

High Efficiency Transmitter Controller for Wireless Power Systems

TRIUNE PRODUCTS

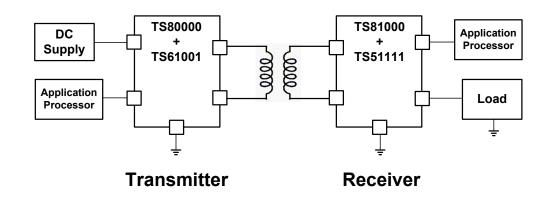
Features

- Supports Qi[®], PMA and proprietary charging applications
- Power outputs up to 40W+
- Support for single and multi-coil applications
- Support for half and full-bridge power sections
- Support for variable voltage, variable frequency and variable duty cycle architectures
- Integrated controller and flash for communications and control
- High precision data converters
- Precise control of bridge duty cycle and frequency
- Low external component count

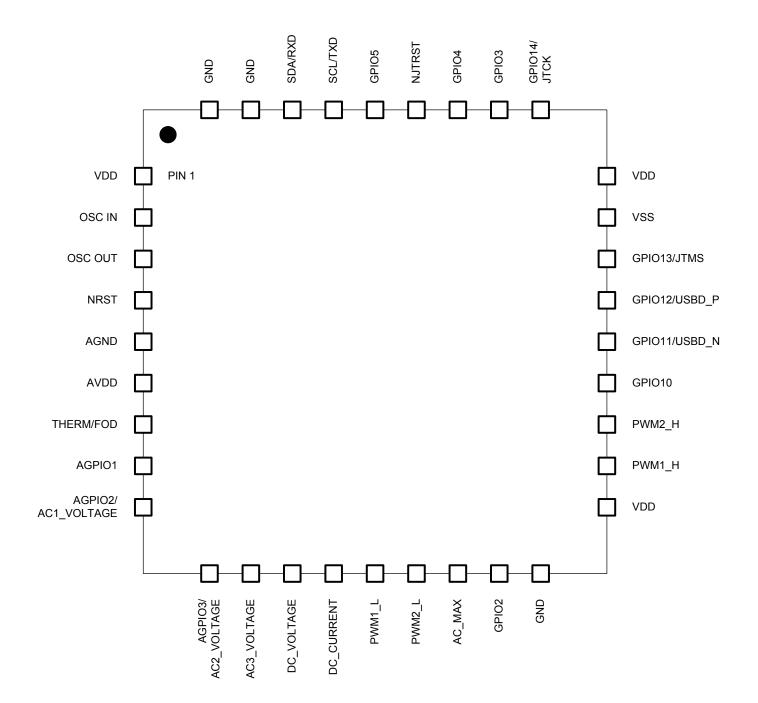
Applications

- RISC-based controller core with flash and SRAM memory
- Two 12-bit A/D converters
- DMA controller
- Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter
- Dual 16-bit PWM timers with dead-time generation
- 3 AGPIO and 5 GPIO for application customization
- I2C or UART interface
- USB interface
- 36 pin 6x6 QFN

Description

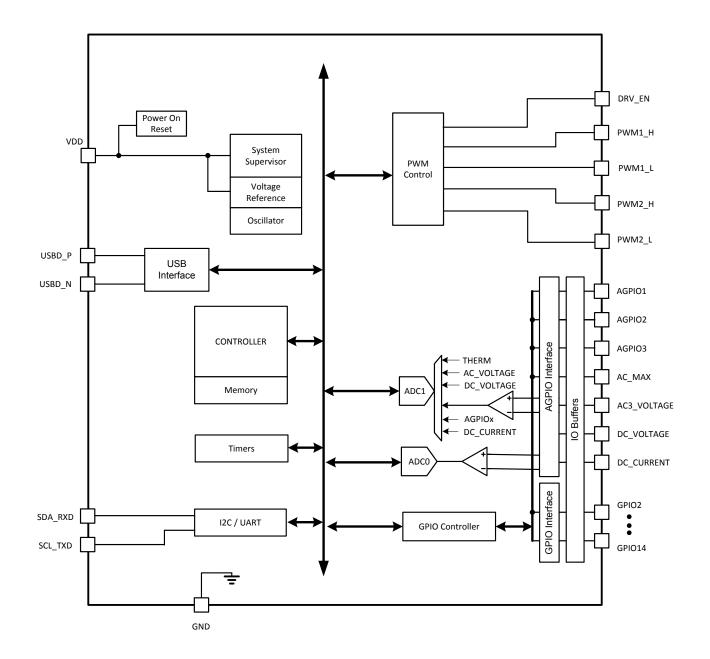

The TS80000 is a power transmitter communications and control unit for wireless charging applications. The TS80000 can support power outputs up to 40W+, and supports Qi[®] compliant, PMA compliant and proprietary applications. The TS80000 can be configured to drive single or multi-coil applications, in half and full-bridge systems.

The TS80000 performs the necessary decode of packets from the secondary side device and adjusts the control accordingly. An integrated PID filter provides the necessary compensation for the loop for high-precision control of duty cycle, frequency, and or bridge voltage.


Applications

- Qi[®] , PMA and non-standard wireless chargers for:
 - Cell Phones and Smartphones
 - GPS Devices
 - Digital Cameras
 - Tablets and eReaders
 - Portable Lighting
 - Industrial applications
- Automotive chargers
 - OEM in-cabin chargers
 - Charging accessories

Typical Application Circuit


Pinout (Top View)

Pin Description

Pin #	Pin Name	Pin Function	Description
1	VDD	Input power	Input power supply
2	OSC_IN	Oscillator input	Oscillator input
3	OSC_OUT	Oscillator output	Oscillator output
4	NRST	Reset	Reset input
5	AGND	Analog GND	Analog GND
6	AVDD	Analog power	Analog power supply
7	THERM/FOD	Thermistor/FOD	Thermistor input or FOD calibration input
8	AGPIO1	Analog GPIO	Analog GPIO1
9	AGPIO2/ AC1_VOLTAGE	Analog GPIO	Analog GPIO2 or AC coil voltage for coil #1 in a three-coil system
10	AGPIO3/ AC2_VOLTAGE	Analog GPIO	Analog GPIO3 or AC coil voltage for coil #2 in a three-coil system
11	AC3_VOLTAGE	Analog GPIO	AC coil voltage for a single-coil system or AC coil voltage for coil #3 in a three-coil system
12	DC_VOLTAGE	Analog GPIO	DC input voltage measurement
13	DC_CURRENT	Analog GPIO	DC input current measurement
14	PWM1_L	PWM output	PWM1 low-side control
15	PWM2_L	PWM output	PWM2 low-side control
16	AC_MAX	Analog GPIO	Communication demodulator input
17	DRV_EN	Drive enable	FET driver enable
18	GND	Power GND	Power GND
19	VDD	Input power	Input power supply
20	PWM1_H	PWM	PWM1 high-side control
21	PWM2_H	PWM	PWM2 high-side control
22	GPIO10	GPIO	GPIO10
23	GPIO11/USBD_N	GPIO/USB data	GPIO11 or USB data input (D-)
24	GPIO12/USBD_P	GPIO/USB data	GPIO12 or USB data input (D+)
25	GPIO13/JTMS	GPIO/JTAG	GPIO13 or JTAG state machine control
26	GND	Power GND	Power GND
27	VDD	Input power	Input power supply
28	GPIO14/JTCK	GPIO/JTAG	GPIO14 or JTAG clock
29	GPIO15	GPIO	GPIO15
30	GPIO3	GPIO	GPIO3
31	GPIO4	GPIO	GPIO4
32	GPIO5	GPIO	GPIO5
33	SCL/TXD	I2C/UART	I2C clock or UART output
34	SDA/RXD	I2C/UART	I2C data or UART input
35	GND	Power GND	Power GND
36	GND	Power GND	Power GND

Functional Block Diagram

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted (1,2,3)

Parameter	Min	Max	Unit
VDD, AVDD, GND, AGND (supply voltage)	-0.3	4.0	V
OSC_IN, OSC_OUT, DRV_EN, PWM1_H, PWM2_H, GPIO10, GPIO11/USBD_N, GPIO12/ USBD_P, GPIO13/JTMS, GPIO3, GPIO4, SCL/TXD, SDA/RXD	GND - 0.3	VDD + 4.0	V
NRST, THERM/FOD, AGPIO1, AGPIO2/AC1_VOLTAGE, AGPIO3/AC2_VOLTAGE, AC3_ VOLTAGE, DC_VOLTAGE, DC_CURRENT, PWM1_L, PWM2_L, AC_MAX, GPIO14/JTCK, GPIO15, GPIO5	GND - 0.3	4.0	V
Operating Junction Temperature Range, TJ	-40	125	°C
Storage Temperature Range, TSTG	-65	150	°C
Electrostatic Discharge – Human Body Model		±2k	V
Lead Temperature (soldering, 10 seconds)		260	°C

Notes:

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) ESD testing is performed according to the respective JESD22 JEDEC standard.

Parameter	Symbol	Min.	Тур.	Max.	Units
Input Operating Voltage	VDD / AVDD	2.0	3.3	3.6	V
Oscillator Frequency	F _{osc}		8.0		MHz
			100		nF
Analog Supply decoupling capacitor values	AVDD		4.7		nF
			4.7		uF
			3 x 100		
Digital Supply decoupling capacitor values	VDD		4.7		nF
Operating Free Air Temperature	T _A	-40			uF
	т	10		85	°C
Operating Junction Temperature	T,	-40		105	°C

Operating Conditions

Communication Interfaces

The Applications Processor can interrogate the TS8000x using the I2C or UART interface. The two interfaces share the same pins. Only one interface is active at any time.

I2C

I/O Pins

ALERT pin (optional):

- Driven high when an event is active in the internal STATUS register
- Driven low when all the internal events are cleared

Note: The ALERT pin is provided to help with I2C communication, i.e. to signal events to the App. MCU so the App. MCU can interrogate the TS80000 via I2C to see what changed on the wireless interface. The use of the ALERT pin is not mandatory in the application.

SCL pin:

- Clock pin for the I2C interface.
- Open-drain with weak pull-ups. Needs stronger external pull-ups for full-speed operation.

SDA pin:

- Data pin for the I2C interface.
- Open-drain with weak pull-ups. Needs stronger external pull-ups for full-speed operation.

I2C Protocol

The TS80000 Wireless Power Transmitter Controller acts as an I2C slave peripheral to allow communication with an application microcontroller. The slave address (7 bit) is 0x50. The Application MCU is an I2C master and initiates every data transfer.

The TS80000 implements a set of registers available from the I2C bus. It also implements a set of API functions that receive parameters and return values using the I2C bus. Four transfer types are possible:

- Write Register
- Read Register
- Run API Function
- Read API Function Return Buffer

Write Register Operations

Description

Description

START				Start of the I2C transfer.				
M⇔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0xA0 as 8-bit)				
M⇔S	Register n address (8 bits)		Slave ACK	Address of the first register				
M⇔S	Register n Data (8 bits)		Slave ACK	Write the first register				
M⇔S	Register n+1 Data (8 bits)		Slave ACK	Optionally write the following registers				
M⇔S	Register n+k Data (8 bits)		Slave ACK					
STOP				Stop of the I2C transfer				

Read Register Operations

START				Start of the I2C transfer.			
M⇔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + 0 as R/nW bit (0xA0 as 8-bit)			
M⇔S	Register n address (8 bits)		Slave ACK	Address of the first register			
START				Repeated Start			
M⇔S	Slave Address (7 bits)	1 (1 bit)	Slave ACK	Slave address + 1 as R/nW bit (0xA1 as 8-bit)			
S⇔M	Register n Data (8 bits)		Master ACK	Read the first register			
S⇔M	Register n+1 Data (8 bits)		Master ACK	Optionally read the following registers			
S⇔M	Register n+k Data (8 bits)		Master nACK	The master should send a nACK after the last data byte was received.			
STOP				Stop of the I2C transfer			

Run API Function

Description

START				Start of the I2C transfer
M⇔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + R/nW bit (0xA0 as 8-bit
M⇔S	API number (8 bits)		Slave ACK	API number
M⇔S	API input buffer length m (8	bits)	Slave ACK	API input buffer length. Equal to 0 if no input buffer data is required by the API
M⇔S	Input buffer data[0] (8 bits)		Slave ACK	First byte of the input buffer (optional)
M⇔S	Input buffer data[1] (8 bits)		Slave ACK	Second byte of the input buffer (optional)
M⇔S	Input buffer data[m-1] (8 bit	ts)	Slave ACK	Last byte of the input buffer (optional)
STOP				Stop of the I2C transfer and execute the API function

Read API Function Return Buffer

Description

START				Start of the I2C transfer.					
M⇔S	Slave Address (7 bits)	0 (1 bit)	Slave ACK	Slave address + 0 as R/nW bit (0xA0 as 8-bit)					
M⇔S	API number (8 bits)		Slave ACK	API number.					
START				Repeated Start					
M⇔S	Slave Address (7 bits)	1 (1 bit)	Slave ACK	Slave address + 1 as R/nW bit (0xA1 as 8-bit)					
S⇔M	API number (8 bits)		Master ACK	API number for the following return buffer					
S⇔M	API return buffer length n (8	bits)	Master ACK	API return buffer length					
S⇔M	Output buffer data[0] (8 bits	5)	Master ACK	Read the first byte in the output buffer					
S⇔M	Output buffer data[1] (8 bits	;)	Master ACK	Optionally read the following bytes					
S⇔M	Output buffer data[n-1] (8 b	its)	Master nACK	The master should send a nACK after the last data byte was received.					
STOP				Stop of the I2C transfer					

Internal Registers

Addresss	Name	Туре	Access Mode (bits)	Description
General Registers	s			· · ·
0x00	BOOTFW_REV_L	R	8/16	Bootloader Firmware Revision (L)
		R	8/16	
0x01	BOOTFW_REV_H			Bootloader Firmware Revision (H)
0x02	FW_REV_L	R	8/16	Firmware Revision (L)
0x03	FW_REV_H	R	8/16	Firmware Revision (H)
0x04	MODE_L	R	8/16	Operating Mode (L)
0x05	MODE_H	R	8/16	Operating Mode (H)
0x06	RESET_L	R/W	8/16	Reset Register (L)
0x07	RESET_H	R/W	8/16	Reset Register (H)
0x08	STATUSO	R	8	Status0 Register
0x09	STATUS1	R	8	Status1 Register
0x0A 0x0B	STATUS2	R	8	Status2 Register
0x0C	STATUS3 RESERVED	R	8	Status3 Register
Bootloader Mode			1	1
0x0D	BLOCK_SIZE	R	8	Block Size
0x0E	FW_SIZE_L	R	8/16	Firmware Size (L)
0x0F	FW_SIZE_H	R	8/16	Firmware Size (H)
0x10	CONFIG_SIZE_L	R	8/16	Configuration Size (L)
0x11	CONFIG_SIZE_H CALIBRATION_SIZE_L	R	8/16	Configuration Size (H) Calibration Size (L)
0x12 0x13	CALIBRATION_SIZE_L	R	8 / 16 8 / 16	Calibration Size (L)
0x13	FW_FLAGS_L	R	8/16	Firmware Flags (L)
0x15	FW_FLAGS_H	R	8/16	Firmware Flags (H)
0x16-0x7F	RESERVED			
Transmitter Mode				I
0x0D	CHANNEL_COUNT	R	8	Channel Count
0x0E	CHANNEL_SELECT	R/W	8	Channel Selection Register
0x0F	COIL_COUNT	R	8	Coil Count
0x10	FREQ_MIN_LIMIT_L	R/W	16	Limit for the Minimum Frequency (L)
0x11	FREQ_MIN_LIMIT_H	R/W	16	Limit for the Minimum Frequency (H)
0x12	FREQ_MAX_LIMIT_L	R/W	16	Limit for the Maximum Frequency (L)
0x13	FREQ_MAX_LIMIT_H	R/W	16	Limit for the Maximum Frequency (H)
0x14	DC_CURRENT_LIMIT_L	R/W	16	DC Current Limit (L)
0x15	DC_CURRENT_LIMIT_H	R/W	16	DC Current Limit (H)
0x16		R/W	16	AC Voltage Limit (L)
0x17	AC_VOLTAGE_LIMIT_H	R/W	16	AC Voltage Limit (H)
0x18	TEMP_COIL_LIMIT_L	R/W	16	Coil Temperature Limit (L)
0x19 0x1A	TEMP_COIL_LIMIT_H	R/W R/W	16 16	Coil Temperature Limit (H) Die Temperature Limit (L)
0x1B	TEMP_DIE_LIMIT_H	R/W	16	Die Temperature Limit (L)
0x1C	FAN_TEMP_MIN	R/W	8	Minimum Temperature for Fan Control
0x1D	FAN_TEMP_MAX	R/W	8	Maximum Temperature for Fan Control
0x1E	FAN_DTC_MIN	R/W	8	Minimum Duty Cycle for Fan Control
0x1F	FAN_DTC_MAX	R/W	8	Maximum Duty Cycle for Fan Control
0x20	SUPPORTED_STANDARDS	R/W	8	Supported Standards
0x21	MAX_POWER_WPC	R/W	8	Maximum Power in WPC Mode
0x22	MAX_POWER_PMA	R/W	8	Maximum Power in PMA Mode
0x23	MAX_POWER_A4WP	R/W	8	Maximum Power in A4WP Mode
0x24-0x3F	RESERVED			
0x40	ACTIVE_COIL	R	8	Active Coil
0x41	POWER_STATE_TX	R	8	Transmitter Power State
0x42	STANDARD	R	8	Wireless Power Standard
0x43	POWER_LEVEL	R	8	Power Level
0x44	FOD_TYPE	R	8	Foreign Object Detection Type

Internal Registers

Addresss	Name	Туре	Access Mode (bits)	Description
Transmitter Mo	ode continues		I	-
0x45	POWER_STATE_RX	R	8	Receiver Power State
0x46	PWM_FREQUENCY_L	R	16	PWM Frequency (L)
0x47	PWM_FREQUENCY_H	R	16	PWM Frequency (H)
0x48	PWM_DTC_L	R	16	PWM Duty Cycle (L)
0x49	PWM_DTC_H	R	16	PWM Duty Cycle (H)
0x4A	DC_VOLTAGE_L	R	16	Bridge DC Voltage (L)
0x4B	DC_VOLTAGE_H	R	16	Bridge DC Voltage (H)
0x4C	DC_CURRENT_L	R	16	Bridge DC Current (L)
0x4D	DC_CURRENT_H	R	16	Bridge DC Current (H)
0x4E	AC_VOLTAGE_L	R	16	Coil AC voltage (L)
0x4F	AC_VOLTAGE_H	R	16	Coil AC Voltage (H)
0x50	AC_CURRENT_L	R	16	Coil AC Current (L)
0x51	AC_CURRENT_H	R	16	Coil AC Current (H)
0x52	TEMP_COIL_L	R	16	Temperature at the Coil Thermistor (L)
0x53	TEMP_COIL_H	R	16	Temperature at the Coil Thermistor (H)
0x54	TEMP_DIE_L	R	16	Die Temperature (L)
0x55	TEMP_DIE_H	R	16	Die Temperature (H)
0x56	POWER_DC_IN_L	R	16	DC Power at the Bridge Input (L)
0x57	POWER_DC_IN_H	R	16	DC Power at the Bridge Input (H)
0x58	POWER_TX_L	R	16	TX Power into the Magnetic Field (L)
0x59	POWER_TX_H	R	16	TX Power into the Magnetic Field (H)
0x5A	POWER_RX_L	R	8	Received Power Reported by the RX (L)
0x5B	POWER_RX_H	R	8	Received Power Reported by the RX (H)
0x5C	BATT_CHARGE_LEVEL_RX	R	8	Receiver Battery Charge Level
0x5D	LED_STATE	R	8	LED State
0x5E	ERROR_L	R	16	Error Code and Parameter (L)
0x5F	ERROR_H	R	16	Error Code and Parameter (H)
0x60-0x6F	RESERVED			
0x70	CONTROL_POWER_L	R/W	16	Power Control Register (L)
0x71	CONTROL_POWER_H	R/W	16	Power Control Register (H)
0x72	CONTROL DEBUG L	R/W	16	Debug Control Register (L)
0x73	CONTROL_DEBUG_H	R/W	16	Debug Control Register (H)
0x74	DEBUG_MASK0	R/W	8	Debug Mask Register 0
0x75	DEBUG_MASK1	R/W	8	Debug Mask Register 1
0x76	DEBUG_MASK2	R/W	8	Debug Mask Register 2
0x77	DEBUG_MASK3	R/W	8	Debug Mask Register 3
0x78	INTERRUPT_MASK0	R/W	8	Interrupt Mask Register 0
0x79	INTERRUPT_MASK1	R/W	8	Interrupt Mask Register 1
0x7A	INTERRUPT_MASK2	R/W	8	Interrupt Mask Register 2
0x7B	INTERRUPT_MASK3	R/W	8	Interrupt Mask Register 3
0x7C-0x7F	RESERVED			

Bootloader Firmware Revision Register (BOOTFW_REV_H:BOOTFW_REV_L)

Address:

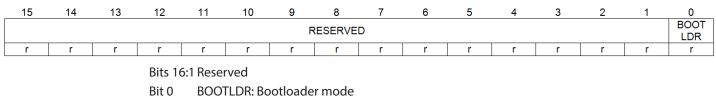
0x00

Reset value: Major and Minor version number of the bootloader firmware

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			REV_	H[7:0]				REV_L[7:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:8 REV_H[7:0]: Major Bootloader Firmware Revision These bits contain the major version number of the bootloader firmware. Bits 7:0 REV_L[7:0]: Minor Bootloader Firmware Revision These bits contain the minor version number of the bootloader firmware.

Firmware Revision Register (FW_REV_H:FW_REV_L)


Address:	0x02
Reset value:	Major and Minor version number of the transmitter firmware

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	REV_H[7:0]						REV_L[7:0]								
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:8 REV_H[7:0]: Major Firmware Revision These bits contain the major version number of the transmitter firmware. Bits 7:0 REV_L[7:0]: Minor Firmware Revision These bits contain the minor version number of the transmitter firmware.

Operating Mode Register (MODE_H:MODE_L)

Address:0x04Reset value:Depends on the bootloader mode and the firmware type

0: The transmitter firmware is running

1: The controller is in bootloader mode

Reset Register (RESET_H:RESET_L)

Address Reset va		0x06 0x00													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESET_	<ey[15:0]< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ey[15:0]<>							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 RESET_KEY[15:0]: Reset Key

0xAA55: generate a system reset

0xA5A5: generate a system reset and enter bootloader mode

Any other value: a system reset is not generated

The reset sequence takes about 20 milliseconds. During this time the communication interfaces are not available.

After reset the MODE register can be used to check if the system is in bootloader mode or is running the transmitter firmware.

Status0 Register (STATUS0)

Address:	0x08						
Reset value:	0xC0						
		_			_		
7 CTS	6 CTS_API	5 CTS_IF	4 CTS_API_IF	3 STATUS3	2 STATUS2	1 STATUS1	0
r	r	r	r	r	r	r	Res
	D:+ 7	CTC: Classifier	Cond				
	Bit 7	CTS: Clear To			:		ontrollor This h
				-	ister access can	be issued to the o	ontroller. This b
			eset by hardware			N	
					evious register a	ccess. New comm	ands should no
			to the controller				
				ept a new regist	er access comm	and over the com	munication
		interfac					
	Bit 6		ar to Send for AP				
					read request car	n be issued to the	controller. This
		bit is no	ot reset by hardw	are when read.			
		0: The c	ontroller is busy	processing a pre	evious API call. N	lew API calls shou	ld not be sent t
		the con	troller.				
		1: The c	ontroller can acc	ept a new API ca	all over the com	munication interf	ace.
	Bit 5	CTS_IF: Clear	To Send Event Ir	nterrupt Flag			
		0: No ev	vent is signaled fo	or the CTS bit or	the correspond	ing bit in the INT	RRUPT_MASK0
		register	r is cleared.				
		1: The C	TS bit has been s	set and the corre	esponding bit in	the INTERRUPT_I	MASK0 register
		set. Res	et to 0 by hardw	are when the ST	ATUS0 register is	s read.	
	Bit 4	CTS_API_IF: (Clear to Send for	API Event Interr	upt Flag		
		0: No e	vent is signaled fo	or the CTS_API b	pit.		
			-			oit in the INTERRU	IPT MASKO
			r is set. Reset to 0				
	Bit 3	•	STATUS1 Event lr	•		5	
					aister or the co	responding bit ir	the INTERRUP
			register is cleare		5	1 5	
			•		gister and the c	orresponding bit	in the
			-		-	when the STATUS3	
	Bit 2		STATUS2 Event Ir		, , , , , , , , , , , , , , , , , , , ,		- J
	5				aister or the co	responding bit ir	the INTERRUP
			register is cleare		.g		
			•		aister and the c	orresponding bit	in the
			-		•	vhen the STATUS2	
	Bit 1		STATUS1 Event Ir		o by hardware v		register is redu.
	Dit i				aistor or the cou	responding bit ir	
			register is cleare				
			•		aistor and the s	orresponding bit	in the
			-		•		
	D:+ 0		UPI_IVIASKI regis	ter is set. Reset to	o by nardware v	vhen the STATUS1	register is read.
	Bit 0	Reserved					

Status1 Register (STATUS1)

Address: Reset value:	0x09 0x00							
7		6	5	4	3	2	1	0
	Res		RX_EOC	RX_CHG	RX_CONFIG	RX_ID	RX_RMV	RX_DET
			r	r	r	r	r	r
		Bits 7:4	Reserved					
		Bit 5	RX_EOC: RX E	nd of Charge Re	ceived			
			0: No RX End	of Charge comm	and has been red	ceived since the	last read.	
			1: The RX End	of Charge comm	nand has been re	eceived. Reset to	0 by hardware v	vhen read.
		Bit 4	RX_CHG: RX C	harge Level Rec	eived		-	
			0: No RX char	ge level has beer	n received since t	the last read.		
					n received. Reset		re when read.	
		Bit 3		X Configuration				
				5	as been received	since the last re	ad.	
				-	has completed.			ıd.
		Bit 2		ntification Recei	•	,		
			_		as been received	since the last rea	ad.	
					has completed.			d.
		Bit 1	RX_RMV: RX F	•				
					curred since the	last read.		
					noved from the T		to 0 by hardwar	when read
		Bit 0	RX_DET: RX D			, surface, neset		
		5.00			occurred since th	e last read		
					ted on the transr		eset to 0 by hard	ware when re
				. has been detee		inter surface. It	cset to o by hard	

Status2 Register (STATUS2)

Address: Reset value:	0x0A 0x00						
7	6	5	4	3	2	1	0
		R	es			LED	ERROR
						r	r
	Bits	2 Reserved					
	Bit 1	LED: LED Stat	us Changed				
		0: No change	in the LED state	has occurred sin	ice the last read.		
		1: A change ir	n the LED state h	as occurred. Res	et to 0 by hardw	are when read.	
	Bit 0	ERROR: Error	Condition Deteo	ted			
		0: No error ha	s occurred since	the last read.			
		1: An error ha	s occurred. Rese	t to 0 by hardwa	re when read.		
Status3 Regi	ster (STATUS3)					
Address:	0x0B						
Reset value:	0x00						
7	6	5	4	3	2	1	0
		R	es			LED	ERROR
						r	r
	Bits	:2 Reserved					
	Bit 1	TEST: Test Eve	nt				
				since the last rea	ad.		
				Reset to 0 by hard		ł.	
	Bit 0	DEBUG: Debu					
			-	ed since the last	read.		
		-		d. Reset to 0 by h		ead.	
		5		,			
FS80000 Final Datasheet March 19, 2015	Rev 1	4	www.ser	ntech.com			12 of Semte ietary & Confident

Block Size Register (BLOCK_SIZE)

Address: Reset value:	0x0D 0x40						
7	6	5	4	3	2	1	0
			BLOCK_	SIZE[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 BLOCK_SIZE[7:0]: FLASH Block Size

This field reports the length of the FLASH block size in bytes.

The following FLASH API functions should use a BLOCK_DATA field with a size that is equal to BLOCK_SIZE (or optionally for USB communication, a multiple of BLOCK_SIZE):

- BOOTLOADER_WRITE_BLOCK
- BOOTLOADER_WRITE_CONFIGURATION
- BOOTLOADER_READ_CONFIGURATION
- BOOTLOADER_WRITE_CALIBRATION
- BOOTLOADER_READ_CALIBRATION
- BOOTLOADER_TRIM
- BOOTLOADER_READ_TRIM

Firmware Size Register (FW_SIZE_H:FW_SIZE_L)

Address: 0x0E

Reset value: Size of the firmware image segment (unit: number of blocks)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FW SIZE[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 FW_SIZE[15:0]: Size of the firmware image segment (blocks) These bits contain size of the firmware image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks.

Example: if BLOCK_SIZE = 64 and the firmware image segment is 51KB (52224 bytes) then FW_SIZE is 52224 / 64 = 816.

Configuration Size Register (CONFIG_SIZE_H:CONFIG_SIZE_L)

Address: 0x10													
Reset value: Size of the configuration image segment (unit: number of blocks)													
15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0	
	CONFIG SIZE[15:0]												
r r r	r r	r	r	r	r	r	r	r	r	r	r	r	

Bits 15:0 CONFIG_SIZE[15:0]: Size of the configuration image segment (blocks)

These bits contain size of the configuration image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks (see the FW_SIZE for details).

Calibration Size Register (CAL_SIZE_H:CAL_SIZE_L)

Addr	ess:	0x12													
Rese	Reset value: Size of the configuration image segment (unit: number of blocks)														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CAL_S	IZE[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
			Dite 1			01. 5:-0	of the co	libration	imaga	coamon	t (blocks	`			

Bits 15:0 CAL_SIZE[15:0]: Size of the calibration image segment (blocks)

These bits contain size of the calibration image segment in FLASH measured as a number of BLOCK_SIZE byte long blocks (see the FW_SIZE for details).

Firmware Flags Register (FW_FLAGS_H:FW_FLAGS_L)

Address	:	0x14													
Reset va	lue:	Firmwa	are flags												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							R	les							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
-				D:+- 1											

Bits 15:0 Reserved

Channel Count Register (CHANNEL_COUNT)

Address: 0x0D Reset value: From the configuration data

7	6	5	4	3	2	1	0						
	CHANNEL_COUNT[7:0]												
r	r r r r r r r												
	Pite 7.0 CHANNEL COUNT[7:0]: Number of independent transmitter channels												

Bits 7:0 CHANNEL_COUNT[7:0]: Number of independent transmitter channels

A transmitter has multiple channels if it can transfer power through multiple coils at the same time.

Channel Selection Register (CHANNEL_SELECT)

Address:	0x0E
Reset value:	0x00

7	6	5	4	3	2	1	0				
CHANNEL SELECT[7:0]											
rw rw rw rw rw rw rw											

Bits 7:0 CHANNEL_SELECT[7:0]: Number of independent transmitter channels For transmitters with a single channel this register has no effect. For transmitters with more than one channel this field associates all the other registers with one of the channels: 0x00: Channel 0 selected 0x01: Channel 1 selected 0x02: Channel 2 selected

Coil Count Register (COIL_COUNT)

Address:	0x0F
Reset value:	From the configuration data

7	6	5	4	3	2	1	0
			CHANNEL	COUNT[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 COIL_COUNT[7:0]: Number of coils in the transmitter channel:

0x01: 1 coil 0x02: 2 coils 0x07: 7 coils

Limit for the Minimum Frequency Register (FREQ_MIN_LIMIT_H:FREQ_MIN_LIMIT_L)

Address:0x10Reset value:From the configuration data

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							REQ_MIN	LIMIT[15	:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 FREQ_MIN_LIMIT[15:0]: Minimum frequency allowed for the transmitter channel (100 Hz) The transmitter doesn't allow its operating frequency to go below this limit. The unit is 100 Hz.

If a value higher than the transmitter operating frequency is written to this register, the transmitter adjusts its operating frequency so it falls within the correct boundaries. This mechanism can be used for automotive applications to force the transmitter to avoid certain frequency ranges when other wireless devices are used.

Example: To limit the transmitter frequency to 150 kHz or higher, a value of 1500 is written to the FREQ_MIN_LIMIT register.

Limit for the Maximum Frequency Register (FREQ_MAX_LIMIT_H:FREQ_MAX_LIMIT_L)

Address:	0x12
Reset value:	From the configuration data

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						FF	REQ_MIN	LIMIT[15	:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 15:0 FREQ_MAX_LIMIT[15:0]: Maximum frequency allowed for the transmitter channel (100 Hz) The transmitter doesn't allow its operating frequency to go above this limit. The unit is 100 Hz. If a value lower than the transmitter operating frequency is written to this register, the

transmitter adjusts its operating frequency so it falls within the correct boundaries.

Example: To limit the transmitter frequency to 180 kHz or lower, a value of 1800 is written to the FREQ_MAX_LIMIT register.

DC Current Limit Register (DC_CURRENT_LIMIT_H:DC_CURRENT_LIMIT_L)

Address	5:	0x14													
Reset va	alue:	From t	he confi	guratior	n data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						DC	CURREN	IT_LIMIT[15:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 DC_CURRENT_LIMIT[15:0]: Maximum DC current allowed into the transmitter bridge (mA) The transmitter stops the power transfer and reports an error if the bridge current goes above this limit. A value of 0x0000 disables the limit checking.

Example: To limit the bridge current to 2A, a value of 2000 is written to the DC_CURRENT_LIMIT register.

AC Voltage Limit Register (AC_VOLTAGE_LIMIT_H:AC_VOLTAGE_LIMIT_L)

Address:	0x16													
Reset value:	From the	e configu	uration	data										
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					AC	VOLTAG	E_LIMIT	15:0]						
rw rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits 15:0	AC_VOL The trans point of A value of	smitter st the AC re	tops the sonant	e power t circuit g	transfer a oes abov	nd repo e this lir	orts an err	or if the	AC voltag					ing

Example: To limit the AC voltage amplitude to 200V, a value of 20000 is written to the AC_VOLTAGE_LIMIT register.

Coil Temperature Limit Register (TEMP_COIL_LIMIT_H:TEMP_COIL_LIMIT_L)

Address: Reset va		0x18 From t	he confi	guratior	n data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TE	MP_COI	_LIMIT[1	5:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
Bits 15:0		The tra	insmitte	r stops t	he powe		er and re		owed (d n error if			ature me	easured	by an op	otional

A value of 0x0000 disables the limit checking.

Example: To limit the coil temperature to 85 degrees C, a value of 85 is written to the TEMP_COIL_LIMIT register.

Die Temperature Limit Register (TEMP_DIE_LIMIT_H:TEMP_DIE_LIMIT_L)

Address	5:	0x1A													
Reset va	alue:	From t	he confi	guratior	n data										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TI	EMP_DIE	LIMIT[15	:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 TEMP_DIE_LIMIT[15:0]: Maximum die temperature allowed (0.01 degrees C) The transmitter stops the power transfer and reports an error if the TS80000 die temperature measured internally goes above this limit. The unit is 0.01 deg. C. A value of 0x0000 disables the limit checking.

Example: To limit the die temperature to 85 degrees C, a value of 8500 is written to the TEMP_DIE_LIMIT register.

Minimum Temperature for Fan Control Register (FAN_TEMP_MIN)

TS80000 Final Datasheet March 19, 2015	Rev 1.4		www.sem	ntech.com		Propr	16 o Semi ietary & Confider	tech
Bits 7:0	Reserved							
rw	rw	rw	rw	rw	rw	rw	rw	
			Re	s				
7	6	5	4	3	2	1	0	
Reset value:	From the configu	uration data						
Address:	0x1C							

Maximum Temperature for Fan Control Register (FAN_TEMP_MAX) Address: 0x1D From the configuration data Reset value: 7 6 5 4 3 2 1 0 Res rw rw rw rw rw rw rw rw Bits 7:0 Reserved Minimum Duty Cycle for Fan Control Register (FAN_DTC_MIN) Address: 0x1E Reset value: From the configuration data 6 7 5 4 3 2 1 0 Res rw rw rw rw rw rw rw rw Bits 7:0 Reserved Maximum Duty Cycle for Fan Control Register (FAN_DTC_MAX) Address: 0x1F From the configuration data **Reset value:**

7	6	5	4	3	2	1	0
			R	es			
rw							

Bits 7:0 Reserved

locot value.							
Reset value:	From th	e configuration data					
7	6	5	4	3	2	1	0
	Res	i	A4WP	PMA	WPCRES	WPCMP	WPC
			rw	rw	rw	rw	rw
	Bits 7:5	Reserved					
	Bit 4	A4WP: A4WP Resona	ant Technology				
		Read:					
			t supported by ha	rdware.			
		1: A4WP su	oported.				
		Write:					
		0: A4WP is r					
			allowed if support		vare.		
	Bit 3	PMA: Power Matters	Alliance Inductive	e Technology			
		Read:					
			supported by hard	dware.			
		1: PMA sup	ported.				
		Write:					
		0: PMA is no					
			owed if supported	•	are.		
	Bit 2	WPCRES: WPC 1.2 Re	sonant lechnolog	3y			
		Read:					
			not supported by	hardware.			
		1: WPC 1.2 s	supported.				
		Write:					
			s not allowed.				
	D'1 1		s allowed if suppo		dware.		
	Bit 1	WPCMP: WPC Mediu	im Power Inductiv	e lechnology			
		Read:					
			lium Power not su		dware.		
			lium Power suppo	orted.			
		Write:		- II			
			lium Power is not			_	
	D:+ 0		lium Power is allow	wed if supporte	d by the hardwar	e.	
	Bit 0	WPC: WPC Inductive	rechnology				
		Read:	supported by hard	duvara			
			,	Jware.			
		1: WPC supp Write:					
		0: WPC is no	at allowed				
			lowed if supported	d by the bardw	aro		

Maximum Power in WPC Mode Register (MAX_POWER_WPC)

TS80000 Final Datasheet March 19, 2015	Rev 1.4		www.sem	ntech.com		Pr	18 of 37 Semtech oprietary & Confidential
		Write: Maximum po	wer in WPC mod	e that is to be a	llowed.		
			wer in WPC mode	e supported by	the hardware.		
	Bits 7:0	MAX_POWER Read:	[7:0]: Maximum p	oower in WPC n	node (W)		
rw	rw	rw	rw	rw	rw	rw	rw
			MAX_POV	VER[7:0]			
7	6	5	4	3	2	1	0
Reset value:	From the config	guration data					
Address:	0x21						

Maximum Power in PMA Mode Register (MAX_POWER_PMA)

A	ddress:	0x22						
F	leset value:	From the config	guration data					
	7	6	5	4	3	2	1	0
				MAX_PO	WER[7:0]			
	rw	rw	rw	rw	rw	rw	rw	rw
		Bits 7:0 MAX_F	Read: Maximum pov Write:		PMA mode (W) e supported by t e that is to be all			

Maximum Power in A4WP Mode Register (MAX_POWER_A4WP)

ŀ	Address:	0x23													
F	Reset value:	From the config	rom the configuration data												
	7	6	5	4	3	2	1	0							
				MAX_PO	WER[7:0]										
	rw	rw	rw	rw	rw	rw	rw	rw							
		Bits 7:0 MAX_P	Read:	kimum power in a wer in A4WP mod											

Maximum power in A4WP mode that is to be allowed.

Active Coil Register (ACTIVE_COIL)

Address: Reset value:	0x40 0x00												
7	6	5	4	3	2	1	0						
	ACTIVE_COIL[7:0]												
r	r	r	r	r	r	r	r						

Bits 7:0 ACTIVE_COIL[7:0]: Active coil during power transfer

0x00: Coil 0 is active 0x01: Coil 1 is active 0x06: Coil 6 is active

Transmitter Power State Register (POWER_STATE_TX)

Address: Reset value:	0x41 0x00						
7	6	5	4	3	2	1	0
			ACTIVE_	COIL[7:0]			
r	r	r	r	r	r	r	r
	Bits 7:0 POW	0x01: Test mo 0x02: Hardwa 0x03: Selectio 0x04: Identifio 0x05: Power T	y (low-power mo ide ire Error (voltage on (pinging, sear cation (receiver f ransfer	ode, no pinging e, current, temp ching for a rece found, negotiati	erature, self-test	er)	

Wireless Pov	Wireless Power Standard Register (STANDARD)													
Address:	0x42													
Reset value:	0x00													
7	6	5	4	3	2	1	0							
	STANDARD[7:0]													
r	r	r	r	r	r	r	r							
	Bits 7:0 STAN	IDARD[7:0]: Wirele 0x00: Not det 0x01: WPC 1.0 0x02: WPC Me 0x03: WPC 1.2	ermined).3 or WPC 1.1.2 edium Power	ard used for pov	ver transfer									

Power Level Register (POWER_LEVEL)

Address: Reset value:	0x43 0x00						
7	6	5	4	3	2	1	0
			POWER_I	LEVEL[7:0]			
r	r	r	r	r	r	r	r

Bits 7:0 POWER_LEVEL[7:0]: Maximum power for the current operating mode (W) These bits contain the maximum power level that was negotiated with the receiver when the power transfer was initiated.

Foreign Object Detection Type Register (FOD_TYPE)

0x04: PMA 0x05: A4WP

Address:	0x44
Reset value:	0x00

7	7 6 5 4		4	3	2	1	0
	D	06		ANALOG	TEMP	FOD_RX	PMOD_RX
	N	es		r	r	r	r

Bits 7:4 Reserved

Bit 3 ANALOG: Analog methods

0: No analog methods are used for FOD.

1: Foreign objects are detected using analog methods based on voltages and currents.

Bit 2 TEMP: Surface temperature

0: The surface temperature is not used for FOD.

1: The surface temperature is used for FOD.

Bit 1 FOD_RX: Received Power packets from the RX

0: Received Power packets from the RX are not used for FOD.

1: Received Power packets from the RX are used for FOD (WPC 1.1.2, WPC Medium Power, WPC

1.2, PMA).

Bit 0 PMOD_RX: Parasitic Metal Object Detection

0: Rectified Power Packets from the RX are not used for FOD.

1: Rectified Power Packets from the RX are used for FOD (WPC 1.0.3).

Receiver Power State Register (POWER_STATE_RX) AAddress: 0x45 **Reset value:** 0x00 7 6 5 3 2 0 4 1 Res r r r r r r r r Bits 7:0 Reserved PWM Frequency Register (PWM_FREQUENCY_H:PWM_FREQUENCY_L) Address: 0x46 **Reset value:** 0x0000 15 14 13 12 11 10 9 8 PWM_FREQUENCY[15:0] r r r r r r r r r Bits 15:0 PWM_FREQUENCY[15:0]: Operating frequency (100 Hz) Transmitter operating frequency. The unit is 100 Hz. Example: If the transmitter is operating at 145640 kHz, a value of 1456 is read from the PWM_FREQUENCY

PWM Duty Cycle Register (PWM_DTC_H:PWM_DTC_L)

register.

-	ddress eset va		0x48 0x0000)												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PWM_DTC[15:0]																
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
			Bits 15:	:0	Trans	mitter c	perating	g duty cy	uty cycle /cle. The ridge mo	unit is 0	.01%. In					e is

Example: If the transmitter is operating at 50% duty cycle, a value of 5000 is read from the PWM_DTC register.

Bridge DC Voltage Register (DC_VOLTAGE_H:DC_VOLTAGE_L)

Address Reset va		0x4A 0x000	0												
15	14	13	12	11	10	9	8 DC VOL	7	6	5	4	3	2	1	0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		BBits 1	5:0	DC_\	/Oltage	[15:0]:	Bridge vo	ltage me	easurem	ient (mV)		1		

DC voltage measurement across the bridge.

Bridge DC Current Register (DC_CURRENT_H:DC_CURRENT_L) Address: 0x4C **Reset value:** 0x0000 15 10 14 13 12 11 9 8 1 0 3 2 DC CURRENT[15:0] r r Bits 15:0 DC_CURRENT[15:0]: Bridge current measurement (mA) DC current flowing into the bridge. Coil AC Voltage Register (AC_VOLTAGE_H:AC_VOLTAGE_L) ا ما ما ~ 45

Address Reset va		0x4E 0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AC VOLTAGE[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits 15:0 AC_VOLTAGE[15:0]: AC voltage amplitude measurement (10 mV) Amplitude of the AC voltage across the coil. The unit is 10 mV.															

Example: If the coil peak voltage is 80V, a value of 8000 is read from the AC_VOLTAGE register.

Coil AC Current Register (AC_CURRENT_H:AC_CURRENT_L)

	Address Reset va		0x50 0x0000)												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								AC_CURF	RENT[15:0)]						
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
Bits 15:0 AC_CURRENT[15:0]: AC current measurement (mA RMS) RMS value of the AC current through the coil.																

Example: If the coil current is 2A RMS, a value of 2000 is read from the AC_CURRENT register.

Temperature at the Coil Thermistor Register (TEMP_COIL_H:TEMP_COIL_L)

Address: Reset value:		0x52 0x0000)												
15 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TEMP_C	OIL[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 TEMP_COIL[15:0]: Coil temperature measurement (0.01 degrees C) Coil temperature measurement using an external thermistor. The unit is 0.01 deg. C.

Example: If the coil temperature to 85 degrees C, a value of 8500 is read from the TEMP_COIL register.

D	ie Ten	nperat	ure Reg	jister (1	EMP_I	DIE_H:1	remp_i	DIE_L)								
А	ddress	:	0x54													
R	eset va	lue:	0x0000)												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								TEMP	_DIE[15:0]							
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
			Bits 15	:0				•	ature mea ent using a					unit is ().01 deg	у. С.

Example: If the die temperature to 85 degrees C, a value of 8500 is read from the TEMP_DIE register.

DC Power at the Bridge Input Register (POWER_DC_IN_H:POWER_DC_IN_L)

Address Reset va		0x56 0x0000)												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						F	POWER_E	DC_IN[15:	0]						
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0

POWER_DC_IN[15:0]: DC power supplied at the bridge input (10 mW) DC power measurement at the input of the bridge. The unit is 10 mW.

Example: If the input power into the bridge is 6W, a value of 600 is read from the POWER_DC_IN register.

TX Power into the Magnetic Field Register (POWER_TX_H:POWER_TX_L)

Addre Reset		0x58 0x0000	D												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							POWER	_TX[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15	:0	POWI	ER_TX[1	5:0]: Pov	ver supp	lied into	the mag	gnetic fie	eld (10 n	nW)			

Estimate of the amount of power transferred into the magnetic field. The unit is 10 mW.

Received Power Reported by the RX Register (POWER_RX_H:POWER_RX_L)

Address Reset va		0x5A 0x000	0												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POWER_RX[15:0]															
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
		Bits 15	:0	Value	e of the	power re	eceived	d receive from the ckets. The	magne	tic field	as repor	ted by t	he RX us	sing Rec	eived

Receiver Battery Charge Level Register (BATT_CHARGE_LEVEL_RX)

Address:	0x5C						
Reset value:	0x00						
7	6	5	4	3	2	1	0
			CHARGE	LEVEL[7:0]			
г	r	r	r	r	r	r	r

Bits 7:0 CHARGE_LEVEL[7:0]: Battery charge level (%)

These bits contain the battery charge level as reported by the RX using the Charge Status packet.

LED State Register (LED_STATE)

Address:	0x5D						
Reset value:	0x00						
7	6	5	4	3	2	1	0
	R	es			LED_ST	[ATE[3:0]	
r	1	r	r	r	1	r	r
	Bits 7:4 Reserve Bits 3:0 LED_ST	ATE[3:0]: LED sta These bits con without having 0x00 0x01 0x02 0x03	tain the state of g to interpret the : Standby, waitir : Power Transfer : Power Transfer, : End of Charge	e contents of oth ng for RX to be p	laced 100% K still present	olementation of	a user interface

0x04: RX reported error, RX still present

0x05: TX error, RX still present

0x06: FOD error, RX still present

0x07-0xFF: Reserved

Error Code and Parameter Register (ERROR_H:ERROR_L)

Address:	0x5E								
Reset value:	0x0000								
15 14	13 12 11 10 9 8 7 ERROR_PARAM[7:0]	6 5 4 3 2 1 0 ERROR_CODE[7:0]							
r r									
7	6 5 4 3	2 1 0							
r	ERROR_CODE[7:0]	r r r							
3its 15:8	ERROR_PARAM[7:0]: Error parameter	ERROR_CODE = 0x08							
	These bits contain an optional error parameter	0x00: Unknown reason							
	associated to the error reported in the ERROR_	0x01: Charge complete (not an error)							
	CODE field.	0x02: Internal fault							
		0x03: Over temperature							
	ERROR_CODE = 0x00	0x04: Over Voltage							
	0x00-0xFF: Reserved	0x05: Over Current							
		0x06: Battery failure							
	ERROR_CODE = 0x01	0x07: Reserved							
	0x00-0xFF: Reserved	0x08: No response							
		0x09-0x0F: Reserved							
	ERROR_CODE = 0x02	0x10: Battery fully charged (not an error)							
	0x00-0xFF: Reserved	0x11: No load (not an error)							
		0x12: Host EOP request (not an error)							
	ERROR_CODE = 0x03	0x13: Incompatible power class							
	0x00-0xFF: Reserved	0x14-0x16: Reserved							
		0x17: Over Dec							
	ERROR_CODE = 0x04	0x18: Alternate supply connected							
	0x00-0xFF: Reserved	0x19-0x1A: Reserved							
		0x1B: Communication error							
	ERROR_CODE = 0x05	0x1C-0xFF: Reserved							
	0x00-0xFF: Reserved								
		Bits 7:0 ERROR_CODE[7:0]: Error code							
		These bits contain the last error code that wa							
	0x00-0xFF: Reserved	generated by the transmitter during power							
		transfer.							
	ERROR_CODE = 0x07 0x00: Generic error	0x00: No error has occurred 0x01: Insufficient software resources							
	0x00: Generic error 0x01: Supply voltage too low								
	0x01: Supply voltage too high	0x02: Incorrect RX packet timing							
	0x02: Supply voltage too high 0x03: DC bridge current limit reached	0x03: Incorrect RX packet sequence 0x04: Incorrect RX packet data							
	0x04: AC voltage limit reached	0x05: RX packet timeout during power transf							
	0x04. AC voltage infil reached 0x05: Coil temperature limit reached	0x06: FOD error							
	0x06: Die temperature limit reached	0x00: FOD end 0x07: Limit exceeded (temperature, voltage							
	0x00: Die temperature innit reached 0x07-0xFF: Reserved	current)							
		0x08: End Power Transfer packet received							
		0x09-0xFF: Reserved							

Interrupt Mask 0 Register (INTERRUPT_MASK0)

Address:	0x78							
Reset value:	0x00							
7	6	3	5	4	3	2	. 1	0
	Res		CTS_IF	CTS_API_IF	STATUS3	STATUS2	STATUS1	Res
	Bits 7:6	Reserv	ved					
	Bit 5	CTS_IF	-: Clear To Send					
						-	r doesn't cause ar	
	Bit 4				le CTS bit in the	STATUSU registe	r causes an interro	upt.
	BIL 4	CIS_A	PI_IF: Clear to S				nistor do con/t cou	
							gister doesn't cau	
	54.0	CT 4 TH			he CTS_API bit in	the STATUSO reg	gister causes an ir	iterrupt.
	Bit 3	STATU	S3_IF: STATUS1					
				n from 0 to 1 of th	ne STATUS3_IF bi	it in the STATUS0	register doesn't o	cause an
			interrupt.					
					ne STATUS3_IF bi	t in the STATUS0	register causes a	n interrupt.
	Bit 2	STATU	S2_IF: STATUS2					
			0: A transitior interrupt.	n from 0 to 1 of th	ne STATUS2_IF bi	t in the STATUS0) register doesn't o	cause an
			1: A transitior	n from 0 to 1 of th	ne STATUS2_IF bi	t in the STATUS0	register causes a	n interrupt.
	Bit 1	STATU	S1_IF: STATUS1	Event			-	
					ne STATUS1 IF bi	t in the STATUS0	register doesn't o	cause an
			interrupt.		—		5	
			•	from 0 to 1 of th	ne STATUS1 IF bi	t in the STATUSO	register causes a	n interrupt
	Bit 0	Reserv						
	DICO	neserv						

Addre	SS:	0x79												
leset	value:	0x00												
	7	6		5		4		3		2		1		0
		Res		RX EOC		RX CHG	R	CONFIG		RX ID		RX RMV	/	RX DET
its 7:0	6 Reserv	ved												
Bit 5	RX_EC	C: RX End of	Charge	Received										
		0: A value	of 1 of th	his bit in t	he STA	TUS1 regis	ter doe	sn't cause	the S	TATUS1	event	flag to be	set in t	he STATUS
		register.												
		1: A value	of 1 of tl	nis bit in t	he STA	TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	be set in t	he STA	TUS0 regist
3it 4	RX_CH	lG: RX Charge	e Level F	Received										
		0: A value o register.	of 1 of tl	nis bit in t	he STA	TUS1 regis	ter doe	sn't cause	the S	STATUS1	event	flag to be	set in t	he STATUS
						TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	be set in t	he STA	TUS0 regist
Bit 3	RX_CC	ONFIG: RX Cor	0											
			of 1 of th	his bit in t	he STA	TUS1 regis	ter doe	sn't cause	the S	TATUS1	event	flag to be	set in t	he STATUS
		register.												
					he STA	TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	oe set in t	he STA	TUS0 regist
3it 2	RX_ID	: RX Identifica										- ·		
		register.				-						-		he STATUS
		1: A value	of 1 of tl	nis bit in t	he STA	TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	be set in t	he STA	TUS0 regist
Bit 1	RX_RM	/IV: RX Remov												
		0: A value o register.	of 1 of th	nis bit in t	he STA	TUS1 regis	ter doe	sn't cause	the S	STATUS1	event	flag to be	set in t	he STATUS
		1: A value	of 1 of th	his bit in t	he STA	TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	be set in t	he STA	TUS0 regist
Bit O	RX_DE	T: RX Detecte	ed											
		0: A value o register.	of 1 of th	nis bit in t	he STA	TUS1 regis	ter doe	sn't cause	the S	STATUS1	event	flag to be	set in t	he STATUS
		1: A value	of 1 of tl	his bit in t	he STA	TUS1 regis	ter cau	ses the ST	ATUS	1 event f	lag to l	be set in t	he STA	TUS0 regist
nteri	rupt Ma	sk 2 Regist	er (INT		MAS	K2)								
Addre	ss:	0x7A												
_														

Address.	0777
Reset value:	0x00

7	6	5	4	3	2	1	0
	Dee						ERROR
	Res						rw

Bits 7:2 Reserved

Bit 1 LED: LED Status Changed

0: A value of 1 of this bit in the STATUS2 register doesn't cause the STATUS2 event flag to be set in the STATUS0 register. 1: A value of 1 of this bit in the STATUS2 register causes the STATUS2 event flag to be set in the STATUS0 register.

Bit 0 ERROR: Error Condition Detected

0: A value of 1 of this bit in the STATUS2 register doesn't cause the STATUS2 event flag to be set in the STATUS0 register.1: A value of 1 of this bit in the STATUS2 register causes the STATUS2 event flag to be set in the STATUS0 register.

Interrupt Mask 3 Register (INTERRUPT_MASK3)

Address: 0x7B Reset value: 0x00

7	6	5	4	3	2	1	0
Baa						TEST	DEBUG
		R	25			rw.	DW.

Bits 7:2 Reserved

Bit 0

Bit 1 TEST: Test Event

0: A value of 1 of this bit in the STATUS3 register doesn't cause the STATUS3 event flag to be set in the STATUS0 register.

1: A value of 1 of this bit in the STATUS3 register causes the STATUS3 event flag to be set in the STATUS0 register. DEBUG: Debug Event

0: A value of 1 of this bit in the STATUS3 register doesn't cause the STATUS3 event flag to be set in the STATUS0 register.

1: A value of 1 of this bit in the STATUS3 register causes the STATUS3 event flag to be set in the STATUS0 register.

API Functions

API Number	API Name	Description
0x80	BOOTLOADER_UNLOCK_FLASH	Allow changes to the FLASH memory
0x81	BOOTLOADER_WRITE_BLOCK	Write a page of the firmware into the FLASH memory
0x82	BOOTLOADER_CRC_CHECK	Check the CRC of the transmitter firmware
0x83	RESERVED	R
0x84	BOOTLOADER_WRITE_CONFIGURATION	Write a page of the configuration block into the FLASH memory
0x85	BOOTLOADER_READ_CONFIGURATION	Read a page of the configuration block from the FLASH memory
0x86	BOOTLOADER_WRITE_CALIBRATION	Write a page of the calibration block into the FLASH memory
0x87	BOOTLOADER_READ_CALIBRATION	Read a page of the calibration block from the FLASH memory
0x88	BOOTLOADER_TRIM	Execute the trim procedure and store the result in FLASH memory
0x89	BOOTLOADER_READ_TRIM	Read the trim block from the FLASH memory
0x8A-0x8F	RESERVED	
0x90	WRITE_CONFIGURATION	Write to the TX channel configuration
0x91	READ_CONFIGURATION	Read from the TX channel configuration
0x92	READ_RX_CONFIG	Read the RX power contract parameters
0x93	READ_RX_ID	Read the RX ID
0x94	WRITE_TX_ID	Write the TX ID
0x95	READ_TX_ID	Read the TX ID
0x96	READ_DEBUG	Read the next oldest debug block from the debug queue
0x97-0xFE	RESERVED	
		Value returned in the API field when a Read API Function
0xFF	API_ERROR	Return Buffer command is issued and the API function called
		previously has generated an error.

Bootloader Unlock Flash (BOOTLOADER_UNLOCK_FLASH)

API number:	0x80
Input buffer size:	16
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description		
Input buffer	Nonce	16	Firmware authentication string.		
Return data buffer	ERROR_CODE	1			
Note: The firmware authentication string is obtained from the header of the Triune Systems firmware image file.					

Bootloader Write Block (BOOTLOADER_WRITE_BLOCK)

API number:	0x81
Input buffer size:	66
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description	
In put huffer	Block Number	2	Block index. The first block has an index of 0.	
Input buffer	Block Data	64		
Return data buffer	ERROR_CODE	1		

Bootloader CRC Check (BOOTLOADER_CRC_CHECK)

API number:	0x82
Input buffer size:	0
Output buffer size:	3

Buffer	Parameter	Length (bytes)	Description
	ERROR_CODE	1	CRC check error code for the firmware block.
Return data buffer	ERROR_CODE	1	CRC check error code for the configuration block.
	ERROR_CODE	1	CRC check error code for the calibration block.

Read RX ID (READ_RX_ID)

API number:	0x93
Input buffer size:	0
Output buffer size:	6

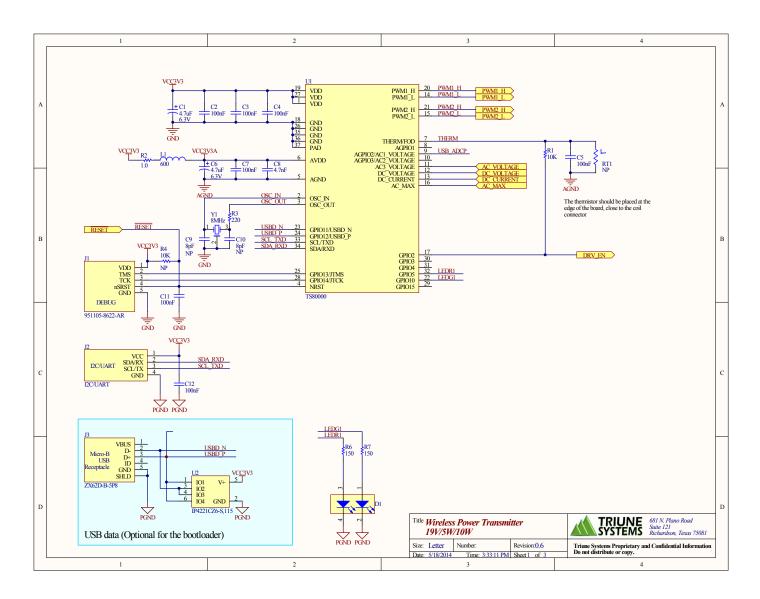
Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Return data buffer	RXID	6	RXID data.

Write TX ID (WRITE_TX_ID)

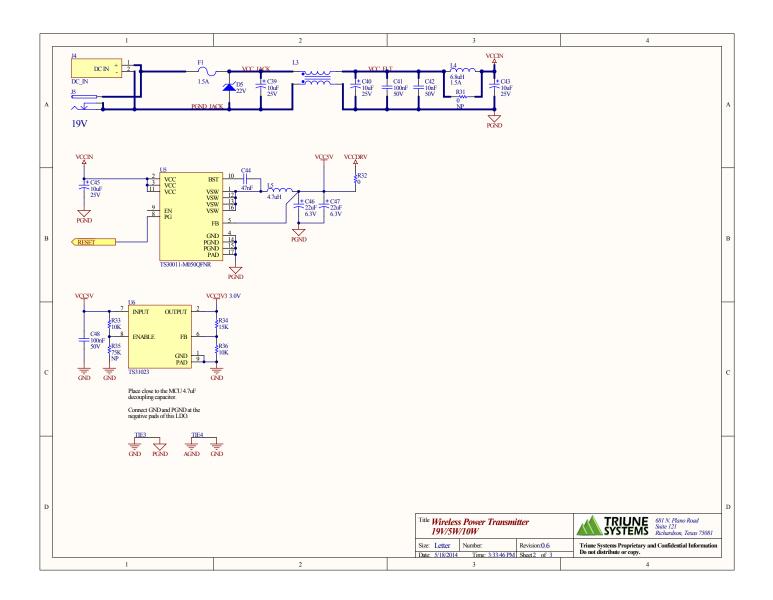
API number:	0x94
Input buffer size:	6
Output buffer size:	1

Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Input buffer	TXID	6	TXID data.
Return data buffer	ERROR_CODE	1	

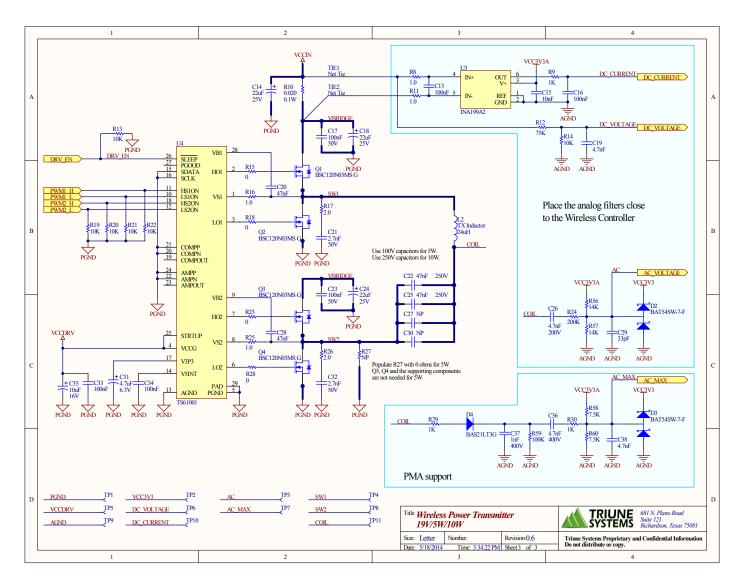
Read TX ID (READ_TX_ID)


API number:	0x95
Input buffer size:	0
Output buffer size:	6

Buffer	Parameter	Length (bytes)	Description
	Block Data	64	
Return data buffer	TXID	6	TXID data.


API Error Codes

Error Code	Error Code Name	Description
0x00	ERROR_GENERIC	Generic error.
0x01	ERROR_OK	Operation succeeded. This is not indicating an error.
0x02	ERROR_INVALID_CRC	CRC error.
0x03	ERROR_FLASH_UNLOCK_FAILED	FLASH unlocking has failed.
0x04	ERROR_API_NOT_IMPLEMENTED	The API number is not implemented.
0x05	ERROR_API_DATA_OVERFLOW	The API input buffer has been filled with more data than its length.
0x06	ERROR_API_INVALID_PARAMETERS	At least one of the API parameters is invalid.
0x07	ERROR_FLASH_ERASE_FAILED	FLASH erase has failed.
0x08	ERROR_FLASH_PROGRAM_FAILED	FLASH programming has failed.
0x09	ERROR_API_DATA_NOT_READY	The API data is not available yet.
0x0A-0xFF	RESERVED. Will be defined later.	


Application Schematics

Application Schematics

Application Schematics

Package Dimensions

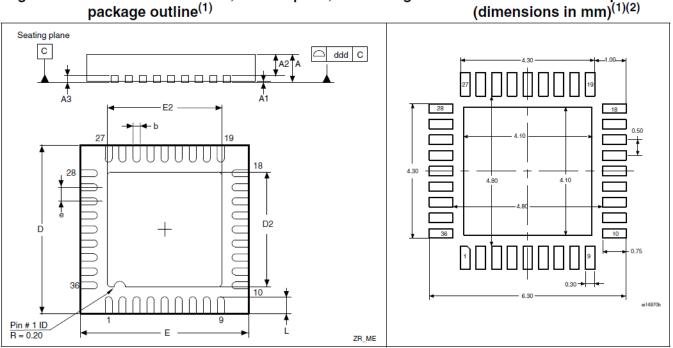


Figure 42. Recommended footprint

Figure 41. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline⁽¹⁾

1. Drawing is not to scale.

All leads/pads should also be soldered to the PCB to improve the lead solder joint life. 2.

\mathbf{A}	Table 51.	VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data
--------------	-----------	--

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1		0.020	0.050		0.0008	0.0020
A2		0.650	1.000		0.0256	0.0394
A3		0.250			0.0098	
b	0.180	0.230	0.300	0.0071	0.0091	0.0118
D	5.875	6.000	6.125	0.2313	0.2362	0.2411
D2	1.750	3.700	4.250	0.0689	0.1457	0.1673
E	5.875	6.000	6.125	0.2313	0.2362	0.2411
E2	1.750	3.700	4.250	0.0689	0.1457	0.1673
е	0.450	0.500	0.550	0.0177	0.0 1 97	0.0217
L	0.350	0.550	0.750	0.0138	0.0217	0.0295
ddd		0.080			0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Ordering Information

Part Number	Qty per Reel
TS80000-QFNR	Bootloader programmed device

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. Triune Systems, L.L.C. is now a wholly-owned subsidiary of Semtech Corporation. The Triune Systems[®] name and logo, MPPT-lite[™], and nanoSmart[®] are trademarks of Triune Systems, LLC. in the U.S.A. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2015

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com