bits 8 - 15 when DLAB=1.

The two bytes BASE+0 and BASE+1 together form a 16-bit number, the divisor, which determines the baud rate. Set the divisor as follows:

Baud rate	Divisor
50	2304
75	1536
110	1047
133.5	857
150	768
300	384
600	192
1200	96
1800	64
2000	58
2400	48
3600	32
4800	24
7200	16
9600	12
19200	6
38400	3
56000	2
50000	<u></u>

	115200	1	
BASE+1	Interrupt		ster (ISR) when
	bit 0		ived-data-available
	bit 1	Enable tran empty interr	smitter-holding-register- rupt
	bit 2	Enable rece	iver-line-status interrupt
	bit 3	Enable mod	lem-status interrupt
BASE+2	FIFO Co	ontrol Registe	er (FCR)
	bit 0	Enable trans	smit and receive FIFOs
	bit 1	Clear conte	nts of receive FIFO
	bit 2	Clear conte	nts of transmit FIFO
	bit 3	Change RX mode 0 to n	RDY and TXRDY from node 1.
	bits 6-7	Set trigger le interrupt.	evel for receiver FIFO
	Bit 7	Bit 6	FIFO trigger level
	0	0	01
	0	1	04
	1	0	08
	1	1	14
BASE+3	Line Co	ntrol Registe	r (LCR)
	bit 0	Word length	n select bit 0
	bit 1	Word length	n select bit 1
	Bit 1	Bit 0	Word length (bits)
	0	0	5
	0	1	6
	1	0	7
	1	1	8
	bit 2	Number of s	stop bits
	bit 3	Parity enabl	
	bit 4	Even parity	
	bit 5	Stick parity	
	bit 6	Set break	
	bit 7		h Access Bit (DLAB)
BASE+4		Control Regi	ster (MCR)
	bit 0	DTR	
	bit 1	RTS	
BASE+5	Line Sta	tus Register	(LSR)
	bit 0	Receiver da	ta ready

bit 2 Parity error

bit 1

bit 3 Framing error

Overrun error

- bit 4 Break interrupt
- bit 5 Transmitter holding register empty
- bit 6 Transmitter shift register empty
- bit 7 At least one parity error, framing error or break indication in the

PC/104 Bus signal assignments

Pin	J1/P1 Row A	J1/P1 Row B	J2/P2 Row C	J2/P2 Row D
0			0V	0V
1	юснснк	*0V	SBHE*	MEMCS16*
2 IOCS16	SD7 *	RESETDR	V	LA23
3	SD6	+5V	LA22	IRQ10
4	SD5	IRQ9	LA21	IRQ11
5	SD4	-5V	LA20	IRQ12
6	SD3	DRQ2	LA19	IRQ15
7	SD2	-12V	LA18	IRQ14
8	SD1	ENDXFR*	LA17*	DACK0*
9	SD0	+12V	MEMR*	DRQ0*
10	IOCHRDY	(KEY) ²	MEMW*	DACK5*
11	AEN	SMEMW*	SD8	DRQ5
12	SA19	SMEMR*	SD9	DACK6*
13	SA18	IOW*	SD10	DRQ6
14	SA17	IOR*	SD11	DACK7*
15	SA16	DACK3*	SD12	DRQ7
16	SA15	DRQ3	SD13	+5V
17	SA14	DACK1*	SD14	MASTER*
18	SA13	DRQ1	SD15	0V
19 0V	SA12	REFRESH	*	(KEY) ²
20	SA11	SYSCLK		
21	SA10	IRQ7		
22	SA9	IRQ6		
23	SA8	IRQ5		
24	SA7	IRQ4		
25	SA6	IRQ3		
26	SA5	DACK2*		
27	SA4	тс		
28	SA3	BALE		
29	SA2	+5V		
30	SA1	OSC		
31	SA0	0V		
32	0V	0V		
	-	-		

FIFO

Mo	odem	Status	Register	(MSR)	

- bit 0 Delta CTS
- bit 1 Delta DSR
- bit 2 Trailing edge ring indicator
- bit 3 Delta received line signal detect
- bit 4 CTS
- bit 5 DSR
- bit 6 RI

BASE+6

bit 7 Received line signal detect

BASE+7 Temporary data register

Standard PC I/O port assignments

The following chart shows the I/O addresses used by standard PC peripheral devices.

I/O address (hex)Assignment			
000-1FF	used by base system board		
200	not used		
201	game control		
202-277	not used		
278-27F	second printer port		
280-2F7	not used		
2F8-2FF	COM2		
300-377	not used		
378-37F	printer port		
380-3AF	not used		
3B0-3BF	monochrome adapter and printer		
3C0-3CF	not used		
3D0-3DF	color and graphics adapters		
3E0-3EF	not used		
3F0-3F7	floppy diskette drive		
3F8-3FF	COM1:		