CYPRESS

MB95200H/210H Series

F²MC-8FX 8-bit Microcontroller

MB95200H/210H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.

Features

F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.

Clock (main OSC clock and sub-OSC clock are only available in MB95F204H/F204K/F203H/F203K/F202H/F202K)

- Selectable main clock source
 - □ Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz)
 - □ External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)
 - □ Main internal CR clock (1/8/10 MHz ± 3%, maximum machine clock frequency: 10 MHz)
- Selectable subclock source
 - □ Sub-OSC clock (32.768 kHz)
 - □ External clock (32.768 kHz)
 - □ Sub-internal CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

Timer

- 8/16-bit composite timer
- Timebase timer
- Watch prescaler

LIN-UART (MB95F204H/F204K/F203H/F203K/F202H/F202K)

- Full duplex double buffer
 - □ Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer

External interrupt

- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low-power consumption (standby) modes

8/10-bit A/D converter

■ 8-bit or 10-bit resolution can be selected.

Low power consumption (standby) mode

- Stop mode
- Sleep mode
- Watch mode
- Timebase timer mode

I/O port (Max: 17) (MB95F204K/F203K/F202K)

■ General-purpose I/O ports (Max): CMOS I/O: 15, N-ch open drain: 2

I/O port (Max: 16) (MB95F204H/F203H/F202H)

■ General-purpose I/O ports (Max): CMOS I/O: 15, N-ch open drain: 1

I/O port (Max: 5) (MB95F214K/F213K/F212K)

■ General-purpose I/O ports (Max): CMOS I/O: 3, N-ch open drain: 2

I/O port (Max: 4) (MB95F214H/F213H/F212H)

■ General-purpose I/O ports (Max): CMOS I/O: 3, N-ch open drain: 1

On-chip debug

- 1-wire serial control
- Serial writing supported (asynchronous mode)

Hardware/software watchdog timer

■ Built-in hardware watchdog timer

Low-voltage detection reset circuit

■ Built-in low-voltage detector

Clock supervisor counter

■ Built-in clock supervisor counter function

Programmable port input voltage level

■ CMOS input level / hysteresis input level

Flash memory security function

■ Protects the contents of flash memory

Cypress Semiconductor CorporationDocument Number: 002-07463 Rev. *A

MB95200H/210H Series

Contents

Product Line-up	3
Packages and Corresponding Products	
Differences Among Products And Notes	
On Product Selection	4
Pin Assignment	5
Pin Description (MB95200H Series 24 pins)	6
Pin Description (MB95200H Series 20 pins)	
Pin Description (MB95210H Series)	10
I/O Circuit Type	
Notes on Device Handling	
Pin Connection	13
Block Diagram (MB95200H Series)	15
Block Diagram (MB95210H Series)	16
CPU Core	
I/O Map (MB95200H Series)	18
I/O Map (MB95210H Series)	

Interrupt Source Table (MB95200H Series)	26
Interrupt Source Table (MB95210H Series)	
Electrical Characteristics	28
Absolute Maximum Ratings	28
Recommended Operating Conditions	30
DC Characteristics	31
AC Characteristics	34
A/D Converter	49
Flash Memory Program/Erase Characteristics	53
Sample Electrical Characteristics	54
Mask Options	
Ordering Information	
Package Dimensions	
Major Changes	
Document History	

1. Product Line-up

Part number Parameter	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
Туре	Flash me	sh memory product										
Clock supervisor counter	It superv	upervises the main clock oscillation.										
ROM capacity	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB	16 KB	8 KB	4 KB
RAM capacity	496 B	496 B	240 B	496 B	496 B	240 B	496 B	496 B	240 B	496 B	496 B	240 B
Low-voltage detection reset		No			Yes			No			Yes	
Reset input	Dedicate	ed		Software	select		Dedicate	ed		Software	e select	
CPU functions	Instruction Instruction Data bit Minimum	mber of basic instructions : 136 truction bit length : 8 bits truction length : 1 to 3 bytes ta bit length : 1, 8, and 16 bits nimum instruction execution time : 61.5 ns (with machine clock = 16.25 MHz) errupt processing time : 0.6 µs (with machine clock = 16.25 MHz)										
General-purpose I/O		(Max): 1 15, N-ch:		I/O ports CMOS:	(Max): 1 15, N-ch:	7 2		(Max): 4 3, N-ch: 1			s (Max): 5 3, N-ch: 2	
Timebase timer	Interrupt	cycle: 0.	256 ms -	8.3 s (wh	en extern	al clock =	4 MHz)					
Hardware/softwa re watchdog timer	Main osc	eneration cillation cl -CR clock	ock at 10	MHz : 10 sed as th	5 ms (Mir e source	n) clock of th	ne hardwa	are watch	dog.			
Wild register	It can be	used to	eplace th	ree bytes	of data.							
LIN-UART	by a ded It has a f Clock-sy clock-as	licated rel full duplex nchronize ynchroniz	ommunica oad timer double bed serial c ed serial can be use	uffer. lata trans data trans	fer and sfer is ena	abled.	No LIN-	JART				
8/10-bit A/D	6 ch.						2 ch.					
converter	8-bit or 1	0-bit reso	olution car	n be selec	cted.							
	2 ch.						1 ch.					
8/16-bit composite timer	It has buil Count clo	e timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel". as built-in timer function, PWC function, PWM function and input capture function. unt clock: it can be selected from internal clocks (seven types) and external clocks. can output square wave.										
	6 ch.						2 ch.					
External interrupt			detection wake up t				both edg	es can be	e selected	l.)		
On-chip debug		erial contr	ol writing. (a:	synchron	ous mode	·)						

Part number Parameter	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
Watch prescaler	Eight diff	ferent time	e intervals	can be s	selected.							
Flash memory	write/era It has a f Number Data rete For write	se/erase- lag indica of write/e ention time e/erase, e	atic progra- suspend/ ating the c rase cycle e: 20 yea xternal Vp ature for p	erase-res ompletior es: 10000 rs op(+10 V)	ume com of the op 0 input is re	mands. peration o	f Embedd	led Algorii	thm.			
Standby mode	Sleep me	ode, stop	mode, wa	atch mode	e, timebas	se timer m	node					
Package				P-24 P-20						P-8 P-8		

2. Packages and Corresponding Products

Part number Package	MB95 F204H	MB95 F203H	MB95 F202H	MB95 F204K	MB95 F203K	MB95 F202K	MB95 F214H	MB95 F213H	MB95 F212H	MB95 F214K	MB95 F213K	MB95 F212K
24-pin plastic SDIP	0	0	0	0	0	0	Х	X	X	Х	Х	Х
20-pin plastic SOP	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х
8-pin plastic DIP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0
8-pin plastic SOP	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0

O: Available X: Unavailable

3. Differences Among Products And Notes On Product Selection

Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program.

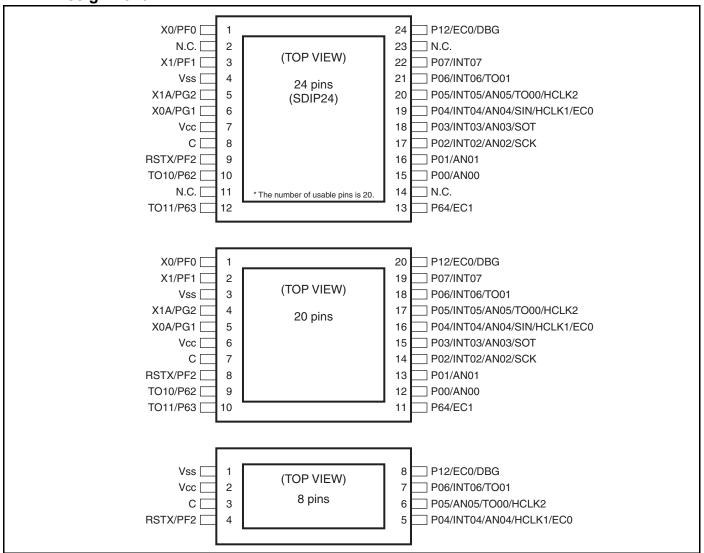
For details of current consumption, see "18. Electrical Characteristics".

Package

For details of information on each package, see "2.Packages and Corresponding Products" and "22.Package Dimensions".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.


For details of the operating voltage, see "18. Electrical Characteristics".

On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RSTX/PF2 pin must also be connected to the same evaluation tool.

4. Pin Assignment

5. Pin Description (MB95200H Series 24 pins)

Pin no.	Pin name	I/O circuit type*	Function
4	PF0	В	General-purpose I/O port
1	X0	В	Main clock input oscillation pin
2	N.C.	_	It is an internally unconnected pin. Always leave it unconnected.
2	PF1	D	General-purpose I/O port
3	X1	В	Main clock I/O oscillation pin
4	V _{SS}	_	Power supply pin (GND)
_	PG2	С	General-purpose I/O port
5	X1A	C	Subclock I/O oscillation pin
6	PG1	С	General-purpose I/O port
0	X0A	C	Subclock input oscillation pin
7	V _{CC}	_	Power supply pin
8	С	_	Capacitor connection pin
	PF2		General-purpose I/O port
9	9 RSTX	A	Reset pin This is a dedicated reset pin in MB95F202H/F203H/F204H.
10	P62	D	General-purpose I/O port High-current port
	TO10		8/16-bit composite timer ch. 1 output pin
11	N.C.	_	It is an internally unconnected pin. Always leave it unconnected.
12	P63	D	General-purpose I/O port High-current port
	TO11		8/16-bit composite timer ch. 1 output pin
13	P64	D	General-purpose I/O port
13	EC1	U	8/16-bit composite timer ch. 1 clock input pin
14	N.C.	_	It is an internally unconnected pin. Always leave it unconnected.
15	P00	Е	General-purpose I/O port
13	AN00		A/D converter analog input pin
16	P01	Е	General-purpose I/O port
10	AN01		A/D converter analog input pin
	P02		General-purpose I/O port
17	INT02	Е	External interrupt input pin
''	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin

Pin no.	Pin name	I/O circuit type*	Function
	P03		General-purpose I/O port
18	INT03	E	External interrupt input pin
10	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
	P04		General-purpose I/O port
	INT04		External interrupt input pin
19	AN04	F	A/D converter analog input pin
19	SIN		LIN-UART data input pin
	HCLK1		External clock input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
	P05		General-purpose I/O port High-current port
	INT05		External interrupt input pin
20	AN05	E	A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
	HCLK2		External clock input pin
	P06		General-purpose I/O port High-current port
21	INT06	G	External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
22	P07	G	General-purpose I/O port
22	INT07		External interrupt input pin
23	N.C.	_	It is an internally unconnected pin. Always leave it unconnected.
	P12		General-purpose I/O port
24	EC0	Н	8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin

^{*:} For the I/O circuit types, see "8.I/O Circuit Type".

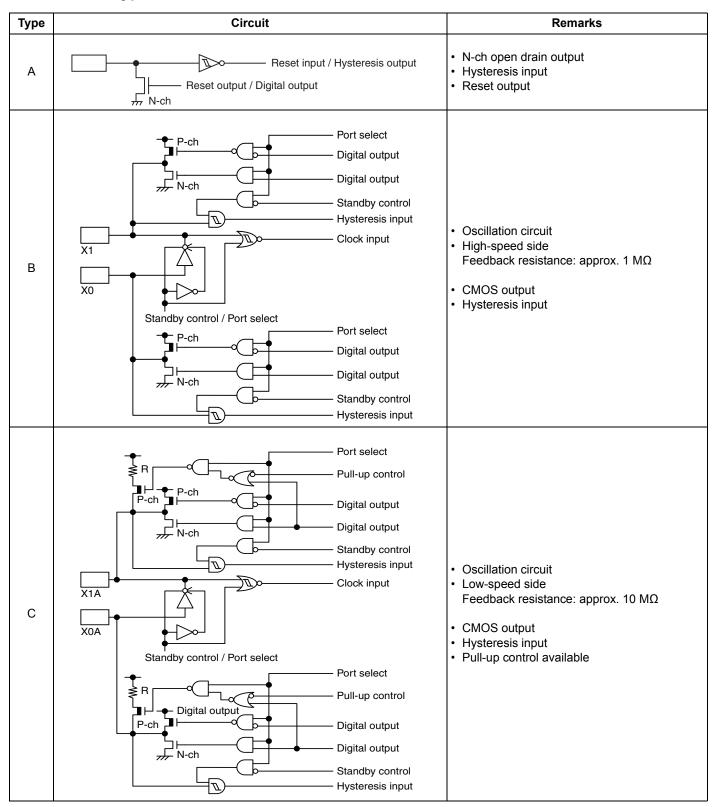
6. Pin Description (MB95200H Series 20 pins)

Pin no.	Pin name	I/O circuit type*	Function
1	PF0/X0	В	General-purpose I/O port This pin is also used as the main clock input oscillation pin.
2	PF1/X1	В	General-purpose I/O port This pin is also used as the main clock input/output oscillation pin.
3	V_{SS}	_	Power supply pin (GND)
4	PG2/X1A	С	General-purpose I/O port This pin is also used as the subclock input/output oscillation pin.
5	PG1/X0A	С	General-purpose I/O port This pin is also used as the subclock input oscillation pin.
6	V _{CC}	_	Power supply pin
7	С	_	Capacitor connection pin
8	PF2/RSTX	А	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F204H/F203H/F202H.
9	P62/TO10	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
10	P63/TO11	D	General-purpose I/O port High-current port This pin is also used as the 8/16-bit composite timer ch. 1 output.
11	P64/EC1	D	General-purpose I/O port This pin is also used as the 8/16-bit composite timer ch. 1 clock input.
12	P00/AN00	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
13	P01/AN01	E	General-purpose I/O port This pin is also used as the A/D converter analog input.
14	P02/INT02/AN02/SCK	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART clock I/O.
15	P03/INT03/AN03/SOT	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data output.
16	P04/INT04/AN04/SIN /HCLK1/EC0	F	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the LIN-UART data input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

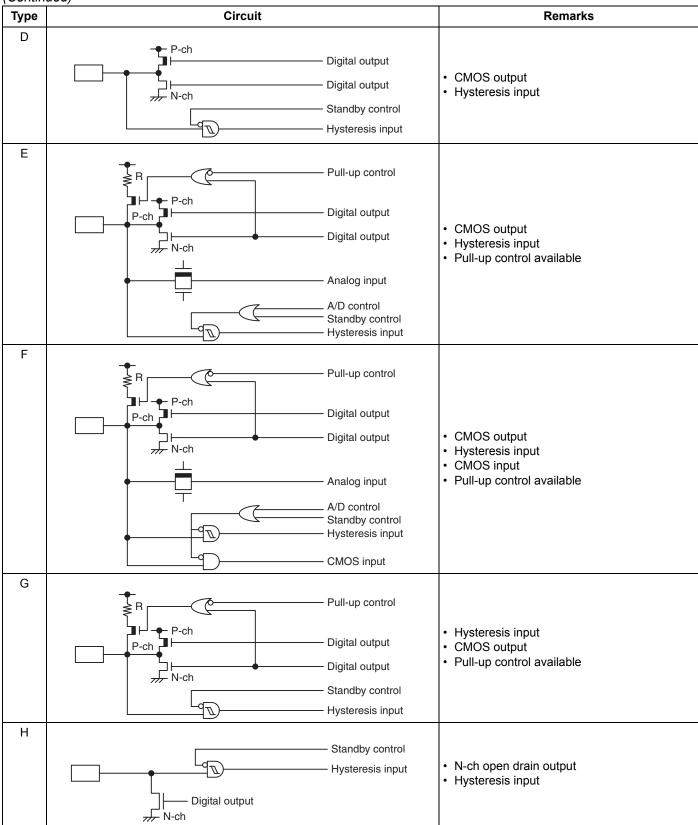
Pin no.	Pin name	I/O circuit type*	Function
17	P05/INT05/AN05/TO00 /HCLK2	E	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
18	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
19	P07/INT07	G	General-purpose I/O port This pin is also used as the external interrupt input.
20	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

^{*:} For the I/O circuit types, see "8.I/O Circuit Type"

7. Pin Description (MB95210H Series)


Pin no.	Pin name	I/O circuit type*	Function
1	V _{SS}	_	Power supply pin (GND)
2	V _{CC}	_	Power supply pin
3	С	_	Capacitor connection pin
4	RSTX/PF2	А	General-purpose I/O port This pin is also used as a reset pin. This pin is a dedicated reset pin in MB95F214H/F213H/F212H.
5	P04/INT04/AN04/HCLK1 /EC0	E	General-purpose I/O port This pin is also used as the external interrupt input. This pin is also used as the A/D converter analog input. This pin is also used as the external clock input. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.
6	P05/AN05/TO00/HCLK2	E	General-purpose I/O port High-current port This pin is also used as the A/D converter analog input. This pin is also used as the 8/16-bit composite timer ch. 0 output. This pin is also used as the external clock input.
7	P06/INT06/TO01	G	General-purpose I/O port High-current port This pin is also used as the external interrupt input. This pin is also used as the 8/16-bit composite timer ch. 0 output.
8	P12/EC0/DBG	Н	General-purpose I/O port This pin is also used as the DBG input pin. This pin is also used as the 8/16-bit composite timer ch. 0 clock input.

^{*:} For the I/O circuit types, see "8.I/O Circuit Type".


Document Number: 002-07463 Rev. *A

8. I/O Circuit Type

9. Notes on Device Handling

Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.

In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "18.1 Absolute Maximum Ratings" of Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

10. Pin Connection

Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between the V_{CC} pin and the V_{SS} pin at a location close to this device.

DBG pin

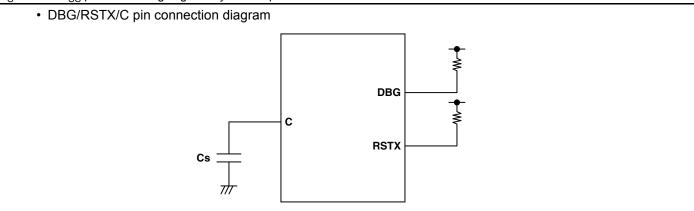
Connect the DBG pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board.

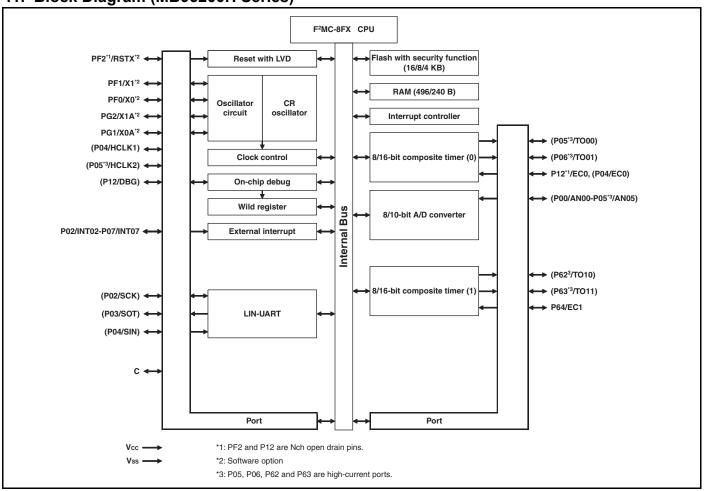
The DBG pin should not stay at "L" level after power-on until the reset output is released.

RSTX pin

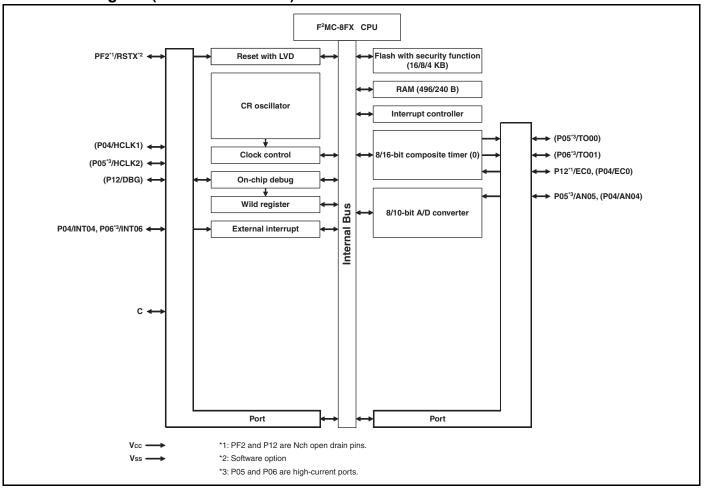
Connect the RSTX pin directly to an external pull-up resistor.


To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the RSTX pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board.

The RSTX/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output can be enabled by the RSTOE bit of the SYSC register, and the reset input function or the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.

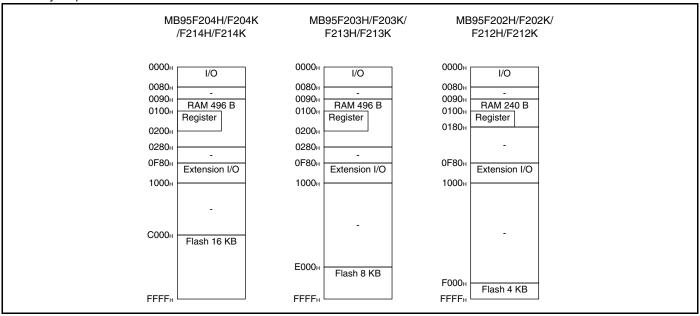

C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S . For the connection to a smoothing capacitor C_S , see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.



11. Block Diagram (MB95200H Series)

12. Block Diagram (MB95210H Series)



13. CPU Core

Memory Space

The memory space of the MB95200H/210H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95200H/210H Series are shown below.

■ Memory Maps

14. I/O Map (MB95200H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 _H	PDR0	Port 0 data register	R/W	00000000 _B
0001 _H	DDR0	Port 0 direction register	R/W	00000000 _B
0002 _H	PDR1	Port 1 data register	R/W	00000000 _B
0003 _H	DDR1	Port 1 direction register	R/W	00000000 _B
0004 _H	_	(Disabled)	_	_
0005 _H	WATR	Oscillation stabilization wait time setting register	R/W	11111111 _B
0006 _H	_	(Disabled)	_	_
0007 _H	SYCC	System clock control register	R/W	XXXXXX11 _B
0008 _H	STBC	Standby control register	R/W	00000XXX _B
0009 _H	RSRR	Reset source register	R	XXXXXXXX
000A _H	TBTC	Timebase timer control register	R/W	00000000 _B
000B _H	WPCR	Watch prescaler control register	R/W	00000000 _B
000C _H	WDTC	Watchdog timer control register	R/W	00000000 _B
000D _H	SYCC2	System clock control register 2	R/W	XX100011 _B
000E _H to 0015 _H	_	(Disabled)	_	_
0016 _H	PDR6	Port 6 data register	R/W	00000000 _B
0017 _H	DDR6	Port 6 direction register	R/W	00000000 _B
0018 _H to 0027 _H		(Disabled)	_	
0028 _H	PDRF	Port F data register	R/W	00000000 _B
0029 _H	DDRF	Port F direction register	R/W	00000000 _B
002A _H	PDRG	Port G data register	R/W	00000000 _B
002B _H	DDRG	Port G direction register	R/W	00000000 _B
002C _H	PUL0	Port 0 pull-up register	R/W	00000000 _B
002D _H to 0034 _H	_	(Disabled)	_	
0035 _H	PULG	Port G pull-up register	R/W	00000000 _B
0036 _H	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	00000000 _B
0037 _H	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0	R/W	00000000 _B
0038 _H	T11CR1	8/16-bit composite timer 11 status control register 1 ch. 1	R/W	00000000 _B
0039 _H	T10CR1	8/16-bit composite timer 10 status control register 1 ch. 1	R/W	00000000 _B
003A _H to 0048 _H	_	(Disabled)	_	_
0049 _H	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000 _B

Address	Register abbreviation	Register name	R/W	Initial value
004A _H	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000 _B
004B _H	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000 _B
004C _H to 004F _H	_	(Disabled)	_	_
0050 _H	SCR	LIN-UART serial control register	R/W	00000000 _B
0051 _H	SMR	LIN-UART serial mode register	R/W	00000000 _B
0052 _H	SSR	LIN-UART serial status register	R/W	00001000 _B
0053 _H	RDR/TDR	LIN-UART receive/transmit data register	R/W	00000000 _B
0054 _H	ESCR	LIN-UART extended status control register	R/W	00000100 _B
0055 _H	ECCR	LIN-UART extended communication control register	R/W	000000XX _B
0056 _H to 006B _H	_	(Disabled)	_	_
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000 _B
0070 _H to 0071 _H	_	(Disabled)	_	_
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H to 0075 _H	_	(Disabled)	_	_
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	_
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	ILR2	Interrupt level setting register 2	R/W	11111111 _B
007C _H	ILR3	Interrupt level setting register 3	R/W	11111111 _B
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H	_	(Disabled)		_
0F80 _H	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000 _B

Document Number: 002-07463 Rev. *A Page 19 of 66

Address	Register abbreviation	Register name	R/W	Initial value
0F81 _H	WRARL0	Wild register address setting register (Lower) ch. 0	R/W	00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B
0F83 _H	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000 _B
0F84 _H	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000 _B
0F85 _H	WRDR1	Wild register data setting register ch. 1	R/W	00000000 _B
0F86 _H	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000 _B
0F87 _H	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000 _B
0F88 _H	WRDR2	Wild register data setting register ch. 2	R/W	00000000 _B
0F89 _H to 0F91 _H	_	(Disabled)	_	_
0F92 _H	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000 _B
0F93 _H	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000 _B
0F94 _H	T01DR	8/16-bit composite timer 01 data register ch. 0		00000000 _B
0F95 _H	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000 _B
0F96 _H	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000 _B
0F97 _H	T11CR0	8/16-bit composite timer 11 status control register 0 ch. 1	R/W	00000000 _B
0F98 _H	T10CR0	8/16-bit composite timer 10 status control register 0 ch. 1	R/W	00000000 _B
0F99 _H	T11DR	8/16-bit composite timer 11 data register ch. 1	R/W	00000000 _B
0F9A _H	T10DR	8/16-bit composite timer 10 data register ch. 1	R/W	00000000 _B
0F9B _H	TMCR1	8/16-bit composite timer 10/11 timer mode control register ch. 1	R/W	00000000 _B
0F9C _H to 0FBB _H	_	(Disabled)	_	_
0FBC _H	BGR1	LIN-UART baud rate generator register 1	R/W	00000000 _B
0FBD _H	BGR0	LIN-UART baud rate generator register 0	R/W	00000000 _B
0FBE _H to 0FC2 _H	_	(Disabled)		_
0FC3 _H	AIDRL	A/D input disable register (Lower)	R/W	00000000 _B
0FC4 _H to 0FE3 _H	_	(Disabled)		_
0FE4 _H	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX _B
0FE5 _H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX _B

Address	Register abbreviation	Register name	R/W	Initial value
0FE6 _H to 0FE7 _H	_	(Disabled)	_	_
0FE8 _H	SYSC	System configuration register	R/W	11000011 _B
0FE9 _H	CMCR	Clock monitoring control register	R/W	XX000000 _B
0FEA _H	CMDR	Clock monitoring data register	R/W	00000000 _B
0FEB _H	WDTH	Watchdog timer selection ID register (Upper)	R/W	XXXXXXXX _B
0FEC _H	WDTL	Watchdog timer selection ID register (Lower)	R/W	XXXXXXXX _B
0FED _H	_	(Disabled)	_	_
0FEE _H	ILSR	Input level select register	R/W	00000000 _B
0FEF _H to 0FFF _H	_	(Disabled)	_	_

R/W access symbols

R/W : Readable / Writable

R : Read only W : Write only

Initial value symbols

The initial value of this bit is "0".The initial value of this bit is "1".

X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

15. I/O Map (MB95210H Series)

Address	Register abbreviation	Register name	R/W	Initial value
0000 _H	PDR0	Port 0 data register	R/W	00000000 _B
0001 _H	DDR0	Port 0 direction register	R/W	00000000 _B
0002 _H	PDR1	Port 1 data register	R/W	00000000 _B
0003 _H	DDR1	Port 1 direction register	R/W	00000000 _B
0004 _H	_	(Disabled)		_
0005 _H	WATR	Oscillation stabilization wait time setting register	R/W	11111111 _B
0006 _H	_	(Disabled)		_
0007 _H	SYCC	System clock control register	R/W	XXXXXX11 _B
0008 _H	STBC	Standby control register	R/W	00000XXX _B
0009 _H	RSRR	Reset source register	R	XXXXXXXX _B
000A _H	TBTC	Timebase timer control register	R/W	00000000 _B
000B _H	WPCR	Watch prescaler control register	R/W	00000000 _B
000C _H	WDTC	Watchdog timer control register	R/W	00000000 _B
000D _H	SYCC2	System clock control register 2		XX100011 _B
000E _H to 0015 _H	_	(Disabled)		1
0016 _H	_	(Disabled)		
0017 _H	_	(Disabled)	_	_
0018 _H to 0027 _H	_	(Disabled)	_	_
0028 _H	PDRF	Port F data register	R/W	00000000 _B
0029 _H	DDRF	Port F direction register	R/W	00000000 _B
002A _H	_	(Disabled)	_	_
002B _H	_	(Disabled)	_	
002C _H	PUL0	Port 0 pull-up register	R/W	00000000 _B
002D _H to 0034 _H	_	(Disabled)	_	
0035 _H	_	(Disabled)		_
0036 _H	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	00000000 _B
0037 _H	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0		00000000 _B
0038 _H	_	(Disabled)		
0039 _H	_	(Disabled)		_
003A _H to 0048 _H	_	(Disabled)		_
0049 _H	_	(Disabled)	_	_

Address	Register abbreviation	Register name	R/W	Initial value
004A _H	EIC20	External interrupt circuit control register ch. 4	R/W	00000000 _B
004B _H	EIC30	External interrupt circuit control register ch. 6	R/W	00000000 _B
004C _H to 004F _H	_	(Disabled)	_	_
0050 _H	_	(Disabled)	_	_
0051 _H	_	(Disabled)	_	_
0052 _H	_	(Disabled)	_	_
0053 _H	_	(Disabled)	_	_
0054 _H	_	(Disabled)	_	_
0055 _H	_	(Disabled)	_	_
0056 _H to 006B _H	_	(Disabled)	_	_
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register (Upper)	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register (Lower)	R/W	00000000 _B
0070 _H to 0071 _H	_	(Disabled)		_
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H to 0075 _H	_	(Disabled)		
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)	_	_
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	_	(Disabled)	_	1
007C _H	_	(Disabled)	_	_
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H		(Disabled)	_	
0F80 _H	WRARH0	Wild register address setting register (Upper) ch. 0	R/W	00000000 _B
0F81 _H	WRARL0	Wild register address setting register (Lower) ch. 0	R/W	00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B

Document Number: 002-07463 Rev. *A Page 23 of 66

Address	Register abbreviation	Register name	R/W	Initial value
0F83 _H	WRARH1	Wild register address setting register (Upper) ch. 1	R/W	00000000 _B
0F84 _H	WRARL1	Wild register address setting register (Lower) ch. 1	R/W	00000000 _B
0F85 _H	WRDR1	Wild register data setting register ch. 1	R/W	00000000 _B
0F86 _H	WRARH2	Wild register address setting register (Upper) ch. 2	R/W	00000000 _B
0F87 _H	WRARL2	Wild register address setting register (Lower) ch. 2	R/W	00000000 _B
0F88 _H	WRDR2	Wild register data setting register ch. 2	R/W	00000000 _B
0F89 _H to 0F91 _H	_	(Disabled)	_	_
0F92 _H	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000 _B
0F93 _H	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000 _B
0F94 _H	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000 _B
0F95 _H	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000 _B
0F96 _H	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000 _B
0F97 _H	_	(Disabled)	_	_
0F98 _H	_	(Disabled)	_	_
0F99 _H	_	(Disabled)	_	_
0F9A _H	_	(Disabled)	_	_
0F9B _H	_	(Disabled)	_	_
0F9C _H to 0FBB _H	_	(Disabled)	_	-
0FBC _H	_	(Disabled)	_	_
0FBD _H	_	(Disabled)	_	_
0FBE _H to 0FC2 _H	_	(Disabled)	_	-
0FC3 _H	AIDRL	A/D input disable register (Lower)	R/W	00000000 _B
0FC4 _H to 0FE3 _H	_	(Disabled)		_
0FE4 _H	CRTH	Main CR clock trimming register (Upper)	R/W	1XXXXXXX _B
0FE5 _H	CRTL	Main CR clock trimming register (Lower)	R/W	000XXXXX _B
0FE6 _H to 0FE7 _H	_	(Disabled)		_
0FE8 _H	SYSC	System configuration register	R/W	11000011 _B (Continued)

Address	Register abbreviation	Register name		Initial value
0FE9 _H	CMCR	Clock monitoring control register	R/W	XX000000 _B
0FEA _H	CMDR	Clock monitoring data register	R/W	00000000 _B
0FEB _H	WDTH	Watchdog timer selection ID register (Upper)	R/W	XXXXXXXXB
0FEC _H	WDTL	Watchdog timer selection ID register (Lower)	R/W	XXXXXXXXB
0FED _H	_	(Disabled)	_	_
0FEE _H	ILSR	Input level select register	R/W	00000000 _B
OFEF _H to OFFF _H	_	(Disabled)	_	_

R/W access symbols

R/W : Readable / Writable

R : Read only W : Write only

Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

Page 26 of 66

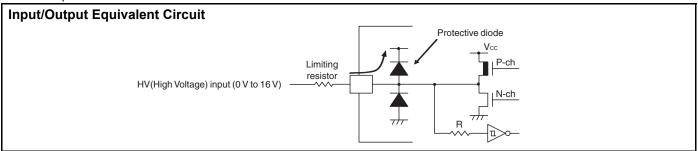
16. Interrupt Source Table (MB95200H Series)

		Vector tab	le address		Priority order of in-
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	terrupt sources of the same level (occurring simultaneously)
External interrupt ch. 4	IRQ0	FFFA _H	FFFB _H	L00 [1:0]	High
External interrupt ch. 5	IRQ1	FFF8 _H	FFF9 _H	L01 [1:0]	
External interrupt ch. 2	IRQ2	FFF6 _H	FFF7 _H	L02 [1:0]	1 1
External interrupt ch. 6					
External interrupt ch. 3	IRQ3	FFF4 _H	FFF5 _H	L03 [1:0]	
External interrupt ch. 7					
_	IRQ4	FFF2 _H	FFF3 _H	L04 [1:0]	
8/16-bit composite timer ch. 0 (Lower)	IRQ5	FFF0 _H	FFF1 _H	L05 [1:0]]
8/16-bit composite timer ch. 0 (Upper)	IRQ6	FFEE _H	FFEF _H	L06 [1:0]]
LIN-UART (reception)	IRQ7	FFEC _H	FFED _H	L07 [1:0]	
LIN-UART (transmission)	IRQ8	FFEA _H	FFEB _H	L08 [1:0]]
_	IRQ9	FFE8 _H	FFE9 _H	L09 [1:0]]
_	IRQ10	FFE6 _H	FFE7 _H	L10 [1:0]]
_	IRQ11	FFE4 _H	FFE5 _H	L11 [1:0]]
_	IRQ12	FFE2 _H	FFE3 _H	L12 [1:0]]
_	IRQ13	FFE0 _H	FFE1 _H	L13 [1:0]	
8/16-bit composite timer ch. 1 (Upper)	IRQ14	FFDE _H	FFDF _H	L14 [1:0]]
_	IRQ15	FFDC _H	FFDD _H	L15 [1:0]	
_	IRQ16	FFDA _H	FFDB _H	L16 [1:0]	
_	IRQ17	FFD8 _H	FFD9 _H	L17 [1:0]]
8/10-bit A/D converter	IRQ18	FFD6 _H	FFD7 _H	L18 [1:0]]
Timebase timer	IRQ19	FFD4 _H	FFD5 _H	L19 [1:0]]
Watch prescaler	IRQ20	FFD2 _H	FFD3 _H	L20 [1:0]]
_	IRQ21	FFD0 _H	FFD1 _H	L21 [1:0]	1
8/16-bit composite timer ch. 1 (Lower)	IRQ22	FFCE _H	FFCF _H	L22 [1:0]	'
Flash memory	IRQ23	FFCC _H	FFCD _H	L23 [1:0]	Low

Document Number: 002-07463 Rev. *A

17. Interrupt Source Table (MB95210H Series)

	1.4	Vector tab	le address	Dit	Priority order of in-
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	terrupt sources of the same level (occurring simultaneously)
External interrupt ch. 4	IRQ0	FFFA _H	FFFB _H	L00 [1:0]	High
_	IRQ1	FFF8 _H	FFF9 _H	L01 [1:0]	
— External interment of C	IRQ2	FFF6 _H	FFF7 _H	L02 [1:0]	1 ★
External interrupt ch. 6 — —	IRQ3	FFF4 _H	FFF5 _H	L03 [1:0]	-
_	IRQ4	FFF2 _H	FFF3 _H	L04 [1:0]	
8/16-bit composite timer ch. 0 (Lower)	IRQ5	FFF0 _H	FFF1 _H	L05 [1:0]	
8/16-bit composite timer ch. 0 (Upper)	IRQ6	FFEE _H	FFEF _H	L06 [1:0]	
_	IRQ7	FFEC _H	FFED _H	L07 [1:0]]
_	IRQ8	FFEA _H	FFEB _H	L08 [1:0]]
_	IRQ9	FFE8 _H	FFE9 _H	L09 [1:0]]
_	IRQ10	FFE6 _H	FFE7 _H	L10 [1:0]	
_	IRQ11	FFE4 _H	FFE5 _H	L11 [1:0]	
_	IRQ12	FFE2 _H	FFE3 _H	L12 [1:0]	
_	IRQ13	FFE0 _H	FFE1 _H	L13 [1:0]	
_	IRQ14	FFDE _H	FFDF _H	L14 [1:0]	
_	IRQ15	FFDC _H	FFDD _H	L15 [1:0]	
_	IRQ16	FFDA _H	FFDB _H	L16 [1:0]	
_	IRQ17	FFD8 _H	FFD9 _H	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6 _H	FFD7 _H	L18 [1:0]	
Timebase timer	IRQ19	FFD4 _H	FFD5 _H	L19 [1:0]]
Watch prescaler	IRQ20	FFD2 _H	FFD3 _H	L20 [1:0]	
_	IRQ21	FFD0 _H	FFD1 _H	L21 [1:0]]
_	IRQ22	FFCE _H	FFCF _H	L22 [1:0]	▼
Flash memory	IRQ23	FFCC _H	FFCD _H	L23 [1:0]	Low


18. Electrical Characteristics

18.1 Absolute Maximum Ratings

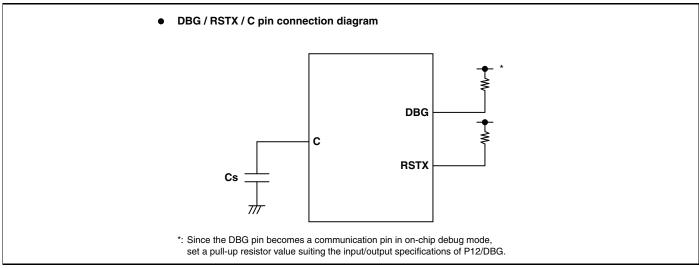
Davamatav	Cumbal	Rating		Linit	Domovko
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	V _{CC}	V _{SS} -0.3	V _{SS} +6	V	
Input voltage*1	V _{I1}	V _{SS} -0.3	V _{CC} +0.3	V	Other than PF2*2
input voitage	V _{I2}	V _{SS} -0.3	10.5	V	PF2
Output voltage*1	V _O	V _{SS} -0.3	V _{SS} +6	V	*2
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to pins listed in *3
Total maximum clamp current	$\Sigma I_{CLAMP} $	_	20	mA	Applicable to pins listed in *3
"L" level maximum output	I _{OL1}		15	- mA	Other than P05, P06, P62 and P63*4
current	I _{OL2}	_	15	IIIA	P05, P06, P62 and P63*4
"L" level average current	I _{OLAV1}		4	- mA	Other than P05, P06, P62 and P63*4 Average output current = operating current × operating ratio (1 pin)
L level average current	I _{OLAV2}	I _{OLAV2}		- IIIA	P05, P06, P62 and P63*4 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣI_{OL}	_	100	mA	
"L" level total average output current	ΣI_{OLAV}	_	50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output	I _{OH1}		-15	mA	Other than P05, P06, P62 and P63*4
current	I _{OH2}	_	-15	IIIA	P05, P06, P62 and P63*4
"I" lovel everses current	I _{OHAV1} -4		- mA	Other than P05, P06, P62 and P63*4 Average output current = operating current × operating ratio (1 pin)	
"H" level average current	I _{OHAV2}	_	-8	- IIIA	P05, P06, P62 and P63*4 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣΙΟΗ	_	-100	mA	
"H" level total average output current	ΣI_{OHAV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	_	320	mW	
Operating temperature	T _A	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

- *1: The parameter is based on $V_{SS} = 0.0 \text{ V}$.
- *2: V_I and V_O must not exceed V_{CC} +0.3 V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.
- *3: Applicable to the following pins: P00 to P07, P62 to P64, PG1, PG2, PF0, PF1 (P00 to P03, P07, P62 to P64, PG1, PG2, PF0 and PF1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.)
 - Use under recommended operating conditions.
 - · Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current of stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential
 may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - Do not leave the HV (High Voltage) input pin unconnected.
 - · Example of a recommended circuit:

*4: P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

WARNING: A semiconductor device may be damaged by applying stress (voltage, current, temperature, etc.) in excess of the absolute maximum rating. Therefore, ensure that not a single parameter exceeds its absolute maximum rating.

Document Number: 002-07463 Rev. *A



18.2 Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Va	lue	Unit	Por	marks		
Parameter	Syllibol	Min	Max	Unit	Kei	IIdiks		
		2.4* ¹ * ²	5.5* ¹		In normal operation	Other than on ohin debug made		
Power supply	V _{CC}	2.3	5.5	V	Hold condition in stop mode	Other than on-chip debug mode		
voltage		2.9	5.5	V	In normal operation	On-chip debug mode		
		2.3	5.5		Hold condition in stop mode	On-chip debug mode		
Smoothing capacitor	C _S	0.022	1	μF	*3			
Operating T -40		-40	+85	°C	Other than on-chip debug function			
temperature	I A	T _A +5 +35			On-chip debug function			

- *1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
- *2: The value is 2.88 V when the low-voltage detection reset is used.
- *3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S. For the connection to a smoothing capacitor C_S, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the electrical characteristics of the device are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact sales representatives beforehand.

18.3 DC Characteristics

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
				Min	Тур	Max		
	V _{IHI}	P04	*1	0.7 V _{CC}	_	V _{CC} +0.3	V	When CMOS input level (hysteresis input) is selected
"H" level input voltage	V_{IHS}	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	*1	0.8 V _{CC}	_	V _{CC} +0.3	٧	Hysteresis input
	V_{IHM}	PF2	_	0.7 V _{CC}		10.5	V	Hysteresis input*5
	V _{IL}	P04	* 1	V _{SS} -0.3	_	0.3 V _{CC}	٧	When CMOS input level (hysteresis input) is selected
"L" level input voltage	V _{ILS}	P00 to P07, P12, P62 to P64, PF0 to PF1, PG1 to PG2	* 1	V _{SS} -0.3	_	0.2 V _{CC}	V	Hysteresis input
	V _{ILM}	PF2		V _{SS} -0.3		0.3 V _{CC}	V	Hysteresis input
Open-drain output application voltage	V_D	PF2, P12	-	V _{SS} -0.3	_	V _{SS} +5.5	V	
"H" level output voltage	V _{OH1}	Output pins other than P05, P06, P62, P63, PF2 and P12 ^{*2}	I _{OH} = -4 mA	V _{CC} -0.5	_	_	V	
	V _{OH2}	P05, P06, P62, P63 ^{*2}	I _{OH} = -8 mA	V _{CC} -0.5	_	_	V	
"L" level output	V _{OL1}	Output pins other than P05, P06, P62 and P63*2	I _{OL} = 4 mA	_	_	0.4	V	
voltage	V _{OL2}	P05, P06, P62, P63 ^{*2}	I _{OL} = 2 mA	_	_	0.4	V	
Input leak current (Hi-Z output leak current)	I _{LI}	All input pins	0.0 V < V _I < V _{CC}	-5	_	+5	μA	When pull-up resistance is disabled
Pull-up resistance	R _{PULL}	P00 to P07, PG1, PG2 ^{*3}	V _I = 0 V	25	50	100	kΩ	When pull-up resistance is enabled

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Cumbal	Pin name	Condition		Value	!	Unit	Domouko
Parameter	Symbol	Fili liaille	Condition	Min	Тур	Max	Unit	Remarks
Input capacitance	C _{IN}	Other than V_{CC} and V_{SS}	f = 1 MHz	_	5	15	pF	
			V _{CC} = 5.5 V F _{CH} = 32 MHz	_	13	17	mA	Flash memory product (except writing and erasing)
	I _{CC}		F _{MP} = 16 MHz Main clock mode (divided by 2)	_	33.5	39.5	mA	Flash memory product (at writing and erasing)
				_	15	21	mA	At A/D conversion
	I _{CCS}		V_{CC} = 5.5 V F_{CH} = 32 MHz F_{MP} = 16 MHz Main sleep mode (divided by 2)	_	5.5	9	mA	
Power supply current*4	I _{CCL}	V _{CC} (External clock operation)	V_{CC} = 5.5 V F_{CL} = 32 kHz F_{MPL} = 16 kHz Subclock mode (divided by 2) T_A = +25 °C	_	65	153	μA	
	I _{CCLS}		V_{CC} = 5.5 V F_{CL} = 32 kHz F_{MPL} = 16 kHz Subsleep mode (divided by 2) T_A = +25 °C	_	10	84	μА	
	Ісст		V_{CC} = 5.5 V F_{CL} = 32 kHz Watch mode Main stop mode T_A = +25°C	_	5	30	μА	

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Symbol	Pin name		(+00	Value	, 133	Unit	Remarks
Parameter			Condition	Min	Тур	Max		
Power supply current*4	I _{CCMCR}	V _{CC}	V_{CC} = 5.5 V F_{CRH} = 10 MHz F_{MP} = 10 MHz Main CR clock mode	_	8.6	_	mA	
	I _{CCSCR}	VCC	V_{CC} = 5.5 V Sub-CR clock mode (divided by 2) T_A = +25 °C	_	110	410	μA	
	I _{CCTS}	V _{CC} (External clock	V_{CC} = 5.5 V F_{CH} = 32 MHz Timebase timer mode T_{A} = +25 °C	_	1.1	3	mA	
	I _{CCH}	operation)	V _{CC} = 5.5 V Substop mode T _A = +25 °C	_	3.5	22.5	μA	Main stop mode for single clock selection
	I _{LVD}		Current consumption for low-voltage detection circuit only	_	37	54	μA	
	I _{CRH}	V _{CC}	Current consumption for the internal main CR oscillator	_	0.5	0.6	mA	
	I _{CRL}		Current consumption for the internal sub-CR oscillator oscillating at 100 kHz	_	20	72	μА	

^{*1:} The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

- See "18.4. AC Characteristics: 18.4.1.Clock Timing" for F_{CH} and F_{CL}.
- See "18.4. AC Characteristics: 18.4.2. Source Clock/Machine Clock" for F_{MP} and F_{MPL}.

Document Number: 002-07463 Rev. *A

^{*2:} P62 and P63 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

^{*3:} P00 to P03, P07, PG1 and PG2 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

^{*4:} The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (I_{LVD}) to a specified value. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (I_{CRH}, I_{CRL}) and a specified value. In on-chip debug mode, the CR oscillator (I_{CRH}) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

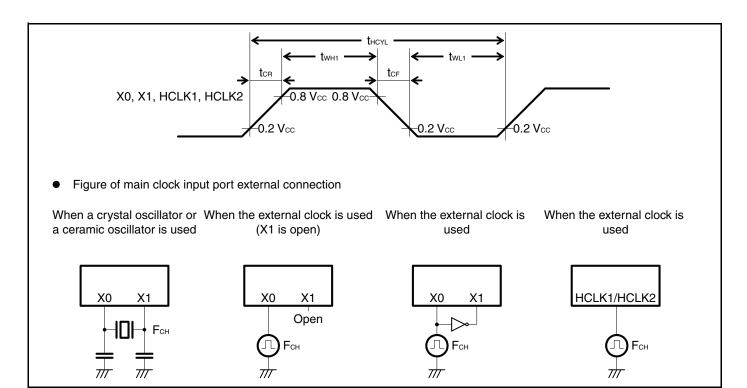
^{*5 :} PF2 act as high voltage supply for the flash memory during program and erase. It can tolerate high voltage input. For details, see section "18.6. Flash Memory Program/Erase Characteristics".

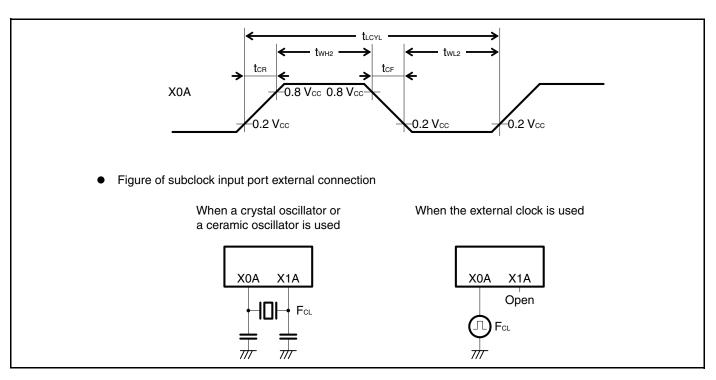
18.4 AC Characteristics

18.4.1 Clock Timing

(V_{CC} = 2.4 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Donomoton	Symbol	D:	Condition	Value			11:-!4	Damadra		
Parameter		Pin name	Condition	Min	flin Typ Max		Unit	Remarks		
	F _{CH}	X0, X1	_	1	_	16.25	MHz	When the main oscillation circuit is used		
		X0	X1 open	1	_	12	MHz	When the main external clock is use		
		X0, X1	*		_	32.5	MHz			
		HCLK1, HCLK2	_	1						
	F _{CRH}			9.7	10	10.3	MHz	When the main CR clock is used		
				7.76	8	8.24	MHz	$3.3 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}(-40 \text{ °C} \le \text{T}_A \le 40 \text{ °C})$ $2.4 \text{ V} \le \text{Vcc} < 3.3 \text{ V}(0 \text{ °C} \le \text{T}_A \le 40 \text{ °C})$		
Clock frequency				0.97	1	1.03	MHz			
				9.55	10	10.45	MHz	When the main CR clock is used		
. ,				7.64	8	8.36	MHz	$3.3 \text{ V} \le \text{Vcc} \le 5.5 \text{ V} (40 \text{ °C} < \text{T}_{A} \le 85 \text{ °C})$		
				0.955	1	1.045	MHz			
				9.5	10	10.5	MHz	When the main CR clock is used 2.4 V \leq Vcc $<$ 3.3 V (-40 °C \leq T _A $<$ 0 °C, 40 °C $<$ T _A \leq 85 °C		
				7.6	8	8.4	MHz			
				0.95	1	1.05	MHz			
	_	X0A, X1A	_	_	32.768	_	kHz	When the sub oscillation circuit is used		
	F _{CL}			_	32.768	_	kHz	When the sub-external clock is used		
	F _{CRL}	_	_	50	100	200	kHz	When the sub-CR clock is used		
Clock cycle time		X0, X1	_	61.5	_	1000	ns	When the main oscillation circuit is used		
	t _{HCYL}	X0	X1 open	83.4	_	1000	ns	When the external clock is used		
		X0, X1	*		_	1000	ns			
		HCLK1, HCLK2	_	30.8						
	t _{LCYL}	X0A, X1A	_	_	30.5	_	μs	When the subclock is used		
Input clock pulse width	t _{WH1}	X0	X1 open	33.4	_	_	ns	When the external clock is used, the		
		X0, X1	*		_	_	ns	duty ratio should range between 40% and 60%.		
		HCLK1, HCLK2	_	12.4						
	t _{WH2}	X0A	_	_	15.2	_	μs			


 $(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks	
Parameter	Symbol			Min	Тур	Max	Oilit	Kemarks	
Input clock rise time	t _{CR} t _{CF}	X0	X1 open	_	_	5	ns	When the external clock is used	
		X0, X1	*	_	_	5	ns		
and fall time		HCLK1, HCLK2	_						
CR oscillation start time	t _{CRHWK}	_	_	_	_	80	μs	When the main CR clock is used	
	t _{CRLWK}	_	1	_		10	μs	When the sub-CR clock is used	

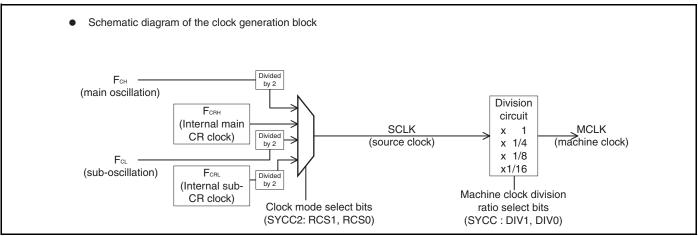
^{*:} The external clock signal is input to X0 and the inverted external clock signal to X1.

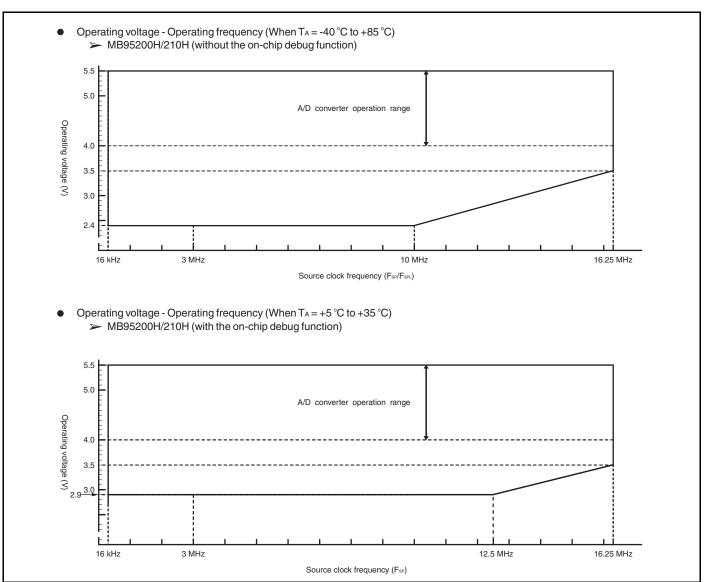
Document Number: 002-07463 Rev. *A

18.4.2 Source Clock/Machine Clock

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

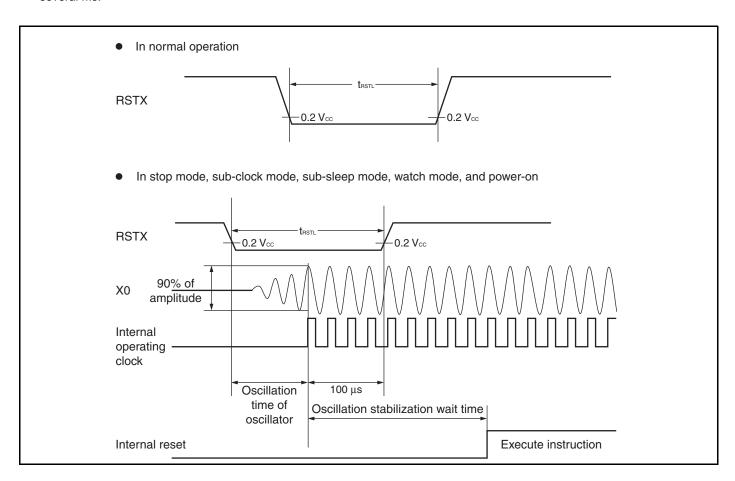
Domonoston	Complete	Pin		Value		I I m!4	Demonto	
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks	
			61.5	_	2000	ns	When the main external clock is used Min: F _{CH} = 32.5 MHz, divided by 2 Max: F _{CH} = 1 MHz, divided by 2	
Source clock cycle time*1	t _{SCLK}	_	100		1000	ns	When the main CR clock is used Min: F _{CRH} = 10 MHz Max: F _{CRH} = 1 MHz	
			_	61	1	μs	When the sub-CR clock is used F _{CL} = 32.768 kHz, divided by 2	
			_	20	I	μs	When the sub-oscillation clock is used F _{CRL} = 100 kHz, divided by 2	
	F _{SP}		0.5	_	16.25	MHz	When the main oscillation clock is used	
Source clock	' SP		1		10	MHz	When the main CR clock is used	
frequency			_	_	16.384	1	kHz	When the sub-oscillation clock is used
	F _{SPL}		_	50		kHz	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2	
				61.5		32000	ns	When the main oscillation clock is used Min: F_{SP} = 16.25 MHz, no division Max: F_{SP} = 0.5 MHz, divided by 16
Machine clock cycle time*2(minimum	•		100	_	16000	ns	When the main CR clock is used Min: F _{SP} = 10 MHz Max: F _{SP} = 1 MHz, divided by 16	
instruction execution time)	t _{MCLK}	_	61		976.5	μs	When the sub-oscillation clock is used Min: F_{SPL} = 16.384 kHz, no division Max: F_{SPL} = 16.384 kHz, divided by 16	
			20		320	μs	When the sub-CR clock is used Min: F _{SPL} = 50 kHz, no division Max: F _{SPL} = 50 kHz, divided by 16	
	F _{MP}		0.031		16.25	MHz	When the main oscillation clock is used	
Machine clock	' MP		0.0625	_	10	MHz	When the main CR clock is used	
frequency		_	1.024	_	16.384	kHz	When the sub-oscillation clock is used	
	F _{MPL}		3.125	_	50	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz	


^{*1:} This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). In addition, a source clock can be selected from the following.


- · Main clock divided by 2
- · Main CR clock
- Subclock divided by 2
- · Sub-CR clock divided by 2

- Source clock (no division)
- Source clock divided by 4
- · Source clock divided by 8
- · Source clock divided by 16

^{*2:} This is the operating clock of the microcontroller. A machine clock can be selected from the following.

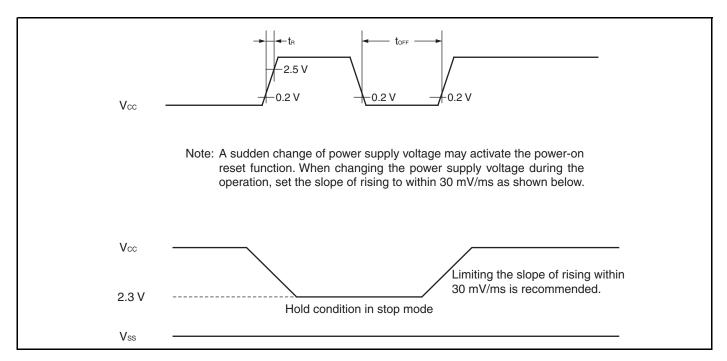

18.4.3 External Reset

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter Symbol		Value		Unit	Remarks	
Parameter	Syllibol	Min	Max	Ullit	Remarks	
		2 t _{MCLK} *1	_	ns	In normal operation	
RSTX "L" level pulse width	t _{RSTL}	Oscillation time of the oscillator* ² +100	_		In stop mode, subclock mode, sub-sleep mode, watch mode, and power on	
		100	_	μs	In timebase timer mode	

^{*1:} See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

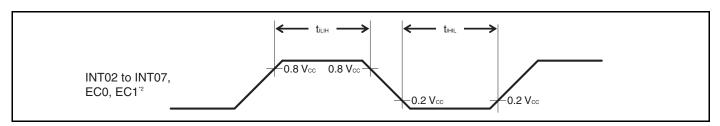
^{*2:} The oscillation time of an oscillator is the time that the amplitude reaches 90%. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of μs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several μs and several ms.



18.4.4 Power-on Reset

 $(V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Val	lue	Unit	Remarks
Farameter	Symbol	Condition	Min	Max	Onit	Kemarks
Power supply rising time	t _R	_	_	50	ms	
Power supply cutoff time	t _{OFF}		1		ms	Wait time until power-on


18.4.5 Peripheral Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Value		
r ai ailletei	Syllibol	Fill liame	Min	Max	Unit
Peripheral input "H" pulse width	t _{ILIH}	INT02 to INT07, EC0, EC1*2	2 t _{MCLK} *1	_	ns
Peripheral input "L" pulse width	t _{IHIL}	11102 to 111107, 200, 201	2 t _{MCLK} *1	1	ns

^{*1:} See "18.4.2. Source Clock/Machine Clock" for $t_{\mbox{\scriptsize MCLK}}$.

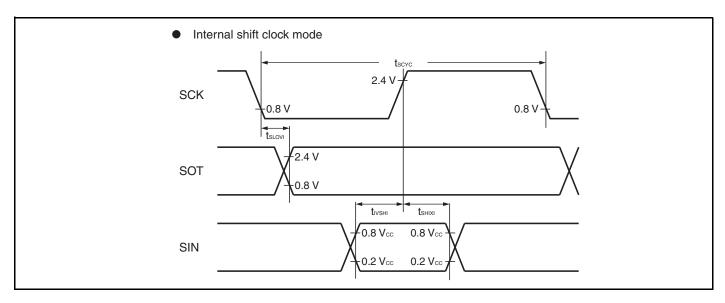
^{*2:} INT02, INT03, INT05, INT07 and EC1 are available in MB95F204H/F203H/F202H/F204K/F203K/F202K.

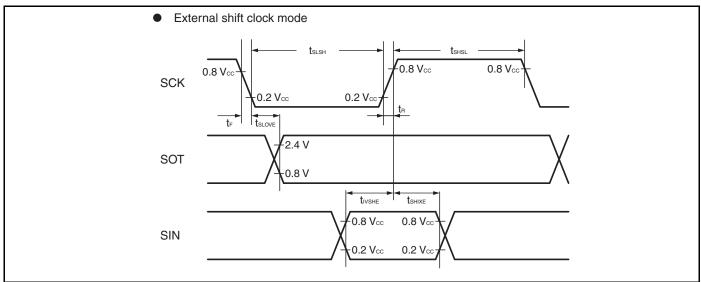
18.4.6 LIN-UART Timing (Available in MB95F204H/F203H/F202H/F204K/F203K/F202K only)

Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is disabled $clock^{*2}$. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Unit	
Parameter	Syllibol	Fill lialile	Condition	Min	Max	
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} *3	_	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCK, SOT	Internal clock operation output pin:	-95	+95	ns
Valid SIN → SCK ↑	t _{IVSHI}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	t _{MCLK} *3+190	_	ns
SCK ↑→ valid SIN hold time	t _{SHIXI}	SCK, SIN		0	_	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		3 t _{MCLK} *3-t _R	_	ns
Serial clock "H" pulse width	t _{SHSL}	SCK		t _{MCLK} *3+95	_	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCK, SOT	External clock	_	2 t _{MCLK} *3+95	ns
Valid SIN → SCK ↑	t _{IVSHE}	SCK, SIN	operation output pin:	190	_	ns
SCK ↑→ valid SIN hold time	t _{SHIXE}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	t _{MCLK} *3+95	_	ns
SCK fall time	t _F	SCK			10	ns
SCK rise time	t _R	SCK		_	10	ns


^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.


Document Number: 002-07463 Rev. *A

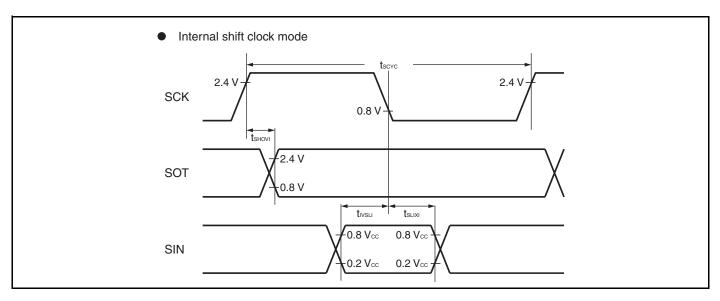
^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

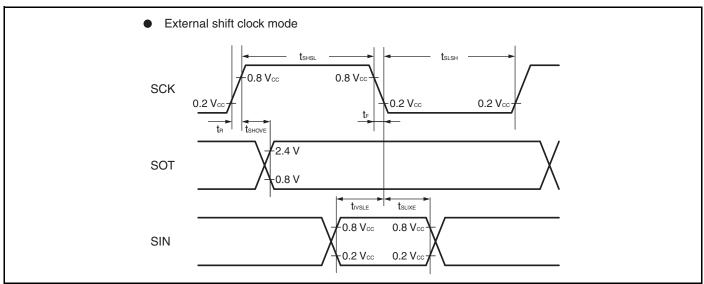
^{*3:} See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is disabled $clock^{*2}$. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 0)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

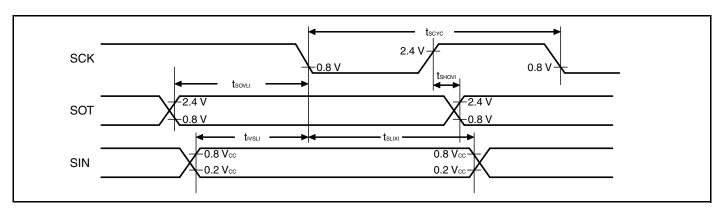
Parameter	Symbol	Pin name	Condition	Va	Unit	
Farameter	Symbol	Fill lialile	Condition	Min	Max	Ullit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} *3	_	ns
SCK ↑→ SOT delay time	t _{SHOVI}	SCK, SOT	Internal clock operation output pin:	-95	+95	ns
$Valid\;SIN\toSCK\;\!\!\downarrow$	t _{IVSLI}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	t _{MCLK} *3+190	_	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN		0	_	ns
Serial clock "H" pulse width	t _{SHSL}	SCK		3 t _{MCLK} *3-t _R	_	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		t _{MCLK} *3+95		ns
SCK ↑→ SOT delay time	t _{SHOVE}	SCK, SOT	External clock	_	2 t _{MCLK} *3+95	ns
$Valid\;SIN\toSCK\;\!\!\downarrow$	t _{IVSLE}	SCK, SIN	operation output pin:	190	_	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXE}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	t _{MCLK} * ³ +95	_	ns
SCK fall time	t _F	SCK		_	10	ns
SCK rise time	t _R	SCK		_	10	ns


^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.


Document Number: 002-07463 Rev. *A

^{*2:} The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

^{*3:} See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.


Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is enabled $clock^{*2}$. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)

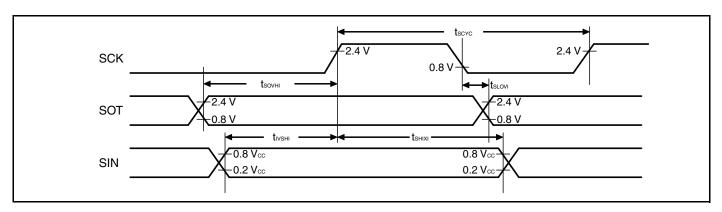
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Val	Unit		
Farameter Symbol F		i iii iiaiie		Min	Max	Sint	
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} *3	_	ns	
SCK ↑→ SOT delay time	t _{SHOVI}	SCK, SOT	Internal clock	-95	+95	ns	
$Valid\;SIN\toSCK\;\!\!\downarrow$	t _{IVSLI}	SCK, SIN	operation output pin:	t _{MCLK} *3+190	_	ns	
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN	$C_L = 80 pF+1 TTL$	0	_	ns	
$SOT \rightarrow SCK \downarrow delay time$	t _{SOVLI}	SCK, SOT		_	4 t _{MCLK} *3	ns	

^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

^{*3:} See "18.4.2. Source Clock/Machine Clock" for t_{MCLK}.

^{*2:} The serial clock delay function is a function that delays the output signal of the serial clock for half clock.


Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled*². (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1)

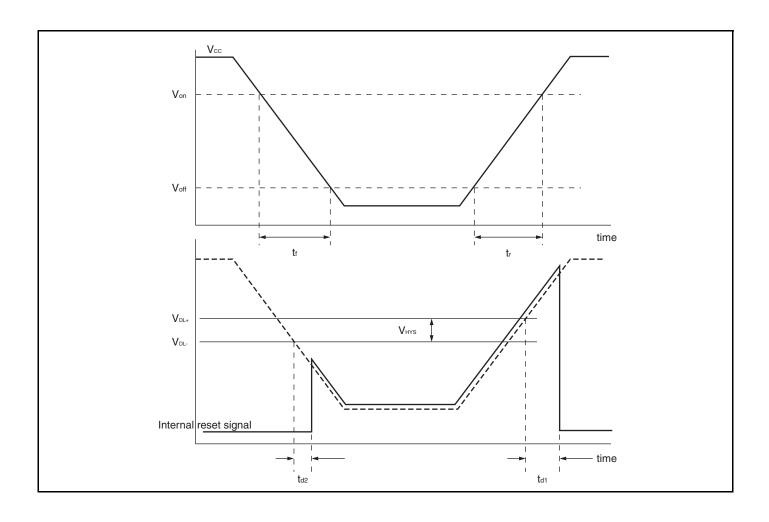
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Val	Unit	
Farameter	Symbol	Fili liaille	Condition	Min	Max	Oilit
Serial clock cycle time	t _{SCYC}	SCK		5 t _{MCLK} *3	_	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCK, SOT	Internal clock operation	-95	+95	ns
Valid SIN → SCK \uparrow	t _{IVSHI}	SCK, SIN	output pin:	t _{MCLK} * ³ +190	_	ns
SCK ↑→ valid SIN hold time	t _{SHIXI}	SCK, SIN	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	0	_	ns
SOT → SCK ↑ delay time	t _{SOVHI}	SCK, SOT		_	4 t _{MCLK} *3	ns

^{*1:} There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

^{*3:} See "18.4.2.Source Clock/Machine Clock" for t_{MCLK}.

^{*2:} The serial clock delay function is a function that delays the output signal of the serial clock for half clock.



18.4.7 Low-voltage Detection

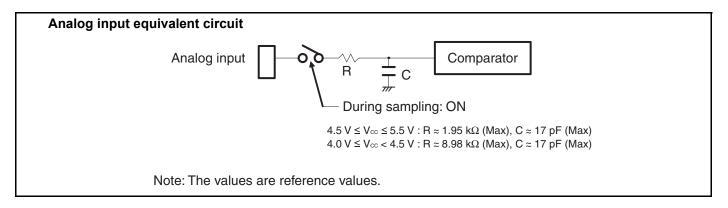
 $(V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

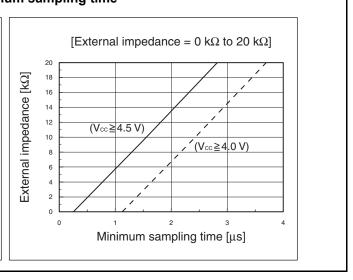
Davamatav	Cumbal		Value		Unit	Remarks	
Parameter	Symbol	Min	Тур	Max	Unit	Kemarks	
Release voltage	V_{DL+}	2.52	2.7	2.88	V	At power supply rise	
Detection voltage	V _{DL}	2.42	2.6	2.78	V	At power supply fall	
Hysteresis width	V _{HYS}	70	100	_	mV		
Power supply start voltage	V _{off}	_	_	2.3	V		
Power supply end voltage	V _{on}	4.9	_	_	V		
Power supply voltage change	+	1	_	_	μs	Slope of power supply that the reset release signal generates	
time (at power supply rise)	t _r	_	3000	_	μs	Slope of power supply that the reset release signal generates within the rating (V _{DL+})	
Power supply voltage change		300	_	_	μs	Slope of power supply that the reset detection signal generates	
time (at power supply fall)	t _f	_	300	_	μs	Slope of power supply that the reset detection signal generates within the rating (V_{DL-})	
Reset release delay time	t _{d1}	_	_	300	μs		
Reset detection delay time	t _{d2}	_	_	20	μs		

18.5 A/D Converter

18.5.1 A/D Converter Electrical Characteristics

(V_{CC} = 4.0 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40°C to +85°C)


Parameter	Symbol		Value		Unit	Remarks
Farameter	Syllibol	Min	Тур	Max	Oilit	Remarks
Resolution		_	_	10	bit	
Total error		-3	_	+3	LSB	
Linearity error	_	-2.5	_	+2.5	LSB	
Differential linear error		-1.9	_	+1.9	LSB	
Zero transition voltage	V _{OT}	V _{SS} -1.5 LSB	V _{SS} +0.5 LSB	V _{SS} +2.5 LSB	V	
Full-scale transition voltage	V _{FST}	V _{CC} -4.5 LSB	V _{CC} -2 LSB	V _{CC} +0.5 LSB	V	
Compare time		0.9	_	16500	μs	$4.5~V \leq V_{CC} \leq 5.5~V$
	_	1.8	_	16500	μs	$4.0 \text{ V} \le \text{V}_{CC} < 4.5 \text{ V}$
Sampling time		0.6	_	¥	μs	$4.5\text{V} \leq \text{V}_{CC} \leq 5.5\text{V},$ with external impedance $< 5.4~\text{k}\Omega$
	_	1.2	_	¥	μs	$4.0 \ V \! \leq \! V_{CC} \! \leq \! 4.5 \ V,$ with external impedance $< 2.4 \ k\Omega$
Analog input current	I _{AIN}	-0.3	_	+0.3	μΑ	
Analog input voltage	V _{AIN}	V _{SS}		V _{CC}	V	


18.5.2 Notes on Using the A/D Converter

External impedance of analog input and its sampling time

■ The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

Relationship between external impedance and minimum sampling time [External impedance = $0 \text{ k}\Omega$ to $100 \text{ k}\Omega$] External impedance [kΩ] 90 80 70 60 (Vcc≥4.5 V) 50 40 30 20 10 0 14 Minimum sampling time [µs]

A/D conversion error

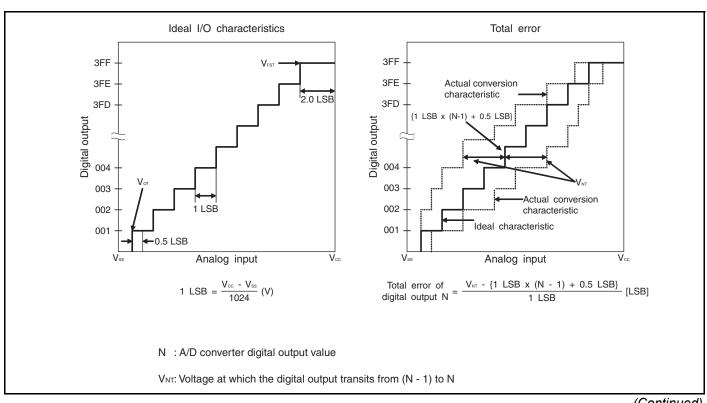
As $|V_{CC}-V_{SS}|$ decreases, the A/D conversion error increases proportionately.

18.5.3 Definitions of A/D Converter Terms

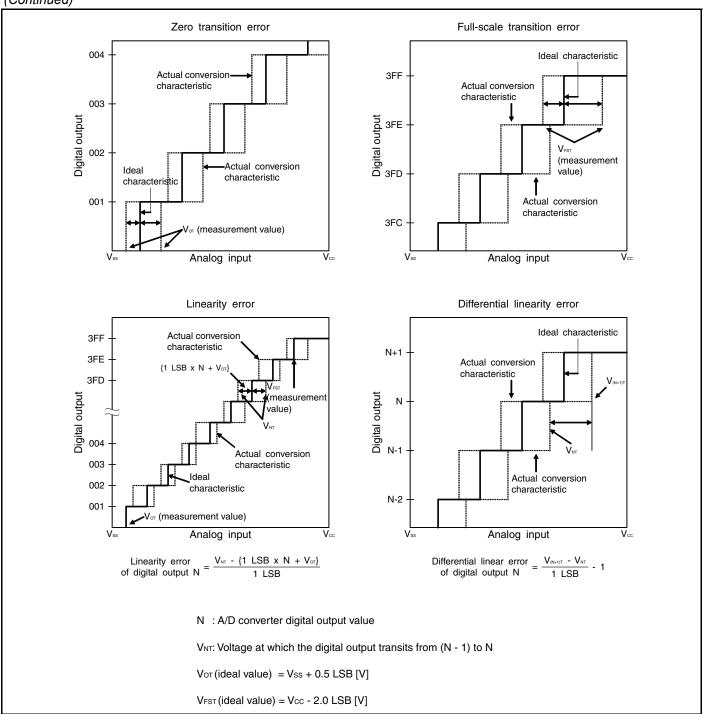
■ Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into 2^{10} = 1024.

■ Linearity error (unit: LSB)


It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" \leftarrow "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" \leftarrow "11 1111 1110") of the same device.

■ Differential linear error (unit: LSB)


It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

■ Total error (unit: LSB)

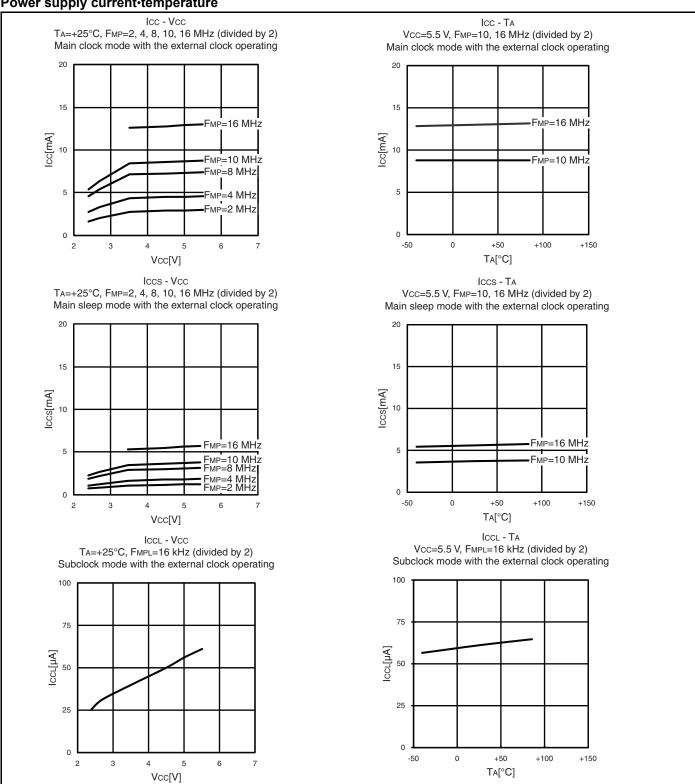
It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

18.6 Flash Memory Program/Erase Characteristics

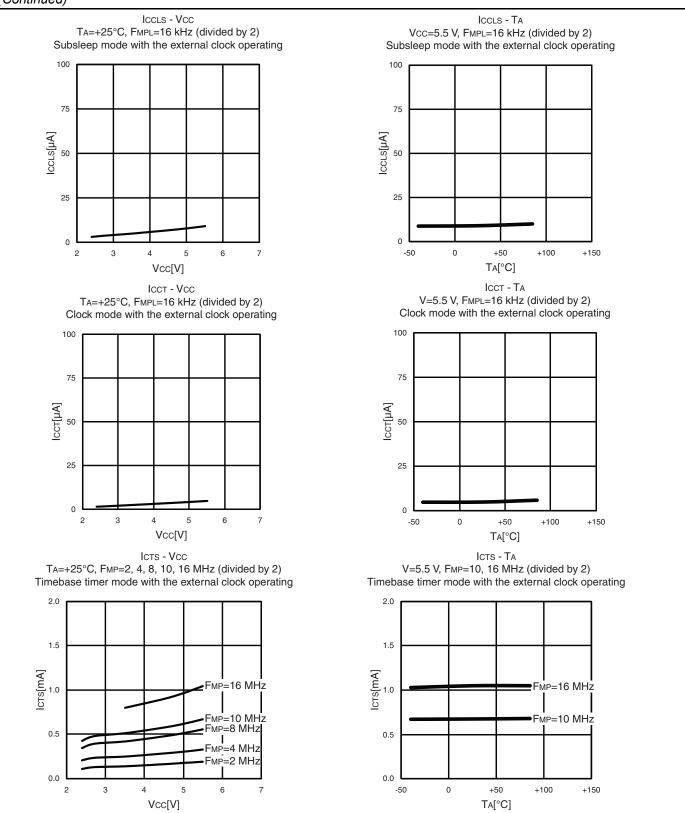
Parameter		Value		Unit	Remarks
Farameter	Min	Тур	Max	Ullit	Remarks
Chip erase time	_	1* ¹	15* ²	s	00 _H programming time prior to erasure is excluded.
Byte programming time	_	32	3600	μs	System-level overhead is excluded.
Erase/program voltage	9.5	10	10.5	V	The erase/program voltage must be applied to the PF2 pin in erase/program.
Current drawn on PF2	_	_	5.0	mA	Current consumption of PF2 pin during flash memory program/erase
Erase/program cycle	_	100000	_	cycle	
Power supply voltage at erase/program	3.0	_	5.5	V	
Flash memory data retention time	20* ³	_	_	year	Average T _A = +85°C

^{*1:} $T_A = +25$ °C, $V_{CC} = 5.0$ V, 100000 cycles

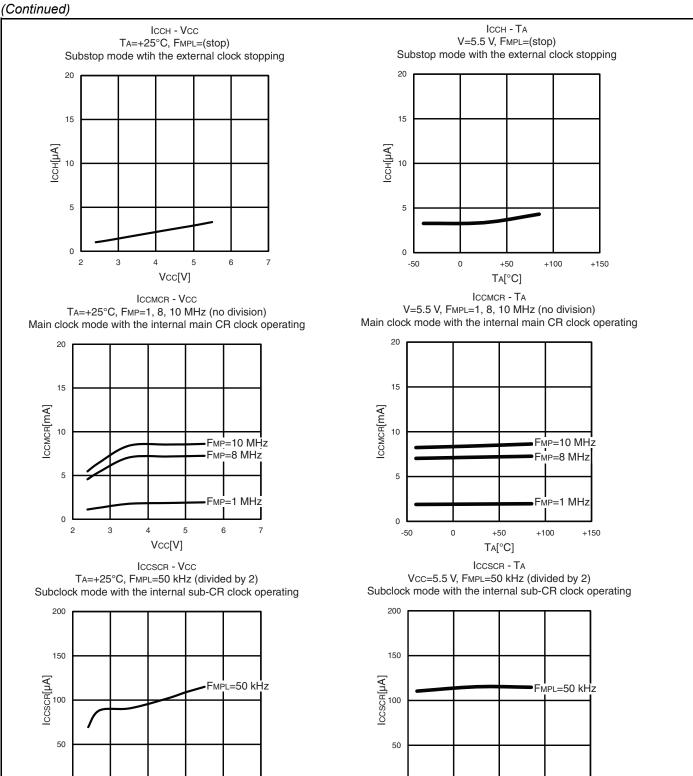
Document Number: 002-07463 Rev. *A


^{*2:} $T_A = +85$ °C, $V_{CC} = 4.5$ V, 100000 cycles

^{*3:} This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being +85°C).



19. Sample Electrical Characteristics


Power supply current-temperature

-50

+50

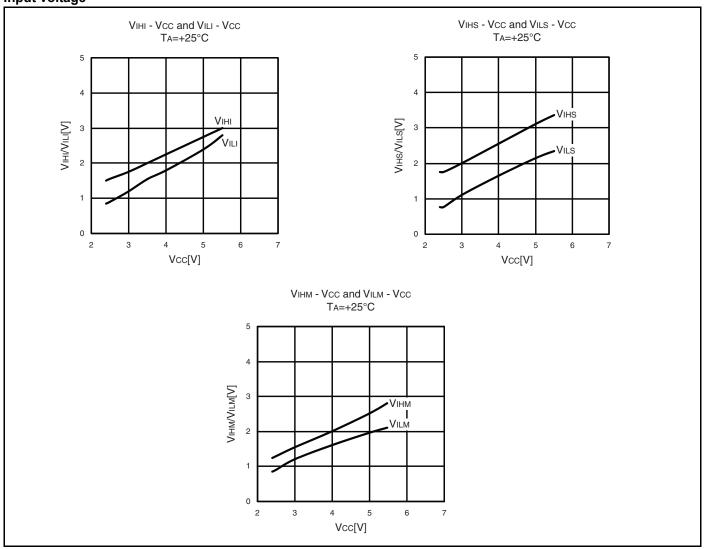
Ta[°C]

3

5

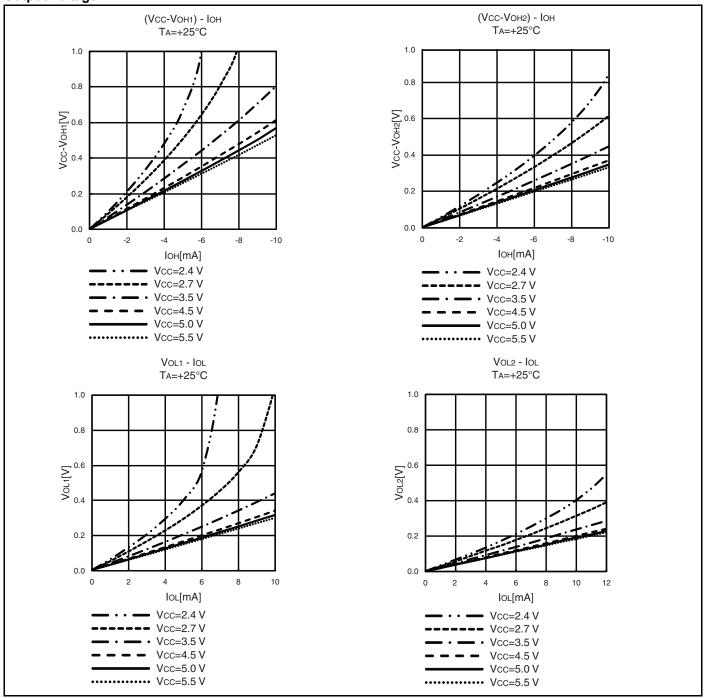
Vcc[V]

6

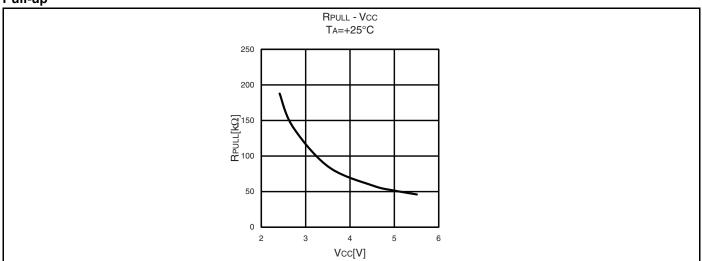

0

2

+150



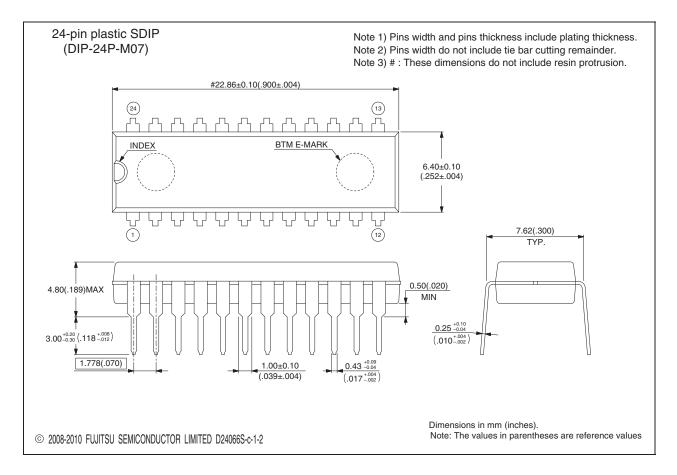
Input voltage



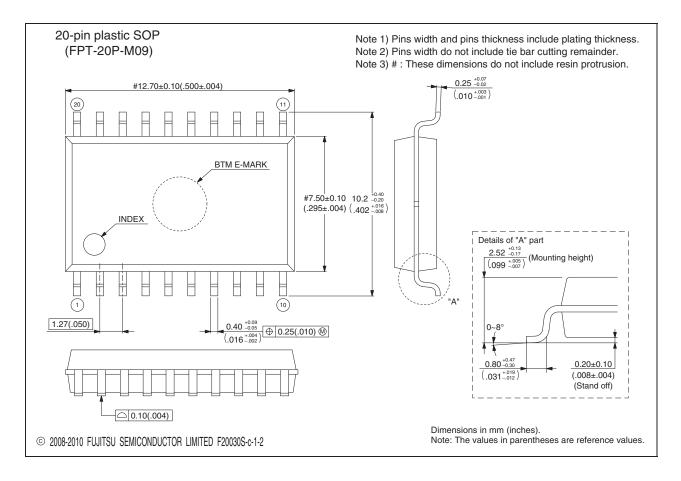
Output voltage

20. Mask Options

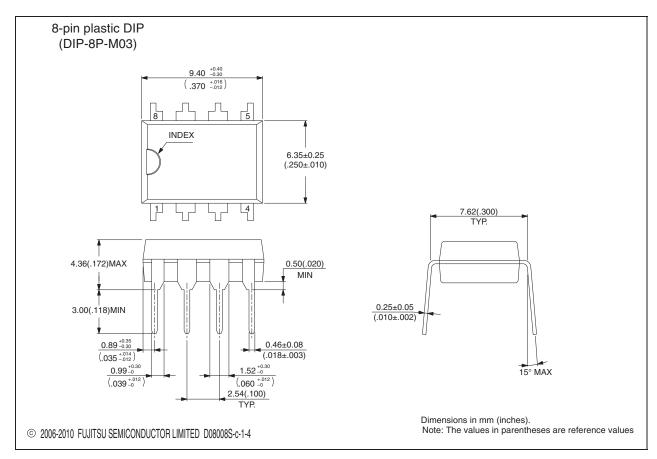
No.	Part Number	MB95F204H MB95F203H MB95F202H MB95F214H MB95F213H MB95F212H	MB95F204K MB95F203K MB95F202K MB95F214K MB95F213K MB95F212K
	Selection Method	Setting disabled	Setting disabled
1	Low-voltage detection reset •With low-voltage detection reset •Without low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset •With dedicated reset input •Without dedicated reset input	With dedicated reset input	Without dedicated reset input


21. Ordering Information

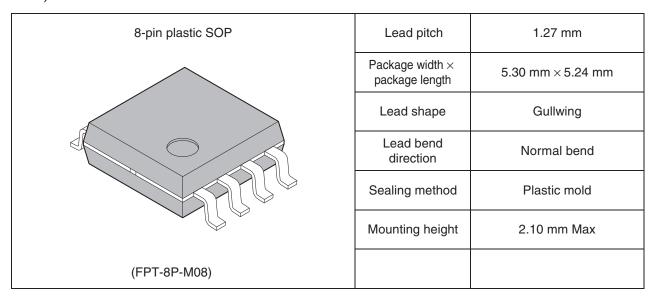
Part Number	Package
MB95F204HP-G-SH-SNE2 MB95F204KP-G-SH-SNE2 MB95F203HP-G-SH-SNE2 MB95F203KP-G-SH-SNE2 MB95F202HP-G-SH-SNE2 MB95F202KP-G-SH-SNE2	24-pin plastic SDIP (DIP-24P-M07)
MB95F204HPF-G-SNE2 MB95F204KPF-G-SNE2 MB95F203HPF-G-SNE2 MB95F203KPF-G-SNE2 MB95F202HPF-G-SNE2 MB95F202KPF-G-SNE2	20-pin plastic SOP (FPT-20P-M09)
MB95F214HPH-G-SNE2 MB95F214KPH-G-SNE2 MB95F213HPH-G-SNE2 MB95F213KPH-G-SNE2 MB95F212HPH-G-SNE2 MB95F212KPH-G-SNE2	8-pin plastic DIP (DIP-8P-M03)
MB95F214HPF-G-SNE2 MB95F214KPF-G-SNE2 MB95F213HPF-G-SNE2 MB95F213KPF-G-SNE2 MB95F212HPF-G-SNE2 MB95F212KPF-G-SNE2	8-pin plastic SOP (FPT-8P-M08)

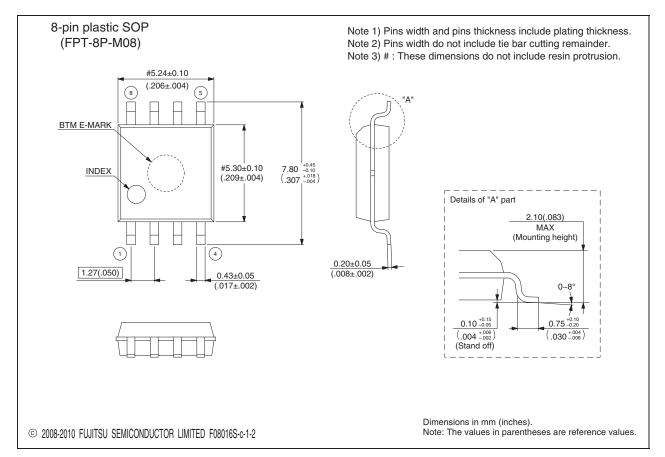

22. Package Dimensions

24-pin plastic SDIP	Lead pitch	1.778 mm
_	Package width × package length	6.40 mm × 22.86 mm
	Sealing method	Plastic mold
	Mounting height	4.80 mm Max
(DIP-24P-M07)		



20-pin plastic SOP	Lead pitch	1.27 mm
	Package width × package length	7.50 mm × 12.70 mm
	Lead shape	Gullwing
	Lead bend direction	Normal bend
	Sealing method	Plastic mold
	Mounting height	2.65 mm Max
(FPT-20P-M09)		





8-pin plastic DIP	Lead pitch	2.54 mm
	Sealing method	Plastic mold
(DIP-8P-M03)		

23. Major Changes

Spansion Publication Number: DS07-12623-5E

Page	Section	Change results
30	Electrical Characteristics 1. Absolute Maximum Ratings	Changed the characteristics of Input voltage.
33		Corrected the maximum value of "H" level input voltage for PF2 pin. $V_{CC} + 0.3 \rightarrow 10.5$
	3. DC Characteristics	Corrected the maximum value of Open-drain output application voltage. 0.2Vcc \rightarrow Vss $+$ 5.5
36]	Added the footnote *5.
39	4. AC Characteristics Added a figure of HCLK1/HCLK2. (1) Clock Timing	
42	(2) Source Clock/Machine Clock Corrected the graph of Operating voltage - Operating frequency (with the on-chip debug function). (Corrected the pitch)	
43	(3) External Reset Added "and power on" to the remarks column.	
58	6 Floch Momony Program/France	Added the row of "Current drawn on PF2".
	6. Flash Memory Program/Erase Characteristics	Corrected the minimum value of Power supply voltage at erase/program. 4.5 \rightarrow 3.0

Note: Please see "Document History" about later revised information.

Document History

Document Title: MB95200H/210H Series F ² MC-8FX 8-bit Microcontroller Document Number: 002-07463				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	AKIH	07/16/2010	Migrated to Cypress and assigned document number 002-07463. No change to document contents or format.
*A	5177811	AKIH	03/18/2016	Updated to Cypress format.

Document Number: 002-07463 Rev. *A

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch PSoC[®] Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.