

LCB50 Series

Up to 50 Watts

Low Power

Total Power:	Up to 50 Watts
Input Voltage:	88 to 264 Vac
	125 to 373 Vdc

of Outputs: Single

Special Features

- No-load power consumption 0.5 W
- Low cost
- 3.9" x 3.2" x 1.4"
- -25 $^{\circ}$ C to 70 $^{\circ}$ C with derating
- High efficiency: 90% @ 230 Vac
- Power ON with LED indicator
- Withstand 5G vibration test
- · 2 Years warranty

Safety

UL /cUL 60950-1 TUV EN60950-1 CE

Product Descriptions

The LCB50 series features a universal 88-264Vac input – enabling it to be used anywhere in the world – and is also capable of operating from a 125-373Vdc Input. The LCB50 series offers a power rating up to 50W with convection cooling, and it provide precisely regulated output voltages of 3.3V, 5V, 12V, 15V, 24V and 48Vdc.

The LCB50 series power supply is comprehensively protected against over voltage, over load and short-circuit conditions.

Model Numbers

Model	Output Voltage (Vdc)	Minimum Load (A)	Maximum Load (A)	Efficiency ¹ (%)
LCB50D	3.3	0	10	78
LCB50E	5	0	10	83
LCB50L	12	0	4.2	88
LCB50N	15	0	3.4	89
LCB50Q	24	0	2.2	90
LCB50W	48	0	1.1	90

Note 1 - Typical value at nominal input voltage(230Vac) and maximum load.

Options

None

LCB50 Series Page 3

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Мах	Unit
Input Voltage AC continuous operation DC continuous operation	All models All models	V _{IN,AC} V _{IN,DC}	88 125	-	264 373	Vac Vdc
Maximum Output Power Convection continuous operation	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	P _{O,max}			33 50 50.4 51 52.8 52.8	W W W W W
Isolation Voltage Input to Output Input to Safety Ground Output to Earth Ground	All models All models All models		- - -	- - -	3000 1500 500	Vac Vac Vdc
Ambient Operating Temperature	All models	T _A	-25	-	+701	OO
Storage Temperature	All models	T _{STG}	-40	-	+85	°C
Humidity (non-condensing) Operating Non-operating	All models All models		20 10	-	90 95	% %

Note 1 - Derate each output at 2.5% per degree C from 50 °C to 70 °C.

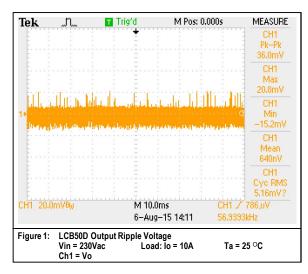
Input Specifications

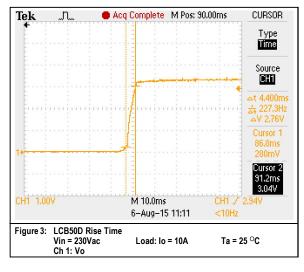
Table 2. Input Specifications:

Parameter		Conditions	Symbol	Min	Тур	Мах	Unit
Operating Input Voltage	, AC ¹	All	V _{IN,AC}	88	115/230	264	Vac
Operating Input Voltage	Operating Input Voltage, DC		V _{IN,DC}	125	-	373	Vdc
Input AC Frequency		All	f _{IN}	47	50/60	63	Hz
Input Current		V _{IN,AC} = 115Vac V _{IN,AC} = 230Vac	I _{IN,max}		1.3 0.5	-	A _{PK}
No Load Input Power ($V_O = ON$, $I_O = 0A$)		V _{IN,AC} = 115/230Vac	$P_{IN,no-load}$	-	-	0.5	W
Harmonic Line Currents		All	THD	EN6100	0-3-2/EN61	1000-3-3	
Startup Surge Current (Inrush) @ 25°C		V _{IN,AC} = 230Vac	I _{IN,surge}	-	40	-	A _{PK}
Efficiency ($T_A = 25^{\circ}C$, free air convection cooling)	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	$V_{IN,AC} = 230Vac$ $I_O = I_{O,max}$	η		78 83 88 89 90 90		%
Hold I In Time		$V_{IN,AC} = 115Vac$ $P_O = P_{O,max}$	t _{Hold-Up}	10	-	-	mSec
Hold Up Time		$V_{IN,AC} = 230Vac$ $P_O = P_{O,max}$	t _{Hold-Up}	32	-	-	mSec
Turn On Delay		$V_{IN,AC} = 115Vac$ $P_O = P_{O,max}$	t _{Turn-On}	-	1000	-	mSec
		$V_{IN,AC} = 230 Vac$ $P_O = P_{O,max}$	t _{Turn-On}	-	800	-	mSec
Leakage Current to safe	ety ground	V _{IN} = 240Vac f _{IN} = 50/60Hz	I _{IN,leakage}	-	-	2000	μA

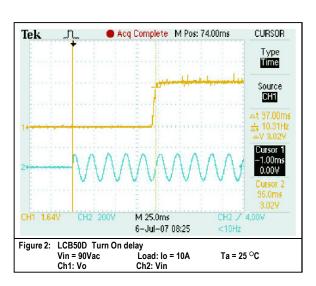
Note 1 - Withstand 300Vac surge for 5sec, without damage.

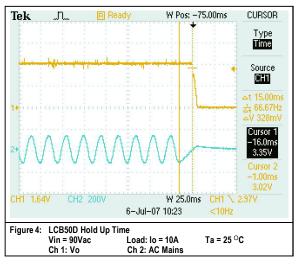
Output Specifications

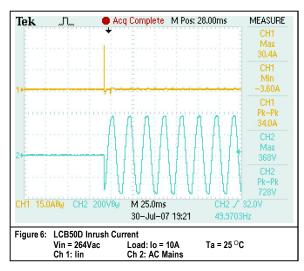

Table 3. Output Specifications:

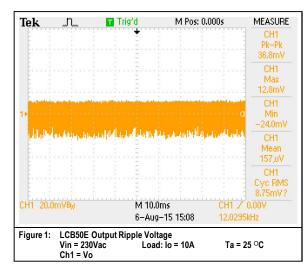

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Factory Set Point Accuracy	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	Inclusive of setpoint, line, load change	Vo	-3 -2 -1 -1 -1		+3 +2 +1 +1 +1 +1	%
Output Adjust Range	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	All	Vo	2.97 4.5 10.8 13.5 21.6 43.2	3.3 5 12 15 24 48	3.63 5.5 13.2 16.5 26.4 52.8	V
Output Ripple, pk-pk	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	Measure with a 0.1µF ceramic capacitor in parallel with a 47µF aluminum electrolytic capacitor	Vo			100 100 120 120 120 200	mV _{PK-PK}
Convection Output Current, continuous	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	Convection cooling	I _{O,max}	0 0 0 0 0		10 10 4.2 3.4 2.2 1.1	A
Line Regulation	All Modules	$V_{IN,DC=}V_{IN,min}$ to $V_{IN,max}$ $I_{O}=I_{O,max}$	Vo	-0.5	-	+0.5	%
Load Regulation	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	All	Vo	-2.0 -1.0 -0.5 -0.5 -0.5 -0.5	- - - -	+2.0 +1.0 +0.5 +0.5 +0.5 +0.5	%
Temperature Coefficien	it(0∼50°C)	All		-0.03	-	+0.03	%/°C
Load Capacitance	LCB50D LCB50E LCB50L LCB50N LCB50Q LCB50W	Startup			- - - - -	2200 2200 1500 1000 470 220	uF
V _O Over Voltage Protec	tion	Latch off (AC recycle to reset)	Vo	115	-	150	%
V _O Over Current Protec	tion ¹	All	Ι _Ο	110	-	-	%I _{O,max}

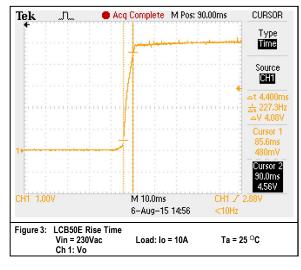

Note 1 - Hiccup Mode and Auto recovery after full load is remove.

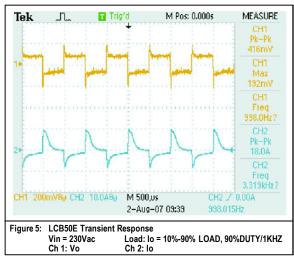

Artesyn Embedded Technologies

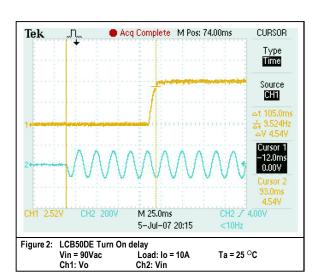

LCB50D Performance Curves

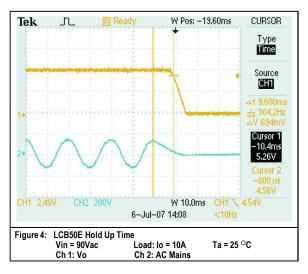


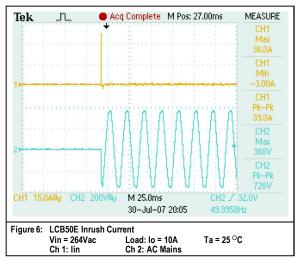


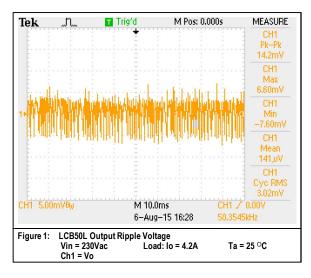


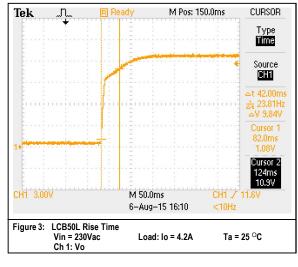

Technical Reference Note

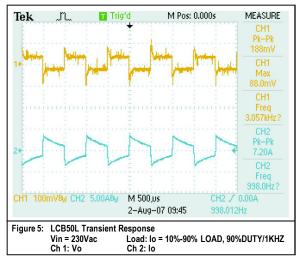

Rev.09.21.15_#1.1 LCB50 Series Page 7

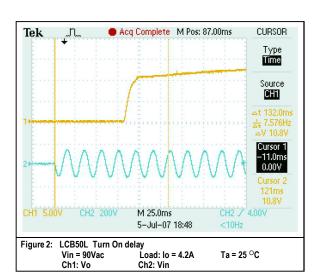

LCB50E Performance Curves

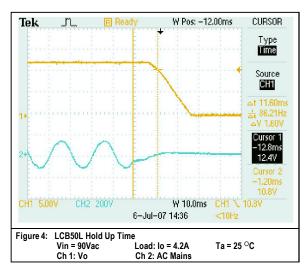


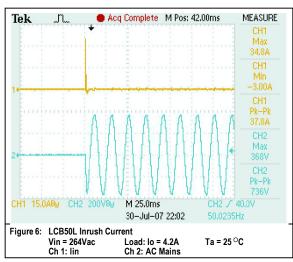


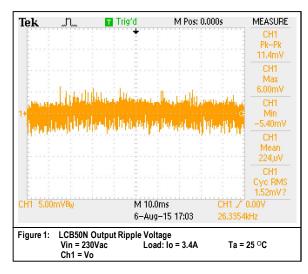


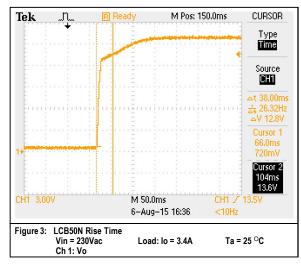


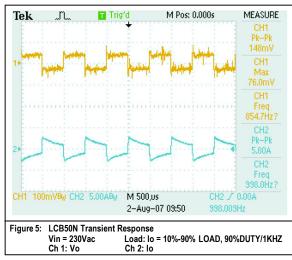


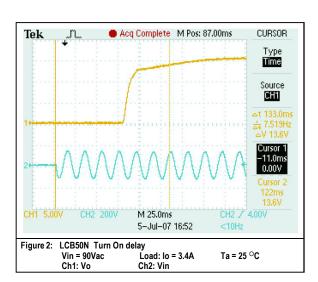

LCB50L Performance Curves

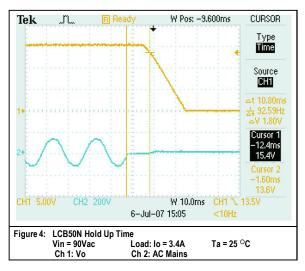


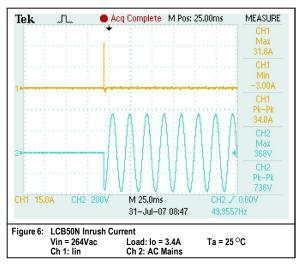


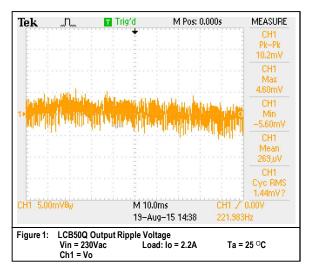


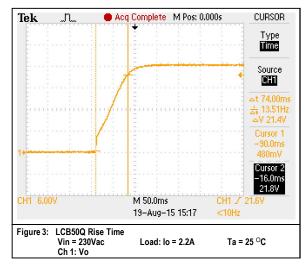


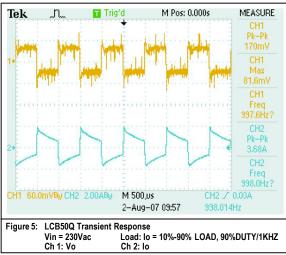


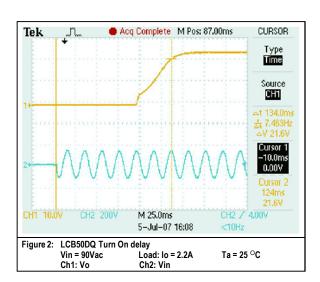

LCB50N Performance Curves

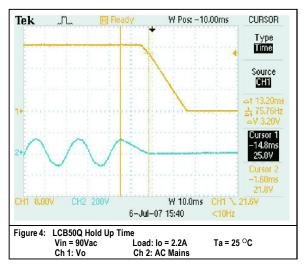


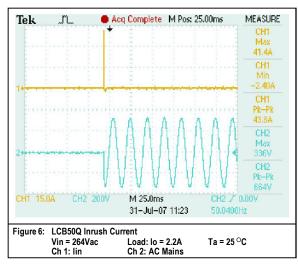


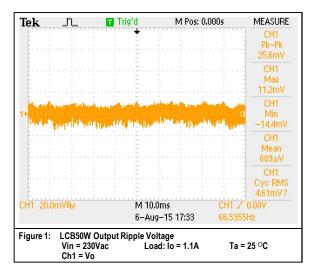


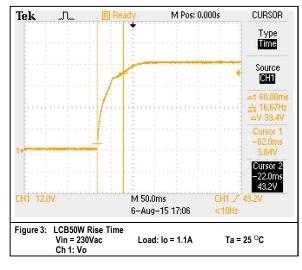


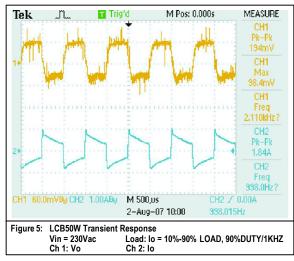


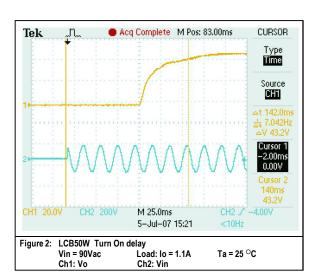

LCB50Q Performance Curves

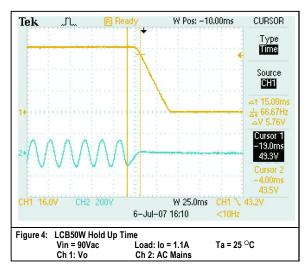


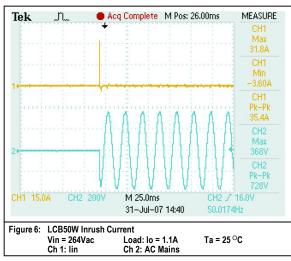





Technical Reference Note


Rev.09.21.15_#1.1 LCB50 Series Page 11


LCB50W Performance Curves



Protective Function Specifications

Over Voltage Protection (OVP)

The power supply output voltage latches off during output overvoltage with the AC line recycled to reset the latch.

LCB50D

Parameter	Min	Nom	Max	Unit
3.3Vo Output Overvoltage	3.79	/	4.95	V

LCB50E

Parameter	Min	Nom	Max	Unit
5Vo Output Overvoltage	5.75	/	7.5	V

LCB50L

Parameter	Min	Nom	Max	Unit
12Vo Output Overvoltage	13.8	/	18	V

LCB50N

Parameter	Min	Nom	Max	Unit
15Vo Output Overvoltage	17.25	/	22.5	V

LCB50Q

Parameter	Min	Nom	Max	Unit
24Vo Output Overvoltage	27.6	/	36	V

LCB50W

Parameter	Min	Nom	Max	Unit
48Vo Output Overvoltage	55.2	/	72	V

Over Current Protection (OCP)

LCB50 series power supply includes internal current limit circuitry to prevent damage in the event of overload or short circuit. In the event of overloads, the output voltage may deviate from the regulation band but recovery is automatic when the load is reduced to within specified limits.

LCB50D

Parameter	Min	Nom	Мах	Unit
3.3Vo Output Overcurrent	11	/	/	А

LCB50E

Parameter	Min	Nom	Мах	Unit
5Vo Output Overcurrent	11	/	/	A

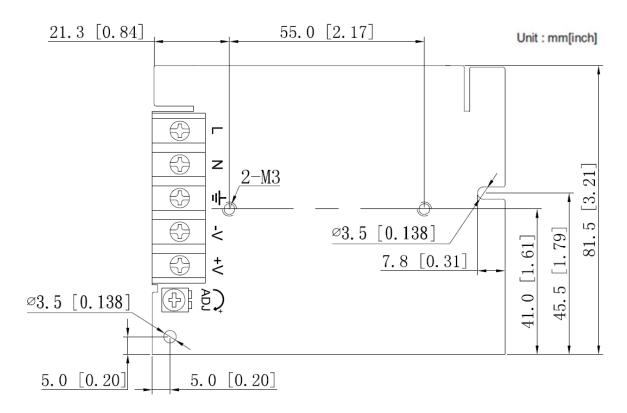
LCB50L

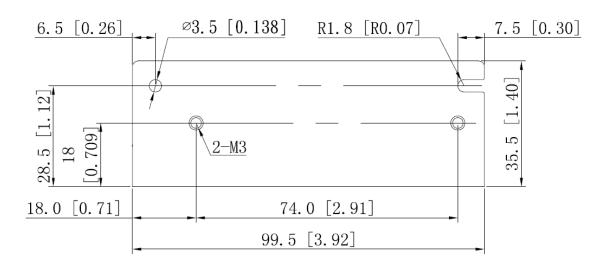
Parameter	Min	Nom	Max	Unit
12Vo Output Overcurrent	4.62	/	/	А

LCB50N

Parameter	Min	Nom	Max	Unit
15Vo Output Overcurrent	3.74	/	/	А

LCB50Q


Parameter	Min	Nom	Мах	Unit
24Vo Output Overcurrent	2.42	/	/	А


LCB50W

Parameter	Min	Nom	Мах	Unit
48Vo Output Overcurrent	1.21	/	/	А

Mechanical Specifications

Mechanical Drawing (Dimensioning and Mounting Locations)

<u>Weight</u>

The LCB50 Series packing weight is 0.62lb/0.28kg typical.

Environmental Specifications

EMC Immunity

LCB50 series power supply is designed to meet the following EMC immunity specifications:

Table 4. Environmental Specifications:

Document	Description
EN 55022	Conducted Level B and Radiated Level B (stand alone)
EN61000-3-2	Harmonic Distortion
EN 61000-3-3	Harmonic Distortion
EN 61204-3	EMS immunity
EN 55024	EMS immunity

LCB50 Series Page 17

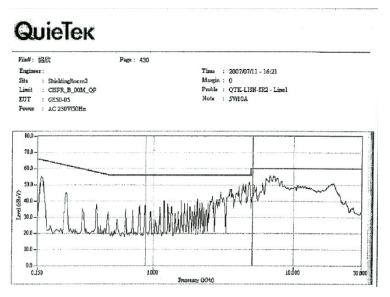
Safety Certifications

The LCB50 series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for LCB50 series power supply system:

Document	Description
UL 60950-1	US and Canada Requirements
TUV EN 60950-1	Germany and European Requirements (All CENELEC Countries)

EMI Emissions


Rev.09.21.15_#1.1 LCB50 Series Page 18

The LCB50 series has been designed to comply with the Class B limits of EMI requirements of EN55022 (FCC Part 15) and CISPR 22 (EN55022) for emissions and relevant sections of EN61000 (IEC 61000) for immunity.

The unit is enclosed inside a metal box, tested at full load using resistive load.

Conducted Emissions

The applicable standard for conducted emissions is EN55022 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.

The LCB50 series power supply have internal EMI filters to ensure the convertor's conducted EMI levels comply with EN55022 (FCC Part 15) Class B and EN55022 (CISPR 22) Class B limits. The EMI measurements are performed with resistive loads under forced air convection at maximum rated loading.

Sample of EN55022 Conducted EMI Measurement at 230Vac input.

Note: Top Line refers to Artesyn Quasi Peak margin, which is 6dB below the CISPR international limit. Bottom Line refers to the Artesyn Average which is 6dB below the CISPR international limit.

Table 6. Conducted EMI emission specifications of the LCB50 series

Parameter	Model	Symbol	Min	Тур	Мах	Unit
FCC Part 15, class B	All	Margin	-	-	6	dB
CISPR 22 (EN55022) class B	All	Margin	-	-	6	dB

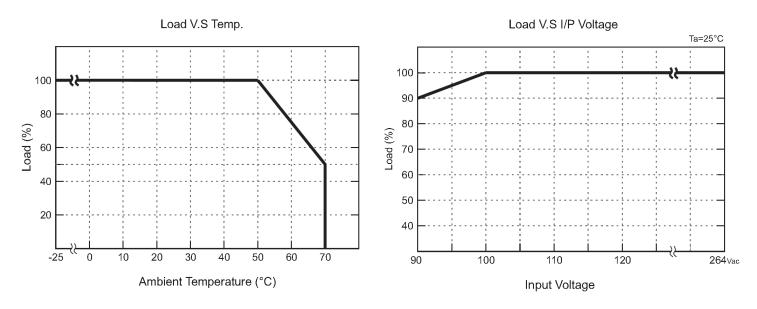
Radiated Emissions

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN55022 Class B (FCC Part 15). Testing ac-dc convertors as a stand-alone component to the exact requirements of EN55022 can be difficult, because the standard calls for 1m leads to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few ac-dc convertors could pass. However, the standard also states that 'an attempt should be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample'.

MTBF and Reliability

The MTBF of LCB50 series of AC/DC converters has been calculated using MIL-HDBK 217F. Operating Temperature @25 $^{\circ}$ C, Ground Benign.

Model	MTBF	Unit
LCB50D	420.4	K Hrs
LCB50E		
LCB50L		
LCB50N		
LCB50Q		
LCB50W		



Operating Temperature

The LCB50 series start and operate within stated specifications at an ambient temperature from -25 °C to 70 °C under all load conditions (see below derating curves for other amount of convection and orientation. Derate output current and power by 2.5% per degree above 50 °C. Maximum operating ambient temperature is 70 °C (which implies a 50% derating at max 70 °C ambient).

Under convection cooling condition, the maximum output power derates linearly from full load. When input voltage is 90Vac, the maximum output power will derate to 90% full load.

Derating Curve

Storage and Shipping Temperature / Humidity

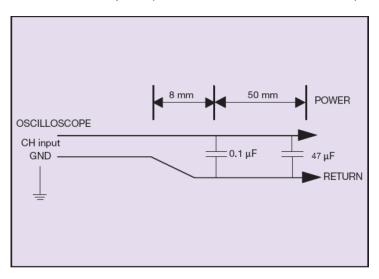
The LCB50 series can be stored or shipped at temperatures between -40 $^{\circ}$ C to +85 $^{\circ}$ C and relative humidity from 10% to 95%, non-condensing.

<u>Humidity</u>

The LCB50 series will operate within specifications when subjected to a relative humidity from 20% to 90% non-condensing. The LCB50 series can be stored in a relative humidity from 10% to 95% non-condensing.

Vibration

The LCB50 series will pass the following vibration specifications:


Acceleration	5		gRMS	
Frequency Range	10-500		Hz	
Duration	10	mins		
Direction	3 mutually perpendicular axis			
PSD Profile	FREQ 10-500 Hz	SLOPE <u>dB/oct</u>	PSD <u>g²/Hz</u> 	

Application Notes

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the LCB50 series. When measuring output ripple and noise, a scope jack in parallel with a 0.1 uF ceramic chip capacitor, and a 47 uF aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20MHz bandwidth for this measurement.

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	08.04.2015	First Issue	A.Li
1.1	09.21.2015	Update LCB50 performance curves	A.Li

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832 Europe (UK) Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX

+44 (0) 1384 842 211

United Kingdom

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Artesyn Embedded Technologies assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Artesyn Embedded Technologies, Artesyn and the Artesyn Embedded Technologies logo are trademarks and service marks of Artesyn Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. © 2014 All rights reserved.