# **KL28Z Reference Manual**

MKL28Z512VDC7, MKL28Z512VLL7

Document Number: MKL28ZRM

Rev. 4, 06/2016



### **Contents**

| Section number |         | umber Title                          | Page |
|----------------|---------|--------------------------------------|------|
|                |         | Chapter 1 About This Document        |      |
| 1.1            | Overvi  | iew                                  | 43   |
|                | 1.1.1   | Purpose                              | 43   |
|                | 1.1.2   | Audience.                            | 43   |
| 1.2            | Conve   | entions                              | 43   |
|                | 1.2.1   | Numbering systems.                   | 43   |
|                | 1.2.2   | Typographic notation                 | 44   |
|                | 1.2.3   | Special terms                        | 44   |
|                |         | Chapter 2<br>Introduction            |      |
| 2.1            | Overvi  | iew                                  | 45   |
| 2.2            | KL287   | Z sub-family introduction            | 45   |
| 2.3            | Feature | e Summary                            | 46   |
| 2.4            | Block   | Diagram                              | 49   |
|                |         | Chapter 3 Chip Configuration         |      |
| 3.1            | Introdu | uction                               | 51   |
| 3.2            | Clock   | gating                               | 51   |
| 3.3            | Modul   | le to Module Interconnects           | 52   |
|                | 3.3.1   | Interconnection overview             | 52   |
|                | 3.3.2   | Analog reference options             | 52   |
| 3.4            | Core M  | Modules                              | 53   |
|                | 3.4.1   | Introduction                         | 53   |
|                | 3.4.2   | ARM Cortex M0+ core                  | 53   |
|                | 3.4.3   | Debug facilities.                    | 54   |
|                | 3.4.4   | Buses, interconnects, and interfaces | 54   |
|                | 3.4.5   | System tick timer                    | 54   |
|                |         |                                      |      |

| Sec | tion n                    | umber Title                                      | Page |
|-----|---------------------------|--------------------------------------------------|------|
|     | 3.4.6                     | Caches                                           | 54   |
|     | 3.4.7                     | Interrupt connections                            | 55   |
|     | 3.4.8                     | Asynchronous Wake-up Interrupt Controller (AWIC) | 59   |
| 3.5 | System                    | n Modules                                        | 60   |
|     | 3.5.1                     | Crossbar Switch.                                 | 60   |
|     | 3.5.2                     | Low-Leakage Wake-up Unit (LLWU)                  | 61   |
|     | 3.5.3                     | DMAMUXs                                          | 63   |
|     | 3.5.4                     | Watchdog (WDOG)                                  | 65   |
|     | 3.5.5                     | System Register File Configuration.              | 65   |
|     | 3.5.6                     | Peripheral Clock Control (PCC) Configuration     | 66   |
|     | 3.5.7                     | System Register File Configuration.              | 66   |
| 3.6 | Securit                   | ty                                               | 67   |
|     | 3.6.1                     | CAU Configuration.                               | 67   |
| 3.7 | Analog                    | <u></u>                                          | 68   |
|     | 3.7.1                     | 16-bit SAR ADC configuration                     | 68   |
|     | 3.7.2                     | CMP configuration                                | 71   |
|     | 3.7.3                     | VREF                                             |      |
|     | 3.7.4                     | 12-bit DAC configuration.                        | 75   |
| 3.8 | Timers                    |                                                  | 76   |
|     | 3.8.1                     | Timer/PWM module configuration                   | 76   |
|     | 3.8.2                     | LPIT                                             | 78   |
|     | 3.8.3                     | Low Power Timer (LPTMR)                          | 79   |
|     | 3.8.4                     | RTC configuration.                               | 80   |
| 3.9 | Communication interfaces. |                                                  | 81   |
|     | 3.9.1                     | Universal Serial Bus (USB) FS Subsystem          | 81   |
|     | 3.9.2                     | LPSPI configuration                              | 87   |
|     | 3.9.3                     | LPI2C                                            | 88   |
|     | 3.9.4                     | LPUART configuration                             | 89   |
|     | 3.9.5                     | EMVSIM Configuration                             | 90   |
|     |                           |                                                  |      |

| Sec  | tion nu                                  | umber Title                        | Page |
|------|------------------------------------------|------------------------------------|------|
|      | 3.9.6                                    | FlexIO                             | 90   |
|      | 3.9.7                                    | I2S configuration                  | 91   |
| 3.10 | Human                                    | n-machine interfaces (HMI)         | 93   |
|      | 3.10.1                                   | GPIO configuration                 | 93   |
|      | 3.10.2                                   | TSI configuration.                 | 94   |
| 3.11 | Signal                                   | multiplexing integration           | 95   |
|      | 3.11.1                                   | Signal multiplexing configuration. | 95   |
|      |                                          | Chapter 4<br>Memory Map            |      |
| 4.1  | Memor                                    | y Map                              | 99   |
| 4.2  | SRAM                                     | sizes                              | 99   |
| 4.3  | System                                   | n Memory Map                       | 99   |
|      | 4.3.1                                    | Memory Map                         | 99   |
| 4.4  | Flash N                                  | Memory Maps                        | 101  |
|      | 4.4.1                                    | Flash Memory Map                   | 101  |
| 4.5  | SRAM                                     | Memory Map                         |      |
| 4.6  | Bit Ma                                   | nipulation Engine                  |      |
| 4.7  | Peripheral bridge (AIPS-Lite) memory map |                                    | 103  |
|      | 4.7.1                                    | AIPS0 Peripheral Slot Assignments  |      |
|      | 4.7.2                                    | AIPS1 Peripheral Slot Assignments  |      |
|      |                                          | Chapter 5 Clock Distribution       |      |
| 5.1  | Introdu                                  | ection                             | 111  |
| 5.2  | Clock S                                  | Sources                            | 112  |
| 5.3  | SCG O                                    | Output Clocks                      |      |
|      | 5.3.1                                    | DIVCORE_CLK                        | 113  |
|      | 5.3.2                                    | DIVSLOW_CLK                        | 113  |
|      | 5.3.3                                    | Peripheral functional clocks       | 113  |
| 5.4  | Peripheral Clock Summary                 |                                    |      |

| Sec  | tion n  | umber Title                   | Page |
|------|---------|-------------------------------|------|
| 5.5  | DIV3    | Peripheral Clocking           | 118  |
| 5.6  | DIV1    | Peripheral Clocking           | 119  |
| 5.7  | Progra  | mming model                   | 120  |
| 5.8  | Other ( | Clock Sources                 | 121  |
|      | 5.8.1   | OSC32KCLK                     | 121  |
|      | 5.8.2   | LPO Low Power Oscillator      | 121  |
| 5.9  | Clock   | definitions                   | 121  |
| 5.10 | Clocki  | ng details                    |      |
| 5.11 | Interna | d Clocking Requirements       |      |
| 5.12 | Clock   | divider values after reset    | 124  |
| 5.13 | Clock   | gating                        | 125  |
| 5.14 | Flash I | Memory Clock                  | 125  |
|      |         | Chapter 6<br>Reset and Boot   |      |
| 6.1  | Introdu | action                        | 127  |
| 6.2  | Reset   |                               | 128  |
|      | 6.2.1   | Power-on reset (POR)          | 128  |
|      | 6.2.2   | System reset sources          |      |
|      | 6.2.3   | MCU resets                    |      |
|      | 6.2.4   | RESET_b pin                   |      |
|      | 6.2.5   | Debug resets                  | 133  |
| 6.3  | Boot    |                               | 133  |
|      | 6.3.1   | Boot sources                  |      |
|      | 6.3.2   | FOPT boot options             |      |
|      | 6.3.3   | Boot sequence                 |      |
|      |         | Chapter 7<br>Power Management |      |
| 7.1  | Introdu | action                        | 139  |
| 7.2  | Clocki  | ng modes                      | 139  |

| Sec  | tion nu | umber Title                                            | Page |
|------|---------|--------------------------------------------------------|------|
|      | 7.2.1   | Partial Stop.                                          | 139  |
|      | 7.2.2   | DMA Wakeup                                             | 140  |
|      | 7.2.3   | Compute Operation                                      | 141  |
|      | 7.2.4   | Peripheral Doze.                                       | 142  |
|      | 7.2.5   | Clock gating.                                          | 143  |
| 7.3  | Power   | Mode Architecture                                      | 143  |
| 7.4  | Power   | modes                                                  | 143  |
| 7.5  | Enterin | ng and exiting power modes                             | 146  |
| 7.6  | Module  | e operation in low-power modes                         | 146  |
|      |         | Chapter 8 Security                                     |      |
| 8.1  | Introdu | oction                                                 | 151  |
|      | 8.1.1   | Debug security                                         | 151  |
|      | 8.1.2   | Flash security                                         | 151  |
|      |         | Chapter 9<br>Debug                                     |      |
| 9.1  | Introdu | iction                                                 | 153  |
| 9.2  | Debug   | port pin descriptions                                  | 153  |
| 9.3  | Debug   | and Trace Block diagram.                               | 154  |
| 9.4  | SWD s   | status and control registers                           | 155  |
|      | 9.4.1   | MDM-AP Control Register                                | 156  |
|      | 9.4.2   | MDM-AP Status Register                                 | 157  |
| 9.5  | Debug   | resets                                                 | 159  |
| 9.6  | Micro ' | Trace Buffer (MTB)                                     | 160  |
| 9.7  | Debug   | in low-power modes                                     | 160  |
| 9.8  | Debug   | and security                                           | 161  |
|      |         | Chapter 10 Signal Multiplexing and Signal Descriptions |      |
| 10.1 | Introdu | action                                                 | 163  |
| 10.2 | Pinout. |                                                        | 163  |

| Sec  | tion nu | ımber Title                                    | Page |
|------|---------|------------------------------------------------|------|
|      | 10.2.1  | Package types                                  | 163  |
|      | 10.2.2  | KL28Z Signal Multiplexing and Pin Assignments  | 163  |
|      | 10.2.3  | KL28Z Pinouts.                                 | 168  |
| 10.3 | Module  | Signal Description Tables.                     | 170  |
|      | 10.3.1  | Core modules                                   |      |
|      | 10.3.2  | System modules                                 | 171  |
|      | 10.3.3  | Clock modules                                  | 171  |
|      | 10.3.4  | Memories and memory interfaces.                | 171  |
|      | 10.3.5  | Analog                                         | 172  |
|      | 10.3.6  | Timer Modules                                  | 172  |
|      | 10.3.7  | Communication interfaces.                      |      |
|      | 10.3.8  | Human-machine interfaces (HMI)                 | 177  |
|      |         | Chapter 11 Analog-to-Digital Converter (ADC)   | 170  |
| 11.1 |         | ction                                          |      |
|      | 11.1.1  | Features.                                      |      |
| 11.2 | 11.1.2  | Block diagramgnal descriptions                 |      |
| 11.2 | 11.2.1  | Analog Power (VDDA)                            |      |
|      |         | Analog Ground (VSSA)                           |      |
|      | 11.2.3  | Voltage Reference Select                       |      |
|      | 11.2.4  | Analog Channel Inputs (ADx)                    | 183  |
|      | 11.2.5  | Differential Analog Channel Inputs (DADx)      | 183  |
| 11.3 | Memor   | y map and register definitions                 | 183  |
|      | 11.3.1  | ADC Status and Control Registers 1 (ADCx_SC1n) | 184  |
|      | 11.3.2  | ADC Configuration Register 1 (ADCx_CFG1)       | 188  |
|      | 11.3.3  | ADC Configuration Register 2 (ADCx_CFG2)       | 189  |
|      | 11.3.4  | ADC Data Result Register (ADCx_Rn)             | 190  |
|      | 11.3.5  | Compare Value Registers (ADCx_CVn)             | 192  |
|      |         |                                                |      |

| Sec  | tion nu  | mber Title                                                    | Page |
|------|----------|---------------------------------------------------------------|------|
|      | 11.3.6   | Status and Control Register 2 (ADCx_SC2)                      | 193  |
|      | 11.3.7   | Status and Control Register 3 (ADCx_SC3)                      | 195  |
|      | 11.3.8   | ADC Offset Correction Register (ADCx_OFS)                     | 196  |
|      | 11.3.9   | ADC Plus-Side Gain Register (ADCx_PG)                         | 197  |
|      | 11.3.10  | ADC Minus-Side Gain Register (ADCx_MG)                        | 197  |
|      | 11.3.11  | ADC Plus-Side General Calibration Value Register (ADCx_CLPD)  | 198  |
|      | 11.3.12  | ADC Plus-Side General Calibration Value Register (ADCx_CLPS)  | 199  |
|      | 11.3.13  | ADC Plus-Side General Calibration Value Register (ADCx_CLP4)  | 199  |
|      | 11.3.14  | ADC Plus-Side General Calibration Value Register (ADCx_CLP3)  | 200  |
|      | 11.3.15  | ADC Plus-Side General Calibration Value Register (ADCx_CLP2)  | 200  |
|      | 11.3.16  | ADC Plus-Side General Calibration Value Register (ADCx_CLP1)  | 201  |
|      | 11.3.17  | ADC Plus-Side General Calibration Value Register (ADCx_CLP0)  | 201  |
|      | 11.3.18  | ADC Minus-Side General Calibration Value Register (ADCx_CLMD) | 202  |
|      | 11.3.19  | ADC Minus-Side General Calibration Value Register (ADCx_CLMS) | 202  |
|      | 11.3.20  | ADC Minus-Side General Calibration Value Register (ADCx_CLM4) | 203  |
|      | 11.3.21  | ADC Minus-Side General Calibration Value Register (ADCx_CLM3) | 203  |
|      | 11.3.22  | ADC Minus-Side General Calibration Value Register (ADCx_CLM2) | 204  |
|      | 11.3.23  | ADC Minus-Side General Calibration Value Register (ADCx_CLM1) | 204  |
|      | 11.3.24  | ADC Minus-Side General Calibration Value Register (ADCx_CLM0) | 205  |
| 11.4 | Function | nal description                                               | 205  |
|      | 11.4.1   | Clock select and divide control                               | 206  |
|      | 11.4.2   | Voltage reference selection                                   | 207  |
|      | 11.4.3   | Hardware trigger and channel selects                          | 207  |
|      | 11.4.4   | Conversion control                                            | 208  |
|      | 11.4.5   | Automatic compare function                                    | 216  |
|      | 11.4.6   | Calibration function.                                         | 217  |
|      | 11.4.7   | User-defined offset function.                                 | 219  |
|      | 11.4.8   | Temperature sensor                                            | 220  |
|      | 11.4.9   | MCU wait mode operation                                       | 221  |
|      |          |                                                               |      |

| Sec  | tion nu                 | umber Title                                  | Page |
|------|-------------------------|----------------------------------------------|------|
|      | 11.4.10                 | MCU Normal Stop mode operation               | 221  |
| 11.5 | Initializ               | zation information                           | 222  |
|      | 11.5.1                  | ADC module initialization example            |      |
| 11.6 | Applica                 | ation information                            |      |
|      | 11.6.1                  | External pins and routing                    |      |
|      | 11.6.2                  | Sources of error                             | 227  |
|      |                         | Chapter 12<br>Crossbar Switch Lite (AXBS-Lit | e)   |
| 12.1 | Introdu                 | ection                                       | 231  |
|      | 12.1.1                  | Features                                     | 231  |
| 12.2 | Memor                   | ry Map / Register Definition                 | 232  |
| 12.3 | Functio                 | onal Description                             | 232  |
|      | 12.3.1                  | General operation.                           | 232  |
|      |                         | Chapter 13<br>Bit Manipulation Engine2 (BME  | 2)   |
| 13.1 | Introdu                 | ection                                       | 233  |
|      | 13.1.1                  | Features                                     | 234  |
|      | 13.1.2                  | Modes of operation                           |      |
| 13.2 | Memor                   | ry map and register definition               | 234  |
| 13.3 | Functional description. |                                              |      |
|      | 13.3.1                  | BME decorated stores                         |      |
|      | 13.3.2                  | BME decorated loads                          | 242  |
| 13.4 | Applica                 | ation information                            | 248  |
|      |                         | Chapter 14<br>Kinetis ROM Bootloader         |      |
| 14.1 | Chip-S <sub>1</sub>     | pecific Information                          | 251  |
|      | 14.1.1                  | Kinetis Bootloader Peripheral Pinmux         |      |
|      | 14.1.2                  | Bootloader Memory Access                     | 252  |
| 14.2 | Introdu                 | oction                                       | 252  |
| 14.3 | Functio                 | onal Description                             | 254  |

| Sec  | tion nu | imber Title                                      | Page |
|------|---------|--------------------------------------------------|------|
|      | 14.3.1  | Memory Maps                                      | 254  |
|      | 14.3.2  | The Kinetis Bootloader Configuration Area (BCA)  | 255  |
|      | 14.3.3  | Start-up Process                                 | 257  |
|      | 14.3.4  | Clock Configuration.                             | 259  |
|      | 14.3.5  | Bootloader Entry Point / API Tree                | 260  |
|      | 14.3.6  | Bootloader Protocol                              | 261  |
|      | 14.3.7  | Bootloader Packet Types                          | 266  |
|      | 14.3.8  | Bootloader Command API                           | 274  |
|      | 14.3.9  | Bootloader Exit state                            | 297  |
| 14.4 | Periphe | rals Supported                                   | 297  |
|      | 14.4.1  | LPI2C Peripheral                                 | 297  |
|      | 14.4.2  | LPSPI Peripheral                                 | 299  |
|      | 14.4.3  | LPUART Peripheral.                               | 302  |
|      | 14.4.4  | USB peripheral.                                  | 304  |
| 14.5 | Get/Set | Property Command Properties                      | 308  |
|      | 14.5.1  | Property Definitions                             | 310  |
| 14.6 | SB File | Decryption Support                               | 311  |
|      | 14.6.1  | Decryption using MMCAU                           |      |
| 14.7 | CRC-32  | 2 Check on Application Data                      | 313  |
| 14.8 | Kinetis | Bootloader Status Error Codes                    | 314  |
|      |         | Chapter 15 Cryptographic Acceleration Unit (CAU) |      |
| 15.1 | Introdu | ction                                            | 317  |
| 15.2 | CAU B   | lock Diagram                                     | 317  |
| 15.3 | Overvie | ew                                               | 319  |
| 15.4 | Feature | s                                                | 320  |
| 15.5 | Memor   | y map/Register definition                        | 320  |
|      | 15.5.1  | Status Register (CAUx_CASR)                      |      |
|      | 15.5.2  | Accumulator (CAUx_CAA)                           |      |
|      |         |                                                  |      |

| Sec  | tion nu | umber Title                                | Page |
|------|---------|--------------------------------------------|------|
|      | 15.5.3  | General Purpose Register (CAUx_CAn)        |      |
| 15.6 | Functio | onal description                           | 324  |
|      | 15.6.1  | CAU programming model                      |      |
|      | 15.6.2  | CAU integrity checks.                      | 326  |
|      | 15.6.3  | CAU commands                               | 328  |
| 15.7 | Applica | ation/initialization information           |      |
|      | 15.7.1  | Code example                               |      |
|      | 15.7.2  | Assembler equate values                    | 336  |
|      |         | Chapter 16<br>Comparator (CMP)             |      |
| 16.1 | Introdu | ction                                      | 339  |
|      | 16.1.1  | CMP features                               |      |
|      | 16.1.2  | 6-bit DAC key features.                    |      |
|      | 16.1.3  | ANMUX key features                         | 340  |
|      | 16.1.4  | CMP, DAC and ANMUX diagram                 | 341  |
|      | 16.1.5  | CMP block diagram                          |      |
| 16.2 | Memor   | y map/register definitions                 | 344  |
|      | 16.2.1  | CMP Control Register 0 (CMPx_CR0)          |      |
|      | 16.2.2  | CMP Control Register 1 (CMPx_CR1)          |      |
|      | 16.2.3  | CMP Filter Period Register (CMPx_FPR)      | 347  |
|      | 16.2.4  | CMP Status and Control Register (CMPx_SCR) | 347  |
|      | 16.2.5  | DAC Control Register (CMPx_DACCR)          | 348  |
|      | 16.2.6  | MUX Control Register (CMPx_MUXCR)          |      |
| 16.3 | Functio | onal description                           |      |
|      | 16.3.1  | CMP functional modes.                      | 350  |
|      | 16.3.2  | Power modes                                | 360  |
|      | 16.3.3  | Startup and operation                      | 361  |
|      | 16.3.4  | Low-pass filter                            |      |
| 16.4 | CMP in  | nterrupts                                  | 364  |

| Sect  | ion nu   | imber Title                                            | Page |
|-------|----------|--------------------------------------------------------|------|
| 16.5  | DMA s    | upport                                                 | 364  |
| 16.6  | CMP A    | synchronous DMA support                                | 365  |
| 16.7  | Digital- | to-analog converter                                    | 366  |
| 16.8  | DAC fu   | nctional description.                                  | 366  |
|       | 16.8.1   | Voltage reference source select                        | 366  |
| 16.9  | DAC re   | sets                                                   | 367  |
| 16.10 | DAC cl   | ocks                                                   | 367  |
| 16.11 | DAC in   | terrupts                                               | 367  |
| 16.12 | CMP T    | rigger Mode                                            | 367  |
|       |          | Chapter 17<br>Cyclic Redundancy Check (CRC)            |      |
| 17.1  | Introdu  | ction                                                  | 369  |
|       | 17.1.1   | Features                                               | 369  |
|       | 17.1.2   | Block diagram                                          | 369  |
|       | 17.1.3   | Modes of operation                                     | 370  |
| 17.2  | Memor    | y map and register descriptions                        | 370  |
|       | 17.2.1   | CRC Data register (CRC_DATA)                           | 371  |
|       | 17.2.2   | CRC Polynomial register (CRC_GPOLY)                    | 372  |
|       | 17.2.3   | CRC Control register (CRC_CTRL)                        | 372  |
| 17.3  | Functio  | nal description                                        | 373  |
|       | 17.3.1   | CRC initialization/reinitialization.                   | 373  |
|       | 17.3.2   | CRC calculations.                                      | 374  |
|       | 17.3.3   | Transpose feature                                      | 375  |
|       | 17.3.4   | CRC result complement                                  | 377  |
|       |          | Chapter 18<br>12-bit Digital-to-Analog Converter (DAC) |      |
| 18.1  | Introdu  | ction                                                  | 379  |
| 18.2  | Feature  | S                                                      | 379  |
| 18.3  | Block d  | iagram                                                 | 379  |

| Sec  | Section number Title           |                                                      | Page |
|------|--------------------------------|------------------------------------------------------|------|
| 18.4 | Memor                          | 380                                                  |      |
|      | 18.4.1                         | DAC Data Low Register (DACx_DATnL)                   |      |
|      | 18.4.2                         | DAC Data High Register (DACx_DATnH)                  |      |
|      | 18.4.3                         | DAC Status Register (DACx_SR)                        |      |
|      | 18.4.4                         | DAC Control Register (DACx_C0)                       | 383  |
|      | 18.4.5                         | DAC Control Register 1 (DACx_C1)                     | 385  |
|      | 18.4.6                         | DAC Control Register 2 (DACx_C2)                     | 386  |
| 18.5 | Functio                        | onal description                                     | 386  |
|      | 18.5.1                         | DAC data buffer operation                            | 386  |
|      | 18.5.2                         | DMA operation.                                       | 387  |
|      | 18.5.3                         | Resets                                               | 387  |
|      | 18.5.4                         | Low-Power mode operation                             | 388  |
|      |                                | Chapter 19 Direct Memory Access Multiplexer (DMAMUX) |      |
| 19.1 | Introdu                        | 389                                                  |      |
|      | 19.1.1                         | Overview                                             | 389  |
|      | 19.1.2                         | Features                                             | 390  |
|      | 19.1.3                         | Modes of operation                                   | 390  |
| 19.2 | Externa                        | al signal description                                | 391  |
| 19.3 | Memory map/register definition |                                                      | 391  |
|      | 19.3.1                         | Channel Configuration register (DMAMUXx_CHCFGn)      |      |
| 19.4 | Functio                        | onal description                                     | 392  |
|      | 19.4.1                         | DMA channels with periodic triggering capability     | 393  |
|      | 19.4.2                         | DMA channels with no triggering capability           | 395  |
|      | 19.4.3                         | Always-enabled DMA sources                           |      |
| 19.5 | Initializ                      | ration/application information                       | 397  |
|      | 19.5.1                         | Reset                                                | 397  |
|      | 19.5.2                         | Enabling and configuring sources                     | 397  |
|      |                                | Chapter 20                                           |      |

| Section number Title |          |                                                          |     |  |
|----------------------|----------|----------------------------------------------------------|-----|--|
|                      |          | Enhanced Direct Memory Access (eDMA)                     |     |  |
| 20.1                 | Introduc | tion                                                     | 401 |  |
|                      | 20.1.1   | eDMA system block diagram                                | 401 |  |
|                      | 20.1.2   | Block parts.                                             | 402 |  |
|                      | 20.1.3   | Features                                                 | 403 |  |
| 20.2                 | Modes o  | of operation                                             | 404 |  |
| 20.3                 | Memory   | map/register definition.                                 | 405 |  |
|                      | 20.3.1   | TCD memory                                               | 405 |  |
|                      | 20.3.2   | TCD initialization.                                      | 405 |  |
|                      | 20.3.3   | TCD structure                                            | 405 |  |
|                      | 20.3.4   | Reserved memory and bit fields                           | 406 |  |
|                      | 20.3.1   | Control Register (DMAx_CR)                               | 412 |  |
|                      | 20.3.2   | Error Status Register (DMAx_ES)                          | 415 |  |
|                      | 20.3.3   | Enable Request Register (DMAx_ERQ)                       | 417 |  |
|                      | 20.3.4   | Enable Error Interrupt Register (DMAx_EEI)               | 419 |  |
|                      | 20.3.5   | Clear Enable Error Interrupt Register (DMAx_CEEI)        | 420 |  |
|                      | 20.3.6   | Set Enable Error Interrupt Register (DMAx_SEEI)          |     |  |
|                      | 20.3.7   | Clear Enable Request Register (DMAx_CERQ)                | 422 |  |
|                      | 20.3.8   | Set Enable Request Register (DMAx_SERQ)                  | 423 |  |
|                      | 20.3.9   | Clear DONE Status Bit Register (DMAx_CDNE)               | 424 |  |
|                      | 20.3.10  | Set START Bit Register (DMAx_SSRT)                       |     |  |
|                      | 20.3.11  | Clear Error Register (DMAx_CERR)                         | 426 |  |
|                      | 20.3.12  | Clear Interrupt Request Register (DMAx_CINT)             | 427 |  |
|                      | 20.3.13  | Interrupt Request Register (DMAx_INT)                    | 428 |  |
|                      | 20.3.14  | Error Register (DMAx_ERR)                                | 429 |  |
|                      | 20.3.15  | Hardware Request Status Register (DMAx_HRS)              | 431 |  |
|                      | 20.3.16  | Enable Asynchronous Request in Stop Register (DMAx_EARS) | 433 |  |
|                      | 20.3.17  | Channel n Priority Register (DMAx_DCHPRIn)               | 434 |  |
|                      | 20.3.18  | TCD Source Address (DMAx_TCDn_SADDR)                     | 435 |  |
|                      |          |                                                          |     |  |

| Sect | tion nu    | mber Title                                                                                               | Page |
|------|------------|----------------------------------------------------------------------------------------------------------|------|
|      | 20.3.19    | TCD Signed Source Address Offset (DMAx_TCDn_SOFF)                                                        | 435  |
|      | 20.3.20    | TCD Transfer Attributes (DMAx_TCDn_ATTR)                                                                 | 436  |
|      | 20.3.21    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMAx_TCDn_NBYTES_MLNO)                               | 437  |
|      | 20.3.22    | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMAx_TCDn_NBYTES_MLOFFNO) | 437  |
|      | 20.3.23    | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMAx_TCDn_NBYTES_MLOFFYES)         | 439  |
|      | 20.3.24    | TCD Last Source Address Adjustment (DMAx_TCDn_SLAST)                                                     | 440  |
|      | 20.3.25    | TCD Destination Address (DMAx_TCDn_DADDR)                                                                | 440  |
|      | 20.3.26    | TCD Signed Destination Address Offset (DMAx_TCDn_DOFF)                                                   | 441  |
|      | 20.3.27    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMAx_TCDn_CITER_ELINKYES)       | 441  |
|      | 20.3.28    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMAx_TCDn_CITER_ELINKNO)       | 443  |
|      | 20.3.29    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMAx_TCDn_DLASTSGA)                      | 444  |
|      | 20.3.30    | TCD Control and Status (DMAx_TCDn_CSR)                                                                   | 444  |
|      | 20.3.31    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMAx_TCDn_BITER_ELINKYES)     | 447  |
|      | 20.3.32    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMAx_TCDn_BITER_ELINKNO)     | 448  |
| 20.4 | Function   | nal description                                                                                          | 449  |
|      | 20.4.1     | eDMA basic data flow                                                                                     | 449  |
|      | 20.4.2     | Fault reporting and handling                                                                             | 452  |
|      | 20.4.3     | Channel preemption                                                                                       | 455  |
|      | 20.4.4     | Performance.                                                                                             | 455  |
| 20.5 | Initializa | ation/application information                                                                            | 459  |
|      | 20.5.1     | eDMA initialization.                                                                                     | 459  |
|      | 20.5.2     | Programming errors.                                                                                      | 461  |
|      | 20.5.3     | Arbitration mode considerations                                                                          | 462  |
|      | 20.5.4     | Performing DMA transfers.                                                                                | 462  |

| Section number |          | mber Title                                                            | Page |  |
|----------------|----------|-----------------------------------------------------------------------|------|--|
|                | 20.5.5   | Monitoring transfer descriptor status                                 | 466  |  |
|                | 20.5.6   | Channel Linking.                                                      | 468  |  |
|                | 20.5.7   | Dynamic programming                                                   | 469  |  |
|                |          | Chapter 21 Smart Card Interface Module (EMV SIM)                      |      |  |
| 21.1           | Introduc | tion                                                                  | 475  |  |
|                | 21.1.1   | Features                                                              | 475  |  |
| 21.2           | Block D  | iagram                                                                | 476  |  |
| 21.3           | Design ( | Overview                                                              | 476  |  |
| 21.4           | Signal D | Description                                                           | 478  |  |
| 21.5           | Memory   | Map and Registers                                                     | 479  |  |
|                | 21.5.1   | Version ID Register (EMVSIMx_VER_ID)                                  | 480  |  |
|                | 21.5.2   | Parameter Register (EMVSIMx_PARAM)                                    | 480  |  |
|                | 21.5.3   | Clock Configuration Register (EMVSIMx_CLKCFG)                         | 481  |  |
|                | 21.5.4   | Baud Rate Divisor Register (EMVSIMx_DIVISOR)                          | 482  |  |
|                | 21.5.5   | Control Register (EMVSIMx_CTRL)                                       | 483  |  |
|                | 21.5.6   | Interrupt Mask Register (EMVSIMx_INT_MASK)                            | 487  |  |
|                | 21.5.7   | Receiver Threshold Register (EMVSIMx_RX_THD)                          | 490  |  |
|                | 21.5.8   | Transmitter Threshold Register (EMVSIMx_TX_THD)                       | 490  |  |
|                | 21.5.9   | Receive Status Register (EMVSIMx_RX_STATUS)                           | 492  |  |
|                | 21.5.10  | Transmitter Status Register (EMVSIMx_TX_STATUS)                       | 495  |  |
|                | 21.5.11  | Port Control and Status Register (EMVSIMx_PCSR)                       | 498  |  |
|                | 21.5.12  | Receive Data Read Buffer (EMVSIMx_RX_BUF)                             | 500  |  |
|                | 21.5.13  | Transmit Data Buffer (EMVSIMx_TX_BUF)                                 | 501  |  |
|                | 21.5.14  | Transmitter Guard ETU Value Register (EMVSIMx_TX_GETU)                | 501  |  |
|                | 21.5.15  | Character Wait Time Value Register (EMVSIMx_CWT_VAL)                  | 502  |  |
|                | 21.5.16  | Block Wait Time Value Register (EMVSIMx_BWT_VAL)                      | 502  |  |
|                | 21.5.17  | Block Guard Time Value Register (EMVSIMx_BGT_VAL)                     | 503  |  |
|                | 21.5.18  | General Purpose Counter 0 Timeout Value Register (EMVSIMx_GPCNT0_VAL) | 503  |  |
|                |          |                                                                       |      |  |

| Section number Title |                         | imber Title                                                  | Page |  |
|----------------------|-------------------------|--------------------------------------------------------------|------|--|
|                      | 21.5.19                 | General Purpose Counter 1 Timeout Value (EMVSIMx_GPCNT1_VAL) | 504  |  |
| 21.6                 | Functional Description. |                                                              | 504  |  |
|                      | 21.6.1                  | Initialization                                               | 504  |  |
|                      | 21.6.2                  | Smart Card Interface and Control                             | 506  |  |
|                      | 21.6.3                  | EMV SIM Receiver                                             | 509  |  |
|                      | 21.6.4                  | EMV SIM Transmitter                                          | 513  |  |
|                      | 21.6.5                  | LRC and CRC                                                  | 515  |  |
|                      | 21.6.6                  | Message Handling                                             | 517  |  |
|                      | 21.6.7                  | Protocol Timers                                              | 519  |  |
|                      | 21.6.8                  | Answer To Reset (ATR) Detection                              | 522  |  |
|                      |                         | Chapter 22<br>Flexible I/O (FlexIO)                          |      |  |
| 22.1                 | Introduction            |                                                              | 527  |  |
|                      | 22.1.1                  | Overview                                                     | 527  |  |
|                      | 22.1.2                  | Features                                                     | 527  |  |
|                      | 22.1.3                  | Block Diagram                                                | 528  |  |
|                      | 22.1.4                  | Modes of operation.                                          | 529  |  |
|                      | 22.1.5                  | FlexIO Signal Descriptions.                                  | 529  |  |
| 22.2                 | Memory                  | y Map and Registers                                          | 529  |  |
|                      | 22.2.1                  | FLEXIO Register Descriptions.                                | 529  |  |
| 22.3                 | Function                | nal description.                                             | 559  |  |
|                      | 22.3.1                  | Shifter operation                                            | 559  |  |
|                      | 22.3.2                  | Timer operation                                              | 565  |  |
|                      | 22.3.3                  | Pin operation                                                | 567  |  |
| 22.4                 | Applica                 | tion Information                                             | 569  |  |
|                      | 22.4.1                  | UART Transmit.                                               | 569  |  |
|                      | 22.4.2                  | UART Receive                                                 | 570  |  |
|                      | 22.4.3                  | SPI Master                                                   | 572  |  |
|                      | 22.4.4                  | SPI Slave                                                    | 574  |  |

| Sec  | tion nu   | imber Title                                 | Page |
|------|-----------|---------------------------------------------|------|
|      | 22.4.5    | I2C Master                                  | 575  |
|      | 22.4.6    | I2S Master                                  | 577  |
|      | 22.4.7    | I2S Slave                                   | 579  |
|      | 22.4.8    | Camera Interface                            | 580  |
|      | 22.4.9    | Motorola 68K/Intel 8080 Bus Interface       | 581  |
|      | 22.4.10   | Low Power State Machine                     |      |
|      |           | Chapter 23<br>Flash Memory Controller (FMC) |      |
| 23.1 | Introduc  | ction                                       | 587  |
|      | 23.1.1    | Overview                                    | 587  |
|      | 23.1.2    | Features                                    | 588  |
| 23.2 | Modes     | of operation                                | 588  |
| 23.3 | Externa   | l signal description                        | 588  |
| 23.4 | Memory    | y map and register descriptions             | 588  |
| 23.5 | Flash A   | ccess Control (FAC) Function                | 589  |
|      | 23.5.1    | Memory map and register definitions         |      |
|      | 23.5.2    | FAC functional description.                 | 589  |
| 23.6 | Initializ | ation and application information           | 595  |
|      |           | Chapter 24<br>Flash Memory Module (FTFA)    |      |
| 24.1 | Introduc  | ction                                       | 597  |
|      | 24.1.1    | Features                                    | 598  |
|      | 24.1.2    | Block Diagram                               | 598  |
|      | 24.1.3    | Glossary                                    | 599  |
| 24.2 | Externa   | l Signal Description                        | 600  |
| 24.3 | Memory    | y Map and Registers                         | 601  |
|      | 24.3.1    | Flash Configuration Field Description       | 601  |
|      | 24.3.2    | Program Flash IFR Map                       | 601  |
|      | 24.3.3    | Program Flash Erasable IFR Map              | 602  |

| Sec  | tion nu  | mber Title                                                  | Page |
|------|----------|-------------------------------------------------------------|------|
|      | 24.3.4   | Register Descriptions                                       | 603  |
| 24.4 | Function | nal Description                                             | 617  |
|      | 24.4.1   | Flash Protection.                                           | 617  |
|      | 24.4.2   | Flash Access Protection.                                    | 617  |
|      | 24.4.3   | Interrupts                                                  | 619  |
|      | 24.4.4   | Flash Operation in Low-Power Modes                          | 620  |
|      | 24.4.5   | Functional Modes of Operation.                              | 620  |
|      | 24.4.6   | Flash Reads and Ignored Writes                              | 620  |
|      | 24.4.7   | Read While Write (RWW)                                      | 621  |
|      | 24.4.8   | Flash Program and Erase                                     | 621  |
|      | 24.4.9   | Flash Command Operations                                    | 621  |
|      | 24.4.10  | Margin Read Commands                                        | 627  |
|      | 24.4.11  | Flash Command Description.                                  | 628  |
|      | 24.4.12  | Security                                                    | 647  |
|      | 24.4.13  | Reset Sequence.                                             | 650  |
|      |          | Chapter 25 Interrupt Multiplexer (INTMUX)                   |      |
| 25.1 | About th | his module                                                  | 651  |
|      | 25.1.1   | Introduction                                                | 651  |
|      | 25.1.2   | Features                                                    | 651  |
|      | 25.1.3   | Block diagram                                               | 651  |
| 25.2 | Memory   | Map and register definition                                 | 652  |
|      | 25.2.1   | Channel n Control Status Register (INTMUXx_CHn_CSR)         | 653  |
|      | 25.2.2   | Channel n Vector Number Register (INTMUXx_CHn_VEC)          | 654  |
|      | 25.2.3   | Channel n Interrupt Enable Register (INTMUXx_CHn_IER_31_0)  | 655  |
|      | 25.2.4   | Channel n Interrupt Pending Register (INTMUXx_CHn_IPR_31_0) | 655  |
| 25.3 | Function | nal Description                                             | 656  |
|      | 25.3.1   | Configuring Output Channels                                 | 656  |
|      | 25.3.2   | INTMUX Vectors                                              | 656  |

## Chapter 26 Low-Leakage Wakeup Unit (LLWU)

| 26.1 | Introduction            |                                                       | 659 |
|------|-------------------------|-------------------------------------------------------|-----|
|      | 26.1.1                  | Features                                              | 659 |
|      | 26.1.2                  | Modes of operation                                    | 660 |
|      | 26.1.3                  | Block diagram                                         | 661 |
| 26.2 | LLWU                    | signal descriptions.                                  | 662 |
| 26.3 | Memor                   | y map/register definition                             | 663 |
|      | 26.3.1                  | Version ID Register (LLWUx_VERID)                     | 664 |
|      | 26.3.2                  | Parameter Register (LLWUx_PARAM)                      | 665 |
|      | 26.3.3                  | LLWU Pin Enable 1 register (LLWUx_PE1)                | 665 |
|      | 26.3.4                  | LLWU Pin Enable 2 register (LLWUx_PE2)                | 668 |
|      | 26.3.5                  | LLWU Module Interrupt Enable register (LLWUx_ME)      | 671 |
|      | 26.3.6                  | LLWU Module DMA Enable register (LLWUx_DE)            | 673 |
|      | 26.3.7                  | LLWU Pin Flag register (LLWUx_PF)                     | 675 |
|      | 26.3.8                  | LLWU Module Interrupt Flag register (LLWUx_MF)        | 680 |
|      | 26.3.9                  | LLWU Pin Filter register (LLWUx_FILT)                 | 682 |
| 26.4 | Functional description. |                                                       |     |
|      | 26.4.1                  | LLS mode                                              | 685 |
|      | 26.4.2                  | VLLS modes                                            | 685 |
|      | 26.4.3                  | Initialization                                        | 686 |
|      |                         | Chapter 27 Low Power Inter-Integrated Circuit (LPI2C) |     |
| 27.1 | Introdu                 | ction                                                 | 687 |
|      | 27.1.1                  | Overview                                              | 687 |
|      | 27.1.2                  | Features                                              | 687 |
|      | 27.1.3                  | Block Diagram                                         | 688 |
|      | 27.1.4                  | Modes of operation                                    | 689 |
|      | 27.1.5                  | Signal Descriptions.                                  | 690 |
|      |                         |                                                       |     |

| Sec  | tion nu | mber Title                                          | Page |
|------|---------|-----------------------------------------------------|------|
| 27.2 | Memory  | Map and Registers                                   | 690  |
|      | 27.2.1  | Version ID Register (LPI2C_VERID)                   | 692  |
|      | 27.2.2  | Parameter Register (LPI2C_PARAM)                    | 692  |
|      | 27.2.3  | Master Control Register (LPI2C_MCR)                 | 693  |
|      | 27.2.4  | Master Status Register (LPI2C_MSR)                  | 694  |
|      | 27.2.5  | Master Interrupt Enable Register (LPI2C_MIER)       | 696  |
|      | 27.2.6  | Master DMA Enable Register (LPI2C_MDER)             | 698  |
|      | 27.2.7  | Master Configuration Register 0 (LPI2C_MCFGR0)      | 699  |
|      | 27.2.8  | Master Configuration Register 1 (LPI2C_MCFGR1)      | 700  |
|      | 27.2.9  | Master Configuration Register 2 (LPI2C_MCFGR2)      | 702  |
|      | 27.2.10 | Master Configuration Register 3 (LPI2C_MCFGR3)      | 703  |
|      | 27.2.11 | Master Data Match Register (LPI2C_MDMR)             | 703  |
|      | 27.2.12 | Master Clock Configuration Register 0 (LPI2C_MCCR0) | 704  |
|      | 27.2.13 | Master Clock Configuration Register 1 (LPI2C_MCCR1) |      |
|      | 27.2.14 | Master FIFO Control Register (LPI2C_MFCR)           | 706  |
|      | 27.2.15 | Master FIFO Status Register (LPI2C_MFSR)            | 706  |
|      | 27.2.16 | Master Transmit Data Register (LPI2C_MTDR)          | 707  |
|      | 27.2.17 | Master Receive Data Register (LPI2C_MRDR)           | 708  |
|      | 27.2.18 | Slave Control Register (LPI2C_SCR)                  | 709  |
|      | 27.2.19 | Slave Status Register (LPI2C_SSR)                   | 710  |
|      | 27.2.20 | Slave Interrupt Enable Register (LPI2C_SIER)        | 713  |
|      | 27.2.21 | Slave DMA Enable Register (LPI2C_SDER)              | 714  |
|      | 27.2.22 | Slave Configuration Register 1 (LPI2C_SCFGR1)       | 715  |
|      | 27.2.23 | Slave Configuration Register 2 (LPI2C_SCFGR2)       | 717  |
|      | 27.2.24 | Slave Address Match Register (LPI2C_SAMR)           | 718  |
|      | 27.2.25 | Slave Address Status Register (LPI2C_SASR)          | 719  |
|      | 27.2.26 | Slave Transmit ACK Register (LPI2C_STAR)            | 720  |
|      | 27.2.27 | Slave Transmit Data Register (LPI2C_STDR)           | 720  |
|      | 27.2.28 | Slave Receive Data Register (LPI2C_SRDR)            | 721  |
|      |         |                                                     |      |

| Sec  | tion nu | imber Title                                    | Page |
|------|---------|------------------------------------------------|------|
| 27.3 | Functio | nal description                                | 722  |
|      | 27.3.1  | Clocking and Resets                            | 722  |
|      | 27.3.2  | Master Mode.                                   | 723  |
|      | 27.3.3  | Slave Mode                                     |      |
|      | 27.3.4  | Interrupts and DMA Requests                    | 731  |
|      | 27.3.5  | Peripheral Triggers                            | 733  |
| 27.4 | Applica | tion Information                               | 734  |
|      |         | Chapter 28<br>Low Power Interrupt Timer (LPIT) |      |
| 28.1 | Introdu | ction                                          | 735  |
|      | 28.1.1  | Overview                                       | 735  |
|      | 28.1.2  | Block Diagram                                  | 735  |
| 28.2 | Modes   | of operation                                   | 736  |
| 28.3 | Memor   | y Map and Registers                            | 737  |
|      | 28.3.1  | Version ID Register (LPITx_VERID)              | 738  |
|      | 28.3.2  | Parameter Register (LPITx_PARAM)               | 738  |
|      | 28.3.3  | Module Control Register (LPITx_MCR)            | 739  |
|      | 28.3.4  | Module Status Register (LPITx_MSR)             | 740  |
|      | 28.3.5  | Module Interrupt Enable Register (LPITx_MIER)  | 741  |
|      | 28.3.6  | Set Timer Enable Register (LPITx_SETTEN)       | 742  |
|      | 28.3.7  | Clear Timer Enable Register (LPITx_CLRTEN)     | 743  |
|      | 28.3.8  | Timer Value Register (LPITx_TVALn)             | 744  |
|      | 28.3.9  | Current Timer Value (LPITx_CVALn)              | 745  |
|      | 28.3.10 | Timer Control Register (LPITx_TCTRLn)          | 746  |
| 28.4 | Functio | nal description                                | 747  |
|      | 28.4.1  | Initialization                                 | 747  |
|      | 28.4.2  | Timer Modes                                    | 748  |
|      | 28.4.3  | Trigger Control for Timers                     |      |
|      | 28.4.4  | Channel Chaining.                              | 750  |

### Chapter 29 Low Power Serial Peripheral Interface (LPSPI)

| 29.1 | Introduc | tion                                     | 751 |
|------|----------|------------------------------------------|-----|
|      | 29.1.1   | Overview                                 | 751 |
|      | 29.1.2   | Features                                 | 751 |
|      | 29.1.3   | Block Diagram                            | 751 |
|      | 29.1.4   | Modes of operation                       | 752 |
|      | 29.1.5   | Signal Descriptions                      | 753 |
| 29.2 | Memory   | Map and Registers                        | 753 |
|      | 29.2.1   | Version ID Register (LPSPI_VERID)        | 754 |
|      | 29.2.2   | Parameter Register (LPSPI_PARAM)         | 755 |
|      | 29.2.3   | Control Register (LPSPI_CR)              | 756 |
|      | 29.2.4   | Status Register (LPSPI_SR)               | 757 |
|      | 29.2.5   | Interrupt Enable Register (LPSPI_IER)    | 759 |
|      | 29.2.6   | DMA Enable Register (LPSPI_DER)          | 760 |
|      | 29.2.7   | Configuration Register 0 (LPSPI_CFGR0)   | 761 |
|      | 29.2.8   | Configuration Register 1 (LPSPI_CFGR1)   | 762 |
|      | 29.2.9   | Data Match Register 0 (LPSPI_DMR0)       | 764 |
|      | 29.2.10  | Data Match Register 1 (LPSPI_DMR1)       | 764 |
|      | 29.2.11  | Clock Configuration Register (LPSPI_CCR) | 765 |
|      | 29.2.12  | FIFO Control Register (LPSPI_FCR)        | 766 |
|      | 29.2.13  | FIFO Status Register (LPSPI_FSR)         | 766 |
|      | 29.2.14  | Transmit Command Register (LPSPI_TCR)    | 767 |
|      | 29.2.15  | Transmit Data Register (LPSPI_TDR)       | 770 |
|      | 29.2.16  | Receive Status Register (LPSPI_RSR)      | 771 |
|      | 29.2.17  | Receive Data Register (LPSPI_RDR)        | 772 |
| 29.3 | Function | nal description                          | 772 |
|      | 29.3.1   | Clocking and Resets                      | 772 |
|      | 29.3.2   | Master Mode.                             | 773 |

| Sec  | tion nu | imber Title                                                                  | Page |  |
|------|---------|------------------------------------------------------------------------------|------|--|
|      | 29.3.3  | Slave Mode                                                                   | 778  |  |
|      | 29.3.4  | Interrupts and DMA Requests                                                  | 780  |  |
|      | 29.3.5  | Peripheral Triggers.                                                         | 780  |  |
| 29.4 | Applica | tion Information                                                             | 781  |  |
|      |         | Chapter 30<br>Low-Power Timer (LPTMR)                                        |      |  |
| 30.1 | Introdu | ction                                                                        | 783  |  |
|      | 30.1.1  | Features                                                                     | 783  |  |
|      | 30.1.2  | Modes of operation                                                           | 783  |  |
| 30.2 | LPTMF   | R signal descriptions                                                        | 784  |  |
|      | 30.2.1  | Detailed signal descriptions                                                 | 784  |  |
| 30.3 | Memor   | y map and register definition                                                | 785  |  |
|      | 30.3.1  | Low Power Timer Control Status Register (LPTMRx_CSR)                         | 785  |  |
|      | 30.3.2  | Low Power Timer Prescale Register (LPTMRx_PSR)                               | 787  |  |
|      | 30.3.3  | Low Power Timer Compare Register (LPTMRx_CMR)                                | 788  |  |
|      | 30.3.4  | Low Power Timer Counter Register (LPTMRx_CNR)                                | 789  |  |
| 30.4 | Functio | nal description                                                              | 789  |  |
|      | 30.4.1  | LPTMR power and reset                                                        | 789  |  |
|      | 30.4.2  | LPTMR clocking                                                               | 789  |  |
|      | 30.4.3  | LPTMR prescaler/glitch filter                                                | 790  |  |
|      | 30.4.4  | LPTMR compare                                                                | 791  |  |
|      | 30.4.5  | LPTMR counter                                                                | 791  |  |
|      | 30.4.6  | LPTMR hardware trigger                                                       | 792  |  |
|      | 30.4.7  | LPTMR interrupt.                                                             | 792  |  |
|      | i       | Chapter 31<br>Low Power Universal Asynchronous Receiver/Transmitter (LPUART) |      |  |
| 31.1 | Introdu | ction                                                                        | 795  |  |
|      | 31.1.1  | Features                                                                     | 795  |  |
|      | 31.1.2  | Modes of operation.                                                          | 796  |  |

| Sec  | tion nu                 | mber Title                                               | Page |  |
|------|-------------------------|----------------------------------------------------------|------|--|
|      | 31.1.3                  | Signal Descriptions                                      | 796  |  |
|      | 31.1.4                  | Block diagram                                            | 797  |  |
| 31.2 | Register                | definition                                               | 799  |  |
|      | 31.2.1                  | Version ID Register (LPUART_VERID)                       | 800  |  |
|      | 31.2.2                  | Parameter Register (LPUART_PARAM)                        | 800  |  |
|      | 31.2.3                  | LPUART Global Register (LPUART_GLOBAL)                   | 801  |  |
|      | 31.2.4                  | LPUART Pin Configuration Register (LPUART_PINCFG)        | 802  |  |
|      | 31.2.5                  | LPUART Baud Rate Register (LPUART_BAUD)                  | 802  |  |
|      | 31.2.6                  | LPUART Status Register (LPUART_STAT)                     | 805  |  |
|      | 31.2.7                  | LPUART Control Register (LPUART_CTRL)                    | 809  |  |
|      | 31.2.8                  | LPUART Data Register (LPUART_DATA)                       | 814  |  |
|      | 31.2.9                  | LPUART Match Address Register (LPUART_MATCH)             | 816  |  |
|      | 31.2.10                 | LPUART Modem IrDA Register (LPUART_MODIR)                | 816  |  |
|      | 31.2.11                 | LPUART FIFO Register (LPUART_FIFO)                       | 819  |  |
|      | 31.2.12                 | LPUART Watermark Register (LPUART_WATER)                 | 822  |  |
| 31.3 | Functional description. |                                                          | 823  |  |
|      | 31.3.1                  | Baud rate generation                                     | 823  |  |
|      | 31.3.2                  | Transmitter functional description                       | 823  |  |
|      | 31.3.3                  | Receiver functional description.                         | 826  |  |
|      | 31.3.4                  | Additional LPUART functions                              | 833  |  |
|      | 31.3.5                  | Infrared interface                                       | 835  |  |
|      | 31.3.6                  | Interrupts and status flags                              | 836  |  |
|      |                         | Chapter 32 Memory-Mapped Divide and Square Root (MMDVSQ) |      |  |
| 32.1 | Introduc                | ction                                                    | 839  |  |
|      | 32.1.1                  | Features                                                 | 839  |  |
|      | 32.1.2                  | Block diagram                                            | 840  |  |
|      | 32.1.3                  | Modes of operation                                       | 841  |  |
| 32.2 | Externa                 | l signal description                                     | 842  |  |

| Sec  | Section number Title                 |                                                          | Page |  |
|------|--------------------------------------|----------------------------------------------------------|------|--|
| 32.3 | Memor                                | y map and register definition                            | 842  |  |
|      | 32.3.1                               | Dividend Register (MMDVSQx_DEND)                         | 843  |  |
|      | 32.3.2                               | Divisor Register (MMDVSQx_DSOR)                          | 843  |  |
|      | 32.3.3                               | Control/Status Register (MMDVSQx_CSR)                    | 845  |  |
|      | 32.3.4                               | Result Register (MMDVSQx_RES)                            | 848  |  |
|      | 32.3.5                               | Radicand Register (MMDVSQx_RCND)                         | 848  |  |
| 32.4 | Function                             | onal description                                         | 849  |  |
|      | 32.4.1                               | Algorithms                                               | 849  |  |
|      | 32.4.2                               | Execution times                                          | 852  |  |
|      | 32.4.3                               | Software interface                                       | 854  |  |
|      |                                      | Chapter 33 Miscellaneous Control Module (MCM)            |      |  |
| 33.1 | Introdu                              | ction                                                    | 857  |  |
|      | 33.1.1                               | Features                                                 | 857  |  |
| 33.2 | Memor                                | y map/register descriptions                              | 857  |  |
|      | 33.2.1                               | Crossbar Switch (AXBS) Slave Configuration (MCMx_PLASC)  | 858  |  |
|      | 33.2.2                               | Crossbar Switch (AXBS) Master Configuration (MCMx_PLAMC) | 859  |  |
|      | 33.2.3                               | Platform Control Register (MCMx_PLACR)                   | 859  |  |
|      | 33.2.4                               | Compute Operation Control Register (MCMx_CPO)            | 862  |  |
| 33.3 | Function                             | 863                                                      |      |  |
|      | 33.3.1                               | Interrupts                                               | 863  |  |
|      |                                      | Chapter 34 Miscellaneous System Control Module (MSCM)    |      |  |
| 34.1 | Chip-S                               | pecific Information                                      | 865  |  |
| 34.2 | Overview                             |                                                          | 865  |  |
| 34.3 | Chip C                               | onfiguration and Boot                                    | 865  |  |
| 34.4 | MSCM Memory Map/Register Definition. |                                                          |      |  |
|      | 34.4.1                               | CPU Configuration Memory Map and Registers               | 866  |  |
|      | 34.4.2                               | Processor X Type Register (MSCM_CPxTYPE)                 | 867  |  |
|      |                                      |                                                          |      |  |

| Sec  | tion nu  | mber Title                                        | Page |
|------|----------|---------------------------------------------------|------|
|      | 34.4.3   | Processor X Number Register (MSCM_CPxNUM)         | 868  |
|      | 34.4.4   | Processor X Master Register (MSCM_CPxMASTER)      | 869  |
|      | 34.4.5   | Processor X Count Register (MSCM_CPxCOUNT)        | 870  |
|      | 34.4.6   | Processor X Configuration Register (MSCM_CPxCFGn) | 870  |
|      | 34.4.7   | Processor 0 Type Register (MSCM_CP0TYPE)          | 871  |
|      | 34.4.8   | Processor 0 Number Register (MSCM_CP0NUM)         | 872  |
|      | 34.4.9   | Processor 0 Master Register (MSCM_CP0MASTER)      | 873  |
|      | 34.4.10  | Processor 0 Count Register (MSCM_CP0COUNT)        | 874  |
|      | 34.4.11  | Processor 0 Configuration Register (MSCM_CP0CFGn) | 874  |
|      | 34.4.12  | On-Chip Memory Descriptor Register (MSCM_OCMDRn)  | 875  |
|      |          | Chapter 35<br>Micro Trace Buffer (MTB)            |      |
| 35.1 | Introduc | ction                                             | 879  |
|      | 35.1.1   | Overview                                          | 879  |
|      | 35.1.2   | Features                                          |      |
|      | 35.1.3   | Modes of operation                                |      |
| 35.2 | External | l signal description                              | 883  |
| 35.3 | Memory   | y map and register definition                     | 884  |
|      | 35.3.1   | MTB_RAM Memory Map                                | 884  |
|      | 35.3.2   | MTB_DWT Memory Map                                | 896  |
|      | 35.3.3   | System ROM Memory Map                             | 906  |
|      |          | Chapter 36<br>Peripheral Clock Control (PCC)      |      |
| 36.1 | Introduc | ction                                             | 911  |
|      | 36.1.1   | Features                                          | 911  |
| 36.2 | Memory   | y map and register definition                     | 912  |
|      | 36.2.1   | PCC Register Descriptions.                        | 912  |
|      | 36.2.2   | PCC Register Descriptions                         | 947  |
| 36.3 | Function | nal description                                   | 965  |

# Chapter 37 Power Management Controller (PMC)

| 37.1 | Introduction                                                          |     |  |
|------|-----------------------------------------------------------------------|-----|--|
| 37.2 | 2 Features                                                            |     |  |
| 37.3 | Low-voltage detect (LVD) system                                       |     |  |
|      | 37.3.1 LVD reset operation                                            | 968 |  |
|      | 37.3.2 LVD interrupt operation                                        | 968 |  |
|      | 37.3.3 Low-voltage warning (LVW) interrupt operation                  | 968 |  |
| 37.4 | High-voltage detect (HVD) system                                      | 969 |  |
|      | 37.4.1 HVD reset operation                                            | 969 |  |
|      | 37.4.2 HVD interrupt operation                                        | 969 |  |
| 37.5 | I/O retention.                                                        | 970 |  |
| 37.6 | Memory map and register descriptions.                                 |     |  |
|      | 37.6.1 Version ID register (PMC_VERID)                                | 971 |  |
|      | 37.6.2 Parameter register (PMC_PARAM)                                 | 972 |  |
|      | 37.6.3 Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)  | 972 |  |
|      | 37.6.4 Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)  | 974 |  |
|      | 37.6.5 Regulator Status And Control register (PMC_REGSC)              | 976 |  |
|      | 37.6.6 High Voltage Detect Status And Control 1 register (PMC_HVDSC1) | 978 |  |
|      | Chapter 38 Port Control and Interrupts (PORT)                         |     |  |
| 38.1 | Introduction                                                          | 981 |  |
| 38.2 | Overview                                                              | 981 |  |
|      | 38.2.1 Features                                                       | 981 |  |
|      | 38.2.2 Modes of operation                                             | 982 |  |
| 38.3 | External signal description.                                          | 983 |  |
| 38.4 | Detailed signal description.                                          | 983 |  |
| 38.5 | Memory map and register definition.                                   | 983 |  |
|      | 38.5.1 Pin Control Register n (PORTx_PCRn)                            | 990 |  |
|      |                                                                       |     |  |

| Section number Title |         | ımber Title                                          | Page |  |
|----------------------|---------|------------------------------------------------------|------|--|
|                      | 38.5.2  | Global Pin Control Low Register (PORTx_GPCLR)        | 993  |  |
|                      | 38.5.3  | Global Pin Control High Register (PORTx_GPCHR)       | 993  |  |
|                      | 38.5.4  | Global Interrupt Control Low Register (PORTx_GICLR)  | 994  |  |
|                      | 38.5.5  | Global Interrupt Control High Register (PORTx_GICHR) | 994  |  |
|                      | 38.5.6  | Interrupt Status Flag Register (PORTx_ISFR)          | 995  |  |
|                      | 38.5.7  | Digital Filter Enable Register (PORTx_DFER)          | 995  |  |
|                      | 38.5.8  | Digital Filter Clock Register (PORTx_DFCR)           | 996  |  |
|                      | 38.5.9  | Digital Filter Width Register (PORTx_DFWR)           | 997  |  |
| 38.6                 | Functio | nal description                                      | 997  |  |
|                      | 38.6.1  | Pin control                                          | 997  |  |
|                      | 38.6.2  | Global pin control                                   | 998  |  |
|                      | 38.6.3  | Global interrupt control                             | 998  |  |
|                      | 38.6.4  | External interrupts                                  | 999  |  |
|                      | 38.6.5  | Digital filter                                       | 1000 |  |
| 20.1                 |         | Chapter 39 Reset Control Module (RCM)                | 1001 |  |
| 39.1                 |         | ction                                                |      |  |
| 39.2                 | 39.2.1  | Nemory map and register descriptions                 |      |  |
|                      |         | Parameter Register (RCM_PARAM)                       |      |  |
|                      | 39.2.3  | System Reset Status Register (RCM_SRS)               |      |  |
|                      | 39.2.4  | Reset Pin Control register (RCM_RPC)                 |      |  |
|                      | 39.2.5  | Mode Register (RCM_MR)                               |      |  |
|                      | 39.2.6  | Force Mode Register (RCM_FM)                         |      |  |
|                      | 39.2.7  | Sticky System Reset Status Register (RCM_SSRS)       |      |  |
|                      | 39.2.8  | System Reset Interrupt Enable Register (RCM_SRIE)    |      |  |
| 40.1                 | Introdu | Chapter 40 General-Purpose Input/Output (GPIO)       | 1017 |  |
|                      |         |                                                      | 1017 |  |

| Sec  | tion nu  | imber Title                                | Page |
|------|----------|--------------------------------------------|------|
|      | 40.1.1   | Features                                   | 1017 |
|      | 40.1.2   | Modes of operation                         | 1017 |
|      | 40.1.3   | GPIO signal descriptions                   |      |
| 40.2 | Memor    | y map and register definition              | 1019 |
|      | 40.2.1   | Port Data Output Register (GPIOx_PDOR)     | 1021 |
|      | 40.2.2   | Port Set Output Register (GPIOx_PSOR)      | 1021 |
|      | 40.2.3   | Port Clear Output Register (GPIOx_PCOR)    | 1022 |
|      | 40.2.4   | Port Toggle Output Register (GPIOx_PTOR)   |      |
|      | 40.2.5   | Port Data Input Register (GPIOx_PDIR)      |      |
|      | 40.2.6   | Port Data Direction Register (GPIOx_PDDR)  |      |
| 40.3 | FGPIO    | memory map and register definition         |      |
|      | 40.3.1   | Port Data Output Register (FGPIOx_PDOR)    |      |
|      | 40.3.2   | Port Set Output Register (FGPIOx_PSOR)     |      |
|      | 40.3.3   | Port Clear Output Register (FGPIOx_PCOR)   |      |
|      | 40.3.4   | Port Toggle Output Register (FGPIOx_PTOR)  | 1026 |
|      | 40.3.5   | Port Data Input Register (FGPIOx_PDIR)     | 1026 |
|      | 40.3.6   | Port Data Direction Register (FGPIOx_PDDR) |      |
| 40.4 | Functio  | nal description                            | 1027 |
|      | 40.4.1   | General-purpose input                      | 1027 |
|      | 40.4.2   | General-purpose output                     | 1027 |
|      | 40.4.3   | IOPORT                                     | 1028 |
|      |          | Chapter 41<br>Real Time Clock (RTC)        |      |
| 41.1 | Introduc | ction                                      | 1029 |
|      | 41.1.1   | Features                                   |      |
|      | 41.1.2   | Modes of operation                         |      |
|      | 41.1.3   | RTC signal descriptions                    | 1030 |
| 41.2 | Registe  | r definition                               | 1030 |
|      | 41.2.1   | RTC Time Seconds Register (RTC_TSR)        | 1031 |

| Section number |         | imber Title                                                                       | Page |
|----------------|---------|-----------------------------------------------------------------------------------|------|
|                | 41.2.2  | RTC Time Prescaler Register (RTC_TPR)                                             | 1031 |
|                | 41.2.3  | RTC Time Alarm Register (RTC_TAR)                                                 | 1032 |
|                | 41.2.4  | RTC Time Compensation Register (RTC_TCR)                                          | 1032 |
|                | 41.2.5  | RTC Control Register (RTC_CR)                                                     | 1033 |
|                | 41.2.6  | RTC Status Register (RTC_SR)                                                      | 1035 |
|                | 41.2.7  | RTC Lock Register (RTC_LR)                                                        | 1036 |
|                | 41.2.8  | RTC Interrupt Enable Register (RTC_IER)                                           | 1037 |
| 41.3           | Functio | nal description                                                                   | 1039 |
|                | 41.3.1  | Power, clocking, and reset.                                                       | 1039 |
|                | 41.3.2  | Time counter                                                                      | 1039 |
|                | 41.3.3  | Compensation.                                                                     | 1040 |
|                | 41.3.4  | Time alarm                                                                        | 1041 |
|                | 41.3.5  | Update mode                                                                       | 1041 |
|                | 41.3.6  | Register lock                                                                     | 1042 |
|                | 41.3.7  | Interrupt                                                                         | 1042 |
|                | ı       | Chapter 42<br>ntegrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI) |      |
| 42.1           | Introdu | ction                                                                             | 1043 |
|                | 42.1.1  | Features                                                                          | 1043 |
|                | 42.1.2  | Block diagram.                                                                    | 1043 |
|                | 42.1.3  | Modes of operation.                                                               | 1044 |
| 42.2           | Externa | l signals                                                                         | 1045 |
| 42.3           | Memor   | y map and register definition                                                     | 1046 |
|                | 42.3.1  | SAI Transmit Control Register (I2Sx_TCSR)                                         | 1047 |
|                | 42.3.2  | SAI Transmit Configuration 1 Register (I2Sx_TCR1)                                 | 1050 |
|                | 42.3.3  | SAI Transmit Configuration 2 Register (I2Sx_TCR2)                                 | 1050 |
|                | 42.3.4  | SAI Transmit Configuration 3 Register (I2Sx_TCR3)                                 | 1052 |
|                | 42.3.5  | SAI Transmit Configuration 4 Register (I2Sx_TCR4)                                 | 1053 |
|                | 42.3.6  | SAI Transmit Configuration 5 Register (I2Sx_TCR5)                                 | 1055 |
|                |         |                                                                                   |      |

| Sec  | tion nu  | mber Title                                       | Page |
|------|----------|--------------------------------------------------|------|
|      | 42.3.7   | SAI Transmit Data Register (I2Sx_TDRn)           | 1055 |
|      | 42.3.8   | SAI Transmit FIFO Register (I2Sx_TFRn)           | 1056 |
|      | 42.3.9   | SAI Transmit Mask Register (I2Sx_TMR)            | 1056 |
|      | 42.3.10  | SAI Receive Control Register (I2Sx_RCSR)         | 1058 |
|      | 42.3.11  | SAI Receive Configuration 1 Register (I2Sx_RCR1) | 1061 |
|      | 42.3.12  | SAI Receive Configuration 2 Register (I2Sx_RCR2) | 1061 |
|      | 42.3.13  | SAI Receive Configuration 3 Register (I2Sx_RCR3) | 1063 |
|      | 42.3.14  | SAI Receive Configuration 4 Register (I2Sx_RCR4) | 1064 |
|      | 42.3.15  | SAI Receive Configuration 5 Register (I2Sx_RCR5) | 1066 |
|      | 42.3.16  | SAI Receive Data Register (I2Sx_RDRn)            | 1066 |
|      | 42.3.17  | SAI Receive FIFO Register (I2Sx_RFRn)            | 1067 |
|      | 42.3.18  | SAI Receive Mask Register (I2Sx_RMR)             | 1067 |
| 12.4 | Functio  | nal description                                  | 1068 |
|      | 42.4.1   | SAI clocking                                     |      |
|      | 42.4.2   | SAI resets                                       | 1069 |
|      | 42.4.3   | Synchronous modes                                |      |
|      | 42.4.4   | Frame sync configuration                         | 1071 |
|      | 42.4.5   | Data FIFO                                        | 1072 |
|      | 42.4.6   | Word mask register                               | 1074 |
|      | 42.4.7   | Interrupts and DMA requests                      | 1074 |
|      |          | Chapter 43 System Clock Generator (SCG)          |      |
| 13.1 | Introduc | ction                                            | 1077 |
|      | 43.1.1   | Features                                         | 1077 |
| 13.2 | Memory   | Map/Register Definition                          | 1079 |
|      | 43.2.1   | Version ID Register (SCG_VERID)                  | 1081 |
|      | 43.2.2   | Parameter Register (SCG_PARAM)                   | 1081 |
|      | 43.2.3   | Clock Status Register (SCG_CSR)                  | 1082 |
|      | 43.2.4   | Run Clock Control Register (SCG_RCCR)            | 1084 |
|      |          |                                                  |      |

| Sec | tion nu  | mber Title                                             | Page |
|-----|----------|--------------------------------------------------------|------|
|     | 43.2.5   | VLPR Clock Control Register (SCG_VCCR)                 | 1086 |
|     | 43.2.6   | HSRUN Clock Control Register (SCG_HCCR)                | 1088 |
|     | 43.2.7   | SCG CLKOUT Configuration Register (SCG_CLKOUTCNFG)     | 1089 |
|     | 43.2.8   | System OSC Control Status Register (SCG_SOSCCSR)       | 1091 |
|     | 43.2.9   | System OSC Divide Register (SCG_SOSCDIV)               | 1093 |
|     | 43.2.10  | System Oscillator Configuration Register (SCG_SOSCCFG) | 1094 |
|     | 43.2.11  | Slow IRC Control Status Register (SCG_SIRCCSR)         | 1096 |
|     | 43.2.12  | Slow IRC Divide Register (SCG_SIRCDIV)                 | 1097 |
|     | 43.2.13  | Slow IRC Configuration Register (SCG_SIRCCFG)          | 1099 |
|     | 43.2.14  | Fast IRC Control Status Register (SCG_FIRCCSR)         | 1100 |
|     | 43.2.15  | Fast IRC Divide Register (SCG_FIRCDIV)                 | 1102 |
|     | 43.2.16  | Fast IRC Configuration Register (SCG_FIRCCFG)          | 1103 |
|     | 43.2.17  | Fast IRC Trim Configuration Register (SCG_FIRCTCFG)    | 1104 |
|     | 43.2.18  | Fast IRC Status Register (SCG_FIRCSTAT)                | 1105 |
|     | 43.2.19  | System PLL Control Status Register (SCG_SPLLCSR)       | 1106 |
|     | 43.2.20  | System PLL Divide Register (SCG_SPLLDIV)               | 1108 |
|     | 43.2.21  | System PLL Configuration Register (SCG_SPLLCFG)        | 1109 |
| 3.3 | Functio  | nal description                                        | 1111 |
|     | 43.3.1   | SCG Clock Mode Transitions                             | 1111 |
|     |          | Chapter 44 System Integration Module (SIM)             |      |
| 4.1 | Introduc | ction                                                  | 1115 |
|     | 44.1.1   | Features.                                              | 1115 |
| 4.2 | Memor    | y map and register definition                          | 1115 |
|     | 44.2.1   | System Options Register 1 (SIM_SOPT1)                  | 1116 |
|     | 44.2.2   | SOPT1 Configuration Register (SIM_SOPT1CFG)            | 1117 |
|     | 44.2.3   | System Device Identification Register (SIM_SDID)       | 1118 |
|     | 44.2.4   | Flash Configuration Register 1 (SIM_FCFG1)             | 1121 |
|     | 44.2.5   | Flash Configuration Register 2 (SIM_FCFG2)             | 1123 |
|     |          |                                                        |      |

| Section number Title |         | umber Title                                         | Page |  |
|----------------------|---------|-----------------------------------------------------|------|--|
|                      | 44.2.6  | Unique Identification Register Mid-High (SIM_UIDMH) | 1124 |  |
|                      | 44.2.7  | Unique Identification Register Mid Low (SIM_UIDML)  | 1125 |  |
|                      | 44.2.8  | Unique Identification Register Low (SIM_UIDL)       |      |  |
|                      | 44.2.9  | Peripheral Clock Status Register (SIM_PCSR)         | 1126 |  |
| 44.3                 | Functio | onal description                                    | 1127 |  |
|                      |         | Chapter 45 System Mode Controller (SMC)             |      |  |
| 45.1                 | Introdu | ction                                               | 1129 |  |
| 45.2                 | Modes   | of operation                                        | 1129 |  |
| 45.3                 | Memor   | y map and register descriptions                     | 1131 |  |
|                      | 45.3.1  | SMC Version ID Register (SMC_VERID)                 | 1132 |  |
|                      | 45.3.2  | SMC Parameter Register (SMC_PARAM)                  |      |  |
|                      | 45.3.3  | Power Mode Protection register (SMC_PMPROT)         | 1134 |  |
|                      | 45.3.4  | Power Mode Control register (SMC_PMCTRL)            | 1136 |  |
|                      | 45.3.5  | Stop Control Register (SMC_STOPCTRL)                | 1138 |  |
|                      | 45.3.6  | Power Mode Status register (SMC_PMSTAT)             | 1139 |  |
| 45.4                 | Functio | onal description                                    | 1140 |  |
|                      | 45.4.1  | Power mode transitions.                             | 1140 |  |
|                      | 45.4.2  | Power mode entry/exit sequencing                    | 1143 |  |
|                      | 45.4.3  | Run modes                                           | 1145 |  |
|                      | 45.4.4  | Wait modes                                          |      |  |
|                      | 45.4.5  | Stop modes                                          | 1148 |  |
|                      | 45.4.6  | Debug in low power modes                            |      |  |
|                      |         | Chapter 46<br>System Register File                  |      |  |
| 46.1                 | System  | Register file                                       | 1155 |  |
| 46.2                 | Memor   | y Map and Registers                                 | 1155 |  |
|                      | 46.2.1  | Register file register (RFSYS_REGn)                 | 1155 |  |
|                      |         | Chapter 47 Timer/PWM Module (TPM)                   |      |  |

KL28Z Reference Manual, Rev. 4, 06/2016

NXP Semiconductors 35

| Sec  | tion nu                  | mber Title                                         | Page |
|------|--------------------------|----------------------------------------------------|------|
| 47.1 | Introduc                 | ction                                              | 1157 |
|      | 47.1.1                   | TPM Philosophy                                     |      |
|      | 47.1.2                   | Features                                           | 1157 |
|      | 47.1.3                   | Modes of operation                                 |      |
|      | 47.1.4                   | Block diagram                                      | 1158 |
| 47.2 | TPM Signal Descriptions. |                                                    | 1159 |
|      | 47.2.1                   | TPM_EXTCLK — TPM External Clock                    |      |
|      | 47.2.2                   | TPM_CHn — TPM Channel (n) I/O Pin                  | 1160 |
| 47.3 | Memory                   | y Map and Register Definition                      | 1160 |
|      | 47.3.1                   | Version ID Register (TPM_VERID)                    | 1161 |
|      | 47.3.2                   | Parameter Register (TPM_PARAM)                     | 1162 |
|      | 47.3.3                   | TPM Global Register (TPM_GLOBAL)                   | 1162 |
|      | 47.3.4                   | Status and Control (TPM_SC)                        | 1163 |
|      | 47.3.5                   | Counter (TPM_CNT)                                  | 1165 |
|      | 47.3.6                   | Modulo (TPM_MOD)                                   | 1165 |
|      | 47.3.7                   | Capture and Compare Status (TPM_STATUS)            | 1166 |
|      | 47.3.8                   | Channel (n) Status and Control (TPM_CnSC)          |      |
|      | 47.3.9                   | Channel (n) Value (TPM_CnV)                        | 1170 |
|      | 47.3.10                  | Combine Channel Register (TPM_COMBINE)             | 1171 |
|      | 47.3.11                  | Channel Trigger (TPM_TRIG)                         | 1173 |
|      | 47.3.12                  | Channel Polarity (TPM_POL)                         | 1174 |
|      | 47.3.13                  | Filter Control (TPM_FILTER)                        |      |
|      | 47.3.14                  | Quadrature Decoder Control and Status (TPM_QDCTRL) | 1176 |
|      | 47.3.15                  | Configuration (TPM_CONF)                           | 1177 |
| 47.4 | Function                 | nal description                                    | 1180 |
|      | 47.4.1                   | Clock domains                                      | 1180 |
|      | 47.4.2                   | Prescaler                                          | 1180 |
|      | 47.4.3                   | Counter                                            | 1181 |
|      | 47.4.4                   | Input Capture Mode                                 | 1184 |

| Sec  | tion nu  | imber Title                                           | Page |
|------|----------|-------------------------------------------------------|------|
|      | 47.4.5   | Output Compare Mode                                   | 1185 |
|      | 47.4.6   | Edge-Aligned PWM (EPWM) Mode                          | 1186 |
|      | 47.4.7   | Center-Aligned PWM (CPWM) Mode                        | 1188 |
|      | 47.4.8   | Combine PWM mode                                      | 1190 |
|      | 47.4.9   | Combine Input Capture mode                            | 1193 |
|      | 47.4.10  | Input Capture Filter                                  | 1194 |
|      | 47.4.11  | Deadtime insertion.                                   | 1195 |
|      | 47.4.12  | Quadrature Decoder mode                               |      |
|      | 47.4.13  | Registers Updated from Write Buffers                  |      |
|      | 47.4.14  | DMA                                                   |      |
|      | 47.4.15  | Output triggers                                       |      |
|      | 47.4.16  | Reset Overview                                        |      |
|      | 47.4.17  | TPM Interrupts                                        |      |
|      |          | Chapter 48 Trigger MUX Control (TRGMUX)               |      |
| 48.1 | Introduc | ction                                                 |      |
|      | 48.1.1   | Features                                              |      |
| 48.2 | Memory   | y map and register definition                         |      |
|      | 48.2.1   | TRGMUX Register Descriptions                          |      |
|      | 48.2.2   | TRGMUX Register Descriptions                          | 1218 |
|      |          | Chapter 49<br>SA-TRNG Standalone                      |      |
| 49.1 | Standal  | one True Random Number Generator (SA-TRNG)            |      |
|      | 49.1.1   | Standalone True Random Number Generator Block Diagram |      |
|      | 49.1.2   | TRNG Functional Description.                          |      |
|      | 49.1.3   | SA-TRNG hardware functional description               |      |
|      | 49.1.4   | Another TRNG usage example                            |      |
|      |          | Chapter 50<br>Touch Sensing Input (TSI)               |      |
| 50.1 | Introduc | ction                                                 |      |
|      |          | KL28Z Reference Manual, Rev. 4, 06/2016               |      |

| Sect | tion nu  | mber Title                                           | Page |
|------|----------|------------------------------------------------------|------|
|      | 50.1.1   | Features                                             | 1285 |
|      | 50.1.2   | Modes of operation                                   |      |
|      | 50.1.3   | Block diagram                                        | 1286 |
| 50.2 | External | signal description.                                  | 1287 |
|      | 50.2.1   | TSI[15:0]                                            | 1287 |
| 50.3 | Register | definition                                           | 1287 |
|      | 50.3.1   | TSI General Control and Status Register (TSIx_GENCS) |      |
|      | 50.3.2   | TSI DATA Register (TSIx_DATA)                        | 1292 |
|      | 50.3.3   | TSI Threshold Register (TSIx_TSHD)                   |      |
| 50.4 | Function | nal description                                      | 1293 |
|      | 50.4.1   | Capacitance measurement                              | 1294 |
|      | 50.4.2   | TSI measurement result                               |      |
|      | 50.4.3   | Enable TSI module                                    | 1297 |
|      | 50.4.4   | Software and hardware trigger.                       | 1297 |
|      | 50.4.5   | Scan times                                           |      |
|      | 50.4.6   | Clock setting                                        |      |
|      | 50.4.7   | Reference voltage                                    | 1298 |
|      | 50.4.8   | Current source                                       | 1299 |
|      | 50.4.9   | End of scan.                                         | 1299 |
|      | 50.4.10  | Out-of-range interrupt.                              | 1299 |
|      | 50.4.11  | Wake up MCU from low power modes                     |      |
|      | 50.4.12  | DMA function support                                 |      |
|      | 50.4.13  | Noise detection mode                                 | 1300 |
|      |          | Chapter 51 Time Stamp Timer Module (TSTMR)           |      |
| 51.1 | Introduc | tion                                                 | 1307 |
|      | 51.1.1   | Features.                                            |      |
| 51.2 | Memory   | map and register definition                          | 1307 |
|      | 51.2.1   | Time Stamp Timer Register Low (TSTMRx_L)             |      |

| Sec  | tion nu  | mber Title                                                              | Page |
|------|----------|-------------------------------------------------------------------------|------|
|      | 51.2.2   | Time Stamp Timer Register High (TSTMRx_H)                               | 1308 |
| 51.3 | Function | nal description                                                         | 1309 |
|      |          | Chapter 52<br>Universal Serial Bus Full Speed OTG Controller (USBFSOTG) |      |
| 52.1 | Introduc | tion                                                                    | 1311 |
|      | 52.1.1   | References                                                              | 1311 |
|      | 52.1.2   | USB—Overview.                                                           | 1312 |
|      | 52.1.3   | USB On-The-Go                                                           | 1313 |
|      | 52.1.4   | USBFS Features.                                                         | 1314 |
| 52.2 | Function | nal description                                                         | 1314 |
|      | 52.2.1   | Data Structures.                                                        | 1314 |
|      | 52.2.2   | On-chip transceiver required external components                        | 1315 |
| 52.3 | Program  | mers interface                                                          | 1317 |
|      | 52.3.1   | Buffer Descriptor Table                                                 | 1317 |
|      | 52.3.2   | RX vs. TX as a USB peripheral device or USB host                        | 1318 |
|      | 52.3.3   | Addressing BDT entries                                                  | 1319 |
|      | 52.3.4   | Buffer Descriptors (BDs)                                                | 1320 |
|      | 52.3.5   | USB transaction.                                                        |      |
| 52.4 | Memory   | map/Register definitions.                                               | 1324 |
|      | 52.4.1   | Peripheral ID register (USBx_PERID)                                     | 1327 |
|      | 52.4.2   | Peripheral ID Complement register (USBx_IDCOMP)                         | 1327 |
|      | 52.4.3   | Peripheral Revision register (USBx_REV)                                 | 1328 |
|      | 52.4.4   | Peripheral Additional Info register (USBx_ADDINFO)                      | 1328 |
|      | 52.4.5   | OTG Interrupt Status register (USBx_OTGISTAT)                           | 1329 |
|      | 52.4.6   | OTG Interrupt Control register (USBx_OTGICR)                            | 1330 |
|      | 52.4.7   | OTG Status register (USBx_OTGSTAT)                                      | 1331 |
|      | 52.4.8   | OTG Control register (USBx_OTGCTL)                                      | 1332 |
|      | 52.4.9   | Interrupt Status register (USBx_ISTAT)                                  | 1333 |
|      | 52.4.10  | Interrupt Enable register (USBx_INTEN)                                  | 1334 |
|      |          |                                                                         |      |

| Section nu  | umber Title                                                             | Page |
|-------------|-------------------------------------------------------------------------|------|
| 52.4.11     | Error Interrupt Status register (USBx_ERRSTAT)                          | 1335 |
| 52.4.12     | Error Interrupt Enable register (USBx_ERREN)                            | 1336 |
| 52.4.13     | Status register (USBx_STAT)                                             | 1337 |
| 52.4.14     | Control register (USBx_CTL)                                             | 1338 |
| 52.4.15     | Address register (USBx_ADDR)                                            | 1339 |
| 52.4.16     | BDT Page register 1 (USBx_BDTPAGE1)                                     | 1340 |
| 52.4.17     | Frame Number register Low (USBx_FRMNUML)                                | 1340 |
| 52.4.18     | Frame Number register High (USBx_FRMNUMH)                               | 1341 |
| 52.4.19     | Token register (USBx_TOKEN)                                             | 1341 |
| 52.4.20     | SOF Threshold register (USBx_SOFTHLD)                                   | 1342 |
| 52.4.21     | BDT Page Register 2 (USBx_BDTPAGE2)                                     | 1343 |
| 52.4.22     | BDT Page Register 3 (USBx_BDTPAGE3)                                     | 1343 |
| 52.4.23     | Endpoint Control register (USBx_ENDPTn)                                 | 1344 |
| 52.4.24     | USB Control register (USBx_USBCTRL)                                     | 1345 |
| 52.4.25     | USB OTG Observe register (USBx_OBSERVE)                                 | 1346 |
| 52.4.26     | USB OTG Control register (USBx_CONTROL)                                 | 1347 |
| 52.4.27     | USB Transceiver Control register 0 (USBx_USBTRC0)                       | 1347 |
| 52.4.28     | Frame Adjust Register (USBx_USBFRMADJUST)                               | 1349 |
| 52.4.29     | Miscellaneous Control register (USBx_MISCCTRL)                          | 1349 |
| 52.4.30     | USB Clock recovery control (USBx_CLK_RECOVER_CTRL)                      | 1350 |
| 52.4.31     | FIRC oscillator enable register (USBx_CLK_RECOVER_IRC_EN)               | 1351 |
| 52.4.31     | Clock recovery combined interrupt enable (USBx_CLK_RECOVER_INT_EN)      | 1352 |
| 52.4.32     | Clock recovery separated interrupt status (USBx_CLK_RECOVER_INT_STATUS) | 1352 |
| 52.5 OTG at | nd Host mode operation.                                                 | 1353 |
| 52.6 Host M | fode Operation Examples.                                                | 1353 |
| 52.7 On-The | e-Go operation                                                          | 1356 |
| 52.7.1      | OTG dual role A device operation                                        | 1357 |
| 52.7.2      | OTG dual role B device operation.                                       | 1358 |
| 52.8 Device | mode FIRC operation                                                     | 1360 |

| Sect | tion nu   | mber Title                                      | Page |
|------|-----------|-------------------------------------------------|------|
|      |           | Chapter 53<br>USB Voltage Regulator (VREG)      |      |
| 53.1 | Introdu   | ction                                           | 1361 |
|      | 53.1.1    | Overview                                        | 1361 |
|      | 53.1.2    | Features.                                       | 1362 |
|      | 53.1.3    | Modes of Operation                              |      |
| 53.2 | USB V     | oltage Regulator Module Signal Descriptions     |      |
|      |           | Chapter 54<br>Voltage Reference (VREF)          |      |
| 54.1 | Introdu   | ction                                           | 1365 |
|      | 54.1.1    | Overview                                        | 1366 |
|      | 54.1.2    | Features                                        | 1367 |
|      | 54.1.3    | Modes of Operation                              |      |
|      | 54.1.4    | VREF Signal Descriptions.                       | 1367 |
| 54.2 | Memor     | y Map and Register Definition                   | 1368 |
|      | 54.2.1    | VREF Trim Register (VREF_TRM)                   | 1368 |
|      | 54.2.2    | VREF Status and Control Register (VREF_SC)      | 1370 |
|      | 54.2.3    | VREF Trim Register 4 (VREF_TRM4)                | 1371 |
| 54.3 | Functio   | nal Description                                 | 1372 |
|      | 54.3.1    | Voltage Reference Disabled, SC[VREFEN] = 0      | 1372 |
|      | 54.3.2    | Voltage Reference Enabled, SC[VREFEN] = 1       |      |
|      | 54.3.3    | Internal voltage regulator.                     | 1374 |
| 54.4 | Initializ | ation/Application Information                   | 1374 |
|      |           | Chapter 55 Watchdog timer (WDOG32)              |      |
| 55.1 | Introdu   | ction                                           | 1377 |
|      | 55.1.1    | Features.                                       |      |
|      | 55.1.2    | Block diagram                                   | 1378 |
| 55.2 | Memor     | y map and register definition                   | 1379 |
|      | 55.2.1    | Watchdog Control and Status Register (WDOGx_CS) |      |

KL28Z Reference Manual, Rev. 4, 06/2016

NXP Semiconductors

41

| tion nu | ımber Title                                                                                       | Page                                         |
|---------|---------------------------------------------------------------------------------------------------|----------------------------------------------|
| 55.2.2  | Watchdog Counter Register (WDOGx_CNT)                                                             | 1381                                         |
| 55.2.3  | Watchdog Timeout Value Register (WDOGx_TOVAL)                                                     | 1382                                         |
| 55.2.4  | Watchdog Window Register (WDOGx_WIN)                                                              | 1383                                         |
| Functio | nal description                                                                                   | 1383                                         |
| 55.3.1  | Watchdog refresh mechanism.                                                                       | 1384                                         |
| 55.3.2  | Configuring the Watchdog Once                                                                     | 1385                                         |
| 55.3.3  | Clock source                                                                                      | 1387                                         |
| 55.3.4  | Using interrupts to delay resets                                                                  | 1388                                         |
| 55.3.5  | Backup reset                                                                                      | 1388                                         |
| 55.3.6  | Functionality in debug and low-power modes                                                        | 1389                                         |
| 55.3.7  | Fast testing of the watchdog                                                                      | 1389                                         |
|         | 55.2.2<br>55.2.3<br>55.2.4<br>Functio<br>55.3.1<br>55.3.2<br>55.3.3<br>55.3.4<br>55.3.5<br>55.3.6 | 55.2.2 Watchdog Counter Register (WDOGx_CNT) |

# Chapter 1 About This Document

#### 1.1 Overview

## 1.1.1 Purpose

This document describes the features, architecture, and programming model of the Freescale microcontroller.

#### 1.1.2 Audience

A reference manual is primarily for system architects and software application developers who are using or considering using a Freescale product in a system.

## 1.2 Conventions

## 1.2.1 Numbering systems

The following suffixes identify different numbering systems:

| This suffix | Identifies a                                                                                                                                                       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b           | Binary number. For example, the binary equivalent of the number 5 is written 101b. In some cases, binary numbers are shown with the prefix <i>0b</i> .             |
| d           | Decimal number. Decimal numbers are followed by this suffix only when the possibility of confusion exists. In general, decimal numbers are shown without a suffix. |
| h           | Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is written 3Ch. In some cases, hexadecimal numbers are shown with the prefix 0x.      |

# 1.2.2 Typographic notation

The following typographic notation is used throughout this document:

| Example              | Description                                                                                                                                                                                                                                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| placeholder, x       | Items in italics are placeholders for information that you provide. Italicized text is also used for the titles of publications and for emphasis. Plain lowercase letters are also used as placeholders for single letters and numbers.                                                                                  |
| code                 | Fixed-width type indicates text that must be typed exactly as shown. It is used for instruction mnemonics, directives, symbols, subcommands, parameters, and operators. Fixed-width type is also used for example code. Instruction mnemonics and directives in text and tables are shown in all caps; for example, BSR. |
| SR[SCM]              | A mnemonic in brackets represents a named field in a register. This example refers to the Scaling Mode (SCM) field in the Status Register (SR).                                                                                                                                                                          |
| REVNO[6:4], XAD[7:0] | Numbers in brackets and separated by a colon represent either:  • A subset of a register's named field                                                                                                                                                                                                                   |
|                      | For example, REVNO[6:4] refers to bits 6–4 that are part of the COREREV field that occupies bits 6–0 of the REVNO register.                                                                                                                                                                                              |
|                      | A continuous range of individual signals of a bus                                                                                                                                                                                                                                                                        |
|                      | For example, XAD[7:0] refers to signals 7–0 of the XAD bus.                                                                                                                                                                                                                                                              |

# 1.2.3 Special terms

The following terms have special meanings:

| Term       | Meaning                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| asserted   | Pefers to the state of a signal as follows:  • An active-high signal is asserted when high (1).  • An active-low signal is asserted when low (0).                |
| deasserted | Pefers to the state of a signal as follows:  • An active-high signal is deasserted when low (0).  • An active-low signal is deasserted when high (1).            |
|            | In some cases, deasserted signals are described as <i>negated</i> .                                                                                              |
| reserved   | Refers to a memory space, register, or field that is either reserved for future use or for which, when written to, the module or chip behavior is unpredictable. |

# Chapter 2 Introduction

#### 2.1 Overview

Information found here provides an overview of the KL28Z MCU part belonging to the Kinetis L series of MCUs based on the ARM® Cortex®-M0+ processor. It also presents high-level descriptions of the modules available on the devices covered by this document.

## 2.2 KL28Z sub-family introduction

The KL28Z is a sub-family of 32-bit Kinetis microcontrollers based on the ARM® Cortex®-M0+ processor. It is an extension of the existing L series MCU family, with additional memory. The KL28Z sub-family provides up to 96 MHz (HSRUN mode) CPU performance. It supports ultra low power, up to 512 KB Flash with 128 KB SRAM and integrates functions such as USB with crystal-less recovery. The features of the KL28Z sub-family derivatives are:

- Core One ARM® Cortex®-M0+ core functional operational up to 96 MHz.
- Memory option is up to 512 KB Flash and 128 KB RAM, partitioned to provide optimum performance.
- Wide operating voltage range from 1.71–3.6 V with fully functional flash program/ erase/read operations
- Multiple package options including 100 and 121-pin
- Ambient operating temperature ranges from –40 °C to 105 °C.

#### NOTE

The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

# 2.3 Feature Summary

The following table lists the features of this device.

**Table 2-1. Feature Summary** 

| Feature                                                  | Details                                                                                                          |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                          | Hardware Characteristics                                                                                         |
| Package                                                  | 100-pin LQFP                                                                                                     |
|                                                          | 121-pin XFBGA (Package Your Way)                                                                                 |
| Voltage range                                            | 1.71 V to 3.6 V                                                                                                  |
| Temperature range (T <sub>A</sub> )                      | -40°C to 105°C                                                                                                   |
| Temperature range (T <sub>J</sub> )                      | -40°C to 125°C                                                                                                   |
|                                                          | System                                                                                                           |
| Central processing unit (Core)                           | ARM Cortex M0+ core                                                                                              |
| Max. Core frequency                                      | 72 MHz                                                                                                           |
| Max. Bus frequency                                       | 24 MHz                                                                                                           |
| Nested vectored Interrupt                                | 32 vectored interrupts                                                                                           |
| controller (NVIC0)                                       | 4 programmable interrupt priority levels                                                                         |
| Interrupt Mux (INTMUX0)                                  | 32 input interrupt mux to 4 outputs assign to NVIC0                                                              |
|                                                          | with OR and AND interrupt functionality                                                                          |
| Direct memory access (DMA0)                              | 8 channels                                                                                                       |
| (Memory-Mapped) Divide and<br>Square Root module (DVSQ0) | Yes                                                                                                              |
| Non-maskable interrupt (NMI0)                            | Yes                                                                                                              |
| Software Watch Dog (WDOG0)                               | Yes                                                                                                              |
| Low-leakage Wakeup Unit (LLWU)                           | external wake-up pins with digital glitch filter                                                                 |
|                                                          | and internal wake-up sources (see LLWU section for details)                                                      |
| Debug and Trace                                          | 2-pin serial wire debug (SWD)                                                                                    |
|                                                          | [Micro trace buffers (MTB) + Data Watchpoints and Traces (DWT)]                                                  |
|                                                          | Simple Cross Triggering Interface                                                                                |
| Unique Identification (ID) Number                        | 80-bit wide                                                                                                      |
| AXBS Crossbar                                            | 4 Master 4 Slave crossbar                                                                                        |
|                                                          | Core/DMA0/USB0                                                                                                   |
| Peripheral Bridge (AIPS0)                                | Peripheral bridge interface                                                                                      |
| Peripheral Clock Control (PCC)                           | Peripheral Clock Control module that provides asynchronous clock options and gating function for each peripheral |
| Crypto Acceleration Unit (CAU0)                          | CAU0                                                                                                             |
| Cyclic Redundancy Check module (CRC)                     | Yes                                                                                                              |
| System Tick Timer (SYSTIK)                               | one 24-bit counter                                                                                               |
|                                                          |                                                                                                                  |

Table continues on the next page...

## **Table 2-1. Feature Summary (continued)**

| Feature                                                           | Details                                                                            |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Cyclic Redundancy Check module (CRC)                              | Yes                                                                                |
|                                                                   | Memory                                                                             |
| Flash memory                                                      | 512 KB flash                                                                       |
| Random-access memory (RAM)                                        | 128 KB                                                                             |
| Read-Only Memory (ROM)                                            | 32 KB                                                                              |
| System Register File                                              | 32 bytes                                                                           |
|                                                                   | Clocks                                                                             |
| System Clock Generator (SCG)                                      | SCG module with following modules.                                                 |
| Internal clock references                                         | 48 to 60 MHz internal IRC (FIRC) with 1.5% max. deviation across temperature       |
|                                                                   | 8 MHz / 2 MHz internal IRC (SIRC) with 3% max. deviation across temperature        |
|                                                                   | External Crystal oscillator module XOSC                                            |
|                                                                   | 1 kHz oscillator                                                                   |
| External crystal oscillator or                                    | Low range, low power or full-swing: 32 -40 kHz                                     |
| resonator                                                         | High range, low power or full-swing: 3 - 32 MHz                                    |
| External square wave input clock                                  | DC to 48 MHz                                                                       |
| Phased-locked loop (PLL)                                          | Up to 288 MHz VCO                                                                  |
|                                                                   | Human-Machine Interface (HMI)                                                      |
| General-purpose input/output                                      | 1.71-V to 3.3-V                                                                    |
| (GPIO)                                                            | Default to disabled (no leakage)                                                   |
|                                                                   | Hysteresis and configurable pull direction on all input pins                       |
|                                                                   | Configurable slew rate and fixed drive strength on all output pins                 |
|                                                                   | 8 pins with configurable 20 mA high current drive ability                          |
|                                                                   | Single cycle GPIO control via IOPORT                                               |
| Touch sensor inputs (TSI)                                         | 16-channel                                                                         |
|                                                                   | Selectable Single channel wakeup source available in all modes                     |
|                                                                   | DMA support                                                                        |
| Pin interrupt                                                     | All input Port Pins                                                                |
|                                                                   | Analog                                                                             |
| Power management controller                                       | Low and high voltage warning and detect with selectable trip points                |
| (PMC)                                                             | 1kHz LPO                                                                           |
| 16-bit analog-to-digital SAR                                      | >24 single-ended channels for larger packages                                      |
| converter (ADC)                                                   | 4 differential pair (muxed)                                                        |
|                                                                   | 2 "status & control", and "result" registers                                       |
|                                                                   | DMA support                                                                        |
| 1.2-V and 2.1-V Voltage<br>References                             | High accuracy configurable voltage reference to provide a stable reference for ADC |
| High speed comparator (CMP) with internal 6-bit digital-to-analog | 2<br>Up to 6 input channels                                                        |
| converter (DAC)                                                   | op to o input originiers                                                           |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Feature Summary**

**Table 2-1. Feature Summary (continued)** 

| Feature                                            | Details                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 12-bit DAC                                         | 1                                                                                                 |
|                                                    | DMA support                                                                                       |
|                                                    | 16 x 12-bit data buffer, true FIFO mode available                                                 |
|                                                    | Timers                                                                                            |
| 16-bit timer/pwm module 0 (TPM0)                   | 6 channels, basic TPM function supporting input filter, dead-time insertion and quadrature decode |
|                                                    | functional in Stop/VLPS mode                                                                      |
| 16-bit timer/pwm module 1 (TPM1)                   | 2 channels, basic TPM function supporting input filter, dead-time insertion and quadrature decode |
|                                                    | functional in Stop/VLPS mode                                                                      |
| 16-bit timer/pwm module 2 (TPM2)                   | 2 channels, basic TPM function supporting input filter, dead-time insertion and quadrature decode |
|                                                    | functional in Stop/VLPS mode                                                                      |
| 32-bit Programmable interrupt timer (PIT)          | one 4-ch LPIT                                                                                     |
| Real-time clock (RTC)                              | Yes                                                                                               |
| Low-power Timer (LPTMR0/1)                         | Two 16-bit pulse counter or periodic interrupt                                                    |
|                                                    | functional in all power modes                                                                     |
| TSTMR                                              | 56-bit software timestamp timer incrementing at 1 MHz                                             |
|                                                    | Communication Interfaces                                                                          |
| Universal Serial Bus (USB) 2.0 controller          | Supports USB FS device (crystal-less) or USB Host/OTG                                             |
| controller                                         | Supports up to 16 endpoints                                                                       |
| USB Regulator                                      | Yes (5V input, 3.3V output, up to 120 mA)                                                         |
| Low Power Serial peripheral interface (LPSPI0/1/2) | 3 LPSPIs                                                                                          |
| interface (LF 3F 10/1/2)                           | Functional in Stop/VLPS                                                                           |
|                                                    | DMA support, 4-word FIFO support on all 3 LPSPIs                                                  |
| Low Power Inter-Integrated Circuit                 | 3 LPI2C                                                                                           |
| (LPI <sup>2</sup> C0/1/2)                          | standard SMBUS compatible I2C                                                                     |
|                                                    | 4-word FIFO support on all 3 LPI2Cs                                                               |
|                                                    | DMA support                                                                                       |
|                                                    | Supports standard, fast and ultra-fast modes                                                      |
|                                                    | Fast+ mode and slave HS-mode are supported on high drive pads                                     |
|                                                    | Functional in Stop/VLPS modes                                                                     |
| Low Power Universal                                | 3 LPUART                                                                                          |
| asynchronous receiver/transmitter (LPUART0/1/2)    | Standard features                                                                                 |
| (=1 0/11/1/2)                                      | Tx pin pseudo open drain with enable/disable programmable                                         |
|                                                    | configurable from x4 to x32 oversampling                                                          |
|                                                    | Functional in STOP/VLPS modes                                                                     |
|                                                    | 32-bit data width                                                                                 |
| 1                                                  |                                                                                                   |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

**Table 2-1. Feature Summary (continued)** 

| Feature                                                    | Details                                                           |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------|--|--|
|                                                            | DMA support, 4-word FIFO support on all 3 LPUARTs                 |  |  |
| Euro, Mastercard, Visa Serial<br>Interface Module (EMVSIM) | 1 standalone module supporting ISO 7816 smart card communications |  |  |
| Synchronous Audio Interface (SAI)                          | 1 SAI                                                             |  |  |
|                                                            | Standard features support I2S                                     |  |  |
|                                                            | DMA support, 4-word FIFO support                                  |  |  |
| FlexIO                                                     | 1 FlexIO                                                          |  |  |
|                                                            | Support a wide range of protocols including, but not limited to:  |  |  |
|                                                            | UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/Waveform generation  |  |  |
|                                                            | 8 Shift registers and 8 Timers                                    |  |  |
|                                                            | 8/16/24-bit smart LCD drive                                       |  |  |
|                                                            | Functional in STOP/VLPS modes                                     |  |  |
|                                                            | DMA support                                                       |  |  |

# 2.4 Block Diagram

The below figure shows a top-level block diagram of the superset device.

#### **Block Diagram**

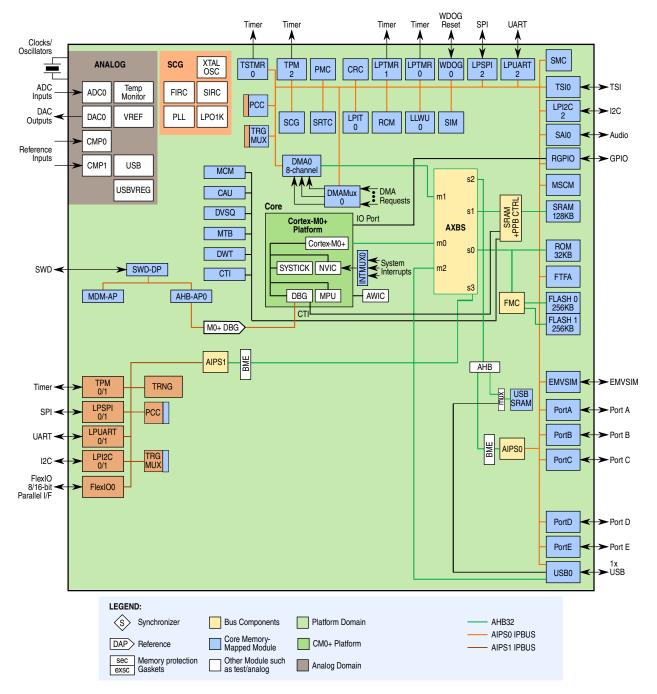



Figure 2-1. Block Diagram

# **Chapter 3 Chip Configuration**

#### 3.1 Introduction

This chapter provides details on the individual modules of the microcontroller.

#### It includes:

- Module block diagrams showing immediate connections within the device
- Specific module-to-module interactions not necessarily discussed in the individual module chapters
- Links for more information

#### In more detail:

- The device has 1 CPU (also called a core)
- Peripherals attached to the AIPS0 bridge are SoC-specific.
- The core and the DMAs have the capability to access peripherals on the AIPS0 and AIPS1 bridges.
- The core and DMA0 can freely access all peripherals.

## 3.2 Clock gating

Peripherals on the AIPS0/AIPS1 bridges have clock gating capability via a Peripheral Clock Control module (PCC).

### 3.3 Module to Module Interconnects

#### 3.3.1 Interconnection overview

#### **NOTE**

Many of the module to module interconnects are handled by the Trigger Mux module (TRGMUX). See the TRGMUX for more information.

The following table captures the module to module interconnections for this device that are not handled by the TRGMUX.

| Peripheral | Signal           | _  | to Peripheral | Use Case                               | Control         |
|------------|------------------|----|---------------|----------------------------------------|-----------------|
| CMP0       | CMP0_OUT         | to | LPTMR0        | Count CMP events                       | LPTMR0_CSR[TPS] |
| LPTMRx     | Hardware trigger | to | CMPx          | Low power triggering of the comparator | CMPx_CR1[TRIGM] |
| LPTMR0     | LPTMR0 Trigger   | to | LPTMR1        | Count LPTMR0 trigger events            | LPTMR1_CSR[TPS] |
| LPTMR0     | Hardware trigger | to | TSI0          | TSI triggering                         | TSI0_GENCS[STM] |

Table 3-1. Module-to-module interconnects

## 3.3.2 Analog reference options

Several analog blocks have selectable reference voltages as shown in Table 3-2. These options allow analog peripherals to share or have separate analog references. Care should be taken when selecting analog references to avoid cross talk noise.

| Module             | Reference option   | Comment/ Reference selection    |
|--------------------|--------------------|---------------------------------|
| 16-bit SAR ADC     | 1 - VREFH/VREFO    | Selected by ADCx_SC2[REFSEL]    |
|                    | 2 - VDDA           |                                 |
|                    | 3 - Reserved       |                                 |
| 12-bit DAC         | 1 - VDDA           | Selected by DACx_C0[DACRFS] bit |
|                    | 2 - VREFH/VREFO    |                                 |
| CMP with 6-bit DAC | Vin1 - VDD         | Selected by CMPx_DACCR[VRSEL]   |
|                    | Vin2 - VREFH/VREFO |                                 |

Table 3-2. Analog reference options

KL28Z Reference Manual, Rev. 4, 06/2016

53

#### 3.4 Core Modules

#### 3.4.1 Introduction

This device has one ARM Cortex M0+ CPU, called the Core.

- The enhanced ARM Cortex M0+ is the member of the Cortex-M Series of processors, with microcontroller cores focused on very cost sensitive, low power applications.
- Has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component.
- Has hardware debug functionality, including support for simple program trace capability.
- The processor supports the ARMv6-M instruction set (Thumb) architecture, including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions.
- Upward compatible with other Cortex-M profile processors.

#### 3.4.2 ARM Cortex M0+ core

ARM Cortex M0+ parameter settings are:

Table 3-3. ARM Cortex-M0+ parameter settings

| Parameter              | Verilog name | Value        | Description                                                     |
|------------------------|--------------|--------------|-----------------------------------------------------------------|
| Arch Clock Gating      | ACG          | 1 = Present  | Implements architectural clock gating                           |
| DAP Slave Port Support | AHBSLV       | 1            | Supports any AHB debug access port (like the CM0+ DAP)          |
| DAP ROM Table Base     | BASEADDR     | 0xF000_2003  | Base address for DAP ROM table                                  |
| Endianess              | BE           | 0            | Little endian control for data transfers                        |
| Breakpoints            | BKPT         | 2            | Implements 2 breakpoints                                        |
| Debug Support          | DBG          | 1 = Present  | _                                                               |
| Halt Event Support     | HALTEV       | 1 = Present  | _                                                               |
| I/O Port               | IOP          | 1 = Present  | Implements single-cycle ld/st accesses to special address space |
| IRQ Mask Enable        | IRQDIS       | 0x00000000   | All 32 IRQs are used (set if IRQ is disabled)                   |
| Debug Port Protocol    | JTAGnSW      | 0 = SWD      | SWD protocol, not JTAG                                          |
| Core Memory Protection | MPU          | 1 = Present  | Includes ARM based MPU with 8 regions implemented. <sup>1</sup> |
| Number of IRQs         | NUMIRQ       | 32           | Full NVIC request vector                                        |
| Reset all registers    | RAR          | 0 = Standard | Do not force all registers to be async reset                    |
| Multiplier             | SMUL         | 0 = Fast Mul | Implements single-cycle multiplier                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 3-3. ARM Cortex-M0+ parameter settings (continued)

| Parameter                    | Verilog name | Value       | Description                                           |
|------------------------------|--------------|-------------|-------------------------------------------------------|
| Multi-drop Support           | SWMD         | 0 = Absent  | Do not include serial wire support for multi-<br>drop |
| System Tick Timer            | SYST         | 1 = Present | Implements system tick timer (for CM4 compatibility)  |
| DAP Target ID                | TARGETID     | 0           | _                                                     |
| User/Privileged              | USER         | 1 = Present | Implements processor operating modes                  |
| Vector Table Offset Register | VTOR         | 1 = Present | Implements relocation of exception vector table       |
| WIC Support                  | WIC          | 1 = Present | Implements WIC interface                              |
| WIC Requests                 | WICLINES     | 34          | Exact number of wake-up IRQs is 34                    |
| Watchpoints                  | WPT          | 2           | Implements two watchpoints                            |

<sup>1.</sup> Documentation for this feature can be found at the ARM website

For details on the ARM Cortex-M0+ processor core, see the ARM website:arm.com.

## 3.4.3 Debug facilities

This device supports standard ARM 2-pin SWD debug port.

## 3.4.4 Buses, interconnects, and interfaces

The ARM Cortex-M0+ core has two bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all system memory, which includes flash memory and RAM
- Single 32-bit I/O port bus interfacing to the GPIO with 1-cycle loads and stores

## 3.4.5 System tick timer

The CLKSOURCE field in SysTick Control and Status register selects either the core clock (when CLKSOURCE = 1) or a divide-by-16 of the core clock (when CLKSOURCE = 0). Because the timing reference is a variable frequency, the TENMS field in the SysTick Calibration Value Register is always 0.

#### **3.4.6 Caches**

This device does not include any processor cache memories.

## 3.4.7 Interrupt connections

The device has one NVIC module (NVIC0), which has peripheral interrupts assigned to it.

There is one INTMUX module (INTMUX0), which has 4 outputs that each are given a fixed NVIC0 vector space. INTMUX0-ch0-3 has 4 dedicated vector slots on NVIC0.

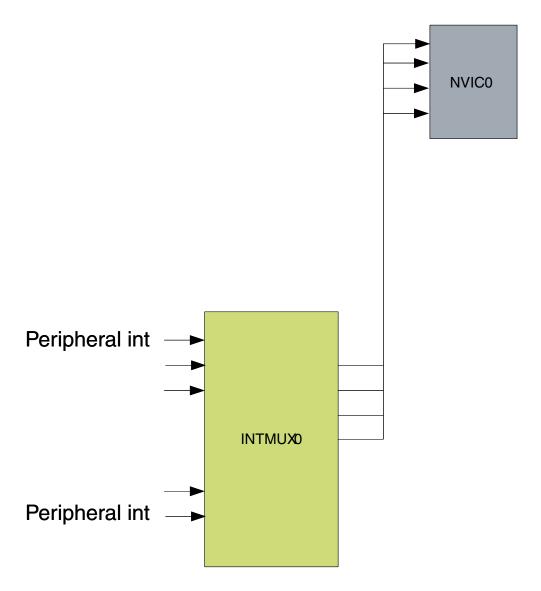



Figure 3-1. Interrupt Routing Block Diagram

The CPU can mask off any interrupt connected to the 32-slot NVIC0 module. The INTMUX0 module allows:

#### **Core Modules**

- the ORing of selectable interrupt sources to one specific NVIC0 vector interrupt slot of the CPU.
- the ANDing of selectable interrupt sources to one specific NVIC0 vector interrupt slot of the CPU.

## 3.4.7.1 NVIC0 Interrupt assignments

The interrupt vector assignments for NVIC0 are defined in the following table.

Table 3-4. NVIC0

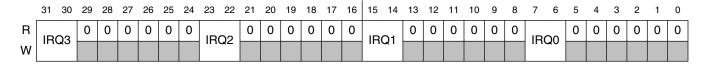
| Address              | Vector | IRQ | Source Module    | Source Description                                         |
|----------------------|--------|-----|------------------|------------------------------------------------------------|
| 0x0000_0000          | 0      | _   | ARM core         | Initial Stack Pointer                                      |
| 0x0000_0004          | 1      | _   | ARM core         | Initial Program Counter                                    |
| 0x0000_0008          | 2      | _   | ARM core         | Non-maskable interrupt (NMI)                               |
| 0x0000_000C          | 3      | _   | ARM core         | Hard Fault (MPU)                                           |
| 0x0000_0010          | 4      | _   | _                | Reserved                                                   |
| 0x0000_0014          | 5      | _   | _                | Reserved                                                   |
| 0x0000_0018          | 6      | _   | _                | Reserved                                                   |
| 0x0000_001C          | 7      | _   | _                | Reserved                                                   |
| 0x0000_0020          | 8      | _   | _                | Reserved                                                   |
| 0x0000_0024          | 9      | _   | _                | Reserved                                                   |
| 0x0000_0028          | 10     | _   | _                | Reserved                                                   |
| 0x0000_002C          | 11     | _   | ARM core         | Supervisor call (SVCall)                                   |
| 0x0000_0030          | 12     | _   | _                | Reserved                                                   |
| 0x0000_0134          | 13     | _   | _                | Reserved                                                   |
| 0x0000_0038          | 14     | _   | ARM core         | Pendable request for<br>system service<br>(PendableSrvReq) |
| 0x0000_003C          | 15     | _   | ARM core         | System tick timer (SysTick)                                |
| On Platform vectors  | _      | _   | _                | _                                                          |
| 0x0000_0040          | 16     | 0   | DMA0             | DMA0 channel 0 or 4 transfer complete                      |
| 0x0000_0044          | 17     | 1   | DMA0             | DMA0 channel 1 or 5 transfer complete                      |
| 0x0000_0048          | 18     | 2   | DMA0             | DMA0 channel 2 or 6 transfer complete                      |
| 0x0000_004C          | 19     | 3   | DMA0             | DMA0 channel 3 or 7 transfer complete                      |
| 0x0000_0050          | 20     | 4   | CTI0, DMA0_error | Cross Trigger Interface<br>0 and DMA0 channel<br>errors    |
| Off Platform vectors | _      | _   | _                | _                                                          |

Table continues on the next page...

#### **Chapter 3 Chip Configuration**

Table 3-4. NVIC0 (continued)

| Address      | Vector | IRQ | Source Module | Source Description                         |
|--------------|--------|-----|---------------|--------------------------------------------|
| 0x0000_0054  | 21     | 5   | FlexIO0       | Flexible IO                                |
| 0x0000_0058  | 22     | 6   | TPM0          | Low Power Timer PWM module 0               |
| 0x0000_005C  | 23     | 7   | TPM1          | Low Power Timer PWM module 1               |
| 0x0000_0060  | 24     | 8   | TPM2          | Low Power Timer PWM module 2               |
| 0x0000_0064  | 25     | 9   | LPIT0         | Low Power Periodic<br>Interrupt Timer 0    |
| 0x0000_0068  | 26     | 10  | LPSPI0        | Low Power Serial<br>Peripheral Interface 0 |
| 0x0000_006C  | 27     | 11  | LPSPI1        | Low Power Serial<br>Peripheral Interface 1 |
| 0x0000_0070  | 28     | 12  | LPUART0       | Low Power UART 0                           |
| 0x0000_0074  | 29     | 13  | LPUART1       | Low Power UART 1                           |
| 0x0000_0078  | 30     | 14  | LPI2C0        | Low Power IIC module 0                     |
| 0x0000_007C  | 31     | 15  | LPI2C1        | Low Power IIC module<br>1                  |
| 0x0000_0080  | 32     | 16  | _             | Reserved                                   |
| 0x0000_0084  | 33     | 17  | PortA         | Port A                                     |
| 0x0000_0088  | 34     | 18  | PortB         | Port B                                     |
| 0x0000_008C  | 35     | 19  | PortC         | Port C                                     |
| 0x0000_0090  | 36     | 20  | PortD         | Port D                                     |
| 0x0000_0094  | 37     | 21  | PortE         | Port E                                     |
| 0x0000_0098  | 38     | 22  | LLWU0         | Low Leakage Wake Up                        |
| 0x0000_009C  | 39     | 23  | SAI0          | Serial Audio Interface 0                   |
| 0x0000_00A0  | 40     | 24  | USB0          | Universal Serial Bus 0                     |
| 0x0000_00A4  | 41     | 25  | ADC0          | Analog to Digital<br>Convertor 0           |
| 0x0000_000A8 | 42     | 26  | LPTMR0        | Low Power Timer 0                          |
| 0x0000_00AC  | 43     | 27  | RTC Secs      | Real Time Clock<br>Seconds                 |
| 0x0000_00B0  | 44     | 28  | INTMUX0-0     | Selectable peripheral interrupt INTMUX0-0  |
| 0x0000_00B4  | 45     | 29  | INTMUX0-1     | Selectable peripheral interrupt INTMUX0-1  |
| 0x0000_00B8  | 46     | 30  | INTMUX0-2     | Selectable peripheral interrupt INTMUX0-2  |
| 0x0000_00BC  | 47     | 31  | INTMUX0-3     | Selectable peripheral interrupt INTMUX0-3  |


# 3.4.7.2 INTMUX0 Input Mux Assignment

## Table 3-5. INTMUX0 Peripheral Interrupt assigment

| INTMUX0 input | Peripheral Interrupt Source |
|---------------|-----------------------------|
| 0             | LPTMR1                      |
| 1             | Reserved                    |
| 2             | Reserved                    |
| 3             | Reserved                    |
| 4             | LSPI2                       |
| 5             | LPUART2                     |
| 6             | EMVSIM                      |
| 7             | LPI2C2                      |
| 8             | TSI                         |
| 9             | PMC                         |
| 10            | FTFA                        |
| 11            | SCG                         |
| 12            | WDOG0                       |
| 13            | DAC0                        |
| 14            | TRNG                        |
| 15            | RCM                         |
| 16            | CMP0                        |
| 17            | CMP1                        |
| 18            | RTC Alarm                   |
| 19            | Reserved                    |
| 20            | Reserved                    |
| 21            | Reserved                    |
| 22            | Reserved                    |
| 23            | Reserved                    |
| 24            | Reserved                    |
| 25            | Reserved                    |
| 26            | Reserved                    |
| 27            | Reserved                    |
| 28            | Reserved                    |
| 29            | Reserved                    |
| 30            | Reserved                    |
| 31            | Reserved                    |

## 3.4.7.3 Interrupt priority levels

This device supports 4 priority levels for interrupts. Therefore, in the NVIC, each source in the IPR registers contains 2 bits. For example, IPR0 is shown below:



## 3.4.7.4 Non-maskable interrupt

The non-maskable interrupt request to the NVIC is controlled by the external  $\overline{\text{NMI}}$  signal. The pin that the  $\overline{\text{NMIO}}$  signal is multiplexed on, must be configured for the  $\overline{\text{NMI}}$  function, to generate the non-maskable interrupt request.

• The Core enables the NMI in NVIC0 by default, and the NMIO pin is also enabled by default.

## 3.4.8 Asynchronous Wake-up Interrupt Controller (AWIC)

#### 3.4.8.1 AWIC overview

The primary function of the AWIC block is to detect asynchronous wake-up events in stop modes, and then signal to the clock control logic to resume system clocking. After the clock restarts, the NVIC observes the pending interrupt and performs the normal interrupt or event processing.

#### 3.4.8.2 Wake-up sources

**CMP** 

The device uses the following internal and external inputs to the AWIC module.

Interrupt in normal or trigger mode

 Wake-up source
 Description

 Available system resets
 RESET\_b pin when LPO is its clock source

 Low-voltage detect
 Power management controller—functional in Stop mode

 Low-voltage warning
 Power management controller—functional in Stop mode

 Pin interrupts
 Port control module—any enabled pin interrupt is capable of waking the system.

 ADC
 The ADC is functional when using internal clock source.

Table 3-7. AWIC stop wake-up sources

Table continues on the next page...

NXP Semiconductors 59

#### KL28Z Reference Manual, Rev. 4, 06/2016

Table 3-7. AWIC stop wake-up sources (continued)

| Wake-up source | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
| LPI2C          | Any enabled interrupt can be a source as long as the module remains clocked. |
| LPUART         | Any enabled interrupt can be a source as long as the module remains clocked. |
| RTC            | Alarm or seconds interrupt                                                   |
| TSI            | Any enabled interrupt can be a source as long as the module remains clocked. |
| NMI            | NMI_b pin                                                                    |
| TPM            | Any enabled interrupt can be a source as long as the module remains clocked. |
| LPTMRx         | Any enabled interrupt can be a source as long as the module remains clocked. |
| LPSPI          | Any enabled interrupt can be a source as long as the module remains clocked. |
| LPIT           | Any enabled interrupt can be a source as long as the module remains clocked. |
| FlexIO         | Any enabled interrupt can be a source as long as the module remains clocked. |
| USB            | Wake-up                                                                      |

# 3.5 System Modules

#### 3.5.1 Crossbar Switch

## 3.5.1.1 Crossbar switch master assignments

The masters connected to the crossbar switch are assigned as follows:

| AXBS0 Master module          | Master port number |
|------------------------------|--------------------|
| Core 0- ARM core unified bus | 0                  |
| DMA0                         | 1                  |
| USB0                         | 2                  |
| Reserved                     | 3                  |

## 3.5.1.2 Crossbar switch slave assignments

The slaves connected to the crossbar switch are assigned as follows:

| AXBS0 Slave module                   | Slave port number |
|--------------------------------------|-------------------|
| Flash memory controller and Boot ROM | 0                 |
| Core 0 SRAM controller               | 1                 |

Table continues on the next page...

61

| AXBS0 Slave module  | Slave port number |
|---------------------|-------------------|
| Peripheral bridge 0 | 2                 |
| Peripheral bridge 1 | 3                 |

## 3.5.2 Low-Leakage Wake-up Unit (LLWU)

## 3.5.2.1 Wake-up Sources

The device uses the following internal peripheral and external pin inputs as wakeup sources to the LLWU module. LLWU\_Px are external pin inputs, and LLWU\_M0IF-M7IF are connections to the internal peripheral interrupt flags.

#### **NOTE**

In addition to the LLWU wakeup sources, the device also wakes from low power modes when NMI or RESET pins are enabled and the respective pin is asserted.

Table 3-8. LLWU Wakeup Sources

| IRQ      | Module source or pin name |
|----------|---------------------------|
| LLWU_P0  | PTE1                      |
| LLWU_P1  | PTE2                      |
| LLWU_P2  | PTE4                      |
| LLWU_P3  | PTA4                      |
| LLWU_P4  | PTA13                     |
| LLWU_P5  | PTB0                      |
| LLWU_P6  | PTC1                      |
| LLWU_P7  | PTC3                      |
| LLWU_P8  | PTC4                      |
| LLWU_P9  | PTC5                      |
| LLWU_P10 | PTC6                      |
| LLWU_P11 | PTC11                     |
| LLWU_P12 | PTD0                      |
| LLWU_P13 | PTD2                      |
| LLWU_P14 | PTD4                      |
| LLWU_P15 | PTD6                      |
| LLWU_P16 | PTE6                      |
| LLWU_P17 | Reserved                  |
| LLWU_P18 | Reserved                  |
| LLWU_P19 | PTE17                     |

Table continues on the next page...

#### Low-Leakage Wake-up Unit (LLWU)

Table 3-8. LLWU Wakeup Sources (continued)

| IRQ                 | Module source or pin name     |  |
|---------------------|-------------------------------|--|
| LLWU_P20            | PTE18                         |  |
| LLWU_P21            | PTE25                         |  |
| LLWU_P22            | PTA10                         |  |
| LLWU_P23            | PTA11                         |  |
| LLWU_P24            | PTD8                          |  |
| LLWU_P25            | PTD11                         |  |
| LLWU_P26            | VREGIN                        |  |
| LLWU_P27            | USB0_DM                       |  |
| LLWU_P28            | USB0_DP                       |  |
| LLWU_P29 - LLWU_P31 | Reserved                      |  |
| LLWU_M0IF           | LPTMR0                        |  |
| LLWU_M1IF           | CMP0                          |  |
| LLWU_M2IF           | CMP1                          |  |
| LLWU_M3IF           | LPTMR1 asynchronous interrupt |  |
| LLWU_M4IF           | TSI0                          |  |
| LLWU_M5IF           | RTC Alarm                     |  |
| LLWU_M6IF           | Reserved                      |  |
| LLWU_M7IF           | RTC Seconds                   |  |
| LLWU_M0DR           | LPTMR0 asynchronous DMA       |  |
| LLWU_M3DR           | LPTMR1 asynchronous DMA       |  |
| LLWU_M4DR           | TSI asynchronous DMA          |  |
| LLWU_M6DR           | LPTMR0 trigger                |  |
| LLWU_M7DR           | LPTMR1 trigger                |  |

#### 3.5.3 DMAMUXs

#### 3.5.3.1 DMAMUX0

DMAMUX0 is a DMA request mux that allows up to 63 DMA request signals to be mapped to any of the 8 DMA channels of DMA0. Because of the mux, there is no hard correlation between any of the DMA request sources and a specific DMA channel. Some of the modules support asynchronous DMA operation, as shown in the DMA source assignment table.

Table 3-9. DMAMUX0 source assignments

| Source No | Source module | Source description    | Async DMA capable |
|-----------|---------------|-----------------------|-------------------|
| 0         | _             | Channel disabled      | _                 |
| 1         | FlexIO0       | Shifter 0             | Yes               |
| 2         | FlexIO0       | Shifter 1             | Yes               |
| 3         | FlexIO0       | Shifter 2             | Yes               |
| 4         | FlexIO0       | Shifter 3             | Yes               |
| 5         | FlexIO0       | Shifter 4             | Yes               |
| 6         | FlexIO0       | Shifter 5             | Yes               |
| 7         | FlexIO0       | Shifter 6             | Yes               |
| 8         | FlexIO0       | Shifter 7             | Yes               |
| 9         | LPI2C0        | Master/Slave Receive  | Yes               |
| 10        | LPI2C0        | Master/Slave Transmit | Yes               |
| 11        | LPI2C1        | Master/Slave Receive  | Yes               |
| 12        | LPI2C1        | Master/Slave Transmit | Yes               |
| 13        | LPI2C2        | Master/Slave Receive  | Yes               |
| 14        | LPI2C2        | Master/Slave Transmit | Yes               |
| 15        | LPUART0       | Receive               | Yes               |
| 16        | LPUART0       | Transmit              | Yes               |
| 17        | LPUART1       | Receive               | Yes               |
| 18        | LPUART1       | Transmit              | Yes               |
| 19        | LPUART2       | Receive               | Yes               |
| 20        | LPUART2       | Transmit              | Yes               |
| 21        | LPSPI0        | Receive               | Yes               |
| 22        | LPSPI0        | Transmit              | Yes               |
| 23        | LPSPI1        | Receive               | Yes               |
| 24        | LPSPI1        | Transmit              | Yes               |
| 25        | LPSPI2        | Receive               | Yes               |
| 26        | LPSPI2        | Transmit              | Yes               |
|           |               |                       |                   |

Table continues on the next page...

#### **DMAMUXs**

Table 3-9. DMAMUX0 source assignments (continued)

| Source No | Source module | Source description          | Async DMA capable |
|-----------|---------------|-----------------------------|-------------------|
| 27        | TPM0          | Channel 0                   | Yes               |
| 28        | TPM0          | Channel 1                   | Yes               |
| 29        | TPM0          | Channel 2                   | Yes               |
| 30        | TPM0          | Channel 3                   | Yes               |
| 31        | TPM0          | Channel 4                   | Yes               |
| 32        | TPM0          | Channel 5                   | Yes               |
| 33        | Reserved      | _                           | _                 |
| 34        | Reserved      | _                           | _                 |
| 35        | TPM0          | Overflow                    | Yes               |
| 36        | TPM1          | Channel 0                   | Yes               |
| 37        | TPM1          | Channel 1                   | Yes               |
| 38        | TPM1          | Overflow                    | Yes               |
| 39        | TPM2          | Channel 0                   | Yes               |
| 40        | TPM2          | Channel 1                   | Yes               |
| 41        | TPM2          | Overflow                    | Yes               |
| 42        | Reserved      | _                           | _                 |
| 43        | EMVSIM        | Receive                     | Yes               |
| 44        | EMVSIM        | Transmit                    | Yes               |
| 45        | SAI0          | Receive                     | Yes               |
| 46        | SAI0          | Transmit                    | Yes               |
| 47        | PortA         | Port Control module         | Yes               |
| 48        | PortB         | Port Control module         | Yes               |
| 49        | PortC         | Port Control module         | Yes               |
| 50        | PortD         | Port Control Module         | Yes               |
| 51        | PortE         | Port Control module         | Yes               |
| 52        | ADC0          | Conversion complete         | Yes               |
| 53        | Reserved      | _                           | _                 |
| 54        | DAC0          | Digital-to-Analog Converter | Yes               |
| 55        | Reserved      | _                           | _                 |
| 56        | CMP0          | Comparator                  | Yes               |
| 57        | CMP1          | Comparator                  | Yes               |
| 58        | Reserved      | _                           | _                 |
| 59        | Reserved      | _                           | _                 |
| 60        | TSI           | Touch Sensor Interface      | Yes               |
| 61        | LPTMR0        | Low Power Timer 0           | Yes               |
| 62        | LPTMR1        | Low Power Timer 1           | Yes               |
| 63        | DMA MUX       | Always enabled              |                   |

65

## 3.5.4 Watchdog (WDOG)

#### **3.5.4.1 WDOG clocks**

The multiple clock inputs for the WDOG are:

- 1 kHz clock
- bus clock
- 8 MHz or 2 MHz internal reference clock
- external crystal

## 3.5.5 System Register File Configuration

This section summarizes how the module has been configured in the chip.

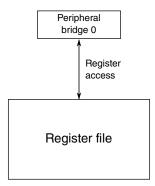



Figure 3-2. System Register file configuration

Table 3-10. Reference links to related information

| Topic             | Related module | Reference          |
|-------------------|----------------|--------------------|
| Full description  | Register file  | Register file      |
| System memory map |                | System memory map  |
| Clocking          |                | Clock distribution |
| Power management  |                | Power management   |

## 3.5.5.1 System Register file

This device includes a 32-byte register file that is powered in all power modes.

Also, it retains contents during low-voltage detect (LVD) events and is only reset during a power-on reset.

#### Watchdog (WDOG)

Base address of this register file is 0x4007\_C000. ( see Table "Peripheral bridge 0 slot assignment").

## 3.5.6 Peripheral Clock Control (PCC) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

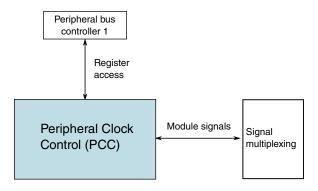



Figure 3-3. PCC configuration

#### 3.5.6.1 Overview

The device deploys two Peripheral Clock Control modules that allow clock gating, and clock source selection to each peripheral. Each AIPS bridge has its own corresponding PCC module.

In addition to this clock, there are optional peripheral clock sources that may be asynchronous to the CPU/Platform clock: SCGIRCLK, SCGFIRCLK, SCGPCLK, SCGFCLK, LPO, OSCCLK, SCGSPCLK.

## 3.5.7 System Register File Configuration

This section summarizes how the module has been configured in the chip.

67

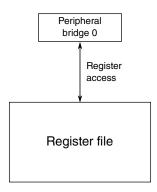



Figure 3-4. System Register file configuration

Table 3-11. Reference links to related information

| Topic             | Related module | Reference          |
|-------------------|----------------|--------------------|
| Full description  | Register file  | Register file      |
| System memory map |                | System memory map  |
| Clocking          |                | Clock distribution |
| Power management  |                | Power management   |

### 3.5.7.1 System Register file

This device includes a 32-byte register file that is powered in all power modes.

Also, it retains contents during low-voltage detect (LVD) events and is only reset during a power-on reset.

Base address of this register file is 0x4007\_C000. (see Table "Peripheral bridge 0 slot assignment").

## 3.6 Security

## 3.6.1 CAU Configuration

There is 1 CAU module: CAU0, which is connected to the Core PPB.

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

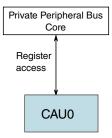



Figure 3-5. CAU configuration

#### **3.6.1.1 CAU Overview**

The CAU provides security encrypt/decrypt acceleration to allow users to share secure data with external devices via a serial communication port (such as an SAI or LPUART module).

The CAU clock source is the CPU/platform clock.

# 3.7 Analog

## 3.7.1 16-bit SAR ADC configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

69

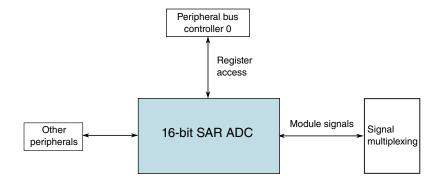



Figure 3-6. 16-bit SAR ADC configuration

Table 3-12. Reference links to related information

| Topic               | Related module              | Reference           |
|---------------------|-----------------------------|---------------------|
| Full description    | 16-bit SAR ADC              | 16-bit SAR ADC      |
| System memory map   | _                           | System memory map   |
| Clocking            | _                           | Clock distribution  |
| Power management    | nagement — Power management |                     |
| Signal multiplexing | Port control                | Signal multiplexing |

#### 3.7.1.1 ADC instantiation information

This device contains one 16-bit successive approximation ADC with up to ~30 to 38 channels.

The ADC supports both software and hardware triggers.

The number of ADC channels present on the device is determined by the pinout of the specific device package.

#### 3.7.1.2 DMA Support on ADC

Applications may require continuous sampling of the ADC that may have considerable load on the CPU. The ADC supports DMA request functionality for higher performance when the ADC is sampled at a very high rate. The ADC can trigger the DMA (via DMA req) on conversion completion.

# 3.7.1.3 ADC0 connections/channel assignments

#### **NOTE**

As indicated by the following sections, each ADCx\_DPx input and certain ADCx\_DMx inputs may operate as single-ended ADC channels in single-ended mode.

| ADC channel (SC1n[ADCH]) | Channel | Input signal<br>(SC1n[DIFF]= 1) | Input signal<br>(SC1n[DIFF]= 0)  |
|--------------------------|---------|---------------------------------|----------------------------------|
| 00000                    | DAD0    | ADC0_DP0 and ADC0_DM0           | ADC0_DP0/ADC0_SE0                |
| 00001                    | DAD1    | ADC0_DP1 and ADC0_DM1           | ADC0_DP1/ADC0_SE1                |
| 00010                    | DAD2    | ADC0_DP2 and ADC0_DM2           | ADC0_DP2/ADC0_SE2                |
| 00011                    | DAD3    | ADC0_DP3 and ADC0_DM3           | ADC0_DP3/ADC0_SE3                |
| 00100 <sup>1</sup>       | AD4a    | Reserved                        | ADC0_DM0/ADC0_SE4a               |
| 00101 <sup>1</sup>       | AD5a    | Reserved                        | ADC0_DM1/ADC0_SE5a               |
| 00110 <sup>1</sup>       | AD6a    | Reserved                        | ADC0_DM2/ADC0_SE6a               |
| 00111 <sup>1</sup>       | AD7a    | Reserved                        | ADC0_DM3/ADC0_SE7a               |
| 00100 <sup>1</sup>       | AD4b    | Reserved                        | ADC0_SE4b                        |
| 00101 <sup>1</sup>       | AD5b    | Reserved                        | ADC0_SE5b                        |
| 00110 <sup>1</sup>       | AD6b    | Reserved                        | ADC0_SE6b                        |
| 00111 <sup>1</sup>       | AD7b    | Reserved                        | ADC0_SE7b                        |
| 01000                    | AD8     | Reserved                        | ADC0_SE8                         |
| 01001                    | AD9     | Reserved                        | ADC0_SE9                         |
| 01010                    | AD10    | Reserved                        | Reserved                         |
| 01011                    | AD11    | Reserved                        | ADC0_SE11                        |
| 01100                    | AD12    | Reserved                        | ADC0_SE12                        |
| 01101                    | AD13    | Reserved                        | ADC0_SE13                        |
| 01110                    | AD14    | Reserved                        | ADC0_SE14                        |
| 01111                    | AD15    | Reserved                        | ADC0_SE15                        |
| 10000                    | AD16    | Reserved                        | Reserved                         |
| 10001                    | AD17    | Reserved                        | Reserved                         |
| 10010                    | AD18    | Reserved                        | Reserved                         |
| 10011                    | AD19    | Reserved                        | Reserved                         |
| 10100                    | AD20    | Reserved                        | Reserved                         |
| 10101                    | AD21    | Reserved                        | Reserved                         |
| 10110                    | AD22    | Reserved                        | Reserved                         |
| 10111                    | AD23    | Reserved                        | 12-bit DAC0 Output/<br>ADC0_SE23 |
| 11000                    | AD24    | Reserved                        | Reserved                         |
| 11001                    | AD25    | Reserved                        | Reserved                         |
| 11010                    | AD26    | Temperature Sensor (Diff)       | Temperature Sensor (S.E)         |
| 11011                    | AD27    | Bandgap (Diff) <sup>2</sup>     | Bandgap (S.E) <sup>2</sup>       |
| 11100                    | AD28    | Reserved                        | Reserved                         |

Table continues on the next page...

71

| ADC channel<br>(SC1n[ADCH]) | Channel | Input signal<br>(SC1n[DIFF]= 1) | Input signal<br>(SC1n[DIFF]= 0) |
|-----------------------------|---------|---------------------------------|---------------------------------|
| 11101                       | AD29    | -VREFH (Diff)                   | VREFH (S.E)                     |
| 11110                       | AD30    | Reserved                        | VREFL                           |
| 11111                       | AD31    | Module Disabled                 | Module Disabled                 |

- ADCx\_CFG2[MUXSEL] bit selects between ADCx\_SEn channels a and b. Refer to MUXSEL description in ADC chapter for details.
- This is the PMC bandgap 1V reference voltage. Prior to reading from this ADC channel, ensure that you enable the bandgap buffer by setting the PMC\_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V<sub>BG</sub>) specification.

#### 3.7.1.4 ADC analog supply and reference connections

See Analog reference options.

- This device includes dedicated VDDA and VSSA pins.
- This device contains dedicated VREFH and VREFL pins in all packages.
- The output of the on-chip high precision VREF module is shared with VREFH. When VREF is enabled, this pin needs to connect a capacitor to ground.

The ADC supports the following references:

- VREFH is connected to VREF\_OUT as the external reference.
- VDDA is connected as the V<sub>ALTH</sub> reference.

#### 3.7.1.5 ADC clock source

The ADC module clock is sourced from the Peripheral Clock Control (PCC) module.

## 3.7.2 CMP configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

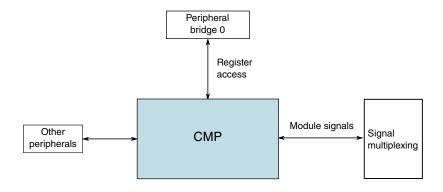



Figure 3-7. CMP configuration

Table 3-13. Reference links to related information

| Topic               | Related module   | Reference           |
|---------------------|------------------|---------------------|
| Full description    | Comparator (CMP) | Comparator          |
| System memory map   | _                | System memory map   |
| Clocking            | _                | Clock distribution  |
| Power management    | _                | Power management    |
| Signal multiplexing | Port control     | Signal multiplexing |

#### 3.7.2.1 CMP instantiation information

The device includes two high-speed comparators each with two 8-input multiplexers for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes. Two of the channels are connected to internal sources, leaving resources to support up to 6 input pins. See the channel assignment table for a summary of CMP input connections for this device.

The CMPs also include one 6-bit DAC with a 64-tap resistor ladder network, which provides a selectable voltage reference for applications where voltage reference is needed for an internal connection to the CMP.

The CMPs can be optionally on in all modes except VLLS0.

#### 3.7.2.2 CMP connections

The following table shows the fixed internal connections to the CMPs.

Table 3-14. CMP input connections

| CMP inputs | СМРО                        | CMP1                        |
|------------|-----------------------------|-----------------------------|
| IN0        | PTC6                        | PTC2                        |
| IN1        | PTC7                        | PTC3                        |
| IN2        | PTC8                        | Reserved                    |
| IN3        | PTC9                        | PTE30/12-bit DAC0 reference |
| IN4        | PTE30/12-bit DAC0 reference | Reserved                    |
| IN5        | PTE29                       | PTE29                       |
| IN6        | Bandgap <sup>1</sup>        | Bandgap <sup>1</sup>        |
| IN7        | 6-bit DAC0 reference        | 6-bit DAC1 reference        |

<sup>1.</sup> This is the PMC bandgap 1V reference voltage. Prior to using as CMP input, ensure that you enable the bandgap buffer by setting PMC\_REGSC[BGBE]. See the device data sheet for the bandgap voltage (V<sub>BG</sub>) specification.

The following table shows the external output pin options for the CMPs.

Table 3-15. CMP external output pin options

| CMP outputs | External pin options    |
|-------------|-------------------------|
| CMP0_OUT    | PTE0, PTB20, PTC0, PTC5 |
| CMP1_OUT    | PTB21, PTC4             |

## 3.7.3 **VREF**

## 3.7.3.1 VREF Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

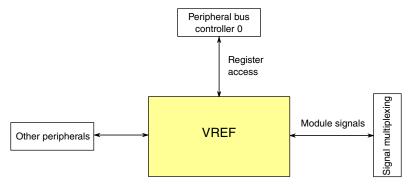



Figure 3-8. VREF configuration

Table 3-16. Reference links to related information

| Topic               | Related module | Reference                |
|---------------------|----------------|--------------------------|
| Full description    | VREF           | VREF                     |
|                     |                | Analog reference options |
| System memory map   |                | System memory map        |
| Clocking            |                | Clock distribution       |
| Power management    |                | Power management         |
| Signal multiplexing | Port control   | Signal multiplexing      |

#### 3.7.3.2 VREF Overview

This device includes a voltage reference (VREF) to supply an accurate 1.2 V or 2.1 V voltage output.

The voltage reference can provide a reference voltage to external peripherals or a reference to analog peripherals, such as the ADC, DAC, or CMP.

#### NOTE

PMC\_REGSC[BGEN] bit must be set if the VREF regulator is required to remain operating in VLPx modes.

#### NOTE

For either an internal or external reference if the VREF\_OUT functionality is being used, VREF\_OUT signal must be connected to an output load capacitor. Refer to the device data sheet for more details.

75

## 3.7.3.3 Clock Gating

The clock to the VREF module can be turned on or off using the PCC\_VREF[CGC] bit in the PCC module. This bit is cleared after any reset, which disables the clock to the VREF module to conserve power. Before initializing the VREF module, set PCC\_VREF[CGC] to enable the clock. Before turning off the clock, make sure to disable the VREF module. For more details, see the clock distribution chapter.

## 3.7.4 12-bit DAC configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

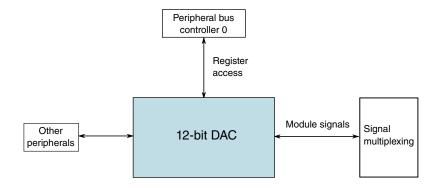



Figure 3-9. 12-bit DAC configuration

 Topic
 Related module
 Reference

 Full description
 12-bit DAC
 12-bit DAC

 System memory map
 System memory map

 Clocking
 Clock distribution

 Power management
 Power management

 Signal multiplexing
 Port control
 Signal multiplexing

Table 3-17. Reference links to related information

#### 3.7.4.1 12-bit DAC instantiation information

This device contains one 12-bit digital-to-analog converter (DAC) with programmable reference generator output. The DAC includes a 16-word FIFO for DMA support.

## 3.7.4.2 12-bit DAC Analog Supply and Reference Connections

This device:

- includes dedicated VDDA and VSSA pins.
- contains dedicated VREFH and VREFL pins in all packages.

#### 3.7.4.3 12-bit DAC reference

The 12-bit DAC has a selectable reference voltage. See Analog Reference Options for more information.

#### NOTE

If the DAC and ADC use the same reference simultaneously, then some degradation of ADC accuracy can be expected (because of DAC switching).

#### 3.8 Timers

## 3.8.1 Timer/PWM module configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

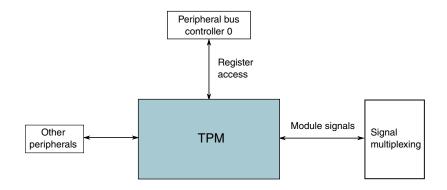



Figure 3-10. TPM configuration

Table 3-18. Reference links to related information

| Topic            | Related module   | Reference        |
|------------------|------------------|------------------|
| Full description | Timer/PWM module | Timer/PWM module |

Table continues on the next page...

Table 3-18. Reference links to related information (continued)

| Topic               | Related module | Reference           |
|---------------------|----------------|---------------------|
| System memory map   | _              | System memory map   |
| Clocking            | _              | Clock distribution  |
| Power management    | _              | Power management    |
| Signal multiplexing | Port control   | Signal multiplexing |

#### 3.8.1.1 TPM instantiation information

This device contains 3 low-power Timer/PWM modules (TPM), which can all be functional in Stop/VLPS mode. In Stop/VLPS mode, the clock source is either external or internal. The following table shows how these modules are configured.

Table 3-19. TPM configuration

| TPM instance | Number of channels | Features/usage                                                                                                |
|--------------|--------------------|---------------------------------------------------------------------------------------------------------------|
| TPM0         | 6                  | Basic TPM, support for input filters, dead-time insertion and quadrature decode, functional in Stop/VLPS mode |
| TPM1         | 2                  | Basic TPM, support for input filters, dead-time insertion and quadrature decode, functional in Stop/VLPS mode |
| TPM2         | 2                  | Basic TPM, support for input filters, dead-time insertion and quadrature decode, functional in Stop/VLPS mode |

- TPM0 and TPM1 are accessed via the AIPS1 peripheral bridge.
- TPM2 is accessed via the AIPS0 peripheral bridge.
- TPM0 and TPM2 can be optionally clocked from the TPM1 clock, thereby providing synchronization for all 3 timers.

## 3.8.1.2 Clock options

Each TPM module has its own TPM clock. The selected source is controlled by a PCC module.

Each TPM also supports an external clock mode (TPMx\_SC[CMOD]=1x) in which the counter increments after a rising edge detect of an external clock input (synchronized to the TPM clock source). The external clock can be either TPM0\_CLKIN or TPM1\_CLKIN.

#### NOTE

The selected external clock must be less than half the frequency of the TPM clock source.

KL28Z Reference Manual, Rev. 4, 06/2016

## 3.8.1.3 Trigger options

Each TPM has a selectable external trigger input source controlled by TPMx\_CONF[TRGSEL] to use for starting the counter and/or reloading the counter. The options available are shown in the following table.

External trigger input source is enabled by clearing TPMx\_CONF[TRGSRC] bit.

TPMx\_CONF[SRC] TPMx\_CONF[TRGSEL] Selected source 0 00 TRGMUX\_TPMx\_trigger0 0 01 TRGMUX\_TPMx\_trigger1 0 10 TRGMUX\_TPMx\_trigger2 0 11 Reserved 1 00 Reserved 1 01 Channel 0 pin input capture 1 10 Channel 1 pin input capture 1 11 Channel 0 or Channel 1 pin input capture

Table 3-20. TPM trigger options

## 3.8.1.4 TPM interrupts

The TPM has multiple sources of interrupt. However, these sources are OR'd together to generate a single interrupt request to the interrupt controller. When a TPM interrupt occurs, read the TPM status registers to determine the exact interrupt source.

## 3.8.2 LPIT

## 3.8.2.1 LPIT/DMA periodic trigger assignments

The LPIT generates periodic trigger events to the DMA channel mux. The LPIT to the DMAMUX trigger is configured in the Trigger MUX module (TRGMUX).

Table 3-21. LPIT0 channel assignments for periodic DMA triggering

| LPIT0 channel   | DMA channel number |
|-----------------|--------------------|
| LPIT0 Channel 0 | DMA0 Channel 0     |
| LPIT0 Channel 1 | DMA0 Channel 1     |

79

## 3.8.2.2 PIT/ADC triggers

PIT triggers can be selected as ADCx trigger sources. For more details, see the Trigger Mux.

## 3.8.2.3 LPIT/TPM Triggers

LPIT triggers are selected as TPMx trigger sources in the TRGMUX module. For more details, refer to TRGMUX chapter.

## 3.8.3 Low Power Timer (LPTMR)

#### 3.8.3.1 LPTMR instantiation information

This device has two low-power timers: LPTMR0 and LPTMR1. Both allow operation during all power modes. LPTMR0 is accessed via AIPS0. LPTMR1 is accessed via AIPS1.

The LPTMR can operate as a real-time interrupt or pulse accumulator. It includes a 2<sup>N</sup> prescaler (real-time interrupt mode) or a glitch filter (pulse accumulator mode).

An LPTMR can be clocked from the internal reference clock, the internal 1 kHz LPO, ERCLK, or an external 32.768 kHz crystal. In VLLS0 mode, the clocking option is limited to an external pin with the OSC configured for bypass (external clock) operation.

An interrupt is generated (and the counter may reset) when the counter equals the value in the 16-bit compare register.

## 3.8.3.2 LPTMR pulse counter input options

LPTMRx\_CSR[TPS] configures the input source used in pulse counter mode. The following table shows the chip-specific input assignments for this field.

| LPTMRx_CSR[TPS] | Pulse counter input number | LPTMR0 input source | LPTMR1 input source |
|-----------------|----------------------------|---------------------|---------------------|
| 00              | 0                          | CMP0 output         | LPTMR0 trigger      |
| 01              | 1                          | LPTMR0_ALT1 pin     | LPTMR1_ALT1 pin     |
| 10              | 2                          | LPTMR0_ALT2 pin     | LPTMR1_ALT2 pin     |
| 11              | 3                          | LPTMR0_ALT3 pin     | LPTMR1_ALT3 pin     |

#### NOTE

LPTMR0\_ALT*n* is on the same pin as the corresponding LPTMR1\_ALT*n*.

## 3.8.3.3 LPTMR prescaler/glitch filter clocking options

The prescaler and glitch filter of the LPTMR module can be clocked from one of four sources determined by LPTMRx\_PSR[PCS]. The following table shows the chip-specific clock assignments for this field.

#### NOTE

The chosen clock must remain enabled if the LPTMR is to continue operating in all required low-power modes.

| LPTMR0_PSR[PCS],<br>LPTMR1_PSR[PCS] | Prescaler/glitch filter clock number | Chip clock                                                             |
|-------------------------------------|--------------------------------------|------------------------------------------------------------------------|
| 00                                  | 0                                    | SIRCCLK—internal reference clock (not available in LLS and VLLS modes) |
| 01                                  | 1                                    | LPO—1 kHz clock (not available in VLLS0 mode)                          |
| 10                                  | 2                                    | OSC32KCLK (not available in VLLS0 mode when using 32 kHz oscillator)   |
| 11                                  | 3                                    | ERCLK—external reference clock (not available in VLLS0 mode)           |

See Clock distribution for more details on these clocks.

## 3.8.4 RTC configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

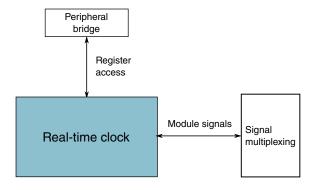



Figure 3-11. RTC configuration

The device has one secure Real Time Clock module (RTC). The RTC module is accessed via AIPS0 peripheral bridge.

## 3.9 Communication interfaces

## 3.9.1 Universal Serial Bus (USB) FS Subsystem

The USB FS subsystem includes these components:

- Dual-role USB OTG-capable (On-The-Go) controller that supports a full-speed (FS) device or FS/LS host. The module complies with the USB 2.0 specification.
- USB transceiver that includes internal 15 k $\Omega$  pulldowns on the D+ and D- lines for host mode functionality and a 1.5 k $\Omega$  pullup on the D+ line for device mode functionality.
- A 3.3 V regulator (See Introduction).
- Status detection and wakeup functions for USB data pins, VBUS pin, and OTG ID pin.
- IRC48 with clock recovery block to eliminate the 48MHz crystal. This is available for USB device mode only.

#### NOTE

USB OTG is not functional in VLPx, VLLSx, and any Stop modes.

#### NOTE

For the USB FS OTG controller to operate, the minimum system clock frequency is 20 MHz.

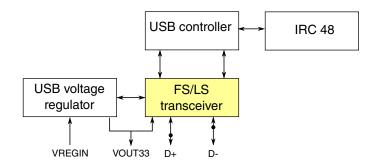



Figure 3-12. USB FS/LS Subsystem Overview

#### **NOTE**

Use the following code sequence to select USB clock source, USB clock divide ratio, and enable its clock gate to avoid potential clock glitches which may result in USB enumeration stage failure.

- 1. Select the USB clock source by configuring PCC\_USB0FS[PCS]. Ensure that PCC\_USB0FS[CGC] is cleared.
- 2. Select the desired clock divide ratio by configuring PCC\_USB0FS[FRAC] and PCC\_USB0FS[PCD].
- 3. Enable USB clock gate by setting PCC\_USB0FS[CGC].

## 3.9.1.1 USB and VREGIN pin status detection and wakeup interrupt features

This device does not have a dedicated VBUS detect pin. For VBUS detection, use a GPIO pin for both bus-powered and self-powered USB cases. Because the GPIO pins on this device do not directly support a 5V input, use an external resistive voltage divider to keep the input voltage within the valid range if a GPIO pin is used for VBUS detection.

This device does not have a dedicated OTG ID detect pin. For OTG ID pin detection, if needed, use a GPIO configured as an input pin with pullup enabled.

When the USB detects that there is no activity on the USB bus for more than 3 ms, the USBx\_ISTAT[SLEEP] bit is set. This bit can cause an interrupt and software decides the appropriate action.

Waking from a low power mode (except in LLS/VLLS mode where USB is not powered) occurs through an asynchronous interrupt triggered by activity on the USB bus. Setting the USBx\_USBTRC0[USBRESMEN] bit enables this function.

The following wakeup feature is also supported:

83

• In LLS/VLLS, if the GPIO pins chosen to detect VBUS and OTG ID are selected from those pins which are inputs to the LLWU, transitions on them can generate a wakeup.

#### 3.9.1.2 USB Power Distribution

This chip includes an internal 5 V to 3.3 V USB regulator that powers the USB transceiver or the MCU (depending on the application).

#### 3.9.1.2.1 AA/AAA cells power supply

The chip can be powered by two AA/AAA cells. In this case, the MCU is powered through VDD which is within the 1.8 to 3.0 V range. After USB cable insertion is detected, the USB regulator is enabled to power the USB transceiver.

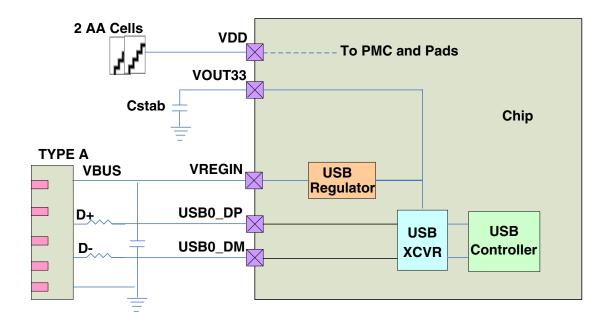



Figure 3-13. USB regulator AA cell usecase

## 3.9.1.2.2 Li-lon battery power supply

The chip can also be powered by a single Li-ion battery. In this case, VOUT33 is connected to VDD. The USB regulator must be enabled by default to power the MCU. When connected to a USB host, the input source of this regulator is switched to the USB bus supply from the Li-ion battery. To charge the battery, the MCU can configure the battery charger according to the charger detection information.

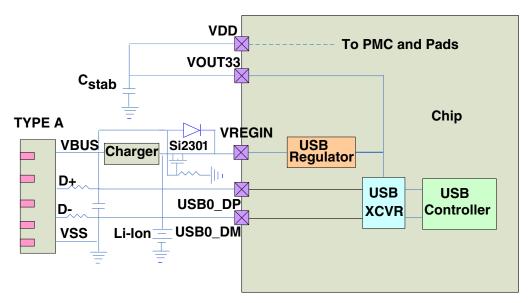



Figure 3-14. USB regulator Li-ion usecase

## 3.9.1.2.3 USB bus power supply

The chip can also be powered by the USB bus directly. In this case, VOUT33 is connected to VDD. The USB regulator must be enabled by default to power the MCU, then to power USB transceiver or external sensor.

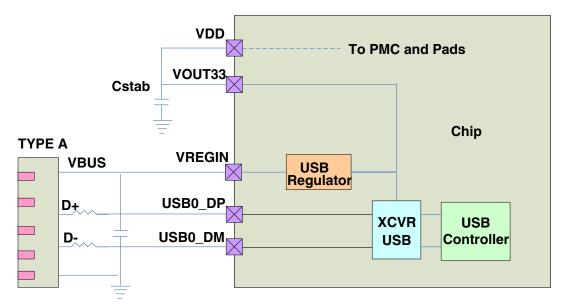



Figure 3-15. USB regulator bus supply

#### 3.9.1.3 USB power management

The regulator should be put into STANDBY mode whenever the chip is in Stop mode and the USB bus is not in use. The regulator must remain in RUN mode for all USB communication including Suspend, Resume, and Reset signaling.

#### 3.9.1.4 **VBUS** detect

The USB FS controller does not include a dedicated VBUS detect pin. However, a GPIO pin with interrupt capability can be used to detect the presence of VBUS in device mode. If a GPIO pin with LLWU capability is used, VBUS can be detected in all low power modes, including LLS and VLLS.

Software is responsible for detecting VBUS via a GPIO pin and configuring the USB controller appropriately in response to the rising or falling edge of VBUS.

#### NOTE

An appropriately sized resistive voltage divider must be used if the GPIO pin does not directly support a 5V input.

## 3.9.1.5 USB controller configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

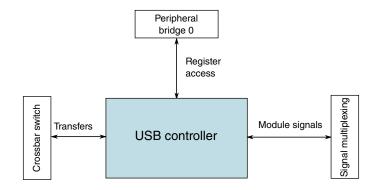



Figure 3-16. USB controller configuration

Table 3-22. Reference links to related information

| Topic               | Related module  | Reference           |
|---------------------|-----------------|---------------------|
| Full description    | USB controller  | USB controller      |
| System memory map   |                 | System memory map   |
| Clocking            |                 | Clock Distribution  |
| Transfers           | Crossbar switch | Crossbar switch     |
| Signal Multiplexing | Port control    | Signal Multiplexing |

#### NOTE

When USB is not used in the application, it is recommended that the USB regulator VREGIN and VOUT33 pins remain floating.

## 3.9.1.6 USB Voltage Regulator Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

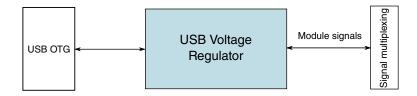



Figure 3-17. USB Voltage Regulator configuration

Table 3-23. Reference links to related information

| Topic               | Related module        | Reference             |
|---------------------|-----------------------|-----------------------|
| Full description    | USB Voltage Regulator | USB Voltage Regulator |
| System memory map   |                       | System memory map     |
| Clocking            |                       | Clock Distribution    |
|                     | USB controller        | USB controller        |
| Signal Multiplexing | Port control          | Signal Multiplexing   |

#### NOTE

When USB is not used in the application, it is recommended that the USB regulator VREGIN and VOUT33 pins remain floating.

#### 3.9.1.7 **USB SRAM**

In all VLLS power modes, USB SRAM is NOT retained, but in all the other power modes USB SRAM is retained. As a result, USB SRAM cannot be used in all VLLS modes.

In Run modes, the USB SRAM can be used. For example, the Buffer Descriptor Table (BDT) and USB buffers can be placed in USB SRAM in Run modes.

See System Memory Map for the location of the USB SRAM.

## 3.9.2 LPSPI configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

KL28Z Reference Manual, Rev. 4, 06/2016

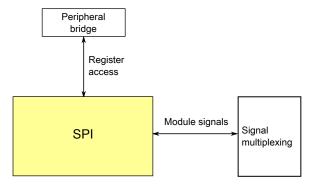



Figure 3-18. LPSPI configuration

Table 3-24. Reference links to related information

| Topic               | Related module | Reference           |
|---------------------|----------------|---------------------|
| Full description    | LPSPI          | LPSPI               |
| System memory map   | _              | System memory map   |
| Clocking            | _              | Clock distribution  |
| Signal multiplexing | Port control   | Signal multiplexing |

#### 3.9.3 LPI2C

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

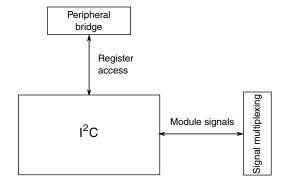



Figure 3-19. LPI2C configuration

Table 3-25. Reference links to related information

| Topic               | Related module | Reference           |  |  |
|---------------------|----------------|---------------------|--|--|
| Full description    | LPI2C          | LPI2C               |  |  |
| System memory map   | _              | System memory map   |  |  |
| Clocking            | _              | Clock distribution  |  |  |
| Signal multiplexing | Port control   | Signal multiplexing |  |  |

89

#### 3.9.3.1 LPI2C instantiation information

This device has three LPI2C modules. The LPI2C module provides a low power IIC module that can operate in low power stop modes if required.

Each of the three LPI2C modules will have a 4 word (32-bit) FIFO for transmit and receive of messages.

## 3.9.4 LPUART configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

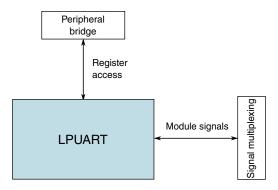



Figure 3-20. LPUART configuration

 Topic
 Related module
 Reference

 Full description
 LPUART
 LPUART

 System memory map
 —
 System memory map

 Clocking
 —
 Clock distribution

 Power management
 —
 Power management

 Signal multiplexing
 Port control
 Signal multiplexing

Table 3-26. Reference links to related information

#### 3.9.4.1 LPUART overview

The LPUART modules support the basic UART with DMA interface function and x4 to x32 oversampling of baud-rate.

This module supports LIN slave operation.

#### **Communication interfaces**

The module can remain functional in VLPS mode provided the clock it is using remains enabled.

## 3.9.5 EMVSIM Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

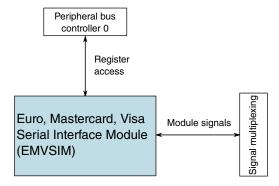



Figure 3-21. EMVSIM configuration

#### 3.9.5.1 Overview

The EMVSIM (Euro/Mastercard/Visa/SIM Serial Interface Module) is a standalone ISO 7816 module that is connected to the AIPSO Peripheral Bridge. The EMVSIM module's clock source is the CPU/platform clock.

#### 3.9.6 FlexIO

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

| Topic                   | Related module | Reference           |
|-------------------------|----------------|---------------------|
| Full description        | FlexIO         | FlexIO              |
| System memory map       | _              | System memory map   |
| Clocking                | _              | Clock distribution  |
| Trigger Input Selection | TRGMUX         | TRGMUX              |
| Signal multiplexing     | Port control   | Signal multiplexing |

Table 3-27. Reference links to related information

## 3.9.6.1 FlexIO overview

The FlexIO module can remain functional in VLPS mode provided the clock it is using remains enabled.

## 3.9.7 I<sup>2</sup>S configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

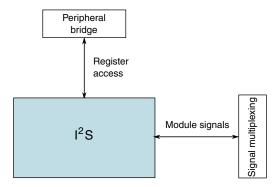



Figure 3-22. I<sup>2</sup>S configuration

Table 3-28. Reference links to related information

| Topic               | Related module   | Reference           |  |  |  |
|---------------------|------------------|---------------------|--|--|--|
| Full description    | l <sup>2</sup> S | I2S                 |  |  |  |
| System memory map   |                  | System memory map   |  |  |  |
| Clocking            |                  | Clock distribution  |  |  |  |
| Power management    |                  | Power management    |  |  |  |
| Signal multiplexing | Port control     | Signal multiplexing |  |  |  |

## 3.9.7.1 Instantiation information

This device contains one  $I^2S$  module.

As configured on the device, module features include:

TX data lines: 1RX data lines: 1

• FIFO size (words): 4

Maximum words per frame: 16Maximum bit clock divider: 512

## 3.9.7.2 I<sup>2</sup>S/SAI clocking

#### 3.9.7.2.1 Audio Master Clock

The audio master clock (MCLK) is used to generate the bit clock when the receiver or transmitter is configured for an internally generated bit clock. The audio master clock can also be output to or input from a pin. The transmitter and receiver have the same audio master clock inputs.

#### 3.9.7.2.2 Bit Clock

The I<sup>2</sup>S/SAI transmitter and receiver support asynchronous bit clocks (BCLKs) that can be generated internally from the audio master clock or supplied externally. The module also supports the option for synchronous operation between the receiver and transmitter or between two separate I<sup>2</sup>S/SAI peripherals.

#### 3.9.7.2.3 Bus Clock

The bus clock is used by the control registers and to generate synchronous interrupts and DMA requests.

## 3.9.7.2.4 I<sup>2</sup>S/SAI clock generation

The master clock selection/direction is configured using the PCC.

## 3.9.7.3 I<sup>2</sup>S/SAI operation in low power modes

## 3.9.7.3.1 Very low power modes

In VLPS mode, the module behaves as it does in stop mode if VLPS mode is entered from run mode. However, if VLPS mode is entered from VLPR mode, then the FIFO might underflow or overflow before wakeup from stop mode due to the limits in bus bandwidth.

In VLPW and VLPR modes, the module is limited by the maximum bus clock frequencies.

## 3.10 Human-machine interfaces (HMI)

## 3.10.1 GPIO configuration

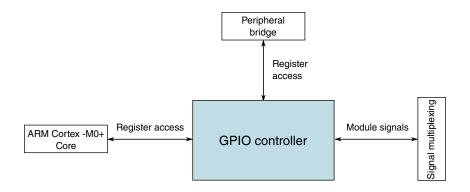



Figure 3-23. GPIO configuration

Table 3-29. Reference links to related information

| Topic               | Related module  | Reference           |  |
|---------------------|-----------------|---------------------|--|
| Full description    | GPIO            | GPIO                |  |
| System memory map   | _               | System memory map   |  |
| Clocking            | _               | Clock distribution  |  |
| Power management    | _               | Power management    |  |
| Crossbar switch     | Crossbar switch | Crossbar switch     |  |
| Signal multiplexing | Port control    | Signal multiplexing |  |

#### 3.10.1.1 GPIO instantiation information

The device includes pins PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7 with high current drive capability. These pins can be used to drive LED or power MOSFETs directly. The high drive capability applies to all functions which are multiplexed on these pins.

#### 3.10.1.1.1 Pull devices and directions

The pull devices are enabled out of POR only for RESET\_b, NMI\_b, and the SWD signals. Coming out of POR:

#### **Human-machine interfaces (HMI)**

- RESET\_b, NMI\_b and SWD\_DIO are pulled up.
- SWD\_CLK is pulled down.

The pull devices for other pins are not enabled out of POR. They can be enabled by writing to PORTx\_PCRn[PE].

All the pins have controllable pull direction using the PORTx\_PCRn[PS] field. All the pins default to pullup except for SWD\_CLK, when enabled.

## 3.10.1.2 GPIO accessibility in the memory map

The GPIO is multi-ported and can be accessed directly by the core with zero wait states at base address 0xF800\_0000. It can also be accessed by the core and DMA masters through the cross bar/AIPS interface address 0x4000\_F000. All BME operations to the GPIO space can be accomplished referencing the address 0x4000\_F000.

## 3.10.2 TSI configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

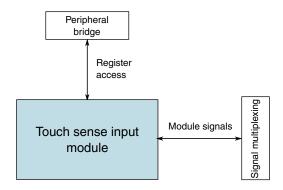



Figure 3-24. TSI configuration

Table 3-30. Reference links to related information

| Topic               | Related module | Reference           |  |  |  |
|---------------------|----------------|---------------------|--|--|--|
| Full description    | TSI            | TSI                 |  |  |  |
| System memory map   |                | System memory map   |  |  |  |
| Clocking            |                | Clock distribution  |  |  |  |
| Power management    |                | Power management    |  |  |  |
| Signal Multiplexing | Port control   | Signal multiplexing |  |  |  |

#### 3.10.2.1 TSI instantiation information

This device includes one TSI module containing the channels as shown in the following table. In Stop, VLPS, LLS, and VLLSx modes, any one channel can be enabled to be the wake-up source.

TSI hardware trigger is from the LPTMR0. For more about the LPTMR0 module interconnects, see the Module-to-Module section.

The number of TSI channels present on the device is determined by the pinout of the specific device package, and is shown in the following table.

Table 3-31. Number of TSI channels

| Device                           | TSI channels |  |
|----------------------------------|--------------|--|
| 100 LQFP, 121 XFBGA <sup>1</sup> | 16           |  |

<sup>1.</sup> The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

## 3.10.2.2 TSI Interrupts

The TSI has multiple sources of interrupt requests. However, these sources are OR'd together to generate a single interrupt request. When a TSI interrupt occurs and you want to determine the exact interrupt source, read the TSI status register.

## 3.11 Signal multiplexing integration

## 3.11.1 Signal multiplexing configuration

Information found here summarizes how the module is integrated into the device. For a comprehensive description of the module itself, see the module's dedicated chapter.

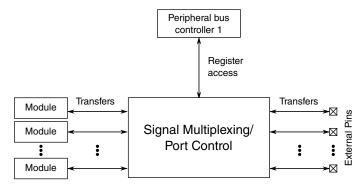



Figure 3-25. Signal multiplexing integration

Table 3-32. Reference links to related information

| Topic             | Related module            | Reference          |  |  |
|-------------------|---------------------------|--------------------|--|--|
| Full description  | Port control              | Port control       |  |  |
| System memory map |                           | System memory map  |  |  |
| Clocking          |                           | Clock Distribution |  |  |
| Register access   | Peripheral bus controller | Peripheral bridge  |  |  |

## 3.11.1.1 Port control and interrupt summary

The following table provides more information regarding the Port Control and Interrupt configurations .

Table 3-33. Ports summary

| Feature                           | Port A                                                  | Port B     | Port C   | Port D   | Port E   |
|-----------------------------------|---------------------------------------------------------|------------|----------|----------|----------|
| Pull select control               | Yes                                                     | Yes        | Yes      | Yes      | Yes      |
| Pull select after reset           | PTA0=Pull down,<br>Others=Pull up                       | Pull up    | Pull up  | Pull up  | Pull up  |
| Pull enable control               | Yes                                                     | Yes        | Yes      | Yes      | Yes      |
| Pull enable after reset           | PTA0/PTA3/PTA4/<br>RESET_b=Enabled<br>; Others=Disabled | Disabled   | Disabled | Disabled | Disabled |
| Slew rate enable control          | Yes                                                     | Yes        | Yes      | Yes      | Yes      |
| Slew rate enable after reset      | PTA3=Disabled;<br>Others=Enabled                        | Enabled    | Enabled  | Enabled  | Enabled  |
| Passive filter enable control     | PTA4 and PTA20/<br>RESET_b only                         | PTB19 only | No       | No       | No       |
| Passive filter enable after reset | RESET_b=Enabled ; Others=Disabled                       | Disabled   | Disabled | Disabled | Disabled |

Table continues on the next page...

Table 3-33. Ports summary (continued)

| Feature                           | Port A                                  | Port B         | Port C         | Port D                       | Port E   |
|-----------------------------------|-----------------------------------------|----------------|----------------|------------------------------|----------|
| Open drain enable control         | Yes                                     | Yes            | Yes            | Yes                          | Yes      |
| Open drain enable after reset     | Disabled                                | Disabled       | Disabled       | Disabled                     | Disabled |
| Drive strength enable control     | No                                      | PTB0/PTB1 only | PTC3/PTC4 only | PTD4/PTD5/PTD6/<br>PTD7 only | No       |
| Drive strength enable after reset | Disabled                                | Disabled       | Disabled       | Disabled                     | Disabled |
| Pin mux control                   | Yes                                     | Yes            | Yes            | Yes                          | Yes      |
| Pin mux after reset               | PTA0/PTA3/<br>PTA4=ALT7;<br>Others=ALT0 | ALT0           | ALT0           | ALT0                         | ALT0     |
| Lock bit                          | Yes                                     | Yes            | Yes            | Yes                          | Yes      |
| Interrupt and DMA request         | Yes                                     | Yes            | Yes            | Yes                          | Yes      |
| Digital glitch filter             | No                                      | No             | No             | No                           | No       |

## **3.11.1.2** Clock gating

See the Clock distribution chapter.

## 3.11.1.3 Signal multiplexing constraints

- 1. A given peripheral function must be assigned to a maximum of one package pin. Do not program the same function to more than one pin.
- 2. To ensure the best signal timing for a given peripheral's interface, choose the pins in closest proximity to each other.

KL28Z Reference Manual, Rev. 4, 06/2016

Signal multiplexing integration

# **Chapter 4 Memory Map**

## 4.1 Memory Map

This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space.

This chapter describes the memory and peripheral locations within that memory space.

#### 4.2 SRAM sizes

This device contains 128 KB SRAM that can be accessed by bus masters through the cross-bar switch.

The amount of System SRAM retained for the different power modes is shown in the following table.

Table 4-1. System SRAM Retained in Power Modes

| Power Mode            | System SRAM Retained(KB)                 |  |  |
|-----------------------|------------------------------------------|--|--|
| VLLS2/LLS2            | 64 KB located at 0x2000_0000-0x2000_FFFF |  |  |
| VLLS0/VLLS1           | None - All System SRAM powered down      |  |  |
| All other power modes | All 128 KB retained                      |  |  |

## 4.3 System Memory Map

There is 1 memory map:

• Memory Map

## 4.3.1 Memory Map

Table 4-2. Memory Map

| Туре         | START ADDRESS | END ADDRESS | Function                       |
|--------------|---------------|-------------|--------------------------------|
| Code         | 0x0000_0000   | 0x0007_FFFF | Program Flash                  |
|              | 0x0008_0000   | 0x1CFF_FFFF | Reserved                       |
|              | 0x1C00_0000   | 0x1C00_7FFF | Boot ROM                       |
|              | 0x1C00_8000   | 0x1CFF_FFFF | Reserved                       |
|              | 0x1D00_0000   | 0x1D01_FFFF | Reserved                       |
|              | 0x1D02_0000   | 0x1D03_FFFF | Reserved                       |
|              | 0x1D04_0000   | 0x1D1F_FFFF | Reserved                       |
|              | 0x1D20_0000   | 0x1D21_FFFF | Reserved                       |
|              | 0x1D22_0000   | 0x1D23_FFFF | Reserved                       |
|              | 0x1D24_0000   | 0x1FFF_7FFF | Reserved                       |
|              | 0x1FFF_8000   | 0x1FFF_9FFF | SRAM                           |
|              | 0x1FFF_A000   | 0x1FFF_FFFF | SRAM                           |
| SRAM         | 0x2000_0000   | 0x2001_1FFF | SRAM                           |
|              | 0x2001_2000   | 0x2001_7FFF | SRAM                           |
|              | 0x2001_8000   | 0x2CFF_FFFF | Reserved                       |
|              | 0x2D00_0000   | 0x2D01_FFFF | Reserved                       |
|              | 0x2D02_0000   | 0x2D03_FFFF | Reserved                       |
|              | 0x2D04_0000   | 0x2D0F_FFFF | Reserved                       |
|              | 0x2D10_0000   | 0x2D10_7FFF | Reserved                       |
|              | 0x2D10_4000   | 0x2D1F_FFFF | Reserved                       |
|              | 0x2D20_0000   | 0x2D21_FFFF | Reserved                       |
|              | 0x2D22_0000   | 0x2D23_FFFF | Reserved                       |
|              | 0x2D24_0000   | 0x2D2F_FFFF | Reserved                       |
|              | 0x2D30_0000   | 0x2D30_7FFF | Reserved                       |
|              | 0x2D30_4000   | 0x3FFF_FFFF | Reserved                       |
| Peripheral   | 0x4000_0000   | 0x4007_FFFF | AIPS0                          |
|              | 0x4008_0000   | 0x400F_FFFF | AIPS1                          |
|              | 0x4010_0000   | 0x4107_FFFF | USB SRAM                       |
|              | 0x4108_0000   | 0x410F_FFFF | Reserved                       |
|              | 0x4110_0000   | 0x4117_FFFF | Reserved                       |
|              | 0x4118_0000   | 0x411F_FFFF | Reserved                       |
|              | 0x4120_0000   | 0x43FF_FFFF | Reserved                       |
|              | 0x4400_0000   | 0x5FFF_FFFF | BME (AIPS0 and AIPS1) (448 MB) |
| External RAM | 0x6000_0000   | 0xDFFF_FFFF | Reserved                       |
|              | 0xE000_0000   | 0xE0FF_FFFF | PPB - ARM SYS Modules          |
|              | 0xE100_0000   | 0xE1FF_FFFF |                                |

Table continues on the next page...

Table 4-2. Memory Map (continued)

| Туре   | START ADDRESS | END ADDRESS | Function                |  |
|--------|---------------|-------------|-------------------------|--|
|        | 0xE200_0000   | 0xE2FF_FFFF |                         |  |
|        | 0xE300_0000   | 0xE3FF_FFFF |                         |  |
| System | 0xE400_0000   | 0xE4FF_FFFF | PPB - ARM DBG Modules   |  |
|        | 0xE500_0000   | 0xE5FF_FFFF |                         |  |
|        | 0xE600_0000   | 0xE6FF_FFFF |                         |  |
|        | 0xE700_0000   | 0xE7FF_FFFF |                         |  |
|        | 0xE800_0000   | 0xE8FF_FFFF | PPB - Freescale Modules |  |
|        | 0xE900_0000   | 0xE9FF_FFFF |                         |  |
|        | 0xEA00_0000   | 0xEAFF_FFFF |                         |  |
|        | 0xEB00_0000   | 0xEBFF_FFFF |                         |  |
|        | 0xEC00_0000   | 0xEFFF_FFFF | Reserved                |  |
|        | 0xF000_0000   | 0xF00F_FFFF | PPB                     |  |
|        | 0xF010_0000   | 0xF0FF_FFFF | Reserved                |  |
|        | 0xF100_0000   | 0xF10F_FFFF | Reserved                |  |
|        | 0xF110_0000   | 0xF11F_FFFF | Reserved                |  |
|        | 0xF120_0000   | 0xF7FF_FFFF | Reserved                |  |
|        | 0xF800_0000   | 0xF80F_FFFF | SYS IOPORT              |  |
|        | 0xF810_0000   | 0xF8FF_FFFF | Reserved                |  |
|        | 0xF900_0000   | 0xF90F_FFFF | Reserved                |  |
|        | 0xF910_0000   | 0xFFFF_FFFF | Reserved                |  |

## 4.4 Flash Memory Maps

There is 1 flash memory map:

• Flash Memory Map

## 4.4.1 Flash Memory Map

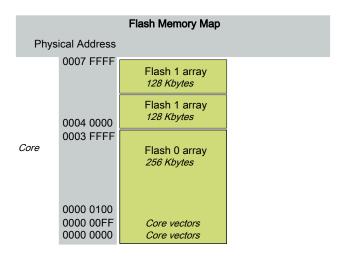



Figure 4-1. Flash Memory Map

## 4.5 SRAM Memory Map

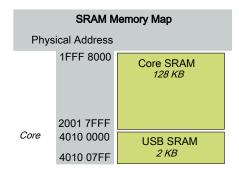



Figure 4-2. SRAM Memory Map

## 4.6 Bit Manipulation Engine

The Bit Manipulation Engine (BME2) provides hardware support for atomic read-modify-write memory operations to the peripheral address space.

By combining the basic load and store instruction support in the Cortex-M instruction set architecture with the concept of decorated storage provided by the BME2, the resulting implementation provides a robust and efficient read-modify-write capability to this class of ultra low-end microcontrollers. See the Bit Manipulation Engine Block Guide (BME2) for a detailed description of BME2 functionality.

## 4.7 Peripheral bridge (AIPS-Lite) memory map

The peripheral memory map is accessible via 2 slave ports that are on a crossbar.

- AIPS0 is on crossbar AXBS.
- AIPS1 is on crossbar AXBS.

Each AIPSx bridge has 2 regions associated with this space:

- A 128 KB region: partitioned as 32 spaces, each 4 KB in size and reserved for onplatform peripheral devices. The AIPS controller generates unique module enables for all 32 spaces.
- A 384 KB region: partitioned as 96 spaces, each 4 KB in size and reserved for offplatform modules. The AIPS controller generates unique module enables for all 96 spaces.

Modules that are disabled (via their clock gate control bits in the PCC registers) disable the associated AIPS slots. Access to any address within an unimplemented or disabled peripheral bridge slot causes a transfer error termination.

For programming model accesses via the peripheral bridges, there is generally only a small range within the 4 KB slots that is implemented. Accessing an address that is not implemented in the peripheral causes a transfer error termination.

## 4.7.1 AIPS0 Peripheral Slot Assignments

Table 4-3. AIPS0

| AIPS0 (no overlap of peripherals) |      |                                            |
|-----------------------------------|------|--------------------------------------------|
| System 32-bit base address        | Slot | Source Module                              |
| 0x4000_0000                       | 0    | Reserved                                   |
| 0x4000_1000                       | 1    | Miscellaneous System Control Module (MSCM) |
| 0x4000_2000                       | 2    | Reserved                                   |
| 0x4000_3000                       | 3    | Reserved                                   |
| 0x4000_4000                       | 4    | Reserved                                   |
| 0x4000_5000                       | 5    | Reserved                                   |

Table continues on the next page...

#### Peripheral bridge (AIPS-Lite) memory map

Table 4-3. AIPS0 (continued)

| AIPS0 (no overlap of peripherals) |      |                                              |
|-----------------------------------|------|----------------------------------------------|
| System 32-bit base address        | Slot | Source Module                                |
| 0x4000_6000                       | 6    | Reserved                                     |
| 0x4000_7000                       | 7    | Reserved                                     |
| 0x4000_8000                       | 8    | DMA0 controller                              |
| 0x4000_9000                       | 9    | DMA0 controller transfer control descriptors |
| 0x4000_A000                       | 10   | Reserved                                     |
| 0x4000_B000                       | 11   | Reserved                                     |
| 0x4000_C000                       | 12   | Reserved                                     |
| 0x4000_D000                       | 13   | Reserved                                     |
| 0x4000_E000                       | 14   | Reserved                                     |
| 0x4000_F000                       | 15   | RGPIO controller (GPIOA-GPIOE)               |
| 0x4001_0000                       | 16   | Reserved                                     |
| 0x4001_1000                       | 17   | Reserved                                     |
| 0x4001_2000                       | 18   | Reserved                                     |
| 0x4001_3000                       | 19   | Reserved                                     |
| 0x4001_4000                       | 20   | Reserved                                     |
| 0x4001_5000                       | 21   | Reserved                                     |
| 0x4001_6000                       | 22   | Reserved                                     |
| 0x4001_7000                       | 23   | Reserved                                     |
| 0x4001_8000                       | 24   | Reserved                                     |
| 0x4001_9000                       | 25   | Reserved                                     |
| 0x4001_A000                       | 26   | Reserved                                     |
| 0x4001_B000                       | 27   | Reserved                                     |
| 0x4001_C000                       | 28   | Reserved                                     |
| 0x4001_D000                       | 29   | Reserved                                     |
| 0x4001_E000                       | 30   | Reserved                                     |
| 0x4001_F000                       | 31   | Reserved                                     |
| Off-platform                      |      |                                              |
| 0x4002_0000                       | 32   | Flash Memory Unit                            |
| 0x4002_1000                       | 33   | DMA0 channel multiplexer 0 (DMAMUX0)         |
| 0x4002_2000                       | 34   | Reserved                                     |
| 0x4002_3000                       | 35   | Reserved                                     |
| 0x4002_4000                       | 36   | INTMUX0                                      |
| 0x4002_5000                       | 37   | Reserved                                     |
| 0x4002_6000                       | 38   | Reserved                                     |
| 0x4002_7000                       | 39   | TRGMUX                                       |
| 0x4002_8000                       | 40   | Reserved                                     |
| 0x4002_9000                       | 41   | Reserved                                     |

Table continues on the next page...

Table 4-3. AIPS0 (continued)

| AIPS0 (no overlap of peripherals) |      |                            |
|-----------------------------------|------|----------------------------|
| System 32-bit base address        | Slot | Source Module              |
| 0x4002_A000                       | 42   | Reserved                   |
| 0x4002_B000                       | 43   | Reserved                   |
| 0x4002_C000                       | 44   | Reserved                   |
| 0x4002_D000                       | 45   | Reserved                   |
| 0x4002_E000                       | 46   | TPM2                       |
| 0x4002_F000                       | 47   | Reserved                   |
| 0x4003_0000                       | 48   | LPIT0                      |
| 0x4003_1000                       | 49   | Reserved                   |
| 0x4003_2000                       | 50   | Reserved                   |
| 0x4003_3000                       | 51   | Reserved                   |
| 0x4003_4000                       | 52   | Low-power Timer 0 (LPTMR0) |
| 0x4003_5000                       | 53   | Reserved                   |
| 0x4003_6000                       | 54   | Reserved                   |
| 0x4003_7000                       | 55   | Reserved                   |
| 0x4003_8000                       | 56   | Real-time Clock (RTC)      |
| 0x4003_9000                       | 57   | Reserved                   |
| 0x4003_A000                       | 58   | Reserved                   |
| 0x4003_B000                       | 59   | Reserved                   |
| 0x4003_C000                       | 60   | Reserved                   |
| 0x4003_D000                       | 61   | Reserved                   |
| 0x4003_E000                       | 62   | LPSPI2                     |
| 0x4003_F000                       | 63   | Reserved                   |
| 0x4004_0000                       | 64   | Reserved                   |
| 0x4004_1000                       | 65   | Reserved                   |
| 0x4004_2000                       | 66   | LPI2C2                     |
| 0x4004_3000                       | 67   | Reserved                   |
| 0x4004_4000                       | 68   | Reserved                   |
| 0x4004_5000                       | 69   | Reserved                   |
| 0x4004_6000                       | 70   | LPUART2                    |
| 0x4004_7000                       | 71   | Reserved                   |
| 0x4004_8000                       | 72   | Reserved                   |
| 0x4004_9000                       | 73   | Reserved                   |
| 0x4004_A000                       | 74   | Reserved                   |
| 0x4004_B000                       | 75   | Reserved                   |
| 0x4004_C000                       | 76   | SAI0                       |
| 0x4004_D000                       | 77   | Reserved                   |
| 0x4004_E000                       | 78   | EVMSIM0                    |
| 0x4004_F000                       | 79   | Reserved                   |

Table continues on the next page...

#### Peripheral bridge (AIPS-Lite) memory map

Table 4-3. AIPS0 (continued)

| System 32-bit base address 0x4005_0000 0x4005_1000 0x4005_2000 | 80<br>81<br>82<br>83 | Source Module  Reserved  Reserved  |
|----------------------------------------------------------------|----------------------|------------------------------------|
| 0x4005_1000                                                    | 81<br>82             | Reserved                           |
|                                                                | 82                   |                                    |
| 0x4005_2000                                                    |                      |                                    |
|                                                                | 83                   | Reserved                           |
| 0x4005_3000                                                    |                      | Reserved                           |
| 0x4005_4000                                                    | 84                   | Reserved                           |
| 0x4005_5000                                                    | 85                   | USB0 FS                            |
| 0x4005_6000                                                    | 86                   | Reserved                           |
| 0x4005_7000                                                    | 87                   | Reserved                           |
| 0x4005_8000                                                    | 88                   | Reserved                           |
| 0x4005_9000                                                    | 89                   | Reserved                           |
| 0x4005_A000                                                    | 90                   | PortA multiplex control            |
| 0x4005_B000                                                    | 91                   | PortB multiplex control            |
| 0x4005_C000                                                    | 92                   | PortC multiplex control            |
| 0x4005_D000                                                    | 93                   | PortD multiplex control            |
| 0x4005_E000                                                    | 94                   | PortE multiplex control            |
| 0x4005_F000                                                    | 95                   | Reserved                           |
| 0x4006_0000                                                    | 96                   | Reserved                           |
| 0x4006_1000                                                    | 97                   | Low-leakage Wake-up Unit 0 (LLWU0) |
| 0x4006_2000                                                    | 98                   | TSI0                               |
| 0x4006_3000                                                    | 99                   | Reserved                           |
| 0x4006_4000                                                    | 100                  | Reserved                           |
| 0x4006_5000                                                    | 101                  | Reserved                           |
| 0x4006_6000                                                    | 102                  | ADC0                               |
| 0x4006_7000                                                    | 103                  | Reserved                           |
| 0x4006_8000                                                    | 104                  | Reserved                           |
| 0x4006_9000                                                    | 105                  | Reserved                           |
| 0x4006_A000                                                    | 106                  | DAC0                               |
| 0x4006_B000                                                    | 107                  | Reserved                           |
| 0x4006_C000                                                    | 108                  | Reserved                           |
| 0x4006_D000                                                    | 109                  | Reserved                           |
| 0x4006_E000                                                    | 110                  | CMP0                               |
| 0x4006_F000                                                    | 111                  | Reserved                           |
| 0x4007_0000                                                    | 112                  | Reserved                           |
| 0x4007_1000                                                    | 113                  | Reserved                           |
| 0x4007_2000                                                    | 114                  | VREF                               |
| 0x4007_3000                                                    | 115                  | Reserved                           |
| 0x4007_4000                                                    | 116                  | SIM                                |
| 0x4007_5000                                                    | 117                  | SIM / TSTMR0                       |

Table continues on the next page...

Table 4-3. AIPS0 (continued)

| AIPS0 (no overlap of peripherals) |      |                                   |
|-----------------------------------|------|-----------------------------------|
| System 32-bit base address        | Slot | Source Module                     |
| 0x4007_6000                       | 118  | WDOG0                             |
| 0x4007_7000                       | 119  | Reserved                          |
| 0x4007_8000                       | 120  | CRC                               |
| 0x4007_9000                       | 121  | Reserved                          |
| 0x4007_A000                       | 122  | PCC                               |
| 0x4007_B000                       | 123  | SCG                               |
| 0x4007_C000                       | 124  | System Register File              |
| 0x4007_D000                       | 125  | Power Management Controller (PMC) |
| 0x4007_E000                       | 126  | System Mode Controller (SMC)      |
| 0x4007_F000                       | 127  | Reset Control Module (RCM)        |

## 4.7.2 AIPS1 Peripheral Slot Assignments

Table 4-4. AIPS1 Peripheral Slot Assignments

| AIPS1                      |      |               |
|----------------------------|------|---------------|
| System 32-bit base address | Slot | Source Module |
| 0x4008_0000                | 0    | Reserved      |
| 0x4008_1000                | 1    | Reserved      |
| 0x4008_2000                | 2    | Reserved      |
| 0x4008_3000                | 3    | Reserved      |
| 0x4008_4000                | 4    | Reserved      |
| 0x4008_5000                | 5    | Reserved      |
| 0x4008_6000                | 6    | Reserved      |
| 0x4008_7000                | 7    | Reserved      |
| 0x4008_8000                | 8    | Reserved      |
| 0x4008_9000                | 9    | Reserved      |
| 0x4008_A000                | 10   | Reserved      |
| 0x4008_B000                | 11   | Reserved      |
| 0x4008_C000                | 12   | Reserved      |
| 0x4008_D000                | 13   | Reserved      |
| 0x4008_E000                | 14   | Reserved      |
| 0x4008_F000                | 15   | Reserved      |
| 0x4009_0000                | 16   | Reserved      |
| 0x4009_1000                | 17   | Reserved      |
| 0x4009_2000                | 18   | Reserved      |
| 0x4009_3000                | 19   | Reserved      |

Table continues on the next page...

Peripheral bridge (AIPS-Lite) memory map

Table 4-4. AIPS1 Peripheral Slot Assignments (continued)

| AIPS1                      |      |                                |
|----------------------------|------|--------------------------------|
| System 32-bit base address | Slot | Source Module                  |
| 0x4009_4000                | 20   | Reserved                       |
| 0x4009_5000                | 21   | Reserved                       |
| 0x4009_6000                | 22   | Reserved                       |
| 0x4009_7000                | 23   | Reserved                       |
| 0x4009_8000                | 24   | Reserved                       |
| 0x4009_9000                | 25   | Reserved                       |
| 0x4009_A000                | 26   | Reserved                       |
| 0x4009_B000                | 27   | Reserved                       |
| 0x4009_C000                | 28   | Reserved                       |
| 0x4009_D000                | 29   | Reserved                       |
| 0x4009_E000                | 30   | Reserved                       |
| 0x4009_F000                | 31   | Reserved                       |
| Off-platform               |      |                                |
| 0x400A_0000                | 32   | Reserved                       |
| 0x400A_1000                | 33   | Reserved                       |
| 0x400A_2000                | 34   | Reserved                       |
| 0x400A_3000                | 35   | Reserved                       |
| 0x400A_4000                | 36   | Reserved                       |
| 0x400A_5000                | 37   | Random Number Generator (TRNG) |
| 0x400A_6000                | 38   | Reserved for Crypto            |
| 0x400A_7000                | 39   | TRGMUX                         |
| 0x400A_8000                | 40   | Reserved                       |
| 0x400A_9000                | 41   | Reserved                       |
| 0x400A_A000                | 42   | Reserved                       |
| 0x400A_B000                | 43   | Reserved                       |
| 0x400A_C000                | 44   | TPM0                           |
| 0x400A_D000                | 45   | TPM1                           |
| 0x400A_E000                | 46   | Reserved                       |
| 0x400A_F000                | 47   | Reserved                       |
| 0x400B_0000                | 48   | Reserved                       |
| 0x400B_1000                | 49   | Reserved                       |
| 0x400B_2000                | 50   | Reserved                       |
| 0x400B_3000                | 51   | Reserved                       |
| 0x400B_4000                | 52   | Reserved                       |
| 0x400B_5000                | 53   | Low-power Timer 1 (LPTMR1)     |
| 0x400B_6000                | 54   | Reserved                       |
| 0x400B_7000                | 55   | Reserved                       |

Table continues on the next page...

Table 4-4. AIPS1 Peripheral Slot Assignments (continued)

|                            | AIPS1 |               |
|----------------------------|-------|---------------|
| System 32-bit base address | Slot  | Source Module |
| 0x400B_8000                | 56    | Reserved      |
| 0x400B_9000                | 57    | Reserved      |
| 0x400B_A000                | 58    | Reserved      |
| 0x400B_B000                | 59    | Reserved      |
| 0x400B_C000                | 60    | LPSPI0        |
| 0x400B_D000                | 61    | LPSPI1        |
| 0x400B_E000                | 62    | Reserved      |
| 0x400B_F000                | 63    | Reserved      |
| 0x400C_0000                | 64    | LPI2C0        |
| 0x400C_1000                | 65    | LPI2C1        |
| 0x400C_2000                | 66    | Reserved      |
| 0x400C_3000                | 67    | Reserved      |
| 0x400C_4000                | 68    | LPUART0       |
| 0x400C_5000                | 69    | LPUART1       |
| 0x400C_6000                | 70    | Reserved      |
| 0x400C_7000                | 71    | Reserved      |
| 0x400C_8000                | 72    | Reserved      |
| 0x400C_9000                | 73    | Reserved      |
| 0x400C_A000                | 74    | FlexIO0       |
| 0x400C_B000                | 75    | Reserved      |
| 0x400C_C000                | 76    | Reserved      |
| 0x400C_D000                | 77    | Reserved      |
| 0x400C_E000                | 78    | Reserved      |
| 0x400C_F000                | 79    | Reserved      |
| 0x400D_0000                | 80    | Reserved      |
| 0x400D_1000                | 81    | Reserved      |
| 0x400D_2000                | 82    | Reserved      |
| 0x400D_3000                | 83    | Reserved      |
| 0x400D_4000                | 84    | Reserved      |
| 0x400D_5000                | 85    | Reserved      |
| 0x400D_6000                | 86    | Reserved      |
| 0x400D_7000                | 87    | Reserved      |
| 0x400D_8000                | 88    | Reserved      |
| 0x400D_9000                | 89    | Reserved      |
| 0x400D_A000                | 90    | Reserved      |
| 0x400D_B000                | 91    | Reserved      |
| 0x400D_C000                | 92    | Reserved      |

Table continues on the next page...

Peripheral bridge (AIPS-Lite) memory map

Table 4-4. AIPS1 Peripheral Slot Assignments (continued)

| AIPS1                      |      |               |  |  |
|----------------------------|------|---------------|--|--|
| System 32-bit base address | Slot | Source Module |  |  |
| 0x400D_D000                | 93   | Reserved      |  |  |
| 0x400D_E000                | 94   | Reserved      |  |  |
| 0x400D_F000                | 95   | Reserved      |  |  |
| 0x400E_0000                | 96   | Reserved      |  |  |
| 0x400E_1000                | 97   | Reserved      |  |  |
| 0x400E_2000                | 98   | Reserved      |  |  |
| 0x400E_3000                | 99   | Reserved      |  |  |
| 0x400E_4000                | 100  | Reserved      |  |  |
| 0x400E_5000                | 101  | Reserved      |  |  |
| 0x400E_6000                | 102  | Reserved      |  |  |
| 0x400E_7000                | 103  | Reserved      |  |  |
| 0x400E_8000                | 104  | Reserved      |  |  |
| 0x400E_9000                | 105  | Reserved      |  |  |
| 0x400E_A000                | 106  | Reserved      |  |  |
| 0x400E_B000                | 107  | Reserved      |  |  |
| 0x400E_C000                | 108  | Reserved      |  |  |
| 0x400E_D000                | 109  | Reserved      |  |  |
| 0x400E_E000                | 110  | Reserved      |  |  |
| 0x400E_F000                | 111  | CMP1          |  |  |
| 0x400F_0000                | 112  | Reserved      |  |  |
| 0x400F_1000                | 113  | Reserved      |  |  |
| 0x400F_2000                | 114  | Reserved      |  |  |
| 0x400F_3000                | 115  | Reserved      |  |  |
| 0x400F_4000                | 116  | Reserved      |  |  |
| 0x400F_5000                | 117  | Reserved      |  |  |
| 0x400F_6000                | 118  | Reserved      |  |  |
| 0x400F_7000                | 119  | Reserved      |  |  |
| 0x400F_8000                | 120  | Reserved      |  |  |
| 0x400F_9000                | 121  | Reserved      |  |  |
| 0x400F_A000                | 122  | PCC           |  |  |
| 0x400F_B000                | 123  | Reserved      |  |  |
| 0x400F_C000                | 124  | Reserved      |  |  |
| 0x400F_D000                | 125  | Reserved      |  |  |
| 0x400F_E000                | 126  | Reserved      |  |  |
| 0x400F_F000                | 127  | Reserved      |  |  |

# Chapter 5 Clock Distribution

#### 5.1 Introduction

This chapter provides an overview of the clock architecture: clock usage, clock multiplexing, and clock gating.

The heart of the clocking architecture is the System Clock Generator (SCG) module. The SCG controls four clock sources that can then be distributed to the main core platform, the memory modules and the peripherals. The peripherals in general have two clocks, one being the peripheral interface clock which is used by the core/DMA to interface with the peripheral's registers, the second being the peripheral functional clock which is used for the main timing function of the peripheral (e.g. sources the baud rate for a serial communications peripheral, or is the input clock to the counter of a timer peripheral).

The peripheral interface clock generally comes directly from the SCG to the peripheral. The second peripheral functional clock is selected via the Peripheral Clock Control (PCC) module. The SCG provides additional peripheral functional clocks with optional dividers via the PCC module

The following diagram shows the various clock sources and clock trees for KL28Z.

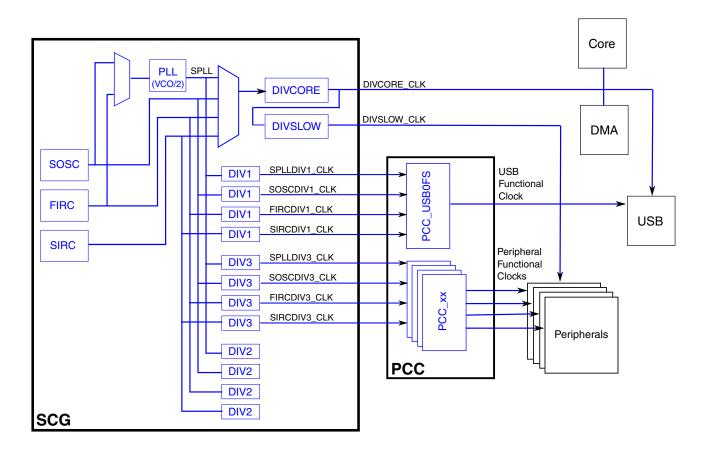



Figure 5-1. KL28Z High Level Clock Distribution

# 5.2 Clock Sources

The SCG provides four clock sources that are then distributed and optionally divided to the CPU, memory and various peripherals.

The four clock sources available to the SCG are:

- SOSC output of the external oscillator (a crystal or externally applied clock input).
- SIRC output of the slow (2/8Mhz) internal RC oscillator
- FIRC output of the fast (48-60MHZ) internal RC oscillator
- SPLL output of the PLL, which is multiple of the SOSC or FIRC clock source.

The configuration of these clock sources are detailed in the SCG chapter.

# 5.3 SCG Output Clocks

The SCG has several output clock trees. All of the four clock sources, SOSC, SIRC, FIRC and SPLL each can feed these output clock trees with optional dividers.

# 5.3.1 DIVCORE\_CLK

The main system clock that feeds the CPU, DMA, tightly coupled memories and platform is provided via a divider called DIVCORE. The SCG can select one of the four clock sources to feed DIVCORE. This is generally the fastest clock in the system but can also run slower than peripheral timing clocks.

# 5.3.2 DIVSLOW\_CLK

The DIVSLOW clock is used as the main "peripheral interface" clock and is referenced by the CPU and the DMA when accessing the peripheral registers.

The DIVSLOW\_CLK is also used to clock the flash memory module. This clock is fed directly from DIVCORE clock, and has optional dividers to ensure the frequency of this clock is <25MHZ, for reliable flash operation.

#### NOTE

Throughout this manual, DIVSLOW\_CLK may also be referred to as the bus clock.

# 5.3.3 Peripheral functional clocks

The SCG provides additional output clock trees that are used as the "peripheral functional" clocks. Peripheral functional clocks are used as the fundamental "timing" of the peripheral, providing asynchronous clocking from the CPU main clock. For example the peripheral functional clock for a timer will clock the reference counter that is used for all timings, and for a serial communications peripherals will source the baud rate for the external communication.

This allows peripherals to operate either slower or faster than the CPU platform.

Each of the four clock sources can provide three additional output clocks that are generally used as alternative peripheral functional clocks. This provides flexible clocking in a SoC, and allows groups of peripherals to be clocked by one specific functional clock,

#### **SCG Output Clocks**

and another group of peripherals to be clocked by another specific functional clock. E.g. a group of low power peripherals would be clocked at a lower frequency than high resolution timers or fast serial communication peripherals.

Each of these peripheral functional clocks has a programmable divider of the source input, that is controlled within the SCG. Each of the peripheral functional clocks outputs, after the SCG divider, are selectable via a peripheral's PCCn register.

#### 5.3.3.1 SOSCDIV1 CLK

This output clock is fed from the SOSC, and is an optional functional clock for peripherals.

For KL28 the SOSCDIV1\_CLK is an optional peripheral functional clock for the USB0 module only. It is selectable via the PCCUSB0 register.

#### 5.3.3.2 SOSCDIV2 CLK

This output clock is fed from the SOSC, and is an optional functional clock for peripherals.

For KL28 the SOSCDIV2\_CLK is not implemented.

# 5.3.3.3 SOSCDIV3\_CLK

This output clock is fed from the SOSC, and is an optional functional clock for peripherals.

For KL28 the SOSCDIV3\_CLK is an optional peripheral functional clock for various timers and serial communication peripherals. It is selectable via the peripherals PCCn register.

## 5.3.3.4 SIRCDIV1\_CLK

This output clock is fed from the SIRC, and is an optional functional clock for peripherals.

For KL28 the SIRCDIV1\_CLK is an optional peripheral functional clock for the USB0 module only. It is selectable via the PCCUSB0 register.

#### 5.3.3.5 SIRCDIV2\_CLK

This output clock is fed from the SIRC, and is an optional functional clock for peripherals.

For KL28 the SIRCDIV2\_CLK is not implemented.

#### 5.3.3.6 SIRCDIV3 CLK

This output clock is fed from the SIRC, and is an optional functional clock for peripherals.

For KL28 the SIRCDIV3\_CLK is an optional peripheral functional clock for various timers and serial communication peripherals. It is selectable via the peripherals PCCn register.

#### 5.3.3.7 FIRCDIV1 CLK

This output clock is fed from the FIRC, and is an optional functional clock for peripherals.

For KL28 the FIRCDIV1\_CLK is an optional peripheral functional clock for the USB0 module only. It is selectable via the PCCUSB0 register.

## **5.3.3.8 FIRCDIV2 CLK**

This output clock is fed from the FIRC, and is an optional functional clock for peripherals.

For KL28 the FIRCDIV2\_CLK is not implemented.

## **5.3.3.9 FIRCDIV3 CLK**

This output clock is fed from the FIRC, and is an optional functional clock for peripherals.

For KL28 the FIRCDIV3\_CLK is an optional peripheral functional clock for various timers and serial communication peripherals. It is selectable via the peripherals PCCn register.

#### 5.3.3.10 SPLLDIV1\_CLK

This output clock is fed from the SPLL, and is an optional functional clock for peripherals.

For KL28 the SPLLDIV1\_CLK is an optional peripheral functional clock for the USB0 module only. It is selectable via the PCCUSB0 register.

## 5.3.3.11 SPLLDIV2\_CLK

This output clock is fed from the SPLL, and is an optional functional clock for peripherals.

For KL28 the FIRCDIV2\_CLK is not implemented.

## 5.3.3.12 SPLLDIV3\_CLK

This output clock is fed from the SPLL, and is an optional functional clock for peripherals.

For KL28 the SPLLDIV3\_CLK is an optional peripheral functional clock for various timers and serial communication peripherals. It is selectable via the peripherals PCCn register.

# 5.4 Peripheral Clock Summary

The SCG module supplies peripheral interface and functional clocks to the PCC, depending on the peripheral. The peripheral interface clock can be either the DIVCORE\_CLK or the DIVSLOW\_CLK, depending on the peripheral. The peripheral functional clocks and the peripheral interface clocks for each module/peripheral are detailed in table below.

Table 5-1. Peripheral Clocks

| Source Module               | Module Reset | Bus Interface<br>Clock | Bus Interface<br>Clock Gating<br>Control | Peripheral<br>Functional Clock | PCCn Functional<br>Clock Divider |
|-----------------------------|--------------|------------------------|------------------------------------------|--------------------------------|----------------------------------|
| System                      |              |                        |                                          |                                |                                  |
| Coretex M0+ Core controller | Chip Reset   | DIVCORE_CLK            |                                          |                                |                                  |
| DMA controller              | Chip Reset   | DIVCORE_CLK            | Yes                                      |                                |                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 5-1. Peripheral Clocks (continued)

| Source Module                           | Module Reset        | Bus Interface<br>Clock | Bus Interface<br>Clock Gating<br>Control | Peripheral<br>Functional Clock | PCCn Functional<br>Clock Divider |
|-----------------------------------------|---------------------|------------------------|------------------------------------------|--------------------------------|----------------------------------|
| DMA channel<br>multiplexer<br>(DMAMUX)  | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| AXBS                                    | Chip Reset          | DIVCORE_CLK            |                                          |                                |                                  |
| AIPS                                    | Chip Reset          | DIVCORE_CLK            |                                          |                                |                                  |
| INTMUX                                  | Chip Reset          | DIVSLOW_CLK            |                                          |                                |                                  |
| LLWU                                    | Chip Reset not VLLS | DIVSLOW_CLK            |                                          | LPO                            |                                  |
| SCG                                     | Chip Reset          | DIVSLOW_CLK            |                                          |                                |                                  |
| PCC                                     | Chip Reset          | DIVSLOW_CLK            |                                          |                                |                                  |
| PORT multiplex control                  | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| SIM                                     | Chip Reset          | DIVSLOW_CLK            |                                          |                                |                                  |
| Power<br>Management<br>Controller (PMC) | POR                 | DIVSLOW_CLK            |                                          |                                |                                  |
| System Mode<br>Controller (SMC)         | Chip Reset not VLLS | DIVSLOW_CLK            |                                          |                                |                                  |
| Reset Control<br>Module (RCM)           | POR/LVD/VLLS        | DIVSLOW_CLK            |                                          | LPO                            |                                  |
| Security/Integrity                      |                     |                        |                                          |                                |                                  |
| WDOG <sup>1</sup>                       | Chip Reset          | DIVSLOW_CLK            |                                          | LPO, ERCLK,<br>SIRC            |                                  |
| TRNG                                    | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| CAU                                     | Chip Reset          | DIVCORE_CLK            |                                          |                                |                                  |
| CRC                                     | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| Memory                                  |                     |                        |                                          |                                |                                  |
| Flash Memory Unit                       | Early Reset         | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| Flash Memory<br>Controller              | Chip Reset          | DIVCORE_CLK            |                                          |                                |                                  |
| SRAM                                    | Chip Reset          | DIVCORE_CLK            |                                          |                                |                                  |
| System Register<br>File                 | POR                 | DIVSLOW_CLK            |                                          |                                |                                  |
| Analog                                  | •                   | •                      |                                          |                                |                                  |
| TSI                                     | Chip Reset not VLLS | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| ADC                                     | Chip Reset          | DIVSLOW_CLK            | Yes                                      | SCG DIV3                       |                                  |
| VREF                                    | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| DAC                                     | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| CMP                                     | Chip Reset          | DIVSLOW_CLK            | Yes                                      |                                |                                  |
| Timers                                  | •                   | •                      | •                                        | •                              | •                                |

Table continues on the next page...

Table 5-1. Peripheral Clocks (continued)

| Source Module                        | Module Reset | Bus Interface<br>Clock   | Bus Interface<br>Clock Gating<br>Control | Peripheral<br>Functional Clock                  | PCCn Functional<br>Clock Divider          |
|--------------------------------------|--------------|--------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------|
| TPM                                  | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| LPIT                                 | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| Low-Power Timer (LPTMR) <sup>3</sup> | POR/LVD      | DIVSLOW_CLK              | Yes                                      | LPO, ERCLK <sup>2</sup> ,<br>SIRC,<br>OSC32KCLK |                                           |
| Real-time Clock (RTC) <sup>4</sup>   | POR          | DIVSLOW_CLK              | Yes                                      | OSC32KCLK, LPO                                  |                                           |
| TSTMR                                | Chip Reset   | DIVSLOW_CLK              |                                          | SIRCLK @ 1 MHz                                  |                                           |
| Communications                       | ,            | •                        | ,                                        | ,                                               |                                           |
| USB                                  | Chip Reset   | DIVCORE_CLK <sup>5</sup> | Yes                                      | SCG DIV1,<br>USB_CLKIN <sup>6</sup>             | 3-bit Divide, 1-bit Fraction <sup>7</sup> |
| LPSPI                                | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| LPI2C                                | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| LPUART                               | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| EMVSIM                               | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| SAI                                  | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3,<br>SAI_MCLK <sup>8</sup>              |                                           |
| FlexIO                               | Chip Reset   | DIVSLOW_CLK              | Yes                                      | SCG DIV3                                        |                                           |
| GPIO controller                      | Chip Reset   | DIVCORE_CLK              |                                          |                                                 |                                           |

- 1. Watchdog clock sources are selected by WDOGx\_CS[CLK]
- 2. ERCLK is either from an external pin or from the SCG Internal OSC (SOSC) and configured with the SCG\_SOSCCFG[EREFS] bit.
- 3. LPTMR clock sources are selected by LPTMR\_PSR[PCS]
- 4. RTC clock sources are selected by RTC\_CR[LPOS]
- 5. For the USB FS OTG controller to operate, the minimum required DIVCORE\_CLK is 24 MHz (half of USB functional clock)
- 6. An additional external clock USB\_CLKIN, can also selected via PCCUSB0FS, and device's PORTx MUX field
- 7. Additional 3bit Divide field and 1-bit Fractional field reside in PCCUSB0FS register
- 8. An additional external clock SAI\_MCLK, can also selected via PCCSAI, and device's PORTx MUX field

# **DIV3 Peripheral Clocking**

For KL28 some timer peripherals and serial communication peripherals make use of the peripheral functional clocks using the xxDIV3 clock trees.

The example below shows the main peripheral interface clock come from the DIVSLOW\_CLK output. The PCC can then choose one of four optional peripheral functional clocks from the existing four clock sources within the SCG. The PCC can also provide inputs for clock sources external to the SCG.

KL28Z Reference Manual, Rev. 4, 06/2016

#### SCG Peripheral Interface Clock DIVSLOW\_CLK SCG DIVSLOW PCC\_TPMn **TPMn** Registers Registers SPLL SPLLDIV3\_CLK DIV3 SOSCDIV3\_CLK SOSC DIV3 COUNTER SIRCDIV3\_CLK SIRC DIV3 FIRCDIV3\_CLK **FIRC** DIV3

## **Example Peripheral Clocking - TPM**

Figure 5-2. Example Peripheral Clocking (TPM)

# 5.6 DIV1 Peripheral Clocking

For KL28 only the USB0 module makes use of the *xx*DIV1 peripheral functional clocks. This allows the USB0 module to have its functional clock frequency independent of other timer and serial communication peripherals.

The example below shows the main Peripheral interface clock come from the DIVCORE\_CLK output providing a direct 1:1 interface to the CPU. The PCC can then choose one of four optional clocks from the existing four clock sources within the SCG. The PCC can also provide inputs for clock sources external to the SCG.

#### SCG Peripheral Interface Clock DIVCORE CLK SCG DIVCORE PCC USB0FS USB0 Registers Registers SPLL SPLLDIV1\_CLK DIV1 SOSCDIV1\_CLK SOSC DIV1 COUNTER SIRCDIV1\_CLK SIRC DIV<sub>1</sub> FIRCDIV1\_CLK **FIRC** DIV1

#### **Example Peripheral Clocking - USB**

Figure 5-3. Example Peripheral Clocking (USB)

# 5.7 Programming model

The selection and multiplexing of system clock sources is controlled and programmed via the System Clock Generation (SCG) module. First, the SCG selects the clock source for driving the main CPU and the peripheral interface clocks, DIVCORE\_CLK and DIVSLOW\_CLK respectively.

The DIVCORE\_CLK and the DIVSLOW\_CLK clocks support three different modes of operation, normal RUN mode, HSRUN mode and Low Power RUN mode. Each of these run modes can have different clock sources and dividers options and are automatically selected via the options provided in SCG\_xCCR registers. Each specific run mode is configured via the SMC\_PMCTRL register.

Secondly the SCG can provide additional peripheral functional clocks to the various peripherals, via 3 optional output clock trees from each of the four sources. Each of the peripheral functional clock outputs has a programmable divider within the SCG. These xxxxDIVy\_CLK outputs are fed to the PCC module where the peripheral can select one of these alternative clock sources to clock the timing function of that peripheral.

- SPLL provides SPLLDIV1\_CLK, SPLLDIV2\_CLK and SPLLDIV3\_CLK
- SOSC provides SOSCDIV1\_CLK, SOSCDIV2\_CLK and SOSCDIV3\_CLK
- FIRC provides FIRCDIV1\_CLK, FIRCDIV2\_CLK and FIRCDIV3\_CLK
- SIRC provides SIRCDIV1\_CLK, SIRCDIV2\_CLK and SIRCDIV3\_CLK

#### NOTE

The twelve additional clock trees may not all be implemented on every device.

Each peripheral that can support alternative clock inputs, will have it's own dedicated PCCn register which allows selection of one of the above 12 clock inputs. The PCCn will also provide a clock gate enable/disable to the peripheral. The CPU will gain access to these peripherals referencing either the DIVSLOW\_CLK or DIVCORE\_CLK with the peripheral.

See SCG and PCC chapters for further details.

#### 5.8 Other Clock Sources

## 5.8.1 OSC32KCLK

The SCG also provide an additional output from the SOSC, named OSC32KCLK, which is used when the OSC is working from an external crystal of 32KHz or external 32KHz clock. This signal is fed directly to some low power peripherals to allow slower clocking in low power modes.

# 5.8.2 LPO Low Power Oscillator

The Low Power Oscillator (LPO) is an internal 1KHz RC oscillator and is not part of the SCG. It is controlled via the PMC module. It provides an optional clock input for peripherals that are required to operate in low power modes

## 5.9 Clock definitions

The following table describes the clocks in this device.

**Table 5-2. Clock Definitions** 

| Clock name   | Description                                                                                                                                                                                                  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clock name   | Description                                                                                                                                                                                                  |  |
| SOSC         | System Oscillator clock from the OSC module or an external squarewave input on EXTAL pin. One of the four clock sources. References to ERCLK are to this SOSC clock                                          |  |
| SIRC         | Slow Internal RC oscillator clock (2 or 8 MHz). One of the four clock sources.                                                                                                                               |  |
| FIRC         | Fast Internal RC oscillator clock (48-60 MHz). One of the four clock sources.                                                                                                                                |  |
| SPLL         | System PLL clock, that is a multiple of the FIRC or SOSC. One of the four clock sources.                                                                                                                     |  |
| DIVCORE_CLK  | Main clock for CPU platform and closely tighly coupled peripherals/modules. This clock is derived from one of the four clock sources                                                                         |  |
| DIVSLOW_CLK  | Main clock used for peripheral/CPU interfacing and clocking the flash module. This clock is derived from DIVCORE_CLK.                                                                                        |  |
| SOSCDIV1_CLK | Alternative clock for clocking peripherals tightly coupled with CPU, sourced from SOSC. Selected via PCCn register of peripheral                                                                             |  |
| SIRCDIV1_CLK | Alternative clock for clocking peripherals tightly coupled with CPU, sourced from SIRC. Selected via PCCn register of peripheral                                                                             |  |
| FIRCDIV1_CLK | Alternative clock for peripherals tightly coupled with CPU, sourced from FIRC. Selected via PCCn register of peripheral                                                                                      |  |
| SPLLDIV1_CLK | Alternative clock for clocking peripherals tightly coupled with CPU, sourced from SPLL. Selected via PCCn register of peripheral                                                                             |  |
| SOSCDIV3_CLK | Alternative clock for clocking low power peripherals, sourced from SOSC. Selected via PCCn register of peripheral                                                                                            |  |
| SIRCDIV3_CLK | Alternative clock for clocking low power peripherals, sourced from SIRC. Selected via PCCn register of peripheral                                                                                            |  |
| FIRCDIV3_CLK | Alternative clock for clocking low power peripherals, sourced from FIRC. Selected via PCCn register of peripheral                                                                                            |  |
| SPLLDIV3_CLK | Alternative clock for clocking low power peripherals, sourced from SPLL. Selected via PCCn register of peripheral                                                                                            |  |
| OSC32KCLK    | System oscillator output clock when either a 32 kHz crystal or 32 kHz external clock source is provide to the EXTAL pin.                                                                                     |  |
| LPO          | PMC 1kHz output. Used to clock some periodic timers when in low power stop modes to provide periodic wake-up or periodic interrupts. The LPO is independent of the SCG and is controlled via the PMC module. |  |

# 5.10 Clocking details

The following table provide more information regarding the on-chip clocks.

**Table 5-3. Detailed Clock Summary** 

| Clock name  | Run mode - Clock<br>Frequency | VLPR mode -<br>Clock Frequency | HSRUN mode -<br>Clock Frequency | Clock source | Clock can be disabled when     |
|-------------|-------------------------------|--------------------------------|---------------------------------|--------------|--------------------------------|
| DIVCORE_CLK | Up to 72 MHz                  | Up to 8 MHz                    | Up to 96 MHz                    | SCG          | When both CPUs are in any stop |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 5-3. Detailed Clock Summary (continued)

| Clock name                    | Run mode - Clock<br>Frequency | VLPR mode -<br>Clock Frequency   | HSRUN mode -<br>Clock Frequency | Clock source                                                                  | Clock can be disabled when                                                                                               |
|-------------------------------|-------------------------------|----------------------------------|---------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                               |                               |                                  |                                 |                                                                               | modes except for partial stop modes.                                                                                     |
| DIVSLOW_CLK                   | Up to 24 MHz                  | DIVCORE_CLK divide by 4 or more. | Up to 24 MHz                    | SCG                                                                           | When both CPUs are in any stop modes except for partial stop modes.                                                      |
| SOSCDIV1_CLK,<br>SOSCDIV3_CLK | Up to 48 MHz                  | Up to 8 MHz                      | Up to 48 MHz                    | SCG                                                                           | If not being used by<br>any peripheral<br>and/or<br>DIVCORE_CLK or<br>feeding the PLL                                    |
| SPLLDIV1_CLK,<br>SPLLDIV3_CLK | Up to 72 MHz                  | PLL disabled                     | Up To 96 MHz                    | SCG                                                                           | If not being used by<br>any peripheral<br>and/or<br>DIVCORE_CLK                                                          |
| FIRCDIV1_CLK,<br>FIRCDIV3_CLK | Up to 60 MHz                  | FIRC is disabled                 | Up to 60 MHz                    | SCG                                                                           | If not being used by<br>any peripheral<br>and/or<br>DIVCORE_CLK or<br>feeding the PLL                                    |
| SIRCDIV1_CLK,<br>SIRCDIV3_CLK | 8 MHz                         | 8 MHz                            | 8 MHz                           | SCG                                                                           | If not being used by<br>any peripheral<br>and/or<br>DIVCORE_CLK                                                          |
| OSC32KCLK                     | 30 kHz to 40 kHz              | 30-40 kHz low-<br>range crystal  | OSC32KCLK is disabled           | external crystal oscillator connected to EXTAL/XTAL or ext clock on EXTAL pin | If FIRC or SIRC is<br>being used by<br>SCG, and if no<br>peripherals are<br>using OSC32KCLK                              |
| LPO                           | 1 kHz                         | 1 kHz                            | LPO is disabled                 | PMC's Low Power<br>Oscillator                                                 | Can be disabled in<br>VLPSx Stop modes<br>to save sub uA<br>current<br>consumption if not<br>used by LPTMRx<br>or WDOGs. |

# 5.11 Internal Clocking Requirements

The following requirements must be met when configuring the clocks for this device:

- The DIVCORE\_CLK should not exceed 72MHz in normal RUN mode. The DIVSLOW\_CLK should not exceed 24 MHz for reliable flash memory operation
- The DIVCORE\_CLK should not exceed 96MHz in High Speed RUN mode. The DIVSLOW\_CLK should not exceed 24 MHz for reliable flash memory operation.
- The DIVCORE\_CLK should not exceed 8MHz in Low Power RUN mode. The DIVSLOW\_CLK should not exceed 1MHz.

#### Clock divider values after reset

- Peripheral functional clocks from xxxDIV3\_CLK or xxxDIV1\_CLK in normal RUN mode should be limited to 72 MHz.
- Peripheral functional clocks from xxxDIV3\_CLK or xxxDIV1\_CLK in high speed RUN mode should be limited to 96MHz.
- When switching from normal RUN mode to HSRUN mode, clock sources should be enabled prior to changing run modes. Once the Core is in HSRUN mode, if the normal RUN mode source oscillator is not being used then it can then be disabled.
- When switching from normal RUN mode to VLPR mode, clock sources should be enabled prior to changing run modes. Once the Core is in VLPR mode, if the normal RUN mode source oscillator is not being used then it can then be disabled.
- When switching from VLPR mode to normal RUN mode, clock sources should be enabled prior to changing run modes. Once the Core is in normal RUN mode, if the VLPR mode source oscillator is not being used then it can then be disabled.
- When switching from HSRUN mode to normal RUN mode, clock sources should be enabled prior to changing run modes. Once the Core is in normal RUN mode, if the HSRUN mode source oscillator is not being used then it can then be disabled.
- Switching from VLPR to HSRUN mode, and vice versa is not supported. Users must switch to normal RUN mode first then into either HSRUN or VLPR mode.

Refer to the SMC chapter for further power mode information.

## 5.12 Clock divider values after reset

The device resets to either normal RUN mode, or VLP Run mode and the SIRC clock source is used to drive the DIVCORE\_CLK. The specific run mode is selected via NVM (IFR) options.

In addition to the run mode when the device resets, the DIVCORE\_CLK divide ratio is determined by the NVM (IFR) options. The IFR bits set the DIVCORE field in the SCG's Run Clock Control Register (SCG\_RCCR). Similarly the DIVSLOW\_CLK divide ratio is also determined by the NVM (IFR) options.

For KL28, out of reset, the SIRC module is enabled and used as the main clock source out of reset. This provides an 8MHz source clock.

The PLL, FIRC and SOSC are disabled out of reset.

All peripheral clocks xxxDIVy\_CLK's are disabled out of reset.

The speed of the DIVCORE\_CLK and DIVSLOW\_CLK out of reset can be modified by programming NVM(IFR) register bits.

| Table 5-4. | DIVCORE | _CLK and DIVSLOW $_{	extstyle}$ | _CLK out-of-reset | configuration |
|------------|---------|---------------------------------|-------------------|---------------|
|------------|---------|---------------------------------|-------------------|---------------|

| FTFA_FOPT[4:0] DIVCORE_CLK |                   | DIVSLOW_CLK       | Execution mode |
|----------------------------|-------------------|-------------------|----------------|
| 00                         | 0x7 (divide by 8) | 0x1 (divide by 2) | VLPR           |
| 01                         | 0x3 (divide by 4) | 0x1 (divide by 2) | VLPR           |
| 10                         | 0x1 (divide by 2) | 0x1 (divide by 2) | RUN            |
| 11                         | 0x0 (divide by 1) | 0x1 (divide by 2) | RUN            |

This gives the user flexibility in selecting between a lower frequency, low-power boot option and higher frequency, higher power during and after reset. The flash erased state defaults to fast clocking mode, since these bits reside in flash, which is logic 1 in the flash erased state. To enable a lower power boot option, program the appropriate bits in FTFA\_FOPT. During the reset sequence, if either of the control bits is cleared, the system is in a slower clock configuration. Upon any system reset, the clock dividers return to this configurable reset state. The factory default reset clock for core/system clock is 8MHz from SIRC.

# 5.13 Clock gating

Clock gating of modules helps users to only consume power for modules that are needed for their end application. The clock to each module will have the capability to be gated on or off via a programmable register. Each peripheral has independent clock gating for both the peripheral interface clock and the peripheral functional clock. This clock gating is controlled via the peripheral's PCCn register. Clearing PCCn[CGC] disables the peripheral interface clock, and clearing of PCCn[PCS] disables the peripheral functional clock. The SCG also has clock gating functionality of the peripheral functional clocks, which can be used to gate several peripheral functional clocks via the xxxDIV[xxxxDIVy] fields. The DIVCORE\_CLK and DIVSLOW\_CLK are always enabled in the various RUN and Wait modes. If these are not used in low power stop modes, then they will be disabled via the SMC and PMC modules.

Both the Core Clock and Slow (Flash) Clocks have associated clock gates in the SCG.

# 5.14 Flash Memory Clock

The embedded Flash memory has a maximum operating frequency of 25Mhz. The KL28 uses the DIVSLOW\_CLK from the SCG. This clock output should not exceed 25MHz for reliable flash operation.

Flash Memory Clock

# Chapter 6 Reset and Boot

#### 6.1 Introduction

Reset sources supported in this microcontroller are listed here.

**Reset sources** Description POR reset • Power-on reset (POR) External global system resets • External pin reset (PIN) Low-voltage detect (LVD) · Low leakage wakeup (LLWU) reset · Clock monitor reset sources Stop mode acknowledge error (SACKERR) Internal Core-generated resets · Watchdog timer reset · Software reset (SW) Lockup reset (LOCKUP) MDM DAP system reset request Debug reset · Debug resets

Table 6-1. Reset sources

Each of the system reset sources has an associated bit in the System Reset Status (SRS) registers. See the Reset Control Module for register details.

The microcontroller has 1 CPU (called the Core).

- By default, resets initiated externally from the Core (like External Global System resets) force a reset to the Core.
- On exit from any reset, the Core starts to execute.
- The Core is always enabled after a global external reset.

The microcontroller can exit and reset in functional mode where the Core is executing code (default) or the Core is in a debug halted state. There are several boot options that can be configured. See Boot for more details.

#### 6.2 Reset

The information found here discusses basic reset mechanisms and sources.

Some modules that cause resets can be configured to cause interrupts instead. Consult the individual peripheral chapters for more information.

# 6.2.1 Power-on reset (POR)

When power is initially applied to the MCU or when the supply voltage drops below the power-on reset re-arm voltage level  $(V_{POR})$ , the POR circuit causes a POR reset condition.

As the supply voltage rises, the LVD circuit holds the MCU in reset until the supply has risen above the LVD low threshold ( $V_{LVDL}$ ). The POR and LVD fields in the Reset Status Register are set following a POR.

# 6.2.2 System reset sources

Resetting the MCU provides a way to start processing from a known set of initial conditions. System reset begins with the on-chip regulator in full regulation and system clocking generation from an internal reference. When the processor exits reset, it performs the following:

- Reads the start SP (SP\_main) from vector-table offset 0
- Reads the start program counter (PC) from vector-table offset 4
- Link register (LR) is set to 0xFFFF\_FFFF.

The on-chip peripheral modules are disabled and the non-analog I/O pins are initially configured as disabled. The pins with analog functions assigned to them default to their analog function after reset.

During and following a reset, the SWD pins have their associated input pins configured as:

- SWD\_CLK in pulldown (PD)
- SWD\_DIO in pullup (PU)

# 6.2.2.1 External pin reset (RESET\_b)

This pin is open drain and has an internal pullup device. Asserting RESET\_b wakes the device from any mode.

The RESET\_b pin can be disabled by programming RESET\_PIN\_CFG option bit to 0. When this option is selected, there could be a short period of contention during a POR ramp where the device drives the pin-out low prior to establishing the setting of this option and releasing the reset function on the pin. When the RESET pin is disabled and configured as a GPIO output, it operates as a pseudo open drain output.

#### 6.2.2.1.1 RESET pin filter

The RESET pin filter supports filtering from both the 1 kHz LPO clock and the bus clock. RCM\_RPC[RSTFLTSS], RCM\_RPC[RSTFLTSRW], and RCM\_RPC[RSTFLTSEL] control this functionality; see the RCM chapter. The filters are asynchronously reset by Chip POR. The reset value for each filter assumes the RESET pin is negated.

For all stop modes where LPO clock is still active (Stop, VLPS, LLS, VLLS3, VLLS2 and VLLS1), the only filtering option is the LPO-based digital filter. The filtering logic either switches to bypass operation or has continued filtering operation depending on the filtering mode selected. When entering VLLS0, the RESET pin filter is disabled and bypassed.

The LPO filter has a fixed filter value of 3. Due to a synchronizer on the input data, there is also some associated latency (2 cycles). As a result, 5 cycles are required to complete a transition from low to high or high to low.

## 6.2.2.2 Low-voltage detect (LVD)

The chip includes a system for managing low-voltage conditions to protect memory contents and control MCU system states during supply voltage variations. The system consists of a power-on reset (POR) circuit and an LVD circuit with a user-selectable trip voltage. The LVD system is always enabled in Normal Run, Wait, or Stop mode. The LVD system is disabled when entering VLPx, LLS, or VLLSx modes.

The LVD can be configured to generate a reset upon detection of a low-voltage condition by setting PMC\_LVDSC1[LVDRE] to 1. The low-voltage detection threshold is determined by PMC\_LVDSC1[LVDV]. After an LVD reset has occurred, the LVD system holds the MCU in reset until the supply voltage has risen above the low voltage detection threshold. RCM\_SRS[LVD] is set following either an LVD reset or POR.

## 6.2.2.3 High-voltage detect (HVD)

The chip includes a system to guard against high-voltage conditions. See:

- High-voltage detect (HVD) system
- HVD reset operation
- HVD interrupt operation

# 6.2.2.4 Watchdog timer (WDOG)

The watchdog timer monitors the operation of the system by expecting periodic communication from the software. This communication is generally known as servicing (or refreshing) the watchdog. If this periodic refreshing does not occur, then the watchdog issues a system reset, which causes RCM\_SRS[WDOG] to set.

# 6.2.2.5 Low leakage wakeup (LLWU)

The LLWU module provides the means for a number of external pins and a number of internal peripherals to wake the MCU from low leakage power modes. It also allows for asynchronous DMA wakeup from LLS for certain peripherals.

The LLWU module is functional only in low leakage power modes. In VLLSx modes, all enabled inputs to the LLWU can generate a system reset.

After a system reset, the LLWU retains the flags indicating the input source of the last wakeup until the user clears them.

#### **NOTE**

Some flags are cleared in the LLWU and some flags are required to be cleared in the peripheral module. Refer to the individual peripheral chapters for more information.

#### 6.2.2.6 Clock monitor reset sources

The SCG module contains a clock monitor with reset and interrupt request capability for SPLL and SOSC clocks.

#### NOTE

To prevent unexpected reset events, all clock monitors must be disabled before entering any low-power modes, including VLPR and VLPW.

# 6.2.2.7 Stop mode acknowledge error (SACKERR)

This reset is generated if the core attempts to enter Stop mode or Compute Operation, but not all modules acknowledge Stop mode within 1025 cycles of the 1 kHz LPO clock.

A module might not acknowledge the entry to Stop mode if an error condition occurs. The error can be caused by a failure of an external clock input to a module.

# 6.2.2.8 Software reset (SW)

The SYSRESETREQ field in the NVIC Application Interrupt and Reset Control register can be set to force a software reset on the device. (See ARM's NVIC documentation for the full description of the register fields, especially the VECTKEY field requirements.) Setting SYSRESETREQ generates a software reset request. This reset forces a system reset of all major components except for the debug module. A software reset causes RCM\_SRS[SW] to set.

## 6.2.2.9 Lockup reset (LOCKUP)

The LOCKUP gives immediate indication of a seriously errant kernel software. This is the result of the core being locked, because of an unrecoverable exception following the activation of the processor's built-in system state protection hardware.

The LOCKUP condition causes a system reset and also causes RCM\_SRS[LOCKUP] to set.

## 6.2.2.10 MDM-AP system reset request

To initiate a system reset, set the System Reset Request field in the MDM-AP control register. This is the primary method for resets via the SWD interface. The system reset is held until this field is cleared.

To hold the core in reset as the rest of the chip comes out of system reset, set the Core Hold Reset field in the MDM-AP control register.

#### 6.2.3 MCU resets

A variety of resets are generated by the MCU to reset different modules.

Table 6-2. MCU Resets

| Reset                | Assertion                                                                                                            | Resets What?                                                                              | Other Actions                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| POR Only             | POR Only reset asserts on the POR reset source only.                                                                 | It resets the PMC and RTC.                                                                | The POR Only reset also causes all other reset types to occur.                                                                             |
| Chip POR not<br>VLLS | Chip POR not VLLS reset asserts on POR and LVD reset sources.                                                        | It resets parts of the SMC and SIM, and also resets the LPTMR.                            | The Chip POR not VLLS reset also causes these other resets to occur:  Chip POR Chip Reset not VLLS Chip Reset (including Early Chip Reset) |
| Chip POR             | Chip POR asserts on POR, LVD, and VLLS Wakeup reset sources.                                                         | It resets the RCM registers and parts of the SIM and SCG.                                 | The Chip POR also causes the Chip Reset (including Early Chip Reset) to occur.                                                             |
| Chip Reset not VLLS  | Chip Reset not VLLS reset asserts on all reset sources except a VLLS Wakeup that does not occur via the RESET_b pin. | It resets parts of the SMC, LLWU, and other modules that remain powered during VLLS mode. | The Chip Reset not VLLS reset also causes the Chip Reset (including Early Chip Reset) to occur.                                            |
| Early Chip<br>Reset  | Early Chip Reset asserts on all reset sources.                                                                       | It resets only the flash memory module.                                                   | It negates before flash memory initialization begins ("earlier" than when the Chip Reset negates).                                         |
| Chip Reset           | Chip Reset asserts on all reset sources.                                                                             | It resets the remaining modules (the modules not reset by other reset types).             | It only negates after flash initialization has completed and the RESET_b pin has also negated.                                             |

# 6.2.4 RESET\_b pin

For all reset sources except a VLLS Wakeup that does not occur via the RESET\_b pin, the RESET\_b pin is driven low by the MCU for at least 128 bus clock cycles and until flash initialization has completed.

After flash initialization has completed, the RESET\_b pin is released, and the internal Chip Reset negates after the RESET\_b pin is pulled high. Keeping the RESET\_b pin asserted externally delays the negation of the internal Chip Reset.

The RESET\_b pin can be disabled by programming FTFA\_FOPT[RESET\_PIN\_CFG] option bit to 0 (See Table 6-3). When this option is selected, there could be a short period of contention during a POR ramp where the device drives the pin low prior to establishing the setting of this option and releasing the reset function on the pin. When the RESET pin is disabled and configured as a GPIO output, it operates as a pseudo open drain output.

133

# 6.2.5 Debug resets

The following sections detail the debug resets available on the device.

## 6.2.5.1 Resetting the Debug subsystem

Use the CDBGRSTREQ field within the DP CTRL/STAT register to reset the debug modules. However, as explained below, using the CDBGRSTREQ field does not reset all debug-related registers.

CDBGRSTREQ resets the debug-related registers within the following modules:

- SW-DP
- AHB-AP
- MDM-AP (MDM control and status registers)

CDBGRSTREQ does not reset the debug-related registers within the following modules:

- CM0+ core (core debug registers: DHCSR, DCRSR, DCRDR, DEMCR)
- BPU
- DWT
- NVIC
- Crossbar bus switch<sup>1</sup>
- Private peripheral bus<sup>1</sup>

## 6.3 Boot

The information found here describes the boot sequence, including sources and options.

Some configuration information such as clock trim values stored in factory programmed flash locations is autoloaded.

## 6.3.1 Boot sources

The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table. This device supports booting from internal flash and RAM.

CDBGRSTREQ does not affect AHB resources so that debug resources on the private peripheral bus are available during System Reset.

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Boot**

This device supports booting from internal flash with the reset vectors located at addresses 0x0 (initial SP\_main), 0x4 (initial PC), and RAM with relocating the exception vector table to RAM.

# 6.3.2 FOPT boot options

The Flash Option (FOPT) register in the Flash Memory module (FTFA\_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. The default setting for all values in the FTFA\_FOPT register is logic 1 since it is copied from the option byte residing in flash, which has all bits as logic 1 in the flash erased state. To configure for alternate settings, program the appropriate bits in the NVM option byte. The new settings will take effect on subsequent POR, VLLSx recoveries, and any system reset. For more details on programming the option byte, see the flash memory chapter.

The MCU uses FTFA\_FOPT to configure the device at reset as shown in the following table.

#### NOTE

An FTFA\_FOPT value of 0x00 is invalid and will be ignored. The FOPT register is written to 0xFF if the contents of the Flash nonvolatile option are 0x00.

Table 6-3. Flash Option Register (FTFA FOPT) definition

| Bit<br>Num | Field         | Value                                                                                            | Definition                                                                                                                                                                                                                                    |  |
|------------|---------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7-6        | BOOTSRC_SEL   | Boot Source Selection: these bits select the boot sources if boot pin option bit BOOTPIN_OPT = 1 |                                                                                                                                                                                                                                               |  |
|            |               | 00                                                                                               | Boot from Flash                                                                                                                                                                                                                               |  |
|            |               | 01                                                                                               | Reserved                                                                                                                                                                                                                                      |  |
|            |               | 10                                                                                               | Reserved                                                                                                                                                                                                                                      |  |
|            |               | 11                                                                                               | Boot from ROM                                                                                                                                                                                                                                 |  |
| 5          | FAST_INIT     | Selects initialization speed on POR, VLLSx, and any system reset.                                |                                                                                                                                                                                                                                               |  |
|            |               | 0                                                                                                | Slower initialization: The flash initialization will be slower with the benefit of reduced average current during this time. The duration of the recovery will be controlled by the clock divider selection determined by the LPBOOT setting. |  |
|            |               | 1                                                                                                | Fast Initialization: The flash has faster recoveries at the expense of higher current during these times.                                                                                                                                     |  |
| 3          | RESET_PIN_CFG | Enables/disables control for the RESET pin.                                                      |                                                                                                                                                                                                                                               |  |
|            |               | 0                                                                                                | RESET_b pin is disabled following a POR and cannot be enabled as reset function. When this option is selected, there could be a short period of contention during a POR ramp where the device drives the pin low prior to establishing the    |  |

Table continues on the next page...

Table 6-3. Flash Option Register (FTFA\_FOPT) definition (continued)

| Bit | Field       | Value                                                                                                                                                                                                                                                                                                                                                                | Definition                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Num |             | <u> </u>                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                                                                      | setting of this option and releasing the reset function on the pin. When the RESET pin is disabled and configured as a GPIO output, it operates as a pseudo open drain output.                                                                                                                                                                                      |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                                                                      | This bit is preserved through system resets and low-power modes. When RESET_b pin function is disabled, it cannot be used as a source for low-power mode wake-up.                                                                                                                                                                                                   |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                                                                      | NOTE: When the reset pin has been disabled and security has been enabled by means of the FSEC register, a mass erase can be performed only by setting both the Mass Erase and System Reset Request fields in the MDM-AP register.                                                                                                                                   |  |  |
|     |             | 1                                                                                                                                                                                                                                                                                                                                                                    | RESET_b pin is dedicated. The port is configured with pullup enabled, open drain, passive filter enabled.                                                                                                                                                                                                                                                           |  |  |
| 2   | NMI_DIS     | Enables/disables control for the NMI function.                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|     |             | 0                                                                                                                                                                                                                                                                                                                                                                    | NMI interrupts are always blocked. The associated pin continues to default to NMI_b pin controls with internal pullup enabled. When NMI_b pin function is disabled, it cannot be used as a source for low-power mode wake-up.                                                                                                                                       |  |  |
|     |             |                                                                                                                                                                                                                                                                                                                                                                      | If the NMI function is not required, either for an interrupt or wake up source, it is recommended that the NMI function be disabled by clearing NMI_DIS.                                                                                                                                                                                                            |  |  |
|     |             | 1                                                                                                                                                                                                                                                                                                                                                                    | NMI_b pin/interrupts reset default to enabled.                                                                                                                                                                                                                                                                                                                      |  |  |
| 1   | BOOTPIN_OPT | Externa                                                                                                                                                                                                                                                                                                                                                              | External pin selects boot options                                                                                                                                                                                                                                                                                                                                   |  |  |
|     |             | 0                                                                                                                                                                                                                                                                                                                                                                    | Force Boot from ROM if BOOTCFG0 asserted, where BOOTCFG0 is the boot config function which is muxed with NMI_b pin. RESET_b pin must be enabled (FOPT[RESET_PIN_CFG] = 1) when this option is selected. NMI_b pin is sampled at the end of reset (when reset pin negates). If BOOTCFG0 pin is not asserted, Boot source configured by FOPT[7:6] (BOOTSRC_SEL) bits. |  |  |
|     |             | 1                                                                                                                                                                                                                                                                                                                                                                    | Boot source configured by FOPT[7:6] ( BOOTSRC_SEL) bits                                                                                                                                                                                                                                                                                                             |  |  |
| 4,0 | LPBOOT      | Controls the reset value of DIVCORE in the SCG_RCCR and SCG_VCCR registers, and the state of the RUNM field in the SMC_PMCTRL register. Larger divide value selections produce lower average power consumption during POR, VLLSx recoveries and reset sequencing and after reset exit. The recovery times are also extended if the FAST_INIT option is not selected. |                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|     |             | 00                                                                                                                                                                                                                                                                                                                                                                   | Core and system clock divider (SCG_VCCR[DIVCORE]) is 0x7 (divide by 8). Device is configured for VLPR mode on exit from reset.                                                                                                                                                                                                                                      |  |  |
|     |             | 01                                                                                                                                                                                                                                                                                                                                                                   | Core and system clock divider (SCG_VCCR[DIVCORE]) is 0x3 (divide by 4). Device is configured for VLPR mode on exit from reset.                                                                                                                                                                                                                                      |  |  |
|     |             | 10                                                                                                                                                                                                                                                                                                                                                                   | Core and system clock divider (SCG_RCCR[DIVCORE]) is 0x1 (divide by 2). Device is configured for RUN mode on exit from reset.                                                                                                                                                                                                                                       |  |  |
|     |             | 11                                                                                                                                                                                                                                                                                                                                                                   | Core and system clock divider (SCG_RCCR[DIVCORE]) is 0x0 (divide by 1). Device is configured for RUN mode on exit from reset.                                                                                                                                                                                                                                       |  |  |

#### **Boot sequence** 6.3.3

At power up, the on-chip regulator holds the system in a POR state until the input supply exceeds the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating voltage as determined by the LVD. The Reset Controller logic then controls a sequence to exit reset.

- 1. A system reset is held on internal logic, the RESET pin is driven out low, and the SCG is enabled in its default clocking mode.
- 2. Required clocks are enabled (system clock, flash clock, and any bus clocks that do not have clock gate control reset to disabled).
- 3. The system reset on internal logic continues to be held, but the Flash Controller is released from reset and begins initialization operation while the Reset Control logic continues to drive the RESET pin out low.
- 4. Early in reset sequencing, the NVM option byte is read and stored to the FOPT register of the Flash Memory module (FTFA\_FOPT). If the bits associated with FTFA\_FOPT[LPBOOT] are programmed for an alternate clock divider reset value, the system/core clock is switched to a slower clock speed. If FTFA\_FOPT[FAST\_INIT] is programmed clear, the flash initialization switches to slower clock resulting longer recovery times.
- 5. When flash Initialization completes, the RESET pin is released. If RESET continues to be asserted (an indication of a slow rise time on the  $\overline{RESET}$  pin or external drive in low), the system continues to be held in reset. Once the RESET pin is detected high, the core clock is enabled and the system is released from reset.
- 6. When the system exits reset, the processor sets up the stack, program counter (PC), and link register (LR). The processor reads the start SP (SP\_main) from vector-table offset 0. The core reads the start PC from vector-table offset 4. LR is set to 0xFFFF\_FFFF. The next sequence of events depends on the NMI/BOOTCFG0 input and FTFA\_FOPT[NMI\_DIS] and FTFA\_FOPT[BOOTSRC\_SEL] and FTFA FOPT[BOOTPIN OPT] as well as RCM MR[BOOTROM](See Table 6-3 and RCM block guide):
  - If the NMI/BOOTCFG0 input is high or the NMI function is disabled in FTFA FOPT, the CPU fetches the reset vector from flash address 0x0000 0004 and code execution begins from this address.
  - If the NMI/BOOTCFG0 input is low and the NMI function is enabled in FTFA\_FOPT, this results in an NMI interrupt. The processor executes an Exception Entry and reads the NMI interrupt handler address from vector-table offset 8. The CPU begins execution at the NMI interrupt handler.
  - When FTFA\_FOPT[BOOTPIN\_OPT] = 0, it forces boot from ROM if  $\overline{\text{NMI}}$ BOOTCFG0 pin asserted.

## **NOTE**

If the NMI function is not required, either for an interrupt or wake up source, it is recommended that the NMI function be disabled by clearing NMI\_DIS in the FOPT register.

Subsequent system resets follow this same reset flow.

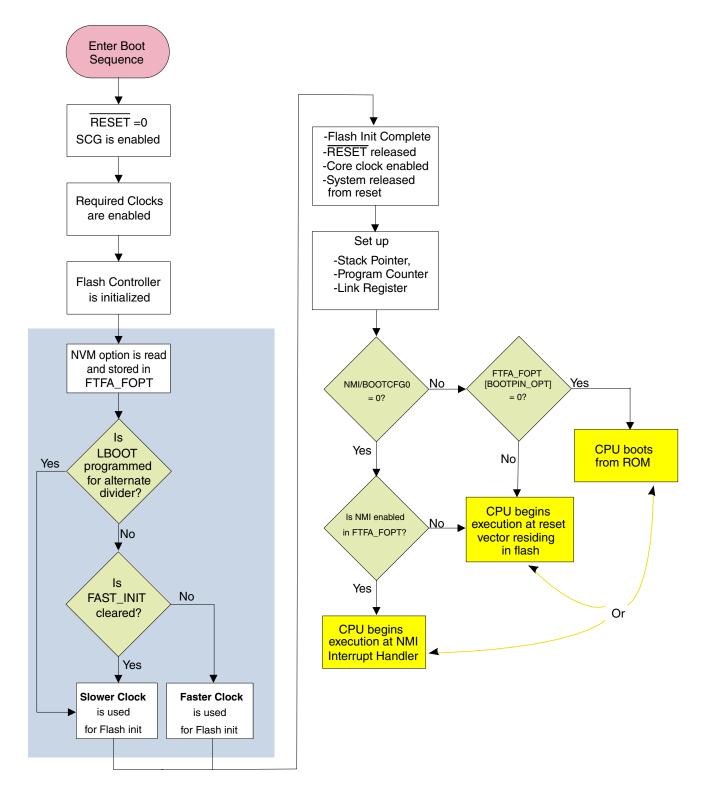



Figure 6-1. Boot Sequence

# **Chapter 7 Power Management**

## 7.1 Introduction

Information about the various chip power modes and functionality of the individual modules in these modes can be found here.

# 7.2 Clocking modes

Information found here describes the various clocking modes supported on this device.

# 7.2.1 Partial Stop

Partial Stop is a clocking option that can be taken instead of entering Stop mode and is configured in the SMC Stop Control Register (SMC\_STOPCTRL). The Stop mode is only partially entered, which leaves some additional functionality alive at the expense of higher power consumption. Partial Stop can be entered from either Run mode or VLP Run mode.

When configured for PSTOP2, only the core and system clocks are gated and the bus clock remains active. The bus masters and bus slaves clocked by the system clock enter Stop mode, but the bus slaves clocked by bus clock remain in Run (or VLP Run) mode. The clock generators in the SCG and the on-chip regulator in the PMC also remain in Run (or VLP Run) mode. Exit from PSTOP2 can be initiated by a reset, an asynchronous interrupt from a bus master or bus slave clocked by the system clock, or a synchronous interrupt from a bus slave clocked by the bus clock. If configured, a DMA request (using the asynchronous DMA wakeup) can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP2.

#### **Clocking modes**

When configured for PSTOP1, both the system clock and bus clock are gated. All bus masters and bus slaves enter Stop mode, but the clock generators in the SCG and the on-chip regulator in the PMC remain in Run (or VLP Run) mode. Exit from PSTOP1 can be initiated by a reset or an asynchronous interrupt from a bus master or bus slave. If configured, an asynchronous DMA request can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP1.

PSTOP1 is functionally similar to Stop mode, but offers faster wake-up at the expense of higher power consumption. Another benefit is that it keeps all of the SCG clocks enabled, which can be useful for some of the asynchronous peripherals that can remain functional in Stop modes.

# 7.2.2 DMA Wakeup

The DMA can be configured to wake the device on a DMA request whenever it is placed in Stop mode. The wake-up is configured per DMA channel and is supported in Compute Operation, PSTOP, STOP, and VLPS low power modes.

When a DMA wake-up is detected in PSTOP, STOP or VLPS then the device will initiate a normal exit from the low power mode. This can include restoring the on-chip regulator and internal power switches, enabling the clock generators in the SCG, enabling the system and bus clocks (but not the core clock) and negating the stop mode signal to the bus masters and bus slaves. The only difference is that the CPU will remain in the low power mode with the CPU clock disabled.

During Compute Operation, a DMA wake-up will initiate a normal exit from Compute Operation. This includes enabling the clocks and negating the stop mode signal to the bus masters and bus slaves. The core clock always remains enabled during Compute Operation.

Since the DMA wakeup will enable the clocks and negate the stop mode signals to all bus masters and slaves, software needs to ensure that bus masters and slaves that are not involved with the DMA wake-up and transfer remain in a known state. That can be accomplished by disabling the modules before entry into the low power mode or by setting the Doze enable bit in selected modules.

Once the DMA request that initiated the wake-up negates and the DMA completes the current transfer, the device will transition back to the original low-power mode. This includes requesting all non-CPU bus masters to enter Stop mode and then requesting bus slaves to enter Stop mode. In STOP and VLPS modes the SCG and PMC would then also enter their appropriate modes.

#### **NOTE**

If the requested DMA transfer cannot cause the DMA request to negate then the device will remain in a higher power state until the low power mode is fully exited.

An enabled DMA wake-up can cause an aborted entry into the low power mode, if the DMA request asserts during the stop mode entry sequence (or reentry if the request asserts during a DMA wake-up and can cause the SMC to assert its Stop Abort flag. Once the DMA wake-up completes, entry into the low power mode will restart.

An interrupt that occurs during a DMA wake-up will cause an immediate exit from the low power mode (this is optional for Compute Operation) without impacting the DMA transfer.

A DMA wake-up can be generated by either a synchronous DMA request or an asynchronous DMA request. Not all peripherals can generate an asynchronous DMA request in stop modes, although in general if a peripheral can generate synchronous DMA requests and also supports asynchronous interrupts in stop modes, then it can generate an asynchronous DMA request.

# 7.2.3 Compute Operation

Compute Operation is an execution or compute-only mode of operation that keeps the CPU enabled with full access to the SRAM and Flash read port, but places all other bus masters and bus slaves into their stop mode. Compute Operation can be enabled in either Run mode or VLP Run mode.

#### NOTE

Do not enter any Stop mode without first exiting Compute Operation.

Because Compute Operation reuses the Stop mode logic (including the staged entry with bus masters disabled before bus slaves), any bus master or bus slave that can remain functional in Stop mode also remains functional in Compute Operation, including generation of asynchronous interrupts and DMA requests. When enabling Compute Operation in Run mode, module functionality for bus masters and slaves is the equivalent of STOP mode. When enabling Compute Operation in VLP Run mode, module functionality for bus masters and slaves is the equivalent of VLPS mode. The SCG, PMC, SRAM, and Flash read port are not affected by Compute Operation, although the Flash register interface is disabled.

#### **Clocking modes**

During Compute Operation, the AIPS peripheral space is disabled and attempted accesses generate bus errors. The private peripheral space remains accessible during Compute Operation, including the MCM, NVIC, IOPORT, and SysTick. Although access to the GPIO registers via the IOPORT is supported, the GPIO Port Data Input registers do not return valid data since clocks are disabled to the Port Control and Interrupt modules. By writing to the GPIO Port Data Output registers, it is possible to control those GPIO ports that are configured as output pins.

Compute Operation is controlled by the CPO register in the MCM (MCM\_CPO), which is only accessible to the CPU. Setting or clearing MCM\_CPO[CPOREQ] initiates entry or exit into Compute Operation. Compute Operation can also be configured to exit automatically on detection of an interrupt, which is required in order to service most interrupts. Only the core system interrupts (exceptions, including NMI and SysTick) and any edge-sensitive interrupts can be serviced without exiting Compute Operation.

- When entering Compute Operation, the CPOACK status field in the CPO register of MCM module (MCM\_CPO[CPOACK]) indicates when entry has completed.
- When exiting Compute Operation in Run mode, MCM\_CPO[CPOACK] negates immediately.
- When exiting Compute Operation in VLP Run mode, the exit is delayed to allow the PMC to handle the change in power consumption. This delay means that MCM\_CPO[CPOACK] is polled to determine when the AIPS peripheral space can be accessed without generating a bus error.

The DMA wake-up is also supported during Compute Operation and causes MCM\_CPO[CPOACK] to clear and the AIPS peripheral space to be accessible for the duration of the DMA wake-up. At the completion of the DMA wake-up, the device transitions back into Compute Operation.

## 7.2.4 Peripheral Doze

Several peripherals support a Peripheral Doze mode, where a register bit can be used to disable the peripheral for the duration of a low-power mode. The flash memory can also be placed in a low-power state during Peripheral Doze via a register bit in the SIM.

Peripheral Doze is defined to include all of the modes of operation listed below.

- The CPU is in Wait mode.
- The CPU is in Stop mode, including the entry sequence and for the duration of a DMA wakeup.
- The CPU is in Compute Operation, including the entry sequence and for the duration of a DMA wakeup.

Peripheral Doze can therefore be used to disable selected bus masters or slaves for the duration of WAIT or VLPW mode. It can also be used to disable selected bus slaves immediately on entry into any stop mode (or Compute Operation), instead of waiting for the bus masters to acknowledge the entry as part of the stop entry sequence. Finally, it can be used to disable selected bus masters or slaves that should remain inactive during a DMA wakeup.

If the flash memory is not being accessed during WAIT and PSTOP modes, then the Flash Doze mode can be used to reduce power consumption, at the expense of a slightly longer wake-up when executing code and vectors from flash. It can also be used to reduce power consumption during Compute Operation when executing code and vectors from SRAM.

# 7.2.5 Clock gating

To conserve power, the clocks to most modules can be turned off using the CGC bit in the PCC module registers. For more details, see the Clock Distribution and PCC chapters.

#### 7.3 Power Mode Architecture

The power mode architecture consists of a digital power domain and an analog power domain. The device has the following external power connections.

- Digital ground (VSS)
- Digital supply (VDD)
- Analog ground (VSSA)
- Analog supply (VDDA)

The Analog to Digital converters ADC0 and Digital to Analog Converter DAC0 are powered via a separate analog domain: VSSA and VDDA.

GPIO port pads are powered directly from VDD.

## 7.4 Power modes

The System Mode Controller (SMC) provides multiple power options to allow the user to optimize power consumption for the level of functionality needed.

#### **Power modes**

Depending on the stop requirements of the user application, a variety of stop modes are available that provide state retention, partial power-down or full power-down of certain logic and/or memory. I/O states are held in all modes of operation. The following table compares the various power modes available.

For each run mode, there is a corresponding Wait and Stop mode. Wait modes are similar to ARM Sleep modes. Stop modes (VLPS, STOP) are similar to ARM Sleep Deep mode. The Very Low Power Run (VLPR) operating mode can drastically reduce runtime power when the maximum bus frequency is not required to handle the application needs.

The three primary modes of operation are Run, Wait, and Stop. The WFI instruction invokes both Wait and Stop modes for the chip. The primary modes are augmented in a number of ways to provide lower power based on application needs.

Table 7-1. Chip power modes

| Chip mode                                 | Description                                                                                                                                                                                                                                                                                                                                       | Core mode      | Normal recovery method |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| RUN (Normal<br>Run)                       | <ul><li>Default mode out of reset</li><li>On-chip voltage regulator is on.</li></ul>                                                                                                                                                                                                                                                              | Run            | _                      |
| HRUN (High<br>Speed Run)                  | Allows maximum performance of chip.  • On-chip voltage regulator is on.                                                                                                                                                                                                                                                                           | High Speed Run | _                      |
| WAIT (Normal<br>Wait) - via WFI           | Allows peripherals to function while the core is in Sleep mode, reducing power.  • NVIC remains sensitive to interrupts  • Peripherals continue to be clocked.                                                                                                                                                                                    | Sleep          | Interrupt              |
| STOP (Normal<br>Stop) - via WFI           | Places chip in static state. Lowest power mode that retains all registers while maintaining LVD protection.  • NVIC is disabled.  • AWIC is used to wake up from interrupt.  • Peripheral clocks are stopped.                                                                                                                                     | Sleep Deep     | Interrupt              |
| VLPR (Very<br>Low-Power Run)              | On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency.  • Reduced frequency Flash access mode (1 MHz)  • LVD off                                                                                                                                                                | Run            | _                      |
| VLPW (Very<br>Low-Power<br>Wait) -via WFI | Same as VLPR but with the core in Sleep mode to further reduce power.  • NVIC remains sensitive to interrupts (FCLK = ON).  • On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency.                                                                                            | Sleep          | Interrupt              |
| VLPS (Very<br>Low-Power<br>Stop)-via WFI  | Places chip in static state with LVD operation off. Lowest power mode with ADC and pin interrupts functional.  Peripheral clocks are stopped, but OSC, LPTMR,LPUART, RTC, CMP, TSI can be used.  TPM and UART can optionally be enabled if their clock source is enabled.  NVIC is disabled (FCLK = OFF); AWIC is used to wake up from interrupt. | Sleep Deep     | Interrupt              |

Table continues on the next page...

Table 7-1. Chip power modes (continued)

| Chip mode                             | Description                                                                                                                                                                                                                                                                                                                                                                                               | Core mode  | Normal recovery method            |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|--|
|                                       | <ul> <li>On-chip voltage regulator is in a low-power mode that supplies only enough power to run the chip at a reduced frequency.</li> <li>All SRAM is operating (content retained and I/O states held).</li> </ul>                                                                                                                                                                                       |            |                                   |  |
| LLS3 (Low-<br>Leakage Stop3)          | State retention power mode  Most peripherals are in state retention mode (with clocks stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be used.  NVIC is disabled; LLWU is used to wake up.  NOTE:  The LLWU interrupt must not be masked by                                                                                                                                                              | Sleep Deep | Wake-up<br>Interrupt <sup>1</sup> |  |
|                                       | the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery  • All SRAM is operating (content retained and I/O states held).                                                                                                                                                                                                                           |            |                                   |  |
| LLS2 (Low-<br>Leakage Stop2)          | State retention power mode  Most peripherals are in state retention mode (with clocks stopped), but OSC, LLWU,LPTMR, RTC, CMP, TSI can be used.  NVIC is disabled; LLWU is used to wake up.                                                                                                                                                                                                               | Sleep Deep | Wake-up<br>Interrupt <sup>1</sup> |  |
|                                       | NOTE: The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit stop mode on an LLS recovery  • 64 KB SRAM retained, internal logic and I/O states are retained.                                                                                                                                                                         |            |                                   |  |
| VLLS3 (Very<br>Low-Leakage<br>Stop3)  | <ul> <li>Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used.</li> <li>NVIC is disabled; LLWU is used to wake up.</li> <li>SRAM_U and SRAM_L remain powered on (content retained and I/O states held).</li> </ul>                                                                                                                                        | Sleep Deep | Wake-up<br>Reset <sup>-1</sup>    |  |
| VLLS2 (Very<br>Low-Leakage<br>Stop2)  | <ul> <li>Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used.</li> <li>NVIC is disabled; LLWU is used to wake up.</li> <li>64K of SRAM_U remains powered on (content retained and I/O states held).</li> </ul>                                                                                                                                           | Sleep Deep | Wake-up<br>Reset <sup>-1</sup>    |  |
| VLLS1 (Very<br>Low-Leakage<br>Stop1)  | Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, RTC, CMP, TSI can be used.     NVIC is disabled; LLWU is used to wake up.     All of SRAM_U and SRAM_L are powered off.     The 32-byte system register file remains powered for customercritical data     The 16-byte system register file remains powered for customercritical data                                          | Sleep Deep | Wake-up<br>Reset <sup>-1</sup>    |  |
| VLLS0 (Very<br>Low-Leakage<br>Stop 0) | Most peripherals are disabled (with clocks stopped), but LLWU, LPTMR, RTC, TSI can be used.     NVIC is disabled; LLWU is used to wake up.     All of SRAM_U and SRAM_L are powered off.     The 32-byte system register file remains powered for customercritical data     The 16-byte system register file remains powered for customercritical data     LPO disabled, optional POR brown-out detection | Sleep Deep | Wake-up<br>Reset <sup>-1</sup>    |  |

1. Resumes Normal Run mode operation by executing the LLWU interrupt service routine.

#### Entering and exiting power modes

See Chip Power Modes of Operation for more information about power modes.

## 7.5 Entering and exiting power modes

The WFI instruction invokes wait and stop modes for the chip. The processor exits the low-power mode via an interrupt.

For LLS/VLLS modes, the wake-up sources are limited to LLWU generated wake-ups, LPTMR, CMP, RTC, NMI\_b pin, or RESET\_b pin assertions. When the NMI\_b pin or RESET\_b pin have been disabled through associated FTFA\_FOPT settings, then these pins are ignored as wakeup sources. The wake-up flow from VLLSx is always through reset.

Before executing the WFI instruction, the last register written to must be read back. This ensures that all register writes associated with setting up the low power mode being entered have completed before the MCU enters the low power mode. Failure to do this may result in the low power mode not being entered correctly.

#### NOTE

The WFE instruction can have the side effect of entering a low-power mode, but that is not its intended usage. See ARM documentation for more on the WFE instruction.

On VLLS recoveries, the I/O pins continue to be held in a static state after code execution begins, allowing software to reconfigure the system before unlocking the I/O.

## 7.6 Module operation in low-power modes

The table found here illustrates the functionality of each module while the chip is in each of the low power modes.

The standard behavior is shown with some exceptions for Compute Operation (CPO) and Partial Stop2.

Debug modules are discussed separately; see Debug in low-power modes. Number ratings (such as 8 MHz and 2 Mbit/s) represent the maximum frequencies or maximum data rates per mode. A list of terms are used in the following table:

- **FF** = Full functionality. In VLPR and VLPW, the system frequency is limited, but if a module does not have a limitation in its functionality, it is still listed as FF.
- **Async** = Fully functional with alternate clock source, provided the selected clock source remains enabled
- **SR** = Module state is retained but not functional.

- **LP** = Module operates in a lower power state
- **OFF** = Modules are powered off or disabled.

Table 7-2. Module operation in low power modes

| Modules VLPR VLI              |                                                                                                                                                           | VLPW                    | Stop                                   | VLPS                                                                   | LLSx                                                | VLLSx                                                                                     |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------|--|
|                               |                                                                                                                                                           |                         | Core module                            | es                                                                     |                                                     |                                                                                           |  |
| NVIC                          | FF                                                                                                                                                        | FF                      | SR                                     | SR                                                                     | SR                                                  | OFF                                                                                       |  |
|                               |                                                                                                                                                           |                         | System modu                            | les                                                                    |                                                     |                                                                                           |  |
|                               |                                                                                                                                                           | FF                      | FF                                     | FF                                                                     | FF                                                  | FF                                                                                        |  |
| LLWU <sup>1</sup>             | SR                                                                                                                                                        | SR                      | SR                                     | SR                                                                     | FF                                                  | FF <sup>2</sup>                                                                           |  |
| Regulator                     | LP LP                                                                                                                                                     |                         | FF                                     | LP                                                                     | LP                                                  | LP in VLLS2/3,<br>OFF in<br>VLLS0/1                                                       |  |
| HVD/LVD                       | disabled                                                                                                                                                  | disabled                | FF                                     | disabled                                                               | disabled                                            | disabled                                                                                  |  |
| POR (Brown-<br>out Detection) |                                                                                                                                                           |                         | FF                                     | FF in<br>VLLS1/2/3,<br>optionally<br>disabled in<br>VLLS0 <sup>3</sup> |                                                     |                                                                                           |  |
| DMA                           | FF FF Async operation Async Async for modules operation Async in CPO  Async in CPO  Async operation Async operation operation operation CPO  Async in CPO |                         | OFF                                    |                                                                        |                                                     |                                                                                           |  |
|                               |                                                                                                                                                           |                         | Clocks                                 |                                                                        |                                                     |                                                                                           |  |
| 1kHz LPO                      | FF                                                                                                                                                        | FF                      | FF                                     | FF                                                                     | Optionally OFF<br>(controlled by<br>STOPCTRL[LPOPO] | OFF in VLLS0,<br>optionally OFF<br>in VLLS1/2/3<br>(controlled by<br>STOPCTRL[LP<br>OPO]) |  |
| SCG                           | SYSOSC, SIRC enabled                                                                                                                                      | SYSOSC,<br>SIRC enabled | SYSOSC,<br>SIRC, FIRC,<br>SPLL enabled | SYSOSC, SIRC enabled                                                   | SYSOSC enabled                                      | SYSOSC<br>enabled                                                                         |  |
| DIVCORE<br>Clock              | 8 MHz max                                                                                                                                                 | OFF                     | OFF                                    | OFF                                                                    | OFF                                                 | OFF                                                                                       |  |
| DIVSLOW<br>Clock              | 1 MHz max                                                                                                                                                 | OFF                     | OFF OFF                                |                                                                        | OFF                                                 | OFF                                                                                       |  |
|                               |                                                                                                                                                           | Mem                     | ory and memory                         | interfaces                                                             |                                                     |                                                                                           |  |
| Flash                         | 1 MHz max<br>access - no<br>program<br>No register<br>access in CPO                                                                                       | low power               | low power                              | low power                                                              | OFF                                                 | OFF                                                                                       |  |
| SRAM                          |                                                                                                                                                           |                         | SR                                     | SR                                                                     | SR in LLS3, partial<br>SR in LLS2. <sup>4</sup>     | SR in VLLS3,<br>partial SR in<br>VLLS2 <sup>5</sup> , OFF in<br>VLLS0/1.                  |  |
| System<br>Register File       | FF                                                                                                                                                        | FF                      | SR                                     | SR                                                                     | SR                                                  | SR                                                                                        |  |
|                               |                                                                                                                                                           | Co                      | ommunication in                        | terfaces                                                               |                                                     |                                                                                           |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Module operation in low-power modes

Table 7-2. Module operation in low power modes (continued)

| Modules                         | VLPR                                       | VLPW                                         | Stop                                       | VLPS                                        | LLSx            | VLLSx                           |
|---------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------|-----------------|---------------------------------|
| USB FS/LS                       | SR                                         | SR                                           | optional                                   | optional                                    | SR              | OFF                             |
| USB Voltage<br>Regulator        | optional                                   | optional                                     | optional                                   | optional                                    | optional        | optional                        |
| LPUARTO,<br>LPUART1,<br>LPUART2 | 2 Mbit/s                                   | 2 Mbit/s                                     | Async operation<br>FF in PSTOP2            | Async operation                             | SR              | OFF                             |
| LPSPI0,<br>LPSPI1,<br>LPSPI2    | 4 Mbit/s                                   | master mode 4<br>Mbit/s,                     | Async operation                            | operation                                   |                 | OFF                             |
| LPI2C0,<br>LPI2C1,<br>LPI2C2    | 1 Mbit/s                                   | 1 Mbit/s                                     | Async operation                            | operation Async SR operation                |                 | OFF                             |
| SAI                             | FF Async operation in CPO                  | Async clock Async clock tion in FF in PSTOP2 |                                            | SR                                          | OFF             |                                 |
| EMVSIM                          | AVSIM FF FF FF With external O Async clock |                                              | OFF                                        | OFF                                         |                 |                                 |
|                                 |                                            |                                              | Timers                                     |                                             |                 |                                 |
| TPM                             | A FF Async operation in CPO                |                                              | Async operation<br>FF in PSTOP2            | Async<br>operation                          | SR              | OFF                             |
| LPIT                            | FF Async operation in CPO                  | FF                                           | Async operation FF in PSTOP2               | operation                                   |                 | OFF                             |
| LPTMR                           | FF                                         | FF                                           | Async operation FF in PSTOP2               | Async operation                             | Async operation | Async<br>operation <sup>6</sup> |
| RTC                             | FF Async operation in CPO                  | FF                                           | Async operation FF in PSTOP2               | Async operation operation                   |                 | Async operation <sup>7</sup>    |
| TSTMR                           | FF                                         | FF                                           | Optional                                   | Optional                                    | OFF             | OFF                             |
|                                 |                                            |                                              | Analog                                     |                                             |                 |                                 |
| 16-bit ADC                      | FF ADC internal clock only in CPO          | FF                                           | ADC internal<br>clock only<br>FF in PSTOP2 | ADC internal clock only                     | SR              | OFF                             |
| VREF                            | FF                                         | FF                                           | FF                                         | FF                                          | OFF             | OFF                             |
| CMP <sup>8</sup>                | FF FF HS or LS HS or                       |                                              | HS or LS<br>compare                        | LS compare  LS compare  VLLS1/3, (  in VLLS |                 |                                 |

Table continues on the next page...

Table 7-2. Module operation in low power modes (continued)

| Modules              | VLPR                        | VLPW                            | Stop                                            | VLPS                            | LLSx                         | VLLSx                        |
|----------------------|-----------------------------|---------------------------------|-------------------------------------------------|---------------------------------|------------------------------|------------------------------|
| 6-bit DAC            | FF                          | FF                              | SR                                              | SR                              | SR                           | SR, OFF in                   |
|                      | SR in CPO                   |                                 | FF in PSTOP2                                    |                                 |                              | VLLS0                        |
| 12-bit DAC           | FF                          | FF                              | SR                                              | SR                              | SR                           | SR                           |
|                      | SR in CPO                   |                                 | FF in PSTOP2                                    |                                 |                              |                              |
|                      |                             | Hu                              | uman-machine in                                 | terfaces                        |                              |                              |
| GPIO                 | FF IOPORT write only in CPO | FF                              | SR output,<br>wakeup input<br>FF in PSTOP2      | SR output,<br>wakeup input      | SR, pins latched             | OFF, pins<br>latched         |
| FlexIO               | FF Async operation in CPO   | FF                              | Async operation<br>FF in PSTOP2                 | Async<br>operation              | SR                           | OFF                          |
| TSI                  | FF Async operation in CPO   | Async<br>operation <sup>9</sup> | Async<br>operation <sup>9</sup><br>FF in PSTOP2 | Async<br>operation <sup>9</sup> | Async operation <sup>9</sup> | Async operation <sup>9</sup> |
|                      |                             |                                 | Security                                        |                                 |                              |                              |
| TRNG                 | FF<br>SR CPO                | FF                              | SR                                              | SR                              | SR                           | OFF                          |
| CRC                  | FF<br>SR Compute            | FF                              | SR                                              | SR                              | SR                           | OFF                          |
| MMCAU                | FF                          | SR                              | SR                                              | SR                              | SR                           | OFF                          |
| Watchdog<br>(WDOG32) | FF                          | FF                              | Async operation                                 | Async operation                 | SR                           | OFF                          |

- Using the LLWU module, the external pins available for this chip do not require the associated peripheral function to be enabled. It only requires the function controlling the pin (GPIO or peripheral) to be configured as an input to allow a transition to occur to the LLWU.
- 2. When LPO clock source is disabled, filters will be bypassed.
- 3. STOPCTRL[PORPO] in the SMC module controls this option.
- 4. In LLS2 64kB of SRAM located at 0x2000\_0000 0x2000\_ffff is retained
- 5. In VLLS2 64kB of SRAM located at 0x2000\_0000 0x2000\_ffff is retained
- 6. LPO clock source is not available in VLLS0. Also, to use system OSC in VLLS0 it must be configured for bypass (external clock) operation. Pulse counting is available in all modes.
- 7. RTC is not supported in VLLS0.
- 8. CMP in stop or VLPS supports high speed or low speed external pin to pin or external pin to DAC compares. CMP in LLS or VLLSx only supports low speed external pin to pin or external pin to DAC compares.
- 9. TSI wake-up from all low-power modes is limited to a single selectable pin.

Module operation in low-power modes

# Chapter 8 Security

#### 8.1 Introduction

This device implements security based on the mode selected from the flash module.

The following sections provide an overview of flash security and details the effects of security on non-flash modules.

The device security provides:

- Security of the flash and MCU via SEC bit
- Backdoor Key and Freescale Backdoor key access support
- Disable access to the debugger via the SWD interface

## 8.1.1 Debug security

Debug enables access to the Core for debugging, and also for programming the flash arrays. For the standard Programming mechanism, you make use of the FTFx\_SEC register to enable security. Setting the FTFx\_SEC [SEC] bits secures the Core from debug access.

## 8.1.2 Flash security

The device has 2 flash modules:

- Flash0 256K bytes
- Flash1 256K bytes

Both Flash0 and Flash1 are available to the user for application code. The Flash security follows the structure for other L series devices.

The FTFx module (using FTFx\_FSEC register) provides security features:

#### Introduction

- Backdoor Key Security Enable (KEYEN)
- Mass Erase Enable (MEEN)
- Freescale Failure Analysis Access Code (FSLACC)
- Flash Secure (SEC) global secure of all Flash

The flash module provides security information to the MCU based on the state held by FTFA\_FSEC[SEC]. The MCU, in turn, confirms the security request and limits access to flash resources. During reset, the flash module initializes FTFA\_FSEC using data read from the security byte of the flash configuration field.

#### **NOTE**

The security features apply only to external accesses: debug. CPU accesses to the flash are not affected by the status of FTFA\_FSEC.

In the unsecured state, all flash commands are available on the programming interfaces either from the debug port (SWD) or from user code execution. When the flash is secured (FTFA\_FSEC[SEC] = 00, 01, or 11), the programmer interfaces are only allowed to launch mass erase operations. Additionally, in this mode, the debug port has no access to memory locations.

# Chapter 9 Debug

#### 9.1 Introduction

The debug system of this device is based on the ARM CoreSight<sup>TM</sup> architecture, and is configured to provide the maximum flexibility as allowed by the restrictions of the pinout and other available resources.

The MCU has a single M0+ CPU available for customer application use.

Debug provides register and memory accessibility from the external debugger interface, basic run/halt control, plus 2 breakpoints and 2 watchpoints. Additionally, it supports ARM's Micro Trace Buffer (MTB) capability to provide simple program trace. Only one debug interface is supported: Serial Wire Debug (SWD). The SWD interface provides the capability for debugger tools to interface to the CPU.

## 9.2 Debug port pin descriptions

The debug port pins default after POR to their SWD functionality.

Table 9-1. Serial wire debug pin description

| Pin name | Туре           | Description                                                                                                               |
|----------|----------------|---------------------------------------------------------------------------------------------------------------------------|
| SWD_CLK  | Input          | Serial Wire Clock                                                                                                         |
|          |                | This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.             |
| SWD_DIO  | Input / Output | Serial Wire Debug Data Input/Output                                                                                       |
|          |                | The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally. |

#### 9.3 **Debug and Trace Block diagram**

The next diagram shows the Debug and Trace configuration.

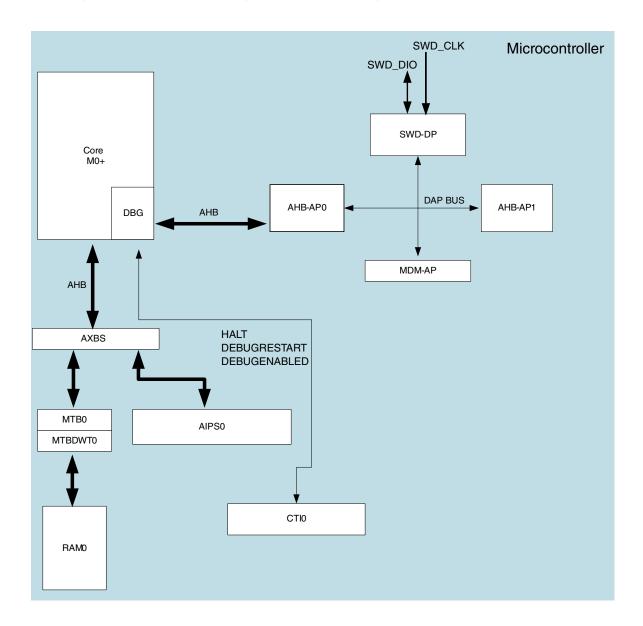



Figure 9-1. Debug and Trace Block Diagram

#### Details:

- The Debug and Trace uses these ARM-based modules: DP, AHB-AP, DBG, MTB, MTBDWT and CTI.
- The device has 1 ARM based Debug Port (DP) that supports the SWD interface. The DP module connects to a Miscellaneous Debug Module Access Port (MDM-AP) and 2 AHB Access Ports (AHB-AP0 and AHB-AP1).

- The MDM-AP supports flash programming/erase, debug options in the various stop modes, flash security, and resetting the Core. See the MDM-AP registers.
- The AHB-APx module connects to the M0+ core via a private AHB bus, allowing the debugger tool to set up watchpoints, breakpoints, instruction stepping, halting/starting CPU execution.
- Tracing of code execution deploys ARM's Micro Trace Buffer (MTB) module, which connects to the main AHB-Lite interface and provides the interface to the RAM.

Table 9-2. Debug Access Ports and AP numbers

| Debug Access Ports | AP Number |
|--------------------|-----------|
| Core0 AHB-AP       | AP 0      |
| MDM-AP             | AP 1      |

## 9.4 SWD status and control registers

Through the ARM Debug Access Port (DAP), the debugger has access to the status and control elements, implemented as registers on the DAP bus as shown in the figure found here.

These registers provide additional control and status for low power mode recovery and typical run-control scenarios. The status register bits also provide a means for the debugger to get updated status of the core, without having to initiate a bus transaction across the crossbar switch, thus remaining less intrusive during a debug session.

It is important to note that these DAP control and status registers are not memory-mapped within the system memory map, and are only accessible via the Debug Access Port using SWD. The MDM-AP is accessible as Debug Access Port 1 with the available registers shown in this table.

Table 9-3. MDM-AP register summary

| Address     | Register | Description                                                        |
|-------------|----------|--------------------------------------------------------------------|
| 0x0100_0000 | Status   | See MDM-AP Status Register                                         |
| 0x0100_0004 | Control  | See MDM-AP Control Register                                        |
| 0x0100_00FC |          | Read-only identification register that always reads as 0x001C_0020 |

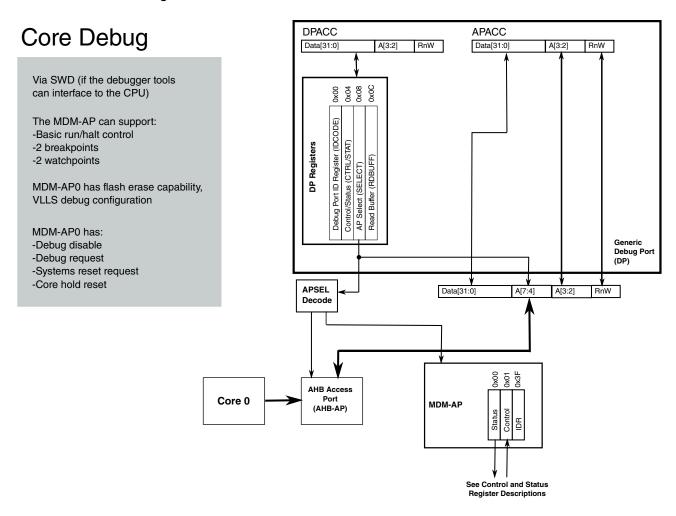



Figure 9-2. MDM AP addressing

## 9.4.1 MDM-AP Control Register

Table 9-4. MDM-AP Control register assignments

| Bit | Name                         | Secure <sup>1</sup> | Description                                                                                                                                                                                                                     |
|-----|------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Flash Mass Erase in Progress | Υ                   | Set to cause mass erase. Cleared by a Power-On Reset (POR).                                                                                                                                                                     |
|     |                              |                     | When mass erase is disabled (via MEEN), the erase request does not occur and the Flash Mass Erase in Progress bit continues to assert until the next system reset.                                                              |
|     |                              |                     | NOTE: When the reset pin has been disabled and security has been enabled by means of the FSEC register, a mass erase can be performed only by setting both the mass erase and system reset request bits in the MDM-AP register. |
| 1   | Debug Disable                | N                   | Set to disable debug. Clear to allow debug operation. When set, it overrides the C_DEBUGEN bit within the DHCSR and force disables Debug logic.                                                                                 |
| 2   | Debug Request                | N                   | Set to force the core to halt.                                                                                                                                                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 9-4. MDM-AP Control register assignments (continued)

| Bit      | Name                               | Secure <sup>1</sup> | Description                                                                                                                                                                                                                                                                                                                           |
|----------|------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                    |                     | If the core is in a Stop or Wait mode, then Debug Request bit can be used to wake the core and transition to a halted state.                                                                                                                                                                                                          |
| 3        | System Reset Request               | Υ                   | Set to force a system reset. The system remains held in reset until System Reset Request bit is cleared.                                                                                                                                                                                                                              |
| 4        | Core Hold Reset                    | N                   | Configuration bit to control core operation at the end of system reset sequencing.                                                                                                                                                                                                                                                    |
|          |                                    |                     | 0 <b>Normal operation</b> : At the end of system reset sequencing, release the core from reset (along with the rest of the system).                                                                                                                                                                                                   |
|          |                                    |                     | 1 <b>Suspend operation</b> : At the end of reset sequencing, hold the core in reset. After the system enters this suspended state, clearing this control bit immediately releases the core from reset and CPU operation begins.                                                                                                       |
| 5        | VLLSx Debug Request<br>(VLLDBGREQ) | N                   | Set to configure the system to be held in reset after the next recovery from a VLLSx mode. VLLSx Debug Request bit is ignored on a VLLS wakeup via the Reset pin. During a VLLS wakeup via the Reset pin, the system can be held in reset by holding the reset pin asserted, allowing the debugger to reinitialize the debug modules. |
|          |                                    |                     | VLLSx Debug Request bit holds the system in reset when VLLSx modes are exited, to allow the debugger time to re-initialize debug IP before the debug session continues.                                                                                                                                                               |
|          |                                    |                     | The Mode Controller captures VLLSx Debug Request bit logic on entry to VLLSx modes. Upon exit from VLLSx modes, the Mode Controller will hold the system in reset until VLLDBGACK is asserted.                                                                                                                                        |
|          |                                    |                     | VLLDBGREQ clears automatically due to the POR reset generated as part of the VLLSx recovery.                                                                                                                                                                                                                                          |
| 6        | VLLSx Debug Acknowledge            | N                   | Set to release a system being held in reset following a VLLSx recovery                                                                                                                                                                                                                                                                |
|          | (VLLDBGACK)                        |                     | VLLSx Debug Acknowledge bit is used by the debugger to release the system reset when it is being held on VLLSx mode exit. The debugger re-initializes all debug IP and then asserts VLLSx Debug Acknowledge bit to allow the Mode Controller to release the system from reset and allow CPU operation to begin.                       |
|          |                                    |                     | VLLDBGACK is cleared by the debugger or can be left set, because it clears automatically due to the POR reset generated as part of the next VLLSx recovery.                                                                                                                                                                           |
| 7        | LLS, VLLSx Status Acknowledge      | N                   | Set this bit to acknowledge that the DAP LLS and VLLS Status bits have been read. This acknowledge automatically clears the status bits.                                                                                                                                                                                              |
|          |                                    |                     | This bit is used by the debugger to clear the sticky LLS and VLLSx mode entry status bits. This bit is asserted and cleared by the debugger.                                                                                                                                                                                          |
| 8–<br>31 | Reserved for future use            | N                   |                                                                                                                                                                                                                                                                                                                                       |

1. Command available in secure mode

# 9.4.2 MDM-AP Status Register

Table 9-5. MDM-AP Status register assignments

| Bit | Name                         | Description                                                                                                                                                                                                                                                                                                                                   |
|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Flash Mass Erase Acknowledge | The Flash Mass Erase Acknowledge bit is cleared after a Power-On Reset (POR). The Flash Mass Erase Acknowledge is set after Flash control logic has started the mass erase operation.                                                                                                                                                         |
|     |                              | When mass erase is disabled (via MEEN), an erase request due to setting of Flash Mass Erase in Progress bit is not acknowledged.                                                                                                                                                                                                              |
| 1   | Flash Ready                  | Indicates Flash has been initialized and the debugger can be configured, even if the system is continuing to be held in reset by the debugger.                                                                                                                                                                                                |
| 2   | System Security              | Indicates the security state. When secure, the debugger does not have access to the system bus or any memory-mapped peripherals. This bit indicates when the part is locked and no system bus access is possible.                                                                                                                             |
| 3   | System Reset                 | Indicates the system reset state.                                                                                                                                                                                                                                                                                                             |
|     |                              | 0 System is in reset.                                                                                                                                                                                                                                                                                                                         |
|     |                              | 1 System is not in reset.                                                                                                                                                                                                                                                                                                                     |
| 4   | Reserved                     |                                                                                                                                                                                                                                                                                                                                               |
| 5   | Mass Erase Enable            | Indicates if the MCU can be mass erased or not                                                                                                                                                                                                                                                                                                |
|     |                              | 0 Mass erase is disabled.                                                                                                                                                                                                                                                                                                                     |
|     |                              | 1 Mass erase is enabled .                                                                                                                                                                                                                                                                                                                     |
| 6   | Backdoor Access Key Enable   | Indicates if the MCU has the backdoor access key enabled.                                                                                                                                                                                                                                                                                     |
|     |                              | 0 Disabled                                                                                                                                                                                                                                                                                                                                    |
|     |                              | 1 Enabled                                                                                                                                                                                                                                                                                                                                     |
| 7   | LP Enabled                   | Decode of SMC_PMCTRL[STOPM] field to indicate that VLPS, LLS, or VLLSx are the selected power mode for the next time that the ARM Core enters Deep Sleep.                                                                                                                                                                                     |
|     |                              | 0 Low Power Stop Mode is not enabled.                                                                                                                                                                                                                                                                                                         |
|     |                              | 1 Low Power Stop Mode is enabled.                                                                                                                                                                                                                                                                                                             |
|     |                              | This bit is intended to be used for debug operations in which Run to VLPS is attempted. Per the debug definition, the system actually enters the Stop state. A debugger should interpret a deep sleep indication (with SLEEPDEEP and SLEEPING asserted), in conjunction with LP Enabled bit asserted, as the debugger-VLPS status indication. |
| 8   | Very Low Power Mode          | Indicates that the current power mode is VLPx. This bit is not 'sticky' and should always represent whether VLPx is enabled or not.                                                                                                                                                                                                           |
|     |                              | This bit is used to throttle SWD_CLK frequency up/down.                                                                                                                                                                                                                                                                                       |
| 9   | LLS Mode Exit                | Indicates an exit from LLS mode has occurred. The debugger will lose communication while the system is in LLS (including access to this register). After communication is re-established, this bit indicates that the system had been in LLS. Because the debug modules held their state during LLS, they do not need to be reconfigured.     |
|     |                              | This bit is set during the LLS recovery sequence. The LLS Mode Exit bit is held until the debugger has had a chance to recognize that LLS was exited, and is cleared by a write of 1 to the LLS, VLLSx Status Acknowledge bit in MDM AP Control register.                                                                                     |

Table continues on the next page...

Table 9-5. MDM-AP Status register assignments (continued)

| Bit     | Name                    | Description                                                                                                                                                                                                                                                                                                                                              |
|---------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10      | VLLSx Modes Exit        | This bit indicates an exit from VLLSx mode has occurred. The debugger will lose communication while the system is in VLLSx (including access to this register). After communication is reestablished, this bit indicates that the system had been in VLLSx. Because the debug modules lose their state during VLLSx modes, they need to be reconfigured. |
|         |                         | This bit is set during the VLLSx recovery sequence. The VLLSx Mode Exit bit is held until the debugger has had a chance to recognize that a VLLS mode was exited, and is cleared by a write of 1 to the LLS, VLLSx Status Acknowledge bit in MDM AP Control register.                                                                                    |
| 11 – 15 | Reserved for future use | Always read 0.                                                                                                                                                                                                                                                                                                                                           |
| 16      | CPU0 Core Halted        | Indicates that the CPU0 core has entered Debug Halt mode                                                                                                                                                                                                                                                                                                 |
| 17      | CPU0 Core SLEEPDEEP     | Indicates the CPU0 core has entered a low-power mode                                                                                                                                                                                                                                                                                                     |
| 18      | CPU0 Core SLEEPING      | SLEEPING==1 and SLEEPDEEP==0 indicates wait or VLPW mode.                                                                                                                                                                                                                                                                                                |
|         |                         | SLEEPING==1 and SLEEPDEEP==1 indicates stop or VLPS mode.                                                                                                                                                                                                                                                                                                |
| 20      | Reserved                | Reserved for future use                                                                                                                                                                                                                                                                                                                                  |
| 21      | Reserved                | Reserved for future use                                                                                                                                                                                                                                                                                                                                  |
| 22      | Reserved                | Reserved for future use                                                                                                                                                                                                                                                                                                                                  |
| 23 – 31 | Reserved for future use | Always read 0.                                                                                                                                                                                                                                                                                                                                           |

## 9.5 Debug resets

The debug system receives the following sources of reset:

- Debug reset (the CDBGRSTREQ field within the DP CTRL/STAT register) that allows the debugger to reset the debug logic.
- System POR reset

Conversely, the debug system is capable of generating system reset using the following mechanism:

- A system reset in the DAP control register which allows the debugger to hold the system in reset.
- SYSRESETREQ field in the NVIC Application Interrupt and Reset control register
- A system reset in the DAP control register which allows the debugger to hold the core in reset.

## 9.6 Micro Trace Buffer (MTB)

The Micro Trace Buffer (MTB) provides a simple execution trace capability for the Cortex-M0+ processor.

When enabled, the MTB records changes in program flow reported by the Cortex-M0+ processor, via the execution trace interface, into a configurable region of the SRAM. Subsequently, an off-chip debugger may extract the trace information, which would allow reconstruction of an instruction flow trace. The MTB does not include any form of load/store data trace capability or tracing of any other information.

In addition to providing the trace capability, the MTB also operates as a simple AHB-Lite SRAM controller. The system bus masters, including the processor, have read/write access to all of the SRAM via the AHB-Lite interface, allowing the memory to be also used to store program and data information. The MTB simultaneously stores the trace information into an attached SRAM and allows bus masters to access the memory. The MTB ensures that trace information write accesses to the SRAM take priority over accesses from the AHB-Lite interface.

The MTB includes trace control registers for configuring and triggering the MTB functions. The MTB also supports triggering via TSTART and TSTOP control functions in the MTB DWT module.

## 9.7 Debug in low-power modes

In low-power modes, in which the debug modules are kept static or powered off, the debugger cannot gather any debug data for the duration of the low-power mode.

- In the case that the debugger is held static, the debug port returns to full functionality as soon as the low-power mode exits and the system returns to a state with active debug.
- In the case that the debugger logic is powered off, the debugger is reset on recovery and must be reconfigured once the low-power mode is exited.

Power mode entry logic monitors Debug Power Up and System Power Up signals from the debug port as indications that a debugger is active. These signals can be changed in RUN, VLPR, WAIT and VLPW. If the debug signal is active and the system attempts to enter Stop or VLPS, FCLK continues to run to support core register access. In these modes in which FCLK is left active the debug modules have access to core registers but not to system memory resources accessed via the crossbar.

With debug enabled, transitions from Run directly to VLPS result in the system entering Stop mode instead. Status bits within the MDM-AP Status register can be evaluated to determine this pseudo-VLPS state.

#### NOTE

With the debug enabled, transitions from Run --> VLPR --> VLPS are still possible.

In VLLS mode, all debug modules are powered off and reset at wakeup. In LLS mode, the debug modules retain their state but no debug activity is possible.

Going into a VLLSx mode causes all the debug controls and settings to be reset. To give time to the debugger to sync up with the HW, the MDM-AP Control register can be configured to hold the system in reset on recovery so that the debugger can regain control and reconfigure debug logic prior to the system exiting reset and resuming operation.

## 9.8 Debug and security

When flash security is enabled [FSEC[SEC]!=10], the debug port capabilities are limited in order to prevent exploitation of secure data.

In the secure state, the debugger still has access to the MDM-AP Status Register and can determine the current security state of the device. In the case of a secure device, that has mass erase disabled (FSEC[MEEN] = 10), attempts to mass erase via the debug interface are blocked. When mass erase is disabled (FSEC[MEEN]= 10), the debugger does not have the capability of performing a mass erase operation via writes to MDM-AP Control Register.

Debug and security

# Chapter 10 Signal Multiplexing and Signal Descriptions

#### 10.1 Introduction

To optimize functionality in small packages, pins have several functions available via signal multiplexing. Information found here illustrates which of this device's signals are multiplexed on which external pin.

The Port Control block controls which signal is present on the external pin. Refer to that chapter to find which register controls the operation of a specific pin.

For more information about how the Port Control block is integrated into this device, refer to the Signal multiplexing integration section.

### 10.2 Pinout

## 10.2.1 Package types

KL28Z device packages include:

- 121-pin XFBGA (Package Your Way)
- 100-pin QFP

## 10.2.2 KL28Z Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT function is available on each pin.

#### **NOTE**

The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

#### **NOTE**

- A pull-up resistor (typically 4.7 KΩ) must be connected to the EMVSIM0\_IO pin if this pin is configured as EMV SIM function.
- PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and normal/low drive capability. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, PTE23 are also fast pins. When a high bit rate is required on the communication interface pins, it is recommended to use fast pins. In case of high bus loading, the high drive strength of high drive pins must be enabled by setting the corresponding PORTx\_PCRn[DSE] bit.
- RESET\_b pin is open drain with internal pullup device and passive analog filter when configured as RESET pin (default state after POR). When this pin is configured to other shared functions, the passive analog filter is disabled.
- NMIO\_b pin has pullup device enabled and passive analog filter disabled after POR.
- SWD\_DIO pin has pullup device enabled after POR.
   SWD\_CLK has pulldown device enabled after POR.

| 121<br>XFB<br>GA | 100<br>LQFP | Pin Name          | Default   | ALT0      | ALT1                | ALT2        | ALT3              | ALT4      | ALT5            | ALT6        | ALT7 |
|------------------|-------------|-------------------|-----------|-----------|---------------------|-------------|-------------------|-----------|-----------------|-------------|------|
| E4               | 1           | PTE0              | ADC0_SE16 | ADC0_SE16 | PTE0/<br>RTC_CLKOUT | LPSPI1_SIN  | LPUART1_TX        |           | CMP0_OUT        | LPI2C1_SDA  |      |
| E3               | 2           | PTE1/<br>LLWU_P0  | ADC0_SE17 | ADC0_SE17 | PTE1/<br>LLWU_P0    | LPSPI1_SOUT | LPUART1_RX        |           |                 | LPI2C1_SCL  |      |
| E2               | 3           | PTE2/<br>LLWU_P1  | ADC0_SE18 | ADC0_SE18 | PTE2/<br>LLWU_P1    | LPSPI1_SCK  | LPUART1_<br>CTS_b |           |                 | LPI2C1_SDAS |      |
| F4               | 4           | PTE3              | ADC0_SE19 | ADC0_SE19 | PTE3                | LPSPI1_SIN  | LPUART1_<br>RTS_b |           |                 | LPI2C1_SCLS |      |
| H7               | 5           | PTE4/<br>LLWU_P2  | DISABLED  |           | PTE4/<br>LLWU_P2    | LPSPI1_PCS0 |                   |           |                 |             |      |
| G4               | 6           | PTE5              | DISABLED  |           | PTE5                | LPSPI1_PCS1 |                   |           |                 |             |      |
| F3               | 7           | PTE6/<br>LLWU_P16 | DISABLED  |           | PTE6/<br>LLWU_P16   | LPSPI1_PCS2 |                   | I2S0_MCLK | USB_SOF_<br>OUT |             |      |
| E6               | 8           | VDD               | VDD       | VDD       |                     |             |                   |           |                 |             |      |
| G7               | 9           | VSS               | VSS       | VSS       |                     |             |                   |           |                 |             |      |

#### **Chapter 10 Signal Multiplexing and Signal Descriptions**

| 121<br>XFB<br>GA | 100<br>LQFP | Pin Name           | Default                                          | ALT0                                             | ALT1                 | ALT2              | ALT3              | ALT4       | ALT5                            | ALT6     | ALT7      |
|------------------|-------------|--------------------|--------------------------------------------------|--------------------------------------------------|----------------------|-------------------|-------------------|------------|---------------------------------|----------|-----------|
| L6               | _           | VSS                | VSS                                              | VSS                                              |                      |                   |                   |            |                                 |          |           |
| F1               | 10          | USB0_DP            | USB0_DP                                          | USB0_DP                                          |                      |                   |                   |            |                                 |          |           |
| F2               | 11          | USB0_DM            | USB0_DM                                          | USB0_DM                                          |                      |                   |                   |            |                                 |          |           |
| G1               | 12          | VOUT33             | VOUT33                                           | VOUT33                                           |                      |                   |                   |            |                                 |          |           |
| G2               | 13          | VREGIN             | VREGIN                                           | VREGIN                                           |                      |                   |                   |            |                                 |          |           |
| H1               | 14          | PTE16              | ADC0_DP1/<br>ADC0_SE1                            | ADC0_DP1/<br>ADC0_SE1                            | PTE16                | LPSPI0_PCS0       | LPUART2_TX        | TPM0_CLKIN | LPSPI1_PCS3                     | FXIO0_D0 |           |
| H2               | 15          | PTE17/<br>LLWU_P19 | ADC0_DM1/<br>ADC0_SE5a                           | ADC0_DM1/<br>ADC0_SE5a                           | PTE17/<br>LLWU_P19   | LPSPI0_SCK        | LPUART2_RX        | TPM1_CLKIN | LPTMR0_<br>ALT3/<br>LPTMR1_ALT3 | FXIO0_D1 |           |
| J1               | 16          | PTE18/<br>LLWU_P20 | ADC0_DP2/<br>ADC0_SE2                            | ADC0_DP2/<br>ADC0_SE2                            | PTE18/<br>LLWU_P20   | LPSPI0_SOUT       | LPUART2_<br>CTS_b | LPI2C0_SDA |                                 | FXIO0_D2 |           |
| J2               | 17          | PTE19              | ADC0_DM2/<br>ADC0_SE6a                           | ADC0_DM2/<br>ADC0_SE6a                           | PTE19                | LPSPI0_SIN        | LPUART2_<br>RTS_b | LPI2C0_SCL |                                 | FXIO0_D3 |           |
| K1               | 18          | PTE20              | ADC0_DP0/<br>ADC0_SE0                            | ADC0_DP0/<br>ADC0_SE0                            | PTE20                | LPSPI2_SCK        | TPM1_CH0          | LPUART0_TX |                                 | FXIO0_D4 |           |
| K2               | 19          | PTE21              | ADC0_DM0/<br>ADC0_SE4a                           | ADC0_DM0/<br>ADC0_SE4a                           | PTE21                | LPSPI2_SOUT       | TPM1_CH1          | LPUARTO_RX |                                 | FXIO0_D5 |           |
| L1               | 20          | PTE22              | ADC0_DP3/<br>ADC0_SE3                            | ADC0_DP3/<br>ADC0_SE3                            | PTE22                | LPSPI2_SIN        | TPM2_CH0          | LPUART2_TX |                                 | FXIO0_D6 |           |
| L2               | 21          | PTE23              | ADC0_DM3/<br>ADC0_SE7a                           | ADC0_DM3/<br>ADC0_SE7a                           | PTE23                | LPSPI2_PCS0       | TPM2_CH1          | LPUART2_RX |                                 | FXIO0_D7 |           |
| F5               | 22          | VDDA               | VDDA                                             | VDDA                                             |                      |                   |                   |            |                                 |          |           |
| G5               | 23          | VREFH/<br>VREF_OUT | VREFH/<br>VREF_OUT                               | VREFH/<br>VREF_OUT                               |                      |                   |                   |            |                                 |          |           |
| G6               | 24          | VREFL              | VREFL                                            | VREFL                                            |                      |                   |                   |            |                                 |          |           |
| F6               | 25          | VSSA               | VSSA                                             | VSSA                                             |                      |                   |                   |            |                                 |          |           |
| L3               | 26          | PTE29              | CMP1_IN5/<br>CMP0_IN5/<br>ADC0_SE4b              | CMP1_IN5/<br>CMP0_IN5/<br>ADC0_SE4b              | PTE29                | EMVSIM0_CLK       | TPM0_CH2          | TPM0_CLKIN |                                 |          |           |
| K5               | 27          | PTE30              | DACO_OUT/<br>CMP1_IN3/<br>ADCO_SE23/<br>CMP0_IN4 | DACO_OUT/<br>CMP1_IN3/<br>ADCO_SE23/<br>CMP0_IN4 | PTE30                | EMVSIMO_<br>RST   | TPM0_CH3          | TPM1_CLKIN |                                 |          |           |
| L4               | 28          | PTE31              | DISABLED                                         |                                                  | PTE31                | EMVSIMO_<br>VCCEN | TPM0_CH4          | TPM2_CLKIN | LPI2C0_HREQ                     |          |           |
| L5               | 29          | VSS                | VSS                                              | VSS                                              |                      |                   |                   |            |                                 |          |           |
| K6               | 30          | VDD                | VDD                                              | VDD                                              |                      |                   |                   |            |                                 |          |           |
| H5               | 31          | PTE24              | ADC0_SE20                                        | ADC0_SE20                                        | PTE24                | EMVSIM0_IO        | TPM0_CH0          |            | LPI2C0_SCL                      |          |           |
| J5               | 32          | PTE25/<br>LLWU_P21 | ADC0_SE21                                        | ADC0_SE21                                        | PTE25/<br>LLWU_P21   | EMVSIM0_PD        | TPM0_CH1          |            | LPI2CO_SDA                      |          |           |
| Н6               | 33          | PTE26              | DISABLED                                         |                                                  | PTE26/<br>RTC_CLKOUT |                   | TPM0_CH5          |            | LPI2C0_SCLS                     |          | USB_CLKIN |
| J6               | 34          | PTA0               | SWD_CLK                                          | TSI0_CH1                                         | PTA0                 | LPUARTO_<br>CTS_b | TPM0_CH5          |            | LPI2C0_SDAS                     |          | SWD_CLK   |
| H8               | 35          | PTA1               | DISABLED                                         | TSI0_CH2                                         | PTA1                 | LPUART0_RX        | TPM2_CH0          |            |                                 |          |           |

#### **Pinout**

| 121<br>XFB<br>GA | 100<br>LQFP | Pin Name           | Default                | ALT0                   | ALT1               | ALT2        | ALT3              | ALT4              | ALT5              | ALT6                            | ALT7      |
|------------------|-------------|--------------------|------------------------|------------------------|--------------------|-------------|-------------------|-------------------|-------------------|---------------------------------|-----------|
| J7               | 36          | PTA2               | DISABLED               | TSI0_CH3               | PTA2               | LPUARTO_TX  | TPM2_CH1          |                   |                   |                                 |           |
| H9               | 37          | PTA3               | SWD_DIO                | TSI0_CH4               | PTA3               | LPI2C1_SCL  | TPM0_CH0          | LPUARTO_<br>RTS_b |                   |                                 | SWD_DIO   |
| J8               | 38          | PTA4/<br>LLWU_P3   | DISABLED               | TSI0_CH5               | PTA4/<br>LLWU_P3   | LPI2C1_SDA  | TPM0_CH1          |                   |                   |                                 | NMI0_b    |
| K7               | 39          | PTA5               | DISABLED               |                        | PTA5               | USB_CLKIN   | TPM0_CH2          |                   | LPI2C2_HREQ       | I2S0_TX_<br>BCLK                |           |
| E5               | _           | VDD                | VDD                    | VDD                    |                    |             |                   |                   |                   |                                 |           |
| G3               | _           | VSS                | VSS                    | VSS                    |                    |             |                   |                   |                   |                                 |           |
| K3               | 40          | PTA6               | DISABLED               |                        | PTA6               |             | TPM0_CH3          |                   |                   |                                 |           |
| H4               | 41          | PTA7               | DISABLED               |                        | PTA7               | LPSPI0_PCS3 | TPM0_CH4          |                   | LPI2C2_SDAS       |                                 |           |
| J9               | -           | PTA10/<br>LLWU_P22 | DISABLED               |                        | PTA10/<br>LLWU_P22 | LPSPI0_PCS2 | TPM2_CH0          |                   | LPI2C2_SCLS       |                                 |           |
| J4               | -           | PTA11/<br>LLWU_P23 | DISABLED               |                        | PTA11/<br>LLWU_P23 | LPSPI0_PCS1 | TPM2_CH1          |                   | LPI2C2_SDA        |                                 |           |
| K8               | 42          | PTA12              | DISABLED               |                        | PTA12              |             | TPM1_CH0          |                   | LPI2C2_SCL        | I2S0_TXD0                       |           |
| L8               | 43          | PTA13/<br>LLWU_P4  | DISABLED               |                        | PTA13/<br>LLWU_P4  |             | TPM1_CH1          |                   | LPI2C2_SDA        | I2S0_TX_FS                      |           |
| K9               | 44          | PTA14              | DISABLED               |                        | PTA14              | LPSPI0_PCS0 | LPUARTO_TX        |                   | LPI2C2_SCL        | I2S0_RX_<br>BCLK                | 12S0_TXD0 |
| L9               | 45          | PTA15              | DISABLED               |                        | PTA15              | LPSPI0_SCK  | LPUART0_RX        |                   |                   | I2S0_RXD0                       |           |
| J10              | 46          | PTA16              | DISABLED               |                        | PTA16              | LPSPI0_SOUT | LPUARTO_<br>CTS_b |                   |                   | I2S0_RX_FS                      | 12S0_RXD0 |
| H10              | 47          | PTA17              | ADC0_SE22              | ADC0_SE22              | PTA17              | LPSPI0_SIN  | LPUARTO_<br>RTS_b |                   |                   | I2S0_MCLK                       |           |
| L10              | 48          | VDD                | VDD                    | VDD                    |                    |             |                   |                   |                   |                                 |           |
| K10              | 49          | VSS                | VSS                    | VSS                    |                    |             |                   |                   |                   |                                 |           |
| L11              | 50          | PTA18              | EXTAL0                 | EXTAL0                 | PTA18              |             | LPUART1_RX        | TPM0_CLKIN        |                   |                                 |           |
| K11              | 51          | PTA19              | XTAL0                  | XTAL0                  | PTA19              |             | LPUART1_TX        | TPM1_CLKIN        |                   | LPTMR0_<br>ALT1/<br>LPTMR1_ALT1 |           |
| J11              | 52          | PTA20              | RESET_b                |                        | PTA20              | LPI2C0_SCLS |                   | TPM2_CLKIN        |                   |                                 | RESET_b   |
| H11              | _           | PTA29              | DISABLED               |                        | PTA29              | LPI2C0_SDAS |                   |                   |                   |                                 |           |
| G11              | 53          | PTB0/<br>LLWU_P5   | ADC0_SE8/<br>TSI0_CH0  | ADC0_SE8/<br>TSI0_CH0  | PTB0/<br>LLWU_P5   | LPI2C0_SCL  | TPM1_CH0          |                   |                   | FXIO0_D8                        |           |
| G10              | 54          | PTB1               | ADC0_SE9/<br>TSI0_CH6  | ADC0_SE9/<br>TSI0_CH6  | PTB1               | LPI2CO_SDA  | TPM1_CH1          |                   |                   | FXIO0_D9                        |           |
| G9               | 55          | PTB2               | ADC0_SE12/<br>TSI0_CH7 | ADC0_SE12/<br>TSI0_CH7 | PTB2               | LPI2CO_SCL  | TPM2_CH0          |                   | LPUARTO_<br>RTS_b | FXIO0_D10                       |           |
| G8               | 56          | PTB3               | ADC0_SE13/<br>TSI0_CH8 | ADC0_SE13/<br>TSI0_CH8 | PTB3               | LPI2CO_SDA  | TPM2_CH1          | LPSPI1_PCS3       | LPUARTO_<br>CTS_b | FXIO0_D11                       |           |
| F11              | _           | PTB6               | DISABLED               |                        | PTB6               | LPSPI1_PCS2 |                   |                   |                   |                                 |           |
| E11              | 57          | PTB7               | DISABLED               |                        | PTB7               | LPSPI1_PCS1 |                   |                   |                   |                                 |           |
| D11              | 58          | PTB8               | DISABLED               |                        | PTB8               | LPSPI1_PCS0 |                   |                   |                   | FXIO0_D12                       |           |
| E10              | 59          | PTB9               | DISABLED               |                        | PTB9               | LPSPI1_SCK  |                   |                   |                   | FXIO0_D13                       |           |

#### **Chapter 10 Signal Multiplexing and Signal Descriptions**

| 121        | 100  | Pin Name           | Default                              | ALT0                                 | ALT1               | ALT2            | ALT3                            | ALT4             | ALT5        | ALT6             | ALT7 |
|------------|------|--------------------|--------------------------------------|--------------------------------------|--------------------|-----------------|---------------------------------|------------------|-------------|------------------|------|
| XFB<br>GA  | LQFP |                    |                                      |                                      |                    |                 |                                 |                  |             |                  |      |
| D10        | 60   | PTB10              | DISABLED                             |                                      | PTB10              | LPSPI1_PCS0     |                                 |                  |             | FXIO0_D14        |      |
| C10        | 61   | PTB11              | DISABLED                             |                                      | PTB11              | LPSPI1_SCK      |                                 | TPM2_CLKIN       |             | FXIO0_D15        |      |
| B10        | 62   | PTB16              | TSI0_CH9                             | TSI0_CH9                             | PTB16              | LPSPI1_SOUT     | LPUARTO_RX                      | TPM0_CLKIN       | LPSPI2_PCS3 | FXIO0_D16        |      |
| <b>E</b> 9 | 63   | PTB17              | TSI0_CH10                            | TSI0_CH10                            | PTB17              | LPSPI1_SIN      | LPUART0_TX                      | TPM1_CLKIN       | LPSPI2_PCS2 | FXIO0_D17        |      |
| D9         | 64   | PTB18              | TSI0_CH11                            | TSI0_CH11                            | PTB18              |                 | TPM2_CH0                        | I2S0_TX_<br>BCLK | LPI2C1_HREQ | FXIO0_D18        |      |
| C9         | 65   | PTB19              | TSI0_CH12                            | TSI0_CH12                            | PTB19              |                 | TPM2_CH1                        | I2S0_TX_FS       | LPSPI2_PCS1 | FXIO0_D19        |      |
| F10        | 66   | PTB20              | DISABLED                             |                                      | PTB20              | LPSPI2_PCS0     |                                 |                  |             | CMP0_OUT         |      |
| F9         | 67   | PTB21              | DISABLED                             |                                      | PTB21              | LPSPI2_SCK      |                                 |                  |             | CMP1_OUT         |      |
| F8         | 68   | PTB22              | DISABLED                             |                                      | PTB22              | LPSPI2_SOUT     |                                 |                  |             |                  |      |
| E8         | 69   | PTB23              | DISABLED                             |                                      | PTB23              | LPSPI2_SIN      |                                 |                  |             |                  |      |
| В9         | 70   | PTC0               | ADC0_SE14/<br>TSI0_CH13              | ADC0_SE14/<br>TSI0_CH13              | PTC0               | LPSPI2_PCS1     |                                 | USB_SOF_<br>OUT  | CMP0_OUT    | 12S0_TXD0        |      |
| D8         | 71   | PTC1/<br>LLWU_P6   | ADC0_SE15/<br>TSI0_CH14              | ADC0_SE15/<br>TSI0_CH14              | PTC1/<br>LLWU_P6   | LPI2C1_SCL      | LPUART1_<br>RTS_b               | TPM0_CH0         |             | 12S0_TXD0        |      |
| C8         | 72   | PTC2               | ADC0_SE11/<br>CMP1_IN0/<br>TSI0_CH15 | ADC0_SE11/<br>CMP1_IN0/<br>TSI0_CH15 | PTC2               | LPI2C1_SDA      | LPUART1_<br>CTS_b               | TPM0_CH1         |             | 12S0_TX_FS       |      |
| B8         | 73   | PTC3/<br>LLWU_P7   | CMP1_IN1                             | CMP1_IN1                             | PTC3/<br>LLWU_P7   | LPSPI0_PCS1     | LPUART1_RX                      | TPM0_CH2         | CLKOUT      | I2S0_TX_<br>BCLK |      |
| F7         | 74   | VSS                | VSS                                  | VSS                                  |                    |                 |                                 |                  |             |                  |      |
| E7         | 75   | VDD                | VDD                                  | VDD                                  |                    |                 |                                 |                  |             |                  |      |
| B11        | _    | PTC22              | DISABLED                             |                                      | PTC22              | LPSPI0_PCS3     |                                 |                  |             |                  |      |
| C11        | _    | PTC23              | DISABLED                             |                                      | PTC23              | LPSPI0_PCS2     |                                 |                  |             |                  |      |
| A8         | 76   | PTC4/<br>LLWU_P8   | DISABLED                             |                                      | PTC4/<br>LLWU_P8   | LPSPI0_PCS0     | LPUART1_TX                      | TPM0_CH3         | I2S0_MCLK   | CMP1_OUT         |      |
| D7         | 77   | PTC5/<br>LLWU_P9   | DISABLED                             |                                      | PTC5/<br>LLWU_P9   | LPSPI0_SCK      | LPTMR0_<br>ALT2/<br>LPTMR1_ALT2 | I2S0_RXD0        |             | CMP0_OUT         |      |
| C7         | 78   | PTC6/<br>LLWU_P10  | CMP0_IN0                             | CMP0_IN0                             | PTC6/<br>LLWU_P10  | LPSPI0_SOUT     |                                 | I2S0_RX_<br>BCLK |             | I2S0_MCLK        |      |
| B7         | 79   | PTC7               | CMP0_IN1                             | CMP0_IN1                             | PTC7               | LPSPI0_SIN      | USB_SOF_<br>OUT                 | I2S0_RX_FS       |             | FXIO0_D20        |      |
| A7         | 80   | PTC8               | CMP0_IN2                             | CMP0_IN2                             | PTC8               | LPI2C0_SCL      | TPM0_CH4                        | I2S0_MCLK        |             | FXIO0_D21        |      |
| D6         | 81   | PTC9               | CMP0_IN3                             | CMP0_IN3                             | PTC9               | LPI2C0_SDA      | TPM0_CH5                        | I2S0_RX_<br>BCLK |             | FXIO0_D22        |      |
| C6         | 82   | PTC10              | DISABLED                             |                                      | PTC10              | LPI2C1_SCL      |                                 | I2S0_RX_FS       |             | FXIO0_D23        |      |
| C5         | 83   | PTC11/<br>LLWU_P11 | DISABLED                             |                                      | PTC11/<br>LLWU_P11 | LPI2C1_SDA      |                                 | I2S0_RXD0        |             |                  |      |
| B6         | 84   | PTC12              | DISABLED                             |                                      | PTC12              | LPI2C1_SCLS     |                                 | TPM0_CLKIN       |             |                  |      |
| A6         | 85   | PTC13              | DISABLED                             |                                      | PTC13              | LPI2C1_SDAS     |                                 | TPM1_CLKIN       |             |                  |      |
| A5         | 86   | PTC14              | DISABLED                             |                                      | PTC14              | EMVSIM0_CLK     |                                 |                  |             |                  |      |
| B5         | 87   | PTC15              | DISABLED                             |                                      | PTC15              | EMVSIMO_<br>RST |                                 |                  |             |                  |      |

#### **Pinout**

| 121<br>XFB<br>GA | 100<br>LQFP | Pin Name           | Default   | ALT0      | ALT1               | ALT2              | ALT3              | ALT4     | ALT5              | ALT6      | ALT7 |
|------------------|-------------|--------------------|-----------|-----------|--------------------|-------------------|-------------------|----------|-------------------|-----------|------|
| A11              | 88          | VSS                | VSS       | VSS       |                    |                   |                   |          |                   |           |      |
| _                | 89          | VDD                | VDD       | VDD       |                    |                   |                   |          |                   |           |      |
| D5               | 90          | PTC16              | DISABLED  |           | PTC16              | EMVSIMO_<br>VCCEN |                   |          |                   |           |      |
| C4               | 91          | PTC17              | DISABLED  |           | PTC17              | EMVSIM0_IO        | LPSPI0_PCS3       |          |                   |           |      |
| B4               | 92          | PTC18              | DISABLED  |           | PTC18              | EMVSIM0_PD        | LPSPI0_PCS2       |          |                   |           |      |
| A4               | _           | PTC19              | DISABLED  |           | PTC19              | LPSPI0_PCS1       |                   |          |                   |           |      |
| D4               | 93          | PTD0/<br>LLWU_P12  | DISABLED  |           | PTD0/<br>LLWU_P12  | LPSPI0_PCS0       | LPUART2_<br>RTS_b | TPM0_CH0 |                   | FXIO0_D0  |      |
| D3               | 94          | PTD1               | ADC0_SE5b | ADC0_SE5b | PTD1               | LPSPI0_SCK        | LPUART2_<br>CTS_b | TPM0_CH1 |                   | FXIO0_D1  |      |
| C3               | 95          | PTD2/<br>LLWU_P13  | DISABLED  |           | PTD2/<br>LLWU_P13  | LPSPI0_SOUT       | LPUART2_RX        | TPM0_CH2 |                   | FXIO0_D2  |      |
| В3               | 96          | PTD3               | DISABLED  |           | PTD3               | LPSPI0_SIN        | LPUART2_TX        | TPM0_CH3 |                   | FXIO0_D3  |      |
| A3               | 97          | PTD4/<br>LLWU_P14  | DISABLED  |           | PTD4/<br>LLWU_P14  | LPSPI1_PCS0       | LPUART2_RX        | TPM0_CH4 | LPUARTO_<br>RTS_b | FXIO0_D4  |      |
| A2               | 98          | PTD5               | ADC0_SE6b | ADC0_SE6b | PTD5               | LPSPI1_SCK        | LPUART2_TX        | TPM0_CH5 | LPUARTO_<br>CTS_b | FXIO0_D5  |      |
| B2               | 99          | PTD6/<br>LLWU_P15  | ADC0_SE7b | ADC0_SE7b | PTD6/<br>LLWU_P15  | LPSPI1_SOUT       | LPUARTO_RX        |          |                   | FXIO0_D6  |      |
| A1               | 100         | PTD7               | DISABLED  |           | PTD7               | LPSPI1_SIN        | LPUART0_TX        |          |                   | FXIO0_D7  |      |
| A10              | -           | PTD8/<br>LLWU_P24  | DISABLED  |           | PTD8/<br>LLWU_P24  | LPI2C0_SCL        | LPSPI1_PCS1       |          |                   | FXIO0_D24 |      |
| A9               | _           | PTD9               | DISABLED  |           | PTD9               | LPI2C0_SDA        | LPSPI2_PCS3       |          |                   | FXIO0_D25 |      |
| B1               | _           | PTD10              | DISABLED  |           | PTD10              | LPSPI2_PCS2       | LPI2C0_SCLS       |          |                   | FXIO0_D26 |      |
| C2               | ı           | PTD11/<br>LLWU_P25 | DISABLED  |           | PTD11/<br>LLWU_P25 | LPSPI2_PCS0       | LPI2C0_SDAS       |          |                   | FXIO0_D27 |      |
| C1               | _           | PTD12              | DISABLED  |           | PTD12              | LPSPI2_SCK        |                   |          |                   | FXIO0_D28 |      |
| D2               | _           | PTD13              | DISABLED  |           | PTD13              | LPSPI2_SOUT       |                   |          |                   | FXIO0_D29 |      |
| D1               | _           | PTD14              | DISABLED  |           | PTD14              | LPSPI2_SIN        |                   |          |                   | FXIO0_D30 |      |
| E1               | -           | PTD15              | DISABLED  |           | PTD15              | LPSPI2_PCS1       |                   |          |                   | FXIO0_D31 |      |
| J3               | _           | NC                 | NC        | NC        |                    |                   |                   |          |                   |           |      |
| Н3               | _           | NC                 | NC        | NC        |                    |                   |                   |          |                   |           |      |
| K4               | -           | NC                 | NC        | NC        |                    |                   |                   |          |                   |           |      |
| L7               | -           | NC                 | NC        | NC        |                    |                   |                   |          |                   |           |      |

## 10.2.3 KL28Z Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

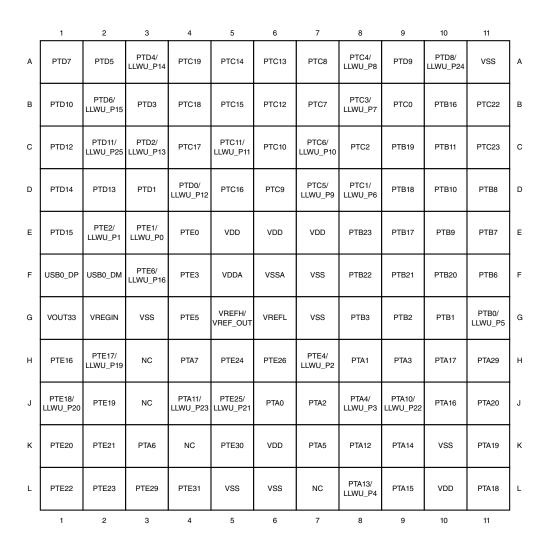



Figure 10-1. 121 XFBGA Pinout Diagram

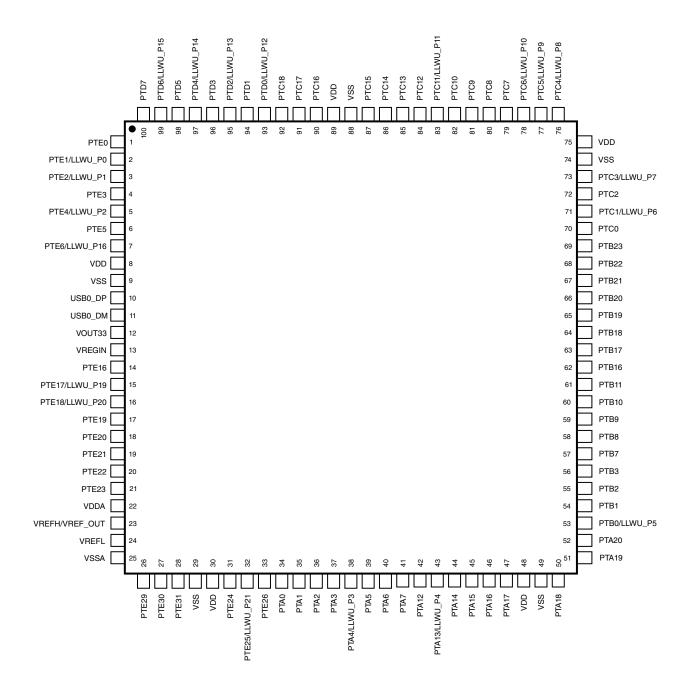



Figure 10-2. 100 LQFP Pinout Diagram

# 10.3 Module Signal Description Tables

## 10.3.1 Core modules

Table 10-1. SWD signal descriptions

| Chip signal name | Module signal name | Description                                                                                                               | I/O     |
|------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| SWD_DIO          | SWD_DIO            | Serial Wire Debug Data Input/Output                                                                                       | Input / |
|                  |                    | The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally. | Output  |
| SWD_CLK          | SWD_CLK            | Serial Wire Clock                                                                                                         | Input   |
|                  |                    | This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.             |         |

## 10.3.2 System modules

Table 10-2. System signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                                                                                                                                              | I/O |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| NMI0_b           | _                  | Non-maskable interrupt                                                                                                                                                                                                                                                                   | 1   |
|                  |                    | Driving the NMI0_b signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin.  NOTE: If the NMI function is not required, either for an interrupt or wake-up source, it is recommended that the NMI function be disabled by clearing NMI_DIS. |     |
| RESET_b          | _                  | Reset bidirectional signal                                                                                                                                                                                                                                                               | I/O |
| VDD              | _                  | MCU power                                                                                                                                                                                                                                                                                | I   |
| VSS              | _                  | MCU ground                                                                                                                                                                                                                                                                               | I   |

## 10.3.3 Clock modules

Table 10-3. OSC signal descriptions

| Chip signal name | Module signal name | Description                     | I/O |
|------------------|--------------------|---------------------------------|-----|
| EXTAL0           | EXTAL              | External clock/Oscillator input | I   |
| XTAL0            | XTAL               | Oscillator output               | 0   |

## 10.3.4 Memories and memory interfaces

KL28Z Reference Manual, Rev. 4, 06/2016

## 10.3.5 **Analog**

This table presents the signal descriptions of the ADC0 module.

Table 10-4. ADC0 signal descriptions

| Chip signal name | Module signal name | Description                        | I/O |
|------------------|--------------------|------------------------------------|-----|
| ADC0_DPn         | DADP3-DADP0        | Differential Analog Channel Inputs | I   |
| ADC0_DMn         | DADM3-DADM0        | Differential Analog Channel Inputs | I   |
| ADC0_SEn         | AD <i>n</i>        | Single-Ended Analog Channel Inputs | I   |
| VREFH            | V <sub>REFSH</sub> | Voltage Reference Select High      | I   |
| VREFL            | V <sub>REFSL</sub> | Voltage Reference Select Low       | I   |
| VDDA             | $V_{DDA}$          | Analog Power Supply                | I   |
| VSSA             | V <sub>SSA</sub>   | Analog Ground                      | I   |

This table presents the signal descriptions of the CMP0 module.

Table 10-5. CMP0 signal descriptions

| Chip signal name | Module signal name | Description           | I/O |
|------------------|--------------------|-----------------------|-----|
| CMP0_IN[5:0]     | IN[5:0]            | Analog voltage inputs | I   |
| CMP0_OUT         | СМРО               | Comparator output     | 0   |

This table presents the signal descriptions of the DAC0 module.

Table 10-6. DAC0 signal descriptions

| Chip signal name | Module signal<br>name | Description | I/O |
|------------------|-----------------------|-------------|-----|
| DAC0_OUT         | _                     | DAC output  | 0   |

## 10.3.6 Timer Modules

Table 10-7. TPM0 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                             | I/O |
|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| TPM0_CLKIN       | TPM_EXTCLK         | External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. | _   |

Table continues on the next page...

#### **Chapter 10 Signal Multiplexing and Signal Descriptions**

## Table 10-7. TPM0 signal descriptions (continued)

| Chip signal name | Module signal name | Description                                                                                                                                                                            | I/O |
|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| TPM0_CH[5:0]     | TPM_CHn            | TPM channel. A TPM channel pin is configured as output when configured in an output compare, or in PWM mode and the TPM counter is enabled; otherwise the TPM channel pin is an input. | I/O |

#### Table 10-8. TPM1 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                                            | I/O |
|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| TPM1_CLKIN       | TPM_EXTCLK         | External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.                                                | l   |
| TPM1_CH[1:0]     | TPM_CHn            | TPM channel. A TPM channel pin is configured as output when configured in an output compare, or in PWM mode and the TPM counter is enabled; otherwise the TPM channel pin is an input. | I/O |

#### Table 10-9. TPM2 signal descriptions

| Chip signal name | Module signal<br>name | Description                                                                                                                                                                            | I/O |
|------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| TPM2_CLKIN       | TPM_EXTCLK            | External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.                                                | l   |
| TPM2_CH[1:0]     | TPM_CHn               | TPM channel. A TPM channel pin is configured as output when configured in an output compare, or in PWM mode and the TPM counter is enabled; otherwise the TPM channel pin is an input. | I/O |

## Table 10-10. LPTMR0 signal descriptions

| Chip signal name | Module signal name | Description             | I/O |
|------------------|--------------------|-------------------------|-----|
| LPTMR0_ALT[3:1]  | LPTMR0_ALTn        | Pulse Counter Input pin | Ι   |
| LPTMR1_ALT[3:1]  | LPTMR1_ALTn        | Pulse Counter Input pin | I   |

#### Table 10-11. RTC signal descriptions

| Chip signal name | Module signal name | Description                          | I/O |
|------------------|--------------------|--------------------------------------|-----|
| RTC_CLKOUT       | RTC_CLKOUT         | 1 Hz square-wave output or OSC32KCLK | 0   |

KL28Z Reference Manual, Rev. 4, 06/2016

# 10.3.7 Communication interfaces

#### Table 10-12. USB FS OTG Signal Descriptions

|   | Chip signal name | Module signal name | Description                               | I/O |
|---|------------------|--------------------|-------------------------------------------|-----|
| Ī | USB0_DM          | usb_dm             | USB D- analog data signal on the USB bus. | I/O |
|   | USB0_DP          | usb_dp             | USB D+ analog data signal on the USB bus. | I/O |
|   | USB_CLKIN        | _                  | Alternate USB clock input                 | I   |

## Table 10-13. USB VREG Signal Descriptions

| Chip signal name | Module signal name | Description              | I/O |
|------------------|--------------------|--------------------------|-----|
| VOUT33           | reg33_out          | Regulator output voltage | 0   |
| VREGIN           | reg33_in           | Unregulated power supply | I   |

### Table 10-14. LPSPI0 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                                                | I/O |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPSPI0_SOUT      | SOUT / DATA[0]     | Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers.                                                                | I/O |
| LPSPI0_SIN       | SIN / DATA[1]      | Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers.                                                                | I/O |
| LPSPI0_SCK       | SCK                | Serial clock. Input in slave mode, output in master mode.                                                                                                                                  | I/O |
| LPSPI0_PCS[0]    | PCS[0]             | Peripheral Chip Select. Input in slave mode, output in master mode.                                                                                                                        | I/O |
| LPSPI0_PCS[1]    | PCS[1] / HREQ      | Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode.              | I/O |
| LPSPI0_PCS[2]    | PCS[2] / DATA[2]   | Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |
| LPSPI0_PCS[3]    | PCS[3] / DATA[3]   | Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |

## Table 10-15. LPSPI1 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                 | I/O |
|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|
| LPSPI1_SOUT      | SOUT / DATA[0]     | Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers. | I/O |
| LPSPI1_SIN       | SIN / DATA[1]      | Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers. | I/O |
| LPSPI1_SCK       | SCK                | Serial clock. Input in slave mode, output in master mode.                                                                   | I/O |
| LPSPI1_PCS[0]    | PCS[0]             | Peripheral Chip Select. Input in slave mode, output in master mode.                                                         | I/O |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### **Chapter 10 Signal Multiplexing and Signal Descriptions**

## Table 10-15. LPSPI1 signal descriptions (continued)

| Chip signal name | Module signal name | Description                                                                                                                                                                                | I/O |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPSPI1_PCS[1]    | PCS[1] / HREQ      | Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode.              | I/O |
| LPSPI1_PCS[2]    | PCS[2] / DATA[2]   | Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |
| LPSPI1_PCS[3]    | PCS[3] / DATA[3]   | Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |

### Table 10-16. LPSPI2 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                                                | I/O |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPSPI2_SOUT      | SOUT / DATA[0]     | Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers.                                                                | I/O |
| LPSPI2_SIN       | SIN / DATA[1]      | Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers.                                                                | I/O |
| LPSPI2_SCK       | SCK                | Serial clock. Input in slave mode, output in master mode.                                                                                                                                  | I/O |
| LPSPI2_PCS[0]    | PCS[0]             | Peripheral Chip Select. Input in slave mode, output in master mode.                                                                                                                        | I/O |
| LPSPI2_PCS[1]    | PCS[1] / HREQ      | Peripheral Chip Select or Host Request. Host Request pin is selected when HREN=1 and HRSEL=0. Input in either slave mode or when used as Host Request, output in master mode.              | I/O |
| LPSPI2_PCS[2]    | PCS[2] / DATA[2]   | Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |
| LPSPI2_PCS[3]    | PCS[3] / DATA[3]   | Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |

## Table 10-17. LPI<sup>2</sup>C0 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                            | I/O |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPI2C0_SCL       | SCL                | LPI2C clock line. In 4-wire mode, this is the SCL input pin.                                                                                                           | I/O |
| LPI2C0_SDA       | SDA                | LPI2C data line. In 4-wire mode, this is the SDA input pin.                                                                                                            | I/O |
| LPI2C0_          | HREQ               | Host request; can initiate an LPI2C master transfer if asserted and the I2C bus is idle.                                                                               | I   |
| LPI2C0_SCLS      | SCLS               | Secondary I2C clock line. In 4-wire mode, this is the SCL output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SCL pin. | I/O |
| LPI2C0_SDAS      | SDAS               | Secondary I2C data line. In 4-wire mode, this is the SDA output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SDA pin.  | I/O |

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### **Module Signal Description Tables**

## Table 10-18. LPI<sup>2</sup>C1 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                            | I/O |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPI2C1_SCL       | SCL                | LPI2C clock line. In 4-wire mode, this is the SCL input pin.                                                                                                           | I/O |
| LPI2C1_SDA       | SDA                | LPI2C data line. In 4-wire mode, this is the SDA input pin.                                                                                                            | I/O |
| LPI2C1_HREQ      | HREQ               | Host request; can initiate an LPI2C master transfer if asserted and the I2C bus is idle.                                                                               | I   |
| LPI2C1_SCLS      | SCLS               | Secondary I2C clock line. In 4-wire mode, this is the SCL output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SCL pin. | I/O |
| LPI2C1_SDAS      | SDAS               | Secondary I2C data line. In 4-wire mode, this is the SDA output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SDA pin.  | I/O |

## Table 10-19. LPI<sup>2</sup>C2 signal descriptions

| Chip signal name | Module signal name | Description                                                                                                                                                            | I/O |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPI2C2_SCL       | SCL                | LPI2C clock line. In 4-wire mode, this is the SCL input pin.                                                                                                           | I/O |
| LPI2C2_SDA       | SDA                | LPI2C data line. In 4-wire mode, this is the SDA input pin.                                                                                                            | I/O |
| LPI2C2_HREQ      | HREQ               | Host request; can initiate an LPI2C master transfer if asserted and the I2C bus is idle.                                                                               | I   |
| LPI2C2_SCLS      | SCLS               | Secondary I2C clock line. In 4-wire mode, this is the SCL output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SCL pin. | I/O |
| LPI2C2_SDAS      | SDAS               | Secondary I2C data line. In 4-wire mode, this is the SDA output pin. If LPI2C master/slave are configured to use separate pins, then this is the LPI2C slave SDA pin.  | I/O |

#### Table 10-20. LPUART0 signal descriptions

| Chip signal name | Module signal name | Description      | I/O |
|------------------|--------------------|------------------|-----|
| LPUART0_TX       | TxD                | Transmit data    | 0   |
| LPUART0_RX       | RxD                | Receive data     | I   |
| LPUARTO_ CTS_b   | LPUART_CTS         | Clear to send.   | I   |
| LPUARTO_ RTS_b   | LPUART_RTS         | Request to send. | 0   |

## Table 10-21. LPUART1 signal descriptions

| Chip signal name | Module signal name | Description      | I/O |
|------------------|--------------------|------------------|-----|
| LPUART1_TX       | TxD                | Transmit data    | 0   |
| LPUART1_RX       | RxD                | Receive data     | I   |
| LPUART1_ CTS_b   | LPUART_CTS         | Clear to send.   | I   |
| LPUART1_ RTS_b   | LPUART_RTS         | Request to send. | 0   |

#### KL28Z Reference Manual, Rev. 4, 06/2016

Table 10-22. LPUART2 signal descriptions

| Chip signal name | Module signal name | Description      | I/O |
|------------------|--------------------|------------------|-----|
| LPUART2_TX       | TxD                | Transmit data    | 0   |
| LPUART2_RX       | RxD                | Receive data     | I   |
| LPUART2_ CTS_b   | LPUART_CTS         | Clear to send.   | I   |
| LPUART2_ RTS_b   | LPUART_RTS         | Request to send. | 0   |

# 10.3.8 Human-machine interfaces (HMI)

Table 10-23. GPIO Signal Descriptions

| Chip signal name       | Module signal name | Description                  | I/O |
|------------------------|--------------------|------------------------------|-----|
| PTA[31:0] <sup>1</sup> | PORTA31-PORTA0     | General-purpose input/output | I/O |
| PTB[31:0] <sup>1</sup> | PORTB31-PORTB0     | General-purpose input/output | I/O |
| PTC[31:0] <sup>1</sup> | PORTC31-PORTC0     | General-purpose input/output | I/O |
| PTD[31:0] <sup>1</sup> | PORTD31-PORTD0     | General-purpose input/output | I/O |
| PTE[31:0] <sup>1</sup> | PORTE31-PORTE0     | General-purpose input/output | I/O |

<sup>1.</sup> The available GPIO pins depend on the specific package. See the signal multiplexing section for which exact GPIO signals are available.

Table 10-24. TSI Signal Descriptions

| Chip signal name | Module signal<br>name | Description                                                                                                           | I/O |
|------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|-----|
| TSI0_CH[15:0]    | TSI[15:0]             | TSI capacitive pins. Switches driver that connects directly to the electrode pins TSI[15:0] can operate as GPIO pins. | I/O |

NXP Semiconductors

177

**Module Signal Description Tables** 

# Chapter 11 Analog-to-Digital Converter (ADC)

#### 11.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 16-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

#### NOTE

For the chip specific modes of operation, see the power management information of the device.

#### 11.1.1 Features

Following are the features of the ADC module.

- Linear successive approximation algorithm with up to 16-bit resolution
- Up to four pairs of differential and 24 single-ended external analog inputs
- Output modes:
  - differential 16-bit, 13-bit, 11-bit, and 9-bit modes
  - single-ended 16-bit, 12-bit, 10-bit, and 8-bit modes
- Output format in 2's complement 16-bit sign extended for differential modes
- Output in right-justified unsigned format for single-ended
- Single or continuous conversion, that is, automatic return to idle after single conversion

#### Introduction

- Configurable sample time and conversion speed/power
- Conversion complete/hardware average complete flag and interrupt
- Input clock selectable from up to four sources
- Operation in low-power modes for lower noise
- Asynchronous clock source for lower noise operation with option to output the clock
- Selectable hardware conversion trigger with hardware channel select
- Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value
- Temperature sensor
- Hardware average function
- Selectable voltage reference: external or alternate
- Self-Calibration mode

## 11.1.2 Block diagram

The following figure is the ADC module block diagram.

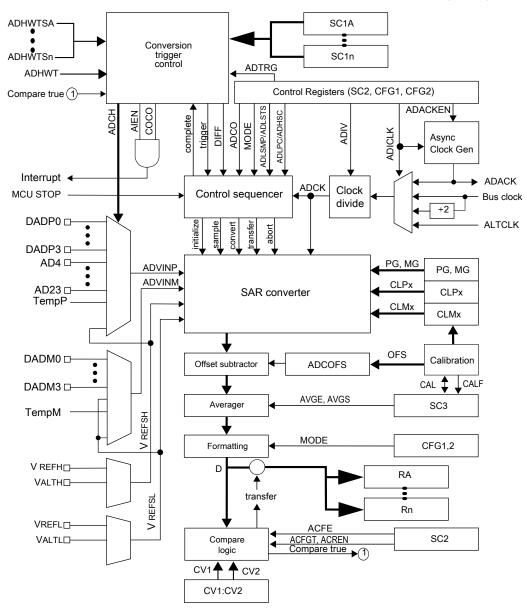



Figure 11-1. ADC block diagram

## 11.2 ADC signal descriptions

The ADC module supports up to 4 pairs of differential inputs and up to 24 single-ended inputs.

Each differential pair requires two inputs, DADPx and DADMx. The ADC also requires four supply/reference/ground connections.

KL28Z Reference Manual, Rev. 4, 06/2016

#### **NOTE**

For the number of channels supported on this device as well as information regarding other chip-specific inputs into the ADC block, see the chip-specific ADC configuration information.

Table 11-1. ADC signal descriptions

| Signal             | Description                        | I/O |
|--------------------|------------------------------------|-----|
| DADP3-DADP0        | Differential Analog Channel Inputs | I   |
| DADM3-DADM0        | Differential Analog Channel Inputs | I   |
| ADn                | Single-Ended Analog Channel Inputs | I   |
| V <sub>REFSH</sub> | Voltage Reference Select High      | I   |
| V <sub>REFSL</sub> | Voltage Reference Select Low       | I   |
| V <sub>DDA</sub>   | Analog Power Supply                | I   |
| V <sub>SSA</sub>   | Analog Ground                      | I   |

## 11.2.1 Analog Power (V<sub>DDA</sub>)

The ADC analog portion uses  $V_{DDA}$  as its power connection. In some packages,  $V_{DDA}$  is connected internally to  $V_{DD}$ . If externally available, connect the  $V_{DDA}$  pin to the same voltage potential as  $V_{DD}$ . External filtering may be necessary to ensure clean  $V_{DDA}$  for good results.

## 11.2.2 Analog Ground (V<sub>SSA</sub>)

The ADC analog portion uses  $V_{SSA}$  as its ground connection. In some packages,  $V_{SSA}$  is connected internally to  $V_{SS}$ . If externally available, connect the  $V_{SSA}$  pin to the same voltage potential as  $V_{SS}$ .

## 11.2.3 Voltage Reference Select

V<sub>REFSH</sub> and V<sub>REFSL</sub> are the high and low reference voltages for the ADC module.

The ADC can be configured to accept one of two voltage reference pairs for  $V_{REFSH}$  and  $V_{REFSL}$ . Each pair contains a positive reference that must be between the minimum Ref Voltage High and  $V_{DDA}$ , and a ground reference that must be at the same potential as  $V_{SSA}$ . The two pairs are external ( $V_{REFH}$  and  $V_{REFL}$ ) and alternate ( $V_{ALTH}$  and  $V_{ALTL}$ ). These voltage references are selected using SC2[REFSEL]. The alternate  $V_{ALTH}$  and

V<sub>ALTL</sub> voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the Voltage References specific to this MCU.

In some packages,  $V_{REFH}$  is connected in the package to  $V_{DDA}$  and  $V_{REFL}$  to  $V_{SSA}$ . If externally available, the positive reference(s) may be connected to the same potential as  $V_{DDA}$  or may be driven by an external source to a level between the minimum Ref Voltage High and the  $V_{DDA}$  potential.  $V_{REFH}$  must never exceed  $V_{DDA}$ . Connect the ground references to the same voltage potential as  $V_{SSA}$ .

## 11.2.4 Analog Channel Inputs (ADx)

The ADC module supports up to 24 single-ended analog inputs. A single-ended input is selected for conversion through the SC1[ADCH] channel select bits when SC1n[DIFF] is low.

## 11.2.5 Differential Analog Channel Inputs (DADx)

The ADC module supports up to four differential analog channel inputs. Each differential analog input is a pair of external pins, DADPx and DADMx, referenced to each other to provide the most accurate analog to digital readings. A differential input is selected for conversion through SC1[ADCH] when SC1n[DIFF] is high. All DADPx inputs may be used as single-ended inputs if SC1n[DIFF] is low. In certain MCU configurations, some DADMx inputs may also be used as single-ended inputs if SC1n[DIFF] is low. For ADC connections specific to this device, see the chip-specific ADC information.

## 11.3 Memory map and register definitions

This section describes the ADC registers.

### ADC memory map

| Absolute<br>address<br>(hex) | Register name                                  | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------|--------------------|--------|-------------|------------------|
| 4006_6000                    | ADC Status and Control Registers 1 (ADC0_SC1A) | 32                 | R/W    | 0000_001Fh  | 11.3.1/184       |
| 4006_6004                    | ADC Status and Control Registers 1 (ADC0_SC1B) | 32                 | R/W    | 0000_001Fh  | 11.3.1/184       |
| 4006_6008                    | ADC Configuration Register 1 (ADC0_CFG1)       | 32                 | R/W    | 0000_0000h  | 11.3.2/188       |
| 4006_600C                    | ADC Configuration Register 2 (ADC0_CFG2)       | 32                 | R/W    | 0000_0000h  | 11.3.3/189       |
| 4006_6010                    | ADC Data Result Register (ADC0_RA)             | 32                 | R      | 0000_0000h  | 11.3.4/190       |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

NXP Semiconductors

183

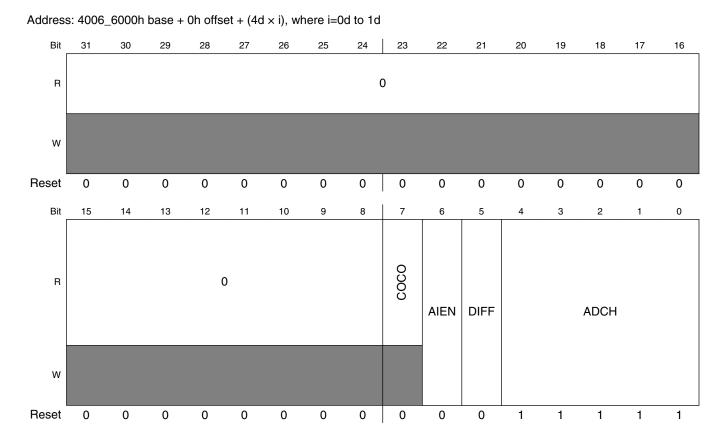
#### Memory map and register definitions

## **ADC** memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                                 | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4006_6014                    | ADC Data Result Register (ADC0_RB)                            | 32                 | R      | 0000_0000h  | 11.3.4/190       |
| 4006_6018                    | Compare Value Registers (ADC0_CV1)                            | 32                 | R/W    | 0000_0000h  | 11.3.5/192       |
| 4006_601C                    | Compare Value Registers (ADC0_CV2)                            | 32                 | R/W    | 0000_0000h  | 11.3.5/192       |
| 4006_6020                    | Status and Control Register 2 (ADC0_SC2)                      | 32                 | R/W    | 0000_0000h  | 11.3.6/193       |
| 4006_6024                    | Status and Control Register 3 (ADC0_SC3)                      | 32                 | R/W    | 0000_0000h  | 11.3.7/195       |
| 4006_6028                    | ADC Offset Correction Register (ADC0_OFS)                     | 32                 | R/W    | 0000_0004h  | 11.3.8/196       |
| 4006_602C                    | ADC Plus-Side Gain Register (ADC0_PG)                         | 32                 | R/W    | 0000_8200h  | 11.3.9/197       |
| 4006_6030                    | ADC Minus-Side Gain Register (ADC0_MG)                        | 32                 | R/W    | 0000_8200h  | 11.3.10/197      |
| 4006_6034                    | ADC Plus-Side General Calibration Value Register (ADC0_CLPD)  | 32                 | R/W    | 0000_000Ah  | 11.3.11/198      |
| 4006_6038                    | ADC Plus-Side General Calibration Value Register (ADC0_CLPS)  | 32                 | R/W    | 0000_0020h  | 11.3.12/199      |
| 4006_603C                    | ADC Plus-Side General Calibration Value Register (ADC0_CLP4)  | 32                 | R/W    | 0000_0200h  | 11.3.13/199      |
| 4006_6040                    | ADC Plus-Side General Calibration Value Register (ADC0_CLP3)  | 32                 | R/W    | 0000_0100h  | 11.3.14/200      |
| 4006_6044                    | ADC Plus-Side General Calibration Value Register (ADC0_CLP2)  | 32                 | R/W    | 0000_0080h  | 11.3.15/200      |
| 4006_6048                    | ADC Plus-Side General Calibration Value Register (ADC0_CLP1)  | 32                 | R/W    | 0000_0040h  | 11.3.16/201      |
| 4006_604C                    | ADC Plus-Side General Calibration Value Register (ADC0_CLP0)  | 32                 | R/W    | 0000_0020h  | 11.3.17/201      |
| 4006_6054                    | ADC Minus-Side General Calibration Value Register (ADC0_CLMD) | 32                 | R/W    | 0000_000Ah  | 11.3.18/202      |
| 4006_6058                    | ADC Minus-Side General Calibration Value Register (ADC0_CLMS) | 32                 | R/W    | 0000_0020h  | 11.3.19/202      |
| 4006_605C                    | ADC Minus-Side General Calibration Value Register (ADC0_CLM4) | 32                 | R/W    | 0000_0200h  | 11.3.20/203      |
| 4006_6060                    | ADC Minus-Side General Calibration Value Register (ADC0_CLM3) | 32                 | R/W    | 0000_0100h  | 11.3.21/203      |
| 4006_6064                    | ADC Minus-Side General Calibration Value Register (ADC0_CLM2) | 32                 | R/W    | 0000_0080h  | 11.3.22/204      |
| 4006_6068                    | ADC Minus-Side General Calibration Value Register (ADC0_CLM1) | 32                 | R/W    | 0000_0040h  | 11.3.23/204      |
| 4006_606C                    | ADC Minus-Side General Calibration Value Register (ADC0_CLM0) | 32                 | R/W    | 0000_0020h  | 11.3.24/205      |

## 11.3.1 ADC Status and Control Registers 1 (ADCx\_SC1n)

SC1A is used for both software and hardware trigger modes of operation.


185

To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC can have more than one status and control register: one for each conversion. The SC1B–SC1n registers indicate potentially multiple SC1 registers for use only in hardware trigger mode. See the chip configuration information about the number of SC1n registers specific to this device. The SC1n registers have identical fields, and are used in a "ping-pong" approach to control ADC operation.

At any one point in time, only one of the SC1n registers is actively controlling ADC conversions. Updating SC1A while SC1n is actively controlling a conversion is allowed, and vice-versa for any of the SC1n registers specific to this MCU.

Writing SC1A while SC1A is actively controlling a conversion aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, writes to SC1A subsequently initiate a new conversion, if SC1[ADCH] contains a value other than all 1s (module disabled).

Writing any of the SC1n registers while that specific SC1n register is actively controlling a conversion aborts the current conversion. None of the SC1B-SC1n registers are used for software trigger operation and therefore writes to the SC1B-SC1n registers do not initiate a new conversion.



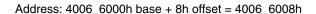
### Memory map and register definitions

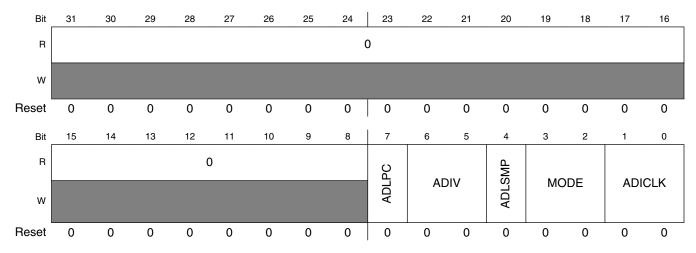
## ADCx\_SC1n field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7<br>COCO        | Conversion Complete Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | This is a read-only field that is set each time a conversion is completed when the compare function is disabled, or SC2[ACFE]=0 and the hardware average function is disabled, or SC3[AVGE]=0. When the compare function is enabled, or SC2[ACFE]=1, COCO is set upon completion of a conversion only if the compare result is true. When the hardware average function is enabled, or SC3[AVGE]=1, COCO is set upon completion of the selected number of conversions (determined by AVGS). COCO in SC1A is also set at the completion of a calibration sequence. COCO is cleared when the respective SC1n register is written or when the respective Rn register is read. |
|                  | Conversion is not completed.     Conversion is completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                | 1 Conversion is completed.  Interrupt Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AIEN             | ппетирі Епавіе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | Enables conversion complete interrupts. When COCO becomes set while the respective AIEN is high, an interrupt is asserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | 0 Conversion complete interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 1 Conversion complete interrupt is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5<br>DIFF        | Differential Mode Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | Configures the ADC to operate in differential mode. When enabled, this mode automatically selects from the differential channels, and changes the conversion algorithm and the number of cycles to complete a conversion.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | 0 Single-ended conversions and input channels are selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 1 Differential conversions and input channels are selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ADCH             | Input channel select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | Selects one of the input channels. The input channel decode depends on the value of DIFF. DAD0-DAD3 are associated with the input pin pairs DADPx and DADMx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | NOTE: Some of the input channel options in the bitfield-setting descriptions might not be available for your device. For the actual ADC channel assignments for your device, see the Chip Configuration details.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | The successive approximation converter subsystem is turned off when the channel select bits are all set, that is, ADCH = 11111. This feature allows explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way prevents an additional single conversion from being performed. It is not necessary to set ADCH to all 1s to place the ADC in a low-power state when continuous conversions are not enabled because the module automatically enters a low-power state when a conversion completes.                                                                                                       |
|                  | 00000 When DIFF=0, DADP0 is selected as input; when DIFF=1, DAD0 is selected as input. 00001 When DIFF=0, DADP1 is selected as input; when DIFF=1, DAD1 is selected as input. 00010 When DIFF=0, DADP2 is selected as input; when DIFF=1, DAD2 is selected as input. 00011 When DIFF=0, DADP3 is selected as input; when DIFF=1, DAD3 is selected as input. 00100 When DIFF=0, AD4 is selected as input; when DIFF=1, it is reserved. 00101 When DIFF=0, AD5 is selected as input; when DIFF=1, it is reserved. 00110 When DIFF=0, AD6 is selected as input; when DIFF=1, it is reserved.                                                                                  |
|                  | 00111 When DIFF=0, AD7 is selected as input; when DIFF=1, it is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


186


## ADCx\_SC1n field descriptions (continued)

| Field |       | Description                                                                                                                                                                         |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 01000 | When DIFF=0, AD8 is selected as input; when DIFF=1, it is reserved.                                                                                                                 |
|       | 01001 | When DIFF=0, AD9 is selected as input; when DIFF=1, it is reserved.                                                                                                                 |
|       | 01010 | When DIFF=0, AD10 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 01011 | When DIFF=0, AD11 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 01100 | When DIFF=0, AD12 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 01101 | When DIFF=0, AD13 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 01110 | When DIFF=0, AD14 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 01111 | When DIFF=0, AD15 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10000 | When DIFF=0, AD16 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10001 | When DIFF=0, AD17 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10010 | When DIFF=0, AD18 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10011 | When DIFF=0, AD19 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10100 | When DIFF=0, AD20 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10101 | When DIFF=0, AD21 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10110 | When DIFF=0, AD22 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 10111 | When DIFF=0, AD23 is selected as input; when DIFF=1, it is reserved.                                                                                                                |
|       | 11000 | Reserved.                                                                                                                                                                           |
|       | 11001 | Reserved.                                                                                                                                                                           |
|       | 11010 | When DIFF=0, Temp Sensor (single-ended) is selected as input; when DIFF=1, Temp Sensor (differential) is selected as input.                                                         |
|       | 11011 | When DIFF=0,Bandgap (single-ended) is selected as input; when DIFF=1, Bandgap (differential) is selected as input.                                                                  |
|       | 11100 | Reserved.                                                                                                                                                                           |
|       | 11101 | When DIFF=0,V <sub>REFSH</sub> is selected as input; when DIFF=1, -V <sub>REFSH</sub> (differential) is selected as input. Voltage reference selected is determined by SC2[REFSEL]. |
|       | 11110 | When DIFF=0,V <sub>REFSL</sub> is selected as input; when DIFF=1, it is reserved. Voltage reference selected is determined by SC2[REFSEL].                                          |
|       | 11111 | Module is disabled.                                                                                                                                                                 |

## **ADC Configuration Register 1 (ADCx\_CFG1)**

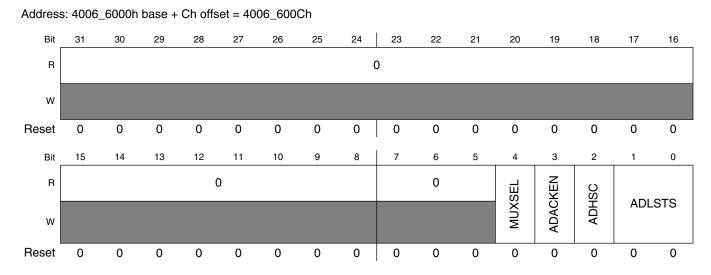
The configuration Register 1 (CFG1) selects the mode of operation, clock source, clock divide, and configuration for low power or long sample time.





### ADCx\_CFG1 field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8        | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reserved    | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7<br>ADLPC  | Low-Power Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Controls the power configuration of the successive approximation converter. This optimizes power consumption when higher sample rates are not required.                                                                                                                                                                                                                                                                                                                                                           |
|             | 0 Normal power configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 1 Low-power configuration. The power is reduced at the expense of maximum clock speed.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6–5<br>ADIV | Clock Divide Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | Selects the divide ratio used by the ADC to generate the internal clock ADCK.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 00 The divide ratio is 1 and the clock rate is input clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 01 The divide ratio is 2 and the clock rate is (input clock)/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 10 The divide ratio is 4 and the clock rate is (input clock)/4.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 11 The divide ratio is 8 and the clock rate is (input clock)/8.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4<br>ADLSMP | Sample Time Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Selects between different sample times based on the conversion mode selected. This field adjusts the sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption if continuous conversions are enabled and high conversion rates are not required. When ADLSMP=1, the long sample time select bits, (ADLSTS[1:0]), can select the extent of the long sample time. |


Table continues on the next page...

### ADCx\_CFG1 field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | 0 Short sample time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | 1 Long sample time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 3–2<br>MODE | Conversion mode selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|             | Selects the ADC resolution mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|             | 00 When DIFF=0:It is single-ended 8-bit conversion; when DIFF=1, it is differential 9-bit conversion with 2's complement output.                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|             | 01 When DIFF=0:It is single-ended 12-bit conversion; when DIFF=1, it is differential 13-bit conversion with 2's complement output.                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | 10 When DIFF=0:It is single-ended 10-bit conversion.; when DIFF=1, it is differential 11-bit conversion with 2's complement output                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | 11 When DIFF=0:It is single-ended 16-bit conversion; when DIFF=1, it is differential 16-bit conversion with 2's complement output                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ADICLK      | Input Clock Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | Selects the input clock source to generate the internal clock, ADCK. Note that when the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start, when CFG2[ADACKEN]=0, the asynchronous clock is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated. |  |  |
|             | 00 Bus clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | 01 Bus clock divided by 2(BUSCLK/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             | 10 Alternate clock (ALTCLK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|             | 11 Asynchronous clock (ADACK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

## 11.3.3 ADC Configuration Register 2 (ADCx\_CFG2)

Configuration Register 2 (CFG2) selects the special high-speed configuration for very high speed conversions and selects the long sample time duration during long sample mode.



KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definitions

### ADCx\_CFG2 field descriptions

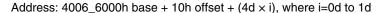
| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7–5<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4<br>MUXSEL      | ADC Mux Select Changes the ADC mux setting to select between alternate sets of ADC channels.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 0 ADxxa channels are selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | 1 ADxxb channels are selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3<br>ADACKEN     | Asynchronous Clock Output Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Enables the asynchronous clock source and the clock source output regardless of the conversion and status of CFG1[ADICLK]. Based on MCU configuration, the asynchronous clock may be used by other modules. See chip configuration information. Setting this field allows the clock to be used even while the ADC is idle or operating from a different clock source. Also, latency of initiating a single or first-continuous conversion with the asynchronous clock selected is reduced because the ADACK clock is already operational. |
|                  | O Asynchronous clock output disabled; Asynchronous clock is enabled only if selected by ADICLK and a conversion is active.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 1 Asynchronous clock and clock output is enabled regardless of the state of the ADC.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>ADHSC       | High-Speed Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Configures the ADC for very high-speed operation. The conversion sequence is altered with 2 ADCK cycles added to the conversion time to allow higher speed conversion clocks.                                                                                                                                                                                                                                                                                                                                                             |
|                  | 0 Normal conversion sequence selected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 1 High-speed conversion sequence selected with 2 additional ADCK cycles to total conversion time.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ADLSTS           | Long Sample Time Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | Selects between the extended sample times when long sample time is selected, that is, when CFG1[ADLSMP]=1. This allows higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required.                                                                                                                                            |
|                  | 00 Default longest sample time; 20 extra ADCK cycles; 24 ADCK cycles total.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 01 12 extra ADCK cycles; 16 ADCK cycles total sample time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 10 6 extra ADCK cycles; 10 ADCK cycles total sample time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | 11 2 extra ADCK cycles; 6 ADCK cycles total sample time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

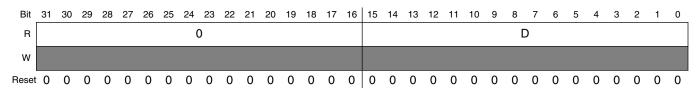
## 11.3.4 ADC Data Result Register (ADCx\_Rn)

The data result registers (Rn) contain the result of an ADC conversion of the channel selected by the corresponding status and channel control register (SC1A:SC1n). For every status and channel control register, there is a corresponding data result register.

Unused bits in R n are cleared in unsigned right-aligned modes and carry the sign bit (MSB) in sign-extended 2's complement modes. For example, when configured for 10-bit single-ended mode, D[15:10] are cleared. When configured for 11-bit differential mode, D[15:10] carry the sign bit, that is, bit 10 extended through bit 15.

The following table describes the behavior of the data result registers in the different modes of operation.


D13 D12 D11 D10 D9 D8 D4 D1 D0 D15 **D14** D7 D6 D5 D3 D2 Conversion **Format** mode D 16-bit differential S D D D D D D D D D D D D D D Signed 2's complement 16-bit single-D D D D D D D D D D D D D D D Unsigned right ended justified 13-bit differential S S S S D D D D D D D D D D D D Sign-extended 2's complement 12-bit single-0 0 0 D D D D D D D D D D Unsigned right-D ended iustified S S S S D D D 11-bit differential S S D D D D D D D Sian-extended 2's complement 10-bit single-0 0 0 0 0 0 D D D D D Unsigned right-D D D D D ended iustified 9-bit differential S S S S S S S S D D D D D D D D Sign-extended 2's complement 0 0 0 0 0 D D D D 8-bit single-0 0 0 D D D D Unsigned rightended iustified


Table 11-2. Data result register description

#### NOTE

S: Sign bit or sign bit extension;

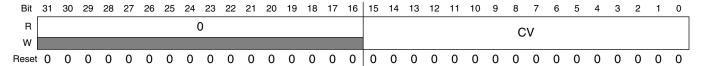
D: Data, which is 2's complement data if indicated





### ADCx\_Rn field descriptions

| Field             | Description                                                                          |  |
|-------------------|--------------------------------------------------------------------------------------|--|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |  |
| D                 | Data result                                                                          |  |

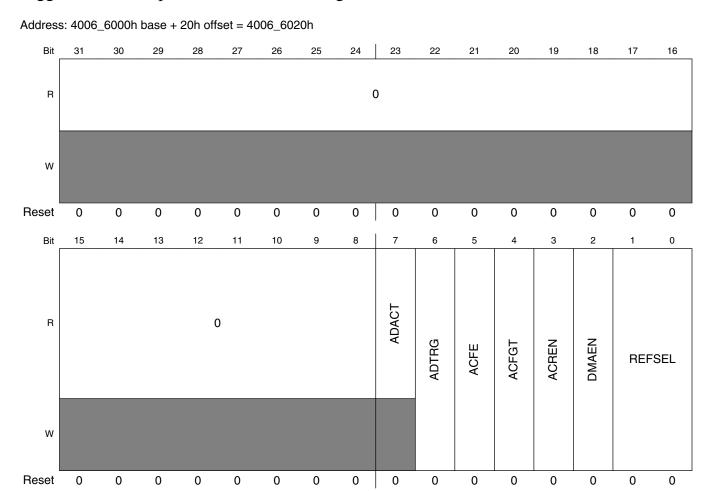

KL28Z Reference Manual, Rev. 4, 06/2016

## 11.3.5 Compare Value Registers (ADCx\_CVn)

The Compare Value Registers (CV1 and CV2) contain a compare value used to compare the conversion result when the compare function is enabled, that is, SC2[ACFE]=1. This register is formatted in the same way as the Rn registers in different modes of operation for both bit position definition and value format using unsigned or sign-extended 2's complement. Therefore, the compare function uses only the CVn fields that are related to the ADC mode of operation.

The compare value 2 register (CV2) is used only when the compare range function is enabled, that is, SC2[ACREN]=1.






#### ADCx\_CVn field descriptions

| Field Description |                                                                                      |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CV                | Compare Value.                                                                       |

## 11.3.6 Status and Control Register 2 (ADCx\_SC2)

The status and control register 2 (SC2) contains the conversion active, hardware/software trigger select, compare function, and voltage reference select of the ADC module.



ADCx\_SC2 field descriptions

| Field            | Description                                                                                                                                                                             |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                    |  |  |
| 7<br>ADACT       | Conversion Active  Indicates that a conversion or hardware averaging is in progress. ADACT is set when a conversion is initiated and cleared when a conversion is completed or aborted. |  |  |
|                  | <ul><li>0 Conversion not in progress.</li><li>1 Conversion in progress.</li></ul>                                                                                                       |  |  |
| 6<br>ADTRG       | Conversion Trigger Select  Selects the type of trigger used for initiating a conversion. Two types of trigger are selectable:                                                           |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

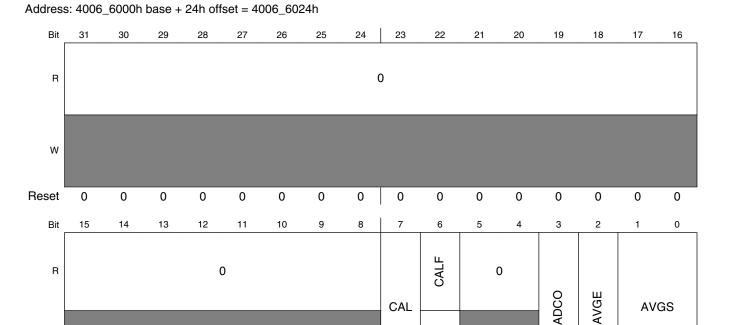
### Memory map and register definitions

## ADCx\_SC2 field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Software trigger: When software trigger is selected, a conversion is initiated following a write to SC1A.</li> <li>Hardware trigger: When hardware trigger is selected, a conversion is initiated following the assertion of the ADHWT input after a pulse of the ADHWTSn input.</li> </ul>                                                                                 |
|            | <ul><li>0 Software trigger selected.</li><li>1 Hardware trigger selected.</li></ul>                                                                                                                                                                                                                                                                                                  |
| 5<br>ACFE  | Compare Function Enable  Enables the compare function.                                                                                                                                                                                                                                                                                                                               |
|            | Compare function disabled.     Compare function enabled.                                                                                                                                                                                                                                                                                                                             |
| 4<br>ACFGT | Compare Function Greater Than Enable  Configures the compare function to check the conversion result relative to the CV1 and CV2 based upon the value of ACREN. ACFE must be set for ACFGT to have any effect.                                                                                                                                                                       |
|            | <ul> <li>Configures less than threshold, outside range not inclusive and inside range not inclusive; functionality based on the values placed in CV1 and CV2.</li> <li>Configures greater than or equal to threshold, outside and inside ranges inclusive; functionality based on the values placed in CV1 and CV2.</li> </ul>                                                       |
| 3<br>ACREN | Compare Function Range Enable                                                                                                                                                                                                                                                                                                                                                        |
| AOHEN      | Configures the compare function to check if the conversion result of the input being monitored is either between or outside the range formed by CV1 and CV2 determined by the value of ACFGT. ACFE must be set for ACFGT to have any effect.                                                                                                                                         |
|            | <ul> <li>Range function disabled. Only CV1 is compared.</li> <li>Range function enabled. Both CV1 and CV2 are compared.</li> </ul>                                                                                                                                                                                                                                                   |
| 2<br>DMAEN | <ul> <li>DMA Enable</li> <li>DMA is disabled.</li> <li>DMA is enabled and will assert the ADC DMA request during an ADC conversion complete event</li> </ul>                                                                                                                                                                                                                         |
| DEE051     | noted when any of the SC1n[COCO] flags is asserted.                                                                                                                                                                                                                                                                                                                                  |
| REFSEL     | Voltage Reference Selection  Selects the voltage reference source used for conversions.                                                                                                                                                                                                                                                                                              |
|            | <ul> <li>Default voltage reference pin pair, that is, external pins V<sub>REFH</sub> and V<sub>REFL</sub></li> <li>Alternate reference pair, that is, V<sub>ALTH</sub> and V<sub>ALTL</sub>. This pair may be additional external pins or internal sources depending on the MCU configuration. See the chip configuration information for details apposition to this MCU.</li> </ul> |
|            | details specific to this MCU  10 Reserved  11 Reserved                                                                                                                                                                                                                                                                                                                               |

## 11.3.7 Status and Control Register 3 (ADCx\_SC3)

W


0

0

0

Reset

The Status and Control Register 3 (SC3) controls the calibration, continuous convert, and hardware averaging functions of the ADC module.



# 0 0 0 0 0 0 0 0 ADCx\_SC3 field descriptions

w1c

0

0

0

0

0

0

| Field    | Description                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8     | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reserved | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                         |
| 7        | Calibration                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CAL      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | Begins the calibration sequence when set. This field stays set while the calibration is in progress and is cleared when the calibration sequence is completed. CALF must be checked to determine the result of the calibration sequence. Once started, the calibration routine cannot be interrupted by writes to the ADC registers or the results will be invalid and CALF will set. Setting CAL will abort any current conversion. |
| 6        | Calibration Failed Flag                                                                                                                                                                                                                                                                                                                                                                                                              |
| CALF     | Displays the result of the calibration sequence. The calibration sequence will fail if SC2[ADTRG] = 1, any                                                                                                                                                                                                                                                                                                                           |
|          | ADC register is written, or any stop mode is entered before the calibration sequence completes. Writing 1 to CALF clears it.                                                                                                                                                                                                                                                                                                         |
|          | 0 Calibration completed normally.                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 1 Calibration failed. ADC accuracy specifications are not guaranteed.                                                                                                                                                                                                                                                                                                                                                                |

Table continues on the next page...

#### Memory map and register definitions

### ADCx\_SC3 field descriptions (continued)

| Field           | Description                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 5–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                         |
| 3<br>ADCO       | Continuous Conversion Enable Enables continuous conversions.                                                                                 |
|                 | One conversion or one set of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.        |
|                 | 1 Continuous conversions or sets of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion. |
| 2<br>AVGE       | Hardware Average Enable                                                                                                                      |
|                 | Enables the hardware average function of the ADC.                                                                                            |
|                 | 0 Hardware average function disabled.                                                                                                        |
|                 | 1 Hardware average function enabled.                                                                                                         |
| AVGS            | Hardware Average Select                                                                                                                      |
|                 | Determines how many ADC conversions will be averaged to create the ADC average result.                                                       |
|                 | 00 4 samples averaged.                                                                                                                       |
|                 | 01 8 samples averaged.                                                                                                                       |
|                 | 10 16 samples averaged.                                                                                                                      |
|                 | 11 32 samples averaged.                                                                                                                      |

## ADC Offset Correction Register (ADCx OFS)

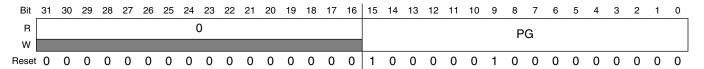
The ADC Offset Correction Register (OFS) contains the user-selected or calibrationgenerated offset error correction value. This register is a 2's complement, left-justified, 16-bit value. The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Address: 4006\_6000h base + 28h offset = 4006\_6028h



### **ADCx\_OFS** field descriptions


| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| OFS               | Offset Error Correction Value                                                        |

## 11.3.9 ADC Plus-Side Gain Register (ADCx\_PG)

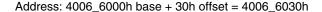
The Plus-Side Gain Register (PG) contains the gain error correction for the plus-side input in differential mode or the overall conversion in single-ended mode. PG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between PG[15] and PG[14]. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

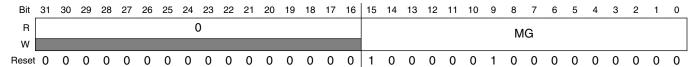
For more information regarding the calibration procedure, please refer to the Calibration function section.

Address: 4006\_6000h base + 2Ch offset = 4006\_602Ch



### ADCx\_PG field descriptions


| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| PG                | Plus-Side Gain                                                                       |


## 11.3.10 ADC Minus-Side Gain Register (ADCx\_MG)

The Minus-Side Gain Register (MG) contains the gain error correction for the minus-side input in differential mode. This register is ignored in single-ended mode. MG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between MG[15] and MG[14]. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

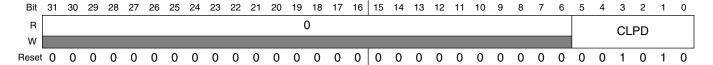
#### Memory map and register definitions

For more information regarding the calibration procedure, please refer to the Calibration function section.





#### ADCx\_MG field descriptions


| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| MG                | Minus-Side Gain                                                                      |

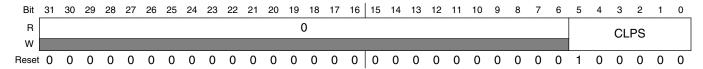
# 11.3.11 ADC Plus-Side General Calibration Value Register (ADCx\_CLPD)

The Plus-Side General Calibration Value Registers (CLPx) contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLP0[5:0], CLP1[6:0], CLP2[7:0], CLP3[8:0], CLP4[9:0], CLPS[5:0], and CLPD[5:0]. CLPx are automatically set when the self-calibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Address: 4006\_6000h base + 34h offset = 4006\_6034h




#### **ADCx CLPD field descriptions**

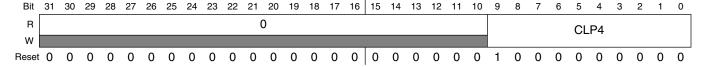
| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLPD             | Calibration Value                                                                    |
|                  | Calibration Value                                                                    |

# 11.3.12 ADC Plus-Side General Calibration Value Register (ADCx\_CLPS)

For more information, see CLPD register description.

Address: 4006\_6000h base + 38h offset = 4006\_6038h




#### ADCx\_CLPS field descriptions

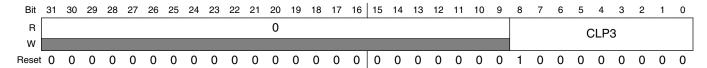
| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–6     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| CLPS     | Calibration Value                                            |
|          | Calibration Value                                            |

# 11.3.13 ADC Plus-Side General Calibration Value Register (ADCx\_CLP4)

For more information, see CLPD register description.

Address: 4006\_6000h base + 3Ch offset = 4006\_603Ch




#### **ADCx CLP4 field descriptions**

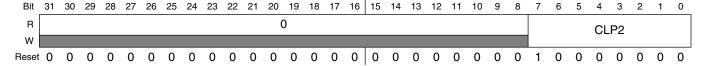
| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLP4              | Calibration Value                                                                    |
|                   | Calibration Value                                                                    |

# 11.3.14 ADC Plus-Side General Calibration Value Register (ADCx\_CLP3)

For more information, see CLPD register description.

Address: 4006\_6000h base + 40h offset = 4006\_6040h




#### ADCx\_CLP3 field descriptions

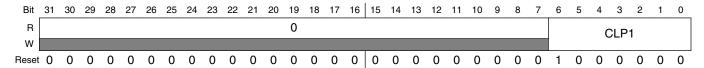
| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–9     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| CLP3     | Calibration Value                                            |
|          | Calibration Value                                            |

# 11.3.15 ADC Plus-Side General Calibration Value Register (ADCx\_CLP2)

For more information, see CLPD register description.

Address: 4006\_6000h base + 44h offset = 4006\_6044h




#### **ADCx CLP2 field descriptions**

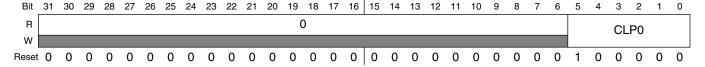
| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLP2             | Calibration Value                                                                    |
|                  | Calibration Value                                                                    |

# 11.3.16 ADC Plus-Side General Calibration Value Register (ADCx\_CLP1)

For more information, see CLPD register description.

Address: 4006\_6000h base + 48h offset = 4006\_6048h




#### ADCx\_CLP1 field descriptions

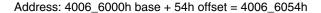
| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLP1             | Calibration Value                                                                    |
|                  | Calibration Value                                                                    |

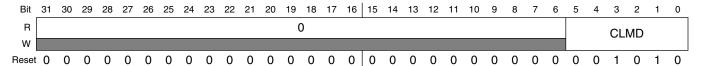
# 11.3.17 ADC Plus-Side General Calibration Value Register (ADCx\_CLP0)

For more information, see CLPD register description.

Address: 4006\_6000h base + 4Ch offset = 4006\_604Ch




#### **ADCx CLP0 field descriptions**


| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLP0             | Calibration Value                                                                    |
|                  | Calibration Value                                                                    |

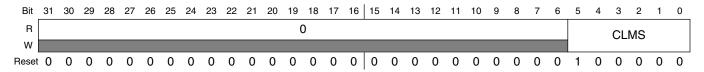
## 11.3.18 ADC Minus-Side General Calibration Value Register (ADCx\_CLMD)

The Minus-Side General Calibration Value (CLMx) registers contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLM0[5:0], CLM1[6:0], CLM2[7:0], CLM3[8:0], CLM4[9:0], CLMS[5:0], and CLMD[5:0]. CLMx are automatically set when the self-calibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.






#### ADCx\_CLMD field descriptions

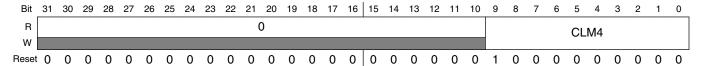
| Field    | Description                                               |  |
|----------|-----------------------------------------------------------|--|
| 31–6     | s field is reserved.                                      |  |
| Reserved | s read-only field is reserved and always has the value 0. |  |
| CLMD     | Calibration Value                                         |  |
|          | Calibration Value                                         |  |

# 11.3.19 ADC Minus-Side General Calibration Value Register (ADCx\_CLMS)

For more information, see CLMD register description.

#### Address: 4006 6000h base + 58h offset = 4006 6058h




#### ADCx\_CLMS field descriptions

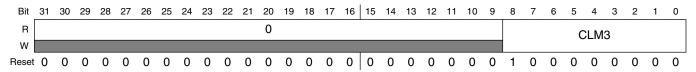
| Field            | Description                                                                      |  |
|------------------|----------------------------------------------------------------------------------|--|
| 31–6<br>Reserved | is field is reserved. is read-only field is reserved and always has the value 0. |  |
| CLMS             | alibration Value                                                                 |  |
|                  | Calibration Value                                                                |  |

# 11.3.20 ADC Minus-Side General Calibration Value Register (ADCx\_CLM4)

For more information, see CLMD register description.

Address: 4006\_6000h base + 5Ch offset = 4006\_605Ch




#### ADCx\_CLM4 field descriptions

| Field    | Description                                                |  |
|----------|------------------------------------------------------------|--|
| 31–10    | s field is reserved.                                       |  |
| Reserved | is read-only field is reserved and always has the value 0. |  |
| CLM4     | Calibration Value                                          |  |
|          | Calibration Value                                          |  |

# 11.3.21 ADC Minus-Side General Calibration Value Register (ADCx\_CLM3)

For more information, see CLMD register description.

Address: 4006\_6000h base + 60h offset = 4006\_6060h

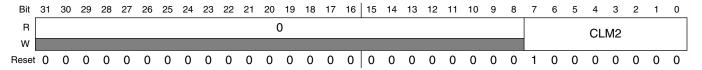


#### ADCx\_CLM3 field descriptions

| Field    | Description                                                  |  |
|----------|--------------------------------------------------------------|--|
| 31–9     | This field is reserved.                                      |  |
| Reserved | This read-only field is reserved and always has the value 0. |  |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016


### ADCx\_CLM3 field descriptions (continued)

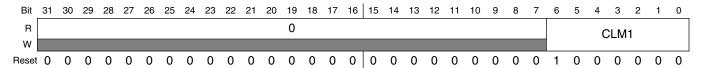
| Field | Description       |
|-------|-------------------|
| CLM3  | Calibration Value |
|       | Calibration Value |

# 11.3.22 ADC Minus-Side General Calibration Value Register (ADCx\_CLM2)

For more information, see CLMD register description.

Address: 4006\_6000h base + 64h offset = 4006\_6064h




#### ADCx\_CLM2 field descriptions

| Field            | Description                                                                      |  |
|------------------|----------------------------------------------------------------------------------|--|
| 31–8<br>Reserved | is field is reserved. is read-only field is reserved and always has the value 0. |  |
| neserveu         | is read-only field is reserved and always has the value o.                       |  |
| CLM2             | Calibration Value                                                                |  |
|                  | Calibration Value                                                                |  |

# 11.3.23 ADC Minus-Side General Calibration Value Register (ADCx\_CLM1)

For more information, see CLMD register description.

Address: 4006\_6000h base + 68h offset = 4006\_6068h



#### ADCx\_CLM1 field descriptions

| Field            | Description                                                                |  |
|------------------|----------------------------------------------------------------------------|--|
| 31–7<br>Reserved | field is reserved. read-only field is reserved and always has the value 0. |  |
| CLM1             | Calibration Value                                                          |  |

# 11.3.24 ADC Minus-Side General Calibration Value Register (ADCx\_CLM0)

For more information, see CLMD register description.

Address: 4006\_6000h base + 6Ch offset = 4006\_606Ch



#### **ADCx CLM0 field descriptions**

| Field    | Description                                                |  |
|----------|------------------------------------------------------------|--|
| 31–6     | s field is reserved.                                       |  |
| Reserved | is read-only field is reserved and always has the value 0. |  |
| CLM0     | Calibration Value                                          |  |
|          | Calibration Value                                          |  |

## 11.4 Functional description

The ADC module is disabled during reset, in Low-Power Stop mode, or when SC1n[ADCH] are all high; see the power management information for details. The module is idle when a conversion has completed and another conversion has not been initiated. When it is idle and the asynchronous clock output enable is disabled, or CFG2[ADACKEN]= 0, the module is in its lowest power state. The ADC can perform an analog-to-digital conversion on any of the software selectable channels. All modes perform conversion by a successive approximation algorithm.

To meet accuracy specifications, the ADC module must be calibrated using the on-chip calibration function.

See Calibration function for details on how to perform calibration.

When the conversion is completed, the result is placed in the Rn data registers. The respective SC1n[COCO] is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, or, when SC1n[AIEN]=1.

The ADC module has the capability of automatically comparing the result of a conversion with the contents of the CV1 and CV2 registers. The compare function is enabled by setting SC2[ACFE] and operates in any of the conversion modes and configurations.

#### **Functional description**

The ADC module has the capability of automatically averaging the result of multiple conversions. The hardware average function is enabled by setting SC3[AVGE] and operates in any of the conversion modes and configurations.

#### NOTE

For the chip specific modes of operation, see the power management information of this MCU.

### 11.4.1 Clock select and divide control

One of four clock sources can be selected as the clock source for the ADC module.

This clock source is then divided by a configurable value to generate the input clock ADCK, to the module. The clock is selected from one of the following sources by means of CFG1[ADICLK].

- Bus clock. This is the default selection following reset.
- Bus clock divided by two. For higher bus clock rates, this allows a maximum divideby-16 of the bus clock using CFG1[ADIV].
- ALTCLK: As defined for this MCU. See the chip configuration information. Conversions are possible using ALTCLK as the input clock source while the MCU is in Normal Stop mode.
- Asynchronous clock (ADACK): This clock is generated from a clock source within the ADC module. When the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start CFG2[ADACKEN]=0, ADACK is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated. To avoid the conversion time variability and latency associated with the ADACK clock startup, set CFG2[ADACKEN]=1 and wait the worst-case startup time of 5 µs prior to initiating any conversions using the ADACK clock source. Conversions are possible using ADACK as the input clock source while the MCU is in Normal Stop mode. See Power Control for more information.

Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the available clocks are too slow, the ADC may not perform according to specifications. If the available clocks are too fast, the clock must be divided to the appropriate frequency. This divider is specified by CFG1[ADIV] and can be divide-by 1, 2, 4, or 8.

## 11.4.2 Voltage reference selection

The ADC can be configured to accept one of the two voltage reference pairs as the reference voltage ( $V_{REFSH}$  and  $V_{REFSL}$ ) used for conversions.

Each pair contains a positive reference that must be between the minimum Ref Voltage High and  $V_{DDA}$ , and a ground reference that must be at the same potential as  $V_{SSA}$ . The two pairs are external ( $V_{REFH}$  and  $V_{REFL}$ ) and alternate ( $V_{ALTH}$  and  $V_{ALTL}$ ). These voltage references are selected using SC2[REFSEL]. The alternate ( $V_{ALTH}$  and  $V_{ALTL}$ ) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

## 11.4.3 Hardware trigger and channel selects

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when SC2[ADTRG] is set and a hardware trigger select event, ADHWTSn, has occurred.

This source is not available on all MCUs. See the chip-specific ADC information for information on the ADHWT source and the ADHWTSn configurations specific to this MCU.

When an ADHWT source is available and hardware trigger is enabled, that is SC2[ADTRG]=1, a conversion is initiated on the rising-edge of ADHWT after a hardware trigger select event, that is, ADHWTSn, has occurred. If a conversion is in progress when a rising-edge of a trigger occurs, the rising-edge is ignored. In continuous convert configuration, only the initial rising-edge to launch continuous conversions is observed, and until conversion is aborted, the ADC continues to do conversions on the same SCn register that initiated the conversion. The hardware trigger function operates in conjunction with any of the conversion modes and configurations.

The hardware trigger select event, ADHWTSn, must be set prior to the receipt of the ADHWT signal. If these conditions are not met, the converter may ignore the trigger or use the incorrect configuration. If a hardware trigger select event is asserted during a conversion, it must stay asserted until the end of current conversion and remain set until the receipt of the ADHWT signal to trigger a new conversion. The channel and status fields selected for the conversion depend on the active trigger select signal:

- ADHWTSA active selects SC1A.
- ADHWTSn active selects SC1n.

#### **Note**

Asserting more than one hardware trigger select signal (ADHWTSn) at the same time results in unknown results. To avoid this, select only one hardware trigger select signal (ADHWTSn) prior to the next intended conversion.

When the conversion is completed, the result is placed in the Rn registers associated with the ADHWTSn received. For example:

- ADHWTSA active selects RA register
- ADHWTSn active selects Rn register

The conversion complete flag associated with the ADHWTSn received, that is, SC1n[COCO], is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, that is, SC1[AIEN]=1.

### 11.4.4 Conversion control

Conversions can be performed as determined by CFG1[MODE] and SC1n[DIFF] as shown in the description of CFG1[MODE].

Conversions can be initiated by a software or hardware trigger.

In addition, the ADC module can be configured for:

- Low-power operation
- Long sample time
- Continuous conversion
- Hardware average
- Automatic compare of the conversion result to a software determined compare value

## 11.4.4.1 Initiating conversions

A conversion is initiated:

- Following a write to SC1A, with SC1n[ADCH] not all 1's, if software triggered operation is selected, that is, when SC2[ADTRG]=0.
- Following a hardware trigger, or ADHWT event, if hardware triggered operation is selected, that is, SC2[ADTRG]=1, and a hardware trigger select event, ADHWTSn, has occurred. The channel and status fields selected depend on the active trigger select signal:
  - ADHWTSA active selects SC1A.

- ADHWTSn active selects SC1n.
- if neither is active, the off condition is selected

#### **Note**

Selecting more than one ADHWTSn prior to a conversion completion will result in unknown results. To avoid this, select only one ADHWTSn prior to a conversion completion.

• Following the transfer of the result to the data registers when continuous conversion is enabled, that is, when SC3[ADCO] = 1.

If continuous conversions are enabled, a new conversion is automatically initiated after the completion of the current conversion. In software triggered operation, that is, when SC2[ADTRG] = 0, continuous conversions begin after SC1A is written and continue until aborted. In hardware triggered operation, that is, when SC2[ADTRG] = 1 and one ADHWTSn event has occurred, continuous conversions begin after a hardware trigger event and continue until aborted.

If hardware averaging is enabled, a new conversion is automatically initiated after the completion of the current conversion until the correct number of conversions are completed. In software triggered operation, conversions begin after SC1A is written. In hardware triggered operation, conversions begin after a hardware trigger. If continuous conversions are also enabled, a new set of conversions to be averaged are initiated following the last of the selected number of conversions.

## 11.4.4.2 Completing conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, Rn. If the compare functions are disabled, this is indicated by setting of SC1n[COCO]. If hardware averaging is enabled, the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed. If the compare function is enabled, the respective SC1n[COCO] sets and conversion result data is transferred only if the compare condition is true. If both hardware averaging and compare functions are enabled, then the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed and the compare condition is true. An interrupt is generated if the respective SC1n[AIEN] is high at the time that the respective SC1n[COCO] is set.

## 11.4.4.3 Aborting conversions

Any conversion in progress is aborted when:

- Writing to SC1A while it is actively controlling a conversion, aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, a write to SC1A initiates a new conversion if SC1A[ADCH] is equal to a value other than all 1s. Writing to any of the SC1B–SC1n registers while that specific SC1B–SC1n register is actively controlling a conversion aborts the current conversion. The SC1(B-n) registers are not used for software trigger operation and therefore writes to the SC1(B-n) registers do not initiate a new conversion.
- A write to any ADC register besides the SC1A-SC1n registers occurs. This indicates that a change in mode of operation has occurred and the current conversion is therefore invalid.
- The MCU is reset or enters Low-Power Stop modes.
- The MCU enters Normal Stop mode with ADACK or Alternate Clock Sources not enabled.

When a conversion is aborted, the contents of the data registers, Rn, are not altered. The data registers continue to be the values transferred after the completion of the last successful conversion. If the conversion was aborted by a reset or Low-Power Stop modes, RA and Rn return to their reset states.

### 11.4.4.4 Power control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the conversion clock source, but the asynchronous clock output is disabled, that is CFG2[ADACKEN]=0, the ADACK clock generator also remains in its idle state (disabled) until a conversion is initiated. If the asynchronous clock output is enabled, that is, CFG2[ADACKEN]=1, it remains active regardless of the state of the ADC or the MCU power mode.

Power consumption when the ADC is active can be reduced by setting CFG1[ADLPC]. This results in a lower maximum value for  $f_{ADCK}$ .

## 11.4.4.5 Sample time and total conversion time

For short sample, that is, when CFG1[ADLSMP]=0, there is a 2-cycle adder for first conversion over the base sample time of four ADCK cycles. For high-speed conversions, that is, when CFG2[ADHSC]=1, there is an additional 2-cycle adder on any conversion. The table below summarizes sample times for the possible ADC configurations.

| ADC configuration |              |             | Sample time (   | ADCK cycles) |
|-------------------|--------------|-------------|-----------------|--------------|
| CFG1[ADLSMP]      | CFG2[ADLSTS] | CFG2[ADHSC] | First or Single | Subsequent   |
| 0                 | X            | 0           | 6               | 4            |
| 1                 | 00           | 0           | 2               | 4            |
| 1                 | 01           | 0           | 10              | 6            |
| 1                 | 10           | 0           | 10              | 0            |
| 1                 | 11           | 0           | 6               | 3            |
| 0                 | X            | 1           | 8               | 6            |
| 1                 | 00           | 1           | 26              |              |
| 1                 | 01           | 1           | 1/              | 8            |
| 1                 | 10           | 1           | 1:              | 2            |
| 1                 | 11           | 1           | 8               |              |

The total conversion time depends upon:

- The sample time as determined by CFG1[ADLSMP] and CFG2[ADLSTS]
- The MCU bus frequency
- The conversion mode, as determined by CFG1[MODE] and SC1n[DIFF]
- The high-speed configuration, that is, CFG2[ADHSC]
- The frequency of the conversion clock, that is, f<sub>ADCK</sub>.

CFG2[ADHSC] is used to configure a higher clock input frequency. This will allow faster overall conversion times. To meet internal ADC timing requirements, CFG2[ADHSC] adds additional ADCK cycles. Conversions with CFG2[ADHSC]=1 take two more ADCK cycles. CFG2[ADHSC] must be used when the ADCLK exceeds the limit for CFG2[ADHSC]=0.

After the module becomes active, sampling of the input begins.

- 1. CFG1[ADLSMP] and CFG2[ADLSTS] select between sample times based on the conversion mode that is selected.
- 2. When sampling is completed, the converter is isolated from the input channel and a successive approximation algorithm is applied to determine the digital value of the analog signal.
- 3. The result of the conversion is transferred to Rn upon completion of the conversion algorithm.

#### **Functional description**

If the bus frequency is less than  $f_{ADCK}$ , precise sample time for continuous conversions cannot be guaranteed when short sample is enabled, that is, when CFG1[ADLSMP]=0.

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by CFG1[ADICLK], and the divide ratio is specified by CFG1[ADIV].

The maximum total conversion time for all configurations is summarized in the equation below. See the following tables for the variables referenced in the equation.

 $Conversion Time = SFCAdder + Average Num \times (BCT + LSTAdder + HSCAdder)$ 

## **Equation 1. Conversion time equation**

Table 11-3. Single or first continuous time adder (SFCAdder)

| CFG1[AD<br>LSMP] | CFG2[AD<br>ACKEN] | CFG1[ADICLK] | Single or first continuous time adder (SFCAdder) |
|------------------|-------------------|--------------|--------------------------------------------------|
| 1                | х                 | 0x, 10       | 3 ADCK cycles + 5 bus clock cycles               |
| 1                | 1                 | 11           | 3 ADCK cycles + 5 bus clock cycles <sup>1</sup>  |
| 1                | 0                 | 11           | 5 μs + 3 ADCK cycles + 5 bus clock cycles        |
| 0                | х                 | 0x, 10       | 5 ADCK cycles + 5 bus clock cycles               |
| 0                | 1                 | 11           | 5 ADCK cycles + 5 bus clock cycles <sup>1</sup>  |
| 0                | 0                 | 11           | 5 μs + 5 ADCK cycles + 5 bus clock cycles        |

1. To achieve this time, CFG2[ADACKEN] must be 1 for at least 5 µs prior to the conversion is initiated.

Table 11-4. Average number factor (AverageNum)

| SC3[AVGE] | SC3[AVGS] | Average number factor (AverageNum) |
|-----------|-----------|------------------------------------|
| 0         | XX        | 1                                  |
| 1         | 00        | 4                                  |
| 1         | 01        | 8                                  |
| 1         | 10        | 16                                 |
| 1         | 11        | 32                                 |

Table 11-5. Base conversion time (BCT)

| Mode             | Base conversion time (BCT) |
|------------------|----------------------------|
| 8b single-ended  | 17 ADCK cycles             |
| 9b differential  | 27 ADCK cycles             |
| 10b single-ended | 20 ADCK cycles             |
| 11b differential | 30 ADCK cycles             |
| 12b single-ended | 20 ADCK cycles             |
| 13b differential | 30 ADCK cycles             |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### Table 11-5. Base conversion time (BCT) (continued)

| Mode             | Base conversion time (BCT) |
|------------------|----------------------------|
| 16b single-ended | 25 ADCK cycles             |
| 16b differential | 34 ADCK cycles             |

#### Table 11-6. Long sample time adder (LSTAdder)

| CFG1[ADLSMP] | CFG2[ADLSTS] | Long sample time adder (LSTAdder) |
|--------------|--------------|-----------------------------------|
| 0            | xx           | 0 ADCK cycles                     |
| 1            | 00           | 20 ADCK cycles                    |
| 1            | 01           | 12 ADCK cycles                    |
| 1            | 10           | 6 ADCK cycles                     |
| 1            | 11           | 2 ADCK cycles                     |

#### Table 11-7. High-speed conversion time adder (HSCAdder)

| CFG2[ADHSC] | High-speed conversion time adder (HSCAdder) |  |
|-------------|---------------------------------------------|--|
| 0           | 0 ADCK cycles                               |  |
| 1           | 2 ADCK cycles                               |  |

#### **Note**

The ADCK frequency must be between  $f_{ADCK}$  minimum and  $f_{ADCK}$  maximum to meet ADC specifications.

## 11.4.4.6 Conversion time examples

The following examples use the Equation 1 on page 212, and the information provided in Table 11-3 through Table 11-7.

## 11.4.4.6.1 Typical conversion time configuration

A typical configuration for ADC conversion is:

- 10-bit mode, with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 8 MHz
- Long sample time disabled
- High-speed conversion disabled

#### **Functional description**

The conversion time for a single conversion is calculated by using the Equation 1 on page 212, and the information provided in Table 11-3 through Table 11-7. The table below lists the variables of Equation 1 on page 212.

Table 11-8. Typical conversion time

| Variable   | Time                               |  |
|------------|------------------------------------|--|
| SFCAdder   | 5 ADCK cycles + 5 bus clock cycles |  |
| AverageNum | 1                                  |  |
| BCT        | 20 ADCK cycles                     |  |
| LSTAdder   | STAdder 0                          |  |
| HSCAdder   | 0                                  |  |

The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for a bus clock and an ADCK frequency equal to 8 MHz, the resulting conversion time is 3.75 µs.

#### 11.4.4.6.2 Long conversion time configuration

A configuration for long ADC conversion is:

- 16-bit differential mode with the bus clock selected as the input clock source
- The input clock divide-by-8 ratio selected
- Bus frequency of 8 MHz
- Long sample time enabled
- Configured for longest adder
- High-speed conversion disabled
- Average enabled for 32 conversions

The conversion time for this conversion is calculated by using the Equation 1 on page 212, and the information provided in Table 11-3 through Table 11-7. The following table lists the variables of the Equation 1 on page 212.

Table 11-9. Typical conversion time

| Variable   | Time                               |  |
|------------|------------------------------------|--|
| SFCAdder   | 3 ADCK cycles + 5 bus clock cycles |  |
| AverageNum | 32                                 |  |
| ВСТ        | 34 ADCK cycles                     |  |
| LSTAdder   | 20 ADCK cycles                     |  |
| HSCAdder   | 0                                  |  |

KL28Z Reference Manual, Rev. 4, 06/2016 214 **NXP Semiconductors**  The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for bus clock equal to 8 MHz and ADCK equal to 1 MHz, the resulting conversion time is  $57.625~\mu s$ , that is, AverageNum. This results in a total conversion time of 1.844~m s.

### 11.4.4.6.3 Short conversion time configuration

A configuration for short ADC conversion is:

- 8-bit Single-Ended mode with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 20 MHz
- Long sample time disabled
- High-speed conversion enabled

The conversion time for this conversion is calculated by using the Equation 1 on page 212, and the information provided in Table 11-3 through Table 11-7. The table below lists the variables of Equation 1 on page 212.

| Variable   | Time                               |  |
|------------|------------------------------------|--|
| SFCAdder   | 5 ADCK cycles + 5 bus clock cycles |  |
| AverageNum | 1                                  |  |
| BCT        | 17 ADCK cycles                     |  |
| LSTAdder   | 0 ADCK cycles                      |  |
| HSCAdder   | 2                                  |  |

Table 11-10. Typical conversion time

The resulting conversion time is generated using the parameters listed in in the preceding table. Therefore, for bus clock and ADCK frequency equal to 20 MHz, the resulting conversion time is 1.45 µs.

## 11.4.4.7 Hardware average function

The hardware average function can be enabled by setting SC3[AVGE]=1 to perform a hardware average of multiple conversions. The number of conversions is determined by the AVGS[1:0] bits, which can select 4, 8, 16, or 32 conversions to be averaged. While the hardware average function is in progress, SC2[ADACT] will be set.

After the selected input is sampled and converted, the result is placed in an accumulator from which an average is calculated once the selected number of conversions have been completed. When hardware averaging is selected, the completion of a single conversion will not set SC1n[COCO].

#### **Functional description**

If the compare function is either disabled or evaluates true, after the selected number of conversions are completed, the average conversion result is transferred into the data result registers, Rn, and SC1n[COCO] is set. An ADC interrupt is generated upon the setting of SC1n[COCO] if the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

#### **Note**

The hardware average function can perform conversions on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the hardware average is completed if SC1n[AIEN] is set.

## 11.4.5 Automatic compare function

The compare function can be configured to check whether the result is less than or greater-than-or-equal-to a single compare value, or, if the result falls within or outside a range determined by two compare values.

The compare mode is determined by SC2[ACFGT], SC2[ACREN], and the values in the compare value registers, CV1 and CV2. After the input is sampled and converted, the compare values in CV1 and CV2 are used as described in the following table. There are six Compare modes as shown in the following table.

Table 11-11. Compare modes

| SC2[AC<br>FGT] | SC2[AC<br>REN] | ADCCV1<br>relative to<br>ADCCV2 | Function                           | Compare mode description                                                                                       |
|----------------|----------------|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 0              | 0              | _                               | Less than threshold                | Compare true if the result is less than the CV1 registers.                                                     |
| 1              | 0              | _                               | Greater than or equal to threshold | Compare true if the result is greater than or equal to CV1 registers.                                          |
| 0              | 1              | Less than or equal              | Outside range, not inclusive       | Compare true if the result is less than CV1 Or the result is greater than CV2.                                 |
| 0              | 1              | Greater than                    | Inside range, not inclusive        | Compare true if the result is less than CV1 And the result is greater than CV2.                                |
| 1              | 1              | Less than or equal              | Inside range, inclusive            | Compare true if the result is greater than or equal to CV1 <b>And</b> the result is less than or equal to CV2. |
| 1              | 1              | Greater than                    | Outside range, inclusive           | Compare true if the result is greater than or equal to CV1 <b>Or</b> the result is less than or equal to CV2.  |

With SC2[ACREN] =1, and if the value of CV1 is less than or equal to the value of CV2, then setting SC2[ACFGT] will select a trigger-if-inside-compare-range inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-outside-compare-range, not-inclusive-of-endpoints function.

If CV1 is greater than CV2, setting SC2[ACFGT] will select a trigger-if-outside-compare-range, inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-inside-compare-range, not-inclusive-of-endpoints function.

If the condition selected evaluates true, SC1n[COCO] is set.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not true, SC1n[COCO] is not set and the conversion result data will not be transferred to the result register, Rn. If the hardware averaging function is enabled, the compare function compares the averaged result to the compare values. The same compare function definitions apply. An ADC interrupt is generated when SC1n[COCO] is set and the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

#### Note

The compare function can monitor the voltage on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the compare condition is met.

## 11.4.6 Calibration function

The ADC contains a self-calibration function that is required to achieve the specified accuracy.

Calibration must be run, or valid calibration values written, after any reset and before a conversion is initiated. The calibration function sets the offset calibration value, the minus-side calibration values, and the plus-side calibration values. The offset calibration value is automatically stored in the ADC offset correction register (OFS), and the plus-side and minus-side calibration values are automatically stored in the ADC plus-side and minus-side calibration registers, CLPx and CLMx. The user must configure the ADC correctly prior to calibration, and must generate the plus-side and minus-side gain calibration results and store them in the ADC plus-side gain register (PG) after the calibration function completes.

Prior to calibration, the user must configure the ADC's clock source and frequency, low power configuration, voltage reference selection, sample time, and high speed configuration according to the application's clock source availability and needs. If the

#### **Functional description**

application uses the ADC in a wide variety of configurations, the configuration for which the highest accuracy is required should be selected, or multiple calibrations can be done for the different configurations. For best calibration results:

- Set hardware averaging to maximum, that is, SC3[AVGE]=1 and SC3[AVGS]=11 for an average of 32
- Set ADC clock frequency f<sub>ADCK</sub> less than or equal to 4 MHz
- $V_{REFH}=V_{DDA}$
- Calibrate at nominal voltage and temperature

The input channel, conversion mode continuous function, compare function, resolution mode, and differential/single-ended mode are all ignored during the calibration function.

To initiate calibration, the user sets SC3[CAL] and the calibration will automatically begin if the SC2[ADTRG] is 0. If SC2[ADTRG] is 1, SC3[CAL] will not get set and SC3[CALF] will be set. While calibration is active, no ADC register can be written and no stop mode may be entered, or the calibration routine will be aborted causing SC3[CAL] to clear and SC3[CALF] to set. At the end of a calibration sequence, SC1n[COCO] will be set. SC1n[AIEN] can be used to allow an interrupt to occur at the end of a calibration sequence. At the end of the calibration routine, if SC3[CALF] is not set, the automatic calibration routine is completed successfully.

To complete calibration, the user must generate the gain calibration values using the following procedure:

- 1. Initialize or clear a 16-bit variable in RAM.
- 2. Add the plus-side calibration results CLP0, CLP1, CLP2, CLP3, CLP4, and CLPS to the variable.
- 3. Divide the variable by two.
- 4. Set the MSB of the variable.
- 5. The previous two steps can be achieved by setting the carry bit, rotating to the right through the carry bit on the high byte and again on the low byte.
- 6. Store the value in the plus-side gain calibration register PG.
- 7. Repeat the procedure for the minus-side gain calibration value.

When calibration is complete, the user may reconfigure and use the ADC as desired. A second calibration may also be performed, if desired, by clearing and again setting SC3[CAL].

Overall, the calibration routine may take as many as 14k ADCK cycles and 100 bus cycles, depending on the results and the clock source chosen. For an 8 MHz clock source, this length amounts to about 1.7 ms. To reduce this latency, the calibration values, which are offset, plus-side and minus-side gain, and plus-side and minus-side calibration values, may be stored in flash memory after an initial calibration and recovered prior to the first ADC conversion. This method can reduce the calibration latency to 20 register store operations on all subsequent power, reset, or Low-Power Stop mode recoveries.

Further information on the calibration procedure can be found in the Calibration section of AN3949: ADC16 Calibration Procedure and Programmable Delay Block Synchronization.

#### 11.4.7 User-defined offset function

OFS contains the user-selected or calibration-generated offset error correction value.

This register is a 2's complement, left-justified. The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

The formatting of the OFS is different from the data result register, Rn, to preserve the resolution of the calibration value regardless of the conversion mode selected. Lower order bits are ignored in lower resolution modes. For example, in 8-bit single-ended mode, OFS[14:7] are subtracted from D[7:0]; OFS[15] indicates the sign (negative numbers are effectively added to the result) and OFS[6:0] are ignored. The same bits are used in 9-bit differential mode because OFS[15] indicates the sign bit, which maps to D[8]. For 16-bit differential mode, OFS[15:0] are directly subtracted from the conversion result data D[15:0]. In 16-bit single-ended mode, there is no field in the OFS corresponding to the least significant result D[0], so odd values, such as -1 or +1, cannot be subtracted from the result.

OFS is automatically set according to calibration requirements once the self-calibration sequence is done, that is, SC3[CAL] is cleared. The user may write to OFS to override the calibration result if desired. If the OFS is written by the user to a value that is different from the calibration value, the ADC error specifications may not be met. Storing the value generated by the calibration function in memory before overwriting with a user-specified value is recommended.

#### **Note**

There is an effective limit to the values of offset that can be set by the user. If the magnitude of the offset is too high, the results of the conversions will cap off at the limits.

The offset calibration function may be employed by the user to remove application offsets or DC bias values. OFS may be written with a number in 2's complement format and this offset will be subtracted from the result, or hardware averaged value. To add an offset, store the negative offset in 2's complement format and the effect will be an addition. An offset correction that results in an out-of-range value will be forced to the minimum or maximum value. The minimum value for single-ended conversions is 0x0000; for a differential conversion it is 0x8000.

To preserve accuracy, the calibrated offset value initially stored in OFS must be added to the user-defined offset. For applications that may change the offset repeatedly during operation, store the initial offset calibration value in flash so it can be recovered and added to any user offset adjustment value and the sum stored in OFS.

# 11.4.8 Temperature sensor

The ADC module includes a temperature sensor whose output is connected to one of the ADC analog channel inputs.

The following equation provides an approximate transfer function of the temperature sensor.

$$Temp = 25 - ((V_{TEMP} - V_{TEMP25}) \div m)$$

## Equation 2. Approximate transfer function of the temperature sensor

#### where:

- $V_{TEMP}$  is the voltage of the temperature sensor channel at the ambient temperature.
- $\bullet~V_{TEMP25}$  is the voltage of the temperature sensor channel at 25 °C.
- m is referred as temperature sensor slope in the device data sheet. It is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the  $V_{TEMP25}$  and temperature sensor slope values from the ADC Electricals table.

In application code, the user reads the temperature sensor channel, calculates  $V_{TEMP}$ , and compares to  $V_{TEMP25}$ . If  $V_{TEMP}$  is greater than  $V_{TEMP25}$  the cold slope value is applied in the preceding equation. If  $V_{TEMP}$  is less than  $V_{TEMP25}$ , the hot slope value is applied in the preceding equation. ADC Electricals table may only specify one temperature sensor slope value. In that case, the user could use the same slope for the calculation across the operational temperature range.

For more information on using the temperature sensor, see the application note titled *Temperature Sensor for the HCS08 Microcontroller Family* (document AN3031).

## 11.4.9 MCU wait mode operation

Wait mode is a lower-power consumption Standby mode from which recovery is fast because the clock sources remain active.

If a conversion is in progress when the MCU enters Wait mode, it continues until completion. Conversions can be initiated while the MCU is in Wait mode by means of the hardware trigger or if continuous conversions are enabled.

The bus clock, bus clock divided by two; and ADACK are available as conversion clock sources while in Wait mode. The use of ALTCLK as the conversion clock source in Wait is dependent on the definition of ALTCLK for this MCU. See the Chip Configuration information on ALTCLK specific to this MCU.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Wait mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare trigger is not met, the ADC will return to its idle state and cannot wake the MCU from Wait mode unless a new conversion is initiated by the hardware trigger.

# 11.4.10 MCU Normal Stop mode operation

Stop mode is a low-power consumption Standby mode during which most or all clock sources on the MCU are disabled.

## 11.4.10.1 Normal Stop mode with ADACK disabled

If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a stop instruction aborts the current conversion and places the ADC in its Idle state. The contents of the ADC registers, including Rn, are unaffected by Normal Stop mode. After exiting from Normal Stop mode, a software or hardware trigger is required to resume conversions.

## 11.4.10.2 Normal Stop mode with ADACK enabled

If ADACK is selected as the conversion clock, the ADC continues operation during Normal Stop mode. See the chip-specific ADC information for configuration information for this device.

If a conversion is in progress when the MCU enters Normal Stop mode, it continues until completion. Conversions can be initiated while the MCU is in Normal Stop mode by means of the hardware trigger or if continuous conversions are enabled.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Normal Stop mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. The result register, Rn, will contain the data from the first completed conversion that occurred during Normal Stop mode. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare is not true, the ADC will return to its idle state and cannot wake the MCU from Normal Stop mode unless a new conversion is initiated by another hardware trigger.

## 11.5 Initialization information

This section gives an example that provides some basic direction on how to initialize and configure the ADC module.

The user can configure the module for 16-bit, 12-bit, 10-bit, or 8-bit single-ended resolution or 16-bit, 13-bit, 11-bit, or 9-bit differential resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. For information used in this example, refer to Table 11-6, Table 11-7, and Table 11-8.

#### **Note**

Hexadecimal values are designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

## 11.5.1 ADC module initialization example

## 11.5.1.1 Initialization sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is:

- 1. Calibrate the ADC by following the calibration instructions in Calibration function.
- 2. Update CFG to select the input clock source and the divide ratio used to generate ADCK. This register is also used for selecting sample time and low-power configuration.
- 3. Update SC2 to select the conversion trigger, hardware or software, and compare function options, if enabled.
- 4. Update SC3 to select whether conversions will be continuous or completed only once (ADCO) and whether to perform hardware averaging.
- 5. Update SC1:SC1n registers to select whether conversions will be single-ended or differential and to enable or disable conversion complete interrupts. Also, select the input channel which can be used to perform conversions.

## 11.5.1.2 Pseudo-code example

In this example, the ADC module is set up with interrupts enabled to perform a single 10-bit conversion at low-power with a long sample time on input channel 1, where ADCK is derived from the bus clock divided by 1.

## CFG1 = 0x98 (%10011000)

```
Bit 7 ADLPC 1 Configures for low power, lowers maximum clock speed.

Bit 6:5 ADIV 00 Sets the ADCK to the input clock ÷ 1.

Bit 4 ADLSMP 1 Configures for long sample time.

Bit 3:2 MODE 10 Selects the single-ended 10-bit conversion, differential 11-bit conversion.

Bit 1:0 ADICLK 00 Selects the bus clock.
```

KL28Z Reference Manual, Rev. 4, 06/2016

NXP Semiconductors

223

#### **Initialization information**

#### SC2 = 0x00 (%00000000)

```
Bit 7
               ADACT
                                Flag indicates if a conversion is in progress.
       Bit 6
               ADTRG 0
                                Software trigger selected.
       Bit 5
               ACFE
                       0
                               Compare function disabled.
       Bit 4
               ACFGT
                       0
                               Not used in this example.
                      0
       Bit 3
               ACREN
                               Compare range disabled.
Bit 2 DMAEN 0 DMA request disabled.
       Bit 1:0 REFSEL 00
                              Selects default voltage reference pin pair (External pins
V_{REFH} and V_{REFL}).
```

#### SC1A = 0x41 (%01000001)

```
Bit 7 COCO 0 Read-only flag which is set when a conversion completes. Bit 6 AIEN 1 Conversion complete interrupt enabled.

Bit 5 DIFF 0 Single-ended conversion selected.

Bit 4:0 ADCH 00001 Input channel 1 selected as ADC input channel.
```

#### RA = 0xxx

Holds results of conversion.

#### CV = 0xxx

Holds compare value when compare function enabled.

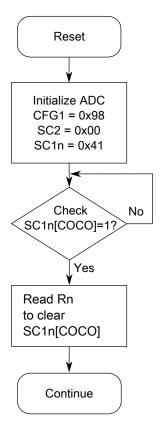



Figure 11-2. Initialization flowchart example

225

# 11.6 Application information

The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an ADC.

For guidance on selecting optimum external component values and converter parameters see AN4373: Cookbook for SAR ADC Measurements.

# 11.6.1 External pins and routing

## 11.6.1.1 Analog supply pins

Depending on the device, the analog power and ground supplies,  $V_{DDA}$  and  $V_{SSA}$ , of the ADC module are available as:

- V<sub>DDA</sub> and V<sub>SSA</sub> available as separate pins—When available on a separate pin, both V<sub>DDA</sub> and V<sub>SSA</sub> must be connected to the same voltage potential as their corresponding MCU digital supply, V<sub>DD</sub> and V<sub>SS</sub>, and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.
- $V_{SSA}$  is shared on the same pin as the MCU digital  $V_{SS}$ .
- V<sub>SSA</sub> and V<sub>DDA</sub> are shared with the MCU digital supply pins—In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the  $V_{SSA}$  pin. This must be the only ground connection between these supplies, if possible.  $V_{SSA}$  makes a good single point ground location.

# 11.6.1.2 Analog voltage reference pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs used by the converter:

- $\bullet$  V<sub>REFSH</sub> is the high reference voltage for the converter.
- V<sub>REESL</sub> is the low reference voltage for the converter.

The ADC can be configured to accept one of two voltage reference pairs for  $V_{REFSH}$  and  $V_{REFSL}$ . Each pair contains a positive reference and a ground reference. The two pairs are external,  $V_{REFH}$  and  $V_{REFL}$  and alternate,  $V_{ALTH}$  and  $V_{ALTL}$ . These voltage references are

#### **Application information**

selected using SC2[REFSEL]. The alternate voltage reference pair,  $V_{ALTH}$  and  $V_{ALTL}$ , may select additional external pins or internal sources based on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

In some packages, the external or alternate pairs are connected in the package to  $V_{DDA}$  and  $V_{SSA}$ , respectively. One of these positive references may be shared on the same pin as  $V_{DDA}$  on some devices. One of these ground references may be shared on the same pin as  $V_{SSA}$  on some devices.

If externally available, the positive reference may be connected to the same potential as  $V_{DDA}$  or may be driven by an external source to a level between the minimum Ref Voltage High and the  $V_{DDA}$  potential. The positive reference must never exceed  $V_{DDA}$ . If externally available, the ground reference must be connected to the same voltage potential as  $V_{SSA}$ . The voltage reference pairs must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the  $V_{REFH}$  and  $V_{REFL}$  loop. The best external component to meet this current demand is a 0.1  $\mu F$  capacitor with good high-frequency characteristics. This capacitor is connected between  $V_{REFH}$  and  $V_{REFL}$  and must be placed as near as possible to the package pins. Resistance in the path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum, that is, parasitic only.

## 11.6.1.3 Analog input pins

The external analog inputs are typically shared with digital I/O pins on MCU devices.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. Use of 0.01  $\mu$ F capacitors with good high-frequency characteristics is sufficient. These capacitors are not necessary in all cases, but when used, they must be placed as near as possible to the package pins and be referenced to  $V_{SSA}$ .

For proper conversion, the input voltage must fall between  $V_{REFH}$  and  $V_{REFL}$ . If the input is equal to or exceeds  $V_{REFH}$ , the converter circuit converts the signal to 0xFFF, which is full scale 12-bit representation, 0x3FF, which is full scale 10-bit representation, or 0xFF, which is full scale 8-bit representation. If the input is equal to or less than  $V_{REFL}$ , the converter circuit converts it to 0x000. Input voltages between  $V_{REFH}$  and  $V_{REFL}$  are straight-line linear conversions. There is a brief current associated with  $V_{REFL}$  when the sampling capacitor is charging.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins must not be transitioning during conversions.

#### 11.6.2 Sources of error

## 11.6.2.1 Sampling error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy.

RAS + RADIN =SC / (FMAX \* NUMTAU \* CADIN)

Figure 11-3. Sampling equation

Where:

RAS = External analog source resistance

SC = Number of ADCK cycles used during sample window

CADIN = Internal ADC input capacitance

 $NUMTAU = -ln(LSBERR / 2^{N})$ 

LSBERR = value of acceptable sampling error in LSBs

N = 8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode or 16 in 16-bit mode

Higher source resistances or higher-accuracy sampling is possible by setting CFG1[ADLSMP] and changing CFG2[ADLSTS] to increase the sample window, or decreasing ADCK frequency to increase sample time.

## 11.6.2.2 Pin leakage error

Leakage on the I/O pins can cause conversion error if the external analog source resistance,  $R_{AS}$ , is high. If this error cannot be tolerated by the application, keep  $R_{AS}$  lower than  $V_{REFH}$  / (4 ×  $I_{LEAK}$  ×  $2^N$ ) for less than 1/4 LSB leakage error, where N=8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode, or 16 in 16-bit mode.

#### 11.6.2.3 Noise-induced errors

System noise that occurs during the sample or conversion process can affect the accuracy of the conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are met:

- There is a 0.1  $\mu$ F low-ESR capacitor from  $V_{REFH}$  to  $V_{REFL}$ .
- There is a 0.1  $\mu$ F low-ESR capacitor from  $V_{DDA}$  to  $V_{SSA}$ .
- If inductive isolation is used from the primary supply, an additional 1  $\mu F$  capacitor is placed from  $V_{DDA}$  to  $V_{SSA}$ .
- V<sub>SSA</sub>, and V<sub>REFL</sub>, if connected, is connected to V<sub>SS</sub> at a quiet point in the ground plane.
- Operate the MCU in Wait or Normal Stop mode before initiating (hardware-triggered conversions) or immediately after initiating (hardware- or software-triggered conversions) the ADC conversion.
  - For software triggered conversions, immediately follow the write to SC1 with a Wait instruction or Stop instruction.
  - For Normal Stop mode operation, select ADACK as the clock source. Operation
    in Normal Stop reduces V<sub>DD</sub> noise but increases effective conversion time due to
    stop recovery.
- There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or excessive  $V_{DD}$  noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in Wait or Normal Stop mode, or I/O activity cannot be halted, the following actions may reduce the effect of noise on the accuracy:

- Place a 0.01  $\mu$ F capacitor (C<sub>AS</sub>) on the selected input channel to V<sub>REFL</sub> or V<sub>SSA</sub>. This improves noise issues, but affects the sample rate based on the external analog source resistance.
- Average the result by converting the analog input many times in succession and dividing the sum of the results. Four samples are required to eliminate the effect of a 1 LSB, one-time error.
- Reduce the effect of synchronous noise by operating off the asynchronous clock, that
  is, ADACK, and averaging. Noise that is synchronous to ADCK cannot be averaged
  out.

## 11.6.2.4 Code width and quantization error

The ADC quantizes the ideal straight-line transfer function into 65536 steps in the 16-bit mode. Each step ideally has the same height, that is, 1 code, and width. The width is defined as the delta between the transition points to one code and the next. The ideal code width for an N-bit converter, where N can be 16, 12, 10, or 8, defined as 1 LSB, is:

$$1LSB=(V_{REFH})/2^N$$

#### Equation 3. Ideal code width for an N-bit converter

There is an inherent quantization error due to the digitization of the result. For 8-bit, 10-bit, or 12-bit conversions, the code transitions when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be  $\pm$  1/2 LSB in 8-bit, 10-bit, or 12-bit modes. As a consequence, however, the code width of the first (0x000) conversion is only 1/2 LSB and the code width of the last (0xFF or 0x3FF) is 1.5 LSB.

For 16-bit conversions, the code transitions only after the full code width is present, so the quantization error is -1 LSB to 0 LSB and the code width of each step is 1 LSB.

# 11.6.2.5 Linearity errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors, but the system designers must be aware of these errors because they affect overall accuracy:

- Zero-scale error ( $E_{ZS}$ ), sometimes called offset: This error is defined as the difference between the actual code width of the first conversion and the ideal code width. This is 1/2 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the first conversion is 0x001, the difference between the actual 0x001 code width and its ideal (1 LSB) is used.
- Full-scale error (E<sub>FS</sub>): This error is defined as the difference between the actual code width of the last conversion and the ideal code width. This is 1.5 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its ideal (1 LSB) is used.
- Differential non-linearity (DNL): This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.

#### **Application information**

- Integral non-linearity (INL): This error is defined as the highest-value or absolute value that the running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total unadjusted error (TUE): This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function and includes all forms of error.

## 11.6.2.6 Code jitter, non-monotonicity, and missing codes

Analog-to-digital converters are susceptible to three special forms of error:

• Code jitter: Code jitter occurs when a given input voltage converts to one of the two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the converter yields the lower code, and viceversa. However, even small amounts of system noise can cause the converter to be indeterminate, between two codes, for a range of input voltages around the transition voltage.

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally, the techniques discussed in Noise-induced errors reduces this error.

- Non-monotonicity: Non-monotonicity occurs when, except for code jitter, the converter converts to a lower code for a higher input voltage.
- Missing codes: Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.

# **Chapter 12 Crossbar Switch Lite (AXBS-Lite)**

#### 12.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The information found here provides information on the layout, configuration, and programming of the crossbar switch.

The crossbar switch connects bus masters and bus slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

## 12.1.1 Features

The crossbar switch includes these features:

- Symmetric crossbar bus switch implementation
  - Allows concurrent accesses from different masters to different slaves
- Up to single-clock 32-bit transfer
- Programmable configuration for fixed-priority or round-robin slave port arbitration (see the chip-specific information).

# 12.2 Memory Map / Register Definition

This crossbar switch is designed for minimal gate count. It, therefore, has no memory-mapped configuration registers.

Please see the chip-specific information for information on whether the arbitration method in the crossbar switch is programmable, and by which module.

# 12.3 Functional Description

# 12.3.1 General operation

When a master accesses the crossbar switch, the access is immediately taken. If the targeted slave port of the access is available, then the access is immediately presented on the slave port. Single-clock or zero-wait-state accesses are possible through the crossbar. If the targeted slave port of the access is busy or parked on a different master port, the requesting master simply sees wait states inserted until the targeted slave port can service the master's request. The latency in servicing the request depends on each master's priority level and the responding slave's access time.

Because the crossbar switch appears to be just another slave to the master device, the master device has no knowledge of whether it actually owns the slave port it is targeting. While the master does not have control of the slave port it is targeting, it simply waits.

After the master has control of the slave port it is targeting, the master remains in control of the slave port until it relinquishes the slave port by running an IDLE cycle or by targeting a different slave port for its next access.

The master can also lose control of the slave port if another higher-priority master makes a request to the slave port.

The crossbar terminates all master IDLE transfers, as opposed to allowing the termination to come from one of the slave buses. Additionally, when no master is requesting access to a slave port, the crossbar drives IDLE transfers onto the slave bus, even though a default master may be granted access to the slave port.

When a slave bus is being idled by the crossbar, it remains parked with the last master to use the slave port. This is done to save the initial clock of arbitration delay that otherwise would be seen if the same master had to arbitrate to gain control of the slave port.

# **Chapter 13 Bit Manipulation Engine2 (BME2)**

#### 13.1 Introduction

The Bit Manipulation Engine with the BME2 definition (BME2) provides hardware support for atomic read-modify-write memory operations to the first 1 Mbyte of slave peripheral address space in Cortex-M based microcontrollers. The second generation BME2 provides similar atomic read-modify-write capabilities to a larger peripheral address space versus the original implementation. The BME terminology is meant to be equivalent to BME2 throughout this chapter.

This architectural capability is also known as "decorated storage" as it defines a mechanism for providing additional semantics for load and store operations to memory-mapped peripherals beyond just the reading and writing of data values to the addressed memory locations. In the BME definition, the "decoration", that is, the additional semantic information, is encoded into the peripheral address used to reference the memory. The BME2 definition supports up to two AIPS bus controllers, each capable of addressing 512 KB of peripheral address space. BME2 supports an 8-bit or less data field width for bit field inserts and extracts, regardless of reference size. All other BME2 operations are exactly the same as the original definition.

By combining the basic load and store instructions of the ARM Cortex-M instruction set architecture (v6M, v7M) with the concept of decorated storage provided by BME, the resulting implementation provides a robust and efficient read-modify-write capability. The resulting architectural capability defined by this core platform function is targeted at the manipulation of n-bit fields in peripheral registers and is consistent with I/O hardware addressing in the Embedded C standard. For most BME commands, a single core read or write bus cycle is converted into an atomic read-modify-write, that is, an indivisible "read followed by a write" bus sequence.

BME decorated references are only available on system bus transactions generated by the processor core and DMA, and targeted at the 1024 KB peripheral address space based at 0x4000\_0000. The decoration semantic is embedded into address bits[28:20], creating a

#### Memory map and register definition

448 MB space at addresses 0x4400 0000–0x5FFF FFFF; these bits are stripped out of the actual address sent to the peripheral bus controller and used by the BME to define and control its operation.

#### **13.1.1 Features**

The key features of the BME2 include:

- Lightweight implementation of decorated storage for selected address spaces
- Additional access semantics encoded into the reference address
- Resides between crossbar switch slave port(s) and their associated peripheral bridge bus controller(s)
- Two-stage pipeline design matching the AHB system bus protocol
- Combinationally passes non-decorated accesses to peripheral bridge bus controllers
- Conversion of decorated loads and stores from processor core into atomic readmodify-writes
- Decorated loads support unsigned bit field extracts, load-and-{set,clear} 1-bit operations
- Decorated stores support bit field inserts, logical AND, OR, and XOR operations
- Support for byte, halfword and word-sized decorated operations
- Supports minimum signal toggling on AHB output bus to reduce power dissipation

## 13.1.2 Modes of operation

The BME modules do not support any special modes of operation. As memory-mapped devices located on crossbar slave AHB system bus ports, BME responds strictly on the basis of memory addresses for accesses to the SRAM\_U and AIPS controllers.

All functionality associated with the BME modules reside in the core platform's clock domain; this includes their connections with the crossbar slave ports, SRAM\_U, and the AIPS controllers.

#### Memory map and register definition 13.2

The BME module provides a memory-mapped capability and does not include any programming model registers.

The exact set of functions supported by the BME are detailed in the Functional description.

KL28Z Reference Manual, Rev. 4, 06/2016 234 **NXP Semiconductors**  The generic BME2 definition supports a 1024 KB address space based at 0x4000\_0000..... The decorated address space is mapped to the 448 MB region located at 0x4400\_0000-0x5FFF\_FFFF.

# 13.3 Functional description

Information found here details the specific functions supported by the BME.

Recall the combination of the basic load and store instructions of the Cortex-M instruction set architecture (v6M, v7M) plus the concept of decorated storage provided by the BME provides a robust and efficient read-modify-write capability. The resulting architectural capability defined by this core platform function is targeted at the manipulation of n-bit fields in peripheral registers and RAM and is consistent with I/O hardware addressing in the Embedded C standard. For most BME commands, a single core read or write bus cycle is converted into an atomic read-modify-write, that is, an indivisible "read followed by a write" bus sequence.

Consider decorated store operations first, then decorated loads.

#### 13.3.1 BME decorated stores

The functions supported by the BME's decorated stores include three logical operators (AND, OR, XOR) plus a bit field insert.

For all these operations, BME converts a single decorated AHB store transaction into a 2-cycle atomic read-modify-write sequence, where the combined read-modify operation is performed in the first AHB data phase, and then the write is performed in the second AHB data phase.

A generic timing diagram of a decorated store showing a peripheral bit field insert operation is shown as follows:

#### **Functional description**

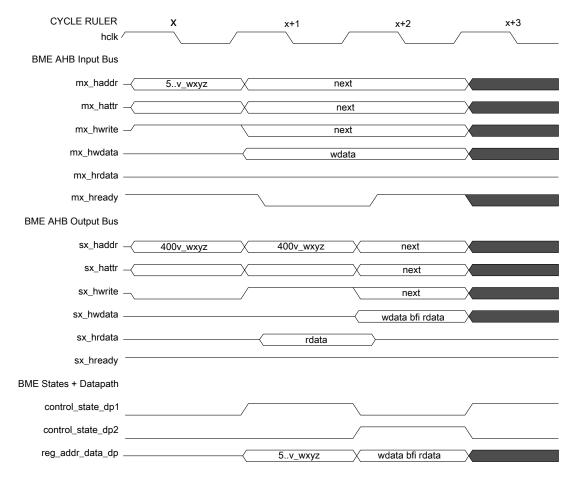



Figure 13-1. Decorated store: bit field insert timing diagram

All the decorated store operations follow the same execution template shown in Figure 13-1, a two-cycle read-modify-write operation:

- 1. Cycle x, 1st AHB address phase: Write from input bus is translated into a read operation on the output bus using the actual memory address (with the decoration removed) and then captured in a register.
- 2. Cycle x+1, 2nd AHB address phase: Write access with the registered (but actual) memory address is output
- 3. Cycle x+1, 1st AHB data phase: Memory read data is modified using the input bus write data and the function defined by the decoration and captured in a data register; the input bus cycle is stalled.
- 4. Cycle x+2, 2nd AHB data phase: Registered write data is sourced onto the output write data bus.

#### NOTE

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

## 13.3.1.1 Decorated store logical AND (AND)

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read;
- 2. It is then modified by performing a logical AND operation using the write data operand sourced for the system bus cycle
- 3. Finally, the result of the AND operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19       | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11  | 10  | 9   | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|----|-----|-----|-----|---|---|---|---|---|---|---|---|---|
| ioandb | 0  | 1  | 0  | 0  | 0  | 1  | -  | 1  | -  | -  | -  | -  |          |    |    |    |    |    |    | r  | nen | n_a | ddr |   |   |   |   |   |   |   |   |   |
| ioandh | 0  | 1  | 0  | 0  | 0  | 1  | 1  | 1  | -  | -  | 1  | -  | mem_addr |    |    |    |    |    |    | 0  |     |     |     |   |   |   |   |   |   |   |   |   |
| ioandw | 0  | 1  | 0  | 0  | 0  | 1  | -  | 1  | -  | -  | ,  | -  |          |    |    |    |    |    |    | r  | nen | n_a | ddr |   |   |   |   |   |   |   | 0 | 0 |
|        |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |    |    |    |    |     |     |     |   |   |   |   |   |   |   |   |   |

Figure 13-2. Decorated store address: logical AND

See Figure 13-2 where addr[30:29] = 10 for peripheral, addr[28:26] = 001 specifies the AND operation, and mem\_addr[19:0] specifies the address offset into the space based at a 0x4000\_0000 for peripherals. The "-" indicates an address bit "don't care".

The decorated AND write operation is defined in the following pseudo-code as:

where the operand size <sz> is defined as b(yte, 8-bit), h(alfword, 16-bit) and w(ord, 32-bit). This notation is used throughout the document.

In the cycle definition tables, the notations AHB\_ap and AHB\_dp refer to the address and data phases of the BME AHB transaction. The cycle-by-cycle BME operations are detailed in the following table.

| Pipeline stage |                                                       | Cycle                                                  |               |
|----------------|-------------------------------------------------------|--------------------------------------------------------|---------------|
|                | х                                                     | x+1                                                    | x+2           |
| BME AHB_ap     | Forward addr to memory;<br>Decode decoration; Convert | Recirculate captured addr + attr to memory as slave_wt | <next></next> |

Table 13-1. Cycle definitions of decorated store: logical AND

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 13-1. Cycle definitions of decorated store: logical AND (continued)

| Pipeline stage |                                                       | Cycle                                                                              |                                                 |
|----------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|
|                | х                                                     | x+1                                                                                | x+2                                             |
|                | master_wt to slave_rd;<br>Capture address, attributes |                                                                                    |                                                 |
| BME AHB_dp     | <pre><previous></previous></pre>                      | Perform memory read; Form (rdata & wdata) and capture destination data in register | Perform write sending registered data to memory |

#### Decorated store logical OR (OR) 13.3.1.2

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read.
- 2. It is then modified by performing a logical OR operation using the write data operand sourced for the system bus cycle.
- 3. Finally, the result of the OR operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

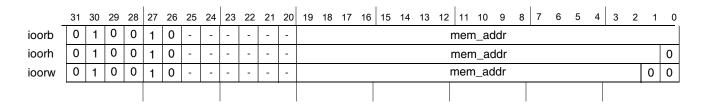



Figure 13-3. Decorated address store: logical OR

See Figure 13-3, where addr[30:29] =10 for peripheral, addr[28:26] = 010 specifies the OR operation, and mem\_addr[19:0] specifies the address offset into the space based at a 0x4000\_0000 for peripherals. The "-" indicates an address bit "don't care".

The decorated OR write operation is defined in the following pseudo-code as:

```
ioor<sz>(accessAddress, wdata)
                                                // decorated store OR
      = mem[accessAddress & 0xE00FFFFF, size]
                                                // memory read
     = tmp | wdata
                                                // modify
mem[accessAddress & 0xE00FFFFF, size] = tmp
                                                // memory write
```

The cycle-by-cycle BME operations are detailed in the following table.

| Pipeline stage |                                                                                                       | Cycle                                                  |                                                 |
|----------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
|                | х                                                                                                     | x+1                                                    | x+2                                             |
| BME AHB_ap     | Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes | Recirculate captured addr + attr to memory as slave_wt | <next></next>                                   |
| BME AHB_dp     | <pre><previous></previous></pre>                                                                      | Perform memory read; Form (rdata   wdata) and capture  | Perform write sending registered data to memory |

destination data in register

Table 13-2. Cycle definitions of decorated store: logical OR

## 13.3.1.3 Decorated store logical XOR (XOR)

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read.
- 2. It is then modified by performing a logical XOR (exclusive-OR) operation using the write data operand sourced for the system bus cycle.
- 3. Finally, the result of the XOR operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

|        | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19         | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11  | 10  | 9   | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|----|-----|-----|-----|---|---|---|---|---|---|---|---|---|
| ioxorb | 0  | 1  | 0  | 0  | 1  | 1  | -  | 1  | -  | -  | -  | -  |            |    |    |    | -  |    |    | ı  | ner | n_a | ddr |   | • |   |   |   |   |   |   |   |
| ioxorh | 0  | 1  | 0  | 0  | 1  | 1  | -  | -  | -  | -  | -  | -  | mem_addr 0 |    |    |    |    |    |    | 0  |     |     |     |   |   |   |   |   |   |   |   |   |
| ioxorw | 0  | 1  | 0  | 0  | 1  | 1  | -  | 1  | -  | -  | -  | -  | mem_addr 0 |    |    |    |    |    | 0  | 0  |     |     |     |   |   |   |   |   |   |   |   |   |
|        |    |    |    |    |    |    |    |    |    |    |    |    |            |    |    |    |    |    |    |    |     |     |     |   |   |   |   |   |   | • |   |   |

Figure 13-4. Decorated address store: logical XOR

See Figure 13-4, where addr[30:29] = 10 for peripheral, addr[28:26] = 011 specifies the XOR operation, and mem\_addr[19:0] specifies the address offset into the peripheral space based at a  $0x4000\_0000$  for peripherals. The "-" indicates an address bit "don't care".

The decorated XOR write operation is defined in the following pseudo-code as:

The cycle-by-cycle BME operations are detailed in the following table.

KL28Z Reference Manual, Rev. 4, 06/2016

**Functional description** 

Table 13-3. Cycle definitions of decorated store: logical XOR

| Pipeline Stage |                                                                                                       | Cycle                                                                              |                                                 |
|----------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|
|                | х                                                                                                     | x+1                                                                                | x+2                                             |
| BME AHB_ap     | Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes | Recirculate captured addr + attr to memory as slave_wt                             | <next></next>                                   |
| BME AHB_dp     | <pre><pre><pre><pre></pre></pre></pre></pre>                                                          | Perform memory read; Form (rdata ^ wdata) and capture destination data in register | Perform write sending registered data to memory |

## 13.3.1.4 Decorated store bit field insert (BFI)

This command inserts a bit field contained in the write data operand, defined by LSB position (b) and the bit field width (w+1), into the memory "container" defined by the access size associated with the store instruction using an atomic read-modify-write sequence.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). For BME2, the data field width (addr[22:20]) for bit field inserts and extracts is limited to an 8-bit or less value, regardless of reference size.

#### NOTE

The maximum bit field width is 8 bits. The core performs the required write data lane replication on byte and halfword transfers.

The BFI operation can be used to insert a single bit into a peripheral. For this case, the w field is simply set to 0, indicating a bit field width of 1.

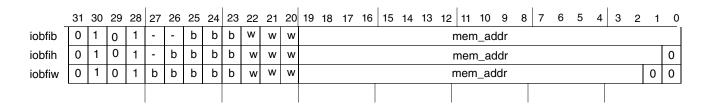



Figure 13-5. Decorated address store: bit field insert

where addr[30:29] =10 for peripheral, addr[28] = 1 signals a BFI operation, addr[27:23] is "b", the LSB identifier, addr[22:20] is "w", the bit field width minus 1 identifier, and addr[19:0] specifies the address offset into the peripheral space based at 0x4000\_0000. The "-" indicates an address bit "don't care".

The decorated BFI write operation is defined in the following pseudo-code as:

The write data operand (wdata) associated with the store instruction contains the bit field to be inserted. It must be properly aligned within the right-aligned container, that is, within the lower 8 bits for a byte operation, the lower 16 bits for a halfword, or the entire 32 bits for a word operation.

To illustrate, consider the following example of the insertion of the 3-bit field "xyz" into an 8-bit memory container, initially set to "abcd\_efgh". For all cases, w is 2, signaling a bit field width of 3.

```
if b = 0 and the decorated store (strb) Rt register[7:0] = ---- -xyz,
  then destination is "abcd exyz"
if b = 1 and the decorated store (strb) Rt register[7:0] = ---- xyz-,
  then destination is "abcd xyzh"
if b = 2 and the decorated store (strb) Rt register[7:0] = ---x yz--,
  then destination is "abcx yzgh"
if b = 3 and the decorated store (strb) Rt register[7:0] = --xy z---,
  then destination is "abxy_zfgh"
if b = 4 and the decorated store (strb) Rt register[7:0] = -xyz ----,
  then destination is "axyz efgh"
if b = 5 and the decorated store (strb) Rt register[7:0] = xyz-_---,
  then destination is "xyzd_efgh"
if b = 6 and the decorated store (strb) Rt register[7:0] = yz-- ----,
  then destination is "yzcd efgh"
if b = 7 and the decorated store (strb) Rt register[7:0] = z------,
   then destination is "zbcd efgh"
```

Note from the example, when the starting bit position plus the field width exceeds the container size, only part of the source bit field is inserted into the destination memory location. Stated differently, if  $(b + w+1) > \text{container\_width}$ , only the low-order "container\\_width - b" bits are actually inserted.

The cycle-by-cycle BME operations are detailed in the following table.

Pipeline stage Cycle x+2 BME AHB ap Forward addr to memory: Recirculate captured addr + <next> Decode decoration; Convert attr to memory as slave\_wt master\_wt to slave\_rd; Capture address, attributes BME AHB\_dp ous> Perform memory read; Form Perform write sending bit mask; Form bitwise registered data to memory ((mask) ? wdata : rdata)) and capture destination data in register

Table 13-4. Cycle definitions of decorated store: bit field insert

KL28Z Reference Manual, Rev. 4, 06/2016

#### 13.3.2 BME decorated loads

The functions supported by the BME's decorated loads include two single-bit load-and-{set, clear} operators plus unsigned bit field extracts.

For the two load-and-{set, clear} operations, BME converts a single decorated AHB load transaction into a two-cycle atomic read-modify-write sequence, where the combined read-modify operations are performed in the first AHB data phase, and then the write is performed in the second AHB data phase as the original read data is returned to the processor core. For an unsigned bit field extract, the decorated load transaction is stalled for one cycle in the BME as the data field is extracted, then aligned and returned to the processor in the second AHB data phase. This is the only decorated transaction that is not an atomic read-modify-write, as it is a simple data read.

A generic timing diagram of a decorated load showing a peripheral load-and-set 1-bit operation is shown as follows.

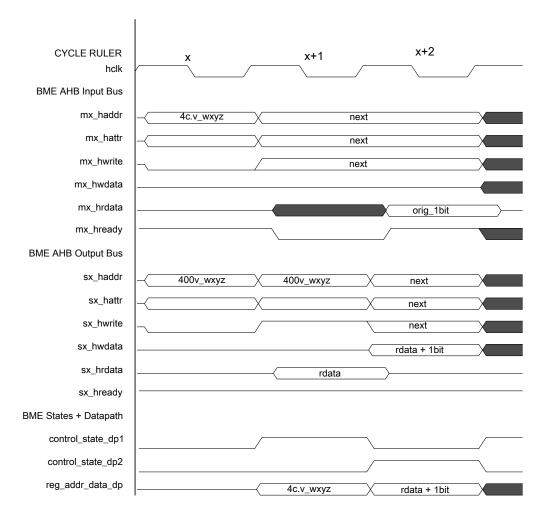



Figure 13-6. Decorated load: load-and-set 1-bit field insert timing diagram

Decorated load-and-{set, clear} 1-bit operations follow the execution template shown in the above figure: a 2-cycle read-modify-write operation:

- 1. Cycle x, first AHB address phase: Read from input bus is translated into a read operation on the output bus with the actual memory address (with the decoration removed) and then captured in a register
- 2. Cycle x+1, second AHB address phase: Write access with the registered (but actual) memory address is output
- 3. Cycle x+1, first AHB data phase: The "original" 1-bit memory read data is captured in a register, while the 1-bit field is set or clear based on the function defined by the decoration with the modified data captured in a register; the input bus cycle is stalled
- 4. Cycle x+2, second AHB data phase: The selected original 1-bit is right-justified, zero-filled and then driven onto the input read data bus, while the registered write data is sourced onto the output write data bus

#### **NOTE**

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

A generic timing diagram of a decorated load showing an unsigned peripheral bit field operation is shown in the following figure.

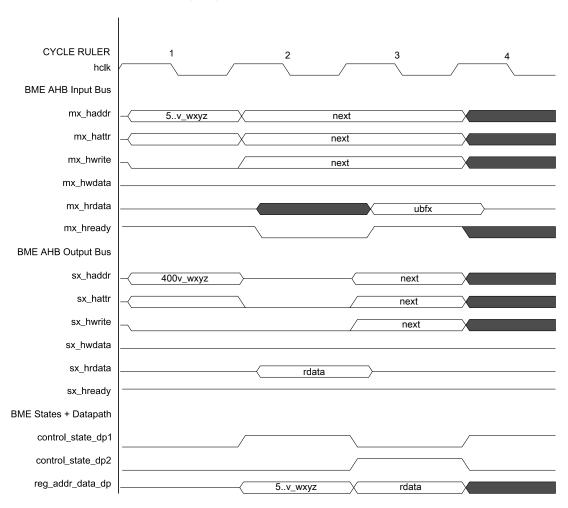



Figure 13-7. Decorated load: unsigned bit field insert timing diagram

The decorated unsigned bit field extract follows the same execution template shown in the above figure, a 2-cycle read operation:

- Cycle x, 1st AHB address phase: Read from input bus is translated into a read operation on the output bus with the actual memory address (with the decoration removed) and then captured in a register
- Cycle x+1, 2nd AHB address phase: Idle cycle

- Cycle x+1, 1st AHB data phase: A bit mask is generated based on the starting bit position and the field width; the mask is AND'ed with the memory read data to isolate the bit field; the resulting data is captured in a data register; the input bus cycle is stalled
- Cycle x+2, 2nd AHB data phase: Registered data is logically right-aligned for proper alignment and driven onto the input read data bus

#### NOTE

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

## 13.3.2.1 Decorated load: load-and-clear 1 bit (LAC1)

This command loads a 1-bit field defined by the LSB position (b) into the core's general purpose destination register (Rt) and zeroes the bit in the memory space after performing an atomic read-modify-write sequence.

The extracted 1-bit data field from the memory address is right-justified and zero-filled in the operand returned to the core.

The data size is specified by the read operation and can be byte (8-bit), halfword (16-bit) or word (32-bit).

|         | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18         | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10  | 9   | 8  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|----|-----|-----|----|---|---|---|---|---|---|---|---|
| ol ac1b | 0  | 1  | 0  | 0  | 1  | 0  | -  | -  | b  | b  | b  | -  |    |            |    |    |    |    |    |    | m  | em. | _ad | dr |   |   |   |   |   |   |   |   |
| ol ac1h | 0  | 1  | 0  | 0  | 1  | 0  | -  | b  | b  | b  | b  | -  |    | mem_addr 0 |    |    |    |    |    |    | 0  |     |     |    |   |   |   |   |   |   |   |   |
| ol ac1w | 0  | 1  | 0  | 0  | 1  | 0  | b  | b  | b  | b  | b  | -  |    | mem_addr ( |    |    |    |    |    | 0  | 0  |     |     |    |   |   |   |   |   |   |   |   |
| ,       |    |    |    |    |    |    |    |    |    |    | •  |    |    |            |    |    |    |    |    |    |    |     |     |    |   |   |   |   |   |   |   |   |

Figure 13-8. Decorated load address: load-and-clear 1 bit

See Figure 13-8 where addr[30:29] = 01 for SRAM\_U, addr[30:29] = 10 for peripherals, addr[28:26] = 010 specifies the load-and-clear 1 bit operation, addr[25:21] is "b", the bit identifier, and mem\_addr[19:0] specifies the address offset into the space based at 0x2000\_0000 for SRAM\_U, and 0x4000\_0000 for peripherals. The "-" indicates an address bit "don't care".

The decorated load-and-clear 1-bit read operation is defined in the following pseudo-code as:

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

```
= tmp & ~mask
                                                // modify
mem[accessAddress & 0xE00FFFFF, size] = tmp
                                                // memory write
```

The cycle-by-cycle BME operations are detailed in the following table.

Table 13-5. Cycle definitions of decorated load: load-and-clear 1 bit

| Pipeline Stage |                                                                              | Cycle                                                                                                                                 |                                                                                       |
|----------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                | х                                                                            | x+1                                                                                                                                   | x+2                                                                                   |
| BME AHB_ap     | Forward addr to memory;<br>Decode decoration; Capture<br>address, attributes | Recirculate captured addr + attr to memory as slave_wt                                                                                | <next></next>                                                                         |
| BME AHB_dp     | <pre><previous></previous></pre>                                             | Perform memory read; Form<br>bit mask; Extract bit from<br>rdata; Form (rdata & ~mask)<br>and capture destination data<br>in register | Return extracted bit to master;<br>Perform write sending<br>registered data to memory |

#### Decorated Load: Load-and-Set 1 Bit (LAS1) 13.3.2.2

This command loads a 1-bit field defined by the LSB position (b) into the core's general purpose destination register (Rt) and sets the bit in the memory space after performing an atomic read-modify-write sequence.

The extracted one bit data field from the memory address is right justified and zero filled in the operand returned to the core.

The data size is specified by the read operation and can be byte (8-bit), halfword (16-bit) or word (32-bit).

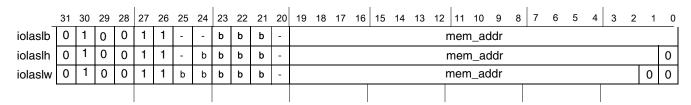



Figure 13-9. Decorated load address: load-and-set 1 bit

where addr[30:29] = 01 for  $SRAM_U$ , addr[30:29] = 10 for peripherals, addr[28:26] = 10011 specifies the load-and-set 1 bit operation, addr[25:21] is "b", the bit identifier, and mem addr[19:0] specifies the address offset into the space based at 0x2000 0000 for SRAM\_U, and 0x4000\_0000 for peripherals. The "-" indicates an address bit "don't care".

The decorated Load-and-Set 1 Bit read operation is defined in the following pseudo-code as:

KL28Z Reference Manual, Rev. 4, 06/2016 246 NXP Semiconductors

#### Chapter 13 Bit Manipulation Engine2 (BME2)

247

The cycle-by-cycle BME operations are detailed in the following table.

Table 13-6. Cycle definitions of decorated load: load-and-set 1-bit

| Pipeline Stage |                                                                              | Cycle                                                                                                                                |                                                                                       |
|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                | х                                                                            | x+1                                                                                                                                  | x+2                                                                                   |
| BME AHB_ap     | Forward addr to memory;<br>Decode decoration; Capture<br>address, attributes | Recirculate captured addr + attr to memory as slave_wt                                                                               | <next></next>                                                                         |
| BME AHB_dp     | <pre><previous></previous></pre>                                             | Perform memory read; Form<br>bit mask; Extract bit from<br>rdata; Form (rdata I mask)<br>and capture destination data<br>in register | Return extracted bit to master;<br>Perform write sending<br>registered data to memory |

# 13.3.2.3 Decorated load unsigned bit field extract (UBFX)

This command extracts a bit field defined by LSB position (b) and the bit field width (w +1) from the memory "container" defined by the access size associated with the load instruction using a two-cycle read sequence.

The extracted bit field from the memory address is right-justified and zero-filled in the operand returned to the core. Recall this is the only decorated operation that does not perform a memory write, that is, UBFX only performs a read.

The data size is specified by the read operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The maximum bit field width is 8 bits, regardless of reference size.

The use of a UBFX operation is recommended to extract a single bit. For this case, the w field is simply set to 0, indicating a bit field width of 1.

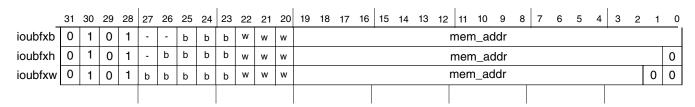



Figure 13-10. Decorated load address: unsigned bit field extract

#### Application information

See Figure 13-10, where addr[30:29] = 10 for peripherals, addr[28] = 1 specifies the unsigned bit field extract operation, addr[27:23] is "b", the LSB identifier, addr[22:20] is "w", the bit field width minus 1 identifier, and mem\_addr[19:0] specifies the address offset into the space based at  $0x4000\_0000$  for peripherals. The "-" indicates an address bit "don't care".

The decorated unsigned bit field extract read operation is defined in the following pseudo-code as:

Like the BFI operation, when the starting bit position plus the field width exceeds the container size, only part of the source bit field is extracted from the destination memory location. Stated differently, if  $(b + w+1) > \text{container\_width}$ , only the low-order "container\\_width - b" bits are actually extracted. The cycle-by-cycle BME operations are detailed in the following table.

| Pipeline Stage |                                                                              | Cycle                                                                                                     |                                                                         |
|----------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                | х                                                                            | x+1                                                                                                       | x+2                                                                     |
| BME AHB_ap     | Forward addr to memory;<br>Decode decoration; Capture<br>address, attributes | Idle AHB address phase                                                                                    | <next></next>                                                           |
| BME AHB_dp     | <pre><previous></previous></pre>                                             | Perform memory read; Form<br>bit mask; Form (rdata & mask)<br>and capture destination data<br>in register | Logically right shift registered data; Return justified rdata to master |

Table 13-7. Cycle definitions of decorated load: unsigned bit field extract

# 13.4 Application information

In this section, GNU assembler macros with C expression operands are presented as examples of the required instructions to perform decorated operations.

This section specifically presents a partial bme.h file defining the assembly language expressions for decorated logical stores: AND, OR, and XOR. Comparable functions for BFI and the decorated loads are more complex and available in the complete BME header file.

These macros use the same function names presented in Functional description.

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 13 Bit Manipulation Engine2 (BME2)

```
r2, %[wdata];"
r2, [r3];"
          "mov
          "str
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOANDH(ADDR,WDATA)
    __asm("ldr r3, =(1<<26);"
                 r3, %[addr];"
          "orr
                 r2, %[wdata];"
          "mov
          "mov 12, %[waac, strh r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOANDB(ADDR, WDATA)
   _{--}asm("ldr r3, =(1<<26);"
                 r3, %[addr];"
          "orr
          "mov r2, %[wdata];"
"strb r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOORW(ADDR,WDATA)
    _{asm("ldr r3, =(1<<27);"}
                 r3, %[addr];"
r2, %[wdata];"
          "orr
          "mov
          "str
                  r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOORH(ADDR,WDATA)
    __asm("ldr
               r3, =(1<<27);"
          "orr
                  r3, %[addr];"
                 r2, %[wdata];"
          "mov
          "strh r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOORB(ADDR, WDATA)
    __asm("ldr r3, =(1<<27);"
                 r3, %[addr];"
          "orr
          "mov
                r2, %[wdata];"
          "strb r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORW(ADDR,WDATA)
    __asm("ldr
                r3, = (3 << 26);"
          "orr
                  r3, %[addr];"
                 r2, %[wdata];"
          "mov
          "str
                 r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORH(ADDR, WDATA)
    __asm("ldr r3, =(3<<26);"
                  r3, %[addr];"
          "orr
                 r2, %[wdata];"
          "strh
                 r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORB(ADDR, WDATA)
    _{asm("ldr} r3, = (3 << 26);"
          "orr
                 r3, %[addr];"
          "mov
                 r2, %[wdata];"
          "strb
                 r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
```

**Application information** 

# **Chapter 14 Kinetis ROM Bootloader**

# 14.1 Chip-Specific Information

## 14.1.1 Kinetis Bootloader Peripheral Pinmux

This device has various peripherals (LPUART, LPI2C, LPSPI, USB) supported by the Kinetis ROM Bootloader. To use an interface for bootloader communications, the peripheral must be enabled in the BCA, as shown in The Kinetis Bootloader Configuration Area (BCA). If the BCA is invalid (such as all 0xFF bytes), then all peripherals will be enabled by default. The next table shows the pads used by the Kinetis ROM Bootloader.

Table 14-1. Kinetis Bootloader Peripheral Pinmux

| Peripheral | Instance                                                                    | Alt Mode | Pins             |
|------------|-----------------------------------------------------------------------------|----------|------------------|
| LPUART     | 0                                                                           | 2        | PTA1, LPUART0_RX |
|            |                                                                             |          | PTA2, LPUART0_TX |
|            | 1                                                                           | 3        | PTC3, LPUART1_RX |
|            |                                                                             |          | PTC4, LPUART1_TX |
|            | 2                                                                           | 3        | PTD2, LPUART2_RX |
|            |                                                                             |          | PTD3, LPUART2_TX |
| I2C        | 0                                                                           | 5        | PTE24, I2C0_SCL  |
|            |                                                                             |          | PTE25, I2C0_SDA  |
|            | 1                                                                           | 6        | PTE1, I2C1_SCL   |
|            |                                                                             |          | PTE0, I2C1_SDA   |
|            | 2                                                                           | 5        | PTA12, I2C2_SCL  |
|            | (I2C instance 2 is only<br>available on 121 XFBGA<br>package <sup>1</sup> ) |          | PTA11, I2C2_SDA  |
| SPI        | 0                                                                           | 2        | PTA14, SPI0_PCS0 |
|            |                                                                             |          | PTA15, SPI0_SCK  |

Table continues on the next page...

| Table 14-1. Kinetis Bootlo | oader Peripheral | Pinmux | (continued) | ) |
|----------------------------|------------------|--------|-------------|---|
|----------------------------|------------------|--------|-------------|---|

| Peripheral | Instance       | Alt Mode | Pins             |
|------------|----------------|----------|------------------|
|            |                |          | PTA16, SPI0_MOSI |
|            |                |          | PTA17, SPI0_MISO |
|            | 1              | 2        | PTD4, SPI1_PCS0  |
|            |                |          | PTD5, SPI1_SCK   |
|            |                |          | PTD6, SPI1_MOSI  |
|            |                |          | PTD7, SPI1_MISO  |
|            | 2 <sup>2</sup> | 2        | PTB20, SPI2_PCS0 |
|            |                |          | PTB21, SPI2_SCK  |
|            |                |          | PTB22, SPI2_MOSI |
|            |                |          | PTB23, SPI2_MISO |
| USB        | 0              | 0        | USB0_DP          |
|            |                |          | USB0_DM          |

<sup>1.</sup> The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details.

# 14.1.2 Bootloader Memory Access

While executing, the Kinetis Bootloader uses the following address ranges in ROM and RAM memory:

- 0x1C00\_0000 0x1C00\_7FFF (ROM)
- 0x1FFF\_A000 0x1FFF\_B5C7 (RAM)

## 14.2 Introduction

The Kinetis bootloader is the program residing in the on-chip read-only memory (ROM) of a Kinetis microcontroller device. There is hardware logic in place at boot time that either starts execution of an embedded image available on the internal flash memory, or starts the execution of the Kinetis Bootloader from on-chip ROM.

The Kinetis Bootloader's main task is to provision the internal flash memory with an embedded firmware image during manufacturing, or at any time during the life of the Kinetis device. The Kinetis Bootloader does the provisioning by acting as a slave device, and listening to various peripheral ports where a master can start communication.

For the Kinetis device, the Kinetis Bootloader can interface with USB, LPI2C, LPSPI, and LPUART peripherals in slave mode and respond to the commands sent by a master (or host) communicating on one of those ports. The host/master can be a firmware-

<sup>2.</sup> SPI instances 0 and 2 are only available on 121 XFBGA and 100 LQFP packages.

download application running on a PC or an embedded host communicating with the Kinetis Bootloader. Regardless of the host/master (PC or embedded host), the Kinetis Bootloader always uses a command protocol to communicate with that host/master. Commands are provided to write to memory (internal flash or RAM), erase flash, and get/set bootloader options and property values. The host application can query the set of available commands.

On start-up, the bootloader reads optional configuration parameters from a fixed area on flash called the bootloader configuration area (BCA). These parameters can be modified by the write memory command or by downloaded flash image. BCA parameters include configuration data such as enabled peripherals, peripheral-specific settings, etc.

This chapter describes Kinetis Bootloader features, functionality, command structure and which peripherals are supported.

Features supported by the Kinetis Bootloader in Kinetis ROM:

- Supports USB, LPI2C, LPSPI, and LPUART peripheral interfaces
- Automatic detection of the active peripheral
- Ability to disable any peripheral
- LPUART peripheral implements autobaud
- Common packet-based protocol for all peripherals
- Packet error detection and retransmission
- Flash-resident configuration options
- Fully supports internal flash security, including ability to mass erase or unlock security via the backdoor key
- Protection of RAM used by the bootloader while it is running
- Provides command to read properties of the device, such as flash and RAM size
- Multiple options for executing the bootloader either at system start-up or under application control at runtime
- Supports internal flash
- Supports encrypted image download

Table 14-2. Commands supported by the Kinetis Bootloader in ROM

| Command          | Description                                                            | When flash security is enabled, then this command is |
|------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Call             | Runs user application code and returns control to bootloader           | Not supported                                        |
| Execute          | Run user application code that never returns control to the bootloader | Not supported                                        |
| FillMemory       | Fill a range of bytes in flash with a word pattern                     | Not supported                                        |
| FlashEraseAll    | Erase the entire flash array                                           | Not supported                                        |
| FlashEraseRegion | Erase a range of sectors in flash                                      | Not supported                                        |

Table continues on the next page...

Table 14-2. Commands supported by the Kinetis Bootloader in ROM (continued)

| Command               | Description                                                                                        | When flash security is enabled, then this command is                                                |
|-----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| WriteMemory           | Write data to memory                                                                               | Not supported                                                                                       |
| ReadMemory            | Read data from memory                                                                              | Not supported                                                                                       |
| FlashProgramOnce      | Writes data provided in a command packet to a specified range of bytes in the program once field   | Not supported                                                                                       |
| FlashReadOnce         | Returns the contents of the program once field by given index and byte count                       | Not supported                                                                                       |
| FlashReadResource     | Returns the contents of the IFR field or Flash firmware ID, by given offset, byte count and option | Not supported                                                                                       |
| FlashSecurityDisable  | Attempt to unlock flash security using the backdoor key                                            | Supported                                                                                           |
| GetProperty           | Get the current value of a property                                                                | Supported                                                                                           |
| ReceiveSbFile         | Receive an SB file (which is generated by the elftosb tool)                                        | Supported if the SB file is encrypted. See the SB File Decryption Support section for more details. |
| Reset                 | Reset the chip                                                                                     | Supported                                                                                           |
| SetProperty           | Attempt to modify a writable property                                                              | Supported                                                                                           |
| FlashEraseAllUnsecure | Erase the entire flash array, including protected sectors                                          | Supported                                                                                           |

# 14.3 Functional Description

The following sub-sections describe the Kinetis Bootloader in ROM functionality.

# 14.3.1 Memory Maps

While executing, the Kinetis Bootloader uses ROM and RAM memory.

255

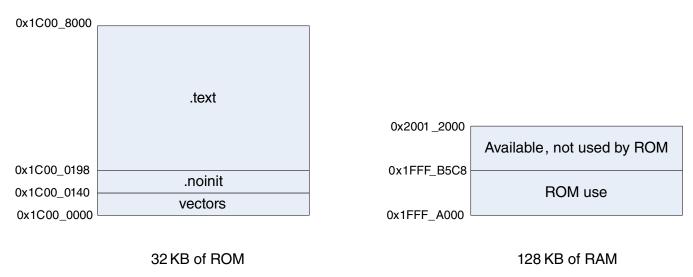



Figure 14-1. Kinetis Bootloader ROM/RAM Memory Maps

# 14.3.2 The Kinetis Bootloader Configuration Area (BCA)

The Kinetis Bootloader reads data from the Bootloader Configuration Area (BCA) to configure various features of the bootloader. The BCA resides in flash memory at offset 0x3C0, and provides all of the parameters needed to configure the Kinetis Bootloader operation. For uninitialized flash, the Kinetis Bootloader uses a predefined default configuration. A host application can use the Kinetis Bootloader to program the BCA for use during subsequent initializations of the bootloader.

Table 14-3. Configuration Fields for the Kinetis Bootloader

| Offset      | Size (bytes) | Configuration Field | Description                                                                                                                                                                              |
|-------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00 - 0x03 | 4            | tag                 | Magic number to verify bootloader configuration is valid. Must be set to 'kcfg'.                                                                                                         |
| 0x04 - 0x07 | 4            | crcStartAddress     | Start address for application image CRC check. To generate the CRC, refer to the CRC chapter. If the bits are all set then Kinetis bootloader by default will not perform any CRC check. |
| 0x08 - 0x0B | 4            | crcByteCount        | Byte count for application image CRC check. If the bits are all set then Kinetis bootloader by default will not perform any CRC check.                                                   |
| 0x0C - 0x0F | 4            | crcExpectedValue    | Expected CRC value for application CRC check. If the bits are all set then Kinetis bootloader by default will not perform any CRC check.                                                 |
| 0x10        | 1            | enabledPeripherals  | Bitfield of peripherals to enable.                                                                                                                                                       |

Table continues on the next page...

Table 14-3. Configuration Fields for the Kinetis Bootloader (continued)

| Offset      | Size (bytes) | Configuration Field         | Description                                                                                                                                                                             |
|-------------|--------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oliser      | Jize (bytes) | John Suration Fleid         | bit 0 LPUART                                                                                                                                                                            |
|             |              |                             | bit 1 LPI2C                                                                                                                                                                             |
|             |              |                             | bit 2 LPSPI                                                                                                                                                                             |
|             |              |                             | bit 4 USB                                                                                                                                                                               |
|             |              |                             | Kinetis bootloader will enable the peripheral if corresponding bit is set to 1.                                                                                                         |
| 0x11        | 1            | i2cSlaveAddress             | If not 0xFF, used as the 7-bit I2C slave address. If 0xFF, defaults to 0x10 for I2C slave address                                                                                       |
| 0x12 - 0x13 | 2            | peripheralDetectionTimeout  | Timeout in milliseconds for active peripheral detection. If 0xFFFF, defaults to 5 seconds.                                                                                              |
| 0x14 - 0x15 | 2            | usbVid                      | Sets the USB Vendor ID reported by the device during enumeration. If 0xFFFF, it defaults to 0x15A2.                                                                                     |
| 0x16 - 0x17 | 2            | usbPid                      | Sets the USB Product ID reported by the device during enumeration.                                                                                                                      |
| 0x18 - 0x1B | 4            | usbStringsPointer           | Sets the USB Strings reported by the device during enumeration. Default string values are described in the USB peripheral section.                                                      |
| 0x1C        | 1            | clockFlags                  | See Table 14-5, clockFlags<br>Configuration Field                                                                                                                                       |
| 0x1D        | 1            | clockDivider                | Inverted value of the divider to use for core and bus clocks when in high speed mode                                                                                                    |
| 0x1F        | 1            | pad byte                    | N/A                                                                                                                                                                                     |
| 0x20        | 4            | MMCAU configuration pointer | A pointer to the MMCAU configuration structure in memory. See the encryption section for details.                                                                                       |
| 0x24        | 4            | Reserved                    | -                                                                                                                                                                                       |
| 0x29        | 7            | Reserved                    | -                                                                                                                                                                                       |
| 0x28        | 1            | qspiPort                    | Selects the default QSPI port:  • If bit 0 is cleared, then the bootloader will choose PORTC as the default QSPI port.  • If bit 0 is not cleared, then the default QSPI port is PORTE. |
| 0x30        | 4            | Reserved                    | -                                                                                                                                                                                       |
| 0x34        | 12           | Reserved                    | -                                                                                                                                                                                       |

#### **NOTE**

The flash sector containing the BCA should not be located in the execute-only region, because the Kinetis bootloader cannot read an execute-only region.

The first configuration field 'tag' is a tag value or magic number. The tag value must be set to 'kcfg' for the bootloader configuration data to be recognized as valid. If tag-field verification fails, then the Kinetis Bootloader assumes that the flash is not initialized and uses a predefined default configuration. The tag value is treated as a character string, so bytes 0-3 must be set as shown in the table.

 Offset
 tag Byte Value

 0
 'k' (0x6B)

 1
 'c' (0x63)

 2
 'f' (0x66)

 3
 'g' (0x67)

Table 14-4. tag Configuration Field

The flags in the clockFlags configuration field are enabled if the corresponding bit is cleared (0).

Bit Flag Description

O HighSpeed Enable high speed mode (i.e., 48 MHz). Read Clock Configuration section for more information on the high speed mode.

1 - 7 Reserved

Table 14-5. clockFlags Configuration Field

# 14.3.3 Start-up Process

Any of the following conditions will force the hardware to start the Kinetis Bootloader:

- FOPT [7] is set to 1. This forces the ROM to run out of reset.
- The BOOTCFG0 pin is asserted. The pin must be configured as BOOTCFG0 by setting the BOOTPIN\_OPT bit of FOPT to 0.
- A user applications running on flash or RAM calls into the Kinetis Bootloader entry point address in ROM, to start Kinetis Bootloader execution.

The FOPT[BOOTSRC\_SEL] determines the boot source. The FOPT register is located in the flash configuration field at address 0x40D in the flash memory array. For a complete list of options, see the Boot options section in the Reset and Boot chapter. If FOPT [7] is set to 1, then the device will boot to ROM out of reset. Flash memory defaults to all 1s when erased, so a blank chip will automatically boot to ROM.

The BOOTCFG0 pin is shared with the NMI pin, with NMI being the default usage. Regardless of whether the NMI pin is enabled or not, the NMI functionality is disabled if the ROM is executed out of reset, for as long as the ROM is running.

When the ROM is executed out of reset, vector fetches from the CPU are redirected to the ROM's vector table in ROM memory at offset 0x1C00\_0000. This ensures that any exceptions will be handled by the ROM.

After the Kinetis Bootloader has started, the following procedure starts bootloader operations:

- 1. The RCM\_MR [FORCEROM] bits are set, so that the device will reboot back into the ROM if/when the device is reset.
- 2. Initializes the bootloader's .data and .bss sections.
- 3. Reads bootloader configuration data from flash at address 0x3C0. The configuration data is only used if the tag field is set to the expected 'kcfg' value. If the tag is incorrect, then the configuration values are set to default, as if the data was all 0xFF bytes.
- 4. Clocks are configured. See the Clock Configuration section.
- 5. Enabled peripherals are initialized.
- 6. The bootloader waits for communication to begin on a peripheral.
  - If detection times out, then the bootloader jumps to the user application in flash. See Bootloader Exit state section.
  - If communication is detected, then all inactive peripherals are shut down, and the command phase is entered.

#### NOTE

The flash sector containing the vector table should not be located in the execute-only region, because the Kinetis bootloader cannot read the PC and SP addresses in an execute-only region.

KL28Z Reference Manual, Rev. 4, 06/2016

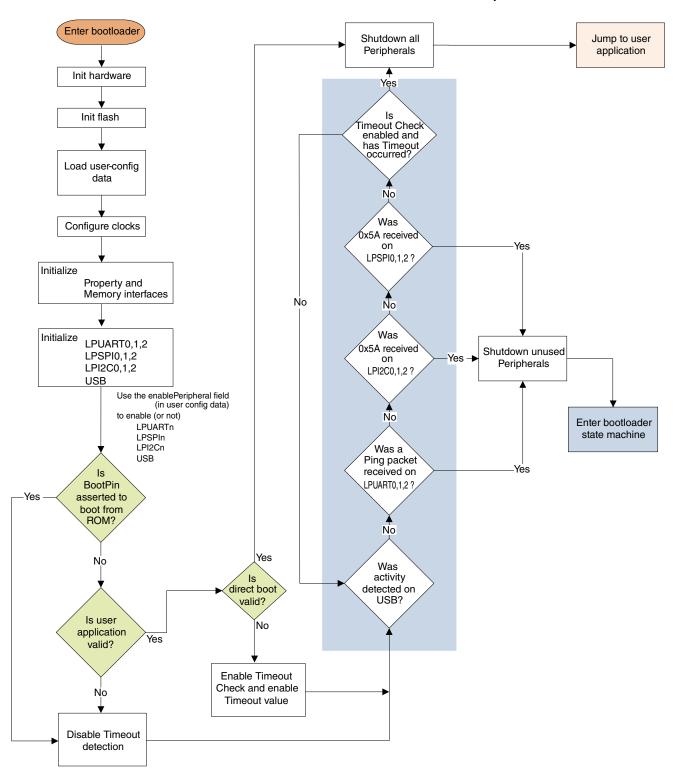



Figure 14-2. Kinetis Bootloader Start-up Flowchart

## 14.3.4 Clock Configuration

By default, the bootloader does not modify clocks. The Kinetis Bootloader in ROM will use the clock configuration of the chip out of reset unless the clock configuration bits in the FOPT register are cleared, or if a USB peripheral is enabled.

- Alternate clock configurations are supported, by setting fields in the Bootloader Configuration Area (BCA) shown in Table 14-3.
- If the HighSpeed flag of the clockFlags configuration value is cleared, or if a USB peripheral is enabled, the bootloader will enable the internal 48 MHz reference clock.
- In high speed mode, the core and bus clock frequencies are determined by the clockDivider configuration value.
- The core clock divider is set directly from the inverted value of the clockDivider unless a USB peripheral is enabled. If a USB peripheral is enabled and the inverted value of the clockDivider is greater than 2, then the value is reduced to 2, in order to keep the CPU clock above 20 MHz.
- The bus clock divider is set to 1, unless the resulting bus clock frequency would be greater than the maximum supported value. In this case, the bus clock divider is increased until the bus clock frequency is at or below the maximum.
- Note that the maximum baud rate of serial peripherals is related to the core and bus clock frequencies. To achieve the desired baud rates, high speed mode should be enabled in BCA.

## 14.3.5 Bootloader Entry Point / API Tree

To run the Kinetis Bootloader, a user application simply calls the runBootloader function. To get the address of the entry point, the user application reads the word containing the pointer to the bootloader API tree at offset 0x1C of the bootloader's vector table. The vector table is placed at the base of the bootloader's address range, which for the ROM is 0x1C00\_0000; the API tree pointer is at address 0x1C00\_001C.

The bootloader API tree is a structure that contains pointers to other structures, which have the function and data addresses for the bootloader. The bootloader entry point is always the 1st word of the API tree.

KL28Z Reference Manual, Rev. 4, 06/2016

NXP Semiconductors

The prototype of the entry point is:

```
void run_bootloader(void * arg);
```

The arg parameter is currently unused, and is intended for future expansion (for example, passing options to the bootloader). To ensure future compatibility, a value of NULL should be passed for arg.

**Example:** code to get the entry pointer address from the ROM and start the bootloader.

#### NOTE

This entry must be called in supervisor (privileged) mode.

```
// Variables
uint32_t runBootloaderAddress;
void (*runBootloader) (void * arg);

// Read the function address from the ROM API tree.
runBootloaderAddress = **(uint32_t **)(0x1c00001c);
runBootloader = (void (*)(void * arg))runBootloaderAddress;

// Start the bootloader.
runBootloader(NULL);
```

### 14.3.6 Bootloader Protocol

This section explains the general protocol for the packet transfers between the host and the Kinetis Bootloader. The description includes the transfer of packets for different transactions, such as commands with no data phase and commands with incoming or outgoing data phase. The next section describes various packet types used in a transaction.

Each command sent from the host is replied to with a response command.

Commands may include an optional data phase:

- If the data phase is **incoming** (from host to bootloader), then the data phase is part of the **original command**.
- If the data phase is **outgoing** (from bootloader to host), then the data phase is part of the **response command**.

### **NOTE**

In all protocols (described in the next subsections), the Ack sent in response to a Command or Data packet can arrive at any time before, during, or after the Command/Data packet has processed.

#### 14.3.6.1 Command with no data phase

The protocol for a command with no data phase contains:

- Command packet (from host)
- Generic response command packet (to host)

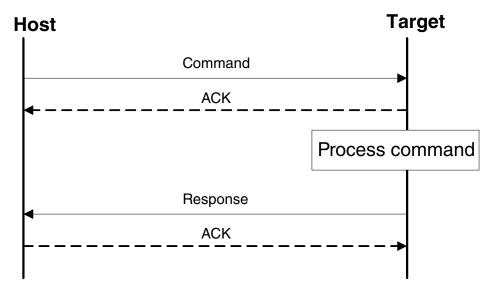



Figure 14-3. Command with No Data Phase

### 14.3.6.2 Command with incoming data phase

The protocol for a command with an incoming data phase contains:

- Command packet (from host)
- Generic response command packet (to host)
- Incoming data packets (from host)
- Generic response command packet (to host)

KL28Z Reference Manual, Rev. 4, 06/2016

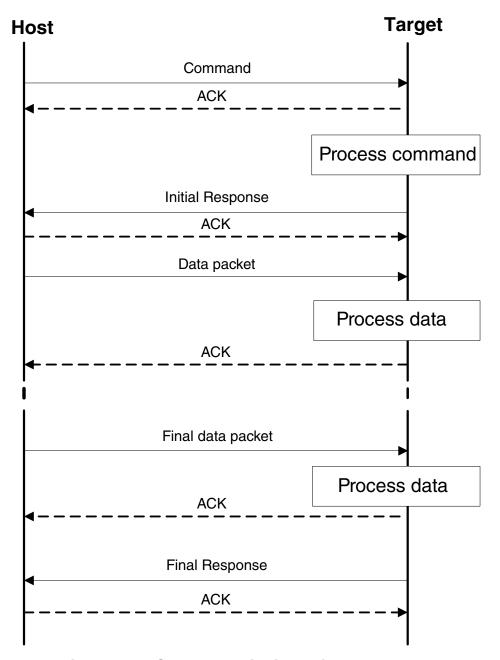



Figure 14-4. Command with incoming data phase

#### NOTE

- The host may not send any further packets while it (the host) is waiting for the response to a command.
- If the Generic Response packet prior to the start of the data phase does not have a status of kStatus\_Success, then the data phase is aborted.
- Data phases may be aborted by the receiving side by sending the final Generic Response early with a status of

kStatus\_AbortDataPhase. The host may abort the data phase early by sending a zero-length data packet.

• The final Generic Response packet *sent after the data phase* includes the status for the entire operation.

### 14.3.6.3 Command with outgoing data phase

The protocol for a command with an outgoing data phase contains:

- Command packet (from host)
- ReadMemory Response command packet (to host) (kCommandFlag\_HasDataPhase set)
- Outgoing data packets (to host)
- Generic response command packet (to host)

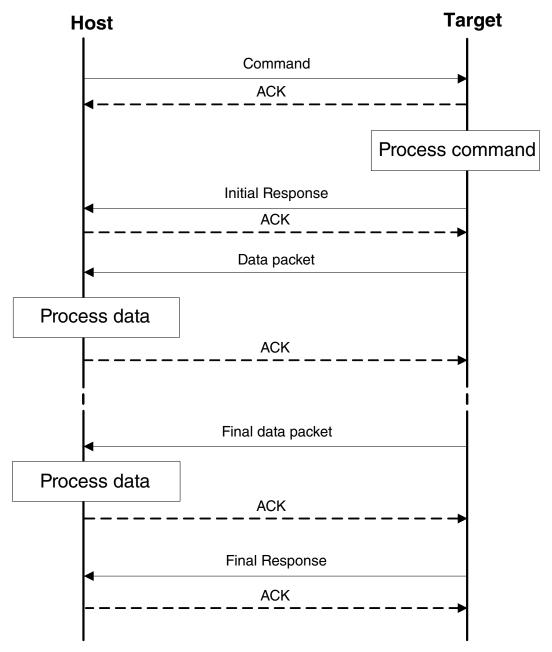



Figure 14-5. Command with outgoing data phase

#### NOTE

- For the outgoing data phase sequence above, the data phase is really considered part of the response command.
- The host may not send any further packets while it (the host) is waiting for the response to a command.
- If the ReadMemory Response command packet prior to the start of the data phase does not contain the kCommandFlag\_HasDataPhase flag, then the data phase is aborted.

- Data phases may be aborted by the host sending the final Generic Response early with a status of kStatus\_AbortDataPhase. The sending side may abort the data phase early by sending a zero-length data packet.
- The final Generic Response packet sent after the data *phase* includes the status for the entire operation.

## 14.3.7 Bootloader Packet Types

The Kinetis Bootloader device works in slave mode. All data communication is initiated by a host, which is either a PC or an embedded host. The Kinetis Bootloader device is the target, which receives a command or data packet. All data communication between host and target is packetized.

#### NOTE

The term "target" refers to the "Kinetis Bootloader device."

There are 6 types of packets used in the device:

- Ping packet
- Ping Response packet
- Framing packet
- Command packet
- Data packet
- Response packet

All fields in the packets are in little-endian byte order.

#### 14.3.7.1 Ping packet

The Ping packet is the first packet sent from a host to the target (Kinetis Bootloader), to establish a connection on a selected peripheral. For a LPUART peripheral, the Ping packet is used to determine the baudrate. A Ping packet must be sent before any other communications. In response to a Ping packet, the target sends a Ping Response packet.

Table 14-6. Ping Packet Format

| Byte # | Value | Name       |
|--------|-------|------------|
| 0      | 0x5A  | start byte |
| 1      | 0xA6  | ping       |

KL28Z Reference Manual, Rev. 4, 06/2016 266 **NXP Semiconductors** 

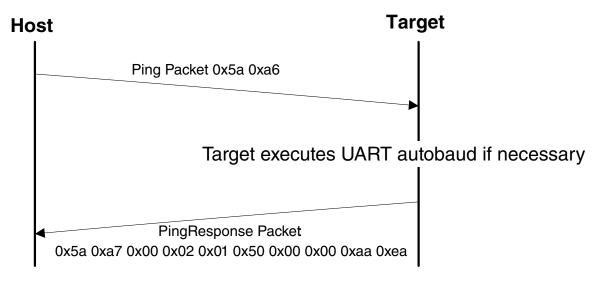



Figure 14-6. Ping Packet Protocol Sequence

## 14.3.7.2 Ping Response Packet

The target (Kinetis Bootloader) sends a Ping Response packet back to the host after receiving a Ping packet. If communication is over a LPUART peripheral, the target uses the incoming Ping packet to determine the baud rate before replying with the Ping Response packet. Once the Ping Response packet is received by the host, the connection is established, and the host starts sending commands to the target (Kinetis Bootloader).

| Byte # | Value | Parameter                  |
|--------|-------|----------------------------|
| 0      | 0x5A  | start byte                 |
| 1      | 0xA7  | Ping response code         |
| 2      |       | Protocol bugfix            |
| 3      |       | Protocol minor             |
| 4      |       | Protocol major             |
| 5      |       | Protocol name = 'P' (0x50) |
| 6      |       | Options low                |
| 7      |       | Options high               |
| 8      |       | CRC16 low                  |
| 9      |       | CRC16 high                 |

**Table 14-7. Ping Response Packet Format** 

KL28Z Reference Manual, Rev. 4, 06/2016

## 14.3.7.3 Framing Packet

The framing packet is used for flow control and error detection, and it (the framing packet) wraps command and data packets as well.

The framing packet described in this section is used for serial peripherals including LPUART, LPI2C and LPSPI. The USB HID peripheral does not use framing packets. Instead, the packetization inherent in the USB protocol itself is used. Please refer to the USB peripheral section for details.

| Byte # | Value | Parameter                      |                                                                                                                                                     |  |  |  |
|--------|-------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0      | 0x5A  | start byte                     |                                                                                                                                                     |  |  |  |
| 1      |       | packetType                     |                                                                                                                                                     |  |  |  |
| 2      |       | length_low                     | Length is a 16-bit field that specifies the entire                                                                                                  |  |  |  |
| 3      |       | length_high                    | command or data packet size in bytes.                                                                                                               |  |  |  |
| 4      |       | crc16_low                      | This is a 16-bit field. The CRC16 value covers entire                                                                                               |  |  |  |
| 5      |       | crc16_high                     | framing packet, including the start byte and command or data packets, but does not include the CRC bytes. See the CRC16 algorithm after this table. |  |  |  |
| 6n     |       | Command or Data packet payload |                                                                                                                                                     |  |  |  |

**Table 14-8. Framing Packet Format** 

A special framing packet that contains only a start byte and a packet type is used for synchronization between the host and target.

Table 14-9. Special Framing Packet Format

| Byte # | Value | Parameter  |
|--------|-------|------------|
| 0      | 0x5A  | start byte |
| 1      | 0xAn  | packetType |

The Packet Type field specifies the type of the packet from one of the defined types (below):

Table 14-10. packetType Field

| packetType | Name                        | Description                                                                            |
|------------|-----------------------------|----------------------------------------------------------------------------------------|
| 0xA1       | kFramingPacketType_Ack      | The previous packet was received successfully; the sending of more packets is allowed. |
| 0xA2       | kFramingPacketType_Nak      | The previous packet was corrupted and must be re-sent.                                 |
| 0xA3       | kFramingPacketType_AckAbort | Data phase is being aborted.                                                           |
| 0xA4       | kFramingPacketType_Command  | The framing packet contains a command packet payload.                                  |
| 0xA5       | kFramingPacketType_Data     | The framing packet contains a data packet payload.                                     |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Table 14-10. packetType Field (continued)

| packetType | Name                            | Description                                                                   |
|------------|---------------------------------|-------------------------------------------------------------------------------|
| 0xA6       | kFramingPacketType_Ping         | Sent to verify the other side is alive. Also used for UART autobaud.          |
| 0xA7       | kFramingPacketType_PingResponse | A response to Ping; contains the framing protocol version number and options. |

## CRC16 algorithm:

```
uint16_t crc16_update(const uint8_t * src, uint32_t lengthInBytes)
{
    uint32_t crc = 0;
    uint32_t j;
    for (j=0; j < lengthInBytes; ++j)</pre>
        uint32_t i;
        uint32_t byte = src[j];
        crc ^= byte << 8;</pre>
        for (i = 0; i < 8; ++i)
             uint32_t temp = crc << 1;</pre>
             if (crc & 0x8000)
                 temp ^{=} 0x1021;
             crc = temp;
    }
    return crc;
}
```

## 14.3.7.4 Command packet

The command packet carries a 32-bit command header and a list of 32-bit parameters.

**Table 14-11. Command Packet Format** 

|                                                                     | Command Packet Format (32 bytes) |        |                |  |  |                    |                    |                        |                    |
|---------------------------------------------------------------------|----------------------------------|--------|----------------|--|--|--------------------|--------------------|------------------------|--------------------|
| Command Header (4 bytes) 28 bytes for Parameters (Max 7 parameters) |                                  |        |                |  |  |                    |                    |                        |                    |
| Tag                                                                 | Flags                            | Rsvd   | Param<br>Count |  |  | Param3<br>(32-bit) | Param4<br>(32-bit) | <br>Param6<br>(32-bit) | Param7<br>(32-bit) |
| byte 0                                                              | byte 1                           | byte 2 | byte 3         |  |  |                    |                    |                        |                    |

Table 14-12. Command Header Format

| Byte # | Command Header Field      |                                          |
|--------|---------------------------|------------------------------------------|
| 0      | Command or Response tag   | The command header is 4 bytes long, with |
| 1      | Flags                     | these fields.                            |
| 2      | Reserved. Should be 0x00. |                                          |
| 3      | ParameterCount            |                                          |

The header is followed by 32-bit parameters up to the value of the ParameterCount field specified in the header. Because a command packet is 32 bytes long, only 7 parameters can fit into the command packet.

Command packets are also used by the target to send responses back to the host. As mentioned earlier, command packets and data packets are embedded into framing packets for all of the transfers.

Table 14-13. Commands that are supported

| Command | Name                  |
|---------|-----------------------|
| 0x01    | FlashEraseAll         |
| 0x02    | FlashEraseRegion      |
| 0x03    | ReadMemory            |
| 0x04    | WriteMemory           |
| 0x05    | FillMemory            |
| 0x06    | FlashSecurityDisable  |
| 0x07    | GetProperty           |
| 0x08    | ReceiveSBFile         |
| 0x09    | Execute               |
| 0x0A    | Call                  |
| 0x0B    | Reset                 |
| 0x0C    | SetProperty           |
| 0x0D    | FlashEraseAllUnsecure |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 14-13. Commands that are supported (continued)

| Command | Name              |
|---------|-------------------|
| 0x0E    | FlashProgramOnce  |
| 0x0F    | FlashReadOnce     |
| 0x10    | FlashReadResource |
| 0x11    | Reserved          |

Table 14-14. Responses that are supported

| Response | Name                                                                                     |
|----------|------------------------------------------------------------------------------------------|
| 0xA0     | GenericResponse                                                                          |
| 0xA3     | ReadMemoryResponse (used for sending responses to ReadMemory command only)               |
| 0xA7     | GetPropertyResponse (used for sending responses to GetProperty command only)             |
| 0xAF     | FlashReadOnceResponse (used for sending responses to FlashReadOnce command only)         |
| 0xB0     | FlashReadResourceResponse (used for sending responses to FlashReadResource command only) |

**Flags:** Each command packet contains a Flag byte. Only bit 0 of the flag byte is used. If bit 0 of the flag byte is set to 1, then data packets will follow in the command sequence. The number of bytes that will be transferred in the data phase is determined by a command-specific parameter in the parameters array.

**ParameterCount:** The number of parameters included in the command packet.

**Parameters:** The parameters are word-length (32 bits). With the default maximum packet size of 32 bytes, a command packet can contain up to 7 parameters.

#### Data packet 14.3.7.5

The data packet carries just the data, either host sending data to target, or target sending data to host. The data transfer direction is determined by the last command sent from the host. The data packet is also wrapped within a framing packet, to ensure the correct packet data is received.

The contents of a data packet are simply the data itself. There are no other fields, so that the most data per packet can be transferred. Framing packets are responsible for ensuring that the correct packet data is received.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 271

### 14.3.7.6 Response packet

The responses are carried using the same command packet format wrapped with framing packet data. Types of responses include:

- GenericResponse
- GetPropertyResponse
- ReadMemoryResponse
- FlashReadOnceResponse
- FlashReadResourceResponse

**GenericResponse:** After the Kinetis Bootloader has processed a command, the bootloader will send a generic response with status and command tag information to the host. The generic response is the last packet in the command protocol sequence. The generic response packet contains the framing packet data and the command packet data (with generic response tag = 0xA0) and a list of parameters (defined in the next section). The parameter count field in the header is always set to 2, for status code and command tag parameters.

Byte # Parameter Descripton

O - 3 Status code The Status codes are errors encountered during the execution of a command by the target (Kinetis Bootloader). If a command succeeds, then a kStatus\_Success code is returned. Table 14-55, Kinetis Bootloader Status Error Codes, lists the status codes returned to the host by the Kinetis Bootloader for ROM.

4 - 7 Command tag

The Command tag parameter identifies the response to the command sent by the host.

**Table 14-15. GenericResponse Parameters** 

**GetPropertyResponse:** The GetPropertyResponse packet is sent by the target in response to the host query that uses the GetProperty command. The GetPropertyResponse packet contains the framing packet data and the command packet data, with the command/response tag set to a GetPropertyResponse tag value (0xA7).

The parameter count field in the header is set to greater than 1, to always include the status code and one or many property values.

Table 14-16. GetPropertyResponse Parameters

Byte # Value Parameter

Byte # Value Parameter

0 - 3 Status code

4 - 7 Property value

Table continues on the next page...

Table 14-16. GetPropertyResponse Parameters (continued)

| Byte # | Value | Parameter                                                                                                   |
|--------|-------|-------------------------------------------------------------------------------------------------------------|
|        |       |                                                                                                             |
|        |       | Can be up to maximum 6 property values, limited to the size of the 32-bit command packet and property type. |

**ReadMemoryResponse:** The ReadMemoryResponse packet is sent by the target in response to the host sending a ReadMemory command. The ReadMemoryResponse packet contains the framing packet data and the command packet data, with the command/response tag set to a ReadMemoryResponse tag value (0xA3), the flags field set to kCommandFlag\_HasDataPhase (1).

The parameter count set to 2 for the status code and the data byte count parameters shown below.

**Table 14-17. ReadMemoryResponse Parameters** 

| Byte # | Parameter       | Descripton                                        |
|--------|-----------------|---------------------------------------------------|
| 0 - 3  | Status code     | The status of the associated Read Memory command. |
| 4 - 7  | Data byte count | The number of bytes sent in the data phase.       |

**FlashReadOnceResponse:** The FlashReadOnceResponse packet is sent by the target in response to the host sending a FlashReadOnce command. The FlashReadOnceResponse packet contains the framing packet data and the command packet data, with the command/response tag set to a FlashReadOnceResponse tag value (0xAF), and the flags field set to 0. The parameter count is set to 2 plus *the number of words* requested to be read in the FlashReadOnceCommand.

Table 14-18. FlashReadOnceResponse Parameters

| Byte # | Value | Parameter                                     |
|--------|-------|-----------------------------------------------|
| 0 – 3  |       | Status Code                                   |
| 4 – 7  |       | Byte count to read                            |
|        |       |                                               |
|        |       | Can be up to 20 bytes of requested read data. |

The FlashReadResourceResponse packet is sent by the target in response to the host sending a FlashReadResource command. The FlashReadResourceResponse packet contains the framing packet data and command packet data, with the command/response tag set to a FlashReadResourceResponse tag value (0xB0), and the flags field set to kCommandFlag\_HasDataPhase (1).

Table 14-19. FlashReadResourceResponse Parameters

| Byte # | Value | Parameter       |
|--------|-------|-----------------|
| 0 – 3  |       | Status Code     |
| 4 – 7  |       | Data byte count |

### 14.3.8 Bootloader Command API

All Kinetis Bootloader command APIs follow the command packet format that is wrapped by the framing packet, as explained in previous sections.

- For a list of commands supported by the Kinetis Bootloader in ROM, see Table 14-2, Commands supported.
- For a list of status codes returned by the Kinetis Bootloader in ROM, see Table 14-55, Kinetis Bootloader Status Error Codes.

#### **NOTE**

All the examples in this section depict byte traffic on serial peripherals that use framing packets. USB HID transactions use the USB HID report packets instead of the serial framing packets shown in this section. Please refer to the HID reports section for details of the USB HID packet structure.

### 14.3.8.1 Call command

The Call command will execute a function that is written in memory at the address sent in the command. The address needs to be a valid memory location residing in accessible flash (internal or external) or in RAM. The command supports the passing of one 32-bit argument. Although the command supports a stack address, at this time the call will still take place using the current stack pointer. After execution of the function, a 32-bit return value will be returned in the generic response message.

275

Table 14-20. Parameters for Call Command

| Byte # | Command       |
|--------|---------------|
| 0 - 3  | Call address  |
| 4 - 7  | Argument word |
| 8 - 11 | Stack pointer |

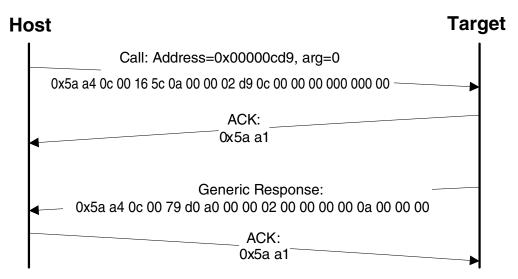



Figure 14-7. Protocol Sequence for Call Command

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with a status code either set to the return value of the function called or set to kStatus\_InvalidArgument (105).

### 14.3.8.2 ReceiveSBFile command

The ReceiveSBFile command (ReceiveSbFile) will start the transfer of an SB file to the target. The command only specifies the size in bytes of the SB file that will be sent in the data phase. The SB file will be processed as it is received by the Bootloader.

Table 14-21. Parameters for ReceiveSBFile Command

| Byte # | Command    |
|--------|------------|
| 0 - 3  | Byte count |

**Data Phase:** The Receive SB file command has a data phase; the host will send data packets until the number of bytes of data specified in the byteCount parameter of the Receive SB File command are received by the target.

**Response:** The target (Bootloader) will return a GenericResponse packet with a status code set to the kStatus\_Success upon successful execution of the command, or set to an appropriate error code.

### 14.3.8.3 Execute command

The execute command results in the bootloader setting the program counter to the code at the provided jump address, R0 to the provided argument, and a Stack pointer to the provided stack pointer address. Prior to the jump, the system is returned to the reset state.

The Jump address, function argument pointer, and stack pointer are the parameters required for the Execute command.

Table 14-22. Parameters for Execute Command

| Byte # | Command               |
|--------|-----------------------|
| 0 - 3  | Jump address          |
| 4 - 7  | Argument word         |
| 8 - 11 | Stack pointer address |

The Execute command has no data phase.

**Response:** Before executing the Execute command, the target (Kinetis Bootloader) will validate the parameters and return a GenericResponse packet with a status code either set to kStatus\_Success or an appropriate error status code.

### 14.3.8.4 Reset command

The Reset command will result in bootloader resetting the chip.

The Reset command requires no parameters.

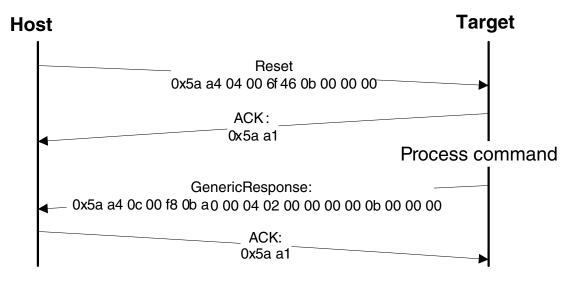



Figure 14-8. Protocol Sequence for Reset Command

| Reset          | Parameter      | Value                            |
|----------------|----------------|----------------------------------|
| Framing packet | start byte     | 0x5A                             |
|                | packetType     | 0xA4, kFramingPacketType_Command |
|                | length         | 0x04 0x00                        |
|                | crc16          | 0x6F 0x46                        |
| Command packet | commandTag     | 0x0B - reset                     |
|                | flags          | 0x00                             |
|                | reserved       | 0x00                             |
|                | parameterCount | 0x00                             |

**Table 14-23. Reset Command Packet Format (Example)** 

The Reset command has no data phase.

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with status code set to kStatus\_Success, before resetting the chip.

# 14.3.8.5 GetProperty command

The GetProperty command is used to query the bootloader about various properties and settings. Each supported property has a unique 32-bit tag associated with it. The tag occupies the first parameter of the command packet. The target returns a GetPropertyResponse packet with the property values for the property identified with the tag in the GetProperty command.

Properties are the defined units of data that can be accessed with the GetProperty or SetProperty commands. Properties may be read-only or read-write. All read-write properties are 32-bit integers, so they can easily be carried in a command parameter.

For a list of properties and their associated 32-bit property tags supported by the Kinetis Bootloader in ROM, see Table 14-50.

The 32-bit property tag is the only parameter required for GetProperty command.

Table 14-24. Parameters for GetProperty Command

| Byte # | Command      |
|--------|--------------|
| 0 - 3  | Property tag |

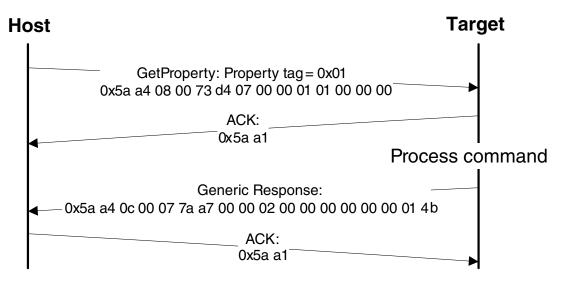



Figure 14-9. Protocol Sequence for GetProperty Command

**Table 14-25. GetProperty Command Packet Format (Example)** 

| GetProperty    | Parameter      | Value                            |
|----------------|----------------|----------------------------------|
| Framing packet | start byte     | 0x5A                             |
|                | packetType     | 0xA4, kFramingPacketType_Command |
|                | length         | 0x08 0x00                        |
|                | crc16          | 0x73 0xD4                        |
| Command packet | commandTag     | 0x07 – GetProperty               |
|                | flags          | 0x00                             |
|                | reserved       | 0x00                             |
|                | parameterCount | 0x01                             |
|                | propertyTag    | 0x0000001 - CurrentVersion       |

The GetProperty command has no data phase.

**Response:** In response to a GetProperty command, the target will send a GetPropertyResponse packet with the response tag set to 0xA7. The parameter count indicates the number of parameters sent for the property values, with the first parameter showing status code 0, followed by the property value(s). The next table shows an example of a GetPropertyResponse packet.

| GetPropertyResponse | Parameter      | Value                            |
|---------------------|----------------|----------------------------------|
| Framing packet      | start byte     | 0x5A                             |
|                     | packetType     | 0xA4, kFramingPacketType_Command |
|                     | length         | 0x0c 0x00 (12 bytes)             |
|                     | crc16          | 0x07 0x7a                        |
| Command packet      | responseTag    | 0xA7                             |
|                     | flags          | 0x00                             |
|                     | reserved       | 0x00                             |
|                     | parameterCount | 0x02                             |
|                     | status         | 0x00000000                       |
|                     | propertyValue  | 0x0000014b - CurrentVersion      |

**Table 14-26.** GetProperty Response Packet Format (Example)

### 14.3.8.6 SetProperty command

0 - 3

4 - 7

The SetProperty command is used to change or alter the values of the properties or options in the Kinetis Bootloader ROM. However, the SetProperty command can only change the value of properties that are writable—see Table 14-50, Properties used by Get/SetProperty Commands. If you try to set a value for a read-only property, then the Kinetis Bootloader will return an error.

The property tag and the new value to set are the 2 parameters required for the SetProperty command.

Property tag

Property value

Table 14-27. Parameters for SetProperty Command

Byte # Command

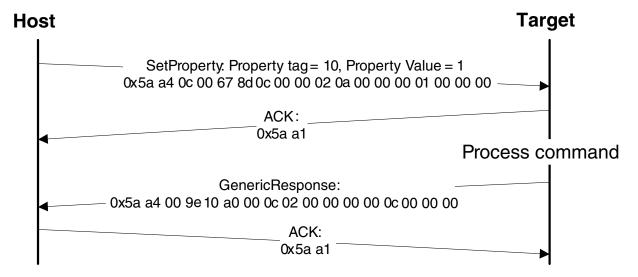



Figure 14-10. Protocol Sequence for SetProperty Command

Table 14-28. SetProperty Command Packet Format (Example)

| SetProperty    | Parameter      | Value                                   |
|----------------|----------------|-----------------------------------------|
| Framing packet | start byte     | 0x5A                                    |
|                | packetType     | 0xA4, kFramingPacketType_Command        |
|                | length         | 0x0C 0x00                               |
|                | crc16          | 0x67 0x8D                               |
| Command packet | commandTag     | 0x0C - SetProperty with property tag 10 |
|                | flags          | 0x00                                    |
|                | reserved       | 0x00                                    |
|                | parameterCount | 0x02                                    |
|                | propertyTag    | 0x000000A - VerifyWrites                |
|                | propertyValue  | 0x0000001                               |

The SetProperty command has no data phase.

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with one of following status codes:

Table 14-29. SetProperty Response Status Codes

| Status Code            |
|------------------------|
| «Status_Success        |
| Status_ReadOnly        |
| Status_UnknownProperty |
| Status_InvalidArgument |

KL28Z Reference Manual, Rev. 4, 06/2016

#### FlashEraseAll command 14.3.8.7

The FlashEraseAll command performs an erase of the entire flash memory. If any flash regions are protected, then the FlashEraseAll command will fail and return an error status code. Executing the FlashEraseAll command will release flash security if it (flash security) was enabled, by setting the FTFA FSEC register. However, the FSEC field of the flash configuration field is erased, so unless it is reprogrammed, the flash security will be re-enabled after the next system reset. The Command tag for FlashEraseAll command is 0x01 set in the commandTag field of the command packet.

The FlashEraseAll command requires no parameters.

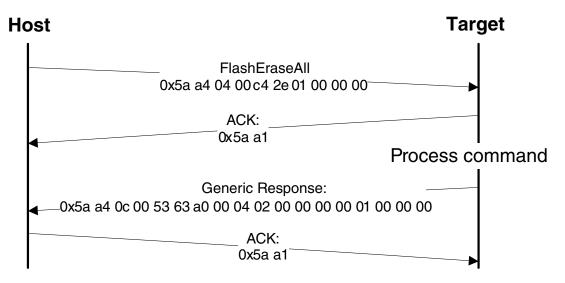



Figure 14-11. Protocol Sequence for FlashEraseAll Command

| FlashEraseAll  | Parameter      | Value                            |
|----------------|----------------|----------------------------------|
| Framing packet | start byte     | 0x5A                             |
|                | packetType     | 0xA4, kFramingPacketType_Command |
|                | length         | 0x04 0x00                        |
|                | crc16          | 0xC4 0x2E                        |
| Command packet | commandTag     | 0x01 - FlashEraseAll             |
|                | flags          | 0x00                             |
|                | reserved       | 0x00                             |
|                | parameterCount | 0x00                             |

Table 14-30. FlashEraseAll Command Packet Format (Example)

The FlashEraseAll command has no data phase.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 281 **Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with status code either set to kStatus\_Success for successful execution of the command, or set to an appropriate error status code.

#### 14.3.8.8 FlashEraseRegion command

The FlashEraseRegion command performs an erase of one or more sectors of the flash memory or a specified range of flash within the connected SPI flash devices.

The start address and number of bytes are the 2 parameters required for the FlashEraseRegion command. The start and byte count parameters must be, or the FlashEraseRegion command will fail and return kStatus\_FlashAlignmentError (0x101). If the region specified does not fit in the flash memory space, the FlashEraseRegion command will fail and return kStatus\_FlashAddressError (0x102). If any part of the region specified is protected, the FlashEraseRegion command will fail and return kStatus\_MemoryRangeInvalid (0x10200).

Table 14-31. Parameters for FlashEraseRegion Command

| Byte # | Parameter     |
|--------|---------------|
| 0 - 3  | Start address |
| 4 - 7  | Byte count    |

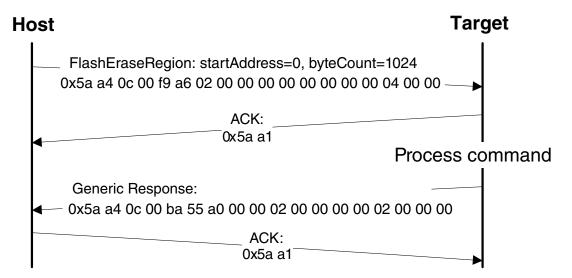



Figure 14-12. Protocol Sequence for FlashEraseRegion Command

KL28Z Reference Manual, Rev. 4, 06/2016

Table 14-32. FlashEraseRegion Command Packet Format (Example)

| FlashEraseRegion | Parameter      | Value                              |
|------------------|----------------|------------------------------------|
| Framing packet   | start byte     | 0x5A                               |
|                  | packetType     | 0xA4, kFramingPacketType_Command   |
|                  | length         | 0x0C 0x00                          |
|                  | crc16          | 0xF9 0x A6                         |
| Command packet   | commandTag     | 0x02, kCommandTag_FlashEraseRegion |
|                  | flags          | 0x00                               |
|                  | reserved       | 0x00                               |
|                  | parameterCount | 0x02                               |
|                  | startAddress   | 0x00 0x00 0x00 0x00 (0x0000_0000)  |
|                  | byte count     | 0x00 0x04 0x00 0x00 (0x400)        |

The FlashEraseRegion command has no data phase.

**Response:** The target (Kinetis Bootloader ) will return a GenericResponse packet with one of following error status codes.

Table 14-33. FlashEraseRegion Response Status Codes

| Status Code                              |
|------------------------------------------|
| kStatus_Success (0x0)                    |
| kStatus_MemoryRangeInvalid (0x10200)     |
| kStatus_FlashAlignmentError (0x101)      |
| kStatus_FlashAddressError (0x102)        |
| kStatus_FlashAccessError (0x103)         |
| kStatus_FlashProtectionViolation (0x104) |
| kStatus_FlashCommandFailure (0x105)      |

## 14.3.8.9 FlashEraseAllUnsecure command

The FlashEraseAllUnsecure command performs a mass erase of the flash memory, including protected sectors. Flash security is immediately disabled if it (flash security) was enabled, and the FSEC byte in the flash configuration field at address 0x40C is programmed to 0xFE. However, if the mass erase enable option in the FSEC field is disabled, then the FlashEraseAllUnsecure command will fail.

The FlashEraseAllUnsecure command requires no parameters.

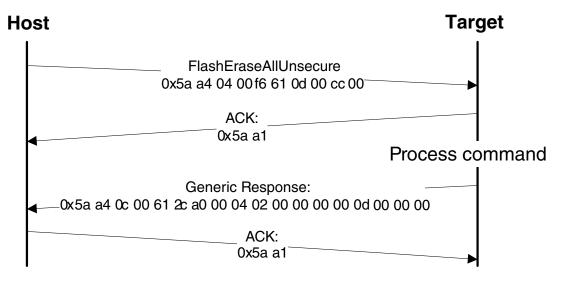



Figure 14-13. Protocol Sequence for FlashEraseAll Command

Table 14-34. FlashEraseAllUnsecure Command Packet Format (Example)

| FlashEraseAllUnsecure | Parameter      | Value                            |
|-----------------------|----------------|----------------------------------|
| Framing packet        | start byte     | 0x5A                             |
|                       | packetType     | 0xA4, kFramingPacketType_Command |
|                       | length         | 0x04 0x00                        |
|                       | crc16          | 0xF6 0x61                        |
| Command packet        | commandTag     | 0x0D - FlashEraseAllUnsecure     |
|                       | flags          | 0x00                             |
|                       | reserved       | 0x00                             |
|                       | parameterCount | 0x00                             |

The FlashEraseAllUnsecure command has no data phase.

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with status code either set to kStatus\_Success for successful execution of the command, or set to an appropriate error status code.

## 14.3.8.10 FlashProgramOnce command

The FlashProgramOnce command writes data (that is provided in a command packet) to a specified range of bytes in the program once field. Special care must be taken when writing to the program once field.

- The program once field only supports programming once, so any attempted to reprogram a program once field will get an error response.
- Writing to the program once field requires the byte count to be 4-byte aligned or 8-byte aligned.

The FlashProgramOnce command uses 3 parameters: index, byteCount, data.

Data

12 - 16

| Byte # | Command                                    |
|--------|--------------------------------------------|
| 0 - 3  | Index of program once field                |
| 4 - 7  | Byte count (must be evenly divisible by 4) |
| 8 - 11 | Data                                       |

Table 14-35. Parameters for FlashProgramOnce Command

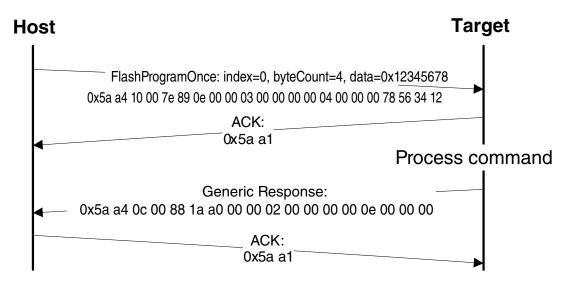



Figure 14-14. Protocol Sequence for FlashProgramOnce Command

Table 14-36. FlashProgramOnce Command Packet Format (Example)

| FlashProgramOnce | Parameter      | Value                            |
|------------------|----------------|----------------------------------|
| Framing packet   | start byte     | 0x5A                             |
|                  | packetType     | 0xA4, kFramingPacketType_Command |
|                  | length         | 0x10 0x00                        |
|                  | crc16          | 0x7E4 0x89                       |
| Command packet   | commandTag     | 0x0E - FlashProgramOnce          |
|                  | flags          | 0                                |
|                  | reserved       | 0                                |
|                  | parameterCount | 3                                |
|                  | index          | 0x0000_0000                      |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 14-36. FlashProgramOnce Command Packet Format (Example) (continued)

| FlashProgramOnce | Parameter | Value       |
|------------------|-----------|-------------|
|                  | byteCount | 0x0000_0004 |
|                  | data      | 0x1234_5678 |

**Response:** upon successful execution of the command, the target (Kinetis Bootloader) will return a GenericResponse packet with a status code set to kStatus\_Success, or to an appropriate error status code.

### 14.3.8.11 FlashReadOnce command

The FlashReadOnce command returns the contents of the program once field by given index and byte count. The FlashReadOnce command uses 2 parameters: index and byteCount.

Table 14-37. Parameters for FlashReadOnce Command

| Byte # | Parameter | Description                                      |
|--------|-----------|--------------------------------------------------|
| 0 - 3  | index     | Index of the program once field (to read from)   |
| 4 - 7  | byteCount | Number of bytes to read and return to the caller |

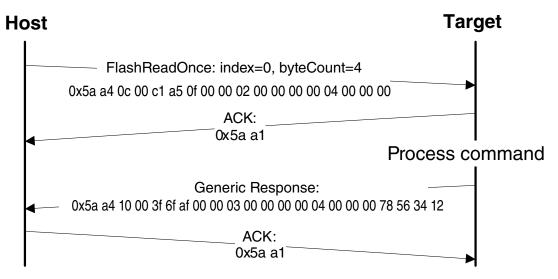



Figure 14-15. Protocol Sequence for FlashReadOnce Command

Table 14-38. FlashReadOnce Command Packet Format (Example)

| FlashReadOnce  | Parameter      | Value                |
|----------------|----------------|----------------------|
| Framing packet | start byte     | 0x5A                 |
|                | packetType     | 0xA4                 |
|                | length         | 0x0C 0x00            |
|                | crc            | 0xC1 0xA5            |
| Command packet | commandTag     | 0x0F - FlashReadOnce |
|                | flags          | 0x00                 |
|                | reserved       | 0x00                 |
|                | parameterCount | 0x02                 |
|                | index          | 0x0000_0000          |
|                | byteCount      | 0x0000_0004          |

Table 14-39. FlashReadOnce Response Format (Example)

| FlashReadOnce<br>Response | Parameter      | Value       |
|---------------------------|----------------|-------------|
| Framing packet            | start byte     | 0x5A        |
|                           | packetType     | 0xA4        |
|                           | length         | 0x10 0x00   |
|                           | crc            | 0x3F 0x6F   |
| Command packet            | commandTag     | 0xAF        |
|                           | flags          | 0x00        |
|                           | reserved       | 0x00        |
|                           | parameterCount | 0x03        |
|                           | status         | 0x0000_0000 |
|                           | byteCount      | 0x0000_0004 |
|                           | data           | 0x1234_5678 |

**Response:** upon successful execution of the command, the target (Kinetis Bootloader) will return a FlashReadOnceResponse packet with a status code set to kStatus\_Success, a byte count and corresponding data read from Program Once Field upon successful execution of the command, or will return with a status code set to an appropriate error status code and a byte count set to 0.

### 14.3.8.12 FlashReadResource command

The FlashReadResource command returns the contents of the IFR field or Flash firmware ID, by given offset, byte count, and option. The FlashReadResource command uses 3 parameters: start address, byteCount, option.

Table 14-40. Parameters for FlashReadResource Command

| Byte # | Parameter     | Command                                                  |
|--------|---------------|----------------------------------------------------------|
| 0 - 3  | start address | Start address of specific non-volatile memory to be read |
| 4 - 7  | byteCount     | Byte count to be read                                    |
| 8 - 11 | option        | 0: IFR                                                   |
|        |               | 1: Flash firmware ID                                     |

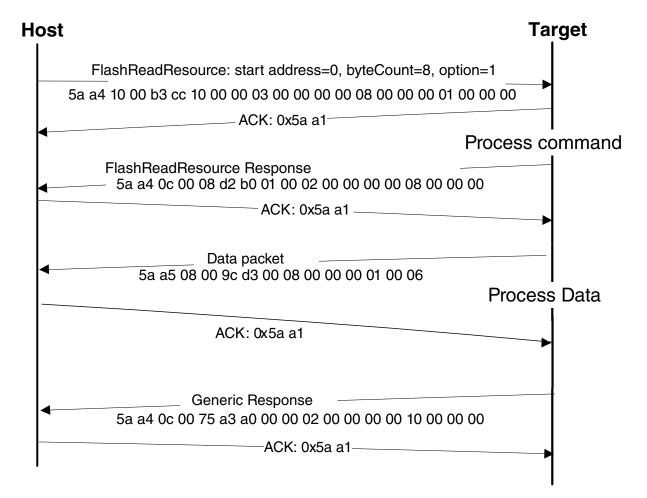



Figure 14-16. Protocol Sequence for FlashReadResource Command

**Table 14-41. FlashReadResource Command Packet Format (Example)** 

| FlashReadResource | Parameter  | Value                    |
|-------------------|------------|--------------------------|
| Framing packet    | start byte | 0x5A                     |
|                   | packetType | 0xA4                     |
|                   | length     | 0x10 0x00                |
|                   | crc        | 0xB3 0xCC                |
| Command packet    | commandTag | 0x10 - FlashReadResource |
|                   | flags      | 0x00                     |

Table continues on the next page...

Table 14-41. FlashReadResource Command Packet Format (Example) (continued)

| FlashReadResource | Parameter      | Value       |
|-------------------|----------------|-------------|
|                   | reserved       | 0x00        |
|                   | parameterCount | 0x03        |
|                   | startAddress   | 0x0000_0000 |
|                   | byteCount      | 0x0000_0008 |
|                   | option         | 0x0000_0001 |

Table 14-42. FlashReadResource Response Format (Example)

| FlashReadResource<br>Response | Parameter      | Value       |
|-------------------------------|----------------|-------------|
| Framing packet                | start byte     | 0x5A        |
|                               | packetType     | 0xA4        |
|                               | length         | 0x0C 0x00   |
|                               | crc            | 0xD2 0xB0   |
| Command packet                | commandTag     | 0xB0        |
|                               | flags          | 0x01        |
|                               | reserved       | 0x00        |
|                               | parameterCount | 0x02        |
|                               | status         | 0x0000_0000 |
|                               | byteCount      | 0x0000_0008 |

**Data phase:** The FlashReadResource command has a data phase. Because the target (Kinetis Bootloader) works in slave mode, the host must pull data packets until the number of bytes of data *specified in the byteCount parameter of FlashReadResource command* are received by the host.

## 14.3.8.13 FlashSecurityDisable command

The FlashSecurityDisable command performs the flash security disable operation, by comparing the 8-byte backdoor key (provided in the command) against the backdoor key stored in the flash configuration field (at address 0x400 in the flash).

The backdoor low and high words are the only parameters required for FlashSecurityDisable command.

Table 14-43. Parameters for FlashSecurityDisable Command

| Byte # | Command               |
|--------|-----------------------|
| 0 - 3  | Backdoor key low word |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 14-43. Parameters for FlashSecurityDisable Command (continued)

| Byte # | Command                |
|--------|------------------------|
| 4 - 7  | Backdoor key high word |

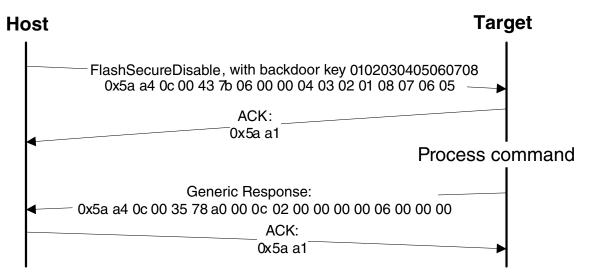



Figure 14-17. Protocol Sequence for FlashSecurityDisable Command

Table 14-44. FlashSecurityDisable Command Packet Format (Example)

| FlashSecurityDisable | Parameter        | Value                            |
|----------------------|------------------|----------------------------------|
| Framing packet       | start byte       | 0x5A                             |
|                      | packetType       | 0xA4, kFramingPacketType_Command |
|                      | length           | 0x0C 0x00                        |
|                      | crc16            | 0x43 0x7B                        |
| Command packet       | commandTag       | 0x06 - FlashSecurityDisable      |
|                      | flags            | 0x00                             |
|                      | reserved         | 0x00                             |
|                      | parameterCount   | 0x02                             |
|                      | Backdoorkey_low  | 0x04 0x03 0x02 0x01              |
|                      | Backdoorkey_high | 0x08 0x07 0x06 0x05              |

The FlashSecurityDisable command has no data phase.

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with a status code either set to kStatus\_Success upon successful execution of the command, or set to an appropriate error status code.

## 14.3.8.14 FillMemory command

The FillMemory command fills a range of bytes in memory with a data pattern. It follows the same rules as the WriteMemory command. The difference between FillMemory and WriteMemory is that a data pattern is included in FillMemory command parameter, and there is no data phase for the FillMemory command, while WriteMemory does have a data phase.

| Byte # | Command                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 3  | Start address of memory to fill                                                                                                                |
| 4 - 7  | Number of bytes to write with the pattern  • The start address should be 32-bit aligned.  • The number of bytes must be evenly divisible by 4. |
| 8 - 11 | 32-bit pattern                                                                                                                                 |

Table 14-45. Parameters for FillMemory Command

- To fill with a byte pattern (8-bit), the byte must be replicated 4 times in the 32-bit pattern.
- To fill with a short pattern (16-bit), the short value must be replicated 2 times in the 32-bit pattern.

For example, to fill a byte value with 0xFE, the word pattern would be 0xFEFEFEFE; to fill a short value 0x5AFE, the word pattern would be 0x5AFE5AFE.

Special care must be taken when writing to flash.

- First, any flash sector written to must have been previously erased with a FlashEraseAll, FlashEraseRegion, or FlashEraseAllUnsecure command.
- Writing to flash requires the start address to be .
- If the VerifyWrites property is set to true, then writes to flash will also perform a flash verify program operation.

When writing to RAM, the start address need not be aligned, and the data will not be padded.

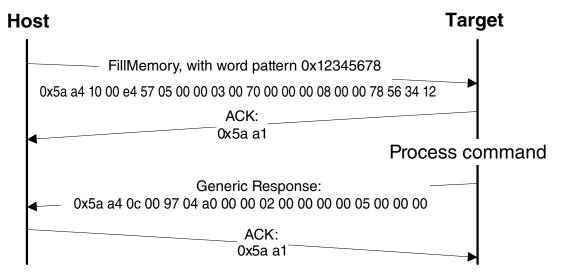



Figure 14-18. Protocol Sequence for FillMemory Command

| FillMemory     | Parameter      | Value                            |
|----------------|----------------|----------------------------------|
| Framing packet | start byte     | 0x5A                             |
|                | packetType     | 0xA4, kFramingPacketType_Command |
|                | length         | 0x10 0x00                        |
|                | crc16          | 0xE4 0x57                        |
| Command packet | commandTag     | 0x05 – FillMemory                |
|                | flags          | 0x00                             |
|                | Reserved       | 0x00                             |
|                | parameterCount | 0x03                             |
|                | startAddress   | 0x00007000                       |
|                | byteCount      | 0x00000800                       |
|                | patternWord    | 0x12345678                       |

**Table 14-46. FillMemory Command Packet Format (Example)** 

The FillMemory command has no data phase.

**Response:** upon successful execution of the command, the target (Kinetis Bootloader) will return a GenericResponse packet with a status code set to kStatus\_Success, or to an appropriate error status code.

## 14.3.8.15 WriteMemory command

The WriteMemory command writes data provided in the data phase to a specified range of bytes in memory (flash or RAM). However, if flash protection is enabled, then writes to protected sectors will fail.

Special care must be taken when writing to flash.

- First, any flash sector written to must have been previously erased with a FlashEraseAll, FlashEraseRegion, or FlashEraseAllUnsecure command.
- Writing to flash requires the start address to be .
- The byte count will be rounded up to a multiple of, and the trailing bytes will be filled with the flash erase pattern (0xff).
- If the VerifyWrites property is set to true, then writes to flash will also perform a flash verify program operation.

When writing to RAM, the start address need not be aligned, and the data will not be padded.

The start address and number of bytes are the 2 parameters required for WriteMemory command.

Table 14-47. Parameters for WriteMemory Command

| Byte # | Command       |
|--------|---------------|
| 0 - 3  | Start address |
| 4 - 7  | Byte count    |

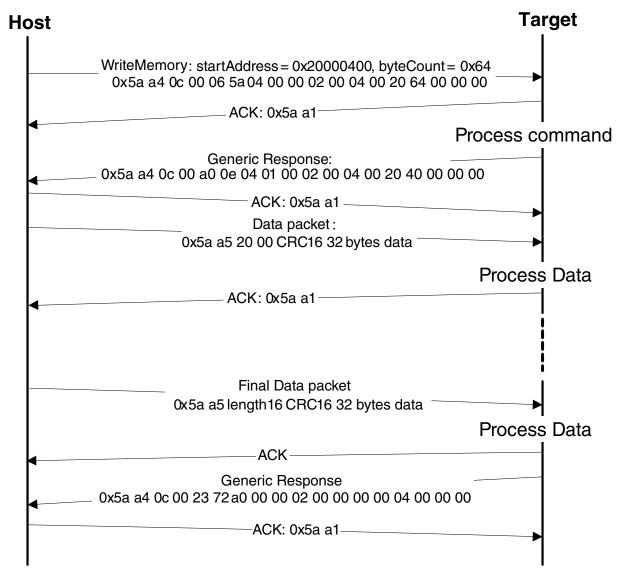



Figure 14-19. Protocol Sequence for WriteMemory Command

**Table 14-48. WriteMemory Command Packet Format (Example)** 

| WriteMemory                                  | Parameter       | Value                            |
|----------------------------------------------|-----------------|----------------------------------|
| Framing packet                               | start byte 0x5A |                                  |
|                                              | packetType      | 0xA4, kFramingPacketType_Command |
|                                              | length          | 0x0C 0x00                        |
|                                              | crc16           | 0x06 0x5A                        |
| Command packet commandTag 0x04 - writeMemory |                 | 0x04 - writeMemory               |
|                                              | flags           | 0x00                             |
|                                              | reserved        | 0x00                             |
|                                              | parameterCount  | 0x02                             |
|                                              | startAddress    | 0x20000400                       |
| byteCount 0x00000064                         |                 | 0x0000064                        |

KL28Z Reference Manual, Rev. 4, 06/2016

**Data Phase:** The WriteMemory command has a data phase; the host will send data packets until the number of bytes of data specified in the byteCount parameter of the WriteMemory command are received by the target.

**Response:** The target (Kinetis Bootloader ) will return a GenericResponse packet with a status code set to kStatus\_Success upon successful execution of the command, or to an appropriate error status code.

## 14.3.8.16 Read memory command

The ReadMemory command returns the contents of memory at the given address, for a specified number of bytes. This command can read any region of memory accessible by the CPU and not protected by security.

The start address and number of bytes are the 2 parameters required for ReadMemory command.

Table 14-49. Parameters for read memory command

| Byte           | Parameter     | Description                                  |  |
|----------------|---------------|----------------------------------------------|--|
| 0-3            | Start address | Start address of memory to read from         |  |
| 4-7 Byte count |               | Number of bytes to read and return to caller |  |

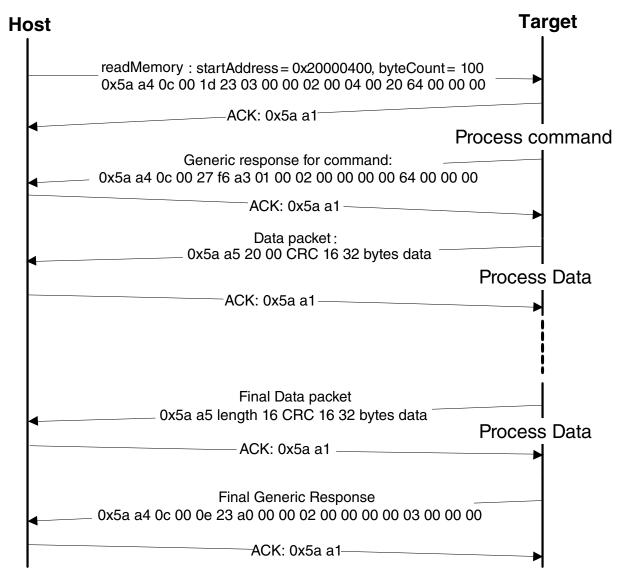



Figure 14-20. Command sequence for read memory

| ReadMemory     | Parameter      | Value                      |  |
|----------------|----------------|----------------------------|--|
| Framing packet | Start byte     | 0x5A0xA4,                  |  |
|                | packetType     | kFramingPacketType_Command |  |
|                | length         | 0x0C 0x00                  |  |
|                | crc16          | 0x1D 0x23                  |  |
| Command packet | commandTag     | 0x03 - readMemory          |  |
|                | flags          | 0x00                       |  |
|                | reserved       | 0x00                       |  |
|                | parameterCount | 0x02                       |  |
|                | startAddress   | 0x20000400                 |  |
|                | byteCount      | 0x00000064                 |  |

**Data Phase:** The ReadMemory command has a data phase. Since the target (Kinetis Bootloader) works in slave mode, the host need pull data packets until the number of bytes of data specified in the byteCount parameter of ReadMemory command are received by host.

**Response:** The target (Kinetis Bootloader) will return a GenericResponse packet with a status code either set to kStatus\_Success upon successful execution of the command, or set to an appropriate error status code.

## 14.3.9 Bootloader Exit state

The Kinetis Bootloader tries to reconfigure the system back to the reset state in the following situations:

- After completion of an Execute command, but before jumping to the specified entry point.
- After a peripheral detection timeout, but before jumping to the application entry point.

In general, all peripherals are reset. However, the application must consider the following situations:

- If VLPR mode is active during a system boot, then the bootloader will exit VLPR mode on entry (to bootloader operation), and VLPR mode will not be restored after exiting from the bootloader.
- If high speed clocking is selected in the Bootloader Configuration Area, then high speed clocks will be retained after exiting from the bootloader.
- Upon exit from the bootloader, the bootloader restores the VTOR register to its default value (0x0).

## 14.4 Peripherals Supported

This section describes the peripherals supported by the Kinetis ROM Bootloader. To use an interface for bootloader communications, the peripheral must be enabled in the BCA, as shown in Table 14-3. If the BCA is invalid (such as all 0xFF bytes), then all peripherals will be enabled by default.

## 14.4.1 LPI2C Peripheral

The Kinetis Bootloader in ROM supports loading data into flash via the LPI2C peripheral, where the LPI2C peripheral serves as the LPI2C slave. A 7-bit slave address is used during the transfer.

Customizing an LPI2C slave address is also supported. This feature is enabled if the Bootloader Configuration Area (BCA) (shown in Table 14-3) is enabled (tag field is filled with 'kcfg') and the i2cSlaveAddress field is filled with a value other than 0xFF. 0x10 is used as the default LPI2C slave address.

The maximum supported LPI2C baud rate depends on corresponding clock configuration field in the BCA. Typical supported baud rate is 400 kbps with factory settings. Actual supported baud rate may be lower or higher than 400 kbps, depending on the actual value of the clockFlags and the clockDivider fields.

Because the LPI2C peripheral serves as an LPI2C slave device, each transfer should be started by the host, and each outgoing packet should be fetched by the host.

- An incoming packet is sent by the host with a selected LPI2C slave address and the direction bit is set as write.
- An outgoing packet is read by the host with a selected LPI2C slave address and the direction bit is set as read.
- 0x00 will be sent as the response to host if the target is busy with processing or preparing data.

The following flow charts demonstrate the communication flow of how the host reads ping packet, ACK and response from the target.

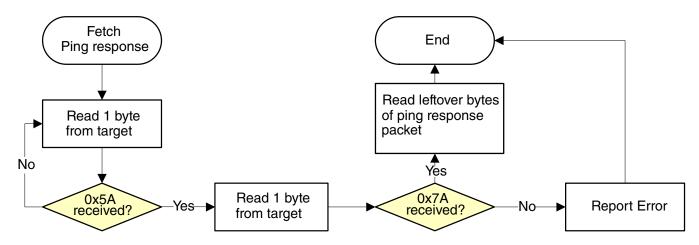



Figure 14-21. Host reads ping response from target via LPI2C

#### **Chapter 14 Kinetis ROM Bootloader**

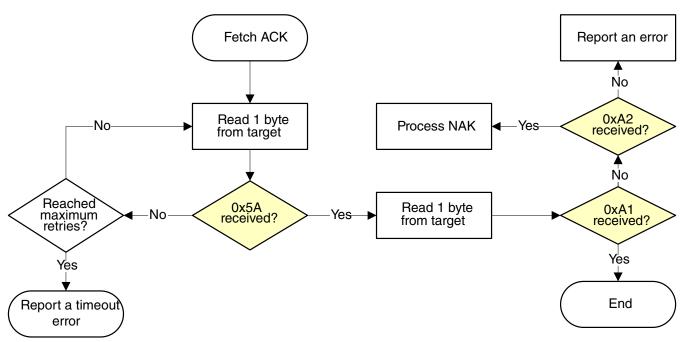



Figure 14-22. Host reads ACK packet from target via LPI2C

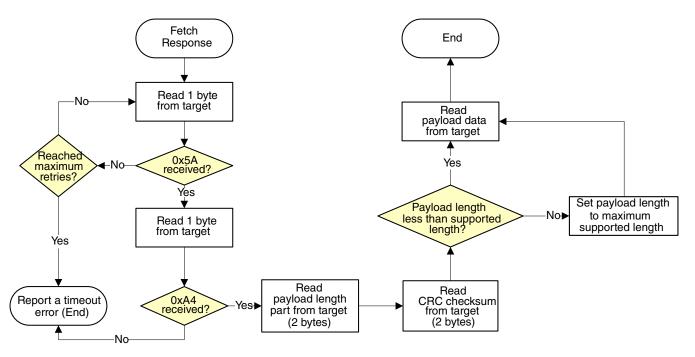



Figure 14-23. Host reads response from target via LPI2C

# 14.4.2 LPSPI Peripheral

The Kinetis Bootloader in ROM supports loading data into flash via the LPSPI peripheral, where the LPSPI peripheral serves as a LPSPI slave.

#### **Peripherals Supported**

Maximum supported baud rate of LPSPI depends on the clock configuration fields in the Bootloader Configuration Area (BCA) shown in Table 14-3. The typical supported baud rate is 400 kbps with the factory settings. The actual baud rate is lower or higher than 400 kbps, depending on the actual value of the clockFlags and clockDivider fields in the BCA.

The LPSPI peripheral uses the following bus attributes:

- Clock Phase = 1 (Second Edge)
- Clock Polarity = 1 (Active Low)

Because the LPSPI peripheral in ROM serves as a LPSPI slave device, each transfer should be started by the host, and each outgoing packet should be fetched by the host.

The transfer on LPSPI is slightly different from I2C:

- Host will receive 1 byte after it sends out any byte.
- Received bytes should be ignored when host is sending out bytes to target
- Host starts reading bytes by sending 0x00s to target
- The byte 0x00 will be sent as response to host if target is under the following conditions:
  - Processing incoming packet
  - Preparing outgoing data
  - · Received invalid data

The LPSPI bus configuration is:

- Phase = 1; data is sampled on rising edges
- Polarity = 1; idle is high
- MSB is transmitted first

For any transfer where the target does not have actual data to send, the target (slave) is responsible for ensuring that 0x00 bytes will be returned to the host (master). The host uses framing packets to identify real data and not "dummy" 0x00 bytes (which do not have framing packets).

The following flowcharts demonstrate how the host reads a ping response, an ACK and a command response from target via LPSPI.

#### Chapter 14 Kinetis ROM Bootloader

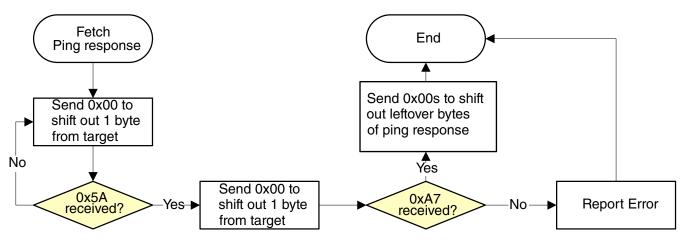



Figure 14-24. Host reads ping packet from target via LPSPI

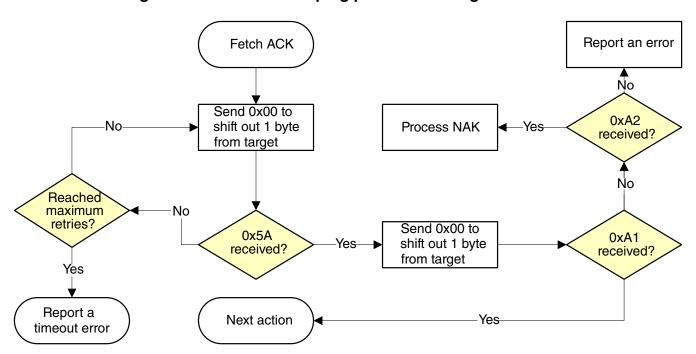



Figure 14-25. Host reads ACK from target via LPSPI

#### **Peripherals Supported**

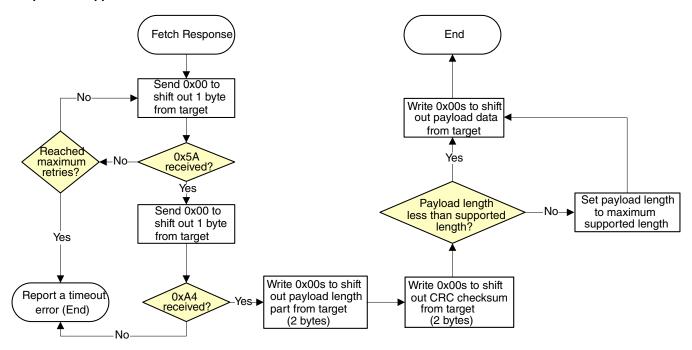



Figure 14-26. Host reads response from target via LPSPI

## 14.4.3 LPUART Peripheral

The Kinetis Bootloader integrates an autobaud detection algorithm for the LPUART peripheral, thereby providing flexible baud rate choices.

**Autobaud feature:** If LPUARTn is used to connect to the bootloader, then the LPUARTn\_RX pin must be kept high and not left floating during the detection phase in order to comply with the autobaud detection algorithm. After the bootloader detects the ping packet (0x5A 0xA6) on LPUARTn\_RX, the bootloader firmware executes the autobaud sequence. If the baudrate is successfully detected, then the bootloader will send a ping packet response [(0x5A 0xA7), protocol version (4 bytes), protocol version options (2 bytes) and crc16 (2 bytes)] at the detected baudrate. The Kinetis Bootloader then enters a loop, waiting for bootloader commands via the LPUART peripheral.

#### NOTE

- The autobaud feature requires a ping packet with a higher accuracy (+/-3%), or the ping packet will be ignored as noise.
- The data bytes of the ping packet must be sent continuously (with no more than 80 ms between bytes) in a fixed LPUART transmission mode (8-bit data, no parity bit and 1 stop bit). If the bytes of the ping packet are sent one-by-one with more than 80 ms delay between them, then the

autobaud detection algorithm may calculate an incorrect baud rate. In this case, the autobaud detection state machine should be reset.

**Supported baud rates:** The baud rate is closely related to the MCU core and system clock frequencies. Typical baud rates supported are 9600, 19200, 38400, 57600, and 115200. Of course, to influence the performance of autobaud detection, the clock configuration in BCA can be changed.

**Packet transfer:** After autobaud detection succeeds, bootloader communications can take place over the LPUART peripheral. The following flow charts show:

- How the host detects an ACK from the target
- How the host detects a ping response from the target
- How the host detects a command response from the target

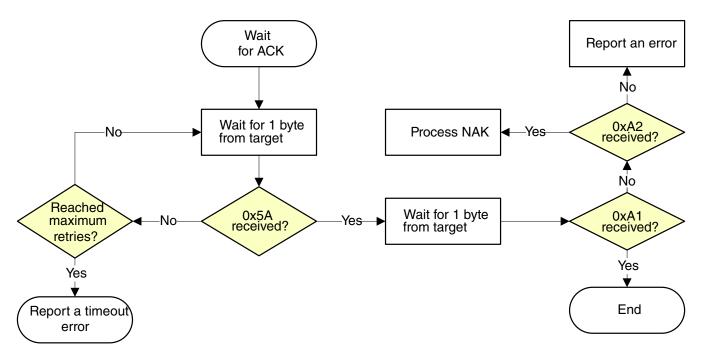



Figure 14-27. Host reads an ACK from target via LPUART

KL28Z Reference Manual, Rev. 4, 06/2016

#### Peripherals Supported Wait for End ping response Wait for remaining bytes Wait for 1 byte of ping response from target packet ¥ Yes Νo 0x5A Wait for 1 byte 0xA7 Report Error received? received? from target

Figure 14-28. Host reads a ping response from target via LPUART

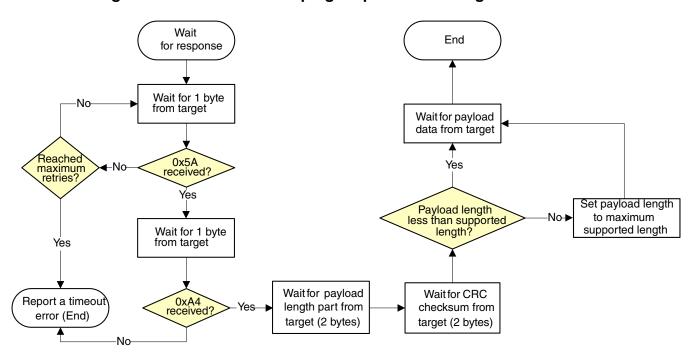



Figure 14-29. Host reads a command response from target via LPUART

## 14.4.4 USB peripheral

The Kinetis Bootloader in the ROM supports loading data into flash via the USB peripheral. The target is implemented as a USB HID class.

USB HID does not use framing packets; instead the packetization inherent in the USB protocol itself is used. The ability for the device to NAK Out transfers (until they can be received) provides the required flow control; the built-in CRC of each USB packet provides the required error detection.

## 14.4.4.1 Clock configuration

The ROM supports the crystal-less USB feature. If the USB peripheral is enabled, then the ROM enables the 48-MHz. The ROM also enables the USB clock recovery feature (by setting USBx\_CLK\_RECOVER\_CTRL[CLOCK\_RECOVER\_EN] to 1).

## 14.4.4.2 Device descriptor

The Kinetis ROM configures the default USB VID/PID/Strings as below:

Default VID/PID:

- VID = 0x15A2
- PID = 0x0073

## Default Strings:

- Manufacturer [1] = "Freescale Semiconductor Inc." (Note that Freescale Semiconductor is now NXP Semiconductors.)
- Product [2] = "Kinetis Bootloader"

You can customize the USB VID/PID/Strings with the Bootloader Configuration Area (BCA) of the flash. See Table 14-3. For example, the USB VID and PID can be customized by writing the new VID to the usbVid(BCA + 0x14) field and the new PID to the usbPid(BCA + 0x16) field of the BCA in flash. To change the USB strings, you need to prepare a structure (like the one shown below) in the flash, and then write the address of the g\_languages structure to the usbStringsPointer(BCA + 0x18) field of the BCA.

```
g_languages = { USB_STR_0,
sizeof(USB STR 0),
(uint 16)0x0409,
(const uint_8 **)g_string_descriptors,
g_string_desc_size);
the USB_STR_0, g_string_descriptors and g_string_desc_size are defined as below.
USB STR 0[4] =
                   \{0x02,
0x03,
0x09,
0x04
};
g_string_descriptors[4] =
{ USB STR 0,
USB STR 1,
USB_STR_2,
USB_STR_3);
g_string_desc_size[4] =
{ sizeof(USB STR 0),
sizeof(USB_STR_1),
sizeof(USB_STR_2),
sizeof(USB STR 3)};
```

#### **Peripherals Supported**

You can make your own structure of USB\_STR\_1, USB\_STR\_2, USB\_STR\_3:

- USB\_STR\_1 is used for the manufacturer string.
- USB\_STR\_2 is used for the product string.
- USB\_STR\_3 is used for the serial number string.

By default, the 3 strings are defined as below:

```
USB STR 1[] =
\{ sizeof(USB STR 1),
USB STRING DESCRIPTOR,
'F',0,
'r',0,
'e',0,
's',0,
'C',0,
'a',0,
'1',0,
'e',0,
11,0,
'S',0,
'e',0,
'm',0,
'i',0,
'c',0,
'0',0,
'n',0,
'd',0,
'u',0,
'C',0,
't',0,
'0',0,
'r',0,
'',0,
'I',0,
'n',0,
'c',0,
};
USB STR 2[] =
\{ \overline{\text{sizeof}}(\text{USB STR 2}),
USB STRING DESCRIPTOR,
יטי, 0,
'S',0,
'B',0,
'',0,
'C',0,
'0',0,
'M',0,
'P',0,
'0',0,
'S',0,
'I',0,
'T',0,
'E',0,
'',0,
'D',0,
'E',0,
'V',0,
'I',0,
'C',0,
};
```

KL28Z Reference Manual, Rev. 4, 06/2016

```
USB STR 3[] =
{ sizeof(USB STR 3),
USB STRING DESCRIPTOR,
'M',0,
'C',0,
'',0,
'H',0,
'E',0,
'N',0,
'R',0,
'D',0,
'E',0,
'I',0,
'C',0,
'E',0
};
```

## **14.4.4.3** Endpoints

The HID peripheral uses 3 endpoints:

- Control (0)
- Interrupt IN (1)
- Interrupt OUT (2)

The Interrupt OUT endpoint is optional for HID class devices, but the Kinetis Bootloader uses it as a pipe, where the firmware can NAK send requests from the USB host.

# 14.4.4.4 HID reports

There are 4 HID reports defined and used by the bootloader USB HID peripheral. The report ID determines the direction and type of packet sent in the report; otherwise, the contents of all reports are the same.

| Report ID | Packet Type | Direction |
|-----------|-------------|-----------|
| 1         | Command     | OUT       |
| 2         | Data        | OUT       |
| 3         | Command     | IN        |
| 4         | Data        | IN        |

## **Get/SetProperty Command Properties**

For all reports, these properties apply:

| Usage Min    | 1   |
|--------------|-----|
| Usage Max    | 1   |
| Logical Min  | 0   |
| Logical Max  | 255 |
| Report Size  | 8   |
| Report Count | 34  |

Each report has a maximum size of 34 bytes. This is derived from the minimum bootloader packet size of 32 bytes, plus a 2-byte report header that indicates the length (in bytes) of the packet sent in the report.

#### NOTE

In the future, the maximum report size may be increased, to support transfers of larger packets. Alternatively, additional reports may be added with larger maximum sizes.

The actual data sent in all of the reports looks like:

| 0     | Report ID         |
|-------|-------------------|
| 1     | Packet Length LSB |
| 2     | Packet Length MSB |
| 3     | Packet[0]         |
| 4     | Packet[1]         |
| 5     | Packet[2]         |
|       |                   |
| N+3-1 | Packet[N-1]       |

This data includes the Report ID, which is required if more than one report is defined in the HID report descriptor. The actual data sent and received has a maximum length of 35 bytes. The Packet Length header is written in little-endian format, and it is set to the size (in bytes) of the packet sent in the report. This size does not include the Report ID or the Packet Length header itself. During a data phase, a packet size of 0 indicates a data phase abort request from the receiver.

# 14.5 Get/SetProperty Command Properties

This section lists the properties of the GetProperty and SetProperty commands.

Table 14-50. Properties used by Get/SetProperty Commands, sorted by Value

| Property               | Writable | Tag Value | Size | Description                                                                                                                                                                                                                            |
|------------------------|----------|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CurrentVersion         | No       | 01h       | 4    | Current bootloader version.                                                                                                                                                                                                            |
| AvailablePeripherals   | No       | 02h       | 4    | The set of peripherals supported on this chip.                                                                                                                                                                                         |
| FlashStartAddress      | No       | 03h       | 4    | Start address of program flash.                                                                                                                                                                                                        |
| FlashSizeInBytes       | No       | 04h       | 4    | Size in bytes of program flash.                                                                                                                                                                                                        |
| FlashSectorSize        | No       | 05h       | 4    | The size in bytes of one sector of program flash.                                                                                                                                                                                      |
|                        |          |           |      | This is the minimum erase size.                                                                                                                                                                                                        |
| FlashBlockCount        | No       | 06h       | 4    | Number of blocks in the flash array.                                                                                                                                                                                                   |
| AvailableCommands      | No       | 07h       | 4    | The set of commands supported by the bootloader.                                                                                                                                                                                       |
| VerifyWrites           | Yes      | 0Ah       | 4    | Controls whether the bootloader will verify writes to flash. VerifyWrites feature is enabled by default.                                                                                                                               |
|                        |          |           |      | 0 - No verification is done.                                                                                                                                                                                                           |
|                        |          |           |      | 1 - Enable verification.                                                                                                                                                                                                               |
| MaxPacketSize          | No       | 0Bh       | 4    | Maximum supported packet size for the currently active peripheral interface.                                                                                                                                                           |
| ReservedRegions        | No       | 0Ch       | 16   | List of memory regions reserved by the bootloader. Returned as value pairs ( <start-address-of-region>, <end-address-of-region>).</end-address-of-region></start-address-of-region>                                                    |
|                        |          |           |      | <ul> <li>If HasDataPhase flag is not set, then the Response packet parameter count indicates the number of pairs.</li> <li>If HasDataPhase flag is set, then the second parameter is the number of bytes in the data phase.</li> </ul> |
| RAMStartAddress        | No       | 0Eh       | 4    | Start address of RAM                                                                                                                                                                                                                   |
| RAMSizeInBytes         | No       | 0Fh       | 4    | Size in bytes of RAM                                                                                                                                                                                                                   |
| SystemDeviceId         | No       | 10h       | 4    | Value of the Kinetis System Device Identification register.                                                                                                                                                                            |
| FlashSecurityState     | No       | 11h       | 4    | Indicates whether Flash security is enabled                                                                                                                                                                                            |
|                        |          |           |      | 0 - Flash security is disabled                                                                                                                                                                                                         |
|                        |          |           |      | 1 - Flash security is enabled                                                                                                                                                                                                          |
| UniqueDeviceId         | No       | 12h       | 16   | Unique device identification, value of Kinetis Unique Identification registers (16 for K series devices, 12 for KL series devices)                                                                                                     |
| FacSupport             | No       | 13h       | 4    | FAC (Flash Access Control) support flag                                                                                                                                                                                                |
|                        |          |           |      | 0 - FAC not supported                                                                                                                                                                                                                  |
|                        |          |           |      | 1 - FAC supported                                                                                                                                                                                                                      |
| FlashAcessSegmentSize  | No       | 14h       | 4    | The size in bytes of 1 segment of flash                                                                                                                                                                                                |
| FlashAcessSegmentCount | No       | 15h       | 4    | FAC segment count (The count of flash access segments within the flash model.)                                                                                                                                                         |
| FlashReadMargin        | Yes      | 16h       | 4    | The margin level setting for flash erase and program verify commands.                                                                                                                                                                  |
|                        |          |           |      | 0 = Normal                                                                                                                                                                                                                             |
|                        |          |           |      | 1 = User (default)                                                                                                                                                                                                                     |

Table continues on the next page...

Table 14-50. Properties used by Get/SetProperty Commands, sorted by Value (continued)

| Property      | Writable | Tag Value | Size | Description                     |  |  |  |
|---------------|----------|-----------|------|---------------------------------|--|--|--|
|               |          |           |      | 2 = Factory                     |  |  |  |
| TargetVersion | No       | 18h       | 4    | SoC target build version number |  |  |  |

## 14.5.1 Property Definitions

Get/Set property definitions are provided in this section.

# 14.5.1.1 CurrentVersion Property

The value of this property is a 4-byte structure containing the current version of the bootloader.

Table 14-51. Fields of CurrentVersion property:

| Bits  | [31:24]           | [23:16]       | [15:8]        | [7:0]          |
|-------|-------------------|---------------|---------------|----------------|
| Field | Name = 'K' (0x4B) | Major version | Minor version | Bugfix version |

## 14.5.1.2 AvailablePeripherals Property

The value of this property is a bitfield that lists the peripherals supported by the bootloader and the hardware on which it is running.

Table 14-52. Peripheral bits:

| Bit        | [31:7]   | [6]     | [5]     | [4]     | [3]      | [2]         | [1]         | [0]    |
|------------|----------|---------|---------|---------|----------|-------------|-------------|--------|
| Peripheral | Reserved | USB DFU | USB CDC | USB HID | Reserved | LPSPI Slave | LPI2C Slave | LPUART |

If the peripheral is available, then the corresponding bit will be set in the property value. All reserved bits must be set to 0.

# 14.5.1.3 AvailableCommands Property

This property value is a bitfield with set bits indicating the commands enabled in the bootloader. Only commands that can be sent from the host to the target are listed in the bitfield. Response commands such as GenericResponse are excluded.

KL28Z Reference Manual, Rev. 4, 06/2016

The bit number that identifies whether a command is present is the command's tag value minus 1. 1 is subtracted from the command tag because the lowest command tag value is 0x01. To get the bit mask for a given command, use this expression:

$$mask = 1 \ll (taq - 1)$$

Table 14-53. Command bits:

| Bit     | [31:<br>18] | [17]     | [16]     | [15]              | [14]          | [13]             | [12]                  | [11]        | [10]  | [9]  | [8]     | [7]           | [6]         | [5]                  | [4]        | [3]         | [2]        | [1]              | [0]           |
|---------|-------------|----------|----------|-------------------|---------------|------------------|-----------------------|-------------|-------|------|---------|---------------|-------------|----------------------|------------|-------------|------------|------------------|---------------|
| Command | Reserved    | Reserved | Reserved | FlashReadResource | FlashReadOnce | FlashProgramOnce | FlashEraseAllUnsecure | SetProperty | Reset | Call | Execute | ReceiveSBFile | GetProperty | FlashSecurityDisable | FillMemory | WriteMemory | ReadMemory | FlashEraseRegion | FlashEraseAll |

#### **TargetVersion Property** 14.5.1.4

The value of this property is a 4-byte structure containing the target version of the bootloader. The TargetVersion number returned returned for this device is 1.0.0.

Table 14-54. Fields of TargetVersion property:

| Bits  | [31:24]           | [23:16]       | [15:8]        | [7:0]          |
|-------|-------------------|---------------|---------------|----------------|
| Field | Name = 'T' (0x4B) | Major version | Minor version | Bugfix version |

#### 14.6 SB File Decryption Support

The bootloader supports the loading and flashing of applications using an encrypted SB file format. Using the ReceiveSbFile command, the host can send an SB file that contains various commands and data that will be executed on the Kinetis bootloader (the target). An unencrypted SB file can be flashed to the target only when flash security is disabled. When flash security is enabled, all memory writes and reads are disabled, with the exception being an encrypted SB file that can be sent to the target. The SB file is

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 311

#### **SB File Decryption Support**

decrypted using an AES-128 style key (16 bytes). Before you send the encrypted file, the key must be written to the target using the FlashProgramOnce command. The SB key begins at offset 0x30 in the program once registers.

For example, to program a key of 000102030405060708090A0B0C0D0E0F:

- FlashProgramOnce to index 0x30 with 4 bytes of 0x03020100
- FlashProgramOnce to index 0x31 with 4 bytes of 0x07060504
- FlashProgramOnce to index 0x32 with 4 bytes of 0x0B0A0908
- FlashProgramOnce to index 0x33 with 4 bytes of 0x0F0E0D0C

If no key is programmed in these registers, then an attempt is made to decrypt the file using an all-zero key.

## 14.6.1 Decryption using MMCAU

The MMCAU code must flashed to the device memory in a separate step. The location of MMCAU initialization, encryption, and decryption functions does not matter, as long as it is on accessible memory. The provided functions are expected to have the following prototypes:

```
void mmcau_aes_init(unsigned int* key, unsigned int* keySchedule, unsigned int* rcon);
void mmcau_aes_encrypt(unsigned int* in, unsigned int* key, unsigned int* keySchedule,
unsigned int* out);
void mmcau_aes_decrypt(unsigned int* in, unsigned int* key, unsigned int* keySchedule,
unsigned int* out);
```

#### NOTE

The mmCAU software library source code can be downloaded from www.nxp.com.

In order to decrypt an encrypted SB file using the MMCAU peripheral, the following information must be provided:

• The Bootloader Configuration Area (BCA) contains a pointer to an MMCAU set-up structure. The location in the configuration area (relative to the BCA) is at offset 0x20, as shown in the BCA layout in this document. The pointer is a little endian memory location that contains the following structure:

```
typedef struct mmcau_function_info
{
   uint32_t tag;
   uint32_t length;
   uint32_t aes_init_start;
   uint32_t aes_encrypt_start;
   uint32_t aes_decrypt_start;
}
}
```

For decryption to work properly, the mmcau\_function\_info structure must contain valid values for all the fields in this structure:

- a. The tag field must equal 'kcau'.
- b. The length field must equal the size of the total length of the aes\_init, aes\_encrypt, and aes\_decrypt functions. All of these function must be in a contiguous region of memory that fits within 1280 bytes. All code in the functions must be relocatable.
- c. aes\_init\_start contains the memory location of the aes\_init function.
- d. aes\_encrypt\_start contains the memory location of the aes\_encrypt function.
- e. aes\_decrypt\_start contains the memory location of the aes\_decrypt function.
- The MMCAU information structure and the actual MMCAU functions do not need to be in contiguous memory.
- A ready-to-use library contains these functions, but this library needs to be rebuilt to be compatible with the prototypes above. Specifically, the rcon variable needs to be passed into the functions, to make the code relocatable.

After an encrypted SB file starts to be received by the bootloader, the information for setting up the MMCAU is retrieved and the decryption process begins.

- If the information is incorrect or if the functions do not meet the above requirements, then the bootloader can become unresponsive, so be sure that everything is correctly implemented as above.
- If there is a recoverable error, then the bootloader will return a relevant error code.

If everything is operating properly, then the exact same response will be received as though the bootloader was receiving an unencrypted file via the ReceiveSbFile command.

# 14.7 CRC-32 Check on Application Data

Using CRC-32 and a given address range, the ROM bootloader supports performing an application integrity check. To properly configure this functionality, the following fields in the bootloader configuration area must be set:

- Set crcStartAddress to the start address that should be used for the CRC check.
- Set crcByteCount to the number of bytes to run the CRC check on, from the start address.
- Set crcExpectedValue to the value that the CRC calculation should result in.

#### **Considerations:**

• If all of the above fields are unset (all 0xFF bytes for crcStartAddress, crcByteCount, and crcExpectedValue), then the ROM bootloader returns kStatus\_AppCrcCheckInvalid.

#### **Kinetis Bootloader Status Error Codes**

- If any one of the above fields are set (crcStartAddress, crcByteCount, and crcExpectedValue), then the ROM bootloader checks if the given address range of the application is valid and if the application just resides in internal flash:
  - If false, then the bootloader returns kStatus\_AppCrcCheckOutOfRange.
  - If true, then the CRC check occurs. If the CRC check fails, then the bootloader returns kStatus\_AppCrcCheckFailed; if the CRC check succeeds, then it returns kStatus\_AppCrcCheckPassed.
  - If the bootloader returns kStatus\_AppCrcCheckOutOfRange or kStatus\_AppCrcCheckFailed, then an external pin (PTA6) will also be asserted, to indicate CRC check failure.

#### NOTE

PTA6 is only available on the 121 MAP BGA and 100 LQFP packages.

- Only if kStatus\_AppCrcCheckPassed is returned, will the application be jumped to; otherwise the bootloader will stay active, and wait for further commands.
- The CRC32 algorithm in ROM uses a polynomial (0x04C1\_1DB7), and the initial seed is 0xFFFF\_FFFF.

# 14.8 Kinetis Bootloader Status Error Codes

This section describes the status error codes that the Kinetis Bootloader returns to the host.

Table 14-55. Kinetis Bootloader Status Error Codes, sorted by Value

| Error Code                       | Value | Description                                                |
|----------------------------------|-------|------------------------------------------------------------|
| kStatus_Success                  | 0     | Operation succeeded without error.                         |
| kStatus_Fail                     | 1     | Operation failed with a generic error.                     |
| kStatus_ReadOnly                 | 2     | Requested value cannot be changed because it is read-only. |
| kStatus_OutOfRange               | 3     | Requested value is out of range.                           |
| kStatus_InvalidArgument          | 4     | The requested command's argument is undefined.             |
| kStatus_Timeout                  | 5     | A timeout occurred.                                        |
| kStatus_FlashSizeError           | 100   | Not used.                                                  |
| kStatus_FlashAlignmentError      | 101   | Address or length does not meet required alignment.        |
| kStatus_FlashAddressError        | 102   | Address or length is outside addressable memory.           |
| kStatus_FlashAccessError         | 103   | The FTFA_FSTAT[ACCERR] bit is set.                         |
| kStatus_FlashProtectionViolation | 104   | The FTFA_FSTAT[FPVIOL] bit is set.                         |
| kStatus_FlashCommandFailure      | 105   | The FTFA_FSTAT[MGSTAT0] bit is set.                        |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 14-55. Kinetis Bootloader Status Error Codes, sorted by Value (continued)

| Error Code                       | Value | Description                                                                            |
|----------------------------------|-------|----------------------------------------------------------------------------------------|
| kStatus_FlashUnknownProperty     | 106   | Unknown Flash property.                                                                |
| kStatus_FlashEraseKeyError       | 107   | The key provided does not match the programmed flash key.                              |
| kStatus_FlashRegionExecuteOnly   | 108   | The area of flash is protected as execute only.                                        |
| kStatus_I2C_SlaveTxUnderrun      | 200   | I2C Slave TX Underrun error.                                                           |
| kStatus_I2C_SlaveRxOverrun       | 201   | I2C Slave RX Overrun error.                                                            |
| kStatus_I2C_AribtrationLost      | 202   | I2C Arbitration Lost error.                                                            |
| kStatus_SPI_SlaveTxUnderrun      | 300   | SPI Slave TX Underrun error.                                                           |
| kStatus_SPI_SlaveRxOverrun       | 301   | SPI Slave RX Overrun error.                                                            |
| kStatus_SPI_Timeout              | 302   | SPI tranfser timed out.                                                                |
| kStatus_SPI_Busy                 | 303   | SPI instance is already busy performing a transfer.                                    |
| kStatus_SPI_NoTransferInProgress | 304   | Attempt to abort a transfer when no transfer was in progress.                          |
| kStatus_UnknownCommand           | 10000 | The requested command value is undefined.                                              |
| kStatus_SecurityViolation        | 10001 | Command is disallowed because flash security is enabled.                               |
| kStatus_AbortDataPhase           | 10002 | Abort the data phase early.                                                            |
| kStatus_Ping                     | 10003 | Internal: received ping during command phase.                                          |
| kStatusRomLdrSectionOverrun      | 10100 | The loader has finished processing the SB file.                                        |
| kStatusRomLdrSignature           | 10101 | The signature of the SB file is incorrect.                                             |
| kStatusRomLdrSectionLength       | 10102 | The section length in chunks is invalid.                                               |
| kStatusRomLdrUnencryptedOnly     | 10103 | An encrypted SB file has been sent and decryption support is not available.            |
| kStatusRomLdrEOFReached          | 10104 | The end of the SB file has been reached.                                               |
| kStatusRomLdrChecksum            | 10105 | The checksum of a command tag block is invalid.                                        |
| kStatusRomLdrCrc32Error          | 10106 | The CRC-32 of the data for a load command is incorrect.                                |
| kStatusRomLdrUnknownCommand      | 10107 | An unknown command was found in the SB file.                                           |
| kStatusRomLdrldNotFound          | 10108 | There was no bootable section found in the SB file.                                    |
| kStatusRomLdrDataUnderrun        | 10109 | The SB state machine is waiting for more data.                                         |
| kStatusRomLdrJumpReturned        | 10110 | The function that was jumped to by the SB file has returned.                           |
| kStatusRomLdrCallFailed          | 10111 | The call command in the SB file failed.                                                |
| kStatusRomLdrKeyNotFound         | 10112 | A matching key was not found in the SB file's key dictionary to unencrypt the section. |
| kStatusRomLdrSecureOnly          | 10113 | The SB file sent is unencrypted and security on the target is enabled.                 |
| kStatusRomLdrResetReturned       | 10114 | The SB file reset operation has unexpectedly returned.                                 |
| kStatusMemoryRangeInvalid        | 10200 | Memory range conflicts with a protected region.                                        |
| kStatus_UnknownProperty          | 10300 | The requested property value is undefined.                                             |
| kStatus_ReadOnlyProperty         | 10301 | The requested property value cannot be written.                                        |

Table continues on the next page...

#### **Kinetis Bootloader Status Error Codes**

# Table 14-55. Kinetis Bootloader Status Error Codes, sorted by Value (continued)

| Error Code                    | Value | Description                                                                                        |
|-------------------------------|-------|----------------------------------------------------------------------------------------------------|
| kStatus_InvalidPropertyValue  | 10302 | The specified property value is invalid.                                                           |
| kStatus_AppCrcCheckPassed     | 10400 | CRC check is valid and passed.                                                                     |
| kStatus_AppCrcCheckFailed     | 10401 | CRC check is valid but failed.                                                                     |
| kStatus_AppCrcCheckInactive   | 10402 | CRC check is inactive.                                                                             |
| kStatus_AppCrcCheckInvalid    | 10403 | CRC check is invalid, because the BCA is invalid or the CRC parameters are unset (all 0xFF bytes). |
| kStatus_AppCrcCheckOutOfRange | 10404 | CRC check is valid but addresses are out of range.                                                 |

# **Chapter 15 Cryptographic Acceleration Unit (CAU)**

## 15.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The memory-mapped Cryptographic Acceleration Unit (CAU) is a coprocessor that is connected to the processor's Private Peripheral Bus (PPB). It supports the hardware implementation of a set of specialized operations to improve the throughput of software-based security encryption/decryption operations and message digest functions.

The CAU supports acceleration of the DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms. NXP provides an optimized C-function library that provides the appropriate software building blocks to implement higher-level security functions.

# 15.2 CAU Block Diagram

A simplified block diagram is given below that illustrates the CAU and a table to show its parts.

#### **CAU Block Diagram**




Figure 15-1. CAU block diagram

Table 15-1. CAU parts table

| Item                 | Description                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Translator submodule | Provides the bridge between the PPB interface and the CAU module. Passes memory-mapped commands and data on the PPB to/from the CAU |
| 4-entry FIFO         | Contains commands and input operands and the associated control captured from the PPB and sent to the CAU                           |
| CAU                  | 3-terminal block with a command and optional input operand and a result bus. More details in following figure.                      |

The following figure shows the CAU block in more detail.

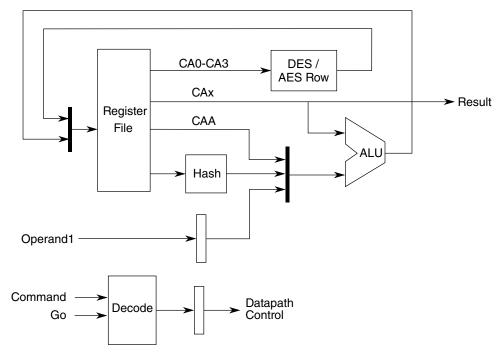



Figure 15-2. Top-level CAU block diagram

## 15.3 Overview

As the name suggests, the CAU provides a mechanism for memory-mapped register reads and writes to be transformed into specific commands and operands sent to the CAU coprocessor.

The CAU translator module performs the following functions:

- All the required functions affecting the transmission of commands to the CAU module.
- If needed, stalling the PPB transactions based on the state of the 4-entry command/data FIFO.
- Some basic integrity checks on PPB operations.

The set of implemented algorithms provides excellent support for network security standards, such as SSL and IPsec. Additionally, using the CAU efficiently permits the implementation of any higher level functions or modes of operation, such as HMAC, CBC, and so on based on the supported algorithms.

The cryptographic algorithms are implemented partially in software with only functions critical to increasing performance implemented in hardware. The CAU allows for efficient, fine-grained partitioning of functions between hardware and software:

#### **Features**

- Implement the innermost security kernel functions using the coprocessor instructions.
- Implement higher level functions in software by using the standard processor instructions.

This partitioning of functions is key to minimizing size of the CAU while maintaining a high level of throughput. Using software for some functions also simplifies the CAU design. The CAU implements a set of coprocessor commands that operate on a register file of 32-bit registers.

## 15.4 Features

The CAU includes the following distinctive features:

- Supports DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms
- Simple, flexible programming model
- Ability to send up to three commands in one data write operation

# 15.5 Memory map/Register definition

The CAU contains multiple registers used by each of the supported algorithms. The following table shows registers that are applicable to each supported algorithm and indicates the corresponding letter designations for each algorithm.

For more information on these letter designations, see the supported algorithm specifications.

| Code | Register                                   | DES | AES | MD5 | SHA-1 | SHA-256 |
|------|--------------------------------------------|-----|-----|-----|-------|---------|
| 0    | CAU Status<br>Register<br>(CASR)           | _   | _   | _   | _     | _       |
| 1    | CAU<br>Accumulator<br>(CAA)                | _   | _   | а   | Т     | Т       |
| 2    | General-<br>Purpose<br>Register 0<br>(CA0) | С   | Wo  | _   | A     | A       |
| 3    | General-<br>Purpose<br>Register 1<br>(CA1) | D   | W1  | b   | В     | В       |

Table continues on the next page...

| Code | Register                                   | DES | AES | MD5 | SHA-1 | SHA-256          |
|------|--------------------------------------------|-----|-----|-----|-------|------------------|
| 4    | General-<br>Purpose<br>Register 2<br>(CA2) | L   | W2  | С   | С     | С                |
| 5    | General-<br>Purpose<br>Register 3<br>(CA3) | R   | W3  | d   | D     | D                |
| 6    | General-<br>Purpose<br>Register 4<br>(CA4) | _   | _   | _   | E     | Е                |
| 7    | General-<br>Purpose<br>Register 5<br>(CA5) | _   | _   | _   | W     | F                |
| 8    | General-<br>Purpose<br>Register 6<br>(CA6) | _   | _   | _   | _     | G                |
| 9    | General-<br>Purpose<br>Register 7<br>(CA7) | _   | _   | _   | _     | Н                |
| 10   | General-<br>Purpose<br>Register 8<br>(CA8) | _   | _   | _   | _     | W/T <sub>1</sub> |

The CAU supports only 32-bit operations and register accesses. All registers support read, write, and ALU operations. However, only bits 1–0 of the CASR are writeable. Bits 31–2 of the CASR must be written as 0 for compatibility with future versions of the CAU.

The codes listed in this section are used in the memory-mapped commands. For more details on this, see CAU programming model.

#### NOTE

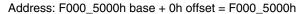
In the following table, the "address" or "offset" refers to the command code value for the CAU registers.

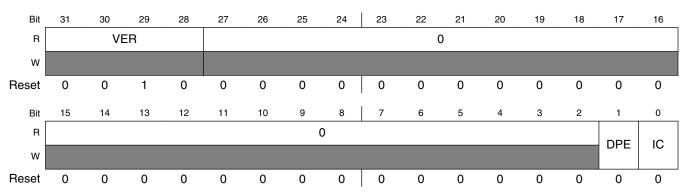
## **CAU** memory map

| Absolute address (hex) | Register name               | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|-----------------------------|--------------------|--------|-------------|------------------|
| F000_5000              | Status Register (CAU0_CASR) |                    | R/W    | 2000_0000h  | 15.5.1/322       |
| F000_5004              | Accumulator (CAU0_CAA)      |                    | R/W    | 0000_0000h  | 15.5.2/323       |

Table continues on the next page...

N/D O . . . . . . .


KL28Z Reference Manual, Rev. 4, 06/2016


## **CAU** memory map (continued)

| Absolute<br>address<br>(hex) | Register name                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------|--------------------|--------|-------------|------------------|
| F000_5008                    | General Purpose Register (CAU0_CA0) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_500C                    | General Purpose Register (CAU0_CA1) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5010                    | General Purpose Register (CAU0_CA2) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5014                    | General Purpose Register (CAU0_CA3) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5018                    | General Purpose Register (CAU0_CA4) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_501C                    | General Purpose Register (CAU0_CA5) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5020                    | General Purpose Register (CAU0_CA6) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5024                    | General Purpose Register (CAU0_CA7) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |
| F000_5028                    | General Purpose Register (CAU0_CA8) | 32                 | R/W    | 0000_0000h  | 15.5.3/323       |

# 15.5.1 Status Register (CAUx\_CASR)

CASR contains the status and configuration for the CAU.



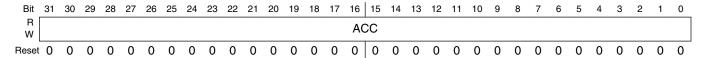


## CAUx\_CASR field descriptions

| Field    | Description                                                                                 |
|----------|---------------------------------------------------------------------------------------------|
| 31–28    | CAU Version                                                                                 |
| VER      | Indicates CAU version.                                                                      |
|          | 0x1 Initial CAU version.                                                                    |
|          | 0x2 Second version, added support for SHA-256 algorithm (This is the value on this device). |
| 27–2     | This field is reserved.                                                                     |
| Reserved | This read-only field is reserved and always has the value 0.                                |
| 1        | DES Parity Error                                                                            |
| DPE      | Indicates whether the DES parity error is detected.                                         |
|          | 0 No error detected.                                                                        |
|          | 1 DES key parity error detected.                                                            |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016


## CAUx\_CASR field descriptions (continued)

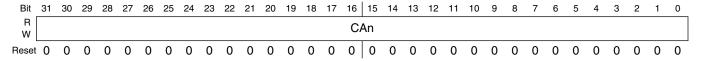
| Field   | Description                                                         |
|---------|---------------------------------------------------------------------|
| 0<br>IC | Illegal Command Indicates an illegal instruction has been executed. |
|         | No illegal commands issued.      Illegal command issued.            |

## 15.5.2 Accumulator (CAUx\_CAA)

Commands use the CAU accumulator for storage of results and as an operand for the cryptographic algorithms.

Address: F000\_5000h base + 4h offset = F000\_5004h




## CAUx\_CAA field descriptions

| Field | Description                             |
|-------|-----------------------------------------|
| ACC   | Accumulator                             |
|       | Stores results of various CAU commands. |

# 15.5.3 General Purpose Register (CAUx\_CAn)

The General Purpose Register is used in the CAU commands for storage of results and as operands for various cryptographic algorithms.

Address: F000\_5000h base + 8h offset +  $(4d \times i)$ , where i=0d to 8d



## CAUx\_CAn field descriptions

| Field | Description                                                                           |
|-------|---------------------------------------------------------------------------------------|
| CAn   | General Purpose Registers                                                             |
|       | Used by the CAU commands. Some cryptographic operations work with specific registers. |

KL28Z Reference Manual, Rev. 4, 06/2016

# 15.6 Functional description

This section discusses the programming model and operation of the CAU.

# 15.6.1 CAU programming model

The 4-entry FIFO is indirectly mapped into a 4-KB address space associated with the CAU located on this device. This address space is effectively split into two equal regions:

- one used to directly write commands for CAU load operations
- the other used to send commands and input operands for CAU loads

Data writes on the PPB are loaded into this FIFO and automatically converted into CAU load operands by the CAU translator. Data reads on the PPB are converted into CAU store register operations where the result is returned to the processor as the read data value.

The CAU requires a 15-bit command, and optionally, a 32-bit input operand, for each CAU load, PPB write. The 15-bit command includes the 9-bit opcode and other bits statically formed by the CAU translator logic controlling the CAU.

The following figure shows the 4-KB address space and the mapping of the CAU commands in this space.

#### NOTE

- Although the indirect store/load portion of the address space in the figure below shows only the indirect load/store commands, direct load commands can also be used in this space. However, it is more efficient to use the direct load portion of the address space.
- Accesses to the reserved space in the direct load space are terminated with an error, while accesses to the reserved space in the indirect load/store space are detected as an illegal CAU command. See CAU integrity checks for details.

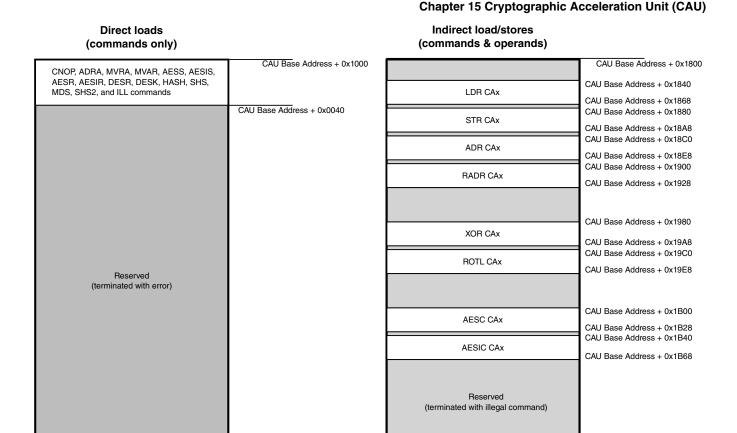



Figure 15-3. CAU memory map

CAU Base Address + 0x1FFF

CAU Base Address + 0x17FF

#### 15.6.1.1 **Direct loads**

The CAU supports writing multiple commands in each 32-bit direct write operation. Each 9-bit opcode also includes a valid bit. Therefore, one, two, or three commands can be transmitted in a single 32-bit PPB write. The following figure illustrates the accepted formats for the 32-bit CAU write data value:

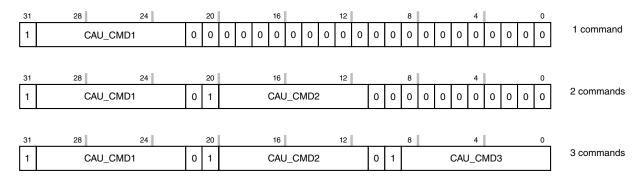



Figure 15-4. Direct loads

KL28Z Reference Manual, Rev. 4, 06/2016 NXP Semiconductors 325 **Functional description** 

#### 15.6.1.2 Indirect loads

For CAU load operations requiring a 32-bit input operand, the address contains the 9-bit opcode to be passed to the CAU while the data is the 32-bit operand. Specifically, the CAU address and data for these indirect writes is shown in the figure below.

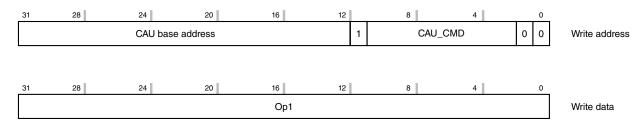



Figure 15-5. Indirect loads

#### 15.6.1.3 Indirect stores

For CAU store operations, a PPB read is performed with the appropriate CAU store register opcode embedded in the address. This appears as another indirect command. The detail of Indirect stores is shown in the figure below.

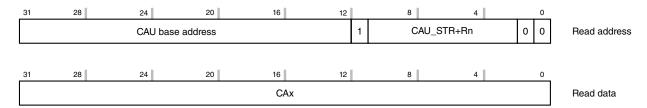



Figure 15-6. Indirect store

### 15.6.2 CAU integrity checks

If an illegal operation or access is attempted, the PPB bus cycle is terminated with an error response and the operation is aborted and not sent to the CAU.

The CAU performs a series of address and data integrity checks as described in the following sections. The results of these checks are logically summed together and, if appropriate, a PPB error termination is generated.

### 15.6.2.1 Address integrity checks

The CAU address checking includes the following. See Figure 15-3 for the CAU memory map details.

- Any CAU reference using a non-0-modulo-4 byte address (addr[1:0] ≠ 00) generates an error termination.
- For CAU writes:
  - Only the first 64 bytes of the 2-KB direct write address space can be referenced. Attempting to access regions beyond the first 64 bytes terminates with an error.
  - The second 2-KB space defines the indirect address-as-command region and any reference in this space is allowed by the CAU.

#### NOTE

The CAU contains error logic to detect any illegal command sent to it. Accordingly, there are address values in this upper 2-KB region of the address space that are passed to the CAU, and then detected as illegal commands. If the CAU detects an illegal command, it sets the CASR[IC] flag and performs no operation.

- For CAU reads:
  - Any attempted read from the first 2-KB region of the address space (an attempted direct read) is illegal and produces an error termination.
  - Within the second 2-KB region of the address space, i.e., addr[11] = 1, only a 64-byte space is treated as a legal CAU store operation. The allowable addresses are defined as:

$$addr[11:0] = 1000\_10xx\_xx\_00$$

where the 4-bit xxxx value specifies the CAU register number. The CAU supports a subset of the allowable register numbers, 0x0 - 0xA. Attempting a store of a reserved register produces an undefined result.

### 15.6.2.2 Data integrity checks

Direct writes can send 1, 2, or 3 commands to the CAU in a single 32-bit transfer. As shown in Figure 15-4, the commands include a valid bit located at bits 31, 20, and 9 of the write data where:

- Bit 31 is the valid bit for the first command
- Bit 20 is the valid bit for the second command
- Bit 9 is the valid bit for the third command

The direct write data check validates the combination of these three valid bits. The following table presents the three legal states associated with these bits:

#### **Functional description**

| Value of bits 31, 20, and 9 | Number of commands included |
|-----------------------------|-----------------------------|
| 100                         | 1                           |
| 110                         | 2                           |
| 111                         | 3                           |

All other combinations of bits 31, 20, and 9 are illegal and generate an error termination.

### 15.6.3 CAU commands

The CAU supports the commands shown in the following table. All other encodings are reserved. The CASR[IC] bit is set if an undefined command is issued. A specific illegal command (ILL) is defined to allow software self-checking. Reserved commands must not be issued so as to ensure compatibility with future implementations.

The CMD field specifies the 9-bit CAU opcode for the operation command.

See Assembler equate values for a set of assembly constants used in the command descriptions here. If supported by the assembler, macros can also be created for each instruction. The value CAx should be interpreted as any CAU register (CASR, CAA, and CAn).

Table 15-2. CAU commands

| Type           | Command | Command           |      |          |     |          | (   | СМЕ       | )        |                 |                                                                |   | Operation                    |  |    |  |                        |
|----------------|---------|-------------------|------|----------|-----|----------|-----|-----------|----------|-----------------|----------------------------------------------------------------|---|------------------------------|--|----|--|------------------------|
| Туре           | name    | Description       | 8    | 7        | 6   | 3        | 5   | 4         | 3        | 2               | 1                                                              | 0 | - Operation                  |  |    |  |                        |
| Direct load    | CNOP    | No Operation      |      |          |     |          | 0   | x000      | 0        | -               |                                                                |   | _                            |  |    |  |                        |
| Indirect load  | LDR     | Load Reg          |      |          | 0x0 | 01       |     |           |          | С               | Ax                                                             |   | Op1 → CAx                    |  |    |  |                        |
| Indirect store | STR     | Store Reg         |      |          | 0x0 | 02       |     |           |          | С               | Ax                                                             |   | CAx → Result                 |  |    |  |                        |
| Indirect load  | ADR     | Add               |      |          | 0x0 | 03       |     |           |          | С               | Ax                                                             |   | CAx + Op1 → CAx              |  |    |  |                        |
| Indirect load  | RADR    | Reverse and Add   |      |          | 0x0 | 04       |     |           |          | С               | Ax                                                             |   | CAx + ByteRev(Op1) → CAx     |  |    |  |                        |
| Direct load    | ADRA    | Add Reg to Acc    |      | 0x05     |     |          | CAx |           |          | CAx + CAA → CAA |                                                                |   |                              |  |    |  |                        |
| Indirect load  | XOR     | Exclusive Or      |      | 0x06     |     | CAx      |     |           |          | CAx ^ Op1 → CAx |                                                                |   |                              |  |    |  |                        |
| Indirect load  | ROTL    | Rotate Left       |      | 0x07     |     | 0x07 CAx |     |           | Ax       |                 | (CAx <<< (Op1 % 32))   (CAx<br>>>> (32 - (Op1 % 32))) →<br>CAx |   |                              |  |    |  |                        |
| Direct load    | MVRA    | Move Reg to Acc   |      | 0x08 CAx |     |          |     | CAx → CAA |          |                 |                                                                |   |                              |  |    |  |                        |
| Direct load    | MVAR    | Move Acc to Reg   | 0x09 |          |     | 0x09 CAx |     |           |          | CAA → CAx       |                                                                |   |                              |  |    |  |                        |
| Direct load    | AESS    | AES Sub Bytes     | 0x0A |          |     | 0x0A     |     |           | 0x0A CAx |                 | SubBytes(CAx) → CAx                                            |   |                              |  |    |  |                        |
| Direct load    | AESIS   | AES Inv Sub Bytes | 0x0B |          |     | 0x0B     |     |           | 0x0B     |                 | 0x0B                                                           |   | 0x0B C                       |  | Ax |  | InvSubBytes(CAx) → CAx |
| Indirect load  | AESC    | AES Column Op     | 0x0C |          |     | 0x0C     |     |           | 0x0C     |                 | 0x0C CAx                                                       |   | MixColumns(CAx)^Op1→<br>CAx  |  |    |  |                        |
| Indirect load  | AESIC   | AES Inv Column Op |      |          | 0x0 | DD       |     |           |          | С               | Ax                                                             |   | InvMixColumns(CAx^Op1) → CAx |  |    |  |                        |

Table continues on the next page...

Table 15-2. CAU commands (continued)

| Tumo        | Command | Description          |   |                |    |    |   | СМІ  | D                               |    |    |       | Operation                         |
|-------------|---------|----------------------|---|----------------|----|----|---|------|---------------------------------|----|----|-------|-----------------------------------|
| Туре        | name    | Description          | 8 | 7              | 1  | 3  | 5 | 4    | 3                               | 2  | 1  | 0     | - Operation                       |
| Direct load | AESR    | AES Shift Rows       |   |                |    |    | C | )x0E | :0                              |    |    |       | ShiftRows(CA0-CA3) → CA0-<br>CA3  |
| Direct load | AESIR   | AES Inv Shift Rows   |   |                |    |    | C | 0x0F | 0                               |    |    |       | InvShiftRows(CA0-CA3)→<br>CA0-CA3 |
| Direct load | DESR    | DES Round            |   |                | 0x | 10 |   |      | IP                              | FP | KS | [1:0] | DES Round(CA0-CA3)<br>→CA0-CA3    |
| Direct load | DESK    | DES Key Setup        |   |                | 0x | 11 |   |      | 0                               | 0  | СР | DC    | DES Key Op(CA0-CA1)→<br>CA0-CA1   |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | Key Parity Error & CP → CASR[1]   |
| Direct load | HASH    | Hash Function        |   | 0x12 0 HF[2:0] |    |    |   | 0]   | Hash Func(CA1-<br>CA3)+CAA→ CAA |    |    |       |                                   |
| Direct load | SHS     | Secure Hash Shift    |   |                |    |    | C | 0x13 | 0                               | !  |    |       | CAA <<< 5→ CAA,                   |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CAA→CA0, CA0→CA1,                 |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA1 <<< 30 → CA2,                 |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA2→CA3, CA3→CA4                  |
| Direct load | MDS     | Message Digest Shift |   |                |    |    | C | 0x14 | 0                               |    |    |       | CA3→CAA, CAA→CA1,                 |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA1→CA2, CA2→CA3,                 |
| Direct load | SHS2    | Secure Hash Shift 2  |   |                |    |    | C | 0x15 | 0                               |    |    |       | CAA→CA0, CA0→CA1,                 |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA1 → CA2, CA2→CA3,               |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA3 + CA8 →CA4,                   |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA4 → CA5, CA5 → CA6,             |
|             |         |                      |   |                |    |    |   |      |                                 |    |    |       | CA6 → CA7                         |
| Direct load | ILL     | Illegal Command      |   |                |    |    | C | 0x1F | 0                               |    |    |       | 0x1→CASR[IC]                      |

## 15.6.3.1 Coprocessor No Operation (CNOP)

The CNOP command is the coprocessor no-op. It is issued by the CAU and consumes a location in the CAU FIFO, but has no effect on any CAU register.

## 15.6.3.2 Load Register (LDR)

The LDR command loads CAx with the source data specified by the write data.

**Functional description** 

## 15.6.3.3 Store Register (STR)

The STR command returns the value of CAx specified in the read address to the destination specified as read data.

### 15.6.3.4 Add to Register (ADR)

The ADR command adds the source operand specified by the write data to CAx and stores the result in CAx.

## 15.6.3.5 Reverse and Add to Register (RADR)

The RADR command performs a byte reverse on the source operand specified by the write data, adds that value to CAx, and stores the result in CAx. The table below shows an example.

Table 15-3. RADR command example

| Operand     | CAx before  | CAx after   |
|-------------|-------------|-------------|
| 0x0102_0304 | 0xA0B0_C0D0 | 0xA4B3_C2D1 |

### 15.6.3.6 Add Register to Accumulator (ADRA)

The ADRA command adds CAx to CAA and stores the result in CAA.

### **15.6.3.7 Exclusive Or (XOR)**

The XOR command performs an exclusive-or of the source operand specified by the write data with CAx and stores the result in CAx.

### 15.6.3.8 Rotate Left (ROTL)

ROTL rotates the CAx bits to the left with the result stored back to CAx. The number of bits to rotate is the value specified by the write data modulo 32.

## 15.6.3.9 Move Register to Accumulator (MVRA)

The MVRA command moves the value from the source register CAx to the destination register CAA.

### 15.6.3.10 Move Accumulator to Register (MVAR)

The MVAR command moves the value from source register CAA to the destination register CAx.

### 15.6.3.11 AES Substitution (AESS)

The AESS command performs the AES byte substitution operation on CAx and stores the result back to CAx.

### 15.6.3.12 **AES Inverse Substitution (AESIS)**

The AESIS command performs the AES inverse byte substitution operation on CAx and stores the result back to CAx.

### 15.6.3.13 AES Column Operation (AESC)

The AESC command performs the AES column operation on the contents of CAx. It then performs an exclusive-or of that result with the source operand specified by the write data and stores the result in CAx.

### 15.6.3.14 AES Inverse Column Operation (AESIC)

The AESIC command performs an exclusive-or operation of the source operand specified by the write data on the contents of CAx followed by the AES inverse mix column operation on that result and stores the result back in CAx.

### **15.6.3.15 AES Shift Rows (AESR)**

The AESR command performs the AES shift rows operation on registers CA0, CA1, CA2, and CA3. The table below shows an example.

Table 15-4. AESR command example

| Register | Before      | After       |
|----------|-------------|-------------|
| CA0      | 0x0102_0304 | 0x0106_0B00 |
| CA1      | 0x0506_0708 | 0x050A_0F04 |
| CA2      | 0x090A_0B0C | 0x090E_0308 |
| CA3      | 0x0D0E_0F00 | 0x0D02_070C |

#### Where:

- row 1 = CA0[31:24], CA1[31:24], CA2[31:24], CA3[31:24]
- row 2 = CA0[23:16], CA1[23:16], CA2[23:16], CA3[23:16]
- row 3 = CA0[15:8], CA1[15:8], CA2[15:8], CA3[15:8]
- row 4 = CA0[7:0], CA1[7:0], CA2[7:0], CA3[7:0]

## 15.6.3.16 AES Inverse Shift Rows (AESIR)

The AESIR command performs the AES inverse shift rows operation on registers CA0, CA1, CA2, and CA3. The table below shows an example.

Table 15-5. AESIR command example

| Register | Before      | After       |
|----------|-------------|-------------|
| CA0      | 0x0106_0B00 | 0x0102_0304 |
| CA1      | 0x050A_0F04 | 0x0506_0708 |
| CA2      | 0x090E_0308 | 0x090A_0B0C |
| CA3      | 0x0D02_070C | 0x0D0E_0F00 |

#### Where:

- row 1 = CA0[31:24], CA1[31:24], CA2[31:24], CA3[31:24]
- row 2 = CA0[23:16], CA1[23:16], CA2[23:16], CA3[23:16]
- row 3 = CA0[15:8], CA1[15:8], CA2[15:8], CA3[15:8]
- row 4 = CA0[7:0], CA1[7:0], CA2[7:0], CA3[7:0]

### 15.6.3.17 DES Round (DESR)

The DESR command performs a round of the DES algorithm and a key schedule update with the following source and destination designations: CA0=C, CA1=D, CA2=L, CA3=R. If the IP bit is set, DES initial permutation performs on CA2 and CA3 before the round operation. If the FP bit is set, DES final permutation, that is, inverse initial permutation, performs on CA2 and CA3 after the round operation. The round operation

KL28Z Reference Manual, Rev. 4, 06/2016

333

uses the source values from registers CA0 and CA1 for the key addition operation. The KSx field specifies the shift for the key schedule operation to update the values in CA0 and CA1. The following table defines the specific shift function performed based on the KSx field.

| KSx code | KSx define | Shift function |
|----------|------------|----------------|
| 0        | KSL1       | Left 1         |
| 1        | KSL2       | Left 2         |
| 2        | KSR1       | Right 1        |
| 3        | KSR2       | Right 2        |

Table 15-6. Key shift function codes

### 15.6.3.18 DES Key setup (DESK)

The DESK command performs the initial key transformation, permuted choice 1, defined by the DES algorithm on CA0 and CA1 with CA0 containing bits 1–32 of the key and CA1 containing bits 33–64 of the key<sup>1</sup>. If the DC bit is set, no shift operation performs and the values  $C_0$  and  $D_0$  store back to CA0 and CA1, respectively. The DC bit must be set for decrypt operations. If the DC bit is not set, a left shift by one also occurs and the values  $C_1$  and  $D_1$  store back to CA0 and CA1, respectively. The DC bit should be cleared for encrypt operations. If the CP bit is set and a key parity error is detected, CASR[DPE] bit is set; otherwise, it is cleared.

## 15.6.3.19 Hash Function (HASH)

The HASH command performs a hashing operation on a set of registers and adds that result to the value in CAA and stores the result in CAA. The specific hash function performed is based on the HFx field as defined in the table below.

This table uses the following terms:

- ROTR $^n$ (CAx): rotate CAx register right n times
- SHR $^n$ (CAx): shift CAx register right n times

Table 15-7. Hash Function codes

| HFx code | HFx define | Hash Function | Hash logic                |
|----------|------------|---------------|---------------------------|
| 0        | HFF        | MD5 F()       | (CA1 & CA2)   (CA1 & CA3) |
| 1        | HFG        | MD5 G()       | (CA1 & CA3)   (CA2 & CA3) |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>1.</sup> The DES algorithm numbers the most significant bit of a block as bit 1 and the least significant as bit 64.

Table 15-7. Hash Function codes (continued)

| HFx code | HFx define | Hash Function         | Hash logic                                                                    |
|----------|------------|-----------------------|-------------------------------------------------------------------------------|
| 2        | HFH        | MD5 H(), SHA Parity() | CA1 ^ CA2 ^ CA3                                                               |
| 3        | HFI        | MD5 I()               | CA2 ^ (CA1   <del>CA3</del> )                                                 |
| 4        | HFC        | SHA Ch()              | (CA1 & CA2) ^ ( <del>CA1</del> & CA3)                                         |
| 5        | HFM        | SHA Maj()             | (CA1 & CA2) ^ (CA1 & CA3) ^ (CA2 & CA3)                                       |
| 6        | HF2C       | SHA-256 Ch()          | (CA4 & CA5) ^ ( <del>CA1</del> & CA6)                                         |
| 7        | HF2M       | SHA-256 Maj()         | (CA0 & CA1) ^ (CA0 & CA2) ^ (CA1 & CA2)                                       |
| 8        | HF2S       | SHA-256 Sigma 0       | ROTR <sup>2</sup> (CA0) ^ ROTR <sup>13</sup> (CA0) ^ ROTR <sup>22</sup> (CA0) |
| 9        | HF2T       | SHA-256 Sigma 1       | ROTR <sup>6</sup> (CA4) ^ ROTR <sup>11</sup> (CA4) ^ ROTR <sup>25</sup> (CA4) |
| Α        | HF2U       | SHA-256 Sigma 0       | ROTR <sup>7</sup> (CA8) ^ ROTR <sup>18</sup> (CA8) ^ SHR <sup>3</sup> (CA8)   |
| В        | HF2V       | SHA-256 Sigma 1       | ROTR <sup>17</sup> (CA8) ^ ROTR <sup>19</sup> (CA8) ^ SHR <sup>10</sup> (CA8) |

## 15.6.3.20 Secure Hash Shift (SHS)

The SHS command does a set of parallel register-to-register move and shift operations for implementing SHA-1. The following source and destination assignments are made:

| Register | Value prior to command | Value after command executes |
|----------|------------------------|------------------------------|
| CA4      | CA4                    | CA3                          |
| CA3      | CA3                    | CA2                          |
| CA2      | CA2                    | CA1<<<30                     |
| CA1      | CA1                    | CA0                          |
| CA0      | CA0                    | CAA                          |
| CAA      | CAA                    | CAA<<<5                      |

### 15.6.3.21 Message Digest Shift (MDS)

The MDS command does a set of parallel register-to-register move operations for implementing MD5. The following source and destination assignments are made:

| Register | Value prior to command | Value after command executes |
|----------|------------------------|------------------------------|
| CA3      | CA3                    | CA2                          |
| CA2      | CA2                    | CA1                          |
| CA1      | CA1                    | CAA                          |
| CAA      | CAA                    | CA3                          |

### 15.6.3.22 Secure Hash Shift 2 (SHS2)

The SHS2 command does an addition and a set of register to register moves in parallel for implementing SHA-256. The following source and destination assignments are made:

| Register | Value prior to command | Value after command executes |
|----------|------------------------|------------------------------|
| CA7      | CA7                    | CA6                          |
| CA6      | CA6                    | CA5                          |
| CA5      | CA5                    | CA4                          |
| CA4      | CA4                    | CA3+CA8                      |
| CA3      | CA3                    | CA2                          |
| CA2      | CA2                    | CA1                          |
| CA1      | CA1                    | CA0                          |
| CA0      | CA0                    | CAA                          |

### 15.6.3.23 Illegal command (ILL)

The ILL command is a specific illegal command that sets CASR[IC]. All other illegal commands are reserved for use in future implementations.

## 15.7 Application/initialization information

This section discusses how to initialize and use the CAU.

### 15.7.1 Code example

A code fragment is shown below as an example of how the CAU is used. This example shows the round function of the AES algorithm. Core registers are defined as follows:

- R1 points to the key schedule
- R3 contains 3 direct CAU commands
- R8 contains 2 direct CAU commands
- R9 contains an indirect CAU command
- FP points to the CAU indirect command address space
- IP points to the CAU direct command space

```
movw fp, #:lower16:MMCAU_PPB_INDIRECT @ fp -> MMCAU_PPB_INDIRECT
movt fp, #:upper16:MMCAU_PPB_INDIRECT
movw ip, #:lower16:MMCAU_PPB_DIRECT @ ip -> MMCAU_PPB_DIRECT
movt ip, #:upper16:MMCAU_PPB_DIRECT
```

KL28Z Reference Manual, Rev. 4, 06/2016

#### Application/initialization information

```
# r3 = mmcau 3 cmds(AESS+CA0, AESS+CA1, AESS+CA2)
            r3, #:lower16:(0x80100200+(AESS+CA0)<<22+(AESS+CA1)<<11+AESS+CA2)
   movw
            r3, #:upper16:(0x80100200+(AESS+CA0)<<22+(AESS+CA1)<<11+AESS+CA2)
# r8 = mmcau 2 cmds(AESS+CA3,AESR)
         r8, #:lower16:(0x80100000+(AESS+CA3)<<22+(AESR)<<11)
   movt
            r8, #:upper16:(0x80100000+(AESS+CA3)<<22+(AESR)<<11)
    add
            r9, fp, $((AESC+CA0)<<2)
                                                                @ r9 = mmcau cmd(AESC+CA0)
           r3, [ip]
    str
                                                            @ sub bytes w0, w1, w2
                                                            @ sub bytes w3, shift rows
    str r8, [ip]
    ldmia r1!, \{r4-r7\}
                                                            @ get next 4 keys; r1++
    stmia r9, \{r4-r7\}
                                                            @ mix columns, add keys
```

## 15.7.2 Assembler equate values

The following equates ease programming of the CAU.

```
; CAU Registers (CAx)
     .set CASR, 0x0
     .set CAA, 0x1
     .set CA0,0x2
     .set CA1,0x3
     .set CA2,0x4
     .set CA3,0x5
     .set CA4,0x6
     .set CA5,0x7
     .set CA6,0x8
     .set CA7,0x9
     .set CA8,0xA
; CAU Commands
     .set CNOP,0x000
     .set LDR,0x010
     .set STR, 0x020
     .set ADR, 0 \times 030
     .set RADR, 0 \times 040
     .set ADRA,0x050
     .set XOR,0x060
     .set ROTL, 0 \times 0.70
     .set MVRA,0x080
     .set MVAR,0x090
     .set AESS,0x0A0
     .set AESIS,0x0B0
     .set AESC,0x0C0
     .set AESIC, 0x0D0
     .set AESR, 0x0E0
     .set AESIR, 0x0F0
     .set DESR, 0x100
     .set DESK, 0x110
     .set HASH, 0x120
     .set SHS, 0x130
     .set MDS, 0x140
     .set SHS2,0x150
     .set ILL,0x1F0
; DESR Fields
                            ; initial permutation
     .set IP,0x08
                           ; final permutation
; key schedule left 1 bit
; key schedule left 2 bits
     .set FP,0x04
     .set KSL1,0x00
     .set KSL2,0x01
.set KSR1,0x02
.set KSR2,0x03
                            ; key schedule right 1 bit
                            ; key schedule right 2 bits
; DESK Field
     .set DC,0x01
                      ; decrypt key schedule
```

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 15 Cryptographic Acceleration Unit (CAU)

337

```
; check parity
     .set CP,0x02
; HASH Functions Codes
                        ; MD5 F() CA1&CA2
    .set HFF,0x0
                                             ~CA1&CA3
                        ; MD5 G() CA1&CA3 | CA2&~CA3
; MD5 H(), SHA Parity() CA1^CA2^CA3
     .set HFG,0x1
    .set HFH,0x2
.set HFI,0x3
.set HFC,0x4
.set HFM,0x5
    .set HFH,0x2
                        ; MD5 I() CA2^(CA1|~CA3)
                        ; SHA Ch() CA1&CA2
                                              ~CA1&CA3
                        ; SHA Maj() CA1&CA2 ^ CA1&CA3 ^ CA2&CA3
    .set HFM,0x5
                        .set HF2C,0x6
     .set HF2M,0x7
    .set HF2S,0x8
                        ; SHA-256 Sigma 1 ROTR6(CA4) ROTR11(CA4) ROTR25(CA4)
    .set HF2T,0x9
                        ; SHA-256 sigma 0 ROTR7(CA8) ROTR18(CA8) SHR3(CA8)
    .set HF2U,0xA
    .set HF2V,0xB
                        ; SHA-256 sigma 1 ROTR17(CA8) ROTR19(CA8) SHR10(CA8)
```

Application/initialization information

# Chapter 16 Comparator (CMP)

### 16.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The comparator (CMP) module provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage, known as rail-to-rail operation.

The Analog MUX (ANMUX) provides a circuit for selecting an analog input signal from eight channels. One signal is provided by the 6-bit digital-to-analog converter (DAC). The mux circuit is designed to operate across the full range of the supply voltage.

The 6-bit DAC is 64-tap resistor ladder network which provides a selectable voltage reference for applications where voltage reference is needed. The 64-tap resistor ladder network divides the supply reference  $V_{in}$  into 64 voltage levels. A 6-bit digital signal input selects the output voltage level, which varies from  $V_{in}$  to  $V_{in}/64$ .  $V_{in}$  can be selected from two voltage sources,  $V_{in1}$  and  $V_{in2}$ . The 6-bit DAC from a comparator is available as an on-chip internal signal only and is not available externally to a pin.

### 16.1.1 CMP features

The CMP has the following features:

- Operational over the entire supply range
- Inputs may range from rail to rail
- Programmable hysteresis control

#### Introduction

- Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output
- Selectable inversion on comparator output
- Capability to produce a wide range of outputs such as:
  - Sampled
  - Windowed, which is ideal for certain PWM zero-crossing-detection applications
  - Digitally filtered:
    - Filter can be bypassed
    - Can be clocked via external SAMPLE signal or scaled bus clock
- External hysteresis can be used at the same time that the output filter is used for internal functions
- Two software selectable performance levels:
  - Shorter propagation delay at the expense of higher power
  - Low power, with longer propagation delay
- DMA transfer support
  - A comparison event can be selected to trigger a DMA transfer
- Functional in all modes of operation
- The window and filter functions are not available in the following modes:
  - Stop
  - VLPS
  - LLS
  - VLLSx

## 16.1.2 6-bit DAC key features

The 6-bit DAC has the following features:

- 6-bit resolution
- Selectable supply reference source
- Power Down mode to conserve power when not in use
- Option to route the output to internal comparator input

# 16.1.3 ANMUX key features

The ANMUX has the following features:

- Two 8-to-1 channel mux
- Operational over the entire supply range

## 16.1.4 CMP, DAC and ANMUX diagram

The following figure shows the block diagram for the High-Speed Comparator, DAC, and ANMUX modules.

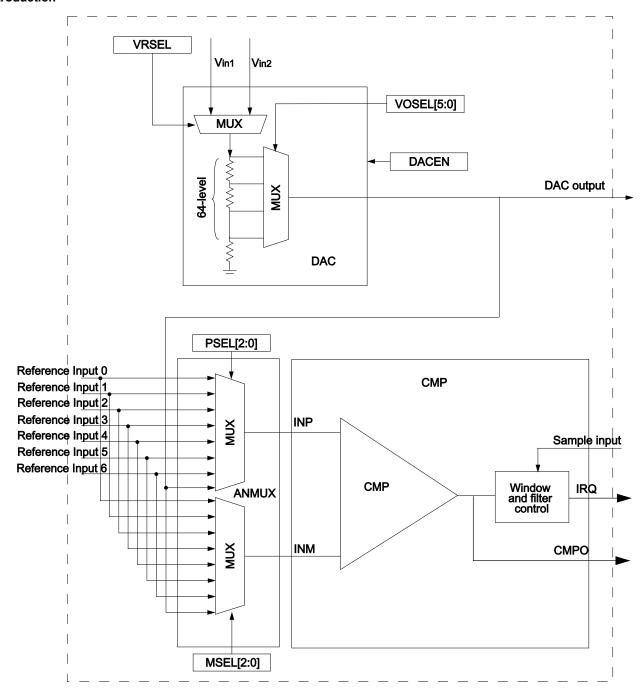



Figure 16-1. CMP, DAC and ANMUX block diagram

# 16.1.5 CMP block diagram

The following figure shows the block diagram for the CMP module.

343

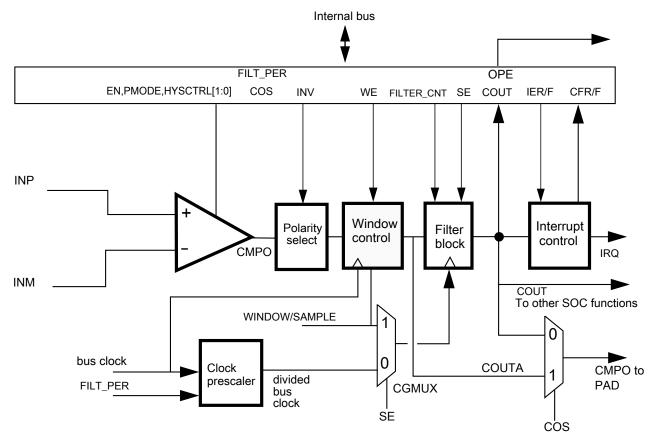


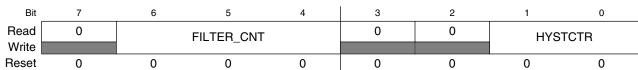

Figure 16-2. Comparator module block diagram

### In the CMP block diagram:

- The Window Control block is bypassed when CR1[WE] = 0
- If CR1[WE] = 1, the comparator output will be sampled on every bus clock when WINDOW=1 to generate COUTA. Sampling does NOT occur when WINDOW = 0.
- The Filter block is bypassed when not in use.
- The Filter block acts as a simple sampler if the filter is bypassed and CR0[FILTER\_CNT] is set to 0x01.
- The Filter block filters based on multiple samples when the filter is bypassed and CR0[FILTER\_CNT] is set greater than 0x01.
  - If CR1[SE] = 1, the external SAMPLE input is used as sampling clock
  - If CR1[SE] = 0, the divided bus clock is used as sampling clock

#### Memory map/register definitions

- If enabled, the Filter block will incur up to one bus clock additional latency penalty on COUT due to the fact that COUT, which is crossing clock domain boundaries, must be resynchronized to the bus clock.
- CR1[WE] and CR1[SE] are mutually exclusive.


# 16.2 Memory map/register definitions

#### **CMP** memory map

| Absolute address (hex) | Register name                              | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|--------------------------------------------|--------------------|--------|-------------|------------------|
| 4006_E000              | CMP Control Register 0 (CMP0_CR0)          | 8                  | R/W    | 00h         | 16.2.1/344       |
| 4006_E001              | CMP Control Register 1 (CMP0_CR1)          | 8                  | R/W    | 00h         | 16.2.2/345       |
| 4006_E002              | CMP Filter Period Register (CMP0_FPR)      | 8                  | R/W    | 00h         | 16.2.3/347       |
| 4006_E003              | CMP Status and Control Register (CMP0_SCR) | 8                  | R/W    | 00h         | 16.2.4/347       |
| 4006_E004              | DAC Control Register (CMP0_DACCR)          | 8                  | R/W    | 00h         | 16.2.5/348       |
| 4006_E005              | MUX Control Register (CMP0_MUXCR)          | 8                  | R/W    | 00h         | 16.2.6/349       |
| 400E_F000              | CMP Control Register 0 (CMP1_CR0)          | 8                  | R/W    | 00h         | 16.2.1/344       |
| 400E_F001              | CMP Control Register 1 (CMP1_CR1)          | 8                  | R/W    | 00h         | 16.2.2/345       |
| 400E_F002              | CMP Filter Period Register (CMP1_FPR)      | 8                  | R/W    | 00h         | 16.2.3/347       |
| 400E_F003              | CMP Status and Control Register (CMP1_SCR) | 8                  | R/W    | 00h         | 16.2.4/347       |
| 400E_F004              | DAC Control Register (CMP1_DACCR)          | 8                  | R/W    | 00h         | 16.2.5/348       |
| 400E_F005              | MUX Control Register (CMP1_MUXCR)          | 8                  | R/W    | 00h         | 16.2.6/349       |

# 16.2.1 CMP Control Register 0 (CMPx\_CR0)

Address: Base address + 0h offset



### CMPx\_CR0 field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 7<br>Reserved     | This field is reserved. This read-only field is reserved and always has the value 0. |
| 6–4<br>FILTER_CNT | Filter Sample Count                                                                  |

Table continues on the next page...

### CMPx\_CR0 field descriptions (continued)

| Field         | Description                                                                                                                                                                                                               |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | Represents the number of consecutive samples that must agree prior to the comparator ouput filter accepting a new output state. For information regarding filter programming and latency, see the Functional description. |  |  |  |  |
|               | 000 Filter is disabled. If SE = 1, then COUT is a logic 0. This is not a legal state, and is not recommended. If SE = 0, COUT = COUTA.                                                                                    |  |  |  |  |
|               | One sample must agree. The comparator output is simply sampled.                                                                                                                                                           |  |  |  |  |
|               | 010 2 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
|               | 011 3 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
|               | 100 4 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
|               | 101 5 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
|               | 110 6 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
|               | 111 7 consecutive samples must agree.                                                                                                                                                                                     |  |  |  |  |
| 3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                      |  |  |  |  |
| 2             | This field is reserved.                                                                                                                                                                                                   |  |  |  |  |
| Reserved      | This read-only field is reserved and always has the value 0.                                                                                                                                                              |  |  |  |  |
| HYSTCTR       | Comparator hard block hysteresis control                                                                                                                                                                                  |  |  |  |  |
|               | Defines the programmable hysteresis level. The hysteresis values associated with each level are device-specific. See the Data Sheet of the device for the exact values.                                                   |  |  |  |  |
|               | 00 Level 0                                                                                                                                                                                                                |  |  |  |  |
|               | 01 Level 1                                                                                                                                                                                                                |  |  |  |  |
|               | 10 Level 2                                                                                                                                                                                                                |  |  |  |  |
|               | 11 Level 3                                                                                                                                                                                                                |  |  |  |  |

# 16.2.2 CMP Control Register 1 (CMPx\_CR1)

Address: Base address + 1h offset

| Bit           | 7  | 6  | 5     | 4     | 3   | 2   | 1   | 0  |
|---------------|----|----|-------|-------|-----|-----|-----|----|
| Read<br>Write | SE | WE | TRIGM | PMODE | INV | cos | OPE | EN |
| Reset         | 0  | 0  | 0     | 0     | 0   | 0   | 0   | 0  |

## CMPx\_CR1 field descriptions

| Field   | Description                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7       | Sample Enable                                                                                                                                                                                                                                                     |
| SE      | At any given time, either SE or WE can be set. If a write to this register attempts to set both, then SE is set and WE is cleared. However, avoid writing 1s to both field locations because this "11" case is reserved and may change in future implementations. |
|         | 0 Sampling mode is not selected.                                                                                                                                                                                                                                  |
|         | 1 Sampling mode is selected.                                                                                                                                                                                                                                      |
| 6<br>WE | Windowing Enable                                                                                                                                                                                                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map/register definitions

# CMPx\_CR1 field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | At any given time, either SE or WE can be set. If a write to this register attempts to set both, then SE is set and WE is cleared. However, avoid writing 1s to both field locations because this "11" case is reserved and may change in future implementations. |
|            | <ul><li>0 Windowing mode is not selected.</li><li>1 Windowing mode is selected.</li></ul>                                                                                                                                                                         |
| 5          | Trigger Mode Enable                                                                                                                                                                                                                                               |
| TRIGM      | CMP and DAC are configured to CMP Trigger mode when CMP_CR1[TRIGM] is set to 1. In addition, the CMP should be enabled. If the DAC is to be used as a reference to the CMP, it should also be enabled.                                                            |
|            | CMP Trigger mode depends on an external timer resource to periodically enable the CMP and 6-bit DAC in order to generate a triggered compare.                                                                                                                     |
|            | Upon setting TRIGM, the CMP and DAC are placed in a standby state until an external timer resource trigger is received.                                                                                                                                           |
|            | See the chip configuration for details about the external timer resource.                                                                                                                                                                                         |
|            | 0 Trigger mode is disabled.                                                                                                                                                                                                                                       |
|            | 1 Trigger mode is enabled.                                                                                                                                                                                                                                        |
| 4<br>PMODE | Power Mode Select                                                                                                                                                                                                                                                 |
|            | See the electrical specifications table in the device Data Sheet for details.                                                                                                                                                                                     |
|            | 0 Low-Speed (LS) Comparison mode selected. In this mode, CMP has slower output propagation delay and lower current consumption.                                                                                                                                   |
|            | 1 High-Speed (HS) Comparison mode selected. In this mode, CMP has faster output propagation delay and higher current consumption.                                                                                                                                 |
| 3<br>INV   | Comparator INVERT                                                                                                                                                                                                                                                 |
| 1144       | Allows selection of the polarity of the analog comparator function. It is also driven to the COUT output, on both the device pin and as SCR[COUT], when OPE=0.                                                                                                    |
|            | 0 Does not invert the comparator output.                                                                                                                                                                                                                          |
|            | 1 Inverts the comparator output.                                                                                                                                                                                                                                  |
| 2<br>COS   | Comparator Output Select                                                                                                                                                                                                                                          |
|            | 0 Set the filtered comparator output (CMPO) to equal COUT.                                                                                                                                                                                                        |
|            | 1 Set the unfiltered comparator output (CMPO) to equal COUTA.                                                                                                                                                                                                     |
| 1<br>OPE   | Comparator Output Pin Enable                                                                                                                                                                                                                                      |
| OFE        | O CMPO is not available on the associated CMPO output pin. If the comparator does not own the pin, this field has no effect.                                                                                                                                      |
|            | 1 CMPO is available on the associated CMPO output pin.                                                                                                                                                                                                            |
|            | The comparator output (CMPO) is driven out on the associated CMPO output pin if the comparator owns the pin. If the comparator does not own the field, this bit has no effect.                                                                                    |
| 0          | Comparator Module Enable                                                                                                                                                                                                                                          |
| EN         | Enables the Analog Comparator module. When the module is not enabled, it remains in the off state, and consumes no power. When the user selects the same input from analog mux to the positive and negative port, the comparator is disabled automatically.       |

Table continues on the next page...

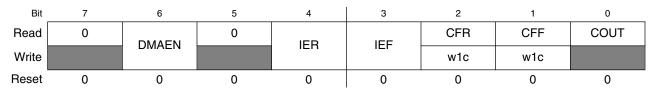
KL28Z Reference Manual, Rev. 4, 06/2016

### CMPx\_CR1 field descriptions (continued)

| Field | Description                      |
|-------|----------------------------------|
|       | 0 Analog Comparator is disabled. |
|       | 1 Analog Comparator is enabled.  |

## 16.2.3 CMP Filter Period Register (CMPx\_FPR)

Address: Base address + 2h offset


| Bit           | 7 | 6 | 5 | 4     | 3    | 2 | 1 | 0 |
|---------------|---|---|---|-------|------|---|---|---|
| Read<br>Write |   |   |   | FILT_ | _PER |   |   |   |
| Reset         | 0 | 0 | 0 | 0     | 0    | 0 | 0 | 0 |

### CMPx\_FPR field descriptions

| Field    | Description                                                                                                                                                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FILT_PER | Filter Sample Period                                                                                                                                                                                                           |
|          | Specifies the sampling period, in bus clock cycles, of the comparator output filter, when CR1[SE]=0. Setting FILT_PER to 0x0 disables the filter. Filter programming and latency details appear in the Functional description. |
|          | This field has no effect when CR1[SE]=1. In that case, the external SAMPLE signal is used to determine the sampling period.                                                                                                    |

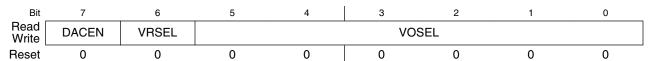
### 16.2.4 CMP Status and Control Register (CMPx\_SCR)

Address: Base address + 3h offset



#### CMPx\_SCR field descriptions

| Field         | Description                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                        |
| 6<br>DMAEN    | DMA Enable Control  Enables the DMA transfer triggered from the CMP module. When this field is set, a DMA request is asserted when CFR or CFF is set.  0 DMA is disabled. 1 DMA is enabled. |


Table continues on the next page...

### CMPx\_SCR field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                        |
| 4<br>IER      | Comparator Interrupt Enable Rising  Enables the CFR interrupt from the CMP. When this field is set, an interrupt will be asserted when CFR is set.                                                                                                                                          |
|               | <ul><li>0 Interrupt is disabled.</li><li>1 Interrupt is enabled.</li></ul>                                                                                                                                                                                                                  |
| 3<br>IEF      | Comparator Interrupt Enable Falling  Enables the CFF interrupt from the CMP. When this field is set, an interrupt will be asserted when CFF is set.  0 Interrupt is disabled.                                                                                                               |
| 2<br>CFR      | 1 Interrupt is enabled.  Analog Comparator Flag Rising  Detects a rising-edge on COUT, when set, during normal operation. CFR is cleared by writing 1 to it.  During Stop modes, CFR is level sensitive.  0 Rising-edge on COUT has not been detected.  1 Rising-edge on COUT has occurred. |
| 1<br>CFF      | Analog Comparator Flag Falling  Detects a falling-edge on COUT, when set, during normal operation. CFF is cleared by writing 1 to it.  During Stop modes, CFF is level sensitive.  0 Falling-edge on COUT has not been detected.  1 Falling-edge on COUT has occurred.                      |
| 0<br>COUT     | Analog Comparator Output  Returns the current value of the Analog Comparator output, when read. The field is reset to 0 and will read as CR1[INV] when the Analog Comparator module is disabled, that is, when CR1[EN] = 0. Writes to this field are ignored.                               |

# 16.2.5 DAC Control Register (CMPx\_DACCR)

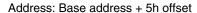
Address: Base address + 4h offset

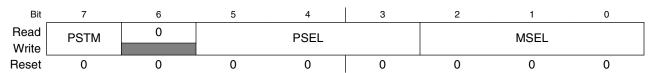


### CMPx\_DACCR field descriptions

| Field      | Description                                                                      |
|------------|----------------------------------------------------------------------------------|
| 7<br>DACEN | DAC Enable                                                                       |
| _          | Enables the DAC. When the DAC is disabled, it is powered down to conserve power. |

Table continues on the next page...


#### KL28Z Reference Manual, Rev. 4, 06/2016


349

### CMPx\_DACCR field descriptions (continued)

| Field      | Description                                                                                       |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | 0 DAC is disabled.                                                                                |  |  |  |  |  |  |
|            | 1 DAC is enabled.                                                                                 |  |  |  |  |  |  |
| 6<br>VRSEL | Supply Voltage Reference Source Select                                                            |  |  |  |  |  |  |
|            | 0 V <sub>in1</sub> is selected as resistor ladder network supply reference.                       |  |  |  |  |  |  |
|            | 1 V <sub>in2</sub> is selected as resistor ladder network supply reference.                       |  |  |  |  |  |  |
| VOSEL      | DAC Output Voltage Select                                                                         |  |  |  |  |  |  |
|            | Selects an output voltage from one of 64 distinct levels.                                         |  |  |  |  |  |  |
|            | DACO = $(V_{in} / 64) * (VOSEL[5:0] + 1)$ , so the DACO range is from $V_{in} / 64$ to $V_{in}$ . |  |  |  |  |  |  |

# 16.2.6 MUX Control Register (CMPx\_MUXCR)





### CMPx\_MUXCR field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7<br>PSTM   | Pass Through Mode Enable  This bit is used to enable to MUX pass through mode. Pass through mode is always available but for some devices this feature must be always disabled due to the lack of package pins.  O Pass Through Mode is disabled.                                                                                 |  |  |  |  |  |  |
| 6           | Pass Through Mode is enabled.  This field is reserved.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Reserved    | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 5–3<br>PSEL | Plus Input Mux Control  Determines which input is selected for the plus input of the comparator. For INx inputs, see CMP, DAC, and ANMUX block diagrams.  NOTE: When an inappropriate operation selects the same input for both muxes, the comparator automatically shuts down to prevent itself from becoming a noise generator. |  |  |  |  |  |  |
|             | 000 IN0<br>001 IN1<br>010 IN2                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|             | 011 IN3<br>100 IN4<br>101 IN5<br>110 IN6                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|             | 111 IN7                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### CMPx\_MUXCR field descriptions (continued)

| Field | Description                                                                                                                                                                    |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| MSEL  | Minus Input Mux Control                                                                                                                                                        |  |  |  |  |  |  |
|       | Determines which input is selected for the minus input of the comparator. For INx inputs, see CMP, DAC, and ANMUX block diagrams.                                              |  |  |  |  |  |  |
|       | <b>NOTE:</b> When an inappropriate operation selects the same input for both muxes, the comparator automatically shuts down to prevent itself from becoming a noise generator. |  |  |  |  |  |  |
|       | 000 IN0                                                                                                                                                                        |  |  |  |  |  |  |
|       | 001 IN1                                                                                                                                                                        |  |  |  |  |  |  |
|       | 010 IN2                                                                                                                                                                        |  |  |  |  |  |  |
|       | 011 IN3                                                                                                                                                                        |  |  |  |  |  |  |
|       | 100 IN4                                                                                                                                                                        |  |  |  |  |  |  |
|       | 101 IN5                                                                                                                                                                        |  |  |  |  |  |  |
|       | 110 IN6                                                                                                                                                                        |  |  |  |  |  |  |
|       | 111 IN7                                                                                                                                                                        |  |  |  |  |  |  |

## 16.3 Functional description

The CMP module can be used to compare two analog input voltages applied to INP and INM.

CMPO is high when the non-inverting input is greater than the inverting input, and is low when the non-inverting input is less than the inverting input. This signal can be selectively inverted by setting CR1[INV] = 1.

SCR[IER] and SCR[IEF] are used to select the condition which will cause the CMP module to assert an interrupt to the processor. SCR[CFF] is set on a falling-edge and SCR[CFR] is set on rising-edge of the comparator output. The optionally filtered CMPO can be read directly through SCR[COUT].

### 16.3.1 CMP functional modes

There are the following main sub-blocks to the CMP module:

- The comparator itself
- The window function
- The filter function

The filter, CR0[FILTER\_CNT], can be clocked from an internal or external clock source. The filter is programmable with respect to the number of samples that must agree before a change in the output is registered. In the simplest case, only one sample must agree. In this case, the filter acts as a simple sampler.

The external sample input is enabled using CR1[SE]. When set, the output of the comparator is sampled only on rising edges of the sample input.

The "windowing mode" is enabled by setting CR1[WE]. When set, the comparator output is sampled only when WINDOW=1. This feature can be used to ignore the comparator output during time periods in which the input voltages are not valid. This is especially useful when implementing zero-crossing-detection for certain PWM applications.

The comparator filter and sampling features can be combined as shown in the following table. Individual modes are discussed below.

CR0[FILTER\_C Mode # CR1[EN] CR1[WE] CR1[SE] FPR[FILT PER] Operation NT] 0 Х Χ Х Χ 1 **Disabled** See the Disabled mode (# 1). Χ **Continuous Mode** 2A 1 0 0 0x00 1 0 2B 0 Χ 0x00 See the Continuous mode (#s 2A & 2B). Χ Sampled, Non-Filtered mode ЗА 1 0 1 0x01 3B 1 0 0 0x01 > 0x00 See the Sampled, Non-Filtered mode (#s 3A & 3B). 0 Х 4A Sampled, Filtered mode > 0x011 0 0 4B > 0x01> 0x00 See the Sampled, Filtered mode (#s 4A & 4B). 0 0x00 Х Windowed mode 5A 1 1 Х 0x00 5B 0 Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA. See the Windowed mode (#s 5A & 5B). 1 1 0x01-0xFF Windowed/Resampled mode 6 0 0x01 Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled on an interval determined by FILT PER to generate COUT. See the Windowed/Resampled mode (# 6). Windowed/Filtered mode 7 0x01-0xFF 0 > 0x01

Table 16-1. Comparator sample/filter controls

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

Table 16-1. Comparator sample/filter controls (continued)

| Mode # | CR1[EN]                                                                                              | CR1[WE] | CR1[SE] | CR0[FILTER_C<br>NT] | FPR[FILT_PER] | Operation                                                                                                                                                                                 |  |  |  |
|--------|------------------------------------------------------------------------------------------------------|---------|---------|---------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        |                                                                                                      |         |         |                     |               | Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled and filtered to generate COUT.  See the Windowed/Filtered mode (#7). |  |  |  |
| All    | All other combinations of CR1[EN], CR1[WE], CR1[SE], CR0[FILTER_CNT], and FPR[FILT_PER] are illegal. |         |         |                     |               |                                                                                                                                                                                           |  |  |  |

For cases where a comparator is used to drive a fault input, for example, for a motor-control module such as FTM, it must be configured to operate in Continuous mode so that an external fault can immediately pass through the comparator to the target fault circuitry.

#### **Note**

Filtering and sampling settings must be changed only after setting CR1[SE]=0 and CR0[FILTER\_CNT]=0x00. This resets the filter to a known state.

### 16.3.1.1 Disabled mode (# 1)

In Disabled mode, the analog comparator is non-functional and consumes no power. CMPO is 0 in this mode.

## 16.3.1.2 Continuous mode (#s 2A & 2B)

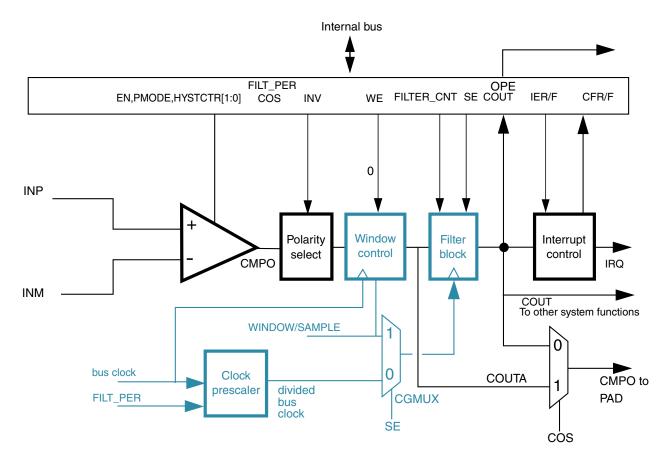



Figure 16-3. Comparator operation in Continuous mode

#### NOTE

See the chip configuration section for the source of sample/ window input.

The analog comparator block is powered and active. CMPO may be optionally inverted, but is not subject to external sampling or filtering. Both window control and filter blocks are completely bypassed. SCR[COUT] is updated continuously. The path from comparator input pins to output pin is operating in combinational unclocked mode. COUT and COUTA are identical.

For control configurations which result in disabling the filter block, see the Filter Block Bypass Logic diagram.

## 16.3.1.3 Sampled, Non-Filtered mode (#s 3A & 3B)

#### **Functional description**

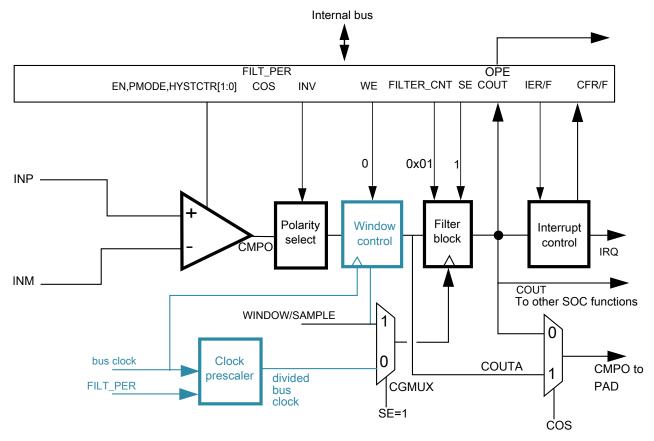



Figure 16-4. Sampled, Non-Filtered (# 3A): sampling point externally driven

In Sampled, Non-Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising-edge is detected on the filter block clock input.

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Non-Filtered (# 3B) is in how the clock to the filter block is derived. In #3A, the clock to filter block is externally derived while in #3B, the clock to filter block is internally derived.

The comparator filter has no other function than sample/hold of the comparator output in this mode (# 3B).

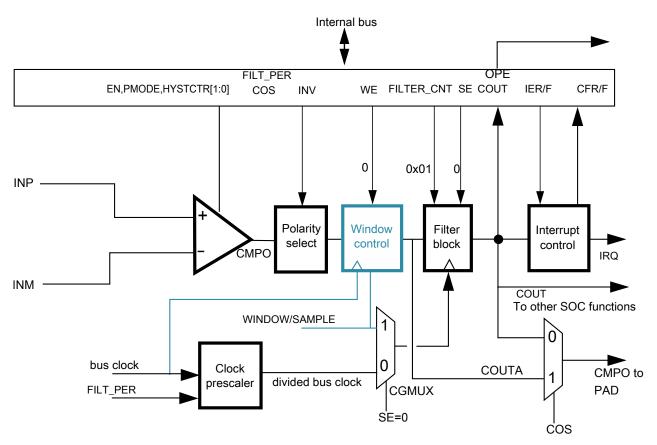



Figure 16-5. Sampled, Non-Filtered (# 3B): sampling interval internally derived

### 16.3.1.4 Sampled, Filtered mode (#s 4A & 4B)

In Sampled, Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising edge is detected on the filter block clock input.

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Filtered (# 4A) is that, now, CR0[FILTER\_CNT]>1, which activates filter operation.

#### **Functional description**

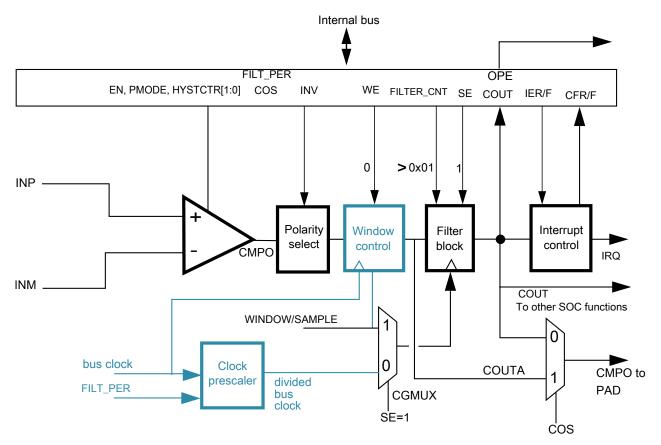



Figure 16-6. Sampled, Filtered (# 4A): sampling point externally driven

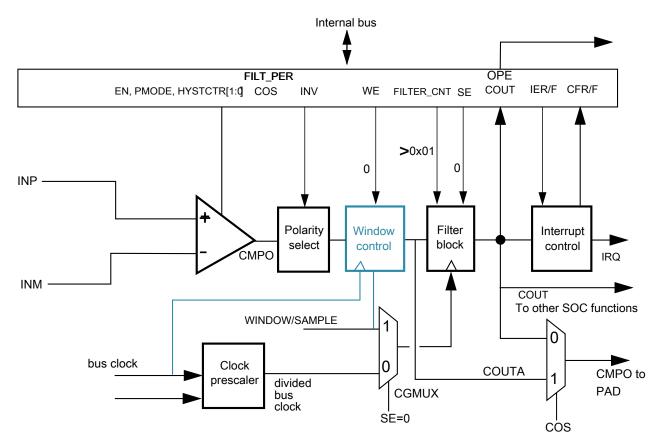



Figure 16-7. Sampled, Filtered (# 4B): sampling point internally derived

The only difference in operation between Sampled, Non-Filtered (# 3B) and Sampled, Filtered (# 4B) is that now, CR0[FILTER\_CNT]>1, which activates filter operation.

### 16.3.1.5 Windowed mode (#s 5A & 5B)

The following figure illustrates comparator operation in the Windowed mode, ignoring latency of the analog comparator, polarity select, and window control block. It also assumes that the polarity select is set to non-inverting state.

#### **NOTE**

The analog comparator output is passed to COUTA only when the WINDOW signal is high.

In actual operation, COUTA may lag the analog inputs by up to one bus clock cycle plus the combinational path delay through the comparator and polarity select logic.

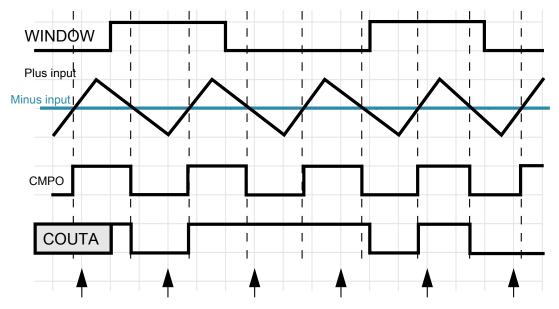



Figure 16-8. Windowed mode operation

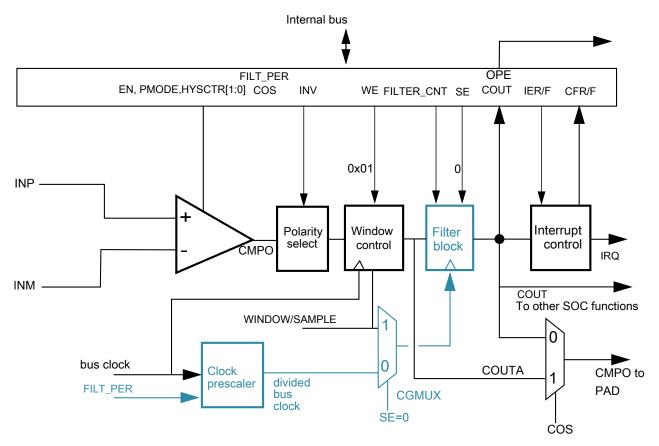



Figure 16-9. Windowed mode

For control configurations which result in disabling the filter block, see Filter Block Bypass Logic diagram.

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

### 16.3.1.6 Windowed/Resampled mode (# 6)

The following figure uses the same input stimulus shown in Figure 16-8, and adds resampling of COUTA to generate COUT. Samples are taken at the time points indicated by the arrows in the figure. Again, prop delays and latency are ignored for the sake of clarity.

This example was generated solely to demonstrate operation of the comparator in windowed/resampled mode, and does not reflect any specific application. Depending upon the sampling rate and window placement, COUT may not see zero-crossing events detected by the analog comparator. Sampling period and/or window placement must be carefully considered for a given application.

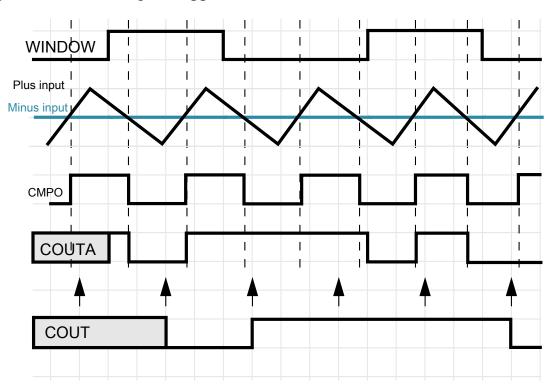



Figure 16-10. Windowed/resampled mode operation

This mode of operation results in an unfiltered string of comparator samples where the interval between the samples is determined by FPR[FILT\_PER] and the bus clock rate. Configuration for this mode is virtually identical to that for the Windowed/Filtered Mode shown in the next section. The only difference is that the value of CR0[FILTER\_CNT] must be 1.

### 16.3.1.7 Windowed/Filtered mode (#7)

This is the most complex mode of operation for the comparator block, as it uses both windowing and filtering features. It also has the highest latency of any of the modes. This can be approximated: up to 1 bus clock synchronization in the window function + ((CR0[FILTER\_CNT] \* FPR[FILT\_PER]) + 1) \* bus clock for the filter function.

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

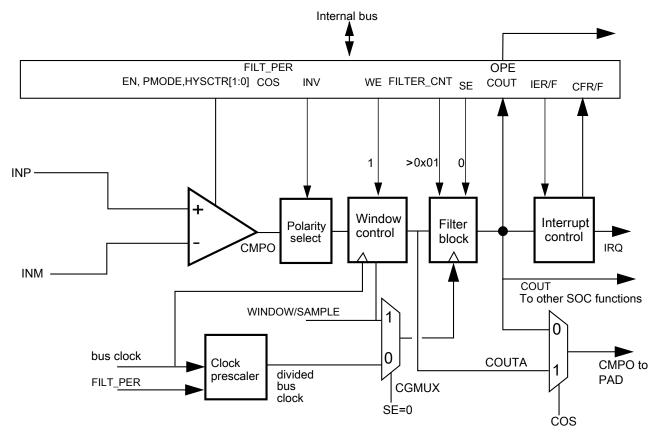



Figure 16-11. Windowed/Filtered mode

### 16.3.2 Power modes

## 16.3.2.1 Wait mode operation

During Wait and VLPW modes, the CMP, if enabled, continues to operate normally and a CMP interrupt can wake the MCU.

## 16.3.2.2 Stop mode operation

Depending on clock restrictions related to the MCU core or core peripherals, the MCU is brought out of stop when a compare event occurs and the corresponding interrupt is enabled. Similarly, if CR1[OPE] is enabled, the comparator output operates as in the normal operating mode and comparator output is placed onto the external pin. In Stop modes, the comparator can be operational in both:

- High-Speed (HS) Comparison mode when CR1[PMODE] = 1
- Low-Speed (LS) Comparison mode when CR1[PMODE] = 0

It is recommended to use the LS mode to minimize power consumption.

If stop is exited with a reset, all comparator registers are put into their reset state.

## 16.3.2.3 Low-Leakage mode operation

When the chip is in Low-Leakage modes:

- The CMP module is partially functional and is limited to Low-Speed mode, regardless of CR1[PMODE] setting
- Windowed, Sampled, and Filtered modes are not supported
- The CMP output pin is latched and does not reflect the compare output state.

The positive- and negative-input voltage can be supplied from external pins or the DAC output. The MCU can be brought out of the Low-Leakage mode if a compare event occurs and the CMP interrupt is enabled. After wakeup from low-leakage modes, the CMP module is in the reset state except for SCR[CFF] and SCR[CFR].

# 16.3.3 Startup and operation

A typical startup sequence is listed here.

- The time required to stabilize COUT will be the power-on delay of the comparators plus the largest propagation delay from a selected analog source through the analog comparator, windowing function and filter. See the Data Sheets for power-on delays of the comparators. The windowing function has a maximum of one bus clock period delay. The filter delay is specified in the Low-pass filter.
- During operation, the propagation delay of the selected data paths must always be considered. It may take many bus clock cycles for COUT and SCR[CFR]/SCR[CFF]

#### **Functional description**

- to reflect an input change or a configuration change to one of the components involved in the data path.
- When programmed for filtering modes, COUT will initially be equal to 0, until sufficient clock cycles have elapsed to fill all stages of the filter. This occurs even if COUTA is at a logic 1.

# 16.3.4 Low-pass filter

The low-pass filter operates on the unfiltered and unsynchronized and optionally inverted comparator output COUTA and generates the filtered and synchronized output COUT.

Both COUTA and COUT can be configured as module outputs and are used for different purposes within the system.

Synchronization and edge detection are always used to determine status register bit values. They also apply to COUT for all sampling and windowed modes. Filtering can be performed using an internal timebase defined by FPR[FILT\_PER], or using an external SAMPLE input to determine sample time.

The need for digital filtering and the amount of filtering is dependent on user requirements. Filtering can become more useful in the absence of an external hysteresis circuit. Without external hysteresis, high-frequency oscillations can be generated at COUTA when the selected INM and INP input voltages differ by less than the offset voltage of the differential comparator.

## 16.3.4.1 Enabling filter modes

Filter modes can be enabled by:

- Setting CR0[FILTER\_CNT] > 0x01 and
- Setting FPR[FILT\_PER] to a nonzero value or setting CR1[SE]=1

If using the divided bus clock to drive the filter, it will take samples of COUTA every FPR[FILT\_PER] bus clock cycles.

The filter output will be at logic 0 when first initalized, and will subsequently change when all the consecutive CR0[FILTER\_CNT] samples agree that the output value has changed. In other words, SCR[COUT] will be 0 for some initial period, even when COUTA is at logic 1.

Setting both CR1[SE] and FPR[FILT\_PER] to 0 disables the filter and eliminates switching current associated with the filtering process.

#### **Note**

Always switch to this setting prior to making any changes in filter parameters. This resets the filter to a known state. Switching CR0[FILTER\_CNT] on the fly without this intermediate step can result in unexpected behavior.

If CR1[SE]=1, the filter takes samples of COUTA on each positive transition of the sample input. The output state of the filter changes when all the consecutive CR0[FILTER\_CNT] samples agree that the output value has changed.

## 16.3.4.2 Latency issues

The value of FPR[FILT\_PER] or SAMPLE period must be set such that the sampling period is just longer than the period of the expected noise. This way a noise spike will corrupt only one sample. The value of CR0[FILTER\_CNT] must be chosen to reduce the probability of noisy samples causing an incorrect transition to be recognized. The probability of an incorrect transition is defined as the probability of an incorrect sample raised to the power of CR0[FILTER\_CNT].

The values of FPR[FILT\_PER] or SAMPLE period and CR0[FILTER\_CNT] must also be traded off against the desire for minimal latency in recognizing actual comparator output transitions. The probability of detecting an actual output change within the nominal latency is the probability of a correct sample raised to the power of CR0[FILTER\_CNT].

The following table summarizes maximum latency values for the various modes of operation *in the absence of noise*. Filtering latency is restarted each time an actual output transition is masked by noise.

| Mode # | CR1[<br>EN] | CR1[<br>WE] | CR1[<br>SE] | CR0[FILTER _CNT] | FPR[FILT_P<br>ER] | Operation                  | Maximum latency <sup>1</sup>                                                               |
|--------|-------------|-------------|-------------|------------------|-------------------|----------------------------|--------------------------------------------------------------------------------------------|
| 1      | 0           | Х           | Х           | Х                | Х                 | Disabled                   | N/A                                                                                        |
| 2A     | 1           | 0           | 0           | 0x00             | Х                 | Continuous Mode            | T <sub>PD</sub>                                                                            |
| 2B     | 1           | 0           | 0           | Х                | 0x00              |                            |                                                                                            |
| 3A     | 1           | 0           | 1           | 0x01             | Х                 | Sampled, Non-Filtered mode | T <sub>PD</sub> + T <sub>SAMPLE</sub> + T <sub>per</sub>                                   |
| 3В     | 1           | 0           | 0           | 0x01             | > 0x00            |                            | $T_{PD}$ + (FPR[FILT_PER] * $T_{per}$ ) + $T_{per}$                                        |
| 4A     | 1           | 0           | 1           | > 0x01           | Х                 | Sampled, Filtered mode     | T <sub>PD</sub> + (CR0[FILTER_CNT] * T <sub>SAMPLE</sub> ) + T <sub>per</sub>              |
| 4B     | 1           | 0           | 0           | > 0x01           | > 0x00            |                            | T <sub>PD</sub> + (CR0[FILTER_CNT] * FPR[FILT_PER] x T <sub>per</sub> ) + T <sub>per</sub> |

Table 16-2. Comparator sample/filter maximum latencies

Table continues on the next page...

Table 16-2. Comparator sample/filter maximum latencies (continued)

| Mode # | CR1[<br>EN] | CR1[<br>WE] | CR1[<br>SE] | CR0[FILTER<br>_CNT] | FPR[FILT_P<br>ER] | Operation                 | Maximum latency <sup>1</sup>                                                                      |
|--------|-------------|-------------|-------------|---------------------|-------------------|---------------------------|---------------------------------------------------------------------------------------------------|
| 5A     | 1           | 1           | 0           | 0x00                | Х                 | Windowed mode             | T <sub>PD</sub> + T <sub>per</sub>                                                                |
| 5B     | 1           | 1           | 0           | Х                   | 0x00              |                           | T <sub>PD</sub> + T <sub>per</sub>                                                                |
| 6      | 1           | 1           | 0           | 0x01                | 0x01 - 0xFF       | Windowed / Resampled mode | T <sub>PD</sub> + (FPR[FILT_PER] *<br>T <sub>per</sub> ) + 2T <sub>per</sub>                      |
| 7      | 1           | 1           | 0           | > 0x01              | 0x01 - 0xFF       | Windowed / Filtered mode  | T <sub>PD</sub> + (CR0[FILTER_CNT] *<br>FPR[FILT_PER] x T <sub>per</sub> ) +<br>2T <sub>per</sub> |

T<sub>PD</sub> represents the intrinsic delay of the analog component plus the polarity select logic. T<sub>SAMPLE</sub> is the clock period of the external sample clock. T<sub>per</sub> is the period of the bus clock.

# 16.4 CMP interrupts

The CMP module is capable of generating an interrupt on either the rising- or fallingedge of the comparator output, or both.

The following table gives the conditions in which the interrupt request is asserted and deasserted.

| When                                                           | Then                                |
|----------------------------------------------------------------|-------------------------------------|
| SCR[IER] and SCR[CFR] are set                                  | The interrupt request is asserted   |
| SCR[IEF] and SCR[CFF] are set                                  | The interrupt request is asserted   |
| SCR[IER] and SCR[CFR] are cleared for a rising-edge interrupt  | The interrupt request is deasserted |
| SCR[IEF] and SCR[CFF] are cleared for a falling-edge interrupt | The interrupt request is deasserted |

# 16.5 DMA support

Normally, the CMP generates a CPU interrupt if there is a change on the COUT. When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request rather than a CPU interrupt instead. When the DMA has completed the transfer, it sends a transfer completing indicator that deasserts the DMA transfer request and clears the flag to allow a subsequent change on comparator output to occur and force another DMA request.

The comparator can remain functional in STOP modes.

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

# 16.6 CMP Asynchronous DMA support

The comparator can remain functional in STOP modes.

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

# 16.7 Digital-to-analog converter

The figure found here shows the block diagram of the DAC module.

It contains a 64-tap resistor ladder network and a 64-to-1 multiplexer, which selects an output voltage from one of 64 distinct levels that outputs from DACO. It is controlled through the DAC Control Register (DACCR). Its supply reference source can be selected from two sources  $V_{in1}$  and  $V_{in2}$ . The module can be powered down or disabled when not in use. When in Disabled mode, DACO is connected to the analog ground.

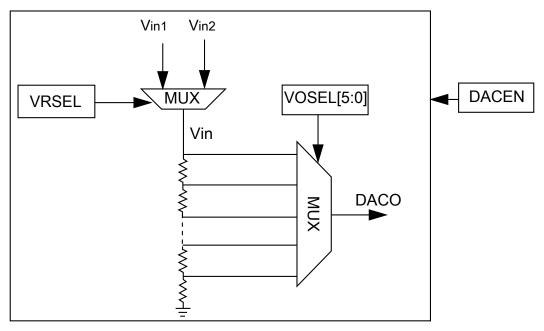



Figure 16-12. 6-bit DAC block diagram

# 16.8 DAC functional description

This section provides DAC functional description information.

## 16.8.1 Voltage reference source select

- $\bullet$  V<sub>in1</sub> connects to the primary voltage source as supply reference of 64 tap resistor ladder
- $\bullet\ V_{in2}$  connects to an alternate voltage source

## 16.9 DAC resets

This module has a single reset input, corresponding to the chip-wide peripheral reset.

## 16.10 DAC clocks

This module has a single clock input, the bus clock.

# 16.11 DAC interrupts

This module has no interrupts.

# 16.12 CMP Trigger Mode

CMP and DAC are configured to CMP Trigger mode when CMP\_CR1[TRIGM] is set to 1.

In addition, the CMP must be enabled. If the DAC is to be used as a reference to the CMP, it must also be enabled.

CMP Trigger mode depends on an external timer resource to periodically enable the CMP and 6-bit DAC in order to generate a triggered compare.

Upon setting TRIGM, the CMP and DAC are placed in a standby state until an external timer resource trigger is received.

See the chip configuration chapter for details about the external timer resource.

**CMP Trigger Mode** 

# **Chapter 17 Cyclic Redundancy Check (CRC)**

### 17.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The cyclic redundancy check (CRC) module generates 16/32-bit CRC code for error detection.

The CRC module provides a programmable polynomial and other parameters required to implement a 16-bit or 32-bit CRC standard.

The 16/32-bit code is calculated for 32 bits of data at a time.

#### **17.1.1 Features**

Features of the CRC module include:

- Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register
- Programmable initial seed value and polynomial
- Option to transpose input data or output data (the CRC result) bitwise or bytewise. This option is required for certain CRC standards. A bytewise transpose operation is not possible when accessing the CRC data register via 8-bit accesses. In this case, the user's software must perform the bytewise transpose function.
- Option for inversion of final CRC result
- 32-bit CPU register programming interface

## 17.1.2 Block diagram

The following is a block diagram of the CRC.

#### Memory map and register descriptions

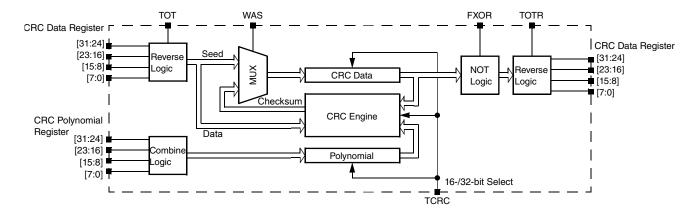



Figure 17-1. Programmable cyclic redundancy check (CRC) block diagram

# 17.1.3 Modes of operation

Various MCU modes affect the CRC module's functionality.

#### 17.1.3.1 Run mode

This is the basic mode of operation.

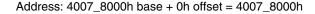
# 17.1.3.2 Low-power modes (Wait or Stop)

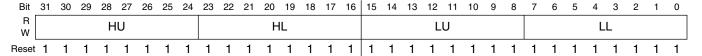
Any CRC calculation in progress stops when the MCU enters a low-power mode that disables the module clock. It resumes after the clock is enabled or via the system reset for exiting the low-power mode. Clock gating for this module is dependent on the MCU.

# 17.2 Memory map and register descriptions

## **CRC** memory map

| Absolute<br>address<br>(hex) | Register name                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------|--------------------|--------|-------------|------------------|
| 4007_8000                    | CRC Data register (CRC_DATA)        | 32                 | R/W    | FFFF_FFFFh  | 17.2.1/371       |
| 4007_8004                    | CRC Polynomial register (CRC_GPOLY) | 32                 | R/W    | 0000_1021h  | 17.2.2/372       |
| 4007_8008                    | CRC Control register (CRC_CTRL)     | 32                 | R/W    | 0000_0000h  | 17.2.3/372       |


## 17.2.1 CRC Data register (CRC\_DATA)


The CRC Data register contains the value of the seed, data, and checksum. When CTRL[WAS] is set, any write to the data register is regarded as the seed value. When CTRL[WAS] is cleared, any write to the data register is regarded as data for general CRC computation.

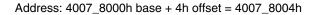
In 16-bit CRC mode, the HU and HL fields are not used for programming the seed value, and reads of these fields return an indeterminate value. In 32-bit CRC mode, all fields are used for programming the seed value.

When programming data values, the values can be written 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous; with MSB of data value written first.

After all data values are written, the CRC result can be read from this data register. In 16-bit CRC mode, the CRC result is available in the LU and LL fields. In 32-bit CRC mode, all fields contain the result. Reads of this register at any time return the intermediate CRC value, provided the CRC module is configured.






### **CRC\_DATA** field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>HU | CRC High Upper Byte  In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1.  When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes. |
| 23–16<br>HL | CRC High Lower Byte  In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1.  When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes. |
| 15–8<br>LU  | CRC Low Upper Byte  When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.                                                                                                                                                                       |
| LL          | CRC Low Lower Byte  When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.                                                                                                                                                                       |

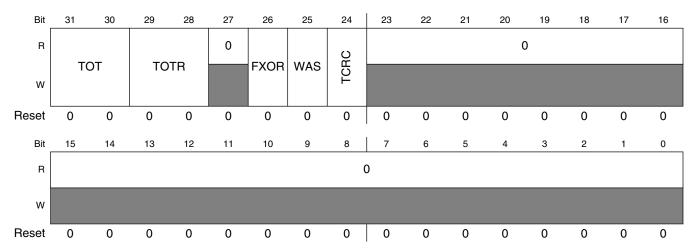
KL28Z Reference Manual, Rev. 4, 06/2016

# 17.2.2 CRC Polynomial register (CRC\_GPOLY)

This register contains the value of the polynomial for the CRC calculation. The HIGH field contains the upper 16 bits of the CRC polynomial, which are used only in 32-bit CRC mode. Writes to the HIGH field are ignored in 16-bit CRC mode. The LOW field contains the lower 16 bits of the CRC polynomial, which are used in both 16- and 32-bit CRC modes.



| Bit   | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|-----|-------|---|---|---|---|---|---|---|
| R     |    |    |    |    |    |    |    | HI | 211 |    |    |    |    |    |    |    |    |    |    |    |    |    |   | 1.0 | W     |   |   |   |   |   |   |   |
| W     |    |    |    |    |    |    |    | ПІ | ЗΠ  |    |    |    |    |    |    |    |    |    |    |    |    |    |   | LC  | , v v |   |   |   |   |   |   |   |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0 | 0   | 0     | 0 | 1 | 0 | 0 | 0 | 0 | 1 |


#### **CRC\_GPOLY** field descriptions

| Field         | Description                                                                                                                  |
|---------------|------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>HIGH | High Polynominal Half-word                                                                                                   |
|               | Writable and readable in 32-bit CRC mode (CTRL[TCRC] is 1). This field is not writable in 16-bit CRC mode (CTRL[TCRC] is 0). |
| LOW           | Low Polynominal Half-word                                                                                                    |
|               | Writable and readable in both 32-bit and 16-bit CRC modes.                                                                   |

## 17.2.3 CRC Control register (CRC\_CTRL)

This register controls the configuration and working of the CRC module. Appropriate bits must be set before starting a new CRC calculation. A new CRC calculation is initialized by asserting CTRL[WAS] and then writing the seed into the CRC data register.

Address: 4007\_8000h base + 8h offset = 4007\_8008h



KL28Z Reference Manual, Rev. 4, 06/2016

# **CRC\_CTRL** field descriptions

| Field          | Description                                                                                                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30          | Type Of Transpose For Writes                                                                                                                                                        |
| ТОТ            | Defines the transpose configuration of the data written to the CRC data register. See the description of the transpose feature for the available transpose options.                 |
|                | 00 No transposition.                                                                                                                                                                |
|                | 01 Bits in bytes are transposed; bytes are not transposed.                                                                                                                          |
|                | 10 Both bits in bytes and bytes are transposed.                                                                                                                                     |
|                | 11 Only bytes are transposed; no bits in a byte are transposed.                                                                                                                     |
| 29–28<br>TOTR  | Type Of Transpose For Read                                                                                                                                                          |
|                | Identifies the transpose configuration of the value read from the CRC Data register. See the description of the transpose feature for the available transpose options.              |
|                | 00 No transposition.                                                                                                                                                                |
|                | 01 Bits in bytes are transposed; bytes are not transposed.                                                                                                                          |
|                | 10 Both bits in bytes and bytes are transposed.                                                                                                                                     |
|                | 11 Only bytes are transposed; no bits in a byte are transposed.                                                                                                                     |
| 27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                |
| 26<br>FXOR     | Complement Read Of CRC Data Register                                                                                                                                                |
|                | Some CRC protocols require the final checksum to be XORed with 0xFFFFFFF or 0xFFFF. Asserting this bit enables on the fly complementing of read data.                               |
|                | 0 No XOR on reading.                                                                                                                                                                |
|                | 1 Invert or complement the read value of the CRC Data register.                                                                                                                     |
| 25<br>WAS      | Write CRC Data Register As Seed                                                                                                                                                     |
|                | When asserted, a value written to the CRC data register is considered a seed value. When deasserted, a value written to the CRC data register is taken as data for CRC computation. |
|                | 0 Writes to the CRC data register are data values.                                                                                                                                  |
|                | Writes to the CRC data register are seed values.                                                                                                                                    |
| 24<br>TCRC     | Width of CRC protocol.                                                                                                                                                              |
|                | 0 16-bit CRC protocol.                                                                                                                                                              |
|                | 1 32-bit CRC protocol.                                                                                                                                                              |
| Reserved       | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                |

# 17.3 Functional description

## 17.3.1 CRC initialization/reinitialization

To enable the CRC calculation, the user must program CRC\_CTRL[WAS], CRC\_GPOLY,necessary parameters for transposition and CRC result inversion in the applicable registers. Asserting CRC\_CTRL[WAS] enables the programming of the seed value into the CRC\_DATA register.

After a completed CRC calculation, the module can be reinitialized for a new CRC computation by reasserting CRC\_CTRL[WAS] and programming a new, or previously used, seed value. All other parameters must be set before programming the seed value and subsequent data values.

#### 17.3.2 CRC calculations

In 16-bit and 32-bit CRC modes, data values can be programmed 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous. Noncontiguous bytes can lead to an incorrect CRC computation.

#### 17.3.2.1 16-bit CRC

To compute a 16-bit CRC:

- 1. Clear CRC\_CTRL[TCRC] to enable 16-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 16-bit polynomial to the CRC\_GPOLY[LOW] field. The CRC\_GPOLY[HIGH] field is not usable in 16-bit CRC mode.
- 4. Set CRC\_CTRL[WAS] to program the seed value.
- 5. Write a 16-bit seed to CRC\_DATA[LU:LL]. CRC\_DATA[HU:HL] are not used.
- 6. Clear CRC\_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC\_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC\_DATA[LU:LL].
- 8. When all values have been written, read the final CRC result from CRC\_DATA[LU:LL].

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

#### 17.3.2.2 32-bit CRC

To compute a 32-bit CRC:

- 1. Set CRC\_CTRL[TCRC] to enable 32-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 32-bit polynomial to CRC\_GPOLY[HIGH:LOW].
- 4. Set CRC\_CTRL[WAS] to program the seed value.
- 5. Write a 32-bit seed to CRC\_DATA[HU:HL:LU:LL].
- 6. Clear CRC\_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC\_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC\_DATA[HU:HL:LU:LL].
- 8. When all values have been written, read the final CRC result from CRC\_DATA[HU:HL:LU:LL]. The CRC is calculated bytewise, and two clocks are required to complete one CRC calculation.

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

# 17.3.3 Transpose feature

By default, the transpose feature is not enabled. However, some CRC standards require the input data and/or the final checksum to be transposed. The user software has the option to configure each transpose operation separately, as desired by the CRC standard. The data is transposed on the fly while being read or written.

Some protocols use little endian format for the data stream to calculate a CRC. In this case, the transpose feature usefully flips the bits. This transpose option is one of the types supported by the CRC module.

## 17.3.3.1 Types of transpose

The CRC module provides several types of transpose functions to flip the bits and/or bytes, for both writing input data and reading the CRC result, separately using the CTRL[TOT] or CTRL[TOTR] fields, according to the CRC calculation being used.

The following types of transpose functions are available for writing to and reading from the CRC data register:

1. CTRL[TOT] or CTRL[TOTR] is 00.

#### **Functional description**

No transposition occurs.

## 2. CTRL[TOT] or CTRL[TOTR] is 01

Bits in a byte are transposed, while bytes are not transposed.

reg[31:0] becomes {reg[24:31], reg[16:23], reg[8:15], reg[0:7]}

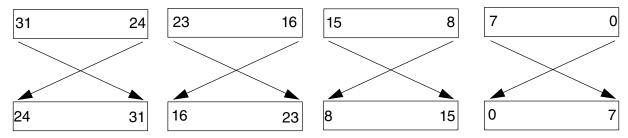



Figure 17-2. Transpose type 01

## 3. CTRL[TOT] or CTRL[TOTR] is 10.

Both bits in bytes and bytes are transposed.

reg[31:0] becomes = {reg[0:7], reg[8:15], reg[16:23], reg[24:31]}

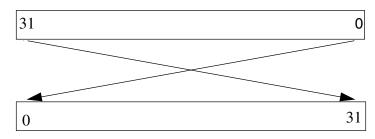
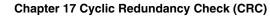




Figure 17-3. Transpose type 10

## 4. CTRL[TOT] or CTRL[TOTR] is 11.

Bytes are transposed, but bits are not transposed.

reg[31:0] becomes {reg[7:0], reg[15:8], reg[23:16], reg[31:24]}



377

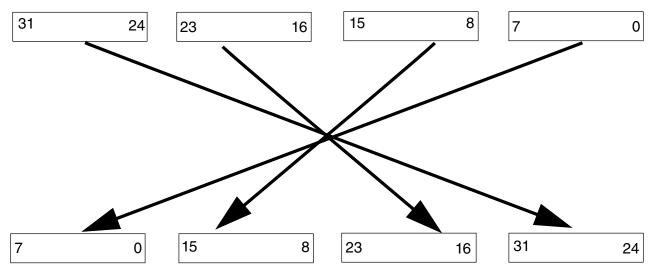



Figure 17-4. Transpose type 11

#### **NOTE**

- For 8-bit and 16-bit write accesses to the CRC data register, the data is transposed with zeros on the unused byte or bytes (taking 32 bits as a whole), but the CRC is calculated on the valid byte(s) only.
- When reading the CRC data register for a 16-bit CRC result and using transpose options 10 and 11, the resulting value after transposition resides in the CRC[HU:HL] fields. The user software must account for this situation when reading the 16-bit CRC result, so reading 32 bits is preferred.

## 17.3.4 CRC result complement

When CTRL[FXOR] is set, the checksum is complemented. The CRC result complement function outputs the complement of the checksum value stored in the CRC data register every time the CRC data register is read. When CTRL[FXOR] is cleared, reading the CRC data register accesses the raw checksum value.

Functional description

# Chapter 18 12-bit Digital-to-Analog Converter (DAC)

## 18.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, op-amps, or ADC.

## 18.2 Features

The features of the DAC module include:

- On-chip programmable reference generator output. The voltage output range is from  $1/4096 \, V_{in}$  to  $V_{in}$ , and the step is  $1/4096 \, V_{in}$ , where  $V_{in}$  is the input voltage.
- V<sub>in</sub> can be selected from two reference sources
- Static operation in Normal Stop mode
- 16-word data buffer supported with configurable watermark and multiple operation modes
- DMA support

# 18.3 Block diagram

The block diagram of the DAC module is as follows:

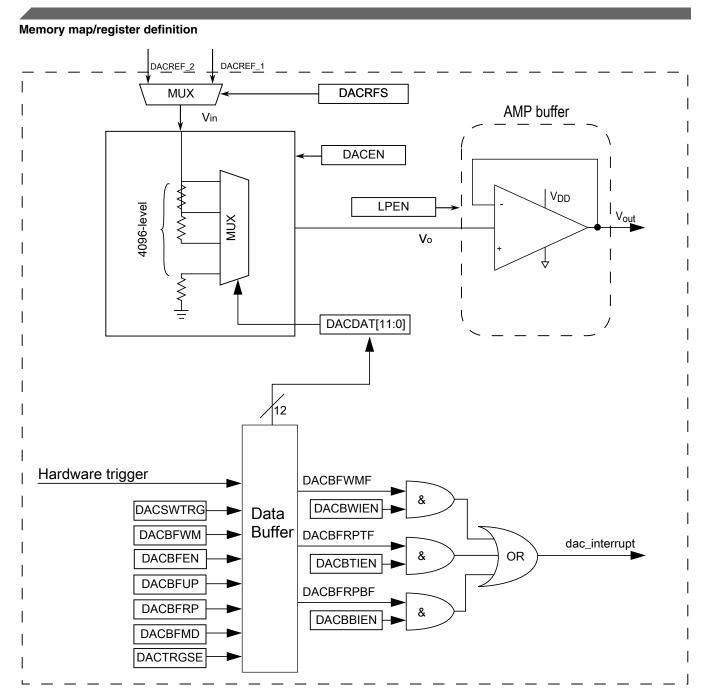
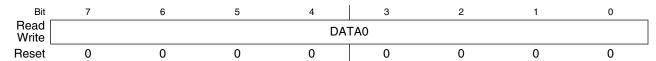



Figure 18-1. DAC block diagram

# 18.4 Memory map/register definition

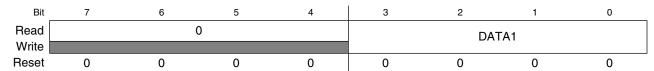

The DAC has registers to control analog comparator and programmable voltage divider to perform the digital-to-analog functions.

# **DAC** memory map

| Absolute<br>address<br>(hex) | Register name                        | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|--------------------------------------|--------------------|--------|-------------|------------------|
| 4006_A000                    | DAC Data Low Register (DAC0_DAT0L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A001                    | DAC Data High Register (DAC0_DAT0H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A002                    | DAC Data Low Register (DAC0_DAT1L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A003                    | DAC Data High Register (DAC0_DAT1H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A004                    | DAC Data Low Register (DAC0_DAT2L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A005                    | DAC Data High Register (DAC0_DAT2H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A006                    | DAC Data Low Register (DAC0_DAT3L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A007                    | DAC Data High Register (DAC0_DAT3H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A008                    | DAC Data Low Register (DAC0_DAT4L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A009                    | DAC Data High Register (DAC0_DAT4H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A00A                    | DAC Data Low Register (DAC0_DAT5L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A00B                    | DAC Data High Register (DAC0_DAT5H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A00C                    | DAC Data Low Register (DAC0_DAT6L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A00D                    | DAC Data High Register (DAC0_DAT6H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A00E                    | DAC Data Low Register (DAC0_DAT7L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A00F                    | DAC Data High Register (DAC0_DAT7H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A010                    | DAC Data Low Register (DAC0_DAT8L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A011                    | DAC Data High Register (DAC0_DAT8H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A012                    | DAC Data Low Register (DAC0_DAT9L)   | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A013                    | DAC Data High Register (DAC0_DAT9H)  | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A014                    | DAC Data Low Register (DAC0_DAT10L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A015                    | DAC Data High Register (DAC0_DAT10H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A016                    | DAC Data Low Register (DAC0_DAT11L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A017                    | DAC Data High Register (DAC0_DAT11H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A018                    | DAC Data Low Register (DAC0_DAT12L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A019                    | DAC Data High Register (DAC0_DAT12H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A01A                    | DAC Data Low Register (DAC0_DAT13L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A01B                    | DAC Data High Register (DAC0_DAT13H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A01C                    | DAC Data Low Register (DAC0_DAT14L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A01D                    | DAC Data High Register (DAC0_DAT14H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A01E                    | DAC Data Low Register (DAC0_DAT15L)  | 8                  | R/W    | 00h         | 18.4.1/382       |
| 4006_A01F                    | DAC Data High Register (DAC0_DAT15H) | 8                  | R/W    | 00h         | 18.4.2/382       |
| 4006_A020                    | DAC Status Register (DAC0_SR)        | 8                  | R/W    | 02h         | 18.4.3/382       |
| 4006_A021                    | DAC Control Register (DAC0_C0)       | 8                  | R/W    | 00h         | 18.4.4/383       |
| 4006_A022                    | DAC Control Register 1 (DAC0_C1)     | 8                  | R/W    | 00h         | 18.4.5/385       |
| 4006_A023                    | DAC Control Register 2 (DAC0_C2)     | 8                  | R/W    | 0Fh         | 18.4.6/386       |

## 18.4.1 DAC Data Low Register (DACx\_DATnL)

Address:  $4006\_A000h$  base + 0h offset +  $(2d \times i)$ , where i=0d to 15d




#### DACx\_DATnL field descriptions

| Field | Description                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA0 | DATA0                                                                                                                                                        |
|       | When the DAC buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula: V $_{out}$ = V $_{in}$ * (1 + DACDAT0[11:0])/4096 |
|       | When the DAC buffer is enabled, DATA is mapped to the 16-word buffer.                                                                                        |

## **18.4.2** DAC Data High Register (DACx\_DATnH)

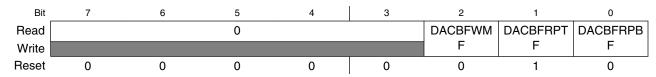
Address:  $4006\_A000h$  base + 1h offset +  $(2d \times i)$ , where i=0d to 15d



#### DACx\_DATnH field descriptions

| Field           | Description                                                                                                                                                                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                         |
| DATA1           | DATA1  When the DAC Buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula. V <sub>out</sub> = V <sub>in</sub> * (1 + DACDAT0[11:0])/4096  When the DAC buffer is enabled, DATA[11:0] is mapped to the 16-word buffer. |

# 18.4.3 DAC Status Register (DACx\_SR)


If DMA is enabled, the flags can be cleared automatically by DMA when the DMA request is done. Writing 0 to a field clears it whereas writing 1 has no effect. After reset, DACBFRPTF is set and can be cleared by software, if needed. The flags are set only when the data buffer status is changed.

383

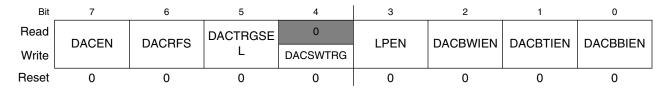
#### **NOTE**

Do not use 32/16-bit accesses to this register.

Address: 4006\_A000h base + 20h offset = 4006\_A020h



#### DACx\_SR field descriptions


| Field          | Description                                                        |  |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 7–3            | This field is reserved.                                            |  |  |  |  |  |  |  |  |
| Reserved       | This read-only field is reserved and always has the value 0.       |  |  |  |  |  |  |  |  |
| 2<br>DACBFWMF  | DAC Buffer Watermark Flag                                          |  |  |  |  |  |  |  |  |
|                | 0 The DAC buffer read pointer has not reached the watermark level. |  |  |  |  |  |  |  |  |
|                | 1 The DAC buffer read pointer has reached the watermark level.     |  |  |  |  |  |  |  |  |
| 1<br>DACBFRPTF | DAC Buffer Read Pointer Top Position Flag                          |  |  |  |  |  |  |  |  |
|                | 0 The DAC buffer read pointer is not zero.                         |  |  |  |  |  |  |  |  |
|                | 1 The DAC buffer read pointer is zero.                             |  |  |  |  |  |  |  |  |
| 0<br>DACBFRPBF | DAC Buffer Read Pointer Bottom Position Flag                       |  |  |  |  |  |  |  |  |
|                | 0 The DAC buffer read pointer is not equal to C2[DACBFUP].         |  |  |  |  |  |  |  |  |
|                | 1 The DAC buffer read pointer is equal to C2[DACBFUP].             |  |  |  |  |  |  |  |  |

# 18.4.4 DAC Control Register (DACx\_C0)

#### **NOTE**

Do not use 32- or 16-bit accesses to this register.

Address: 4006\_A000h base + 21h offset = 4006\_A021h



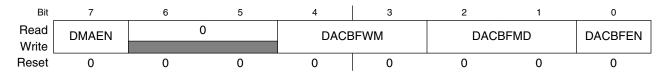
#### DACx\_C0 field descriptions

| Field | Description                                            |
|-------|--------------------------------------------------------|
|       | DAC Enable                                             |
| DACEN | Starts the Programmable Reference Generator operation. |

Table continues on the next page...

## Memory map/register definition

# DACx\_C0 field descriptions (continued)


| Field          | Description                                                                                                                                                                                  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                | 0 The DAC system is disabled.                                                                                                                                                                |  |  |
|                | 1 The DAC system is enabled.                                                                                                                                                                 |  |  |
| 6<br>DACRFS    | DAC Reference Select                                                                                                                                                                         |  |  |
|                | 0 The DAC selects DACREF_1 as the reference voltage.                                                                                                                                         |  |  |
|                | 1 The DAC selects DACREF_2 as the reference voltage.                                                                                                                                         |  |  |
| 5<br>DACTRGSEL | DAC Trigger Select                                                                                                                                                                           |  |  |
|                | 0 The DAC hardware trigger is selected.                                                                                                                                                      |  |  |
|                | 1 The DAC software trigger is selected.                                                                                                                                                      |  |  |
| 4<br>DACSWTRG  | DAC Software Trigger                                                                                                                                                                         |  |  |
|                | Active high. This is a write-only field, which always reads 0. If DAC software trigger is selected and buffer is enabled, writing 1 to this field will advance the buffer read pointer once. |  |  |
|                | 0 The DAC soft trigger is not valid.                                                                                                                                                         |  |  |
|                | 1 The DAC soft trigger is valid.                                                                                                                                                             |  |  |
| 3<br>LPEN      | DAC Low Power Control                                                                                                                                                                        |  |  |
|                | <b>NOTE:</b> See the 12-bit DAC electrical characteristics of the device data sheet for details on the impact of the modes below.                                                            |  |  |
|                | 0 High-Power mode                                                                                                                                                                            |  |  |
|                | 1 Low-Power mode                                                                                                                                                                             |  |  |
| 2<br>DACBWIEN  | DAC Buffer Watermark Interrupt Enable                                                                                                                                                        |  |  |
| 27102111211    | 0 The DAC buffer watermark interrupt is disabled.                                                                                                                                            |  |  |
|                | 1 The DAC buffer watermark interrupt is enabled.                                                                                                                                             |  |  |
| 1<br>DACBTIEN  | DAC Buffer Read Pointer Top Flag Interrupt Enable                                                                                                                                            |  |  |
|                | 0 The DAC buffer read pointer top flag interrupt is disabled.                                                                                                                                |  |  |
|                | 1 The DAC buffer read pointer top flag interrupt is enabled.                                                                                                                                 |  |  |
| 0<br>DACBBIEN  | DAC Buffer Read Pointer Bottom Flag Interrupt Enable                                                                                                                                         |  |  |
|                | 0 The DAC buffer read pointer bottom flag interrupt is disabled.                                                                                                                             |  |  |
|                | 1 The DAC buffer read pointer bottom flag interrupt is enabled.                                                                                                                              |  |  |

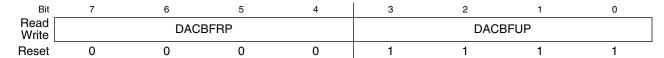
# 18.4.5 DAC Control Register 1 (DACx\_C1)

## **NOTE**

Do not use 32- or 16-bit accesses to this register.

Address: 4006\_A000h base + 22h offset = 4006\_A022h




## **DACx\_C1** field descriptions

| Field          | Description                                                                                                                                                            |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>DMAEN     | DMA Enable Select                                                                                                                                                      |  |  |
|                | 0 DMA is disabled.                                                                                                                                                     |  |  |
|                | 1 DMA is enabled. When DMA is enabled, the DMA request will be generated by original interrupts. The interrupts will not be presented on this module at the same time. |  |  |
| 6–5            | This field is reserved.                                                                                                                                                |  |  |
| Reserved       | This read-only field is reserved and always has the value 0.                                                                                                           |  |  |
| 4–3<br>DACBFWM | DAC Buffer Watermark Select                                                                                                                                            |  |  |
|                | Controls when SR[DACBFWMF] is set. When the DAC buffer read pointer reaches the word defined by                                                                        |  |  |
|                | this field, which is 1–4 words away from the upper limit (DACBUP), SR[DACBFWMF] will be set. This allows user configuration of the watermark interrupt.                |  |  |
|                | allows user configuration of the watermark interrupt.                                                                                                                  |  |  |
|                | 00 1 word                                                                                                                                                              |  |  |
|                | 01 2 words                                                                                                                                                             |  |  |
|                | 10 3 words                                                                                                                                                             |  |  |
|                | 11 4 words                                                                                                                                                             |  |  |
| 2–1<br>DACBFMD | DAC Buffer Work Mode Select                                                                                                                                            |  |  |
|                | 00 Normal mode                                                                                                                                                         |  |  |
|                | 01 Swing mode                                                                                                                                                          |  |  |
|                | 10 One-Time Scan mode                                                                                                                                                  |  |  |
|                | 11 Reserved                                                                                                                                                            |  |  |
| 0<br>DACBFEN   | DAC Buffer Enable                                                                                                                                                      |  |  |
|                | 0 Buffer read pointer is disabled. The converted data is always the first word of the buffer.                                                                          |  |  |
|                | 1 Buffer read pointer is enabled. The converted data is the word that the read pointer points to. It means converted data can be from any word of the buffer.          |  |  |

KL28Z Reference Manual, Rev. 4, 06/2016

#### DAC Control Register 2 (DACx C2) 18.4.6

Address: 4006\_A000h base + 23h offset = 4006\_A023h



#### DACx\_C2 field descriptions

| Field          | Description                                                                          |
|----------------|--------------------------------------------------------------------------------------|
| 7–4<br>DACBFRP | DAC Buffer Read Pointer                                                              |
|                | Keeps the current value of the buffer read pointer.                                  |
| DACBFUP        | DAC Buffer Upper Limit                                                               |
|                | Selects the upper limit of the DAC buffer. The buffer read pointer cannot exceed it. |

#### Functional description 18.5

The 12-bit DAC module can select one of the two reference inputs—DACREF 1 and DACREF\_2 as the DAC reference voltage, V<sub>in</sub> by C0 [DACRFS]. See the chip-specific DAC information to determine the source options for DACREF\_1 and DACREF\_2.

When the DAC is enabled, it converts the data in DACDAT0[11:0] or the data from the DAC data buffer to a stepped analog output voltage. The output voltage range is from V<sub>in</sub> to  $V_{in}/4096$ , and the step is  $V_{in}/4096$ .

#### **DAC** data buffer operation 18.5.1

When the DAC is enabled and the buffer is not enabled, the DAC module always converts the data in DAT0 to the analog output voltage.

When both the DAC and the buffer are enabled, the DAC converts the data in the data buffer to analog output voltage. The data buffer read pointer advances to the next word whenever a hardware or software trigger event occurs.

The data buffer can be configured to operate in Normal mode, Swing mode, One-Time Scan mode. When the buffer operation is switched from one mode to another, the read pointer does not change. The read pointer can be set to any value between 0 and C2[DACBFUP] by writing C2[DACBFRP].

KL28Z Reference Manual, Rev. 4, 06/2016 386 NXP Semiconductors

## 18.5.1.1 DAC data buffer interrupts

There are several interrupts and associated flags that can be configured for the DAC buffer. SR[DACBFRPBF] is set when the DAC buffer read pointer reaches the DAC buffer upper limit, that is, C2[DACBFRP] = C2[DACBFUP]. SR[DACBFRPTF] is set when the DAC read pointer is equal to the start position, 0. Finally, SR[DACBFWMF] is set when the DAC buffer read pointer has reached the position defined by C1[DACBFWM]. C1[DACBFWM] can be used to generate an interrupt when the DAC buffer read pointer is between 1 to 4 words from C2[DACBFUP].

## 18.5.1.2 Modes of DAC data buffer operation

The following table describes the different modes of data buffer operation for the DAC module.

| Modes                     | Description                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buffer Normal mode        | This is the default mode. The buffer works as a circular buffer. The read pointer increases by one, every time the trigger occurs. When the read pointer reaches the upper limit, it goes to 0 directly in the next trigger event.                                                                                                                              |
| Buffer Swing mode         | This mode is similar to the normal mode. However, when the read pointer reaches the upper limit, it does not go to 0. It will descend by 1 in the next trigger events until 0 is reached.                                                                                                                                                                       |
| Buffer One-time Scan mode | The read pointer increases by 1 every time the trigger occurs. When it reaches the upper limit, it stops there. If read pointer is reset to the address other than the upper limit, it will increase to the upper address and stop there again.  NOTE: If the software set the read pointer to the upper limit, the read pointer will not advance in this mode. |

Table 18-1. Modes of DAC data buffer operation

# 18.5.2 DMA operation

When DMA is enabled, DMA requests are generated instead of interrupt requests. The DMA Done signal clears the DMA request.

The status register flags are still set and are cleared automatically when the DMA completes.

KL28Z Reference Manual, Rev. 4, 06/2016

**Functional description** 

## **18.5.3 Resets**

During reset, the DAC is configured in the default mode and is disabled.

# 18.5.4 Low-Power mode operation

The following table shows the wait mode and the stop mode operation of the DAC module.

Table 18-2. Modes of operation

| Modes of operation | Description                                                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wait mode          | The DAC will operate normally, if enabled.                                                                                                                           |
| Stop mode          | If enabled, the DAC module continues to operate normally, with the hardware trigger initiating the conversion.  In low-power stop modes, the DAC is fully shut down. |

#### NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

# **Chapter 19 Direct Memory Access Multiplexer (DMAMUX)**

## 19.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

## **19.1.1 Overview**

The Direct Memory Access Multiplexer (DMAMUX) routes DMA sources, called slots, to any of the 8 DMA channels. This process is illustrated in the following figure.

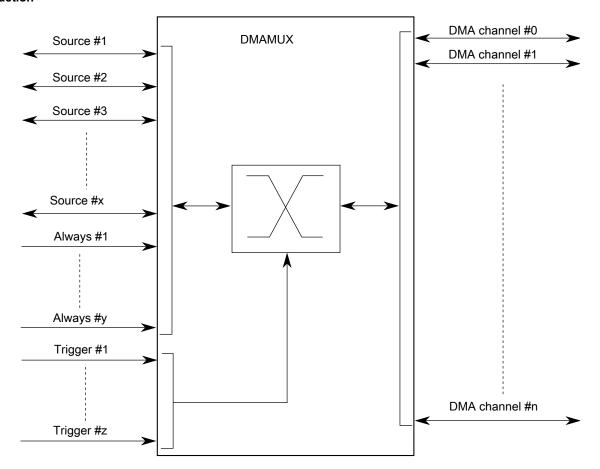



Figure 19-1. DMAMUX block diagram

# 19.1.2 Features

The DMAMUX module provides these features:

- Up to 59 peripheral slots and up to four always-on slots can be routed to 8 channels.
- 8 independently selectable DMA channel routers.
  - The first four channels additionally provide a trigger functionality.
- Each channel router can be assigned to one of the possible peripheral DMA slots or to one of the always-on slots.

# 19.1.3 Modes of operation

The following operating modes are available:

• Disabled mode

In this mode, the DMA channel is disabled. Because disabling and enabling of DMA channels is done primarily via the DMA configuration registers, this mode is used mainly as the reset state for a DMA channel in the DMA channel MUX. It may also be used to temporarily suspend a DMA channel while reconfiguration of the system takes place, for example, changing the period of a DMA trigger.

#### Normal mode

In this mode, a DMA source is routed directly to the specified DMA channel. The operation of the DMAMUX in this mode is completely transparent to the system.

## • Periodic Trigger mode

In this mode, a DMA source may only request a DMA transfer, such as when a transmit buffer becomes empty or a receive buffer becomes full, periodically.

Configuration of the period is done in the registers of the periodic interrupt timer (LPIT). This mode is available only for channels 0–3.

# 19.2 External signal description

The DMAMUX has no external pins.

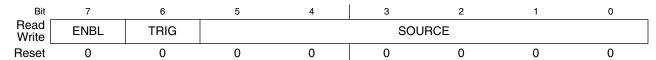
# 19.3 Memory map/register definition

This section provides a detailed description of all memory-mapped registers in the DMAMUX.

#### **DMAMUX** memory map

| Absolute<br>address<br>(hex) | Register name                                   | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------------|--------------------|--------|-------------|------------------|
| 4002_1000                    | Channel Configuration register (DMAMUX0_CHCFG0) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1001                    | Channel Configuration register (DMAMUX0_CHCFG1) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1002                    | Channel Configuration register (DMAMUX0_CHCFG2) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1003                    | Channel Configuration register (DMAMUX0_CHCFG3) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1004                    | Channel Configuration register (DMAMUX0_CHCFG4) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1005                    | Channel Configuration register (DMAMUX0_CHCFG5) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1006                    | Channel Configuration register (DMAMUX0_CHCFG6) | 8                  | R/W    | 00h         | 19.3.1/392       |
| 4002_1007                    | Channel Configuration register (DMAMUX0_CHCFG7) | 8                  | R/W    | 00h         | 19.3.1/392       |

## 19.3.1 Channel Configuration register (DMAMUXx\_CHCFGn)


Each of the DMA channels can be independently enabled/disabled and associated with one of the DMA slots (peripheral slots or always-on slots) in the system.

#### NOTE

Setting multiple CHCFG registers with the same source value will result in unpredictable behavior. This is true, even if a channel is disabled (ENBL==0).

Before changing the trigger or source settings, a DMA channel must be disabled via CHCFGn[ENBL].

Address:  $4002\_1000h$  base + 0h offset +  $(1d \times i)$ , where i=0d to 7d



#### DMAMUXx\_CHCFGn field descriptions

| Field     | Description                                                                                                                                                                                           |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7<br>ENBL | DMA Channel Enable                                                                                                                                                                                    |  |  |
|           | Enables the DMA channel.                                                                                                                                                                              |  |  |
|           | DMA channel is disabled. This mode is primarily used during configuration of the DMAMux. The DMA has separate channel enables/disables, which should be used to disable or reconfigure a DMA channel. |  |  |
|           | 1 DMA channel is enabled                                                                                                                                                                              |  |  |
| 6<br>TRIG | DMA Channel Trigger Enable                                                                                                                                                                            |  |  |
|           | Enables the periodic trigger capability for the triggered DMA channel.                                                                                                                                |  |  |
|           | Triggering is disabled. If triggering is disabled and ENBL is set, the DMA Channel will simply route the specified source to the DMA channel. (Normal mode)                                           |  |  |
|           | 1 Triggering is enabled. If triggering is enabled and ENBL is set, the DMAMUX is in Periodic Trigger mode.                                                                                            |  |  |
| SOURCE    | DMA Channel Source (Slot)                                                                                                                                                                             |  |  |
|           | Specifies which DMA source, if any, is routed to a particular DMA channel. See the chip-specific DMAMUX information for details about the peripherals and their slot numbers.                         |  |  |

# 19.4 Functional description

The primary purpose of the DMAMUX is to provide flexibility in the system's use of the available DMA channels.

As such, configuration of the DMAMUX is intended to be a static procedure done during execution of the system boot code. However, if the procedure outlined in Enabling and configuring sources is followed, the configuration of the DMAMUX may be changed during the normal operation of the system.

Functionally, the DMAMUX channels may be divided into two classes:

- Channels that implement the normal routing functionality plus periodic triggering capability
- Channels that implement only the normal routing functionality

# 19.4.1 DMA channels with periodic triggering capability

Besides the normal routing functionality, the first 4 channels of the DMAMUX provide a special periodic triggering capability that can be used to provide an automatic mechanism to transmit bytes, frames, or packets at fixed intervals without the need for processor intervention.

The trigger is generated by the periodic interrupt timer (LPIT); as such, the configuration of the periodic triggering interval is done via configuration registers in the LPIT. See the section on periodic interrupt timer for more information on this topic.

#### **Note**

Because of the dynamic nature of the system (due to DMA channel priorities, bus arbitration, interrupt service routine lengths, etc.), the number of clock cycles between a trigger and the actual DMA transfer cannot be guaranteed.

#### **Functional description**

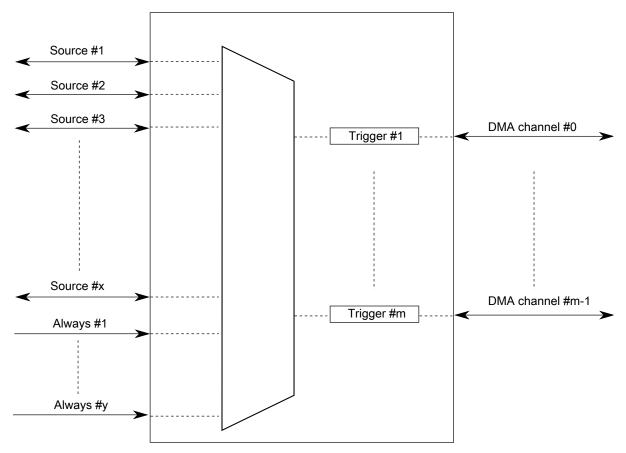



Figure 19-2. DMAMUX triggered channels

The DMA channel triggering capability allows the system to schedule regular DMA transfers, usually on the transmit side of certain peripherals, without the intervention of the processor. This trigger works by gating the request from the peripheral to the DMA until a trigger event has been seen. This is illustrated in the following figure.

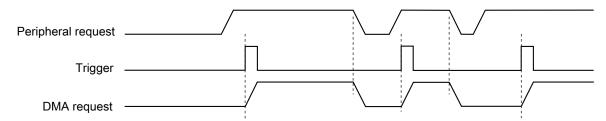



Figure 19-3. DMAMUX channel triggering: normal operation

After the DMA request has been serviced, the peripheral will negate its request, effectively resetting the gating mechanism until the peripheral reasserts its request and the next trigger event is seen. This means that if a trigger is seen, but the peripheral is not requesting a transfer, then that trigger will be ignored. This situation is illustrated in the following figure.

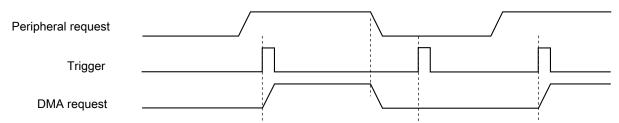



Figure 19-4. DMAMUX channel triggering: ignored trigger

This triggering capability may be used with any peripheral that supports DMA transfers, and is most useful for two types of situations:

• Periodically polling external devices on a particular bus

As an example, the transmit side of an SPI is assigned to a DMA channel with a trigger, as described above. After it has been set up, the SPI will request DMA transfers, presumably from memory, as long as its transmit buffer is empty. By using a trigger on this channel, the SPI transfers can be automatically performed every 5  $\mu$ s (as an example). On the receive side of the SPI, the SPI and DMA can be configured to transfer receive data into memory, effectively implementing a method to periodically read data from external devices and transfer the results into memory without processor intervention.

• Using the GPIO ports to drive or sample waveforms

By configuring the DMA to transfer data to one or more GPIO ports, it is possible to create complex waveforms using tabular data stored in on-chip memory. Conversely, using the DMA to periodically transfer data from one or more GPIO ports, it is possible to sample complex waveforms and store the results in tabular form in on-chip memory.

A more detailed description of the capability of each trigger, including resolution, range of values, and so on, may be found in the periodic interrupt timer section.

# 19.4.2 DMA channels with no triggering capability

The other channels of the DMAMUX provide the normal routing functionality as described in Modes of operation.

## 19.4.3 Always-enabled DMA sources

In addition to the peripherals that can be used as DMA sources, there are four additional DMA sources that are always enabled. Unlike the peripheral DMA sources, where the peripheral controls the flow of data during DMA transfers, the sources that are always enabled provide no such "throttling" of the data transfers. These sources are most useful in the following cases:

- Performing DMA transfers to/from GPIO—Moving data from/to one or more GPIO pins, either unthrottled (that is, as fast as possible), or periodically (using the DMA triggering capability).
- Performing DMA transfers from memory to memory—Moving data from memory to memory, typically as fast as possible, sometimes with software activation.
- Performing DMA transfers from memory to the external bus, or vice-versa—Similar to memory to memory transfers, this is typically done as quickly as possible.
- Any DMA transfer that requires software activation—Any DMA transfer that should be explicitly started by software.

In cases where software should initiate the start of a DMA transfer, an always-enabled DMA source can be used to provide maximum flexibility. When activating a DMA channel via software, subsequent executions of the minor loop require that a new start event be sent. This can either be a new software activation, or a transfer request from the DMA channel MUX. The options for doing this are:

• Transfer all data in a single minor loop.

By configuring the DMA to transfer all of the data in a single minor loop (that is, major loop counter = 1), no reactivation of the channel is necessary. The disadvantage to this option is the reduced granularity in determining the load that the DMA transfer will impose on the system. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use explicit software reactivation.

In this option, the DMA is configured to transfer the data using both minor and major loops, but the processor is required to reactivate the channel by writing to the DMA registers *after every minor loop*. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use an always-enabled DMA source.

In this option, the DMA is configured to transfer the data using both minor and major loops, and the DMA channel MUX does the channel reactivation. For this option, the DMA channel should be enabled and pointing to an "always enabled" source. Note that the reactivation of the channel can be continuous (DMA triggering is disabled) or can use the DMA triggering capability. In this manner, it is possible to execute periodic transfers of packets of data from one source to another, without processor intervention.

# 19.5 Initialization/application information

This section provides instructions for initializing the DMA channel MUX.

### 19.5.1 Reset

The reset state of each individual bit is shown in Memory map/register definition. In summary, after reset, all channels are disabled and must be explicitly enabled before use.

# 19.5.2 Enabling and configuring sources

To enable a source with periodic triggering:

- 1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA channels have periodic triggering capability.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] fields of the DMA channel.
- 3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be enabled at this point.
- 4. Configure the corresponding timer.
- 5. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that the CHCFG[ENBL] and CHCFG[TRIG] fields are set.

#### NOTE

The following is an example. See the chip configuration details for the number of this device's DMA channels that have triggering capability.

To configure source #5 transmit for use with DMA channel 1, with periodic triggering capability:

1. Write 0x00 to CHCFG1.

### Initialization/application information

- 2. Configure channel 1 in the DMA, including enabling the channel.
- 3. Configure a timer for the desired trigger interval.
- 4. Write 0xC5 to CHCFG1.

The following code example illustrates steps 1 and 4 above:

```
void DMAMUX_Init(uint8_t DMA_CH, uint8_t DMAMUX_SOURCE)
{
    DMAMUX_0.CHCFG[DMA_CH].B.SOURCE = DMAMUX_SOURCE;
    DMAMUX_0.CHCFG[DMA_CH].B.ENBL = 1;
    DMAMUX_0.CHCFG[DMA_CH].B.TRIG = 1;
}
```

To enable a source, without periodic triggering:

- 1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA channels have periodic triggering capability.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] fields of the DMA channel.
- 3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be enabled at this point.
- 4. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that CHCFG[ENBL] is set while CHCFG[TRIG] is cleared.

### NOTE

The following is an example. See the chip configuration details for the number of this device's DMA channels that have triggering capability.

To configure source #5 transmit for use with DMA channel 1, with no periodic triggering capability:

- 1. Write 0x00 to CHCFG1.
- 2. Configure channel 1 in the DMA, including enabling the channel.
- 3. Write 0x85 to CHCFG1.

The following code example illustrates steps 1 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0003);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0002);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0001);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0000);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0007);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0004);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x000B);
volatile unsigned char *CHCFG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCFG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX BASE ADDR+0x0008);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000E);
```

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 19 Direct Memory Access Multiplexer (DMAMUX)

### To disable a source:

A particular DMA source may be disabled by not writing the corresponding source value into any of the CHCFG registers. Additionally, some module-specific configuration may be necessary. See the appropriate section for more details.

To switch the source of a DMA channel:

- 1. Disable the DMA channel in the DMA and reconfigure the channel for the new source.
- 2. Clear the CHCFG[ENBL] and CHCFG[TRIG] bits of the DMA channel.
- 3. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that the CHCFG[ENBL] and CHCFG[TRIG] fields are set.

To switch DMA channel 8 from source #5 transmit to source #7 transmit:

- 1. In the DMA configuration registers, disable DMA channel 8 and reconfigure it to handle the transfers to peripheral slot 7. This example assumes channel 8 doesn't have triggering capability.
- 2. Write 0x00 to CHCFG8.
- 3. Write 0x87 to CHCFG8. (In this example, setting CHCFG[TRIG] would have no effect due to the assumption that channel 8 does not support the periodic triggering functionality.)

The following code example illustrates steps 2 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0003);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0002);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCFG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCFG10= (volatile unsigned char *)
                                                            (DMAMUX BASE ADDR+0x0009);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000E);
volatile unsigned char *CHCFG14= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000D);
volatile unsigned char *CHCFG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
```

### Initialization/application information

```
In File main.c:
#include "registers.h"
:
:
*CHCFG8 = 0x00;
*CHCFG8 = 0x87;
```

KL28Z Reference Manual, Rev. 4, 06/2016

# **Chapter 20 Enhanced Direct Memory Access (eDMA)**

# 20.1 Introduction

### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data transfers with minimal intervention from a host processor. The hardware microarchitecture includes:

- A DMA engine that performs:
  - Source address and destination address calculations
  - Data-movement operations
- Local memory containing transfer control descriptors for each of the 8 channels

# 20.1.1 eDMA system block diagram

Figure 20-1 illustrates the components of the eDMA system, including the eDMA module ("engine").

#### Introduction

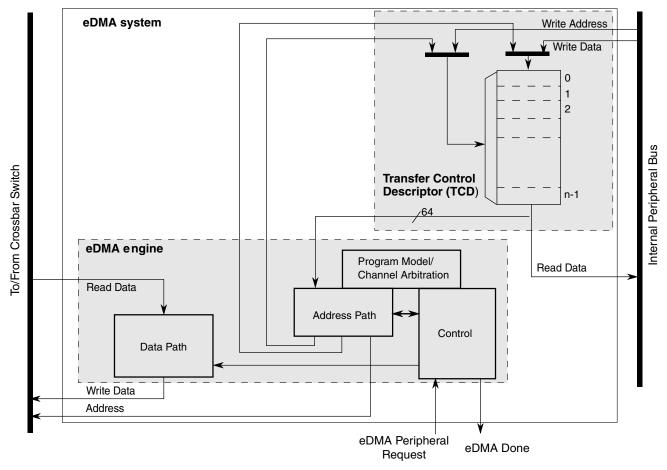



Figure 20-1. eDMA system block diagram

# 20.1.2 Block parts

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer-control descriptor local memory.

The eDMA engine is further partitioned into four submodules:

Table 20-1. eDMA engine submodules

| Submodule    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address path | This block implements registered versions of two channel transfer control descriptors, channel x and channel y, and manages all master bus-address calculations. All the channels provide the same functionality. This structure allows data transfers associated with one channel to be preempted after the completion of a read/write sequence if a higher priority channel activation is asserted while the first channel is active. After a channel is activated, it runs until the minor loop is completed, unless preempted by a higher priority channel. This provides a mechanism (enabled by DCHPRIn[ECP]) where a large data move operation can be preempted to minimize the time another channel is blocked from execution. |
|              | When any channel is selected to execute, the contents of its TCD are read from local memory and loaded into the address path channel x registers for a normal start and into channel y registers for a preemption start. After the minor loop completes execution, the address path hardware writes                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 20-1. eDMA engine submodules (continued)

| Submodule                         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | the new values for the TCD <i>n</i> _{SADDR, DADDR, CITER} back to local memory. If the major iteration count is exhausted, additional processing is performed, including the final address pointer updates, reloading the TCD <i>n</i> _CITER field, and a possible fetch of the next TCD <i>n</i> from memory as part of a scatter/gather operation.                                                                                                                                                                                                                                       |
| Data path                         | This block implements the bus master read/write datapath. It includes a data buffer and the necessary multiplex logic to support any required data alignment. The internal read data bus is the primary input, and the internal write data bus is the primary output.                                                                                                                                                                                                                                                                                                                        |
|                                   | The address and data path modules directly support the 2-stage pipelined internal bus. The address path module represents the 1st stage of the bus pipeline (address phase), while the data path module implements the 2nd stage of the pipeline (data phase).                                                                                                                                                                                                                                                                                                                               |
| Program model/channel arbitration | This block implements the first section of the eDMA programming model as well as the channel arbitration logic. The programming model registers are connected to the internal peripheral bus. The eDMA peripheral request inputs and interrupt request outputs are also connected to this block (via control logic).                                                                                                                                                                                                                                                                         |
| Control                           | This block provides all the control functions for the eDMA engine. For data transfers where the source and destination sizes are equal, the eDMA engine performs a series of source read/destination write operations until the number of bytes specified in the minor loop byte count has moved. For descriptors where the sizes are not equal, multiple accesses of the smaller size data are required for each reference of the larger size. As an example, if the source size references 16-bit data and the destination is 32-bit data, two reads are performed, then one 32-bit write. |

The transfer-control descriptor local memory is further partitioned into:

Table 20-2. Transfer control descriptor memory

| Submodule         | Description                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory controller | This logic implements the required dual-ported controller, managing accesses from the eDMA engine as well as references from the internal peripheral bus. As noted earlier, in the event of simultaneous accesses, the eDMA engine is given priority and the peripheral transaction is stalled. |
| Memory array      | TCD storage for each channel's transfer profile.                                                                                                                                                                                                                                                |

# 20.1.3 Features

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from the host processor. It is intended for use in applications where the data size to be transferred is statically known and not defined within the transferred data itself. The eDMA module features:

- All data movement via dual-address transfers: read from source, write to destination
  - Programmable source and destination addresses and transfer size
  - Support for enhanced addressing modes

KL28Z Reference Manual, Rev. 4, 06/2016

#### Modes of operation

- 8-channel implementation that performs complex data transfers with minimal intervention from a host processor
  - Connections to the crossbar switch for bus mastering the data movement
- Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations
  - 32-byte TCD stored in local memory for each channel
  - An inner data transfer loop defined by a minor byte transfer count
  - An outer data transfer loop defined by a major iteration count
- Channel activation via one of three methods:
  - Explicit software initiation
  - Initiation via a channel-to-channel linking mechanism for continuous transfers
  - Peripheral-paced hardware requests, one per channel
- Fixed-priority and round-robin channel arbitration
- Channel completion reported via programmable interrupt requests
  - One interrupt per channel, which can be asserted at completion of major iteration count
  - Programmable error terminations per channel and logically summed together to form one error interrupt to the interrupt controller
- Programmable support for scatter/gather DMA processing
- Support for complex data structures

In the discussion of this module, n is used to reference the channel number.

# 20.2 Modes of operation

The eDMA operates in the following modes:

Table 20-3. Modes of operation

| Mode | Description                                                                                                                                                                      |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1    | In Normal mode, the eDMA transfers data between a source and a destination. The source and destination can be a memory block or an I/O block capable of operation with the eDMA. |  |  |  |  |  |

Table continues on the next page...

### Table 20-3. Modes of operation (continued)

| Mode  | Description                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | A service request initiates a transfer of a specific number of bytes (NBYTES) as specified in the transfer control descriptor (TCD). The minor loop is the sequence of read-write operations that transfers these NBYTES per service request. Each service request executes one iteration of the major loop, which transfers NBYTES of data. |  |  |  |  |
| Debug | DMA operation is configurable in Debug mode via the control register:                                                                                                                                                                                                                                                                        |  |  |  |  |
|       | <ul> <li>If CR[EDBG] is cleared, the DMA continues to operate.</li> <li>If CR[EDBG] is set, the eDMA stops transferring data. If Debug mode is entered while a channel is active, the eDMA continues operation until the channel retires.</li> </ul>                                                                                         |  |  |  |  |
| Wait  | Before entering Wait mode, the DMA attempts to complete its current transfer. After the transfer completes, the device enters Wait mode.                                                                                                                                                                                                     |  |  |  |  |

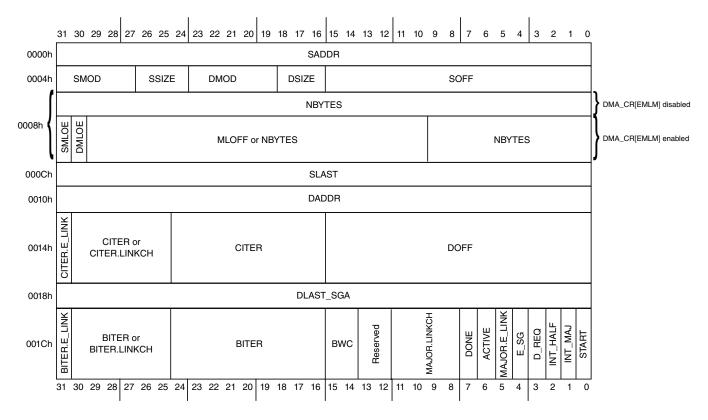
# 20.3 Memory map/register definition

The eDMA's programming model is partitioned into two regions:

- The first region defines a number of registers providing control functions
- The second region corresponds to the local transfer control descriptor (TCD) memory

# 20.3.1 TCD memory

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel 1, ... channel 7. Each TCDn definition is presented as 11 registers of 16 or 32 bits.


# 20.3.2 TCD initialization

Prior to activating a channel, you must initialize its TCD with the appropriate transfer profile.

NXP Semiconductors

405

### 20.3.3 TCD structure



# 20.3.4 Reserved memory and bit fields

- Reading reserved bits in a register returns the value of zero.
- Writes to reserved bits in a register are ignored.
- Reading or writing a reserved memory location generates a bus error.

### **DMA** memory map

| Absolute<br>address<br>(hex) | Register name                                     | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4000_8000                    | Control Register (DMA0_CR)                        | 32                 | R/W                      | See section | 20.3.1/412       |
| 4000_8004                    | Error Status Register (DMA0_ES)                   | 32                 | R                        | 0000_0000h  | 20.3.2/415       |
| 4000_800C                    | Enable Request Register (DMA0_ERQ)                | 32                 | R/W                      | 0000_0000h  | 20.3.3/417       |
| 4000_8014                    | Enable Error Interrupt Register (DMA0_EEI)        | 32                 | R/W                      | 0000_0000h  | 20.3.4/419       |
| 4000_8018                    | Clear Enable Error Interrupt Register (DMA0_CEEI) | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.5/420       |
| 4000_8019                    | Set Enable Error Interrupt Register (DMA0_SEEI)   | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.6/421       |

Table continues on the next page...

| Absolute<br>address<br>(hex) | Register name                                                                                            | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4000_801A                    | Clear Enable Request Register (DMA0_CERQ)                                                                | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.7/422       |
| 4000_801B                    | Set Enable Request Register (DMA0_SERQ)                                                                  | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.8/423       |
| 4000_801C                    | Clear DONE Status Bit Register (DMA0_CDNE)                                                               | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.9/424       |
| 4000_801D                    | Set START Bit Register (DMA0_SSRT)                                                                       | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.10/425      |
| 4000_801E                    | Clear Error Register (DMA0_CERR)                                                                         | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.11/426      |
| 4000_801F                    | Clear Interrupt Request Register (DMA0_CINT)                                                             | 8                  | W<br>(always<br>reads 0) | 00h         | 20.3.12/427      |
| 4000_8024                    | Interrupt Request Register (DMA0_INT)                                                                    | 32                 | R/W                      | 0000_0000h  | 20.3.13/428      |
| 4000_802C                    | Error Register (DMA0_ERR)                                                                                | 32                 | R/W                      | 0000_0000h  | 20.3.14/429      |
| 4000_8034                    | Hardware Request Status Register (DMA0_HRS)                                                              | 32                 | R                        | 0000_0000h  | 20.3.15/431      |
| 4000_8044                    | Enable Asynchronous Request in Stop Register (DMA0_EARS)                                                 | 32                 | R/W                      | 0000_0000h  | 20.3.16/433      |
| 4000_8100                    | Channel n Priority Register (DMA0_DCHPRI3)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8101                    | Channel n Priority Register (DMA0_DCHPRI2)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8102                    | Channel n Priority Register (DMA0_DCHPRI1)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8103                    | Channel n Priority Register (DMA0_DCHPRI0)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8104                    | Channel n Priority Register (DMA0_DCHPRI7)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8105                    | Channel n Priority Register (DMA0_DCHPRI6)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8106                    | Channel n Priority Register (DMA0_DCHPRI5)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_8107                    | Channel n Priority Register (DMA0_DCHPRI4)                                                               | 8                  | R/W                      | See section | 20.3.17/434      |
| 4000_9000                    | TCD Source Address (DMA0_TCD0_SADDR)                                                                     | 32                 | R/W                      | Undefined   | 20.3.18/435      |
| 4000_9004                    | TCD Signed Source Address Offset (DMA0_TCD0_SOFF)                                                        | 16                 | R/W                      | Undefined   | 20.3.19/435      |
| 4000_9006                    | TCD Transfer Attributes (DMA0_TCD0_ATTR)                                                                 | 16                 | R/W                      | Undefined   | 20.3.20/436      |
| 4000_9008                    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD0_NBYTES_MLNO)                               | 32                 | R/W                      | Undefined   | 20.3.21/437      |
| 4000_9008                    | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD0_NBYTES_MLOFFNO) | 32                 | R/W                      | Undefined   | 20.3.22/437      |
| 4000_9008                    | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD0_NBYTES_MLOFFYES)         | 32                 | R/W                      | Undefined   | 20.3.23/439      |
| 4000_900C                    | TCD Last Source Address Adjustment (DMA0_TCD0_SLAST)                                                     | 32                 | R/W                      | Undefined   | 20.3.24/440      |

Table continues on the next page...

| Absolute<br>address<br>(hex) | Register name                                                                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_9010                    | TCD Destination Address (DMA0_TCD0_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_9014                    | TCD Signed Destination Address Offset (DMA0_TCD0_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_9016                    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD0_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_9016                    | DMA0_TCD0_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_9018                    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD0_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_901C                    | TCD Control and Status (DMA0_TCD0_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_901E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD0_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_901E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD0_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_9020                    | TCD Source Address (DMA0_TCD1_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_9024                    | TCD Signed Source Address Offset (DMA0_TCD1_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_9026                    | TCD Transfer Attributes (DMA0_TCD1_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_9028                    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD1_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_9028                    | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD1_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_9028                    | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD1_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_902C                    | TCD Last Source Address Adjustment (DMA0_TCD1_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_9030                    | TCD Destination Address (DMA0_TCD1_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_9034                    | TCD Signed Destination Address Offset (DMA0_TCD1_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_9036                    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD1_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_9036                    | DMA0_TCD1_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_9038                    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD1_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_903C                    | TCD Control and Status (DMA0_TCD1_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_903E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD1_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_903E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD1_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_9040                    | TCD Source Address (DMA0_TCD2_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |

Table continues on the next page...

| Absolute address (hex) | Register name                                                                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_9044              | TCD Signed Source Address Offset (DMA0_TCD2_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_9046              | TCD Transfer Attributes (DMA0_TCD2_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_9048              | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD2_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_9048              | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD2_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_9048              | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD2_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_904C              | TCD Last Source Address Adjustment (DMA0_TCD2_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_9050              | TCD Destination Address (DMA0_TCD2_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_9054              | TCD Signed Destination Address Offset (DMA0_TCD2_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_9056              | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD2_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_9056              | DMA0_TCD2_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_9058              | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD2_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_905C              | TCD Control and Status (DMA0_TCD2_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_905E              | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD2_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_905E              | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD2_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_9060              | TCD Source Address (DMA0_TCD3_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_9064              | TCD Signed Source Address Offset (DMA0_TCD3_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_9066              | TCD Transfer Attributes (DMA0_TCD3_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_9068              | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD3_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_9068              | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD3_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_9068              | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD3_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_906C              | TCD Last Source Address Adjustment (DMA0_TCD3_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_9070              | TCD Destination Address (DMA0_TCD3_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_9074              | TCD Signed Destination Address Offset (DMA0_TCD3_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_9076              | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD3_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |

Table continues on the next page...

## Memory map/register definition

# DMA memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                                                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_9076                    | DMA0_TCD3_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_9078                    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD3_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_907C                    | TCD Control and Status (DMA0_TCD3_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_907E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD3_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_907E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD3_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_9080                    | TCD Source Address (DMA0_TCD4_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_9084                    | TCD Signed Source Address Offset (DMA0_TCD4_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_9086                    | TCD Transfer Attributes (DMA0_TCD4_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_9088                    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD4_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_9088                    | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD4_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_9088                    | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD4_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_908C                    | TCD Last Source Address Adjustment (DMA0_TCD4_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_9090                    | TCD Destination Address (DMA0_TCD4_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_9094                    | TCD Signed Destination Address Offset (DMA0_TCD4_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_9096                    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD4_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_9096                    | DMA0_TCD4_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_9098                    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD4_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_909C                    | TCD Control and Status (DMA0_TCD4_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_909E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD4_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_909E                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD4_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_90A0                    | TCD Source Address (DMA0_TCD5_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_90A4                    | TCD Signed Source Address Offset (DMA0_TCD5_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_90A6                    | TCD Transfer Attributes (DMA0_TCD5_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_90A8                    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD5_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |

Table continues on the next page...

| Absolute address (hex) | Register name                                                                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_90A8              | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD5_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_90A8              | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD5_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_90AC              | TCD Last Source Address Adjustment (DMA0_TCD5_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_90B0              | TCD Destination Address (DMA0_TCD5_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_90B4              | TCD Signed Destination Address Offset (DMA0_TCD5_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_90B6              | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD5_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_90B6              | DMA0_TCD5_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_90B8              | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD5_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_90BC              | TCD Control and Status (DMA0_TCD5_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_90BE              | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD5_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_90BE              | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD5_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_90C0              | TCD Source Address (DMA0_TCD6_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_90C4              | TCD Signed Source Address Offset (DMA0_TCD6_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_90C6              | TCD Transfer Attributes (DMA0_TCD6_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_90C8              | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD6_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_90C8              | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD6_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_90C8              | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD6_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_90CC              | TCD Last Source Address Adjustment (DMA0_TCD6_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_90D0              | TCD Destination Address (DMA0_TCD6_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_90D4              | TCD Signed Destination Address Offset (DMA0_TCD6_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_90D6              | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD6_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_90D6              | DMA0_TCD6_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_90D8              | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD6_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_90DC              | TCD Control and Status (DMA0_TCD6_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |

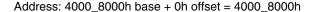
Table continues on the next page...

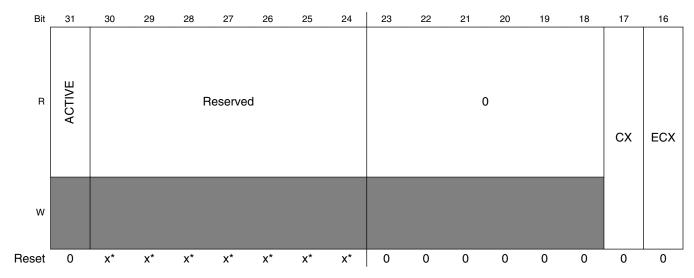
| Absolute<br>address<br>(hex) | Register name                                                                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_90DE                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD6_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_90DE                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD6_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |
| 4000_90E0                    | TCD Source Address (DMA0_TCD7_SADDR)                                                                     | 32                 | R/W    | Undefined   | 20.3.18/435      |
| 4000_90E4                    | TCD Signed Source Address Offset (DMA0_TCD7_SOFF)                                                        | 16                 | R/W    | Undefined   | 20.3.19/435      |
| 4000_90E6                    | TCD Transfer Attributes (DMA0_TCD7_ATTR)                                                                 | 16                 | R/W    | Undefined   | 20.3.20/436      |
| 4000_90E8                    | TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMA0_TCD7_NBYTES_MLNO)                               | 32                 | R/W    | Undefined   | 20.3.21/437      |
| 4000_90E8                    | TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMA0_TCD7_NBYTES_MLOFFNO) | 32                 | R/W    | Undefined   | 20.3.22/437      |
| 4000_90E8                    | TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMA0_TCD7_NBYTES_MLOFFYES)         | 32                 | R/W    | Undefined   | 20.3.23/439      |
| 4000_90EC                    | TCD Last Source Address Adjustment (DMA0_TCD7_SLAST)                                                     | 32                 | R/W    | Undefined   | 20.3.24/440      |
| 4000_90F0                    | TCD Destination Address (DMA0_TCD7_DADDR)                                                                | 32                 | R/W    | Undefined   | 20.3.25/440      |
| 4000_90F4                    | TCD Signed Destination Address Offset (DMA0_TCD7_DOFF)                                                   | 16                 | R/W    | Undefined   | 20.3.26/441      |
| 4000_90F6                    | TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD7_CITER_ELINKYES)       | 16                 | R/W    | Undefined   | 20.3.27/441      |
| 4000_90F6                    | DMA0_TCD7_CITER_ELINKNO                                                                                  | 16                 | R/W    | Undefined   | 20.3.28/443      |
| 4000_90F8                    | TCD Last Destination Address Adjustment/Scatter Gather Address (DMA0_TCD7_DLASTSGA)                      | 32                 | R/W    | Undefined   | 20.3.29/444      |
| 4000_90FC                    | TCD Control and Status (DMA0_TCD7_CSR)                                                                   | 16                 | R/W    | Undefined   | 20.3.30/444      |
| 4000_90FE                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA0_TCD7_BITER_ELINKYES)     | 16                 | R/W    | Undefined   | 20.3.31/447      |
| 4000_90FE                    | TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA0_TCD7_BITER_ELINKNO)     | 16                 | R/W    | Undefined   | 20.3.32/448      |

# 20.3.1 Control Register (DMAx\_CR)

The CR defines the basic operating configuration of the DMA.

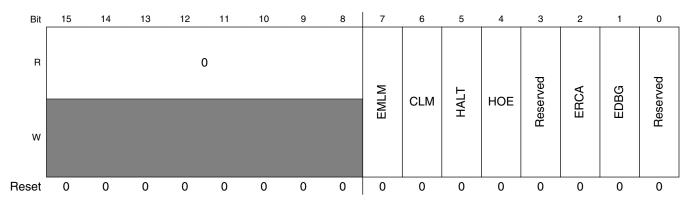
Arbitration can be configured to use either a fixed-priority or a round-robin scheme. For fixed-priority arbitration, the highest priority channel requesting service is selected to execute. The channel priority registers assign the priorities; see the DCHPRIn registers. For round-robin arbitration, the channel priorities are ignored and channels are cycled through (from high to low channel number) without regard to priority.


### NOTE


For correct operation, writes to the CR register must be performed only when the DMA channels are inactive; that is, when TCDn\_CSR[ACTIVE] bits are cleared.

Minor loop offsets are address offset values added to the final source address (TCDn\_SADDR) or destination address (TCDn\_DADDR) upon minor loop completion. When minor loop offsets are enabled, the minor loop offset (MLOFF) is added to the final source address (TCDn\_SADDR), to the final destination address (TCDn\_DADDR), or to both prior to the addresses being written back into the TCD. If the major loop is complete, the minor loop offset is ignored and the major loop address offsets (TCDn\_SLAST and TCDn\_DLAST\_SGA) are used to compute the next TCDn\_SADDR and TCDn\_DADDR values.

When minor loop mapping is enabled (EMLM is 1), TCDn word2 is redefined. A portion of TCDn word2 is used to specify multiple fields: a source enable bit (SMLOE) to specify the minor loop offset should be applied to the source address (TCDn\_SADDR) upon minor loop completion, a destination enable bit (DMLOE) to specify the minor loop offset should be applied to the destination address (TCDn\_DADDR) upon minor loop completion, and the sign extended minor loop offset value (MLOFF). The same offset value (MLOFF) is used for both source and destination minor loop offsets. When either minor loop offset is enabled (SMLOE set or DMLOE set), the NBYTES field is reduced to 10 bits. When both minor loop offsets are disabled (SMLOE cleared and DMLOE cleared), the NBYTES field is a 30-bit vector.


When minor loop mapping is disabled (EMLM is 0), all 32 bits of TCDn word2 are assigned to the NBYTES field.





KL28Z Reference Manual, Rev. 4, 06/2016

### Memory map/register definition



- \* Notes:
- x = Undefined at reset.

## DMAx\_CR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>ACTIVE      | DMA Active Status  0 eDMA is idle.  1 eDMA is executing a channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30–24<br>Reserved | This field is reserved. Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23–18<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17<br>CX          | Cancel Transfer  Normal operation  Cancel the remaining data transfer. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The CX bit clears itself after the cancel has been honored. This cancel retires the channel normally as if the minor loop was completed.                                                                                                                                                                              |
| 16<br>ECX         | <ul> <li>Error Cancel Transfer</li> <li>Normal operation</li> <li>Cancel the remaining data transfer in the same fashion as the CX bit. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The ECX bit clears itself after the cancel is honored. In addition to cancelling the transfer, ECX treats the cancel as an error condition, thus updating the Error Status register (DMAx_ES) and generating an optional error interrupt.</li> </ul> |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7<br>EMLM         | <ul> <li>Enable Minor Loop Mapping</li> <li>Disabled. TCDn.word2 is defined as a 32-bit NBYTES field.</li> <li>Enabled. TCDn.word2 is redefined to include individual enable fields, an offset field, and the NBYTES field. The individual enable fields allow the minor loop offset to be applied to the source address, the destination address, or both. The NBYTES field is reduced when either offset is enabled.</li> </ul>                                                                                                            |
| 6<br>CLM          | Continuous Link Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

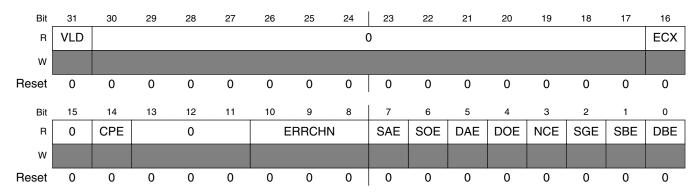
Table continues on the next page...

### DMAx\_CR field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                                                                             |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | NOTE: Do not use continuous link mode with a channel linking to itself if there is only one minor loop iteration per service request, e.g., if the channel's NBYTES value is the same as either the source or destination size. The same data transfer profile can be achieved by simply increasing the NBYTES value, which provides more efficient, faster processing. |
|               | <ul> <li>A minor loop channel link made to itself goes through channel arbitration before being activated again.</li> <li>A minor loop channel link made to itself does not go through channel arbitration before being activated</li> </ul>                                                                                                                            |
|               | again. Upon minor loop completion, the channel activates again if that channel has a minor loop channel link enabled and the link channel is itself. This effectively applies the minor loop offsets and restarts the next minor loop.                                                                                                                                  |
| 5<br>HALT     | Halt DMA Operations                                                                                                                                                                                                                                                                                                                                                     |
|               | 0 Normal operation                                                                                                                                                                                                                                                                                                                                                      |
|               | 1 Stall the start of any new channels. Executing channels are allowed to complete. Channel execution resumes when this bit is cleared.                                                                                                                                                                                                                                  |
| 4<br>HOE      | Halt On Error                                                                                                                                                                                                                                                                                                                                                           |
|               | 0 Normal operation                                                                                                                                                                                                                                                                                                                                                      |
|               | 1 Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.                                                                                                                                                                                                                                                   |
| 3             | This field is reserved.                                                                                                                                                                                                                                                                                                                                                 |
| Reserved      | Reserved                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>ERCA     | Enable Round Robin Channel Arbitration                                                                                                                                                                                                                                                                                                                                  |
|               | 0 Fixed priority arbitration is used for channel selection .                                                                                                                                                                                                                                                                                                            |
|               | 1 Round robin arbitration is used for channel selection .                                                                                                                                                                                                                                                                                                               |
| 1<br>EDBG     | Enable Debug                                                                                                                                                                                                                                                                                                                                                            |
|               | 0 When in debug mode, the DMA continues to operate.                                                                                                                                                                                                                                                                                                                     |
|               | When in debug mode, the DMA stalls the start of a new channel. Executing channels are allowed to complete. Channel execution resumes when the system exits debug mode or the EDBG bit is cleared.                                                                                                                                                                       |
| 0<br>Reserved | This field is reserved. Reserved                                                                                                                                                                                                                                                                                                                                        |

# 20.3.2 Error Status Register (DMAx\_ES)

The ES provides information concerning the last recorded channel error. Channel errors can be caused by:


- A configuration error, that is:
  - An illegal setting in the transfer-control descriptor, or
  - An illegal priority register setting in fixed-arbitration
- An error termination to a bus master read or write cycle
- A cancel transfer with error bit that will be set when a transfer is canceled via the corresponding cancel transfer control bit

See the Error Reporting and Handling section for more details.

KL28Z Reference Manual, Rev. 4, 06/2016

### Memory map/register definition

Address: 4000\_8000h base + 4h offset = 4000\_8004h



### DMAx\_ES field descriptions

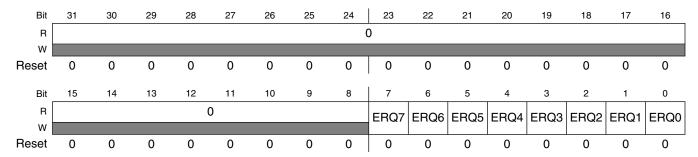
| Field             | Description                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>VLD         | Logical OR of all ERR status bits  O No ERR bits are set.  At least one ERR bit is set indicating a valid error exists that has not been cleared.                                                     |
| 30–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                  |
| 16<br>ECX         | Transfer Canceled  O No canceled transfers  The last recorded entry was a canceled transfer by the error cancel transfer input                                                                        |
| 15<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                  |
| 14<br>CPE         | Channel Priority Error  No channel priority error  The last recorded error was a configuration error in the channel priorities . Channel priorities are not unique.                                   |
| 13–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                  |
| 10-8<br>ERRCHN    | Error Channel Number or Canceled Channel Number  The channel number of the last recorded error, excluding CPE errors, or last recorded error canceled transfer.                                       |
| 7<br>SAE          | Source Address Error  O No source address configuration error.  The last recorded error was a configuration error detected in the TCDn_SADDR field. TCDn_SADDR is inconsistent with TCDn_ATTR[SSIZE]. |
| 6<br>SOE          | Source Offset Error  O No source offset configuration error  The last recorded error was a configuration error detected in the TCDn_SOFF field. TCDn_SOFF is inconsistent with TCDn_ATTR[SSIZE].      |
| 5<br>DAE          | Destination Address Error                                                                                                                                                                             |

Table continues on the next page...

### DMAx\_ES field descriptions (continued)

| Field    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0 No destination address configuration error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | 1 The last recorded error was a configuration error detected in the TCDn_DADDR field. TCDn_DADDR is inconsistent with TCDn_ATTR[DSIZE].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4<br>DOE | Destination Offset Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | 0 No destination offset configuration error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 1 The last recorded error was a configuration error detected in the TCDn_DOFF field. TCDn_DOFF is inconsistent with TCDn_ATTR[DSIZE].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>NCE | NBYTES/CITER Configuration Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 0 No NBYTES/CITER configuration error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 1 The last recorded error was a configuration error detected in the TCDn_NBYTES or TCDn_CITER fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | TCDn_NBYTES is not a multiple of TCDn_ATTR[SSIZE] and TCDn_ATTR[DSIZE], or  TCDn_OUTEDIals a multiple of TCDn_ATTR[SSIZE] and TCDn_ATTR[ |
|          | <ul><li>TCDn_CITER[CITER] is equal to zero, or</li><li>TCDn_CITER[ELINK] is not equal to TCDn_BITER[ELINK]</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>SGE | Scatter/Gather Configuration Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.0.     | 0 No scatter/gather configuration error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 1 The last recorded error was a configuration error detected in the TCDn_DLASTSGA field. This field is checked at the beginning of a scatter/gather operation after major loop completion if TCDn_CSR[ESG] is enabled. TCDn_DLASTSGA is not on a 32 byte boundary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1<br>SBE | Source Bus Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | 0 No source bus error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 1 The last recorded error was a bus error on a source read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>DBE | Destination Bus Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | 0 No destination bus error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1 The last recorded error was a bus error on a destination write                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### **Enable Request Register (DMAx ERQ)** 20.3.3


The ERO register provides a bit map for the 8 channels to enable the request signal for each channel. The state of any given channel enable is directly affected by writes to this register; it is also affected by writes to the SERQ and CERQ registers. These registers are provided so the request enable for a single channel can easily be modified without needing to perform a read-modify-write sequence to the ERQ.

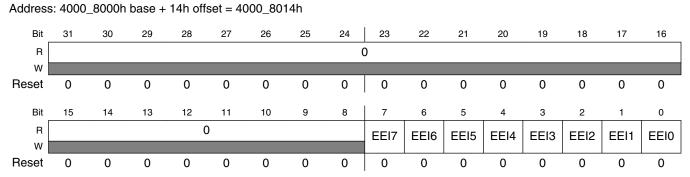
DMA request input signals and this enable request flag must be asserted before a channel's hardware service request is accepted. The state of the DMA enable request flag does not affect a channel service request made explicitly through software or a linked channel request.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 417

### Memory map/register definition

Address: 4000\_8000h base + Ch offset = 4000\_800Ch




## DMAx\_ERQ field descriptions

| Field            | Description                                                                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                          |
| 7<br>ERQ7        | Enable DMA Request 7                                                                                                                                          |
| LITO             | <ul> <li>The DMA request signal for the corresponding channel is disabled</li> <li>The DMA request signal for the corresponding channel is enabled</li> </ul> |
| 6                | Enable DMA Request 6                                                                                                                                          |
| ERQ6             | The DMA request signal for the corresponding channel is disabled  The DMA request signal for the corresponding channel is graphed.                            |
| 5                | The DMA request signal for the corresponding channel is enabled     Enable DMA Request 5                                                                      |
| ERQ5             | 0 The DMA request signal for the corresponding channel is disabled                                                                                            |
|                  | 1 The DMA request signal for the corresponding channel is enabled                                                                                             |
| 4<br>ERQ4        | Enable DMA Request 4                                                                                                                                          |
|                  | <ul> <li>The DMA request signal for the corresponding channel is disabled</li> <li>The DMA request signal for the corresponding channel is enabled</li> </ul> |
| 3                | Enable DMA Request 3                                                                                                                                          |
| ERQ3             | 0 The DMA request signal for the corresponding channel is disabled                                                                                            |
|                  | 1 The DMA request signal for the corresponding channel is enabled                                                                                             |
| 2<br>ERQ2        | Enable DMA Request 2                                                                                                                                          |
|                  | <ul> <li>The DMA request signal for the corresponding channel is disabled</li> <li>The DMA request signal for the corresponding channel is enabled</li> </ul> |
| 1                | Enable DMA Request 1                                                                                                                                          |
| ERQ1             |                                                                                                                                                               |
|                  | <ul> <li>The DMA request signal for the corresponding channel is disabled</li> <li>The DMA request signal for the corresponding channel is enabled</li> </ul> |
| 0<br>ERQ0        | Enable DMA Request 0                                                                                                                                          |
| ENQU             | 0 The DMA request signal for the corresponding channel is disabled                                                                                            |
|                  | 1 The DMA request signal for the corresponding channel is enabled                                                                                             |

# 20.3.4 Enable Error Interrupt Register (DMAx\_EEI)

The EEI register provides a bit map for the 8 channels to enable the error interrupt signal for each channel. The state of any given channel's error interrupt enable is directly affected by writes to this register; it is also affected by writes to the SEEI and CEEI. These registers are provided so that the error interrupt enable for a single channel can easily be modified without the need to perform a read-modify-write sequence to the EEI register.

The DMA error indicator and the error interrupt enable flag must be asserted before an error interrupt request for a given channel is asserted to the interrupt controller.



## **DMAx** EEI field descriptions

| Field     | Description                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------|
| 31–8      | This field is reserved.                                                                            |
| Reserved  | This read-only field is reserved and always has the value 0.                                       |
| 7<br>EEI7 | Enable Error Interrupt 7                                                                           |
|           | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|           | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 6<br>EEI6 | Enable Error Interrupt 6                                                                           |
|           | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|           | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 5<br>EEI5 | Enable Error Interrupt 5                                                                           |
|           | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|           | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 4<br>EEI4 | Enable Error Interrupt 4                                                                           |
|           | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|           | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 3<br>EEI3 | Enable Error Interrupt 3                                                                           |
|           | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|           | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


### DMAx\_EEI field descriptions (continued)

| Field | Description                                                                                        |
|-------|----------------------------------------------------------------------------------------------------|
| 2     | Enable Error Interrupt 2                                                                           |
| EEI2  | The error signal for corresponding channel does not generate an error interrupt                    |
|       | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 1     | Enable Error Interrupt 1                                                                           |
| EEI1  |                                                                                                    |
|       | 0 The error signal for corresponding channel does not generate an error interrupt                  |
|       | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |
| 0     | Enable Error Interrupt 0                                                                           |
| EEI0  |                                                                                                    |
|       | The error signal for corresponding channel does not generate an error interrupt                    |
|       | 1 The assertion of the error signal for corresponding channel generates an error interrupt request |

# 20.3.5 Clear Enable Error Interrupt Register (DMAx\_CEEI)

The CEEI provides a simple memory-mapped mechanism to clear a given bit in the EEI to disable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be cleared. Setting the CAEE bit provides a global clear function, forcing the EEI contents to be cleared, disabling all DMA request inputs. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000\_8000h base + 18h offset = 4000\_8018h



### DMAx\_CEEI field descriptions

| Field    | Description                                            |
|----------|--------------------------------------------------------|
| 7        | No Op enable                                           |
| NOP      | O. Navasal an avation                                  |
|          | 0 Normal operation                                     |
|          | 1 No operation, ignore the other bits in this register |
| 6        | Clear All Enable Error Interrupts                      |
| CAEE     |                                                        |
|          | 0 Clear only the EEI bit specified in the CEEI field   |
|          | 1 Clear all bits in EEI                                |
| 5–3      | This field is reserved.                                |
| Reserved |                                                        |

Table continues on the next page...

420


### DMAx\_CEEI field descriptions (continued)

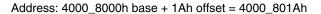
| Field | Description                         |
|-------|-------------------------------------|
| CEEI  | Clear Enable Error Interrupt        |
|       | Clears the corresponding bit in EEI |

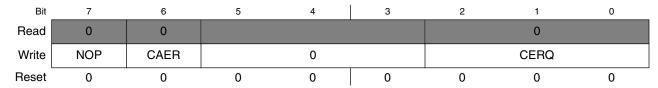
# 20.3.6 Set Enable Error Interrupt Register (DMAx SEEI)

The SEEI provides a simple memory-mapped mechanism to set a given bit in the EEI to enable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be set. Setting the SAEE bit provides a global set function, forcing the entire EEI contents to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000\_8000h base + 19h offset = 4000\_8019h




### DMAx\_SEEI field descriptions

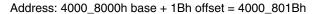

| Field           | Description                                            |
|-----------------|--------------------------------------------------------|
| 7<br>NOP        | No Op enable                                           |
|                 | 0 Normal operation                                     |
|                 | 1 No operation, ignore the other bits in this register |
| 6<br>SAEE       | Sets All Enable Error Interrupts                       |
|                 | 0 Set only the EEI bit specified in the SEEI field.    |
|                 | 1 Sets all bits in EEI                                 |
| 5–3<br>Reserved | This field is reserved.                                |
| SEEI            | Set Enable Error Interrupt                             |
|                 | Sets the corresponding bit in EEI                      |

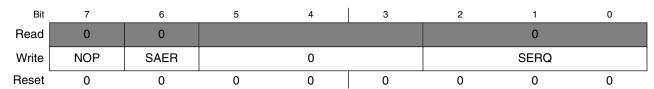
KL28Z Reference Manual, Rev. 4, 06/2016

# 20.3.7 Clear Enable Request Register (DMAx\_CERQ)

The CERQ provides a simple memory-mapped mechanism to clear a given bit in the ERQ to disable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be cleared. Setting the CAER bit provides a global clear function, forcing the entire contents of the ERQ to be cleared, disabling all DMA request inputs. If NOP is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.





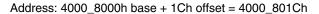


### DMAx\_CERQ field descriptions

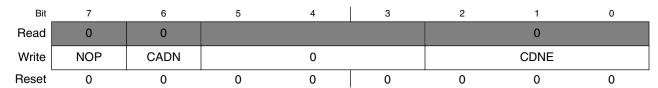
| Field    | Description                                            |
|----------|--------------------------------------------------------|
| 7        | No Op enable                                           |
| NOP      |                                                        |
|          | 0 Normal operation                                     |
|          | 1 No operation, ignore the other bits in this register |
| 6        | Clear All Enable Requests                              |
| CAER     |                                                        |
|          | 0 Clear only the ERQ bit specified in the CERQ field   |
|          | 1 Clear all bits in ERQ                                |
| 5–3      | This field is reserved.                                |
| Reserved |                                                        |
| CERQ     | Clear Enable Request                                   |
|          | Clears the corresponding bit in ERQ.                   |

# 20.3.8 Set Enable Request Register (DMAx\_SERQ)

The SERQ provides a simple memory-mapped mechanism to set a given bit in the ERQ to enable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be set. Setting the SAER bit provides a global set function, forcing the entire contents of ERQ to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.







### DMAx\_SERQ field descriptions

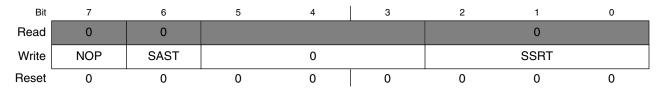
| Field    | Description                                            |
|----------|--------------------------------------------------------|
| 7        | No Op enable                                           |
| NOP      |                                                        |
|          | 0 Normal operation                                     |
|          | 1 No operation, ignore the other bits in this register |
| 6        | Set All Enable Requests                                |
| SAER     |                                                        |
|          | 0 Set only the ERQ bit specified in the SERQ field     |
|          | 1 Set all bits in ERQ                                  |
| 5–3      | This field is reserved.                                |
| Reserved |                                                        |
| SERQ     | Set Enable Request                                     |
|          | Sets the corresponding bit in ERQ.                     |

# 20.3.9 Clear DONE Status Bit Register (DMAx\_CDNE)

The CDNE provides a simple memory-mapped mechanism to clear the DONE bit in the TCD of the given channel. The data value on a register write causes the DONE bit in the corresponding transfer control descriptor to be cleared. Setting the CADN bit provides a global clear function, forcing all DONE bits to be cleared. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.





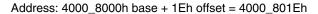

### DMAx\_CDNE field descriptions

| Field           | Description                                                      |
|-----------------|------------------------------------------------------------------|
| 7<br>NOP        | No Op enable                                                     |
|                 | 0 Normal operation                                               |
|                 | 1 No operation, ignore the other bits in this register           |
| 6               | Clears All DONE Bits                                             |
| CADN            | 0 Clears only the TCDn_CSR[DONE] bit specified in the CDNE field |
|                 | 1 Clears all bits in TCDn_CSR[DONE]                              |
| 5–3<br>Reserved | This field is reserved.                                          |
| CDNE            | Clear DONE Bit                                                   |
|                 | Clears the corresponding bit in TCDn_CSR[DONE]                   |

# 20.3.10 Set START Bit Register (DMAx\_SSRT)

The SSRT provides a simple memory-mapped mechanism to set the START bit in the TCD of the given channel. The data value on a register write causes the START bit in the corresponding transfer control descriptor to be set. Setting the SAST bit provides a global set function, forcing all START bits to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000\_8000h base + 1Dh offset = 4000\_801Dh





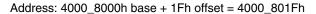
### DMAx\_SSRT field descriptions

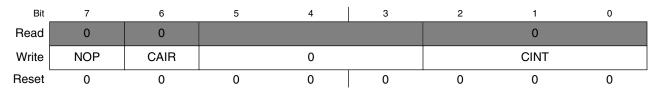
| Field    | Description                                                    |
|----------|----------------------------------------------------------------|
| 7        | No Op enable                                                   |
| NOP      |                                                                |
|          | 0 Normal operation                                             |
|          | 1 No operation, ignore the other bits in this register         |
| 6        | Set All START Bits (activates all channels)                    |
| SAST     |                                                                |
|          | 0 Set only the TCDn_CSR[START] bit specified in the SSRT field |
|          | 1 Set all bits in TCDn_CSR[START]                              |
| 5–3      | This field is reserved.                                        |
| Reserved |                                                                |
| SSRT     | Set START Bit                                                  |
|          | Sets the corresponding bit in TCDn_CSR[START]                  |

# 20.3.11 Clear Error Register (DMAx\_CERR)

The CERR provides a simple memory-mapped mechanism to clear a given bit in the ERR to disable the error condition flag for a given channel. The given value on a register write causes the corresponding bit in the ERR to be cleared. Setting the CAEI bit provides a global clear function, forcing the ERR contents to be cleared, clearing all channel error indicators. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.







### DMAx\_CERR field descriptions

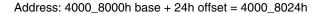
| Field    | Description                                          |
|----------|------------------------------------------------------|
| 7        | No Op enable                                         |
| NOP      | 0 Normal operation                                   |
|          | No operation, ignore the other bits in this register |
| _        |                                                      |
| 6        | Clear All Error Indicators                           |
| CAEI     | 0 Clear only the ERR bit specified in the CERR field |
|          | 1 Clear all bits in ERR                              |
| 5–3      | This field is reserved.                              |
| Reserved |                                                      |
| CERR     | Clear Error Indicator                                |
|          | Clears the corresponding bit in ERR                  |

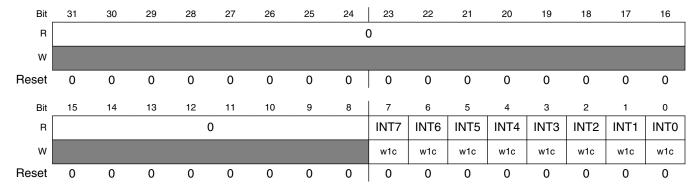
# 20.3.12 Clear Interrupt Request Register (DMAx\_CINT)

The CINT provides a simple, memory-mapped mechanism to clear a given bit in the INT to disable the interrupt request for a given channel. The given value on a register write causes the corresponding bit in the INT to be cleared. Setting the CAIR bit provides a global clear function, forcing the entire contents of the INT to be cleared, disabling all DMA interrupt requests. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.






### DMAx\_CINT field descriptions


| Field    | Description                                            |
|----------|--------------------------------------------------------|
| 7        | No Op enable                                           |
| NOP      |                                                        |
|          | 0 Normal operation                                     |
|          | 1 No operation, ignore the other bits in this register |
| 6        | Clear All Interrupt Requests                           |
| CAIR     |                                                        |
|          | 0 Clear only the INT bit specified in the CINT field   |
|          | 1 Clear all bits in INT                                |
| 5–3      | This field is reserved.                                |
| Reserved |                                                        |
| CINT     | Clear Interrupt Request                                |
|          | Clears the corresponding bit in INT                    |

# 20.3.13 Interrupt Request Register (DMAx\_INT)

The INT register provides a bit map for the 8 channels signaling the presence of an interrupt request for each channel. Depending on the appropriate bit setting in the transfer-control descriptors, the eDMA engine generates an interrupt on data transfer completion. The outputs of this register are directly routed to the interrupt controller. During the interrupt-service routine associated with any given channel, it is the software's responsibility to clear the appropriate bit, negating the interrupt request. Typically, a write to the CINT register in the interrupt service routine is used for this purpose.

The state of any given channel's interrupt request is directly affected by writes to this register; it is also affected by writes to the CINT register. On writes to INT, a 1 in any bit position clears the corresponding channel's interrupt request. A zero in any bit position has no affect on the corresponding channel's current interrupt status. The CINT register is provided so the interrupt request for a single channel can easily be cleared without the need to perform a read-modify-write sequence to the INT register.





### DMAx\_INT field descriptions

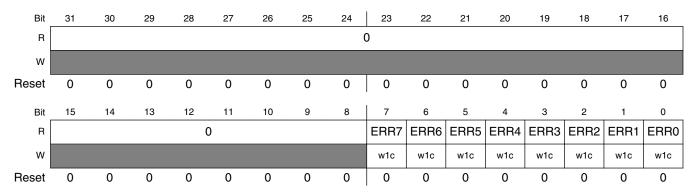
| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–8     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 7        | Interrupt Request 7                                          |
| INT7     |                                                              |
|          | The interrupt request for corresponding channel is cleared   |
|          | 1 The interrupt request for corresponding channel is active  |
| 6        | Interrupt Request 6                                          |
| INT6     |                                                              |
|          | The interrupt request for corresponding channel is cleared   |
|          | 1 The interrupt request for corresponding channel is active  |
| 5        | Interrupt Request 5                                          |
| INT5     |                                                              |

Table continues on the next page...

### DMAx INT field descriptions (continued)

| Field     | Description                                                  |
|-----------|--------------------------------------------------------------|
|           | 0 The interrupt request for corresponding channel is cleared |
|           | 1 The interrupt request for corresponding channel is active  |
| 4<br>INT4 | Interrupt Request 4                                          |
|           | 0 The interrupt request for corresponding channel is cleared |
|           | 1 The interrupt request for corresponding channel is active  |
| 3<br>INT3 | Interrupt Request 3                                          |
|           | 0 The interrupt request for corresponding channel is cleared |
|           | 1 The interrupt request for corresponding channel is active  |
| 2<br>INT2 | Interrupt Request 2                                          |
|           | The interrupt request for corresponding channel is cleared   |
|           | 1 The interrupt request for corresponding channel is active  |
| 1<br>INT1 | Interrupt Request 1                                          |
|           | 0 The interrupt request for corresponding channel is cleared |
|           | 1 The interrupt request for corresponding channel is active  |
| 0<br>INT0 | Interrupt Request 0                                          |
|           | 0 The interrupt request for corresponding channel is cleared |
|           | 1 The interrupt request for corresponding channel is active  |

#### 20.3.14 Error Register (DMAx\_ERR)


The ERR provides a bit map for the channels, signaling the presence of an error for each channel. The eDMA engine signals the occurrence of an error condition by setting the appropriate bit in this register. The outputs of this register are enabled by the contents of the EEI, and then routed to the interrupt controller. During the execution of the interruptservice routine associated with any DMA errors, it is software's responsibility to clear the appropriate bit, negating the error-interrupt request. Typically, a write to the CERR in the interrupt-service routine is used for this purpose. The normal DMA channel completion indicators (setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request) are not affected when an error is detected.

The contents of this register can also be polled because a non-zero value indicates the presence of a channel error regardless of the state of the EEI. The state of any given channel's error indicators is affected by writes to this register; it is also affected by writes to the CERR. On writes to the ERR, a one in any bit position clears the corresponding channel's error status. A zero in any bit position has no affect on the corresponding channel's current error status. The CERR is provided so the error indicator for a single channel can easily be cleared.

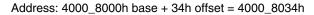
KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 429

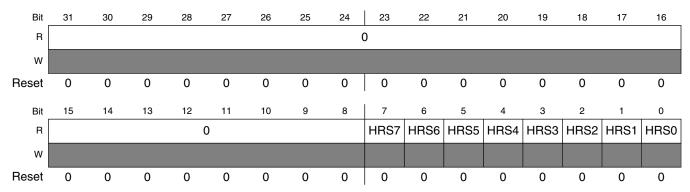
### Memory map/register definition

Address: 4000\_8000h base + 2Ch offset = 4000\_802Ch



### DMAx\_ERR field descriptions


| Field            | Description                                                                           |
|------------------|---------------------------------------------------------------------------------------|
|                  | ·                                                                                     |
| 31–8<br>Reserved | This field is reserved.  This read-only field is reserved and always has the value 0. |
| 7                | Error In Channel 7                                                                    |
| ERR7             | Error in Channel 7                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 6<br>ERR6        | Error In Channel 6                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 5<br>ERR5        | Error In Channel 5                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 4<br>ERR4        | Error In Channel 4                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 3<br>ERR3        | Error In Channel 3                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 2<br>ERR2        | Error In Channel 2                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 1<br>ERR1        | Error In Channel 1                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |
| 0<br>ERR0        | Error In Channel 0                                                                    |
|                  | 0 An error in this channel has not occurred                                           |
|                  | 1 An error in this channel has occurred                                               |


# 20.3.15 Hardware Request Status Register (DMAx\_HRS)

The HRS register provides a bit map for the DMA channels, signaling the presence of a hardware request for each channel. The hardware request status bits reflect the current state of the register and qualified (via the ERQ fields) DMA request signals as seen by the DMA's arbitration logic. This view into the hardware request signals may be used for debug purposes.

### NOTE

These bits reflect the state of the request as seen by the arbitration logic. Therefore, this status is affected by the ERQ bits.





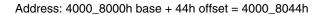
### DMAx\_HRS field descriptions

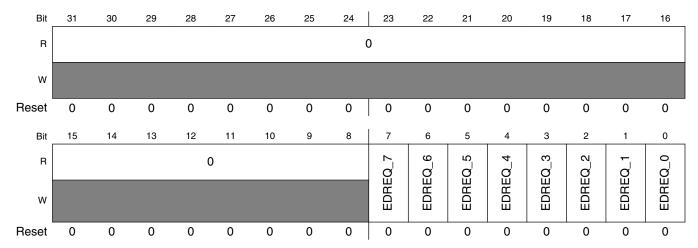
| Field     | Description                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8      | This field is reserved.                                                                                                                                                                                                         |
| Reserved  | This read-only field is reserved and always has the value 0.                                                                                                                                                                    |
| 7<br>HRS7 | Hardware Request Status Channel 7                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 7 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 7 is present                                                                                                                                                                           |
| 6<br>HRS6 | Hardware Request Status Channel 6                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 6 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 6 is present                                                                                                                                                                           |
| 5<br>HRS5 | Hardware Request Status Channel 5                                                                                                                                                                                               |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

### Memory map/register definition


# DMAx\_HRS field descriptions (continued)


| Field     | Description                                                                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 5 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 5 is present                                                                                                                                                                           |
| 4<br>HRS4 | Hardware Request Status Channel 4                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 4 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 4 is present                                                                                                                                                                           |
| 3<br>HRS3 | Hardware Request Status Channel 3                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 3 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 3 is present                                                                                                                                                                           |
| 2<br>HRS2 | Hardware Request Status Channel 2                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 2 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 2 is present                                                                                                                                                                           |
| 1<br>HRS1 | Hardware Request Status Channel 1                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 1 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 1 is present                                                                                                                                                                           |
| 0<br>HRS0 | Hardware Request Status Channel 0                                                                                                                                                                                               |
|           | The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware. |
|           | 0 A hardware service request for channel 0 is not present                                                                                                                                                                       |
|           | 1 A hardware service request for channel 0 is present                                                                                                                                                                           |

KL28Z Reference Manual, Rev. 4, 06/2016

433

### 20.3.16 **Enable Asynchronous Request in Stop Register** (DMAx\_EARS)





# DMAx\_EARS field descriptions

| Field        | Description                                                  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------|--|--|--|--|--|--|
| 31–8         | This field is reserved.                                      |  |  |  |  |  |  |
| Reserved     | This read-only field is reserved and always has the value 0. |  |  |  |  |  |  |
| 7<br>EDREQ_7 | Enable asynchronous DMA request in stop mode for channel 7   |  |  |  |  |  |  |
| _            | 0 Disable asynchronous DMA request for channel 7.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 7.             |  |  |  |  |  |  |
| 6<br>EDREQ_6 | Enable asynchronous DMA request in stop mode for channel 6   |  |  |  |  |  |  |
|              | 0 Disable asynchronous DMA request for channel 6.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 6.             |  |  |  |  |  |  |
| 5<br>EDREQ_5 | Enable asynchronous DMA request in stop mode for channel 5   |  |  |  |  |  |  |
|              | 0 Disable asynchronous DMA request for channel 5.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 5.             |  |  |  |  |  |  |
| 4<br>EDREQ_4 | Enable asynchronous DMA request in stop mode for channel 4   |  |  |  |  |  |  |
|              | 0 Disable asynchronous DMA request for channel 4.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 4.             |  |  |  |  |  |  |
| 3<br>EDREQ_3 | Enable asynchronous DMA request in stop mode for channel 3.  |  |  |  |  |  |  |
|              | 0 Disable asynchronous DMA request for channel 3.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 3.             |  |  |  |  |  |  |
| 2<br>EDREQ_2 | Enable asynchronous DMA request in stop mode for channel 2.  |  |  |  |  |  |  |
|              | 0 Disable asynchronous DMA request for channel 2.            |  |  |  |  |  |  |
|              | 1 Enable asynchronous DMA request for channel 2.             |  |  |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

### Memory map/register definition


### DMAx\_EARS field descriptions (continued)

| Field   | Description                                                 |
|---------|-------------------------------------------------------------|
| 1       | Enable asynchronous DMA request in stop mode for channel 1. |
| EDREQ_1 |                                                             |
|         | 0 Disable asynchronous DMA request for channel 1            |
|         | 1 Enable asynchronous DMA request for channel 1.            |
| 0       | Enable asynchronous DMA request in stop mode for channel 0. |
| EDREQ_0 |                                                             |
|         | 0 Disable asynchronous DMA request for channel 0.           |
|         | 1 Enable asynchronous DMA request for channel 0.            |

# 20.3.17 Channel n Priority Register (DMAx\_DCHPRIn)

When fixed-priority channel arbitration is enabled (CR[ERCA] = 0), the contents of these registers define the unique priorities associated with each channel. The channel priorities are evaluated by numeric value; for example, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. Software must program the channel priorities with unique values; otherwise, a configuration error is reported. The range of the priority value is limited to the values of 0 through 7.

Address:  $4000_8000h$  base + 100h offset +  $(1d \times i)$ , where i=0d to 7d



<sup>\*</sup> Notes:

### DMAx\_DCHPRIn field descriptions

| Field           | Description                                                                                                                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7               | Enable Channel Preemption.                                                                                                                                                                             |
| ECP             | <ul> <li>Channel n cannot be suspended by a higher priority channel's service request.</li> <li>Channel n can be temporarily suspended by the service request of a higher priority channel.</li> </ul> |
| 6<br>DPA        | Disable Preempt Ability.                                                                                                                                                                               |
|                 | 0 Channel n can suspend a lower priority channel.                                                                                                                                                      |
|                 | 1 Channel n cannot suspend any channel, regardless of channel priority.                                                                                                                                |
| 5–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                   |
| CHPRI           | Channel n Arbitration Priority                                                                                                                                                                         |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


<sup>·</sup> CHPRI field: See bit field description.

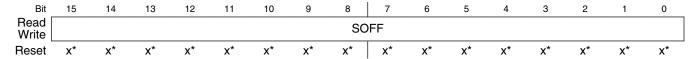
### DMAx\_DCHPRIn field descriptions (continued)

| Field | Description                                                                                                                                                               |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|       | Channel priority when fixed-priority arbitration is enabled                                                                                                               |  |  |  |  |  |  |  |
|       | <b>NOTE:</b> Reset value for the channel priority field, CHPRI, is equal to the corresponding channel number for each priority register, that is, DCHPRI7[CHPRI] = 0b111. |  |  |  |  |  |  |  |

# 20.3.18 TCD Source Address (DMAx\_TCDn\_SADDR)

Address:  $4000_8000h$  base + 1000h offset +  $(32d \times i)$ , where i=0d to 7d




<sup>\*</sup> Notes:

### DMAx\_TCDn\_SADDR field descriptions

| Field | Description                                 |  |  |  |
|-------|---------------------------------------------|--|--|--|
| SADDR | Source Address                              |  |  |  |
|       | Memory address pointing to the source data. |  |  |  |

# 20.3.19 TCD Signed Source Address Offset (DMAx\_TCDn\_SOFF)

Address:  $4000_8000h$  base + 1004h offset +  $(32d \times i)$ , where i=0d to 7d



<sup>\*</sup> Notes:

### DMAx\_TCDn\_SOFF field descriptions

| Field | Description                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Source address signed offset  Sign-extended offset applied to the current source address to form the next-state value as each source read is completed. |

<sup>•</sup> x = Undefined at reset.

x = Undefined at reset.

# 20.3.20 TCD Transfer Attributes (DMAx\_TCDn\_ATTR)

Address:  $4000_8000h$  base + 1006h offset +  $(32d \times i)$ , where i=0d to 7d

| Bit           | 15         | 14 | 13   | 12         | 11         | 10 | 9     | 8  | 7  | 6  | 5    | 4          | 3  | 2  | 1          | 0          |
|---------------|------------|----|------|------------|------------|----|-------|----|----|----|------|------------|----|----|------------|------------|
| Read<br>Write |            |    | SMOD |            |            |    | SSIZE |    |    |    | DMOD |            |    |    | DSIZE      |            |
| Reset         | <b>X</b> * | х* | х*   | <b>X</b> * | <b>X</b> * | X* | х*    | х* | х* | х* | х*   | <b>X</b> * | X* | X* | <b>X</b> * | <b>X</b> * |

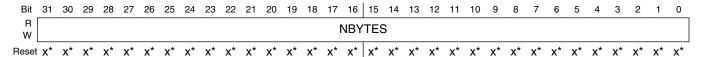
<sup>\*</sup> Notes:

## DMAx\_TCDn\_ATTR field descriptions

| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 15–11<br>SMOD | Source Address Modulo  O Source address modulo feature is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
|               | ≠0 This value defines a specific address range specified to be the value after SADDR + SOFF calculation is performed on the original register value. Setting this field provides the ability to implement a circular data queue easily. For data queues requiring power-of-2 size bytes, the queue should start at a 0-modulo-size address and the SMOD field should be set to the appropriate value for the queue, freezing the desired number of upper address bits. The value programmed into this field specifies the number of lower address bits allowed to change. For a circular queue application, the SOFF is typically set to the transfer size to implement post-increment addressing with the SMOD function constraining the addresses to a 0-modulo-size range. |  |  |  |  |  |  |  |  |  |
| 10–8<br>SSIZE | Source data transfer size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|               | NOTE: Using a Reserved value causes a configuration error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|               | 000 8-bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|               | 001 16-bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|               | 010 32-bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|               | 011 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|               | 100 16-byte<br>101 32-byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|               | 110 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|               | 111 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 7–3<br>DMOD   | Destination Address Modulo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|               | See the SMOD definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| DSIZE         | Destination data transfer size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|               | See the SSIZE definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |

<sup>•</sup> x = Undefined at reset.

# 20.3.21 TCD Minor Byte Count (Minor Loop Mapping Disabled) (DMAx\_TCDn\_NBYTES\_MLNO)


This register, or one of the next two registers (TCD\_NBYTES\_MLOFFNO, TCD\_NBYTES\_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

• Minor loop mapping is disabled (CR[EMLM] = 0)

If minor loop mapping is enabled, see the TCD\_NBYTES\_MLOFFNO and TCD\_NBYTES\_MLOFFYES register descriptions for the definition of TCD word 2.

Address:  $4000\_8000h$  base + 1008h offset +  $(32d \times i)$ , where i=0d to 7d



<sup>\*</sup> Notes:

### DMAx\_TCDn\_NBYTES\_MLNO field descriptions

| Field  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NBYTES | Minor Byte Transfer Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | Number of bytes to be transferred in each service request of the channel. As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed. |
|        | <b>NOTE:</b> An NBYTES value of 0x0000_0000 is interpreted as a 4 GB transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# 20.3.22 TCD Signed Minor Loop Offset (Minor Loop Mapping Enabled and Offset Disabled) (DMAx\_TCDn\_NBYTES\_MLOFFNO)

One of three registers (this register, TCD\_NBYTES\_MLNO, or TCD\_NBYTES\_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

NXP Semiconductors

437

x = Undefined at reset.

### Memory map/register definition

TCD word 2 is defined as follows if:

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- SMLOE = 0 and DMLOE = 0

If minor loop mapping is enabled and SMLOE or DMLOE is set, then refer to the TCD\_NBYTES\_MLOFFYES register description. If minor loop mapping is disabled, then refer to the TCD\_NBYTES\_MLNO register description.

Address:  $4000_8000h$  base + 1008h offset +  $(32d \times i)$ , where i=0d to 7d Bit 30 29 28 27 26 23 22 21 20 19 18 17 16 R DMLOE SMLOE **NBYTES** W Reset  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$ х\*  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$  $\mathbf{x}^{\star}$ 7 Bit 15 14 13 12 11 10 9 8 6 5 4 3 2 0 R **NBYTES** W х\* **x**\* Reset х\* х\* х\* х\* х\* х\* х\* х\* х\* х\*

\* Notes:

### DMAx\_TCDn\_NBYTES\_MLOFFNO field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>SMLOE | Source Minor Loop Offset Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | Selects whether the minor loop offset is applied to the source address upon minor loop completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 0 The minor loop offset is not applied to the SADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 1 The minor loop offset is applied to the SADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30<br>DMLOE | Destination Minor Loop Offset enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | Selects whether the minor loop offset is applied to the destination address upon minor loop completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 0 The minor loop offset is not applied to the DADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 1 The minor loop offset is applied to the DADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NBYTES      | Minor Byte Transfer Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | Number of bytes to be transferred in each service request of the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed. |

<sup>•</sup> x = Undefined at reset.


# 20.3.23 TCD Signed Minor Loop Offset (Minor Loop Mapping and Offset Enabled) (DMAx\_TCDn\_NBYTES\_MLOFFYES)

One of three registers (this register, TCD\_NBYTES\_MLNO, or TCD\_NBYTES\_MLOFFNO), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- Minor loop offset is enabled (SMLOE or DMLOE = 1)

If minor loop mapping is enabled and SMLOE and DMLOE are cleared, then refer to the TCD\_NBYTES\_MLOFFNO register description. If minor loop mapping is disabled, then refer to the TCD\_NBYTES\_MLNO register description.



Address:  $4000\_8000h$  base + 1008h offset +  $(32d \times i)$ , where i=0d to 7d

## DMAx\_TCDn\_NBYTES\_MLOFFYES field descriptions

| Field       | Description                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------|
| 31<br>SMLOE | Source Minor Loop Offset Enable                                                                         |
|             | Selects whether the minor loop offset is applied to the source address upon minor loop completion.      |
|             | 0 The minor loop offset is not applied to the SADDR                                                     |
|             | 1 The minor loop offset is applied to the SADDR                                                         |
| 30          | Destination Minor Loop Offset enable                                                                    |
| DMLOE       | Selects whether the minor loop offset is applied to the destination address upon minor loop completion. |

Table continues on the next page...

### KL28Z Reference Manual, Rev. 4, 06/2016

<sup>\*</sup> Notes:

<sup>•</sup> x = Undefined at reset.

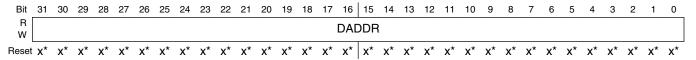
### DMAx\_TCDn\_NBYTES\_MLOFFYES field descriptions (continued)

| Field  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | The minor loop offset is not applied to the DADDR  The minor loop offset is applied to the DADDR  The minor loop offset is applied to the DADDR                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29–10  | The minor loop offset is applied to the DADDR  If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source or                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MLOFF  | destination address to form the next-state value after the minor loop completes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NBYTES | Minor Byte Transfer Count  Number of bytes to be transferred in each service request of the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed. |

# 20.3.24 TCD Last Source Address Adjustment (DMAx\_TCDn\_SLAST)

Address:  $4000_8000h$  base + 100Ch offset +  $(32d \times i)$ , where i=0d to 7d




<sup>\*</sup> Notes:

### DMAx\_TCDn\_SLAST field descriptions

| Field | Description                                                                                                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SLAST | Last Source Address Adjustment                                                                                                                                                                                                         |
|       | Adjustment value added to the source address at the completion of the major iteration count. This value can be applied to restore the source address to the initial value, or adjust the address to reference the next data structure. |
|       | This register uses two's complement notation; the overflow bit is discarded.                                                                                                                                                           |

# 20.3.25 TCD Destination Address (DMAx\_TCDn\_DADDR)

Address:  $4000\_8000h$  base + 1010h offset +  $(32d \times i)$ , where i=0d to 7d



<sup>\*</sup> Notes:

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> x = Undefined at reset.

<sup>•</sup> x = Undefined at reset.

# DMAx\_TCDn\_DADDR field descriptions

| Field | Description                                      |
|-------|--------------------------------------------------|
| DADDR | Destination Address                              |
|       | Memory address pointing to the destination data. |

# 20.3.26 TCD Signed Destination Address Offset (DMAx\_TCDn\_DOFF)

Address:  $4000_8000h$  base + 1014h offset +  $(32d \times i)$ , where i=0d to 7d

| Bit           | 15         | 14         | 13         | 12 | 11 | 10 | 9  | 8          | 7  | 6          | 5  | 4  | 3  | 2  | 1  | 0  |
|---------------|------------|------------|------------|----|----|----|----|------------|----|------------|----|----|----|----|----|----|
| Read<br>Write |            |            |            |    |    |    |    |            |    |            |    |    |    |    |    |    |
| Reset         | <b>X</b> * | <b>X</b> * | <b>X</b> * | X* | х* | X* | х* | <b>X</b> * | x* | <b>X</b> * | x* | X* | Х* | X* | х* | X* |

<sup>\*</sup> Notes:

### DMAx\_TCDn\_DOFF field descriptions

| Field | Description                                                                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Destination Address Signed Offset  Sign-extended offset applied to the current destination address to form the next-state value as each destination write is completed. |

# 20.3.27 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMAx\_TCDn\_CITER\_ELINKYES)

If TCDn\_CITER[ELINK] is set, the TCDn\_CITER register is defined as follows.

Address:  $4000_8000h$  base + 1016h offset +  $(32d \times i)$ , where i=0d to 7d

| Bit           | 15         | 14         | 13         | 12         | 11         | 10         | 9          | 8          |  |  |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|
| Read<br>Write | ELINK      |            | 0          |            |            | LINKCH     |            | CITER      |  |  |
| Reset         | <b>x</b> * | X*         | <b>x</b> * | X*         |  |  |
| Bit           | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |  |  |
| Read<br>Write |            | CITER      |            |            |            |            |            |            |  |  |
| Reset         | <b>x</b> * |  |  |

<sup>\*</sup> Notes:

<sup>•</sup> x = Undefined at reset.

x = Undefined at reset.

## Memory map/register definition

# DMAx\_TCDn\_CITER\_ELINKYES field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 15                | Enable channel-to-channel linking on minor-loop complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| ELINK             | As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                   | If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                   | NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                   | 0 The channel-to-channel linking is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                   | 1 The channel-to-channel linking is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 14–12<br>Reserved | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 11–9<br>LINKCH    | Minor Loop Link Channel Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| LINKOIT           | If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request to the channel defined by this field by setting that channel's TCDn_CSR[START] bit.                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| CITER             | Current Major Iteration Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                   | This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field. |  |  |  |  |  |  |  |
|                   | NOTE: When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                   | NOTE: If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |

# 20.3.28 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMAx\_TCDn\_CITER\_ELINKNO)

If TCDn\_CITER[ELINK] is cleared, the TCDn\_CITER register is defined as follows.

Address:  $4000_8000h$  base + 1016h offset +  $(32d \times i)$ , where i=0d to 7d

| Bit           | 15         | 14         | 13         | 12         | 11         | 10         | 9          | 8          |  |  |  |  |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|--|
| Read<br>Write | ELINK      |            | CITER      |            |            |            |            |            |  |  |  |  |
| Reset         | <b>X</b> * | <b>X</b> * | <b>X</b> * | X*         | <b>X</b> * | <b>X</b> * | <b>X</b> * | <b>X</b> * |  |  |  |  |
| Bit           | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |  |  |  |  |
| Read<br>Write |            |            | CITER      |            |            |            |            |            |  |  |  |  |
| Reset         | <b>x</b> * | x*         |  |  |  |  |

<sup>\*</sup> Notes:


## DMAx\_TCDn\_CITER\_ELINKNO field descriptions

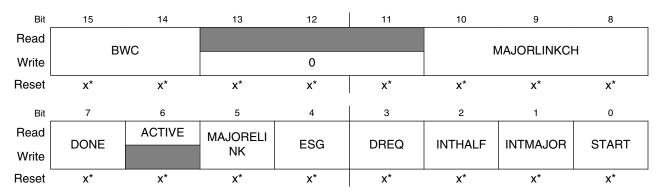
| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15<br>ELINK | Enable channel-to-channel linking on minor-loop complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ELINK       | As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.                                                                                                                                                                                                                                                                    |
|             | If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.                                                                                                                                                                                                                                                                                                                  |
|             | NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 0 The channel-to-channel linking is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 1 The channel-to-channel linking is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CITER       | Current Major Iteration Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel. It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field. |
|             | NOTE: When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | NOTE: If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.                                                                                                                                                                                                                                                                                                                                                                                                          |

<sup>•</sup> x = Undefined at reset.

# 20.3.29 TCD Last Destination Address Adjustment/Scatter Gather Address (DMAx\_TCDn\_DLASTSGA)

Address:  $4000_8000h$  base + 1018h offset +  $(32d \times i)$ , where i=0d to 7d




<sup>\*</sup> Notes:

### DMAx\_TCDn\_DLASTSGA field descriptions

| Field    | Description                                                                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DLASTSGA | Destination last address adjustment or the memory address for the next transfer control descriptor to be loaded into this channel (scatter/gather).                                                                                                                                                                                                                          |
|          | If (TCDn_CSR[ESG] = 0) then:                                                                                                                                                                                                                                                                                                                                                 |
|          | <ul> <li>Adjustment value added to the destination address at the completion of the major iteration count.         This value can apply to restore the destination address to the initial value or adjust the address to reference the next data structure.     </li> <li>This field uses two's complement notation for the final destination address adjustment.</li> </ul> |
|          | Otherwise:                                                                                                                                                                                                                                                                                                                                                                   |
|          | <ul> <li>This address points to the beginning of a 0-modulo-32-byte region containing the next transfer<br/>control descriptor to be loaded into this channel. This channel reload is performed as the major<br/>iteration count completes. The scatter/gather address must be 0-modulo-32-byte, otherwise a<br/>configuration error is reported.</li> </ul>                 |

# 20.3.30 TCD Control and Status (DMAx\_TCDn\_CSR)

Address:  $4000_8000h$  base + 101Ch offset +  $(32d \times i)$ , where i=0d to 7d



<sup>\*</sup> Notes:

<sup>•</sup> x = Undefined at reset.

x = Undefined at reset.

# DMAx\_TCDn\_CSR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 15–14             | Bandwidth Control                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| BWC               | Throttles the amount of bus bandwidth consumed by the eDMA. Generally, as the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. This field forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch. |  |  |  |  |  |  |
|                   | 00 No eDMA engine stalls. 01 Reserved                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                   | <ul><li>10 eDMA engine stalls for 4 cycles after each R/W.</li><li>11 eDMA engine stalls for 8 cycles after each R/W.</li></ul>                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 13–11<br>Reserved | This field is reserved.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 10-8              | Major Loop Link Channel Number                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| MAJORLINKCH       | If (MAJORELINK = 0) then:  • No channel-to-channel linking, or chaining, is performed after the major loop counter is exhausted.                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                   | Otherwise:                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                   | After the major loop counter is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit.                                                                                                                                                                   |  |  |  |  |  |  |
| 7<br>DONE         | Channel Done                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| DONE              | This flag indicates the eDMA has completed the major loop. The eDMA engine sets it as the CITER count reaches zero. The software clears it, or the hardware when the channel is activated.                                                                                                                                                           |  |  |  |  |  |  |
|                   | NOTE: This bit must be cleared to write the MAJORELINK or ESG bits.                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 6<br>ACTIVE       | Channel Active                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                   | This flag signals the channel is currently in execution. It is set when channel service begins, and is cleared by the eDMA as the minor loop completes or when any error condition is detected.                                                                                                                                                      |  |  |  |  |  |  |
| 5<br>MAJORELINK   | Enable channel-to-channel linking on major loop complete                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| MAJORELINK        | As the channel completes the major loop, this flag enables the linking to another channel, defined by MAJORLINKCH. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.                                                                                 |  |  |  |  |  |  |
|                   | NOTE: To support the dynamic linking coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.                                                                                                                                                                                                              |  |  |  |  |  |  |
|                   | 0 The channel-to-channel linking is disabled.                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 4                 | 1 The channel-to-channel linking is enabled.  Enable Scatter/Gather Processing                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| ESG               | Enable Scatter/Gather Processing                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                   | As the channel completes the major loop, this flag enables scatter/gather processing in the current channel. If enabled, the eDMA engine uses DLASTSGA as a memory pointer to a 0-modulo-32 address containing a 32-byte data structure loaded as the transfer control descriptor into the local memory.                                             |  |  |  |  |  |  |
|                   | NOTE: To support the dynamic scatter/gather coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.                                                                                                                                                                                                       |  |  |  |  |  |  |
|                   | 0 The current channel's TCD is normal format.                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                   | The current channel's TCD specifies a scatter gather format. The DLASTSGA field provides a memory pointer to the next TCD to be loaded into this channel after the major loop completes its execution.                                                                                                                                               |  |  |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Memory map/register definition

# DMAx\_TCDn\_CSR field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>DREQ     | Disable Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J.I.Z.        | If this flag is set, the eDMA hardware automatically clears the corresponding ERQ bit when the current major iteration count reaches zero.                                                                                                                                                                                                                                                                                                                                                         |
|               | 0 The channel's ERQ bit is not affected.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 1 The channel's ERQ bit is cleared when the major loop is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>INTHALF  | Enable an interrupt when major counter is half complete.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT register when the current major iteration count reaches the halfway point. Specifically, the comparison performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point interrupt request is provided to support double-buffered, also known as ping-pong, schemes or other types of data movement where the processor needs an early indication of the transfer's progress. |
|               | NOTE: If BITER = 1, do not use INTHALF. Use INTMAJOR instead.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 0 The half-point interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 1 The half-point interrupt is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1<br>INTMAJOR | Enable an interrupt when major iteration count completes.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT when the current major iteration count reaches zero.                                                                                                                                                                                                                                                                                                                                     |
|               | 0 The end-of-major loop interrupt is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | 1 The end-of-major loop interrupt is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0<br>START    | Channel Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | If this flag is set, the channel is requesting service. The eDMA hardware automatically clears this flag after the channel begins execution.                                                                                                                                                                                                                                                                                                                                                       |
|               | <ul> <li>The channel is not explicitly started.</li> <li>The channel is explicitly started via a software initiated service request.</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |

# 20.3.31 TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMAx\_TCDn\_BITER\_ELINKYES)

If the TCDn\_BITER[ELINK] bit is set, the TCDn\_BITER register is defined as follows.

Address:  $4000_8000h$  base + 101Eh offset +  $(32d \times i)$ , where i=0d to 7d

| Bit _             | 15    | 14 | 13 | 12         | 11 | 10     | 9  | 8     |
|-------------------|-------|----|----|------------|----|--------|----|-------|
| Read Write        | ELINK |    | 0  |            |    | LINKCH |    | BITER |
| Reset             | X*    | X* | x* | <b>X</b> * | X* | X*     | x* | X*    |
| D:t               | 7     |    | 5  | 4          | 3  | 2      | 4  | 0     |
| Bit<br>Read Write | /     | 6  | 5  | 4<br>BIT   |    |        | ı  | 0     |
| Reset             | X*    | X* | X* | <b>x</b> * | X* | X*     | x* |       |

<sup>\*</sup> Notes:

## DMAx\_TCDn\_BITER\_ELINKYES field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15<br>ELINK       | Enables channel-to-channel linking on minor loop complete                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ELINA             | As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel. If channel linking disables, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking. |
|                   | NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.                                                                                                                                                                                                                            |
|                   | 0 The channel-to-channel linking is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 1 The channel-to-channel linking is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14–12<br>Reserved | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11–9              | Link Channel Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LINKCH            | If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit.                                                                                                                                                                                                                                                   |
|                   | <b>NOTE:</b> When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.                                                                                                                                                                                                                     |
| BITER             | Starting major iteration count                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.                                                                                                                                                                                                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> x = Undefined at reset.

### Memory map/register definition

# DMAx\_TCDn\_BITER\_ELINKYES field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | <b>NOTE:</b> When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field. If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001. |  |  |  |

### 20.3.32 **TCD Beginning Minor Loop Link, Major Loop Count (Channel** Linking Disabled) (DMAx\_TCDn\_BITER\_ELINKNO)

If the TCDn\_BITER[ELINK] bit is cleared, the TCDn\_BITER register is defined as follows.

Address:  $4000_8000h$  base + 101Eh offset +  $(32d \times i)$ , where i=0d to 7d

| Bit           | 15         | 14         | 13         | 12         | 11         | 10         | 9          | 8          |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Read<br>Write | ELINK      |            |            |            | BITER      |            |            |            |
| Reset         | <b>x</b> * |
| Bit           | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
| Read<br>Write |            |            |            | BIT        | ER         |            |            |            |
| Reset         | Х*         | <b>x</b> * | <b>x</b> * | <b>X</b> * | <b>x</b> * | x*         | <b>x</b> * | <b>X</b> * |

<sup>\*</sup> Notes:

## DMAx\_TCDn\_BITER\_ELINKNO field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 15<br>ELINK | Enables channel-to-channel linking on minor loop complete                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| ELINA       | As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism th sets the TCDn_CSR[START] bit of the specified channel. If channel linking is disabled, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism i suppressed in favor of the MAJORELINK channel linking. |  |  |  |  |  |
|             | <b>NOTE:</b> When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.                                                                                                                                                                                                                     |  |  |  |  |  |
|             | 0 The channel-to-channel linking is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|             | 1 The channel-to-channel linking is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| BITER       | Starting Major Iteration Count                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|             | As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.                                                                                                                                                                                                              |  |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 448 **NXP Semiconductors** 

<sup>•</sup> x = Undefined at reset.

## DMAx\_TCDn\_BITER\_ELINKNO field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field is reloaded into the CITER field. If the channel is configured to execute a |  |  |  |  |
|       | single service request, the initial values of BITER and CITER should be 0x0001.                                                                                                                                                                                                                       |  |  |  |  |

# 20.4 Functional description

The operation of the eDMA is described in the following subsections.

## 20.4.1 eDMA basic data flow

The basic flow of a data transfer can be partitioned into three segments.

As shown in the following diagram, the first segment involves the channel activation:

### **Functional description**

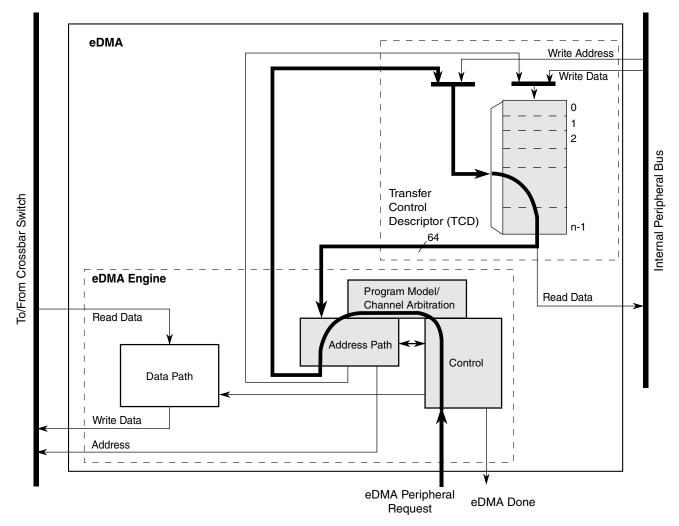



Figure 20-2. eDMA operation, part 1

This example uses the assertion of the eDMA peripheral request signal to request service for channel n. Channel activation via software and the TCDn\_CSR[START] bit follows the same basic flow as peripheral requests. The eDMA request input signal is registered internally and then routed through the eDMA engine: first through the control module, then into the program model and channel arbitration. In the next cycle, the channel arbitration performs, using the fixed-priority or round-robin algorithm. After arbitration is complete, the activated channel number is sent through the address path and converted into the required address to access the local memory for TCDn. Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded into the eDMA engine address path channel x or y registers. The TCD memory is 64 bits wide to minimize the time needed to fetch the activated channel descriptor and load it into the address path channel x or y registers.

The following diagram illustrates the second part of the basic data flow:

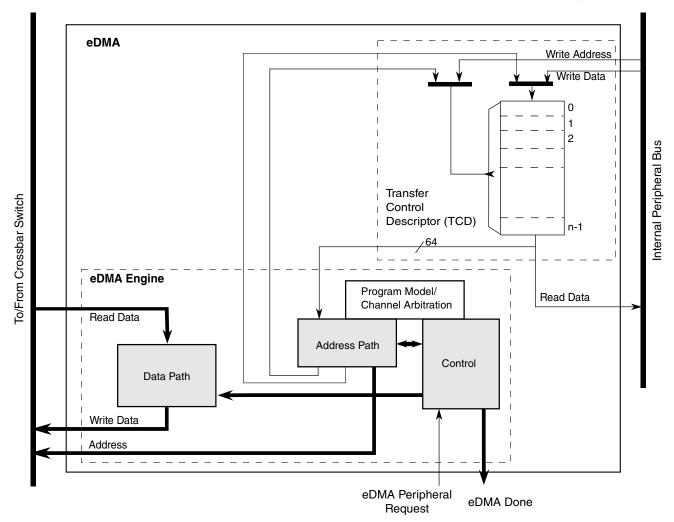



Figure 20-3. eDMA operation, part 2

The modules associated with the data transfer (address path, data path, and control) sequence through the required source reads and destination writes to perform the actual data movement. The source reads are initiated and the fetched data is temporarily stored in the data path block until it is gated onto the internal bus during the destination write. This source read/destination write processing continues until the minor byte count has transferred.

After the minor byte count has moved, the final phase of the basic data flow is performed. In this segment, the address path logic performs the required updates to certain fields in the appropriate TCD, for example, SADDR, DADDR, CITER. If the major iteration count is exhausted, additional operations are performed. These include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled). The updates to the TCD memory and the assertion of an interrupt request are shown in the following diagram.

### **Functional description**

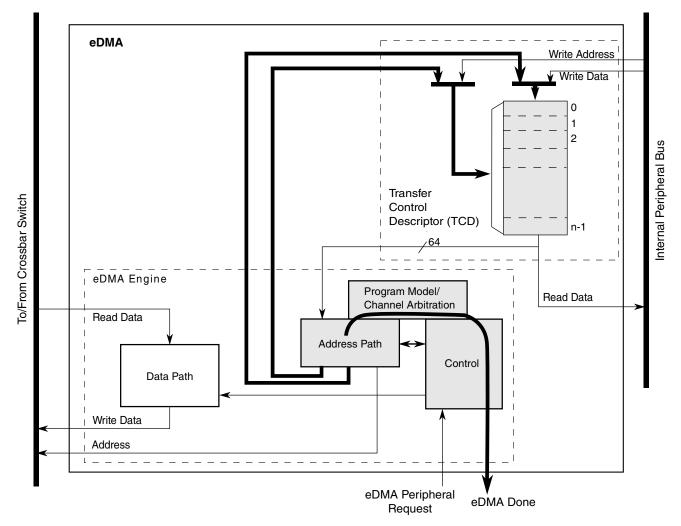



Figure 20-4. eDMA operation, part 3

# 20.4.2 Fault reporting and handling

Channel errors are reported in the Error Status register (DMAx\_ES) and can be caused by:

- A configuration error, which is an illegal setting in the transfer-control descriptor or an illegal priority register setting in Fixed-Arbitration mode, or
- An error termination to a bus master read or write cycle

A configuration error is reported when the starting source or destination address, source or destination offsets, minor loop byte count, or the transfer size represent an inconsistent state. Each of these possible causes are detailed below:

- The addresses and offsets must be aligned on 0-modulo-transfer-size boundaries.
- The minor loop byte count must be a multiple of the source and destination transfer sizes.

- All source reads and destination writes must be configured to the natural boundary of the programmed transfer size respectively.
- In fixed arbitration mode, a configuration error is caused by any two channel priorities being equal. All channel priority levels must be unique when fixed arbitration mode is enabled.

### NOTE

When two channels have the same priority, a channel priority error exists and will be reported in the Error Status register. However, the channel number will not be reported in the Error Status register. When all of the channel priorities within a group are not unique, the channel number selected by arbitration is undetermined.

To aid in Channel Priority Error (CPE) debug, set the Halt On Error bit in the DMA's Control Register. If all of the channel priorities within a group are not unique, the DMA will be halted after the CPE error is recorded. The DMA will remain halted and will not process any channel service requests. Once all of the channel priorities are set to unique numbers, the DMA may be enabled again by clearing the Halt bit.

- If a scatter/gather operation is enabled upon channel completion, a configuration error is reported if the scatter/gather address (DLAST\_SGA) is not aligned on a 32-byte boundary.
- If minor loop channel linking is enabled upon channel completion, a configuration error is reported when the link is attempted if the TCDn\_CITER[E\_LINK] bit does not equal the TCDn\_BITER[E\_LINK] bit.

If enabled, all configuration error conditions, except the scatter/gather and minor-loop link errors, report as the channel activates and asserts an error interrupt request. A scatter/gather configuration error is reported when the scatter/gather operation begins at major loop completion when properly enabled. A minor loop channel link configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is stopped and the appropriate bus error flag set. In this case, the state of the channel's transfer control descriptor is updated by the eDMA engine with the current source address, destination address, and current iteration count at the point of the fault. When a system bus error occurs, the channel terminates after the next transfer. Due to pipeline effect, the next transfer is already in progress when the bus error is received by the eDMA. If a bus error

#### **Functional description**

occurs on the last read prior to beginning the write sequence, the write executes using the data captured during the bus error. If a bus error occurs on the last write prior to switching to the next read sequence, the read sequence executes before the channel terminates due to the destination bus error.

A transfer may be cancelled by software with the CR[CX] bit. When a cancel transfer request is recognized, the DMA engine stops processing the channel. The current readwrite sequence is allowed to finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the Error Status register (DMAx\_ES) is updated with the cancelled channel number and ECX is set. The TCD of a cancelled channel contains the source and destination addresses of the last transfer saved in the TCD. If the channel needs to be restarted, you must re-initialize the TCD because the aforementioned fields no longer represent the original parameters. When a transfer is cancelled by the error cancel transfer mechanism, the channel number is loaded into DMA\_ES[ERRCHN] and ECX and VLD are set. In addition, an error interrupt may be generated if enabled.

### NOTE

The cancel transfer request allows the user to stop a large data transfer in the event the full data transfer is no longer needed. The cancel transfer bit does not abort the channel. It simply stops the transferring of data and then retires the channel through its normal shutdown sequence. The application software must handle the context of the cancel. If an interrupt is desired (or not), then the interrupt should be enabled (or disabled) before the cancel request. The application software must clean up the transfer control descriptor since the full transfer did not occur.

The occurrence of any error causes the eDMA engine to stop normal processing of the active channel immediately (it goes to its error processing states and the transaction to the system bus still has pipeline effect), and the appropriate channel bit in the eDMA error register is asserted. At the same time, the details of the error condition are loaded into the Error Status register (DMAx\_ES). The major loop complete indicators, setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is detected. After the error status has been updated, the eDMA engine continues operating by servicing the next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a channel is terminated by an error and then issues another service request before the error is fixed, that channel executes and terminates with the same error condition.

#### 20.4.3 Channel preemption

Channel preemption is enabled on a per-channel basis by setting the DCHPRIn[ECP] bit. Channel preemption allows the executing channel's data transfers to temporarily suspend in favor of starting a higher priority channel. After the preempting channel has completed all its minor loop data transfers, the preempted channel is restored and resumes execution. After the restored channel completes one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption, that is, attempting to preempt a preempting channel, is not supported. After a preempting channel begins execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected.

A channel's ability to preempt another channel can be disabled by setting DCHPRIn[DPA]. When a channel's preempt ability is disabled, that channel cannot suspend a lower priority channel's data transfer, regardless of the lower priority channel's ECP setting. This allows for a pool of low priority, large data-moving channels to be defined. These low priority channels can be configured to not preempt each other, thus preventing a low priority channel from consuming the preempt slot normally available to a true, high priority channel.

#### 20.4.4 Performance

This section addresses the performance of the eDMA module, focusing on two separate metrics:

- In the traditional data movement context, performance is best expressed as the peak data transfer rates achieved using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and destination address spaces.
- In a second context where device-paced movement of single data values to/from peripherals is dominant, a measure of the requests that can be serviced in a fixed time is a more relevant metric. In this environment, the speed of the source and destination address spaces remains important. However, the microarchitecture of the eDMA also factors significantly into the resulting metric.

#### 20.4.4.1 Peak transfer rates

The peak transfer rates for several different source and destination transfers are shown in the following tables. These tables assume:

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 455

### **Functional description**

- Internal SRAM can be accessed with zero wait-states when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states, when viewed from the system bus data phase
- All internal peripheral bus accesses are 32-bits in size

### NOTE

All architectures will not meet the assumptions listed above. See the SRAM configuration section for more information.

This table compares peak transfer rates based on different possible system speeds. Specific chips/devices may not support all system speeds listed.

| Custom Coasal Middle | Internal SRAM-to- | 32 bit internal peripheral | Internal SRAM-to-32 bit |
|----------------------|-------------------|----------------------------|-------------------------|
| System Speed, Width  | Internal SRAM     | bus-to-Internal SRAM       | internal peripheral bus |
| 66.7 MHz, 32 bit     | 133.3             | 66.7                       | 53.3                    |
| 83.3 MHz, 32 bit     | 166.7             | 83.3                       | 66.7                    |
| 100.0 MHz, 32 bit    | 200.0             | 100.0                      | 80.0                    |
| 133.3 MHz, 32 bit    | 266.7             | 133.3                      | 106.7                   |
| 150.0 MHz, 32 bit    | 300.0             | 150.0                      | 120.0                   |

Table 20-4. eDMA peak transfer rates (Mbytes/sec)

Internal-SRAM-to-internal-SRAM transfers occur at the core's datapath width. For all transfers involving the internal peripheral bus, 32-bit transfer sizes are used. In all cases, the transfer rate includes the time to read the source plus the time to write the destination.

# 20.4.4.2 Peak request rates

The second performance metric is a measure of the number of DMA requests that can be serviced in a given amount of time. For this metric, assume that the peripheral request causes the channel to move a single internal peripheral bus-mapped operand to/from internal SRAM. The same timing assumptions used in the previous example apply to this calculation. In particular, this metric also reflects the time required to activate the channel.

The eDMA design supports the following hardware service request sequence. Note that the exact timing from Cycle 7 is a function of the response times for the channel's read and write accesses. In the case of an internal peripheral bus read and internal SRAM write, the combined data phase time is 4 cycles. For an SRAM read and internal peripheral bus write, it is 5 cycles.

Table 20-5. Hardware service request process

| Cy                                                              | rcle                                             | Description                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| With internal peripheral<br>bus read and internal<br>SRAM write | With SRAM read and internal peripheral bus write |                                                                                                                                                                                                                                                |
|                                                                 | 1                                                | eDMA peripheral request is asserted.                                                                                                                                                                                                           |
|                                                                 | 2                                                | The eDMA peripheral request is registered locally in the eDMA module and qualified. TCDn_CSR[START] bit initiated requests start at this point with the registering of the user write to TCDn word 7.                                          |
| (                                                               | 3                                                | Channel arbitration begins.                                                                                                                                                                                                                    |
|                                                                 | 4                                                | Channel arbitration completes. The transfer control descriptor local memory read is initiated.                                                                                                                                                 |
| 5-                                                              | -6                                               | The first two parts of the activated channel's TCD is read from the local memory. The memory width to the eDMA engine is 64 bits, so the entire descriptor can be accessed in four cycles                                                      |
|                                                                 | 7                                                | The first system bus read cycle is initiated, as the third part of the channel's TCD is read from the local memory. Depending on the state of the crossbar switch, arbitration at the system bus may insert an additional cycle of delay here. |
| 8–11                                                            | 8–12                                             | The last part of the TCD is read in. This cycle represents the first data phase for the read, and the address phase for the destination write.                                                                                                 |
| 12                                                              | 13                                               | This cycle represents the data phase of the last destination write.                                                                                                                                                                            |
| 13                                                              | 14                                               | The eDMA engine completes the execution of the inner minor loop and prepares to write back the required TCDn fields into the local memory. The TCDn word 7 is read and checked for channel linking or scatter/gather requests.                 |
| 14                                                              | 15                                               | The appropriate fields in the first part of the TCD <i>n</i> are written back into the local memory.                                                                                                                                           |
| 15                                                              | 16                                               | The fields in the second part of the TCD <i>n</i> are written back into the local memory. This cycle coincides with the next channel arbitration cycle start.                                                                                  |
| 16                                                              | 17                                               | The next channel to be activated performs the read of the first part of its TCD from the local memory. This is equivalent to Cycle 4 for the first channel's service request.                                                                  |

Assuming zero wait states on the system bus, DMA requests can be processed every 9 cycles. Assuming an average of the access times associated with internal peripheral bus-to-SRAM (4 cycles) and SRAM-to-internal peripheral bus (5 cycles), DMA requests can be processed every 11.5 cycles (4 + (4+5)/2 + 3). This is the time from Cycle 4 to Cycle x +5. The resulting peak request rate, as a function of the system frequency, is shown in the following table.

Table 20-6. eDMA peak request rate (MReq/sec)

| Cyctom fraguency (MILIT) | Request rate          | Request rate     |
|--------------------------|-----------------------|------------------|
| System frequency (MHz)   | with zero wait states | with wait states |
| 66.6                     | 7.4                   | 5.8              |
| 83.3                     | 9.2                   | 7.2              |
| 100.0                    | 11.1                  | 8.7              |
| 133.3                    | 14.8                  | 11.6             |
| 150.0                    | 16.6                  | 13.0             |

A general formula to compute the peak request rate with overlapping requests is:

$$PEAKreq = freq / [entry + (1 + read_ws) + (1 + write_ws) + exit]$$

where:

Table 20-7. Peak request formula operands

| Operand  | Description                                             |
|----------|---------------------------------------------------------|
| PEAKreq  | Peak request rate                                       |
| freq     | System frequency                                        |
| entry    | Channel startup (4 cycles)                              |
| read_ws  | Wait states seen during the system bus read data phase  |
| write_ws | Wait states seen during the system bus write data phase |
| exit     | Channel shutdown (3 cycles)                             |

# 20.4.4.3 eDMA performance example

Consider a system with the following characteristics:

- Internal SRAM can be accessed with one wait-state when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states viewed from the system bus data phase
- System operates at 150 MHz

For an SRAM to internal peripheral bus transfer,

$$PEAKreq = 150 MHz / [4 + (1 + 1) + (1 + 3) + 3] cycles = 11.5 Mreq/sec$$

For an internal peripheral bus to SRAM transfer,

$$PEAKreq = 150 MHz / [4 + (1 + 2) + (1 + 1) + 3] cycles = 12.5 Mreq/sec$$

Assuming an even distribution of the two transfer types, the average peak request rate would be:

$$PEAKreq = (11.5 Mreq/sec + 12.5 Mreq/sec) / 2 = 12.0 Mreq/sec$$

The minimum number of cycles to perform a single read/write, zero wait states on the system bus, from a cold start where no channel is executing and eDMA is idle are:

- 11 cycles for a software, that is, a TCDn\_CSR[START] bit, request
- 12 cycles for a hardware, that is, an eDMA peripheral request signal, request

Two cycles account for the arbitration pipeline and one extra cycle on the hardware request resulting from the internal registering of the eDMA peripheral request signals. For the peak request rate calculations above, the arbitration and request registering is absorbed in or overlaps the previous executing channel.

### Note

When channel linking or scatter/gather is enabled, a two cycle delay is imposed on the next channel selection and startup. This allows the link channel or the scatter/gather channel to be eligible and considered in the arbitration pool for next channel selection.

# 20.5 Initialization/application information

The following sections discuss initialization of the eDMA and programming considerations.

# 20.5.1 eDMA initialization

To initialize the eDMA:

- 1. Write to the CR if a configuration other than the default is desired.
- 2. Write the channel priority levels to the DCHPRI*n* registers if a configuration other than the default is desired.
- 3. Enable error interrupts in the EEI register if so desired.
- 4. Write the 32-byte TCD for each channel that may request service.

### Initialization/application information

- 5. Enable any hardware service requests via the ERQ register.
- 6. Request channel service via either:
  - Software: setting the TCD*n*\_CSR[START]
  - Hardware: slave device asserting its eDMA peripheral request signal

After any channel requests service, a channel is selected for execution based on the arbitration and priority levels written into the programmer's model. The eDMA engine reads the entire TCD, including the TCD control and status fields, as shown in the following table, for the selected channel into its internal address path module.

As the TCD is read, the first transfer is initiated on the internal bus, unless a configuration error is detected. Transfers from the source, as defined by TCD*n*\_SADDR, to the destination, as defined by TCD*n*\_DADDR, continue until the number of bytes specified by TCD*n*\_NBYTES are transferred.

When the transfer is complete, the eDMA engine's local TCD*n*\_SADDR, TCD*n*\_DADDR, and TCD*n*\_CITER are written back to the main TCD memory and any minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing executes, such as interrupts, major loop channel linking, and scatter/gather operations, if enabled.

| TCDn_CSR field name | Description                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| START               | Control bit to start channel explicitly when using a software initiated DMA service (Automatically cleared by hardware) |
| ACTIVE              | Status bit indicating the channel is currently in execution                                                             |
| DONE                | Status bit indicating major loop completion (cleared by software when using a software initiated DMA service)           |
| D_REQ               | Control bit to disable DMA request at end of major loop completion when using a hardware initiated DMA service          |
| BWC                 | Control bits for throttling bandwidth control of a channel                                                              |
| E_SG                | Control bit to enable scatter-gather feature                                                                            |
| INT_HALF            | Control bit to enable interrupt when major loop is half complete                                                        |
| INT_MAJ             | Control bit to enable interrupt when major loop completes                                                               |

Table 20-8. TCD Control and Status fields

The following figure shows how each DMA request initiates one minor-loop transfer, or iteration, without CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration count (BITER).

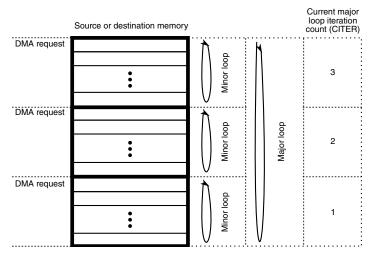



Figure 20-5. Example of multiple loop iterations

The following figure lists the memory array terms and how the TCD settings interrelate.

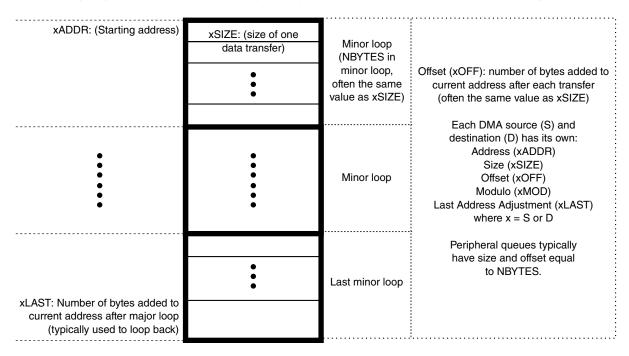



Figure 20-6. Memory array terms

# 20.5.2 Programming errors

The eDMA performs various tests on the transfer control descriptor to verify consistency in the descriptor data. Most programming errors are reported on a per channel basis with the exception of channel priority error (ES[CPE]).

KL28Z Reference Manual, Rev. 4, 06/2016

### Initialization/application information

For all error types other than channel priority error, the channel number causing the error is recorded in the Error Status register (DMAx\_ES). If the error source is not removed before the next activation of the problem channel, the error is detected and recorded again.

If priority levels are not unique, when any channel requests service, a channel priority error is reported. The highest channel priority with an active request is selected, but the lowest numbered channel with that priority is selected by arbitration and executed by the eDMA engine. The hardware service request handshake signals, error interrupts, and error reporting is associated with the selected channel.

### 20.5.3 Arbitration mode considerations

This section discusses arbitration considerations for the eDMA.

### 20.5.3.1 Fixed channel arbitration

In this mode, the channel service request from the highest priority channel is selected to execute.

### 20.5.3.2 Round-robin channel arbitration

Channels are serviced starting with the highest channel number and rotating through to the lowest channel number without regard to the channel priority levels.

# 20.5.4 Performing DMA transfers

This section presents examples on how to perform DMA transfers with the eDMA.

# 20.5.4.1 Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to one (TCDn\_CITER = TCDn\_BITER = 1). The data transfer begins after the channel service request is acknowledged and the channel is selected to execute. After the transfer is complete, the TCDn\_CSR[DONE] bit is set and an interrupt generates if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has a byte wide memory port located at 0x1000. The destination memory has a 32-bit port located at 0x2000. The address offsets are programmed in increments to match the transfer size: one byte for the source and four bytes for the destination. The final source and destination addresses are adjusted to return to their beginning values.

```
TCDn_CITER = TCDn_BITER = 1
TCDn_NBYTES = 16
TCDn_SADDR = 0x1000
TCDn_SOFF = 1
TCDn_ATTR[SSIZE] = 0
TCDn_SLAST = -16
TCDn_DADDR = 0x2000
TCDn_DADDR = 0x2000
TCDn_DATTR[DSIZE] = 2
TCDn_ATTR[DSIZE] = 2
TCDn_CSR[INT_MAJ] = 1
TCDn_CSR[START] = 1 (Should be written last after all other fields have been initialized)
All other TCDn fields = 0
```

### This generates the following event sequence:

- 1. User write to the TCDn\_CSR[START] bit requests channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes:  $TCDn_CSR[DONE] = 0$ ,  $TCDn_CSR[START] = 0$ ,  $TCDn_CSR[ACTIVE] = 1$ .
- 4. eDMA engine reads: channel TCD data from local memory to internal register file.
- 5. The source-to-destination transfers are executed as follows:
  - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
  - b. Write 32-bits to location  $0x2000 \rightarrow$  first iteration of the minor loop.
  - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
  - d. Write 32-bits to location  $0x2004 \rightarrow$  second iteration of the minor loop.
  - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.
  - f. Write 32-bits to location  $0x2008 \rightarrow$  third iteration of the minor loop.
  - g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.

NXP Semiconductors

463

#### Initialization/application information

- h. Write 32-bits to location  $0x200C \rightarrow last$  iteration of the minor loop  $\rightarrow$  major loop complete.
- 6. The eDMA engine writes:  $TCDn\_SADDR = 0x1000$ ,  $TCDn\_DADDR = 0x2000$ ,  $TCDn\_CITER = 1$  ( $TCDn\_BITER$ ).
- 7. The eDMA engine writes:  $TCDn\_CSR[ACTIVE] = 0$ ,  $TCDn\_CSR[DONE] = 1$ , INT[n] = 1.
- 8. The channel retires and the eDMA goes idle or services the next channel.

# 20.5.4.2 Multiple requests

The following example transfers 32 bytes via two hardware requests, but is otherwise the same as the previous example. The only fields that change are the major loop iteration count and the final address offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel's hardware requests are enabled in the ERQ register, the slave device initiates channel service requests.

```
TCDn_CITER = TCDn_BITER = 2
TCDn_SLAST = -32
TCDn_DLAST_SGA = -32
```

This would generate the following sequence of events:

- 1. First hardware, that is, eDMA peripheral, request for channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes:  $TCDn\_CSR[DONE] = 0$ ,  $TCDn\_CSR[START] = 0$ ,  $TCDn\_CSR[ACTIVE] = 1$ .
- 4. eDMA engine reads: channel TCDn data from local memory to internal register file.
- 5. The source to destination transfers are executed as follows:
  - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
  - b. Write 32-bits to location  $0x2000 \rightarrow$  first iteration of the minor loop.
  - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
  - d. Write 32-bits to location  $0x2004 \rightarrow$  second iteration of the minor loop.
  - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.

KL28Z Reference Manual, Rev. 4, 06/2016

- f. Write 32-bits to location  $0x2008 \rightarrow$  third iteration of the minor loop.
- g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.
- h. Write 32-bits to location  $0x200C \rightarrow last$  iteration of the minor loop.
- 6. eDMA engine writes:  $TCDn\_SADDR = 0x1010$ ,  $TCDn\_DADDR = 0x2010$ ,  $TCDn\_CITER = 1$ .
- 7. eDMA engine writes:  $TCDn_CSR[ACTIVE] = 0$ .
- 8. The channel retires → one iteration of the major loop. The eDMA goes idle or services the next channel.
- 9. Second hardware, that is, eDMA peripheral, requests channel service.
- 10. The channel is selected by arbitration for servicing.
- 11. eDMA engine writes:  $TCDn\_CSR[DONE] = 0$ ,  $TCDn\_CSR[START] = 0$ ,  $TCDn\_CSR[ACTIVE] = 1$ .
- 12. eDMA engine reads: channel TCD data from local memory to internal register file.
- 13. The source to destination transfers are executed as follows:
  - a. Read byte from location 0x1010, read byte from location 0x1011, read byte from 0x1012, read byte from 0x1013.
  - b. Write 32-bits to location  $0x2010 \rightarrow$  first iteration of the minor loop.
  - c. Read byte from location 0x1014, read byte from location 0x1015, read byte from 0x1016, read byte from 0x1017.
  - d. Write 32-bits to location  $0x2014 \rightarrow$  second iteration of the minor loop.
  - e. Read byte from location 0x1018, read byte from location 0x1019, read byte from 0x101A, read byte from 0x101B.
  - f. Write 32-bits to location  $0x2018 \rightarrow$  third iteration of the minor loop.
  - g. Read byte from location 0x101C, read byte from location 0x101D, read byte from 0x101E, read byte from 0x101F.
  - h. Write 32-bits to location  $0x201C \rightarrow last$  iteration of the minor loop  $\rightarrow$  major loop complete.
- 14. eDMA engine writes:  $TCDn_SADDR = 0x1000$ ,  $TCDn_DADDR = 0x2000$ ,  $TCDn_CITER = 2$  ( $TCDn_BITER$ ).

### Initialization/application information

- 15. eDMA engine writes:  $TCDn \ CSR[ACTIVE] = 0$ ,  $TCDn \ CSR[DONE] = 1$ , INT[n] =
- 16. The channel retires  $\rightarrow$  major loop complete. The eDMA goes idle or services the next channel.

#### Using the modulo feature 20.5.4.3

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size of the queue is a power of 2. MOD is a 5-bit field for the source and destination in the TCD, and it specifies which lower address bits increment from their original value after the address+offset calculation. All upper address bits remain the same as in the original value. A setting of 0 for this field disables the modulo feature.

The following table shows how the transfer addresses are specified based on the setting of the MOD field. Here a circular buffer is created where the address wraps to the original value while the 28 upper address bits (0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the offset is set to 4 bytes and the MOD field is set to 4, allowing for a 2<sup>4</sup> byte (16-byte) size queue.

**Transfer Number Address** 1 0x12345670 2 0x12345674 3 0x12345678 4 0x1234567C 5 0x12345670 6 0x12345674

Table 20-9. Modulo example

#### Monitoring transfer descriptor status 20.5.5

This section discusses how to monitor eDMA status.

#### **Testing for minor loop completion** 20.5.5.1

There are two methods to test for minor loop completion when using software initiated service requests. The first is to read the TCDn\_CITER field and test for a change. Another method may be extracted from the sequence shown below. The second method is to test the  $TCDn\_CSR[START]$  bit and the  $TCDn\_CSR[ACTIVE]$  bit. The minor-loop-complete condition is indicated by both bits reading zero after the  $TCDn\_CSR[START]$  was set. Polling the  $TCDn\_CSR[ACTIVE]$  bit may be inconclusive, because the active status may be missed if the channel execution is short in duration.

|                 | 1 4 41          | C 11 '       | C             | Cı         | 1 1 1              |
|-----------------|-----------------|--------------|---------------|------------|--------------------|
| The I(I) status | hits execute th | ie tallawing | seallence for | a soffware | activated channel  |
| The Ted status  | ons execute th  | ic rono wing | sequence for  | a sortware | activated channel: |

| Stage |       | TCDn_CSR bits |      | State                                            |
|-------|-------|---------------|------|--------------------------------------------------|
| Stage | START | ACTIVE        | DONE | State                                            |
| 1     | 1     | 0             | 0    | Channel service request via software             |
| 2     | 0     | 1             | 0    | Channel is executing                             |
| 3a    | 0     | 0             | 0    | Channel has completed the minor loop and is idle |
| 3b    | 0     | 0             | 1    | Channel has completed the major loop and is idle |

The best method to test for minor-loop completion when using hardware, that is, peripheral, initiated service requests is to read the TCD*n*\_CITER field and test for a change. The hardware request and acknowledge handshake signals are not visible in the programmer's model.

The TCD status bits execute the following sequence for a hardware-activated channel:

| Stage | TCDn_CSR bits |        |      | State                                                              |
|-------|---------------|--------|------|--------------------------------------------------------------------|
|       | START         | ACTIVE | DONE | - State                                                            |
| 1     | 0             | 0      | 0    | Channel service request via hardware (peripheral request asserted) |
| 2     | 0             | 1      | 0    | Channel is executing                                               |
| 3a    | 0             | 0      | 0    | Channel has completed the minor loop and is idle                   |
| 3b    | 0             | 0      | 1    | Channel has completed the major loop and is idle                   |

For both activation types, the major-loop-complete status is explicitly indicated via the  $TCDn\_CSR[DONE]$  bit.

The  $TCDn\_CSR[START]$  bit is cleared automatically when the channel begins execution regardless of how the channel activates.

# 20.5.5.2 Reading the transfer descriptors of active channels

The eDMA reads back the true TCD*n*\_SADDR, TCD*n*\_DADDR, and TCD*n*\_NBYTES values if read while a channel executes. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA engine currently uses in its internal register file and not the values in the TCD local memory for that channel. The addresses, SADDR and

### Initialization/application information

DADDR, and NBYTES, which decrement to zero as the transfer progresses, can give an indication of the progress of the transfer. All other values are read back from the TCD local memory.

# 20.5.5.3 Checking channel preemption status

Preemption is available only when fixed arbitration is selected as the channel arbitration mode. A preemptive situation is one in which a preempt-enabled channel runs and a higher priority request becomes active. When the eDMA engine is not operating in fixed channel arbitration mode, the determination of the actively running relative priority outstanding requests become undefined. Channel priorities are treated as equal, that is, constantly rotating, when Round-Robin Arbitration mode is selected.

The TCD*n*\_CSR[ACTIVE] bit for the preempted channel remains asserted throughout the preemption. The preempted channel is temporarily suspended while the preempting channel executes one major loop iteration. If two TCD*n*\_CSR[ACTIVE] bits are set simultaneously in the global TCD map, a higher priority channel is actively preempting a lower priority channel.

# 20.5.6 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the TCD*n*\_CSR[START] bit of another channel (or itself), therefore initiating a service request for that channel. When properly enabled, the EDMA engine automatically performs this operation at the major or minor loop completion.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major loop). The TCDn\_CITER[E\_LINK] field determines whether a minor loop link is requested. When enabled, the channel link is made after each iteration of the major loop except for the last. When the major loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be made. For example, the initial fields of:

```
TCDn_CITER[E_LINK] = 1
TCDn_CITER[LINKCH] = 0xC
TCDn_CITER[CITER] value = 0x4
TCDn_CSR[MAJOR_E_LINK] = 1
TCDn_CSR[MAJOR_LINKCH] = 0x7
```

#### executes as:

1. Minor loop done → set TCD12\_CSR[START] bit

469

- 2. Minor loop done  $\rightarrow$  set TCD12\_CSR[START] bit
- 3. Minor loop done  $\rightarrow$  set TCD12\_CSR[START] bit
- 4. Minor loop done, major loop done→ set TCD7\_CSR[START] bit

When minor loop linking is enabled (TCDn\_CITER[E\_LINK] = 1), the TCDn\_CITER[CITER] field uses a nine bit vector to form the current iteration count. When minor loop linking is disabled (TCDn\_CITER[E\_LINK] = 0), the TCDn\_CITER[CITER] field uses a 15-bit vector to form the current iteration count. The bits associated with the TCDn\_CITER[LINKCH] field are concatenated onto the CITER value to increase the range of the CITER.

#### **Note**

The TCD*n*\_CITER[E\_LINK] bit and the TCD*n*\_BITER[E\_LINK] bit must equal or a configuration error is reported. The CITER and BITER vector widths must be equal to calculate the major loop, half-way done interrupt point.

The following table summarizes how a DMA channel can link to another DMA channel, i.e, use another channel's TCD, at the end of a loop.

| Desired Link<br>Behavior     | TCD Control Field Name | Description                                                                    |
|------------------------------|------------------------|--------------------------------------------------------------------------------|
| Link at end of<br>Minor Loop | CITER[E_LINK]          | Enable channel-to-channel linking on minor loop completion (current iteration) |
| инног соор                   | CITER[LINKCH]          | Link channel number when linking at end of minor loop (current iteration)      |
| Link at end of               | CSR[MAJOR_E_LINK]      | Enable channel-to-channel linking on major loop completion                     |
| Major Loop                   | CSR[MAJOR_LINKCH]      | Link channel number when linking at end of major loop                          |

**Table 20-10. Channel Linking Parameters** 

# 20.5.7 Dynamic programming

This section provides recommended methods to change the programming model during channel execution.

# 20.5.7.1 Dynamically changing the channel priority

The following two options are recommended for dynamically changing channel priority levels:

#### Initialization/application information

- 1. Switch to Round-Robin Channel Arbitration mode, change the channel priorities, then switch back to Fixed Arbitration mode,
- 2. Disable all the channels, change the channel priorities, then enable the appropriate channels.

# 20.5.7.2 Dynamic channel linking

Dynamic channel linking is the process of setting the TCD.major.e\_link bit during channel execution (see the diagram in TCD structure). This bit is read from the TCD local memory at the end of channel execution, thus allowing the user to enable the feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic channel link by enabling the TCD.major.e\_link bit at the same time the eDMA engine is retiring the channel. The TCD.major.e\_link would be set in the programmer's model, but it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link request.

- 1. Write 1 to the TCD.major.e\_link bit.
- 2. Read back the TCD.major.e\_link bit.
- 3. Test the TCD.major.e\_link request status:
  - If TCD.major.e\_link = 1, the dynamic link attempt was successful.
  - If TCD.major.e\_link = 0, the attempted dynamic link did not succeed (the channel was already retiring).

For this request, the TCD local memory controller forces the TCD.major.e\_link bit to zero on any writes to a channel's TCD.word7 after that channel's TCD.done bit is set, indicating the major loop is complete.

#### NOTE

The user must clear the TCD.done bit before writing the TCD.major.e\_link bit. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

# 20.5.7.3 Dynamic scatter/gather

Scatter/gather is the process of automatically loading a new TCD into a channel. It allows a DMA channel to use multiple TCDs; this enables a DMA channel to scatter the DMA data to multiple destinations or gather it from multiple sources. When scatter/gather is enabled and the channel has finished its major loop, a new TCD is fetched from system memory and loaded into that channel's descriptor location in eDMA programmer's model, thus replacing the current descriptor.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic scatter/gather operation by enabling the TCD.e\_sg bit at the same time the eDMA engine is retiring the channel. The TCD.e\_sg would be set in the programmer's model, but it would be unclear whether the actual scatter/gather request was honored before the channel retired.

Two methods for this coherency model are shown in the following subsections. Method 1 has the advantage of reading the major.linkch field and the e\_sg bit with a single read. For both dynamic channel linking and scatter/gather requests, the TCD local memory controller forces the TCD.major.e\_link and TCD.e\_sg bits to zero on any writes to a channel's TCD.word7 if that channel's TCD.done bit is set indicating the major loop is complete.

#### NOTE

The user must clear the TCD.done bit before writing the TCD.major.e\_link or TCD.e\_sg bits. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

## 20.5.7.3.1 Method 1 (channel not using major loop channel linking)

For a channel not using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request.

When the TCD.major.e\_link bit is zero, the TCD.major.linkch field is not used by the eDMA. In this case, the TCD.major.linkch bits may be used for other purposes. This method uses the TCD.major.linkch field as a TCD indentification (ID).

- 1. When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for each TCD associated with a channel using dynamic scatter/gather.
- 2. Write 1b to the TCD.d\_req bit.

#### Initialization/application information

Should a dynamic scatter/gather attempt fail, setting the TCD.d\_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 3. Write the TCD.dlast\_sga field with the scatter/gather address.
- 4. Write 1b to the TCD.e\_sg bit.
- 5. Read back the 16 bit TCD control/status field.
- 6. Test the TCD.e\_sg request status and TCD.major.linkch value:

If  $e_sg = 1b$ , the dynamic link attempt was successful.

If e\_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did not succeed (the channel was already retiring).

If e\_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was successful (the new TCD's e\_sg value cleared the e\_sg bit).

## 20.5.7.3.2 Method 2 (channel using major loop channel linking)

For a channel using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request. This method uses the TCD.dlast\_sga field as a TCD indentification (ID).

1. Write 1b to the TCD.d\_req bit.

Should a dynamic scatter/gather attempt fail, setting the d\_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 2. Write the TCD.dlast\_sga field with the scatter/gather address.
- 3. Write 1b to the TCD.e\_sg bit.
- 4. Read back the TCD.e\_sg bit.
- 5. Test the TCD.e\_sg request status:

If e sg = 1b, the dynamic link attempt was successful.

If e\_sg = 0b, read the 32 bit TCD dlast\_sga field.

If e\_sg = 0b and the dlast\_sga did not change, the attempted dynamic link did not succeed (the channel was already retiring).

#### **Chapter 20 Enhanced Direct Memory Access (eDMA)**

If e\_sg = 0b and the dlast\_sga changed, the dynamic link attempt was successful (the new TCD's e\_sg value cleared the e\_sg bit).

KL28Z Reference Manual, Rev. 4, 06/2016

Initialization/application information

KL28Z Reference Manual, Rev. 4, 06/2016

# **Chapter 21 Smart Card Interface Module (EMV SIM)**

### 21.1 Introduction

The Euro, MasterCard, Visa Subscriber Identification Module (EMV SIM) is designed to facilitate communication to Smart Cards compatible to the EMV ver4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 Standard.

#### **21.1.1 Features**

The EMV SIM module supports the following features:

- Supports Smart Cards based on the EMV Standard v4.3 and ISO 7816-3 standard
- Independent clock for SIM logic (transmitter + receiver) and independent clock for register read-write interface
- 4 byte deep FIFO for transmitter and receiver
- Automatic NACK generation on parity error and receiver FIFO overflow error
- Support for both Inverse and Direct conventions
- Re-transmission of byte upon Smart Card NACK request with programmable threshold of re-transmissions
- Auto detection of Initial Character in receiver and setting of data format (inverse or direct)
- NACK detection in receiver
- Independent timers to measure character wait time, block wait time and block guard time
- Two general purpose counters available for use by software application with programmable clock selection for the counters
- DMA support available to transfer data to/from FIFOs. Programmable option available to select interrupt or DMA feature

#### **Block Diagram**

- Programmable Prescaler to generate the desired frequency for Card Clock and Baud Rate Divisor to generate the internal ETU clocks for transmitter and receiver for any F/D ratio
- Deep sleep wake-up via Smart Card presence detect interrupt
- Manual control of all Smart Card interface signals
- Automatic power down of port logic on Smart Card presence detect
- Support for 8-bit LRC and 16-bit CRC generation for bytes sent out from transmitter and checking incoming message checksum for receiver

# 21.2 Block Diagram

Figure below shows the block diagram for the EMV SIM module.

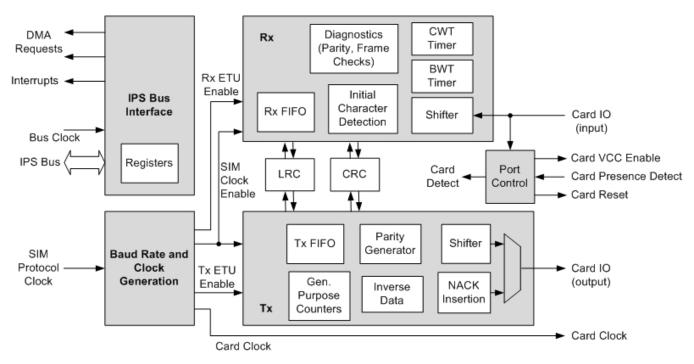



Figure 21-1. EMV SIM Block Diagram

#### 21.3 **Design Overview**

The EMV SIM is designed to be compliant to the EMV ICC Specifications ver. 4.3 (dated Nov 2011) and the ISO-7816-3 standard.

KL28Z Reference Manual, Rev. 4, 06/2016 476 NXP Semiconductors

477

The EMV SIM module is a block that is configured via the device's peripheral bus interface. The module has 32-bit aligned memory mapped registers that are used to configure and control the operations of the module. The software can write the transmit bytes or read the received bytes using either interrupt operation or DMA operation. The module can generate necessary DMA requests for the operation.

The module interfaces to the external card (Smart Card) via card clock, card reset, card  $V_{CC}$  enable and IO pins. The transmitter output from the module and the receiver input to the module are connected to the same IO pin and used in the open drain configuration. A pull-up resistor must be connected to the IO pin on board to allow proper functioning.

The key functional blocks in the module are clocking, transmitter and receiver which control the interactions with the Smart Card. These blocks function on a clock that is different and asynchronous to the register read/write clock. In order for the transmitter and receiver to function properly, the respective configuration must be done before enabling the transmitter or receiver.

The clocking module generates the card clock (output to Smart Card), and the internal clocks for the transmitter and receiver. The internal clocks control the ETU period and the sampling and driving of data on the IO line. The receive operation uses an internal over-sampled clock that oversamples the received input at 16x times the ETU rate. The prescaler generates the card clock in the range of 1 to 5 MHz with near 50% duty cycle and the baud divider generates the internal ETU clocks for transmitter and receiver.

The transmitter comprises of a 4-byte deep FIFO to store the bytes to be sent to the Smart Card. These bytes are sent to the Smart Card serially by the transmitter. The data format (i.e. inverse or direct conversion) is supported and the byte is converted into the right data format before being shifted out serially. The transmitter also supports retransmission of the current byte on the reception of a NACK. The transmitter automatically inserts NACK when the receiver indicates a parity or FIFO overflow error, if configured to do so by software. The transmitter is not required to be enabled for this. The transmitter also includes timer to insert the programmable guard time between the transmitter bytes and general purpose timers to allow software performs certain measurements. The status of the transmitter operation is intimated to software via maskable interrupts.

The receiver comprises of a 4-byte deep FIFO to store the correctly received bytes from the Smart Card. Software must ensure that it reads out the data from FIFO to prevent any overflow when more bytes are sent from the card. The receiver can be configured to detect the initial character. When configured to do so, the data format (direct or inverse convention) is also determined by the receiver and appropriate bit is set in the register map. Internal timers in the receiver measure the various wait times (Character, Block and Guard). On reception of a byte, the receiver checks the byte for Parity Error (in T=0 mode) and Framing Error. It can then direct the transmitter to insert NACK on parity error detection. For a block of bytes received, the receiver checks for LRC or CRC errors

#### **Signal Description**

(in T=1 mode). Other errors are stored as status for software to be aware of their occurrence. The status of the receiver operation is intimated to software via maskable interrupts.

In addition to the above blocks, the module also contains the 8-bit LRC and the 16-bit CRC blocks that are common to the transmitter and receiver. Both transmitter and receiver can use the LRC and CRC blocks and can insert the LRC or CRC into the byte stream or check the validity of the input stream using the LRC and CRC values received. Since transmit and receive operations are mutually exclusive, common LRC and CRC blocks for the transmitter and receiver can be used.

The Smart Card interface signals, except IO, which is controlled by the transmitter and receiver; are generated by the port control block which controls the assertion and deassertion of the clock, reset and VCC signals to Smart Card. It can do so manually (software needs to explicitly write the necessary bits) or using auto power down wherein the module can itself power down the Smart Card when configured to do so by software. The port control block can also detect the Smart Card presence and generate necessary interrupts to indicate the same.

# 21.4 Signal Description

The following table shows the user-accessible signals available on EMV SIM. See the chip-level specification to find out which signals are actually connected to the external pins.

Signal **Description** I/O Card Clock. Clock to Smart Card. EMVSIM\_SCLK 0 EMVSIM\_SRST Card Reset. Reset signal to Smart Card 0 EMVSIM\_VCC\_EN Card Power Enable. This signal controls 0 the power to Smart Card EMVSIM\_IO Card Data Line. Bi-directional data line. I/O EMVSIM\_PD Card Presence Detect. Signal indicating presence or removal of card

Table 21-1. EMV SIM Signal Description

#### 21.5 **Memory Map and Registers**

The memory map comprises of 32-bit aligned registers which can be accessed via 8-bit, 16-bit, or 32-bit accesses. Write access to reserved locations will generate transfer error. Read access to reserved locations will also generate transfer error and the read data bus will show all 0s.

The module will not check for correctness of programmed values in the registers and software must ensure that correct values are being written.

#### **EMVSIM** memory map

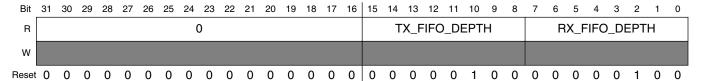
| Absolute<br>address<br>(hex) | Register name                                                         | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|-----------------------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4004_E000                    | Version ID Register (EMVSIM0_VER_ID)                                  | 32                 | R                        | 0000_0000h  | 21.5.1/480       |
| 4004_E004                    | Parameter Register (EMVSIM0_PARAM)                                    | 32                 | R                        | 0000_0404h  | 21.5.2/480       |
| 4004_E008                    | Clock Configuration Register (EMVSIM0_CLKCFG)                         | 32                 | R/W                      | 0000_0000h  | 21.5.3/481       |
| 4004_E00C                    | Baud Rate Divisor Register (EMVSIM0_DIVISOR)                          | 32                 | R/W                      | 0000_0174h  | 21.5.4/482       |
| 4004_E010                    | Control Register (EMVSIM0_CTRL)                                       | 32                 | R/W                      | 0100_0006h  | 21.5.5/483       |
| 4004_E014                    | Interrupt Mask Register (EMVSIM0_INT_MASK)                            | 32                 | R/W                      | 0000_FFFFh  | 21.5.6/487       |
| 4004_E018                    | Receiver Threshold Register (EMVSIM0_RX_THD)                          | 32                 | R/W                      | 0000_0001h  | 21.5.7/490       |
| 4004_E01C                    | Transmitter Threshold Register (EMVSIM0_TX_THD)                       | 32                 | R/W                      | 0000_000Fh  | 21.5.8/490       |
| 4004_E020                    | Receive Status Register (EMVSIM0_RX_STATUS)                           | 32                 | w1c                      | 0000_0000h  | 21.5.9/492       |
| 4004_E024                    | Transmitter Status Register (EMVSIM0_TX_STATUS)                       | 32                 | w1c                      | 0000_00B8h  | 21.5.10/495      |
| 4004_E028                    | Port Control and Status Register (EMVSIM0_PCSR)                       | 32                 | R/W                      | 0100_0000h  | 21.5.11/498      |
| 4004_E02C                    | Receive Data Read Buffer (EMVSIM0_RX_BUF)                             | 32                 | R                        | 0000_0000h  | 21.5.12/500      |
| 4004_E030                    | Transmit Data Buffer (EMVSIM0_TX_BUF)                                 | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 21.5.13/501      |
| 4004_E034                    | Transmitter Guard ETU Value Register (EMVSIM0_TX_GETU)                | 32                 | R/W                      | 0000_0000h  | 21.5.14/501      |
| 4004_E038                    | Character Wait Time Value Register (EMVSIM0_CWT_VAL)                  | 32                 | R/W                      | 0000_FFFFh  | 21.5.15/502      |
| 4004_E03C                    | Block Wait Time Value Register (EMVSIM0_BWT_VAL)                      | 32                 | R/W                      | FFFF_FFFFh  | 21.5.16/502      |
| 4004_E040                    | Block Guard Time Value Register (EMVSIM0_BGT_VAL)                     | 32                 | R/W                      | 0000_0000h  | 21.5.17/503      |
| 4004_E044                    | General Purpose Counter 0 Timeout Value Register (EMVSIM0_GPCNT0_VAL) | 32                 | R/W                      | 0000_FFFFh  | 21.5.18/503      |
| 4004_E048                    | General Purpose Counter 1 Timeout Value (EMVSIM0_GPCNT1_VAL)          | 32                 | R/W                      | 0000_FFFFh  | 21.5.19/504      |

# 21.5.1 Version ID Register (EMVSIMx\_VER\_ID)

Version ID for the IP. It corresponds to the version of IP being used.

Address: 4004\_E000h base + 0h offset = 4004\_E000h




#### EMVSIMx\_VER\_ID field descriptions

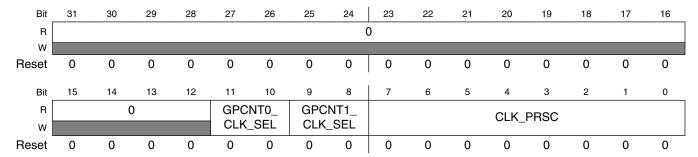
| Field | Description                             |
|-------|-----------------------------------------|
| VER   | Version ID of the module                |
|       | EMV SIM Version Number used on the chip |
|       | 31:16 - Major Version (example: 01.00)  |
|       | 15:0 - Minor Version (example: 01.00)   |

# 21.5.2 Parameter Register (EMVSIMx\_PARAM)

This register provides details on the parameter settings that were used while including this module in the chip.

Address: 4004\_E000h base + 4h offset = 4004\_E004h




#### EMVSIMx\_PARAM field descriptions

| Field                     | Description                                                                          |
|---------------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved         | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>TX_FIFO_<br>DEPTH | Transmit FIFO Depth  Value of parameter for Transmit FIFO Depth (in Bytes)           |
| RX_FIFO_<br>DEPTH         | Receive FIFO Depth  Value of parameter for Receive FIFO Depth (in Bytes)             |

# 21.5.3 Clock Configuration Register (EMVSIMx\_CLKCFG)

This register provides configuration details to enable the right clock frequency of clocks used by EMV SIM module.



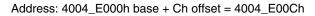


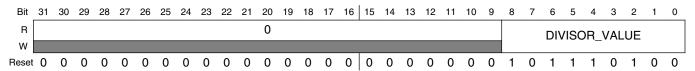
#### EMVSIMx\_CLKCFG field descriptions

| Field                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31–12<br>Reserved         | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 11–10                     | General Purpose Counter 0 Clock Select                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| GPCNT0_CLK_<br>SEL        | Selects which clock source is used by EMV SIM Module general purpose counter 0. The only way to res the counter is to set these bits to zero. The counter will begin counting as soon as the clock input is selected and the clocks are active. These input clocks are enabled through other register bits of the EMV SIM module (KILL_CLOCK, RCV_EN, and XMT_EN). Counter is active while RCV_EN or XMT_EN are set.                                           |  |  |
|                           | 00 Disabled / Reset (default)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | 01 Card Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | 10 Receive Clock                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | 11 ETU Clock (transmit clock)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 9–8<br>GPCNT1_CLK_<br>SEL | General Purpose Counter 1 Clock Select  Selects which clock source is used by EMV SIM Module general purpose counter 1. The only way to reset the counter is to set these bits to zero. The counter will begin counting as soon as the clock input is selected and the clocks are active. These input clocks are enabled through other register bits of the EMV SIM module (KILL_CLOCK, RCV_EN, and XMT_EN). Counter is active while RCV_EN or XMT_EN are set. |  |  |
|                           | 00 Disabled / Reset (default)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | 01 Card Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | 10 Receive Clock                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | 11 ETU Clock (transmit clock)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| CLK_PRSC                  | Clock Prescaler Value                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                           | The value written to this register will determine the desired card clock frequency. The Card Clock frequency is the EMV SIM Protocol (or logic) clock divided by this prescaler value. The prescaler value should be updated only when card clock is disabled and transmitter and receiver are not operational.                                                                                                                                                |  |  |
|                           | 0, 1 Max Divide value used (default 0 is used)                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

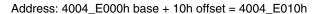

#### **Memory Map and Registers**

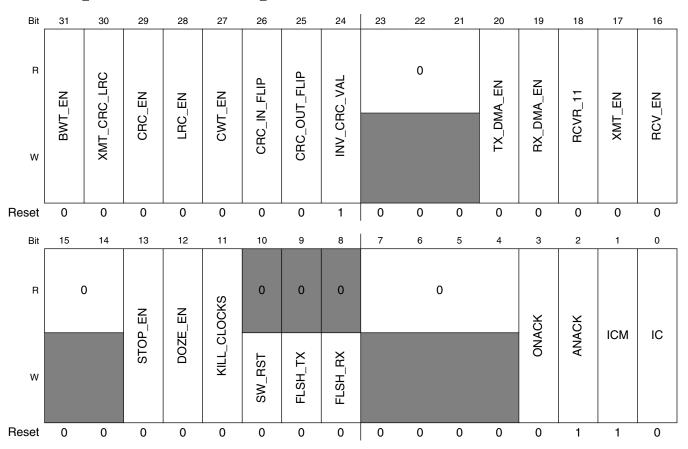

## EMVSIMx\_CLKCFG field descriptions (continued)

| Field |    | Description                                  |
|-------|----|----------------------------------------------|
|       | 2  | Divide by 2                                  |
|       | >2 | Non-zero value will divide clock accordingly |

# 21.5.4 Baud Rate Divisor Register (EMVSIMx\_DIVISOR)

This regiter configures the divisor value to generate the baud clock which will drive the card clock and also generate the transmit and receive clocks and respective ETUs.




#### EMVSIMx\_DIVISOR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–9              | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                      |  |
| DIVISOR_<br>VALUE | Divisor (F/D) Value                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                   | The value written to this register will be used to generate the ETU bit period that will be used by the transmitter and receiver. The divisor value is the integer result of F/D value; where F and D are the clock rate conversion integer and baud rate adjustment integer, respectively, that required for the desired operation. The value in this register can be changed when no transaction is active with the smart card. |  |
|                   | When programming this field, the fractional part of F/D should be rounded off the nearest integer.                                                                                                                                                                                                                                                                                                                                |  |
|                   | 0 - 4 Invalid. As per ISO 7816 specification, minimum value of F/D is 5                                                                                                                                                                                                                                                                                                                                                           |  |
|                   | 372 Divisor value for F = 372 and D = 1 (default)                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                   | others Integer value of result of F/D                                                                                                                                                                                                                                                                                                                                                                                             |  |

#### 21.5.5 Control Register (EMVSIMx\_CTRL)





## EMVSIMx\_CTRL field descriptions

| Field       | Description                                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31          | Block Wait Time Counter Enable                                                                                                                               |
| BWT_EN      | Writing a '1' to this bit will enable the BWT and BGT functions. The BWT and BGT functions can then be individually selected using the interrupt mask.       |
|             | 0 Disable BWT, BGT Counters (default)                                                                                                                        |
|             | 1 Enable BWT, BGT Counters                                                                                                                                   |
| 30          | Transmit CRC or LRC Enable                                                                                                                                   |
| XMT_CRC_LRC | This bit specifies whether or not to transmit the redundancy checking data (LRC or CRC) at the end of a transmission (that is, when the FIFO becomes empty). |
|             | 0 No CRC or LRC value is transmitted (default)                                                                                                               |
|             | 1 Transmit LRC or CRC info when FIFO empties (whichever is enabled)                                                                                          |
| 29          | CRC Enable                                                                                                                                                   |
| CRC_EN      |                                                                                                                                                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 483 **NXP Semiconductors** 

## **Memory Map and Registers**

# EMVSIMx\_CTRL field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | This bit enables the calculation of the 16-bit CRC value for both receiver and transmitter. The result of the calculation is continuously compared to the expected remainder and reflected in the CRC_OK bit in the RX_STATUS register. Clearing this bit resets the current CRC residual value in the EMV SIM hardware.         |
|                   | 0 16-bit Cyclic Redundancy Checking disabled (default)                                                                                                                                                                                                                                                                           |
|                   | 1 16-bit Cyclic Redundancy Checking enabled                                                                                                                                                                                                                                                                                      |
| 28<br>LRC_EN      | LRC Enable  This bit enables the calculation of the 8-bit LRC value for both receiver and transmitter. The result of the calculation is continuously compared to zero and reflected in the LRC_OK bit in the RX_STATUS register. Clearing this bit resets the current LRC value in the EMV SIM hardware.                         |
|                   | 8-bit Linear Redundancy Checking disabled (default)     8-bit Linear Redundancy Checking enabled                                                                                                                                                                                                                                 |
| 07                |                                                                                                                                                                                                                                                                                                                                  |
| 27<br>CWT_EN      | Character Wait Time Counter Enable  Enables the character wait time counter. Clearing this bit resets the counter to zero.                                                                                                                                                                                                       |
|                   | Character Wait time Counter is disabled (default)                                                                                                                                                                                                                                                                                |
|                   | 1 Character Wait time counter is enabled                                                                                                                                                                                                                                                                                         |
| 26<br>CRC_IN_FLIP | CRC Input Byte's Bit Reversal or Flip Control                                                                                                                                                                                                                                                                                    |
|                   | This bit control whether the bits in the CRC input byte will be reversed before CRC calculation or not. When set to '1', the bits within the input byte for CRC will change from 7:0 to 0:7. For CCITT CRC calculation, this bit should be set to '1'. For any other CRC using same polynomial, this bit can be set accordingly. |
|                   | 0 Bits in the input byte will not be reversed (i.e. 7:0 will remain 7:0) before the CRC calculation (default) 1 Bits in the input byte will be reversed (i.e. 7:0 will become 0:7) before CRC calculation                                                                                                                        |
| 25                | CRC Output Value Bit Reversal or Flip                                                                                                                                                                                                                                                                                            |
| CRC_OUT_FLIP      | This bit control whether the bits in the CRC output bytes will be reversed or not. When set to '1', the bits within the two bytes for CRC Output will change from 15:0 to {8:15,0:7}. For CCITT CRC calculation, this bit should be set to '1'. For any other CRC using same polynomial, this bit can be set accordingly.        |
|                   | <ul> <li>Bits within the CRC output bytes will not be reversed i.e. 15:0 will remain 15:0 (default)</li> <li>Bits within the CRC output bytes will be reversed i.e. 15:0 will become {8:15,0:7}</li> </ul>                                                                                                                       |
| 24<br>INV_CRC_VAL | Invert bits in the CRC Output Value  This bit control whether the bits within the CRC Output value will be inverted (1's complement) or not. For CCITT CRC calculation, this bit should be set to '1'. For any other CRC using same polynomial, this bit can be set accordingly.                                                 |
|                   | Bits in CRC Output value will not be inverted.     Bits in CRC Output value will be inverted. (default)                                                                                                                                                                                                                          |
| 23–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                             |
| 20<br>TX_DMA_EN   | Transmit DMA Enable  Enables assertion of DMA write request when Transmit FIFO is empty. Request is held asserted till  Transmit FIFO reaches the programmed data threshold value. Transmit Data Threshold Interrupt will not be generated when this bit is asserted.                                                            |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# EMVSIMx\_CTRL field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 0 No DMA Write Request asserted for Transmitter (default)                                                                                                                                                                                                    |
|                   | 1 DMA Write Request asserted for Transmitter                                                                                                                                                                                                                 |
| 19                | Receive DMA Enable                                                                                                                                                                                                                                           |
| RX_DMA_EN         | Enables assertion of DMA read request when Receive FIFO reaches the programmed data threshold value. Request is held asserted till all the programmed threshold bytes are read out. Receiver Data Interrupt will not be generated when this bit is asserted. |
|                   | No DMA Read Request asserted for Receiver (default)     DMA Read Request asserted for Receiver                                                                                                                                                               |
| 18                | Receiver 11 ETU Mode Enable                                                                                                                                                                                                                                  |
| RCVR_11           | Used to configure the EMV SIM module receiver for 11 ETU operation (that is, 1 Stop bit). This bit is provided for support of T=1 cards.                                                                                                                     |
|                   | 0 Receiver configured for 12 ETU operation mode (default)                                                                                                                                                                                                    |
|                   | 1 Receiver configured for 11 ETU operation mode                                                                                                                                                                                                              |
| 17                | Transmitter Enable                                                                                                                                                                                                                                           |
| XMT_EN            | Used to enable/disable the EMV SIM transmitter block. It can be set to 0 during the auto power down sequence.                                                                                                                                                |
|                   | Note: Setting this bit (transition from 0 to 1) will reset the CRC and LRC values.                                                                                                                                                                           |
|                   | 0 EMV SIM Transmitter disabled (default) 1 EMV SIM Transmitter enabled                                                                                                                                                                                       |
| 16                | Receiver Enable                                                                                                                                                                                                                                              |
| RCV_EN            | Used to enable/disable the EMV SIM receiver block. Once the transmitter has completed its operation, the software must enable the receiver using this bit. It can be set to 0 during the auto power down sequence.                                           |
|                   | EMV SIM Receiver disabled (default)     EMV SIM Receiver enabled                                                                                                                                                                                             |
| 15–14             | This field is reserved.                                                                                                                                                                                                                                      |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                 |
| 13<br>STOP_EN     | STOP Enable                                                                                                                                                                                                                                                  |
|                   | Used to configure the operation of the EMV SIM module when a processor STOP instruction is executed. This bit is added to provide support for Smart Cards that do not allow the Smart Card clock to be stopped while power is applied.                       |
|                   | 0 STOP instruction shuts down all EMV SIM clocks (default)                                                                                                                                                                                                   |
|                   | 1 STOP instruction shuts down all clocks except for the Smart Card Clock (SCK) (clock provided to Smart Card)                                                                                                                                                |
| 12                | Doze Enable                                                                                                                                                                                                                                                  |
| DOZE_EN           | Used to configure the operation of the EMV SIM module when a processor DOZE instruction is executed.                                                                                                                                                         |
|                   | DOZE instruction will gate all internal EMV SIM clocks as well as the Smart Card clock when the transmit FIFO is empty (default)                                                                                                                             |
|                   | 1 DOZE instruction has no effect on EMV SIM module                                                                                                                                                                                                           |
| 11<br>KILL_CLOCKS | Kill all internal clocks                                                                                                                                                                                                                                     |

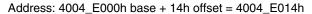
Table continues on the next page...

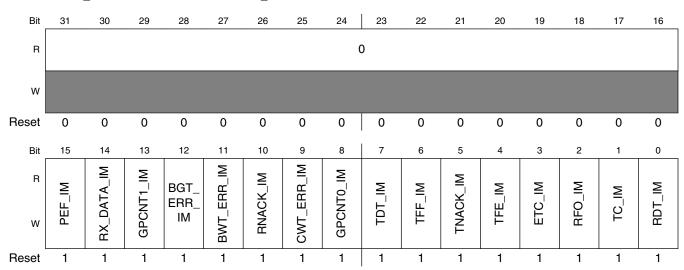
KL28Z Reference Manual, Rev. 4, 06/2016

## **Memory Map and Registers**

# EMVSIMx\_CTRL field descriptions (continued)

| Field           | Description                                                                                                                                                                         |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Used to enable/disable the clock input to the EMV SIM module. This bit will gate all clocks including the Smart Card clock regardless of the state of the STOP bit described above. |
|                 | Note: This bit will have no effect on the register read write clock. Only EMV SIM logic clock is gated.                                                                             |
|                 | 0 EMV SIM input clock enabled (default)                                                                                                                                             |
|                 | 1 EMV SIM input clock is disabled                                                                                                                                                   |
| 10<br>SW_RST    | Software Reset Bit                                                                                                                                                                  |
| OW_1101         | Used to reset the entire EMV SIM module. This acts the same as a hardware reset for the EMV SIM module. This bit is self-clearing and always reads 0.                               |
|                 | <b>Note:</b> Software should allow a minimum of 4 Protocol clock cycles before attempting to access the EMV SIM module after a software reset.                                      |
|                 | 0 EMV SIM Normal operation (default) 1 EMV SIM held in Reset                                                                                                                        |
| 9               | Flush Transmitter Bit                                                                                                                                                               |
| FLSH_TX         | This bit operates as an EMV SIM transmitter reset. The receive portion of the EMV SIM module is not affected. This bit clears automatically and always reads 0.                     |
|                 | 0 EMV SIM Transmitter normal operation (default) 1 EMV SIM Transmitter held in Reset                                                                                                |
| 8               | Flush Receiver Bit                                                                                                                                                                  |
| FLSH_RX         | This bit operates as an EMV SIM receiver reset. The transmit portion of the EMV SIM module is not affected. This bits clears automatically and always reads 0.                      |
|                 | EMV SIM Receiver normal operation (default)     EMV SIM Receiver held in Reset                                                                                                      |
| 7–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                |
| 3               | Overrun NACK Enable                                                                                                                                                                 |
| ONACK           | Enables NACK generation when Rx FIFO is full and another message is ready for writing into the FIFO.                                                                                |
|                 | 0 NACK generation on overrun is disabled (default)                                                                                                                                  |
|                 | 1 NACK generation on overrun is enabled                                                                                                                                             |
| 2               | Auto NACK Enable                                                                                                                                                                    |
| ANACK           | Enables NACK generation for parity errors in receieved messages or when invalid initial characters are received in ICM mode.                                                        |
|                 | 0 NACK generation on errors disabled                                                                                                                                                |
|                 | 1 NACK generation on errors enabled (default)                                                                                                                                       |
| 1               | Initial Character Mode                                                                                                                                                              |
| ICM             | Enables initial character mode. Will be automatically cleared by hardware once a valid initial character is received.                                                               |
|                 | 0 Initial Character Mode disabled                                                                                                                                                   |
|                 | 1 Initial Character Mode enabled (default)                                                                                                                                          |
|                 | <u> </u>                                                                                                                                                                            |


Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

## **EMVSIMx\_CTRL** field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC IC | Inverse Convention  Used to configure the EMV SIM to use either inverse convention or direct convention for its data format. The IC bit can be controlled by software, but it is normally set by hardware as a result of the interpretation of the initial character when in ICM mode. |
|       | 0 Direction convention transfers enabled (default)                                                                                                                                                                                                                                     |
|       | 1 Inverse convention transfers enabled                                                                                                                                                                                                                                                 |

# 21.5.6 Interrupt Mask Register (EMVSIMx\_INT\_MASK)





## EMVSIMx\_INT\_MASK field descriptions

| Field        | Description                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------|
| 31–16        | This field is reserved.                                                                                          |
| Reserved     | This read-only field is reserved and always has the value 0.                                                     |
| 15<br>PEF_IM | Parity Error Interrupt Mask                                                                                      |
| _            | Used to enable/disable the ability of the PEF flag in the RX_STATUS register to generate EMV SIM interrupts.     |
|              | 0 PEF interrupt enabled                                                                                          |
|              | 1 PEF interrupt masked (default)                                                                                 |
| 14           | Receive Data Interrupt Mask                                                                                      |
| RX_DATA_IM   | Used to enable/disable the ability of the RX_DATA flag in the RX_STATUS register to generate EMV SIM interrupts. |
|              | 0 RX_DATA interrupt enabled                                                                                      |
|              | 1 RX_DATA interrupt masked (default)                                                                             |

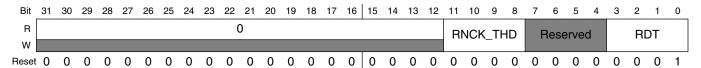
Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

## Memory Map and Registers

# EMVSIMx\_INT\_MASK field descriptions (continued)

| Field           | Description                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------|
| 13              | General Purpose Counter 1 Timeout Interrupt Mask                                                                   |
| GPCNT1_IM       | Used to enable/disable the ability of the GPCNT1_TO flag in the TX_STATUS register to generate EMV SIM interrupts. |
|                 | 0 GPCNT1_TO interrupt enabled 1 GPCNT1_TO interrupt masked (default)                                               |
| 12              | Block Guard Time Error Interrupt                                                                                   |
| BGT_ERR_IM      | Used to enable/disable the ability of the BGT_ERR flag in the RX_STATUS register to generate EMV SIM interrupts.   |
|                 | 0 BGT_ERR interrupt enabled 1 BGT_ERR interrupt masked (default)                                                   |
| 11              | Block Wait Time Error Interrupt Mask                                                                               |
| BWT_ERR_IM      | Used to enable/disable the ability of the BWT_ERR flag in the RX_STATUS register to generate EMV SIM interrupts.   |
|                 | 0 BWT_ERR interrupt enabled                                                                                        |
|                 | 1 BWT_ERR interrupt masked (default)                                                                               |
| 10<br>RNACK_IM  | Receiver NACK Threshold Interrupt Mask                                                                             |
| THVACIC_IWI     | Used to enable/disable the ability of the RTE flag in the RX_STATUS register to generate EMV SIM interrupts.       |
|                 | 0 RTE interrupt enabled                                                                                            |
|                 | 1 RTE interrupt masked (default)                                                                                   |
| 9<br>CWT_ERR_IM | Character Wait Time Error Interrupt Mask                                                                           |
| OWI_LITT_IIII   | Used to enable/disable the ability of the CWT_ERR flag in the RX_STATUS register to generate EMV SIM interrupts.   |
|                 | 0 CWT_ERR interrupt enabled                                                                                        |
|                 | 1 CWT_ERR interrupt masked (default)                                                                               |
| 8<br>GPCNT0_IM  | General Purpose Timer 0 Timeout Interrupt Mask                                                                     |
| GPUNTU_IM       | Used to enable/disable the ability of the GPCNT0_TO flag in the TX_STATUS register to generate EMV SIM interrupts. |
|                 | 0 GPCNT0_TO interrupt enabled 1 GPCNT0_TO interrupt masked (default)                                               |
| 7               | Transmit Data Threshold Interrupt Mask                                                                             |
| TDT_IM          | Used to enable/disable the ability of the TDTF flag in the TX_STATUS register to generate EMV SIM interrupts.      |
|                 | 0 TDTF interrupt enabled 1 TDTF interrupt masked (default)                                                         |
| 6               | Transmit FIFO Full Interrupt Mask                                                                                  |
| TFF_IM          | Used to enable/disable the ability of the TFF flag in the TX_STATUS register to generate EMV SIM interrupts.       |

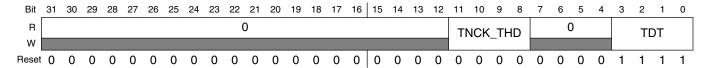

Table continues on the next page...

# EMVSIMx\_INT\_MASK field descriptions (continued)

| Field    | Description                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------|
|          | 0 TFF interrupt enabled 1 TFF interrupt masked (default)                                                      |
|          | Transmit NACK Threshold Interrupt Mask                                                                        |
| TNACK_IM | Used to enable/disable the ability of the TNTE flag in the TX_STATUS register to generate EMV SIM interrupts. |
|          | 0 TNTE interrupt enabled                                                                                      |
|          | 1 TNTE interrupt masked (default)                                                                             |
|          | Transmit FIFO Empty Interrupt Mask                                                                            |
|          | Used to enable/disable the ability of the TFE flag in the TX_STATUS register to generate EMV SIM interrupts.  |
|          | 0 TFE interrupt enabled                                                                                       |
|          | 1 TFE interrupt masked (default)                                                                              |
|          | Early Transmit Complete Interrupt Mask                                                                        |
|          | Used to enable/disable the ability of the ETC flag in the TX_STATUS register to generate EMV SIM interrupts.  |
|          | 0 ETC interrupt enabled                                                                                       |
|          | 1 ETC interrupt masked (default)                                                                              |
|          | Receive FIFO Overflow Interrupt Mask                                                                          |
|          | Used to enable/disable the ability of the RFO flag in the RX_STATUS register to generate EMV SIM interrupts.  |
|          | 0 RFO interrupt enabled                                                                                       |
|          | 1 RFO interrupt masked (default)                                                                              |
|          | Transmit Complete Interrupt Mask                                                                              |
|          | Used to enable/disable the ability of the TCF flag in the TX_STATUS register to generate EMV SIM interrupts.  |
|          | 0 TCF interrupt enabled                                                                                       |
|          | 1 TCF interrupt masked (default)                                                                              |
|          | Receive Data Threshold Interrupt Mask                                                                         |
|          | Used to enable/disable the ability of the RDTF flag in the RX_STATUS register to generate EMV SIM interrupts. |
|          | 0 RDTF interrupt enabled                                                                                      |
| 1        | 1 RDTF interrupt masked (default)                                                                             |

# 21.5.7 Receiver Threshold Register (EMVSIMx\_RX\_THD)

Address: 4004\_E000h base + 18h offset = 4004\_E018h




#### EMVSIMx\_RX\_THD field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11–8<br>RNCK_THD  | Used to specify the number of consecutive NACK's transmitted by the EMV SIM module, for a given character, before the receive threshold error (RTE) flag is triggered. A value of 0 indicates that RTE is never set. When a valid character is received by the EMV SIM, the internal counter keeping track of the NACK count resets to zero for the subsequent byte being received. If the ANACK bit is clear in the CNTL register, RNCK_THD has no effect.  O Zero Threshold. RTE will not be set  >0 RTE will set after programmed value of NACKs are received |
| 7–4<br>Reserved   | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RDT               | Receiver Data Threshold Value  Determines the number of bytes that must exist in the Receive FIFO to trigger the receive data threshold interrupt flag (RDTF). Value must not exceed the total bytes that can be stored in the Receive FIFO.                                                                                                                                                                                                                                                                                                                     |

# 21.5.8 Transmitter Threshold Register (EMVSIMx\_TX\_THD)

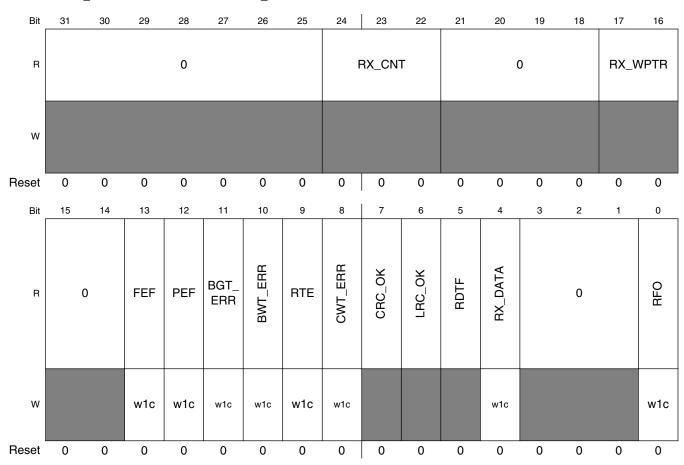
Address: 4004\_E000h base + 1Ch offset = 4004\_E01Ch



#### EMVSIMx\_TX\_THD field descriptions

| Field             | Description                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                        |
| 11–8<br>TNCK_THD  | Transmitter NACK Threshold Value  Used to set the NACK threshold for the transmitter. Once the threshold number set by TNCK_THD has been reached for the current byte being transmitted, the error flag TNTE in the TX_STATUS register will |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

# EMVSIMx\_TX\_THD field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | be set. Setting of TNTE causes the remaining transmissions queued in the transmit FIFO to be aborted and no more transmissions to occur until software clears TNTE. To trigger TNTE, a given byte being transmitted must reach the TNCK_THD threshold itself. Transmit NACKs accumulated on one byte are not carried over to the next. |
|                 | TNTE will never be set; retransmission after NACK reception is disabled.                                                                                                                                                                                                                                                               |
|                 | 1 TNTE will be set after 1 nack is received; 0 retransmissions occurs.                                                                                                                                                                                                                                                                 |
|                 | 2 TNTE will be set after 2 nacks are received; at most 1 retransmission occurs.                                                                                                                                                                                                                                                        |
|                 | 3 TNTE will be set after 3 nacks are received; at most 2 retransmissions occurs.                                                                                                                                                                                                                                                       |
|                 |                                                                                                                                                                                                                                                                                                                                        |
|                 | N TNTE will be set after N nacks are received; at most (N - 1) retransmissions occurs.                                                                                                                                                                                                                                                 |
|                 | AS TATE WILL A G. AS A S. A.                                                                                                                                                                                                                                                                       |
|                 | 15 TNTE will be set after 15 nacks are received; at most 14 retransmissions occurs.                                                                                                                                                                                                                                                    |
| 7–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                   |
| TDT             | Transmitter Data Threshold Value                                                                                                                                                                                                                                                                                                       |
|                 | Used to set the threshold value for the Transmit FIFO at which the TDTF bit in the TX_STATUS register will be set. When the number of bytes in the Transmit FIFO is less than or equal to TDT[3:0], TDTF will be set.                                                                                                                  |

# 21.5.9 Receive Status Register (EMVSIMx\_RX\_STATUS)

Address: 4004\_E000h base + 20h offset = 4004\_E020h



## EMVSIMx\_RX\_STATUS field descriptions

| Field            | Description                                                         |
|------------------|---------------------------------------------------------------------|
| 31–25            | This field is reserved.                                             |
| Reserved         | This read-only field is reserved and always has the value 0.        |
| 24–22            | Receive FIFO Byte Count                                             |
| RX_CNT           | These bits indicate the number of bytes stored in the receive FIFO. |
|                  | 0 FIFO is emtpy                                                     |
|                  | >0 Total bytes available in FIFO                                    |
| 21–18            | This field is reserved.                                             |
| Reserved         | This read-only field is reserved and always has the value 0.        |
| 17–16<br>RX_WPTR | Receive FIFO Write Pointer Value                                    |
|                  | Value of write pointer of Receive FIFO                              |
| 15–14            | This field is reserved.                                             |
| Reserved         | This read-only field is reserved and always has the value 0.        |

Table continues on the next page...

# **EMVSIMx\_RX\_STATUS** field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13            | Frame Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FEF           | Used to indicate if the current received byte did not have proper STOP bits. This will not cause a NACK transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | This bit will not cause an interrupt assertion. It is simply an indication that a framing error has occured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 0 No frame error detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 1 Frame error detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12<br>PEF     | Parity Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FEF           | Used to indicate if a received byte had a parity error or not. A parity error will cause transmission of NACK if ANACK bit is set in CTRL register and PEF bit will not be asserted. When ANACK is <u>not</u> set, PEF will be asserted.                                                                                                                                                                                                                                                                                                                                               |
|               | This bit will also not assert when ICM bit is set; however parity is checked in ICM = 1 mode. It is simply an indication that a parity error has occured.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | 0 No parity error detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 1 Parity error detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11<br>BGT_ERR | Block Guard Time Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bar_Enin      | Used to indicate if the block guard time was too small. The threshold is set by the block guard time register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 0 Block guard time was sufficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 1 Block guard time was too small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10<br>BWT_ERR | Block Wait Time Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DW1_EIIII     | Used to indicate if the block wait time has been exceeded. The threshold is set by the block wait time registers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 0 Block wait time not exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 1 Block wait time was exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9<br>RTE      | Received NACK Threshold Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NIE           | Used to indicate whether the number of consecutive NACK's generated by the EMV SIM module in response to receive parity errors, for the byte being received, equals the value programmed in the RTH[3:0] in the RX_THRESHOLD register. This bit will never set unless the ANACK bit is set in the CNTL register. The SAPDx bit in the CNTL resister must be set to enable the threshold error to trigger the auto power down sequence. RTE is a write once to clear bit. Clearing this bit also resets the internal counter for consecutive NACK's being transmitted for a given byte. |
|               | <ul> <li>Number of NACKs generated by the receiver is less than the value programmed in RTH[3:0]</li> <li>Number of NACKs generated by the receiver is equal to the value programmed in RTH[3:0]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |
| 8<br>CWT_ERR  | Character Wait Time Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OWI_LIN       | Used to indicate when the time between received characters is equal to or greater than the value programmed in the CHAR_WAIT register.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | 0 No CWT violation has occurred (default).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 1 Time between two consecutive characters has exceeded the value in CHAR_WAIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7<br>CRC_OK   | CRC Check OK Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

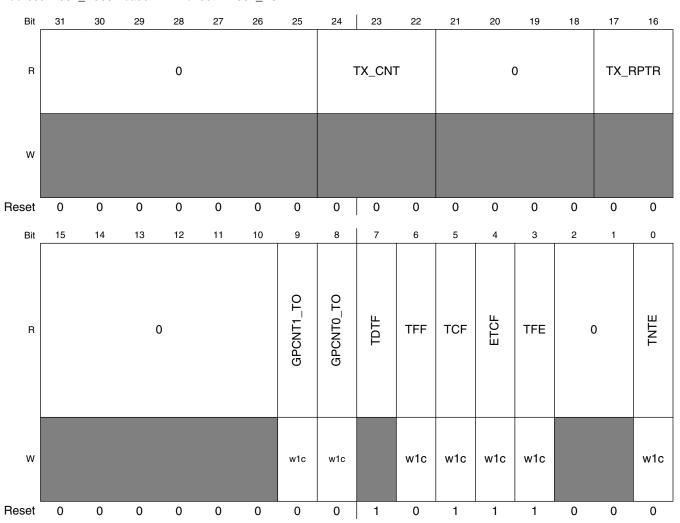
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# EMVSIMx\_RX\_STATUS field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Used to indicate when the calculated 16-bit CRC value matches the expected value for the current input data stream. The value is calculated across all received characters from the point the CRC_EN bit is set in the CTRL register. The current CRC residual can be reset by three mechanisms:  • Clear CRC_EN bit in CTRL register  • Set XMT_EN bit in ENABLE register  • Automatically by hardware when ETC flag is set at the end of a transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 0 Current CRC value does not match remainder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | 1 Current calculated CRC value matches the expected result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6<br>LRC_OK     | LRC Check OK Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Used to indicate when the calculated 8-bit LRC value is correct for the current input data stream. The value is calculated across all received characters from the point the LRC_EN bit is set in the CTRL register. The current LRC residual can be reset by three mechanisms:  • Clear LRC_EN bit in CTRL register  • Set XMT_EN bit in ENABLE register  • Automatically by hardware when ETC flag is set at the end of a transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 0 Current LRC value does not match remainder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | 1 Current calculated LRC value matches the expected result (i.e. zero).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5<br>RDTF       | Receive Data Threshold Interrupt Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TIDII           | Interrupt flag asserted when total bytes in the Receive FIFO equal or is greater than the programmed receive threshold RDT[3:0]. The RDTF flag will be set any time the number of unread bytes in the receive FIFO is equal to or greater than the value set by RDT[3:0].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | The flag can be cleared by reading enough bytes out of the receive FIFO so as to bring the number of bytes left in the FIFO below the RDT[3:0] level. Another way to clear the flag is to set the RDT[3:0] level higher than the number of unread bytes currently in the FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | The RDTF flag will create an interrupt if the RDT_IM bit in the INT_MASK register is cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | Number of unread bytes in receive FIFO less than the value set by RDT[3:0] (default).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 1 Number of unread bytes in receive FIFO greater or than equal to value set by RDT[3:0].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4               | Receive Data Interrupt Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RX_DATA         | Interrupt asserted when a new data byte is received and entered into the Receive FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 0 No new byte is received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 1 New byte is received ans stored in Receive FIFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0<br>RFO        | Receive FIFO Overflow Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | Used to indicate that the EMV SIM was unable to store received data due to already unread bytes in the FIFO (FIFO full or almost full). It does not necessarily indicate that data has been lost. If the ONACK control bit in the CNTL register is set, there will be a NACK pulse generated on bytes that would otherwise cause a loss of data due to a full FIFO. These bytes should be retransmitted by the Smart Card which implies that no data has actually been lost. In this case, the RFO flag is just an indicator that this situation has occurred which may be helpful in system debug. For the case where ONACK is not set, a set RFO flag does indicate a loss of data since all bytes received with the OEF flag set will indeed be lost (including the byte that caused the bit to be set). The RFO flag will cause an interrupt if the RFO_IM bit in the INT_MASK register. The RFO flag is a write-one-to-clear bit. |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

## EMVSIMx\_RX\_STATUS field descriptions (continued)

| Field | Description                                                   |
|-------|---------------------------------------------------------------|
|       | 0 No overrun error has occurred (default)                     |
|       | 1 A byte was received when the received FIFO was already full |

# 21.5.10 Transmitter Status Register (EMVSIMx\_TX\_STATUS)

Address: 4004\_E000h base + 24h offset = 4004\_E024h



## EMVSIMx\_TX\_STATUS field descriptions

| Field             | Description                                                                                    |
|-------------------|------------------------------------------------------------------------------------------------|
| 31–25<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.           |
| 24–22<br>TX_CNT   | Transmit FIFO Byte Count  These bits indicate the number of bytes stored in the transmit FIFO. |

Table continues on the next page...

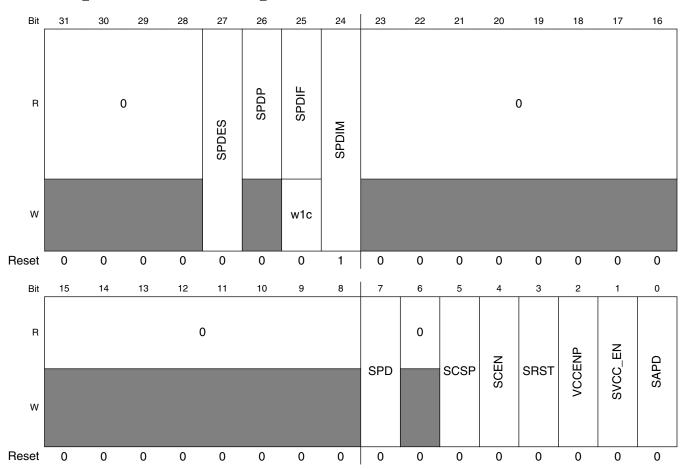
KL28Z Reference Manual, Rev. 4, 06/2016

## **Memory Map and Registers**

# EMVSIMx\_TX\_STATUS field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 0 FIFO is emtpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | >0 Total bytes in FIFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21–18<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17–16             | Transmit FIFO Read Pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TX_RPTR           | Value of the read pointer of transmit FIFO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9                 | General Purpose Counter 1 Timeout Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GPCNT1_TO         | Used to indicate when the General Purpose Counter 1 has reached the GPCNT1_VAL value in the GPCNT_VAL register.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 0 GPCNT1_VAL time not reached, or bit has been cleared. (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 1 General Purpose counter has reached the GPCNT1_VAL value                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                 | General Purpose Counter 0 Timeout Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GPCNT0_TO         | Used to indicate when the General Purpose Counter 0 has reached the GPCNT0_VAL value in the GPCNT_VAL register.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 0 GPCNT0_VAL time not reached, or bit has been cleared. (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 1 General Purpose counter has reached the GPCNT0_VAL value                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                 | Transmit Data Threshold Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TDTF              | Interrupt flag asserted when total bytes in the Transmit FIFO is less than or equal to the programmed transmit data threshold TDT[3:0]. The TDTF flag will be set any time the number of bytes in the transmit FIFO is less than or equal to the value set by TDT[3:0]. The flag can be cleared by writing enough bytes into the transmit FIFO so as to take the number of bytes in the FIFO above the TDT[3:0] level. Another way to clear the flag is to set the TDT[3:0] level lower than the number of bytes currently in the FIFO. |
|                   | The TDTF flag will create an interrupt if the TDT_IM bit in the INT_MASK register is cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Number of bytes in FIFO is greater than TDT[3:0], or bit has been cleared                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | 1 Number of bytes in FIFO is less than or equal to TDT[3:0] (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6                 | Transmit FIFO Full Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TFF               | Used to indicate when the Transmit FIFO has been written with maximum number of bytes that it can store. Subsequent writes may get ignored. The TFF bit can only be cleared by writing 1 to this bit or setting the FLUSH_XMT or SOFT_RESET bit in the RESET_CNTL register.                                                                                                                                                                                                                                                             |
|                   | Transmit FIFO Full condition has <u>not</u> occurred (default)     A Transmit FIFO Full condition has occurred                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5                 | Transmit Complete Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TCF               | Used to indicate whether the EMV SIM transmitter is ready for a new transmission. The TC flag becomes set when the guard time has expired after the last byte in the transmit FIFO (if XMT_CRC_LRC = 0) or the LRC or CRC byte (if XMT_CRC_LRC bit = 1) has been transmitted. The TC flag will create an interrupt if TC_IM in the INT_MASK register is low. The TC bit is a write-one-to-clear bit.                                                                                                                                    |
|                   | Transmit pending or in progress     Transmit complete (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

# EMVSIMx\_TX\_STATUS field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>ETCF       | Early Transmit Complete Flag  Used to indicate that the EMV SIM transmitter has finished sending the last byte in transmit FIFO (if XMT_CRC_LRC = 0) or finished sending the LRC or CRC byte (if XMT_CRC_LRC = 1). This bit differs from the TC bit in that it is set before the guard time of the last byte has elapsed. The ETC flag will create an interrupt if ETC_IM in the INT_MASK register is low. The ETC bit is a write-one-to-clear bit.                                                                                                               |
|                 | O Transmit pending or in progress Transmit complete (default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>TFE        | Used to indicate that the EMV SIM transmit FIFO has been emptied. This bit will be set when the last byte in the transmit FIFO has been transferred out of the EMV SIM transmitter to the Smart Card successfully. TFE will also be set when the TNTE flag is set. The TFE flag will create an interrupt if TFE_IM in the INT_MASK register is low. The TFE bit is a write-one-to-clear bit.  O Transmit FIFO is not empty  1 Transmit FIFO is empty (default)                                                                                                    |
| 2–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0<br>TNTE       | Transmit NACK Threshold Error Flag  Used to indicate the transmit NACK threshold has been reached. When TNTE is high, no further transmissions will be done until the TNTE flag is cleared. Any data transmissions still pending in the transmit FIFO will be aborted, and the TC, ETC, and TFE flags will be set. The TNTE flag will create an interrupt if TNACK_IM in the INT_MASK register is low. The TNTE bit is a write-one-to-clear bit.  O Transmit NACK threshold has not been reached (default)  1 Transmit NACK threshold reached; transmitter frozen |

# 21.5.11 Port Control and Status Register (EMVSIMx\_PCSR)

Address: 4004\_E000h base + 28h offset = 4004\_E028h



#### EMVSIMx\_PCSR field descriptions

| Field             | Description                                                                                                                                                            |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                   |
| 27<br>SPDES       | SIM Presence Detect Edge Select  Controls which edge of the Smart Card Presence Detect pin is used to detect the presence of the Smart Card.                           |
|                   | <ul><li>Falling edge on the pin (default)</li><li>Rising edge on the pin</li></ul>                                                                                     |
| 26<br>SPDP        | Smart Card Presence Detect Pin Status  This bit reflects the state of the Smart Card Presence Detect pin. It is not a latched register bit, but instead                |
|                   | <ul> <li>a synchronized version of the state of the pin itself.</li> <li>SIM Presence Detect pin is logic low</li> <li>SIM Presence Detectpin is logic high</li> </ul> |

Table continues on the next page...

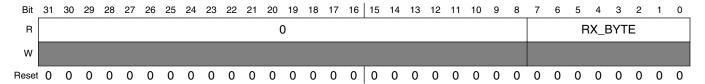
#### KL28Z Reference Manual, Rev. 4, 06/2016

# EMVSIMx\_PCSR field descriptions (continued)

| Field            | Description                                                                                                                                                                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25               | Smart Card Presence Detect Interrupt Flag                                                                                                                                                                                                             |
| SPDIF            | Status flag to indicate that an insertion or removal of a Smart Card has been detected on port. Can create an interrupt to the MCU if SPDIM is low and/or initiate the auto power down sequence if SAPD bit is '1'. Write a '1' to this bit to clear. |
|                  | No insertion or removal of Smart Card detected on Port (default)     Insertion or removal of Smart Card detected on Port                                                                                                                              |
| 24               | Smart Card Presence Detect Interrupt Mask                                                                                                                                                                                                             |
| SPDIM            | Interrupt mask for the presence detect interrupt flag (SPDIF).                                                                                                                                                                                        |
|                  | 0 SIM presence detect interrupt is enabled                                                                                                                                                                                                            |
|                  | 1 SIM presence detect interrupt is masked (default)                                                                                                                                                                                                   |
| 23–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                  |
| 7                | Auto Power Down Control                                                                                                                                                                                                                               |
| SPD              | Writing a '1' to this location will start the autopower down sequence provided the auto power down feature is enabled by writing '1' to SAPD bit of this register. The SPD bit will autoclear when power down is complete.                            |
|                  | 0 No effect (default)                                                                                                                                                                                                                                 |
|                  | 1 Start Auto Powerdown or Power Down is in progress                                                                                                                                                                                                   |
| 6                | This field is reserved.                                                                                                                                                                                                                               |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                          |
| 5<br>SCSP        | Smart Card Clock Stop Polarity                                                                                                                                                                                                                        |
|                  | Used to control the polarity of the idle EMV SIM clock when the clock is disabled by SCEN.                                                                                                                                                            |
|                  | 0 Clock is logic 0 when stopped by SCEN                                                                                                                                                                                                               |
|                  | 1 Clock is logic 1 when stopped by SCEN                                                                                                                                                                                                               |
| 4<br>SCEN        | Clock Enable for Smart Card                                                                                                                                                                                                                           |
| JOLIN            | Used to enable/disable the clock to the Smart Card. It can be forced low by hardware during the auto power down sequence.                                                                                                                             |
|                  | 0 Smart Card Clock Disabled                                                                                                                                                                                                                           |
|                  | 1 Smart Card Clock Enabled                                                                                                                                                                                                                            |
| 3<br>SRST        | Reset to Smart Card                                                                                                                                                                                                                                   |
|                  | Used to control state of reset line to the Smart Card. It can be forced low by hardware during the auto power down sequence. Smart Card reset signals are active low.                                                                                 |
|                  | 0 Smart Card Reset is asserted (default)                                                                                                                                                                                                              |
|                  | 1 Smart Card Reset is de-asserted                                                                                                                                                                                                                     |
| 2<br>VCCENP      | VCC Enable Polarity Control                                                                                                                                                                                                                           |
|                  | Used to control the polarity of the SVEN output pad via the SVCC_EN bit. When set to '1', this bit will invert the value of SVCC_EN bit of this register and output to SVEN output pad of device.                                                     |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### **Memory Map and Registers**

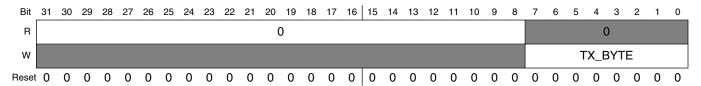
## EMVSIMx\_PCSR field descriptions (continued)

| Field        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 0 VCC_EN is active high. Polarity of SVCC_EN is unchanged.                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 1 VCC_EN is active low. Polarity of SVCC_EN is inverted.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>SVCC_EN | Vcc Enable for Smart Card                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Used to control the state of the SVEN pin on Smart Card port. The SVEN pin controls the Smart Card Vcc enable in the power management chip. It can be forced low by hardware during the auto power down sequence. This bit is XORed with the VCCENP bit to control the polarity of the SVEN output pad.                                                                                                                                                               |
|              | 0 Smart Card Voltage disabled (default)                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | 1 Smart Card Voltage enabled                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0<br>SAPD    | Auto Power Down Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Used to enable/disable the auto power down feature. This bit must be set prior to the auto power conditions are met. This bit will be return to 0 at the end of the auto power down sequence. This bit controls the auto power down function which can be initiated by:  • Setting the SPD bit in this register by software  • Assertion of the RTE bit in the RX_STATUS register  • Assertion of the SPDIF bit when the interrupt is used for detecting card removal |
|              | Manual Power Down via software by writing to the SCEN, SRST, and VCC_EN can still be carried out irrespective of the value of this bit.                                                                                                                                                                                                                                                                                                                               |
|              | 0 Auto power down disabled (default)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 1 Auto power down enabled                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# 21.5.12 Receive Data Read Buffer (EMVSIMx\_RX\_BUF)

Address: 4004\_E000h base + 2Ch offset = 4004\_E02Ch



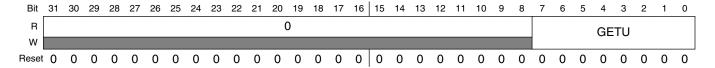

## EMVSIMx\_RX\_BUF field descriptions

| Description                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This field is reserved. This read-only field is reserved and always has the value 0.                                                                                     |
| Receive Data Byte Read  Provides the byte value from the top of the receive FIFO. Each read access to this register will increment the read pointer of the Receive FIFO. |
|                                                                                                                                                                          |

501

# 21.5.13 Transmit Data Buffer (EMVSIMx\_TX\_BUF)

Address: 4004\_E000h base + 30h offset = 4004\_E030h




#### EMVSIMx\_TX\_BUF field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                   |
| TX_BYTE          | Transmit Data Byte  Write to this register to fill the transmit FIFO with the bytes to be transmitted. The Tx FIFO can be written to only when the transmitter is enabled. Writing to this register while transmitter is disabled will lead to ignoring of all write accesses to this register. Reads to this register will return zeros.  NOTE: Writing more data to the transmit FIFO than it can hold, will cause a Transmit FIFO Full (TFF) error. |

# 21.5.14 Transmitter Guard ETU Value Register (EMVSIMx\_TX\_GETU)

Address: 4004\_E000h base + 34h offset = 4004\_E034h



#### EMVSIMx\_TX\_GETU field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GETU             | Transmitter Guard Time Value in ETU  Used to control the number of additional Elementary Time Units (ETUs) inserted between bytes transmitted by the EMV SIM transmitter. An ETU is equivalent to one bit time at the given baud rate (for example, the length of a START bit). The guard time has no effect on the EMV SIM receiver. A value of 0x00 inserts no additional ETUs, while a value of 0xFE inserts 254 additional ETUs. A value of 0xFF subtracts one ETU by reducing the number of STOP bits from two to one. |
|                  | 0 no additional ETUs inserted (default) 1 additional ETU inserted                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table continues on the next page...

NXP Semiconductors

#### KL28Z Reference Manual, Rev. 4, 06/2016

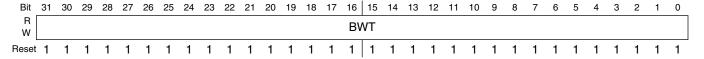
#### **Memory Map and Registers**

#### EMVSIMx\_TX\_GETU field descriptions (continued)

| Field |     | Description                                                           |
|-------|-----|-----------------------------------------------------------------------|
|       | 254 | 254 additional ETUs inserted                                          |
|       | 255 | Subtracts one ETU by reducing the number of STOP bits from two to one |

# 21.5.15 Character Wait Time Value Register (EMVSIMx\_CWT\_VAL)

Address: 4004\_E000h base + 38h offset = 4004\_E038h

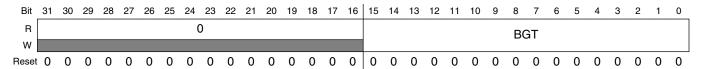



#### EMVSIMx\_CWT\_VAL field descriptions

| Field             | Description                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved.  This read-only field is reserved and always has the value 0.                                 |
| CWT               | Character Wait Time Value                                                                                             |
|                   | The value written to this register will specify the number of ETU times allowed between characters. Default is 0xFFFF |

# 21.5.16 Block Wait Time Value Register (EMVSIMx\_BWT\_VAL)

Address: 4004\_E000h base + 3Ch offset = 4004\_E03Ch

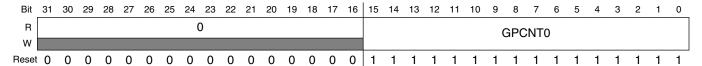



#### EMVSIMx\_BWT\_VAL field descriptions

| Field | Description                                                                                                                                                                                                            |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Block Wait Time Value                                                                                                                                                                                                  |
|       | The time from START bit of last byte sent from the EMV SIM module to the START bit of the first byte sent from the Smart Card must be less than the value in this register. If it is not, then the BWT_TO flag is set. |

## 21.5.17 Block Guard Time Value Register (EMVSIMx\_BGT\_VAL)

Address: 4004\_E000h base + 40h offset = 4004\_E040h

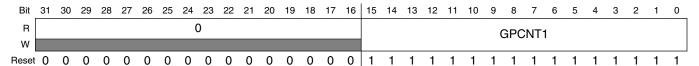



#### EMVSIMx\_BGT\_VAL field descriptions

| Field             | Description                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                               |
|                   | Block Guard Time Value  The value in this register is the block guard time. Time from START bit of last byte sent from the EMV SIM module to the START bit of the first byte sent from the SmartCard must be greater than this value. If it is not, then the BGT flag will be set. |

# 21.5.18 General Purpose Counter 0 Timeout Value Register (EMVSIMx\_GPCNT0\_VAL)

Address: 4004\_E000h base + 44h offset = 4004\_E044h




#### **EMVSIMx GPCNTO VAL field descriptions**

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                    |
| GPCNT0            | General Purpose Counter 0 Timeout Value  The value written to this register will be used to compare to the general purpose counter 0 in the EMV SIM module. Once the General purpose counter reaches this value, the GPCNT0 flag in the TX_STATUS register will be set. This counter is intended to be used for any events that must be monitored for duration based on the card clock, receiver sample rate, or ETU rate (transmit clock). Example: ATR arrival time and ATR duration. |

# 21.5.19 General Purpose Counter 1 Timeout Value (EMVSIMx\_GPCNT1\_VAL)

Address: 4004\_E000h base + 48h offset = 4004\_E048h



#### EMVSIMx\_GPCNT1\_VAL field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                   |
| GPCNT1            | General Purpose Counter 1 Timeout Value  The value written to this register will be used to compare to the general purpose counter in the EMV SIM module. Once the General purpose counter reaches this value, the GPCNT1 flag in the XMT_STATUS register will be set. This counter is intended to be used for any events that must be monitored for duration based on the card clock, receiver sample rate, or ETU rate (transmit clock). Example: ATR arrival time and ATR duration. |

# 21.6 Functional Description

## 21.6.1 Initialization

# 21.6.1.1 Configuring EMV SIM

The first operation that must be done is to configure the EMV SIM interface signals to allow the EMV SIM Transmit or Receive operation to commence. The following steps describe a typical way to enable the Smart Card:

- Configure prescaler by programming the desired value in PRSC register to generate the card clock. The card clock frequency is calculated as:
  - $f_{SIM}$  / (PRSC[7:0]); where  $f_{SIM}$  is the EMV SIM Clock Frequency
  - Prescaler value must be set such that the maximum card clock frequency specification set by EMV & ISO-7816 specifications are not violated
- Configure the DIVISOR\_VALUE in the Baud Rate Divisor Register. This value determines the ETU period to be used by the transmitter or receiver
- Enable power to the Smart Card by setting the VCC\_EN bit in PCSR register
- Enable the Smart Card clock by setting the SCEN bit in PCSR register

- Release Smart Card reset using the SRST bit in PCSR register to bring the Smart Card out of reset
- Program the power down functionality i.e. if Auto Power Down of Smart Card is required or not
- Select the Data Format type for the EMV SIM
  - Either set the IC bit to the desired data format (inverse or direct) OR
  - Set the ICM bit to allow automatic detection of Initial Character. IC bit will be updated to desired data format upon valid Initial Character detection
- Configure if the EMV SIM module is enabled to run in STOP and DOZE modes by setting the STOP\_EN and DOZE\_EN bits as desired
- Enable DMA request generation for Transmitter or Receiver as desired

Once the above configuration is complete, the receiver or transmitter can be configured depending on the operation to be carried out on the Smart Card.

#### **NOTE**

XMT\_EN and RCV\_EN bits should not be changed in the same write cycle. Software should attempt separate write accesses to CTRL register for updating these bits, one by one. For example, if XMT\_EN = 1 and RCV\_EN = 0 and in order to enable the receiver, first write to CTRL register should make XMT\_EN = 0 and second write to CTRL register should make RCV\_EN = 1.

# 21.6.1.2 Configuring Receiver

The following is a list of configurations that need to be performed (after the "Configuring EMV SIM" step) in order to configure the EMV SIM receiver for operation:

- Enable NACK generation capability
  - To generate NACK on parity errors and invalid initial characters, set the ANACK bit in CTRL register
  - To generate NACK on receiver FIFO overflow error, set the ONACK bit in CTRL register
- Configure the desired threshold for NACK generation and data threshold in the RX\_THD register. These are the thresholds at which the RTE and RDTF flags will be set, respectively.
  - If auto power down is desired on RTE flag assertion, then write to SAPD bit PCSR to initiate the Smart Card power down
- Configure the timeout values for Character Wait Time Counter, the Block Wait Timer Counter and the Block Guard Time Counter
- Enable necessary interrupts by clearing respective bits in the INT\_MASK register

- Configure the General Purpose Counter as needed and select desired clock source (GPCNT0/1\_CLKSEL in the CLKCFG register)
- Enable Receiver by setting RCV\_EN bit to 1 in CTRL register
- Receiver will enter Initial Character Detection mode if ICM bit is set or enter normal receive mode if ICM bit is not set
- Enable LRC or CRC as desired

# 21.6.1.3 Configuring Transmitter

The following is a list of configurations that need to be performed (after the "Configuring EMV SIM" step) in order to configure the EMV SIM transmitter for operation:

- Select desired re-transmission threshold for NACKed characters in TX\_THD register
  - This is the threshold at which the TNTE flag will be set by using the TNACK\_THD[3:0] bits
- Configure the desired Guard Time between the characters transmitted by writing to the GETU[7:0] bits in TX\_GETU register
- Configure the desired data threshold in TX\_THD register.
- Enable necessary interrupts by clearing respective bits in the INT\_MASK register
- Configure the General Purpose Counter as needed and select desired clock source (GPCNT0/1\_CLKSEL in the CLKCFG register)
- Enable Transmitter by setting the XMT\_EN in the CTRL register
- Enable LRC & CRC as desired
- Program bytes to be transmitted into the Tx FIFO. If DMA is enabled, DMA request will get asserted automatically.

#### NOTE

Tx FIFO can be written to after the transmitter is enabled (XMT\_EN = 1). Writing to Tx FIFO while transmitter is disabled will not be successful and write access will be ignored.

#### NOTE

The Transmit and Receive operations are mutually exclusive and should not be enabled together.

## 21.6.2 Smart Card Interface and Control

The EMV SIM module controls the all the interface signals for the Smart Card. The Smart Card clock is generated using the prescaler (PRSC register) and the ETU periods are generated using the baud rate divisor (DIVISOR register). The Smart Card Reset and Voltage Enable are controlled by software through the PCSR register. The message bytes are transmitted and received on the Card IO device pin which is used in open drain configuration.

#### 21.6.2.1 Smart Card Presence Detect

The Smart Card Presence Detect pin (SIMPD) allows for detection of the insertion or removal of a Smart Card. The SPDES bit in the PCSR register allows the software to configure which edge of the SIMPD pin will cause a presence detect interrupt flag to be asserted.

An internal pull-down is required on SIMPD pin to allow a high to low transition on this pin when the Smart Card is removed.

## 21.6.2.2 Powering Up

The first step to communicating with a Smart Card is to provide power and a clock signal to the card. Once the card is detected as present (using the presence detect features, or some other method), the Smart Card should be powered up according to the power up sequence specified in the ISO 7816-3 specification.

- 1. Apply voltage to the Smart Card by setting the VCC\_EN bit in the PCSR register.
- 2. Select the appropriate clock frequency for the Smart Card by programming the CLKCFG and DIVISOR registers.
- 3. Enable the clock to the Smart Card by setting the SCEN bit in the PCSR register.
- 4. Remove the card from reset by setting the SRST bit in the PCSR register.

#### 21.6.2.3 Automatic Power Down

Smart Cards require a proper sequence of operations to be followed to allow them to be powered down. The power down sequence as per ISO 7816 specifications is:

- Smart Card Reset (RST) pin transitions from high to low
- Smart Card Clock (CLK) is turned off to low
- Smart Card IO (IO) is transitioned from high impedance to low
- Smart Card Voltage Enable (VCC\_EN) to turned off (pin driven low)

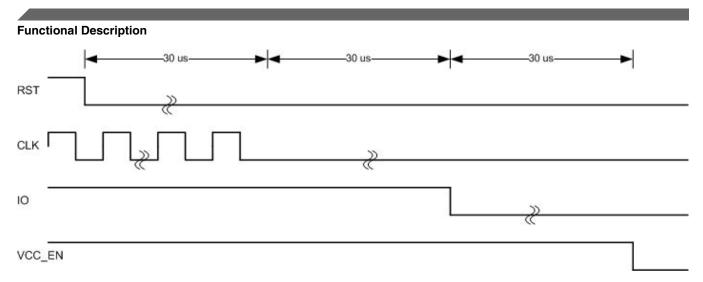



Figure 21-2. Auto Power Down Sequence

These operations can be done manually by software by writing to appropriate bits (SCEN, SRST and VCC\_EN) in the PCSR register or automatically by hardware under the following conditions provided the auto power down feature is enabled in the PCSR register.

- Setting the SPD bit in PSCR register by software
- Assertion of RTE bit in RX\_STATUS register
- Assertion of SPDIF bit in PCSR register when configured to detect card removal

#### NOTE

The SPDES bit in PCSR register determines which edge transition of the Smart Card Presence Detect pin is used for Smart Card presence detection. Presence detection can be used to determine if the card has been inserted or removed. The occurrence of the edge specified by SPDES bit will cause the following: SPDIF to be set; if the SPDIM mask is clear, an interrupt to the CPU; and if SAPD in the PCSR register is set, an auto power down sequence to begin. If Smart card insertion is expected, SAPD can be set low to avoid the auto power down sequence from falsely triggering. The bit SPDP can be used to determine the current state of the Smart Card Presence Detect pin.

#### NOTE

The auto power down operation requires a low frequency clock (usually 32 kHz clock source) to be active on the device.

The auto power down sequence will clear the following register bits upon power down sequence completion:

- SPD bit in PCSR register
- SCEN bit in PCSR register

- SRST bit in PCSR register
- VCC\_EN bit in PCSR register
- XMT\_EN and RCV\_EN bits in CTRL register

#### 21.6.3 EMV SIM Receiver

The EMV SIM Receiver is designed to receive all message bytes and store valid bytes into the receive FIFO. It performs checks on the incoming messages and indicates the transmitter to enable NACK insertion for each message. In addition, the receiver automatically detects NACKs received when the transmitter is sending out message bytes.

# 21.6.3.1 Data Sampling

The incoming data is internally synchronized and sampled using a 16x oversampled clock, called the EMV SIM logic clock. The frequency of this clock is 16 times the ETU Clock (1/ETU Period). The whole receiver works on this EMV SIM logic clock.

#### 21.6.3.2 Initial Character Detection

The EMV SIM module supports the detection of the Initial Character and determine the data format when it is placed in the initial character mode by setting the ICM bit in CTRL register. When placed in this mode, the EMV SIM module samples in the input line and waits for one of the initial characters to be detected. Once detected, the ICM bit is cleared and the data format bit, IC bit, is set to appropriate value depending on the data format detected using the initial character.

The two possible data formats are inverse convention and direct convention. Figures below illustrate the differences between the two formats. Essentially, inverse convention differs from direct convention in that the order of the bits is flipped (i.e. MSB for LSB) and the data bits and parity bit are logically inverted. When receiving inverse convention data, the transformation of the data back to direct convention format is done in hardware, including the inversion of the data and parity bits.

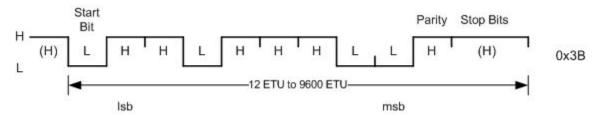



Figure 21-3. Initial Character in Direct Conversion

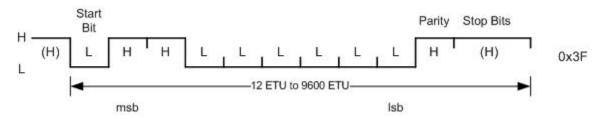



Figure 21-4. Initial Character in Inverse Conversion

To place the EMV SIM into initial character mode, set the ICM bit in the CTRL register. Once a valid initial character is received, the IC bit in the CTRL register will be set accordingly by the hardware, and the ICM bit will be cleared. Software can read the state of the IC bit to determine which mode the EMV SIM is currently using. The 0x3B (as decoded by direct convention) with parity bit high will cause direct convention to be used (IC set to logic 0), whereas a 0x3F (as decoded by inverse convention) with parity bit high will cause inverse convention to be used (IC set to logic 1).

The receiver remains in initial character mode until disabled by software or a valid initial character is detected. Upon detection of valid character, the receiver enters data receive mode. It is recommended to use one of the general purpose counter as a timeout during initial character mode.

When the receiver is in initial character mode, all received bytes will continue to be placed into the receive FIFO whether they be valid initial characters or not. If a valid initial character is received that causes the data format being used to change, all subsequent bytes will be decoded with that format before being placed into the FIFO, including the initial character byte itself. That is, if the IC bit is low, and the correct initial character for setting inverse convention is received, that character and all subsequently received characters will be stored in the FIFO after having been decoded using inverse convention (for example, the initial character will be stored as 0x3F).

#### NOTE

There is a condition where a parity error in the initial byte for direct convention (0x3B) could be decoded as what appears to be a valid initial character for inverse convention (that is, 0x3F). The EMV SIM module will not recognize this as a valid

initial character for inverse convention and will set the PEF flag.

# 21.6.3.3 Receiver Diagnostics

The EMV SIM module performs diagnostic checks on the incoming messages. These checks include parity check and message frame checks.

**Parity Error Detection:** The receiver is responsible for detecting parity errors in the received data. Data is always transmitted with even parity, except when in inverse convention mode. In inverse convention mode, all data bits and the parity bit are complemented making the data appear to be odd parity. The parity bit is defined as the 10th bit of the received data. The parity of the 2nd through 10th received bits is calculated by the receiver parity logic. This logic determines if the parity of the 9 received bits is correct.

When a parity error is detected on a given byte, the parity error flag (PEF bit) is asserted in the RX\_STATUS register if NACK generation on errors is disabled (ANACK = 0 in CTRL register). The parity error flag does not generate an interrupt to the system, however, the module can cause the transmitter to transmit a NACK (if ANACK = 1 in CTRL register) without software needed to enable transmitter for this and request retransmission of the current byte.

*Framing Error Detection:* The receiver is responsible for detecting framing errors in the received data. Data is always transmitted with 2 STOP bits, except when in 11 ETU mode, where there is one STOP bit. The STOP bits are defined as high state at the 11th and 12th bit positions in the received data. In either mode, the receiver expects to see a high at the 11th bit position in the received data. If a low is detected at the 11th bit position, the receiver indicates a framing error for that byte.

When a framing error is detected on a given byte, the FEF bit is set in the RX\_STATUS register. A framing error cannot cause an interrupt, nor can it create a NACK pulse to the Smart Card asking for a retransmission of the corrupted data.

LRC & CRC: The receiver also checks the LRC or CRC on the incoming block of bytes (if LRC or CRC is enabled). The result of the CRC or LRC check is updated in the RX\_STATUS register once the complete message block is received.

#### 21.6.3.4 NACK Detection

During transmission of message bytes, the receiver automatically checks for NACKs sent by the Smart Card. The software does not need to enable receiver for this. The NACK is detected by sampling the IO line at 11 ETUs after the falling edge of the START bit. Once a NACK is detected, the transmitter is signaled and the transmitter will retransmit the current byte after two ETU time (as per ISO 7816 specification).

# 21.6.3.5 Using EMV SIM Receiver with "T=1" Smart Cards

The EMV SIM module provides hardware support for "T=1" type Smart Cards. These type of cards present several requirements above and beyond the standard "T=0" cards. The features provided to meet the requirements that pertain to the EMV SIM receiver are as follows:

- 11 ETU Characters
  - "T=1" cards can transmit with character lengths of 11 ETUs (that is, one STOP bit). The EMV SIM module provides the RCVR11 bit in the CTRL register in order to configure the receiver state machine to accept 11 ETU characters.
- Character Wait Time Counter
  - The character waiting time (CWT) is defined as the time between the start bits of two consecutive characters received from the Smart Card. The value of CWT can range from 12 ETU to 32779 ETU. The EMV SIM module provides a 16-bit counter with programmable comparator clocked at the ETU bit rate to identify when the CWT has been exceeded by the Smart Card.
- Block Wait Time
  - The block waiting time (BWT) is defined as the maximum time between the start bits of the last character of a transmitted block and the first character of the next received block. The block wait time must not exceed a value that is programmable. The EMV SIM module provides a 32-bit Block Wait Timer that can be used to identify when the BWT has been violated.
- Block Guard Time
  - The block guard time (BGT) is defined as the minimum delay between the start bits of the last character of a transmitted block and the first character of the next received block. The block guard must be greater than a value that is programmable. The EMV SIM module provides a 16-bit Block Guard Timer that can be used to identify when the BGT has been violated.
- Error Detection Code
  - "T=1" cards can specify LRC or CRC error detection codes to be used. The EMV SIM module provides hardware support for both the LRC and CRC operations.

#### 21.6.4 EMV SIM Transmitter

The transmitter is responsible for reading the message bytes from the Tx FIFO, adding the LRC or CRC at the end of the message block and re-transmit any byte on reception of a NACK. It assists the receive operation by inserting NACKs when directed by the receiver.

# 21.6.4.1 Message Transmission

The transmitter operation does not start until the Tx FIFO is empty. Software can configure the EMV SIM module and enable the transmitter but unless a byte is written into the Tx FIFO, no transmission will start. Clearing the XMT\_EN bit while the transmitter is in operation, will halt any transmission in progress, flush the transmit FIFO. Refer Message Handling section for more details on using the Tx FIFO.

The transmitter continuously transmits the messages from the Tx FIFO. Upon NACK detection, the transmitter resends the same byte until the Transmitter NACK Threshold limit is reached. When TNTE is set, the EMV SIM transmitter is halted, and all pending transfers are aborted, and the TC, ETC, AND TFE flags are set. All bytes remaining in the transmit FIFO are lost. There is no way to restart the transmission on the next byte in the FIFO. The transmitter remains frozen until TNTE is cleared by software. The only way to clear TNTE is to write a 1 to the TNTE bit in the TX\_STATUS register. It is possible to disable the detection of NACKs from the Smart Card by setting TNCK\_THD[3:0] to 0x0. By setting TNCK\_THD[3:0] to 0x1, it is possible to disable all retransmissions while still setting TNTE on the first NACK received. In general, TNTE is set on the NACK that causes the threshold set by TNCK\_THD[3:0] to be reached. This final NACK will not cause a retransmission, whereas all previous NACKs will cause a retransmission.

If all bytes are successfully transmitted and the Tx FIFO is empty, the transmitter send the check byte (i.e. LRC or CRC) if the XMT\_CRC\_LRC and LRC\_EN or CRC\_EN bits are set. The transmitter sends each byte to the LRC or CRC block to allow the check byte generation.

At the end of each byte, the transmitter inserts the programmed Guard ETUs. Refer to Protocol Timers section for more details on Guard Time Counter.

#### 21.6.4.2 NACK Insertion

The transmitter is responsible for driving the output low during the STOP bit time to signify an error was detected in the received data from the Smart Card. This logic responds to a NACK request generated by the receiver block.

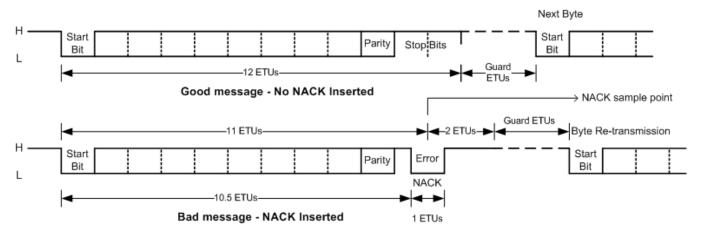



Figure 21-5. NACK Insertion

The NACK generation logic is also responsible for keeping track of the number of NACKs received during a transmit operation. The receiver detects NACKs generated by the Smart Card, and reports them to the transmit NACK logic. Once the number of detected NACKs has reached the programmed threshold (TNCK\_THD[3:0]), an interrupt flag (TNTE) is generated, the transmit FIFO is flushed, and the transmitter is disabled.

# 21.6.4.3 Using EMV SIM Transmitter with "T=1" Smart Cards

The EMV SIM module provides hardware support for "T=1" type Smart Cards. These type of cards present several requirements above and beyond the standard "T=0" cards. The features provided to meet the requirements that pertain to the EMV SIM transmitter are as follows:

- 11 ETU Characters
  - The EMV SIM module transmitter has a programmable guard time register that allows the programmer to specify the number of ETUs between character transmissions. Programming a value of 255 (0xFF) in the GETU[7:0] bits in the GUARD\_CNTL register will set the number of ETUs per character transmitted to 11.
- Character Waiting Time
  - The character waiting time (CWT) is defined as the time between the start bits of two consecutive characters. The value of CWT can range from 12 ETU to 32779 ETU. The time between transmitted characters is controlled by the

programmable guard time in the GETU register. However, the time between the last byte in the transmit FIFO, and the next transmitted byte can be largely affected by software response time to the transmit interrupts. The EMV SIM transmitter provides a Transmit FIFO threshold (TDTF) interrupt to signal the system when the expected number of characters have been transmitted from the transmit FIFO. The minimum CWT is achieved only if the software can respond to the TDTF interrupt and write new data to the transmit FIFO before the last character in the Transmit FIFO has been sent.

#### • Block Waiting Time

• The block waiting time (BWT) is defined as the maximum time between the start bits of the last character of a transmitted block and the first character of the next received block. The value of BWT is always greater than 1800 ETU. The EMV SIM transmitter provides two General Purpose Counter(s) either of which can be used to track the BWT. The BWT is purely determined by software response time to the transmit interrupts.

#### • Block Guard Time

• The block guard time (BGT) is defined as the minimum delay between the start bits of the last character of a transmitted block and the first character of the next received block. The value of BGT is 22 ETU. The EMV SIM module supports the BGT by providing the ability to generate an interrupt when the last byte is received, and transmitting within 2 ETU after the XMT\_EN bit is set. The BGT will be determined by the speed at which the software can react to an interrupt and enable the transmitter.

#### • Error Detection Code

• "T=1" cards can specify LRC or CRC error detection codes to be used. The EMV SIM module provides hardware support for both the LRC and CRC operation.

## 21.6.5 LRC and CRC

#### 21.6.5.1 LRC Block

The EMV SIM module provides an 8-bit Linear Redundancy Check (LRC) generator / checker. The block is provided for use with T=1 Smart Cards that support LRC. This block can be enabled through the LRC\_EN bit in the CNTL register. This block performs an 8-bit exclusive-OR on all received or transmitted characters. At the end of the reception of a block of characters, the result is expected to be 00. If so, the LRC\_OK bit is set in the RX\_STATUS register. During transmission, the LRC block Exclusive-ORs

each character that is transmitted with the current value of the LRC. If the XMT\_CRC\_LRC bit in the CTRL register is set, the LRC value will automatically be sent by the transmitter as the final character when the transmit FIFO empties.

The LRC value can be reset in multiple ways. Clearing the LCR\_EN bit in the CTRL register will reset the LRC value. At the end of a transmission (either after the LRC byte is transmitted, or after the last character in the transmit FIFO is sent when XMT\_CRC\_LRC is clear), the LRC value is automatically reset by the EMV SIM hardware. Finally, when setting the XMT\_EN bit, the EMV SIM hardware resets the LRC value.

Summary of configuration needed to use LRC block:

- Use the LRC\_EN bit in CTRL register to enable the LRC block
- Use the XMT\_CRC\_LRC bit to enable the transmission of the LRC Character after the last character in the Transmit FIFO is sent.

#### 21.6.5.2 CRC Block

The EMV SIM module provides an 16-bit Cyclic Redundancy Check (CRC) generator / checker. The block is provided for use with T=1 Smart Cards that support CRC. This block can be enabled through the CRC\_EN bit in the CTRL register. This block performs a polynomial based check on all received or transmitted characters. The polynomial used for calculating the CRC is  $G(x) = x^{16} + x^{12} + x^5 + 1$ . The CRC register is initialized to all "1" before the data is shifted in. The CRC block can be configured to compute using the ISO 7816 CRC method or the 16-bit CCITT CRC method. The software can select the following bits: CRC\_IN\_FLIP, CRC\_OUT\_FLIP, and INV\_CRC\_VAL of the CTRL register.

- To select CCITT CRC method, set
  - CRC\_IN\_FLIP = 1
  - CRC\_OUT\_FLIP = 1
  - INV\_CRC\_VAL = 1
- To select normal CRC method (i.e. ISO 7816 CRC method), set
  - $CRC_IN_VAL = 0$
  - CRC OUT VAL = 0
  - INV\_CRC\_VAL = 1

During transmission, the CRC block updates the current value of the CRC using each character. If the XMT\_CRC\_LRC bit in the CTRL register is set, the CRC value will automatically be formatted as per the selected CRC method (CCITT or normal) and sent by the EMV SIM transmitter as the final two characters when the transmit FIFO empties. At the end of the reception of a block of characters, the residual from the CRC calculation is compared and the CRC\_OK bit is set in the RX\_STATUS register.

#### NOTE

Setting any other value for CRC\_IN\_FLIP, CRC\_OUT\_FLIP and INV\_CRC\_VAL will cause CRC value to be formatted accordingly; however the CRC will not be compliant to the standard CRC used in Smart Cards.

The CRC value can be reset/initialized in multiple ways. Clearing the CRC\_EN bit in the CTRL register will reset the CRC value. At the end of a transmission (either after the CRC characters are transmitted, or after the last character in the transmit FIFO is sent when XMT\_CRC\_LRC is clear), the CRC value is automatically reset by the EMV SIM hardware. Finally, when setting the XMT\_EN bit, the EMV SIM hardware resets the CRC value.

Summary of configuration needed to use CRC block:

- Use CRC\_IN\_FLIP, CRC\_OUT\_FLIP and INV\_CRC\_VAL bits in CTRL register to select the desired CRC method (CCITT or normal)
- Use the CRC\_EN bit in CTRL register to enable the CRC block
- Use the XMT\_CRC\_LRC bit to enable the transmission of the CRC Characters after the last character in the Transmit FIFO is sent.

# 21.6.6 Message Handling

The EMV SIM module has FIFOs on both transmit and receive side for handling all message bytes.

#### 21.6.6.1 Transmit FIFO

A 4-byte deep FIFO is implemented in the transmitter. The transmit FIFO can be written into by the software but reads to this FIFO will return zeros. To take care of clock synchronization, each write access will have wait states inserted by the module but this is transparent to the software. The Tx FIFO can be written to while the transmitter is enabled, however, the transmitter does not start transmitting while the FIFO is empty. A write to the Tx FIFO will initiate the transmit operation. Software can store more bytes into the Tx FIFO until the programmed threshold is reached. Software can enable DMA operation by setting TX\_DMA\_EN = 1 in the CTRL register. On setting this bit, a DMA request will be asserted and remain asserted till the number of bytes in FIFO reached the programmed threshold value (TDT[3:0] in the TX\_THD register).

The transmit FIFO can be flushed by setting the FLSH\_TX bit in the CTRL register. A transmit NACK threshold error (TNTE) will halt the transmitter, and flush the transmit FIFO. The flush operation resets the transmit read and write pointers to equal values. Everything in the transmitter block is reset by the transmit flush operation. This does not include the control registers associated with the transmitter. The Transmit data threshold flag (TDTF) does not get cleared by the FLSH\_TX operation.

#### 21.6.6.2 Receive FIFO

A 4-byte deep FIFO is implemented in the receiver. Since more than 4-bytes can be received in the FIFO, the software must ensure that the Rx FIFO is periodically read. The Rx FIFO can be read by software via normal CPU accesses on interrupt (RX\_DATA interrupt flag) or via DMA by setting the DMA\_RX\_EN bit in CTRL register. The software cannot write to this register. A write access may terminate in a transfer error.

The Rx FIFO is loaded by the receiver when it receives an error free message byte with correct parity. The FIFO stores the message byte only. When the total bytes in the Rx FIFO equals the programmed threshold value (RDT[3:0] in RX\_THD register), the RDTF bit is asserted in the RX\_STATUS register. An interrupt will be asserted if the RDT\_IM bit in the INT\_MASK is cleared. If DMA access to RX\_FIFO is enabled, the DMA request to read the Rx FIFO will be asserted when the threshold flag is set and will clear when all the bytes are read out from the Rx FIFO.

The receive FIFO can be flushed by setting the FLSH\_RX bit in the CTRL register. The flush operation resets the receiver except for receiver control registers.

#### **NOTE**

Since the register bits and the receiver logic are in different clock domains, the software needs to make sure to allow clock synchronization time when sampling the RDTF bit. One proposed method could be to read one byte at a time (from Rx FIFO) when RDTF is asserted, allow a time of 3 bus clock cycles after Rx FIFO read and then check the status of the RDTF bit and repeat as necessary. Alternatively, one could set the receiver threshold one more than actually needed.

**Rx FIFO Overflow Detection:** When a byte is received by the receiver and the Rx FIFO is not read and already contains 4 bytes, a FIFO overflow error will be asserted (RFO bit set to 1 in RX\_STATUS register). The received byte will be discarded leaving the FIFO with the first 4 bytes received. If the ONACK bit in the CTRL register is asserted, the

KL28Z Reference Manual, Rev. 4, 06/2016

transmitter will generate a NACK for the overflow condition every time a new byte is received that cannot be stored in the Rx FIFO. The EMV SIM module will continually send NACKs till the Rx FIFO is read or NACK transmit threshold is reached.

#### 21.6.7 Protocol Timers

The EMV SIM module has several 16-bit and 32-bit timers to allow the software perform protocol timing checks and measurements like:

- Guard Time
- Character Wait Time
- Block Wait Time
- · Block Guard Time
- Work Wait Time

In addition to the above, the EMV SIM module also contains two 32-bit general purpose counters which can be used by software for any application specific time measurement.

#### 21.6.7.1 Transmit Guard Time

The Transmit Guard time is the number of ETUs inserted by the transmitter between each character being transmitted. The number of ETUs is controlled by programming the TX\_GETU register. The Guard Time is measured as the time (in ETUs) between the STOP bits of previous character and the START bit of next character.

For a Guard Time programmed as 0xFF in GETU[7:0] bits of TX\_GETU register, the transmitter inserts one STOP bit instead of two.

#### 21.6.7.2 Character Wait Time

The EMV SIM receiver block includes a 16-bit counter that counts the number of bit times (ETUs) between received characters (i.e. time between start bits in the consecutive characters received). When enabled, the Character Wait Time Counter (CWT) will not start counting until after the START bit(s) of a valid character has been received. The counter is synchronized to the receive character bit positions so that an accurate count of the number of ETUs between characters can be made. The Character Wait Time Counter has a 16-bit programmable comparator. Software can write the expected number of ETUs between characters to the comparator. If the time between characters exceeds this value, an interrupt flag will be set and an interrupt generated if the mask is clear. The CWT can be configured as follows:

- Program the CWT\_VAL register to the value that needs to be enforced
- Activate CWT function by setting the CWT\_EN bit in the CTRL register
- Enable the CWT\_ERR interrupt by clearing the CWT\_IM bit in the INT\_MASK register
- If an interrupt occurs, then the software should read the RX\_STATUS register to determine if the error was caused by a CWT\_ERR violation. The software should clear the CWT\_ERR interrupt by writing a "1" to the CWT\_ERR bit in the RX\_STATUS register
- Software can disable the CWT counter by clearing the CWT\_EN bit in the CTRL register at any time

#### 21.6.7.3 Block Wait Time and Block Guard Time

A 32-bit timer is used to measure both Block Wait Time (BWT) and Block Guard Time (BGT). The BWT and BGT timer are used to measure the delay between the leading edge of the last character of the block received by the card and the leading edge of the first character of the next block sent by the card. If this time measured is larger than the value in BWT\_VAL register, then the BWT\_ERR flag will be set and an interrupt generated. If the time is less than the value in the BGT\_VAL register, then the BGT\_ERR flag will be set and an interrupt generated. The block wait timer can be configured as follows:

- Program the BWT\_VAL and BGT\_VAL registers to the value that need to be enforced
- Activate the block wait timer by writing '1' to BWT\_EN bit in the CTRL register
- Enable the BWT\_ERR and BGT\_ERR interrupts by clearing the BWT\_IM and BGT\_IM bits in the INT\_MASK register
- If an interrupt occurs, then the software should read the RX\_STATUS register to determine if the error was caused by a BWT\_ERR or BGT\_ERR violation. The software should clear the interrupt status bit by writing a "1" to the BWT\_ERR bit or BGT\_ERR, respectively, in the RX\_STATUS register
- Software can disable the BWT counter by clearing the BWT\_EN bit in the CTRL register at any time

#### NOTE

BWT should be enabled after all bytes are written to in Tx FIFO. This is necessary to avoid the condition where writes to Tx FIFO are very slow (more than 1 ETU time apart) and if BWT is enabled earlier, then BWT error can trigger falsely.

#### **21.6.7.4** Work Wait Time

There is no separate counter to measure the work wait time (WWT). Work wait time is a combination of BWT and CWT. To measure WWT, software must configure both CWT\_VAL and BWT\_VAL to the value to enforced. When measuring WWT, the BGT timer will not be used so it should be masked (inactive) by the BGT\_IM bit. Below is the sequence to program the EMV SIM to send and receive data while checking WWT:

- Program both the CWT\_VAL and the BWT\_VAL registers to the WWT (work wait time) value that needs to be enforced. Set BGT register to 0 (this is the default value).
- Activate both the CWT and BWT functions by setting the CWT\_EN and BWT\_EN bit in the CTRL register
- Enable the CWT\_ERR and BWT\_ERR interrupts by clearing the CWT\_IM and BWT\_IM bits in the INT\_MASK register
- Program the EMV SIM module to enable Receiver or Transmitter as desired by application
- If an interrupt occurs, then the software should consider that a WWT violation if the CWT\_ERR or BWT\_ERR bits are asserted. The software should clear the CWT\_ERR or BWT\_ERR interrupt by writing a "1" to the BWT\_ERR or CWT\_ERR bit in the RX\_STATUS register

## 21.6.7.5 General Purpose Timers

The EMV SIM module provides TWO 16-bit counters for use, when timing events during Smart Card communication. The clock source for the counter is selectable between three sources: Card Clock, Receiver Clock (16 times the ETU clock) or ETU Clock (for Transmitter). The GPCNT0/1\_CLKSEL[1:0] bits in the CTRL register are used to select the clock input. The counter is enabled as soon as the input clock is selected. The starting of the counter is immediate once the input clock is running. Software can control the three input clock sources by using the SCEN, KILL\_CLOCKS, RCV\_EN and XMT\_EN bits provided in the CTRL register.

To run the counters from the card clock source the following conditions must be met:

- 'KILL\_CLOCKS = 0' in the CTRL register
- 'RCV\_EN = 1' or XMT\_EN = 1 in the CTRL register
- 'SCEN = 1' in the PCSR register
- 'GPCNT\_CLKSET[1:0] = 01' in the CLKCFG register

The counter will begin to count at the card clock rate as soon as these conditions are met.

To run the counters from the receive clock source the following conditions must be met:

• 'KILL\_CLOCKS = 0' in the CTRL register.

- 'RCV\_EN = 1' or XMT\_EN = 1 in the CTRL register
- 'GPCNT0/1\_CLKSET[1:0] = 10' in the CLKCFG register

The counter will begin to count at the receive clock rate as soon as these conditions are met.

To run the counters from the ETU (transmit) clock source the following conditions must be met:

- 'KILL\_CLOCKS = 0' in the CTRL register.
- 'RCV\_EN = 1' or XMT\_EN = 1 in the CTRL register
- 'GPCNT0/1\_CLKSET[1:0] = 11' in the CLKCFG register

The counters will begin to count at the ETU clock rate as soon as these conditions are met.

The counters can be reset by setting GPCNT0/1\_CLKSEL[1:0] to 00. A 16-bit comparator value (GPCNT0/1\_VAL register) is provided that allows the software to select a count value at which the interrupt flags (GPCNT0/1\_TO bit in TX\_STATUS register) can be set and an interrupt generated if the mask (GPCNT0/1\_IM bits in INT\_MASK register) are clear.

The following sequence should be followed to configure both general purpose timers:

- Program counter comparator using the GPCNT0/1\_VAL register
- Enable the conditions described above using the CTRL register
- Select desired clock source for the General Purpose Counter using the CLKCFG register
- Enable interrupts in the INT\_MASK register

# 21.6.8 Answer To Reset (ATR) Detection

The first communication that occurs between the Smart Card and the EMV SIM module will be a block of data sent from the Smart Card to the EMV SIM module after the card is powered up and the card reset is removed (As described in Smart Card Interface and Control Section). This block is called the Answer To Reset (ATR). To receive the ATR, the EMV SIM module should be configured for 12 ETU character reception. According to the ISO 7816-3 spec, both "T=0" and "T=1" cards will communicate initially using 12 ETU character durations.

The following steps provide a suggested approach to configure the EMV SIM module to receive the ATR.

• Clear RCVR11 bit in the CTRL register

• Set ANACK bit in the CTRL register to enable NACK generation. The ISO 7816-3 spec allows the EMV SIM module to NACK any communication errors that occur during the initial communication at 12 ETU.

#### NOTE

The Europay MasterCard and VISA (EMV) cards are similar to "T=1", but do not allow the EMV SIM module to NACK during the initial communication

- Enable RDTF and RFO interrupts by setting RDT\_IM and RFO\_IM bits in INT\_MASK register. These interrupts are enabled to notify the software when characters are received. A threshold can be set for the number of characters to receive before generating an interrupt.
- Set desired threshold for received characters by writing RDT in RX\_THD register

The EMV SIM should be setup to perform in initial character mode during ATR detection. This will cause the hardware to identify the first valid character sent during the ATR as an initial character. This character will automatically configure the hardware for the data convention used by the Smart Card.

• Set Initial Character Mode by setting the ICM bit in the CTRL register

The ISO 7816-3 spec requires that Smart Cards meet certain timing restrictions. One of these is the time from the de-assertion of the card reset to the beginning of the ATR sequence. The EMV SIM module's General Purpose Counter can be used to verify that the Smart Card begins its ATR within the 400 to 40,000 card clock cycle range.

- Set the General Purpose Counter 0 or 1 Timeout Value to 0x9C40 using GPCNT0/1\_VAL register.
- Enable General Purpose Counter Interrupt by clearing GPCNT0/1\_IM in INT\_MASK register.
- Enable General Purpose Counter by programming the GPCNT0/1\_CLKSEL[1:0] bits to 01, so that the card clock is used for counting.

The ISO7816-3 spec states that the maximum allowed time between two characters during the ATR is 9600 ETUs (Initial Waiting Time). The Character Wait Time Counter should be setup to detect any errors for this condition.

- Set Character Wait Time Counter Comparator to 9600 using the CWT\_VAL register
- Enable the Character Wait Time Counter Interrupt by clearing CWT\_ERR\_IM in INT\_MASK register
- Enable the Character Wait Time Counter by setting the CWT\_EN bit in the CTRL register

The last step in preparing for ATR reception is to enable the receiver.

• Set RCV\_EN bit in CTRL register

The EMV SIM module will generate interrupts once a threshold number of characters is received. The software should react to these interrupts and read the characters from the receive FIFO (RX\_BUF) until the complete ATR has been received. If a General Purpose Counter interrupt occurs before the final ATR character is received, then the card should be deactivated according to the ISO 7816-3 spec (See Section Smart Card Interface and Control). Otherwise, once a valid ATR is received, the software will know from the ATR information the specific characteristics for this card (refer to the ISO 7816-3 spec for details).

# 21.6.8.1 Programming Considerations for T=0 Smart Cards

If the card is of type T=0, the software should adjust the following parameters according to the information in the ATR:

- Adjust the baud rate by changing the values of DIVISOR register based on the values of 'F' and 'D' received in the ATR.
- Adjust the guard time between characters by changing the value of GETU[7:0] in the TX\_GETU register.
- Adjust NACK capability by modifying the values of the ONACK and ANACK bits in the CTRL register.
- Adjust the stop clock polarity by modifying the value of the SCSP bit in the PCSR register.
- Adjust the level of transmit NACK re-transmissions allowed by modifying the value of the TNCK\_THD[3:0] bits in the TX\_THD register.
- Adjust the level for the Receive NACK threshold by modifying the RNCK\_THD[3:0] bits in the RX\_THD register.

If a negotiation with the Smart Card is desired, the software sends a PPS response to the Smart Card. To send the response, the following steps should be performed:

- Set the desired transmit FIFO threshold level by writing the TDT[3:0] bits in the TX\_THD register.
- Clear all transmit interrupt flags in the TX\_STATUS register by writing a one to the bits of the register.
- Enable the transmit interrupts desired by clearing the mask bits in the INT\_MASK register. If more than 4 characters are to be sent, it is suggested that the TDTF interrupt be used to signify when to write more characters to the transmit FIFO. This results in the most efficient transfer times to the Smart Card.
- Enable the transmitter by setting the XMT\_EN bit in the CTRL register.
- Write the characters to be sent as response (max 4) to the transmit FIFO using the TX\_BUF register.

At this point, the EMV SIM module will transmit the characters in the transmit FIFO. If more than 4 characters are to be sent, the transmit threshold interrupt will be set when the threshold number of characters are remaining in the FIFO. The software can then write an additional number of characters to be sent without interrupting transmission to the Smart Card.

Once the transmission is complete, the EMV SIM module should be completely configured for standard operation with the T=0 Smart Card. The software can continue to service RDTF interrupts for received characters, and TDTF interrupts for transmitted characters.

## 21.6.8.2 Programming Considerations for T=1 Smart Cards

If the card is of type T=1, the software should adjust the following parameters according to the information in the ATR:

- Adjust the baud rate by changing the values of DIVISOR register based on the values of 'F' and 'D' received in the ATR.
- Adjust the guard time between characters by changing the value of GETU[7:0] in the TX\_GETU register. Setting GETU[7:0] to 0xFF configures the SIM transmitter for 11 ETU transmissions.
- Disable NACK capability by clearing the ONACK and ANACK bits in the CTRL register. T=1 cards do not allow NACKs.
- Adjust the stop clock polarity by modifying the value of the SCSP bit in the PCSR register.
- Set Character Wait Time Counter Timeout Value to value specified in the ATR by using the CWT\_VAL register.
- Enable the Character Wait Time Counter Interrupt by clearing CWT\_ERR\_IM in INT\_MASK register.
- Enable the Character Wait Time Counter by setting the CWT\_EN bit in the CTRL register.
- Enable CRC or LRC error checking according to the ATR information by setting either the CRC\_EN or LRC\_EN bit in the CTRL register. These bits should never be set at the same time!

For T=1 cards, the ATR is sent using a T=0 type of structure (12 ETU, no LRC or CRC). If a negotiation with the Smart Card is desired, the software will send a PPS response to the Smart Card. Otherwise, the protocol is initiated with a block transfer from the EMV SIM module. In order to send the response or the first block, the following steps should be performed:

• Set the desired transmit FIFO threshold level by writing the TDT[3:0] bits in the TX\_THD register.

- Clear all transmit interrupt flags in the TX\_STATUS register by writing a one to the bits of the register.
- Enable the transmit interrupts desired by clearing the mask bits in the INT\_MASK register. If more than 4 characters are to be sent, it is suggested that the TDTF interrupt be used to signify when to write more characters to the transmit FIFO. This results in the most efficient transfer times to the Smart Card.
- Enable the transmission of the error checking characters (LRC or CRC) by setting the XMT\_CRC\_LRC bit in the CTRL register.

#### NOTE

If the card supports PPS, the software may not be allowed to send the LRC/CRC information until the PPS exchange is completed. If so, do not set the XMT\_CRC\_LRC bit during the PPS exchange.

- Enable the transmitter by setting the XMT\_EN bit in the CTRL register.
- Write the characters to be sent as response (max 4) to the transmit FIFO using the TX\_BUF register.

At this point, the EMV SIM module will transmit the characters in the transmit FIFO. If more than 4 characters are to be sent, the transmit threshold interrupt will be set when the threshold number of characters are remaining in the FIFO. The software can then write an additional number of characters to be sent without interrupting transmission to the Smart Card.

Once the transmission is complete, the EMV SIM module should be completely configured for standard operation with the T=1 Smart Card. The software can continue to service RDTF interrupts for received characters, and TDTF interrupts for transmitted characters.

KL28Z Reference Manual, Rev. 4, 06/2016

# Chapter 22 Flexible I/O (FlexIO)

#### 22.1 Introduction

#### **22.1.1 Overview**

The FlexIO is a highly configurable module providing a wide range of functionality including:

- Emulation of a variety of serial/parallel communication protocols
- Flexible 16-bit timers with support for a variety of trigger, reset, enable and disable conditions
- Programmable logic blocks allowing the implementation of digital logic functions on-chip and configurable interaction of internal and external modules
- Programmable state machine for offloading basic system control functions from CPU

# 22.1.2 Features

The FlexIO module is capable of supporting a wide range of protocols including, but not limited to:

- UART
- I2C
- SPI
- I2S
- Camera IF
- Motorola 68K/Intel 8080 bus
- PWM/Waveform generation

The following key features are provided:

• Array of 32-bit shift registers with transmit, receive and data match modes

#### Introduction

- Double buffered shifter operation for continuous data transfer
- Shifter concatenation to support large transfer sizes
- Automatic start/stop bit generation
- 1, 2, 4, 8, 16 or 32 multi-bit shift widths for parallel interface support
- Interrupt, DMA or polled transmit/receive operation
- Programmable baud rates independent of bus clock frequency, with support for asynchronous operation during stop modes
- Highly flexible 16-bit timers with support for a variety of internal or external trigger, reset, enable and disable conditions
- Programmable logic mode for integrating external digital logic functions on-chip or combining pin/shifter/timer functions to generate complex outputs
- Programmable state machine for offloading basic system control functions from CPU with support for up to 8 states, 8 outputs and 3 selectable inputs per state

# 22.1.3 Block Diagram

The following diagram gives a high-level overview of the configuration of FlexIO timers and shifters.

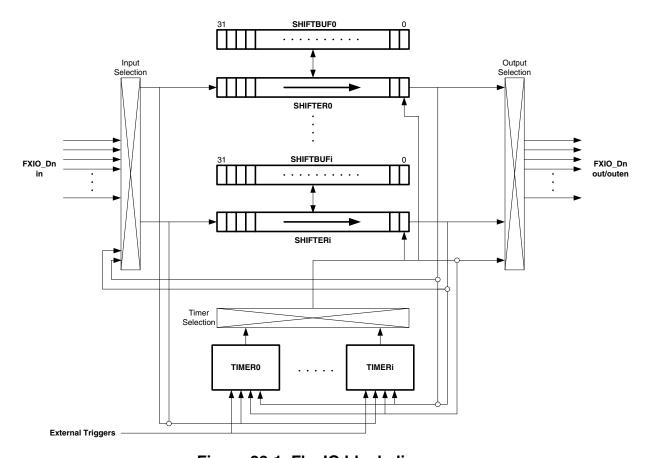



Figure 22-1. FlexIO block diagram

KL28Z Reference Manual, Rev. 4, 06/2016

#### 22.1.4 **Modes of operation**

The FlexIO module supports the chip modes described in the following table.

Table 22-1. Chip modes supported by the FlexIO module

| Chip mode        | FlexIO Operation                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run              | Normal operation                                                                                                                                                                        |
| Stop/Wait        | Can continue operating provided the Doze Enable bit (CTRL[DOZEN]) is clear and the FlexIO is using an external or internal clock source which remains operating during stop/wait modes. |
| Low Leakage Stop | The Doze Enable (CTRL[DOZEN]) bit is ignored and the FlexIO will wait for all Timers to complete any pending operation before acknowledging low leakage mode entry.                     |
| Debug            | Can continue operating provided the Debug Enable bit (CTRL[DBGE]) is set.                                                                                                               |

#### 22.1.5 **FlexIO Signal Descriptions**

| Signal | Description                                               | I/O |
|--------|-----------------------------------------------------------|-----|
| _ ` '  | Bidirectional FlexIO Shifter and Timer pin inputs/outputs | I/O |

# 22.2 Memory Map and Registers

# 22.2.1 FLEXIO Register Descriptions

# 22.2.1.1 FLEXIO Memory Map

| Offset    | Register              | Width     | Access | Reset value |
|-----------|-----------------------|-----------|--------|-------------|
|           |                       | (In bits) |        |             |
| 400CA000h | Version ID (VERID)    | 32        | RO     | 01010001h   |
| 400CA004h | Parameter (PARAM)     | 32        | RO     | 04200808h   |
| 400CA008h | FlexIO Control (CTRL) | 32        | RW     | 00000000h   |
| 400CA00Ch | Pin State (PIN)       | 32        | RO     | 00000000h   |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 529 **NXP Semiconductors** 

#### **Memory Map and Registers**

| Offset                   | Register                                                           | Width     | Access | Reset value |
|--------------------------|--------------------------------------------------------------------|-----------|--------|-------------|
|                          |                                                                    | (In bits) |        |             |
| 400CA010h                | Shifter Status (SHIFTSTAT)                                         | 32        | W1C    | 00000000h   |
| 400CA014h                | Shifter Error (SHIFTERR)                                           | 32        | W1C    | 00000000h   |
| 400CA018h                | Timer Status (TIMSTAT)                                             | 32        | W1C    | 00000000h   |
| 400CA020h                | Shifter Status Interrupt Enable (SHIFTSIEN)                        | 32        | RW     | 00000000h   |
| 400CA024h                | Shifter Error Interrupt Enable (SHIFTEIEN)                         | 32        | RW     | 00000000h   |
| 400CA028h                | Timer Interrupt Enable (TIMIEN)                                    | 32        | RW     | 00000000h   |
| 400CA030h                | Shifter Status DMA Enable (SHIFTSDEN)                              | 32        | RW     | 00000000h   |
| 400CA040h                | Shifter State (SHIFTSTATE)                                         | 32        | RW     | 00000000h   |
| 400CA080h -<br>400CA09Ch | Shifter Control N (SHIFTCTL0 - SHIFTCTL7)                          | 32        | RW     | 00000000h   |
| 400CA100h -<br>400CA11Ch | Shifter Configuration N (SHIFTCFG0 - SHIFTCFG7)                    | 32        | RW     | 00000000h   |
| 400CA200h -<br>400CA21Ch | Shifter Buffer N (SHIFTBUF0 - SHIFTBUF7)                           | 32        | RW     | 00000000h   |
| 400CA280h -<br>400CA29Ch | Shifter Buffer N Bit Swapped (SHIFTBUFBIS0 - SHIFTBUFBIS7)         | 32        | RW     | 00000000h   |
| 400CA300h -<br>400CA31Ch | Shifter Buffer N Byte Swapped (SHIFTBUFBYS0 - SHIFTBUFBYS7)        | 32        | RW     | 00000000h   |
| 400CA380h -<br>400CA39Ch | Shifter Buffer N Bit Byte Swapped (SHIFTBUFBBS0 - SHIFTBUFBBS7)    | 32        | RW     | 00000000h   |
| 400CA400h -<br>400CA41Ch | Timer Control N (TIMCTL0 - TIMCTL7)                                | 32        | RW     | 00000000h   |
| 400CA480h -<br>400CA49Ch | Timer Configuration N (TIMCFG0 - TIMCFG7)                          | 32        | RW     | 00000000h   |
| 400CA500h -<br>400CA51Ch | Timer Compare N (TIMCMP0 - TIMCMP7)                                | 32        | RW     | 00000000h   |
| 400CA680h -<br>400CA69Ch | Shifter Buffer N Nibble Byte Swapped (SHIFTBUFNBS0 - SHIFTBUFNBS7) | 32        | RW     | 00000000h   |
| 400CA700h -<br>400CA71Ch | Shifter Buffer N Half Word Swapped (SHIFTBUFHWS0 - SHIFTBUFHWS7)   | 32        | RW     | 00000000h   |
| 400CA780h -<br>400CA79Ch | Shifter Buffer N Nibble Swapped (SHIFTBUFNIS0 - SHIFTBUFNIS7)      | 32        | RW     | 00000000h   |

# 22.2.1.2 Version ID (VERID)

## 22.2.1.2.1 Address

| Register | Offset    |
|----------|-----------|
| VERID    | 400CA000h |

#### 22.2.1.2.2 Function

.

# 22.2.1.2.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27  | 26 | 25 | 24    | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|-----|----|----|-------|------|----|----|----|----|----|----|----|
| R     |    |    |    | MA | JOR |    |    | MINOR |      |    |    |    |    |    |    |    |
| W     |    |    |    |    |     |    |    |       |      |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
|       |    |    |    |    |     |    |    |       |      |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11  | 10 | 9  | 8     | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |     |    |    | FEAT  | TURE |    |    |    |    |    |    |    |
| W     |    |    |    |    |     |    |    |       |      |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 1  |

#### 22.2.1.2.4 Fields

| Field   | Function                                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-24   | Major Version Number                                                                                                                                                  |
| MAJOR   | This read only field returns the major version number for the module specification.                                                                                   |
| 23-16   | Minor Version Number                                                                                                                                                  |
| MINOR   | This read only field returns the minor version number for the module specification.                                                                                   |
| 15-0    | Feature Specification Number                                                                                                                                          |
| FEATURE | This read only field returns the feature set number.  0000000000000000 - Standard features implemented.  000000000000001b - Supports state, logic and parallel modes. |

# 22.2.1.3 Parameter (PARAM)

#### 22.2.1.3.1 Address

| Register | Offset    |
|----------|-----------|
| PARAM    | 400CA004h |

## 22.2.1.3.2 Function

.

KL28Z Reference Manual, Rev. 4, 06/2016

# 22.2.1.3.3 Diagram

| Bits  | 31 | 30 | 29 | 28   | 27  | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19  | 18 | 17 | 16 |
|-------|----|----|----|------|-----|----|----|----|----|----|----|------|-----|----|----|----|
| R     |    |    |    | TRIG | GER |    |    |    |    |    | Р  | IN   |     |    |    |    |
| W     |    |    |    |      |     |    |    |    |    |    |    |      |     |    |    |    |
| Reset | 0  | 0  | 0  | 0    | 0   | 1  | 0  | 0  | 0  | 0  | 1  | 0    | 0   | 0  | 0  | 0  |
|       |    |    |    |      |     |    |    |    |    |    |    |      |     |    |    |    |
| Bits  | 15 | 14 | 13 | 12   | 11  | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3   | 2  | 1  | 0  |
| R     |    |    |    | TIN  | IER |    |    |    |    |    |    | SHIF | TER |    |    |    |
| W     |    |    |    |      |     |    |    |    |    |    |    |      |     |    |    |    |
| Reset | 0  | 0  | 0  | 0    | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 1   | 0  | 0  | 0  |

# 22.2.1.3.4 Fields

| Field   | Function                                 |
|---------|------------------------------------------|
| 31-24   | Trigger Number                           |
| TRIGGER | Number of external triggers implemented. |
| 23-16   | Pin Number                               |
| PIN     | Number of Pins implemented.              |
| 15-8    | Timer Number                             |
| TIMER   | Number of Timers implemented.            |
| 7-0     | Shifter Number                           |
| SHIFTER | Number of Shifters implemented.          |

# 22.2.1.4 FlexIO Control (CTRL)

## 22.2.1.4.1 Address

| Register | Offset    |
|----------|-----------|
| CTRL     | 400CA008h |

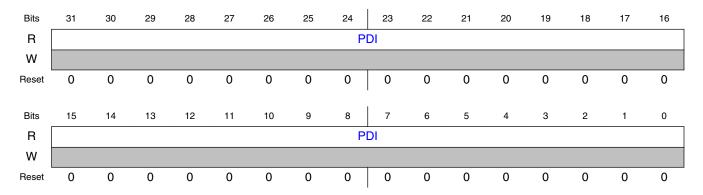
## 22.2.1.4.2 Function

.

# 22.2.1.4.3 Diagram

| Bits  | 31   | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17  | 16   |
|-------|------|-----|----|----|----|----|----|----|----|----|----|----|----|------|-----|------|
| R     | DOZE | DBG |    |    |    |    |    |    | (  | )  |    |    |    |      |     |      |
| W     | N    | E   |    |    |    |    |    |    |    |    |    |    |    |      |     |      |
| Reset | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0    |
|       |      |     |    |    |    |    |    |    |    |    |    |    |    |      |     |      |
| Bits  | 15   | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1   | 0    |
| R     |      |     |    |    |    |    | 0  |    |    |    |    |    |    | FAST | SWR | FLEX |
| W     |      |     |    |    |    |    |    |    |    |    |    |    |    | ACC  | ST  | EN   |
| Reset | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0    |

# 22.2.1.4.4 Fields


| Field   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31      | Doze Enable                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DOZEN   | Disables FlexIO operation in Doze modes. This field is ignored and the FlexIO always disabled in low-leakage stop modes.  0b - FlexIO enabled in Doze modes.  1b - FlexIO disabled in Doze modes.                                                                                                                                                                                                                                                |
| 30      | Debug Enable                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DBGE    | Enables FlexIO operation in Debug mode.  0b - FlexIO is disabled in debug modes.  1b - FlexIO is enabled in debug modes                                                                                                                                                                                                                                                                                                                          |
| 29-3    |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2       | Fast Access                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FASTACC | Enables fast register accesses to FlexIO registers, but requires the FlexIO clock to be at least twice the frequency of the bus clock.  Ob - Configures for normal register accesses to FlexIO  1b - Configures for fast register accesses to FlexIO                                                                                                                                                                                             |
| 1       | Software Reset                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SWRST   | The FlexIO Control Register is not affected by the software reset, all other logic in the FlexIO is affected by the software reset and register accesses are ignored until this bit is cleared. This register bit will remain set until cleared by software, and the reset has cleared in the FlexIO clock domain.  0b - Software reset is disabled  1b - Software reset is enabled, all FlexIO registers except the Control Register are reset. |
| 0       | FlexIO Enable                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FLEXEN  | 0b - FlexIO module is disabled.<br>1b - FlexIO module is enabled.                                                                                                                                                                                                                                                                                                                                                                                |

# 22.2.1.5 Pin State (PIN)

#### 22.2.1.5.1 Address

| Register | Offset    |  |  |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|--|--|
| PIN      | 400CA00Ch |  |  |  |  |  |  |  |  |

# 22.2.1.5.2 Diagram



#### 22.2.1.5.3 Fields

| Field | Function                                           |
|-------|----------------------------------------------------|
| 31-0  | Pin Data Input                                     |
| PDI   | Returns the input data on each of the FlexIO pins. |

# 22.2.1.6 Shifter Status (SHIFTSTAT)

#### 22.2.1.6.1 Address

| Register  | Offset    |  |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|--|
| SHIFTSTAT | 400CA010h |  |  |  |  |  |  |  |

#### 22.2.1.6.2 Function

.

# 22.2.1.6.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | S  | SF |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | W  | 1c |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

## 22.2.1.6.4 Fields

| Field | Function                                                                                                                                                                                                                                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                                                                                            |
| _     |                                                                                                                                                                                                                                            |
| 7-0   | Shifter Status Flag                                                                                                                                                                                                                        |
| SSF   | The shifter status flag is updated when one of the following events occurs:                                                                                                                                                                |
|       | For SMOD=Receive, the status flag is set when SHIFTBUF has been loaded with data from Shifter (SHIFTBUF is full), and the status flag is cleared when SHIFTBUF register is read.                                                           |
|       | For SMOD=Transmit, the status flag is set when SHIFTBUF data has been transferred to the Shifter (SHIFTBUF is empty) or when initially configured for SMOD=Transmit, and the status flag is cleared when the SHIFTBUF register is written. |
|       | For SMOD=Match Store, the status flag is set when a match has occured between SHIFTBUF and Shifter, and the status flag is cleared when the SHIFTBUF register is read.                                                                     |
|       | For SMOD=Match Continuous, returns the current match result between the SHIFTBUF and Shifter.                                                                                                                                              |
|       | For SMOD=State, the status flag for a shifter will set when it is selected by the current state pointer.                                                                                                                                   |
|       | For SMOD=Logic, returns the current value of the programmable logic block output.                                                                                                                                                          |
|       | The status flag can also be cleared by writing a logic one to the flag for all modes except Match Continuous/State/Logic.                                                                                                                  |
|       | 0000000b - Status flag is clear<br>00000001b - Status flag is set                                                                                                                                                                          |

# 22.2.1.7 Shifter Error (SHIFTERR)

#### 22.2.1.7.1 Address

| Register | Offset    |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|
| SHIFTERR | 400CA014h |  |  |  |  |  |  |

KL28Z Reference Manual, Rev. 4, 06/2016

# 22.2.1.7.2 Function

# 22.2.1.7.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | 0  |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | SI | ΞF |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | W  | 1c |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

## 22.2.1.7.4 Fields

| Field | Function                                                                                                                                                                                                                              |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                                                                                       |
| _     |                                                                                                                                                                                                                                       |
| 7-0   | Shifter Error Flags                                                                                                                                                                                                                   |
| SEF   | The shifter error flag is set when one of the following events occurs:                                                                                                                                                                |
|       | For SMOD=Receive, indicates Shifter was ready to store new data into SHIFTBUF before the previous data was read from SHIFTBUF (SHIFTBUF Overrun), or indicates that the received start or stop bit does not match the expected value. |
|       | For SMOD=Transmit, indicates Shifter was ready to load new data from SHIFTBUF before new data had been written into SHIFTBUF (SHIFTBUF Underrun).                                                                                     |
|       | For SMOD=Match Store, indicates a match event occured before the previous match data was read from SHIFTBUF (SHIFTBUF Overrun).                                                                                                       |
|       | For SMOD=Match Continuous, the error flag is set when a match has occured between SHIFTBUF and Shifter.                                                                                                                               |
|       | For SMOD=Logic, the error flag is set when the output of the programmable logic block has asserted.                                                                                                                                   |
|       | Can be cleared by writing logic one to the flag. For SMOD=Match Continuous, can also be cleared when the SHIFTBUF register is read.                                                                                                   |
|       | 00000000b - Shifter Error Flag is clear<br>00000001b - Shifter Error Flag is set                                                                                                                                                      |

KL28Z Reference Manual, Rev. 4, 06/2016 536 **NXP Semiconductors** 

537

# 22.2.1.8 Timer Status (TIMSTAT)

## 22.2.1.8.1 Address

| Register | Offset    |  |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|--|
| TIMSTAT  | 400CA018h |  |  |  |  |  |  |  |

## 22.2.1.8.2 Function

•

# 22.2.1.8.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | TS | SF |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | W  | 1c |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.8.4 Fields

| Field | Function                                                                                                                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                                             |
| _     |                                                                                                                                                                                             |
| 7-0   | Timer Status Flags                                                                                                                                                                          |
| TSF   | The timer status flag sets depending on the timer mode, and can be cleared by writing logic one to the flag.                                                                                |
|       | In 8-bit counter mode, the timer status flag is set when the upper 8-bit counter equals zero and decrements, this also causes the counter to reload with the value in the compare register. |
|       | In 8-bit PWM mode, the timer status flag is set when the upper 8-bit counter equals zero and decrements, this also causes the counter to reload with the value in the compare register      |
|       | In 16-bit counter mode, the timer status flag is set when the 16-bit counter equals zero and decrements, this also causes the counter to reload with the value in the compare register      |
|       | 00000000b - Timer Status Flag is clear<br>00000001b - Timer Status Flag is set                                                                                                              |

KL28Z Reference Manual, Rev. 4, 06/2016

# 22.2.1.9 Shifter Status Interrupt Enable (SHIFTSIEN)

#### 22.2.1.9.1 Address

| Register  | Offset    |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|
| SHIFTSIEN | 400CA020h |  |  |  |  |  |  |

# 22.2.1.9.2 Function

•

# 22.2.1.9.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19   | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|------|----|----|----|
| R     |    |    |    |    |    |    |    | (  | 0  |    |    |    |      |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3    | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | SS | 10   |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | 30 | OIL. |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  |

#### 22.2.1.9.4 Fields

| Field | Function                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                    |
| _     |                                                                                                                                                                    |
| 7-0   | Shifter Status Interrupt Enable                                                                                                                                    |
| SSIE  | Enables interrupt generation when corresponding SSF is set.  00000000b - Shifter Status Flag interrupt disabled  00000001b - Shifter Status Flag interrupt enabled |

# 22.2.1.10 Shifter Error Interrupt Enable (SHIFTEIEN)

# 22.2.1.10.1 Address

| Register  | Offset    |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|
| SHIFTEIEN | 400CA024h |  |  |  |  |  |  |

#### 22.2.1.10.2 Function

.

# 22.2.1.10.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | SE | 16 |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | 36 |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.10.4 Fields

| Field | Function                                                                                                                                                       |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31-8  |                                                                                                                                                                |  |  |  |  |  |
| _     |                                                                                                                                                                |  |  |  |  |  |
| 7-0   | Shifter Error Interrupt Enable                                                                                                                                 |  |  |  |  |  |
| SEIE  | Enables interrupt generation when corresponding SEF is set. 00000000b - Shifter Error Flag interrupt disabled 00000001b - Shifter Error Flag interrupt enabled |  |  |  |  |  |

# 22.2.1.11 Timer Interrupt Enable (TIMIEN)

#### 22.2.1.11.1 Address

| Register | Offset    |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|
| TIMIEN   | 400CA028h |  |  |  |  |  |  |

#### 22.2.1.11.2 Function

•

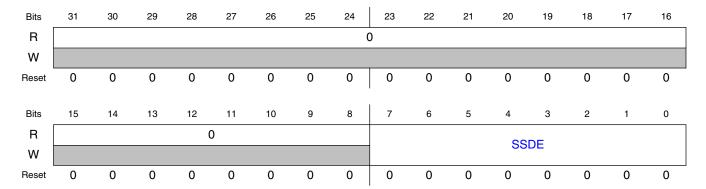
# 22.2.1.11.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19  | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |     |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    | 1  |    |    |    |     |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3   | 2  | 1  | 0  |
| R     |    |    |    | (  | )  |    |    |    |    |    |    | т  | IE  |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    | 16 | .11 |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  |

#### 22.2.1.11.4 Fields

| Field | Function                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                    |
| _     |                                                                                                                                                                    |
| 7-0   | Timer Status Interrupt Enable                                                                                                                                      |
| TEIE  | Enables interrupt generation when corresponding TSF is set. 00000000b - Timer Status Flag interrupt is disabled 00000001b - Timer Status Flag interrupt is enabled |

# 22.2.1.12 Shifter Status DMA Enable (SHIFTSDEN)


#### 22.2.1.12.1 Address

| Register  | Offset    |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|
| SHIFTSDEN | 400CA030h |  |  |  |  |  |  |

# 22.2.1.12.2 Function

.

# 22.2.1.12.3 Diagram



#### 22.2.1.12.4 Fields

| Field | Function                                                                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-8  |                                                                                                                                                                                |
| _     |                                                                                                                                                                                |
| 7-0   | Shifter Status DMA Enable                                                                                                                                                      |
| SSDE  | Enables DMA request generation when corresponding SSF is set.  00000000b - Shifter Status Flag DMA request is disabled  00000001b - Shifter Status Flag DMA request is enabled |

# 22.2.1.13 Shifter State (SHIFTSTATE)

#### 22.2.1.13.1 Address

| Register   | Offset    |
|------------|-----------|
| SHIFTSTATE | 400CA040h |

### 22.2.1.13.2 Function

.

KL28Z Reference Manual, Rev. 4, 06/2016

**Memory Map and Registers** 

## 22.2.1.13.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17    | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|----|
| R     |    |    |    |    |    |    |    | (  | 0  |    |    |    |    |    |       |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |       |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1     | 0  |
| R     |    |    |    |    |    |    | 0  |    | •  |    |    |    |    |    | STATE |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    | SIAIE |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  |

### 22.2.1.13.4 Fields

| Field | Function                                                                                                                                                                                                    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-3  |                                                                                                                                                                                                             |
| _     |                                                                                                                                                                                                             |
| 2-0   | Current State Pointer                                                                                                                                                                                       |
| STATE | The current state field maintains a pointer to keep track of the current Shifter (configured for State mode) enabled to drive outputs and compute the next state. See 'State Mode' section for more detail. |

# 22.2.1.14 Shifter Control N (SHIFTCTLa)

#### 22.2.1.14.1 Address

| Register  | Offset    |
|-----------|-----------|
| SHIFTCTL0 | 400CA080h |
| SHIFTCTL1 | 400CA084h |
| SHIFTCTL2 | 400CA088h |
| SHIFTCTL3 | 400CA08Ch |
| SHIFTCTL4 | 400CA090h |
| SHIFTCTL5 | 400CA094h |
| SHIFTCTL6 | 400CA098h |
| SHIFTCTL7 | 400CA09Ch |

# 22.2.1.14.2 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26     | 25     | 24 | 23   | 22 | 21 | 20 | 19 | 18 | 17     | 16   |
|-------|----|----|----|----|----|--------|--------|----|------|----|----|----|----|----|--------|------|
| R     |    |    | 0  |    |    |        | TIMSEL |    | TIMP |    |    | 0  |    |    | PING   | CEG. |
| W     |    |    |    |    |    |        | TIMOLL | -  | OL   |    |    |    |    |    | ' '''  |      |
| Reset | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0      | 0    |
|       |    |    |    |    |    |        |        |    |      |    |    |    |    |    |        |      |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10     | 9      | 8  | 7    | 6  | 5  | 4  | 3  | 2  | 1      | 0    |
| R     |    | 0  |    |    |    | PINSEL |        |    | PINP |    | (  | )  |    |    | SMOD   |      |
| W     |    |    |    |    |    | FINSEL | -      |    | OL   |    |    |    |    |    | SIVIOD |      |
| Reset | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0      | 0    |

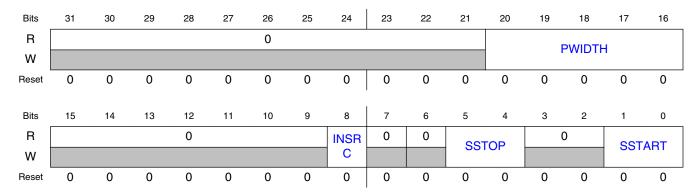
### 22.2.1.14.3 Fields

| Field  | Function                                                                                                                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-27  |                                                                                                                                                                    |
| _      |                                                                                                                                                                    |
| 26-24  | Timer Select                                                                                                                                                       |
| TIMSEL | Selects which Timer is used for controlling the logic/shift register and generating the Shift clock. TIMSEL=i will select TIMERi.                                  |
| 23     | Timer Polarity                                                                                                                                                     |
| TIMPOL | 0b - Shift on posedge of Shift clock<br>1b - Shift on negedge of Shift clock                                                                                       |
| 22-18  |                                                                                                                                                                    |
| _      |                                                                                                                                                                    |
| 17-16  | Shifter Pin Configuration                                                                                                                                          |
| PINCFG | 00b - Shifter pin output disabled 01b - Shifter pin open drain or bidirectional output enable 10b - Shifter pin bidirectional output data 11b - Shifter pin output |
| 15-13  |                                                                                                                                                                    |
| _      |                                                                                                                                                                    |
| 12-8   | Shifter Pin Select                                                                                                                                                 |
| PINSEL | Selects which pin is used by the Shifter input or output. PINSEL=i will select the FXIO_Di pin.                                                                    |
| 7      | Shifter Pin Polarity                                                                                                                                               |
| PINPOL | 0b - Pin is active high<br>1b - Pin is active low                                                                                                                  |
| 6-3    |                                                                                                                                                                    |
| _      |                                                                                                                                                                    |
| 2-0    | Shifter Mode                                                                                                                                                       |
| SMOD   | Configures the mode of the Shifter. 000b - Disabled.                                                                                                               |

#### **Memory Map and Registers**

| Field | Function                                                                                                                                                                                                                                                                              |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 001b - Receive mode. Captures the current Shifter content into the SHIFTBUF on expiration of the Timer.                                                                                                                                                                               |
|       | 010b - Transmit mode. Load SHIFTBUF contents into the Shifter on expiration of the Timer. 011b - Reserved.                                                                                                                                                                            |
|       | 100b - Match Store mode. Shifter data is compared to SHIFTBUF content on expiration of the Timer.                                                                                                                                                                                     |
|       | 101b - Match Continuous mode. Shifter data is continuously compared to SHIFTBUF contents.  110b - State mode. SHIFTBUF contents are used for storing programmable state attributes.  111b - Logic mode. SHIFTBUF contents are used for implementing programmable logic look up table. |

# 22.2.1.15 Shifter Configuration N (SHIFTCFGa)


### 22.2.1.15.1 Address

| Register  | Offset    |
|-----------|-----------|
| SHIFTCFG0 | 400CA100h |
| SHIFTCFG1 | 400CA104h |
| SHIFTCFG2 | 400CA108h |
| SHIFTCFG3 | 400CA10Ch |
| SHIFTCFG4 | 400CA110h |
| SHIFTCFG5 | 400CA114h |
| SHIFTCFG6 | 400CA118h |
| SHIFTCFG7 | 400CA11Ch |

### 22.2.1.15.2 Function

.

## 22.2.1.15.3 Diagram



### 22.2.1.15.4 Fields

| 31-21  20-16 PWIDTH For all Shifters, this register field configures the number of bits to be shifted on each Shift clock as follows:  1-bit shift for PWIDTH=0 4-bit shift for PWIDTH=13 8-bit shift for PWIDTH=47 16-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9  8 Input Source Selects the input source for the shifter. 0b - Pin 1b - Shifter N+1 Output  7  6  5-4 Shifter Stop bit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWIDTH  For all Shifters, this register field configures the number of bits to be shifted on each Shift clock as follows:  1-bit shift for PWIDTH=0 4-bit shift for PWIDTH=13 8-bit shift for PWIDTH=815 32-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9  8 Input Source Selects the input source for the shifter. 0b - Pin 1b - Shifter N+1 Output                                        |
| PWIDTH  For all Shifters, this register field configures the number of bits to be shifted on each Shift clock as follows:  1-bit shift for PWIDTH=0 4-bit shift for PWIDTH=13 8-bit shift for PWIDTH=815 32-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9  8 Input Source Selects the input source for the shifter. 0b - Pin 1b - Shifter N+1 Output                                        |
| follows:  1-bit shift for PWIDTH=0  4-bit shift for PWIDTH=47  16-bit shift for PWIDTH=815  32-bit shift for PWIDTH=1631  For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL]  For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9                                                                                                                                                                                                                                              |
| 4-bit shift for PWIDTH=13 8-bit shift for PWIDTH=47 16-bit shift for PWIDTH=815 32-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows: FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9                                                                                                                                                                                                                                                             |
| 8-bit shift for PWIDTH=47 16-bit shift for PWIDTH=815 32-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows: FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9                                                                                                                                                                                                                                                                                       |
| 16-bit shift for PWIDTH=815 32-bit shift for PWIDTH=1631 For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL] For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9                                                                                                                                                                                                                                                                                                                |
| 32-bit shift for PWIDTH=1631  For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL]  For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9                                                                                                                                                                                                                                                                                                                                          |
| For Shifters which support parallel transmit (SHIFTER0, SHIFTER4) or parallel receive (SHIFTER3, SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL]  For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9  —  8                                                                                                                                                                                                                                                                                                                                                                  |
| SHIFTER7), this register field, together with SHIFTCTL[PINSEL], also selects the pins to be driven or sampled on each Shift clock as follows:  FXIO_D[PINSEL+PWIDTH]:FXIO_D[PINSEL]  For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9  —  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.  15-9 —  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15-9   8 Input Source INSRC Selects the input source for the shifter.  0b - Pin 1b - Shifter N+1 Output  7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B Input Source INSRC Selects the input source for the shifter.  0b - Pin 1b - Shifter N+1 Output  7 — 6 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INSRC Selects the input source for the shifter.  0b - Pin 1b - Shifter N+1 Output  7 — 6 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INSRC Selects the input source for the shifter.  0b - Pin 1b - Shifter N+1 Output  7 — 6 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0b - Pin 1b - Shifter N+1 Output  7 — 6 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5-4 Shifter Stop bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SSTOP For SMOD=Transmit, this field allows automatic stop bit insertion if the selected timer has also enabled stop bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| For SMOD=Receive or Match Store, this field allows automatic stop bit checking if the selected timer had also enabled a stop bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| For SMOD=Logic, this field is used to mask logic pin inputs. See 'Logic Mode' section for more detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00b - Stop bit disabled for transmitter/receiver/match store 01b - Reserved for transmitter/receiver/match store 10b - Transmitter outputs stop bit value 0 on store, receiver/match store sets error flag if stop bit in not 0 11b - Transmitter outputs stop bit value 1 on store, receiver/match store sets error flag if stop bit in not 1                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table continues on the next page...

#### **Memory Map and Registers**

| Field  | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-0    | Shifter Start bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SSTART | For SMOD=Transmit, this field allows automatic start bit insertion if the selected timer has also enabled a start bit.                                                                                                                                                                                                                                                                                                                                                                     |
|        | For SMOD=Receive or Match Store, this field allows automatic start bit checking if the selected timer has also enabled a start bit.                                                                                                                                                                                                                                                                                                                                                        |
|        | For SMOD=State, this field is used to disable state outputs. See 'State Mode' section for more detail.                                                                                                                                                                                                                                                                                                                                                                                     |
|        | For SMOD=Logic, this field is used to mask logic pin inputs. See 'Logic Mode' section for more detail.                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 00b - Start bit disabled for transmitter/receiver/match store, transmitter loads data on enable 01b - Start bit disabled for transmitter/receiver/match store, transmitter loads data on first shift 10b - Transmitter outputs start bit value 0 before loading data on first shift, receiver/match store sets error flag if start bit is not 0 11b - Transmitter outputs start bit value 1 before loading data on first shift, receiver/match store sets error flag if start bit is not 1 |

# 22.2.1.16 Shifter Buffer N (SHIFTBUFa)

### 22.2.1.16.1 Address

| Register  | Offset    |
|-----------|-----------|
| SHIFTBUF0 | 400CA200h |
| SHIFTBUF1 | 400CA204h |
| SHIFTBUF2 | 400CA208h |
| SHIFTBUF3 | 400CA20Ch |
| SHIFTBUF4 | 400CA210h |
| SHIFTBUF5 | 400CA214h |
| SHIFTBUF6 | 400CA218h |
| SHIFTBUF7 | 400CA21Ch |

### 22.2.1.16.2 Function

.

# 22.2.1.16.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24    | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|-------|------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | CLIIE | TBUF |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | ЭПІГ  | IBUF |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |       | '    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8     | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CLUE  | TDUE |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | SHIF  | TBUF |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.16.4 Fields

| Field    | Function                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0     | Shift Buffer                                                                                                                                                                                                                                                                                                                                                                                               |
| SHIFTBUF | Shift buffer data is used for a variety of functions depending on the SMOD setting:                                                                                                                                                                                                                                                                                                                        |
|          | For SMOD=Receive, Shifter data is transferred into SHIFTBUF at the expiration of Timer.                                                                                                                                                                                                                                                                                                                    |
|          | For SMOD=Transmit, SHIFTBUF data is transferred into the Shifter before the Timer begins.                                                                                                                                                                                                                                                                                                                  |
|          | For SMOD=Match Store/Continuous, SHIFTBUF[31:16] contains the data to be matched with the Shifter contents. The Match is checked either continuously (Match Continuous mode) or when the Timer expires (Match Store mode). SHIFTBUF[15:0] can be used to mask the match result (1=mask, 0=no mask). In Match Store mode, Shifter data [31:16] is written to SHIFTBUF[31:16] whenever a match event occurs. |
|          | For SMOD=Logic, SHIFTBUF[31:0] is used to implement a 5-input, 32-bit programmable logic look-up table. See 'Logic Mode' section for more detail.                                                                                                                                                                                                                                                          |
|          | For SMOD=State, SHIFTBUF[31:24] is used to drive the output value when this shifter is selected by the current state pointer and SHIFTBUF[23:0] is used to configure the value of the next state transition. See 'State Mode' section for more detail.                                                                                                                                                     |

# 22.2.1.17 Shifter Buffer N Bit Swapped (SHIFTBUFBISa)

#### 22.2.1.17.1 Address

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBIS0 | 400CA280h |
| SHIFTBUFBIS1 | 400CA284h |
| SHIFTBUFBIS2 | 400CA288h |
| SHIFTBUFBIS3 | 400CA28Ch |
| SHIFTBUFBIS4 | 400CA290h |
| SHIFTBUFBIS5 | 400CA294h |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map and Registers**

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBIS6 | 400CA298h |
| SHIFTBUFBIS7 | 400CA29Ch |

### 22.2.1.17.2 Function

•

## 22.2.1.17.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24       | 23      | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----------|---------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | SHIFTE   |         |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | JIIII II | טום וטכ |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |          |         |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8        | 7       | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CHIETI   | DITEDIO |    |    |    |    |    |    |    |
| w     |    |    |    |    |    |    |    | SHIFTE   | оогыз   |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.17.4 Fields

| Field | Function                                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                   |
|       | Alias to SHIFTBUF register, except reads/writes to this register are bit swapped. Reads return SHIFTBUF[0:31]. |

# 22.2.1.18 Shifter Buffer N Byte Swapped (SHIFTBUFBYSa)

#### 22.2.1.18.1 Address

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBYS0 | 400CA300h |
| SHIFTBUFBYS1 | 400CA304h |
| SHIFTBUFBYS2 | 400CA308h |
| SHIFTBUFBYS3 | 400CA30Ch |
| SHIFTBUFBYS4 | 400CA310h |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBYS5 | 400CA314h |
| SHIFTBUFBYS6 | 400CA318h |
| SHIFTBUFBYS7 | 400CA31Ch |

#### 22.2.1.18.2 Function

•

### 22.2.1.18.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24        | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|-----------|--------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | SHIFTE    | NIERVS | ,  |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | OI III TE | огыс   | ,  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |           |        |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8         | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CHIETE    | LIEDVO |    |    |    |    |    |    |    |
| w     |    |    |    |    |    |    |    | SHIFTE    | OUFBIS | •  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.18.4 Fields

| Field | Function                                                                                                                                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                                                                         |
|       | Alias to SHIFTBUF register, except reads/writes to this register are byte swapped. Reads return { SHIFTBUF[7:0], SHIFTBUF[15:8], SHIFTBUF[23:16], SHIFTBUF[31:24] }. |

# 22.2.1.19 Shifter Buffer N Bit Byte Swapped (SHIFTBUFBBSa)

#### 22.2.1.19.1 Address

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBBS0 | 400CA380h |
| SHIFTBUFBBS1 | 400CA384h |
| SHIFTBUFBBS2 | 400CA388h |
| SHIFTBUFBBS3 | 400CA38Ch |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map and Registers**

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFBBS4 | 400CA390h |
| SHIFTBUFBBS5 | 400CA394h |
| SHIFTBUFBBS6 | 400CA398h |
| SHIFTBUFBBS7 | 400CA39Ch |

### 22.2.1.19.2 Function

•

### 22.2.1.19.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24     | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|--------|--------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | SHIFTE | HEDDO  | ,  |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | SHIFTE | оогоос | ,  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |        |        |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8      | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CHIETE |        | `  |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | SHIFTE | UFBBS  | •  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

### 22.2.1.19.4 Fields

| Field | Function                                                                                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                                                                                         |
|       | Alias to SHIFTBUF register, except reads/writes to this register are bit swapped within each byte. Reads return { SHIFTBUF[24:31], SHIFTBUF[16:23], SHIFTBUF[8:15], SHIFTBUF[0:7] }. |

# 22.2.1.20 Timer Control N (TIMCTLa)

#### 22.2.1.20.1 Address

| Register | Offset    |
|----------|-----------|
| TIMCTL0  | 400CA400h |
| TIMCTL1  | 400CA404h |
| TIMCTL2  | 400CA408h |

Table continues on the next page...

| Register | Offset    |
|----------|-----------|
| TIMCTL3  | 400CA40Ch |
| TIMCTL4  | 400CA410h |
| TIMCTL5  | 400CA414h |
| TIMCTL6  | 400CA418h |
| TIMCTL7  | 400CA41Ch |

### 22.2.1.20.2 Function

•

## 22.2.1.20.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27  | 26      | 25 | 24 | 23   | 22   | 21 | 20 | 19 | 18 | 17    | 16  |
|-------|----|----|----|----|-----|---------|----|----|------|------|----|----|----|----|-------|-----|
| R     | (  | )  |    |    | TDC | SEL     |    |    | TRGP | TRGS |    | (  | )  |    | DINI  | CFG |
| W     |    |    |    |    | inc | JOEL    |    |    | OL   | RC   |    |    |    |    | FIN   | oru |
| Reset | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0     | 0   |
|       |    |    |    |    |     |         |    |    |      |      |    |    |    |    |       |     |
| Bits  | 15 | 14 | 13 | 12 | 11  | 10      | 9  | 8  | 7    | 6    | 5  | 4  | 3  | 2  | 1     | 0   |
| R     |    | 0  |    |    |     | DINICEL |    |    | PINP |      |    | 0  |    |    | TIN   | IOD |
| W     |    |    |    |    |     | PINSEL  | -  |    | OL   |      |    |    |    |    | I IIV | IOD |
| Reset | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0     | 0   |

### 22.2.1.20.4 Fields

| Field  | Function                                                                                                                                                                                                                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-30  |                                                                                                                                                                                                                                                                                                                            |
| _      |                                                                                                                                                                                                                                                                                                                            |
| 29-24  | Trigger Select                                                                                                                                                                                                                                                                                                             |
| TRGSEL | <ul> <li>The valid values for TRGSEL will depend on the FLEXIO_PARAM register.</li> <li>When TRGSRC = 1, the valid values for N will depend on PIN, TIMER, SHIFTER fields in the FLEXIO_PARAM register.</li> <li>When TRGSRC = 0, the valid values for N will depend on TRIGGER field in FLEXIO_PARAM register.</li> </ul> |
|        | Refer to the chip configuration section for external trigger selection.                                                                                                                                                                                                                                                    |
|        | NOTE: For a pin, N=0 to 31. For a Shifter/Timer, N=0 to 7.  The internal trigger selection is configured as follows:  • 4*N - Pin 2*N input  • 4*N+1 - Shifter N status flag  • 4*N+2 - Pin 2*N+1 input  • 4*N+3 - Timer N trigger output                                                                                  |
| 23     | Trigger Polarity                                                                                                                                                                                                                                                                                                           |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

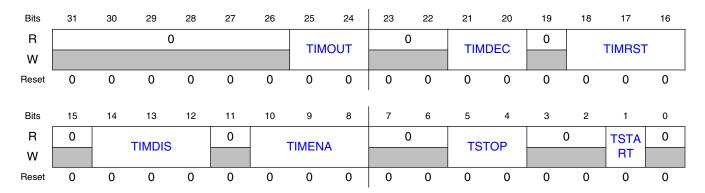
#### **Memory Map and Registers**

| Field  | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRGPOL | 0b - Trigger active high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 1b - Trigger active low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22     | Trigger Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TRGSRC | 0b - External trigger selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 1b - Internal trigger selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21-18  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17-16  | Timer Pin Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PINCFG | 00b - Timer pin output disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 01b - Timer pin open drain or bidirectional output enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 10b - Timer pin bidirectional output data 11b - Timer pin output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15-13  | The state of the s |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12-8   | Timer Pin Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PINSEL | Selects which pin is used by the Timer input or output. PINSEL=i will select the FXIO_Di pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7      | Timer Pin Polarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PINPOL | 0b - Pin is active high 1b - Pin is active low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6-2    | ID - FIII IS active low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6-2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-0    | Timer Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TIMOD  | In 8-bit counter mode, the lower 8-bits of the counter and compare register are used to configure the baud rate of the timer shift clock and the upper 8-bits are used to configure the shifter bit count.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | In 8-bit PWM mode, the lower 8-bits of the counter and compare register are used to configure the high period of the timer shift clock and the upper 8-bits are used to configure the low period of the timer shift clock. The shifter bit count is configured using another timer or external signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | In 16-bit counter mode, the full 16-bits of the counter and compare register are used to configure either the baud rate of the shift clock or the shifter bit count.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 00b - Timer Disabled.<br>01b - Dual 8-bit counters baud/bit mode.<br>10b - Dual 8-bit counters PWM mode.<br>11b - Single 16-bit counter mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 22.2.1.21 Timer Configuration N (TIMCFGa)

### 22.2.1.21.1 Address

| Register | Offset    |
|----------|-----------|
| TIMCFG0  | 400CA480h |
| TIMCFG1  | 400CA484h |


Table continues on the next page...

| Register | Offset    |
|----------|-----------|
| TIMCFG2  | 400CA488h |
| TIMCFG3  | 400CA48Ch |
| TIMCFG4  | 400CA490h |
| TIMCFG5  | 400CA494h |
| TIMCFG6  | 400CA498h |
| TIMCFG7  | 400CA49Ch |

#### 22.2.1.21.2 Function

The options to enable or disable the timer using the Timer N-1 enable or disable are reserved when N is evenly divisible by 4 (eg: Timer 0).

### 22.2.1.21.3 Diagram



#### 22.2.1.21.4 Fields

| Field  | Function                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-26  |                                                                                                                                                                                                                                                                                                                                                                                                       |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25-24  | Timer Output                                                                                                                                                                                                                                                                                                                                                                                          |
| TIMOUT | Configures the initial state of the Timer Output and whether it is affected by the Timer reset.  00b - Timer output is logic one when enabled and is not affected by timer reset  01b - Timer output is logic zero when enabled and is not affected by timer reset  10b - Timer output is logic one when enabled and on timer reset  11b - Timer output is logic zero when enabled and on timer reset |
| 23-22  |                                                                                                                                                                                                                                                                                                                                                                                                       |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21-20  | Timer Decrement                                                                                                                                                                                                                                                                                                                                                                                       |
| TIMDEC | Configures the source of the Timer decrement and the source of the Shift clock.  00b - Decrement counter on FlexIO clock, Shift clock equals Timer output.                                                                                                                                                                                                                                            |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map and Registers**

| Field   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 01b - Decrement counter on Trigger input (both edges), Shift clock equals Timer output.  10b - Decrement counter on Pin input (both edges), Shift clock equals Pin input.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 11b - Decrement counter on Trigger input (both edges), Shift clock equals Trigger input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19<br>— |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18-16   | Timer Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TIMRST  | Configures the condition that causes the timer counter (and optionally the timer output) to be reset. In 8-bit counter mode, the timer reset will only reset the lower 8-bits that configure the baud rate. In all other modes, the timer reset will reset the full 16-bits of the counter.  000b - Timer never reset  001b - Reserved  010b - Timer reset on Timer Pin equal to Timer Output  011b - Timer reset on Timer Trigger equal to Timer Output  100b - Timer reset on Timer Pin rising edge  101b - Reserved  110b - Timer reset on Trigger rising edge  111b - Timer reset on Trigger rising or falling edge |
| 15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14-12   | Timer Disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TIMDIS  | Configures the condition that causes the Timer to be disabled and stop decrementing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 000b - Timer never disabled 001b - Timer disabled on Timer N-1 disable 010b - Timer disabled on Timer compare 011b - Timer disabled on Timer compare and Trigger Low 100b - Timer disabled on Pin rising or falling edge 101b - Timer disabled on Pin rising or falling edge provided Trigger is high 110b - Timer disabled on Trigger falling edge 111b - Reserved                                                                                                                                                                                                                                                     |
| 11      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10-8    | Timer Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TIMENA  | Configures the condition that causes the Timer to be enabled and start decrementing.  000b - Timer always enabled  001b - Timer enabled on Timer N-1 enable  010b - Timer enabled on Trigger high  011b - Timer enabled on Trigger high and Pin high  100b - Timer enabled on Pin rising edge  101b - Timer enabled on Pin rising edge and Trigger high  110b - Timer enabled on Trigger rising edge  111b - Timer enabled on Trigger rising or falling edge                                                                                                                                                            |
| 7-6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5-4     | Timer Stop Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TSTOP   | The stop bit can be added on a timer compare (between each word) or on a timer disable. When stop bit is enabled, configured shifters will output the contents of the stop bit when the timer is disabled. When stop bit is enabled on timer disable, the timer remains disabled until the next rising edge of the shift cloc If configured for both timer compare and timer disable, only one stop bit is inserted on timer disable.  00b - Stop bit disabled  01b - Stop bit is enabled on timer compare                                                                                                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field  | Function                                                                                                                                                                                                                                                                    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 10b - Stop bit is enabled on timer disable                                                                                                                                                                                                                                  |
|        | 11b - Stop bit is enabled on timer compare and timer disable                                                                                                                                                                                                                |
| 3-2    |                                                                                                                                                                                                                                                                             |
| _      |                                                                                                                                                                                                                                                                             |
| 1      | Timer Start Bit                                                                                                                                                                                                                                                             |
| TSTART | When start bit is enabled, configured shifters will output the contents of the start bit when the timer is enabled and the timer counter will reload from the compare register on the first rising edge of the shift clock.  0b - Start bit disabled 1b - Start bit enabled |
| 0      |                                                                                                                                                                                                                                                                             |
| _      |                                                                                                                                                                                                                                                                             |

# 22.2.1.22 Timer Compare N (TIMCMPa)

### 22.2.1.22.1 Address

| Register | Offset    |
|----------|-----------|
| TIMCMP0  | 400CA500h |
| TIMCMP1  | 400CA504h |
| TIMCMP2  | 400CA508h |
| TIMCMP3  | 400CA50Ch |
| TIMCMP4  | 400CA510h |
| TIMCMP5  | 400CA514h |
| TIMCMP6  | 400CA518h |
| TIMCMP7  | 400CA51Ch |

### 22.2.1.22.2 Function

.

## 22.2.1.22.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CI | 4D |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | Cr | ИP |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 22.2.1.22.4 Fields

| Field | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-16 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15-0  | Timer Compare Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CMP   | The timer compare value is loaded into the timer counter when the timer is first enabled, when the timer is reset and when the timer decrements down to zero. In dual 8-bit counters baud/bit mode, the lower 8-bits configures the baud rate divider equal to $(CMP[7:0] + 1) * 2$ . The upper 8-bits configure the number of bits in each word equal to $(CMP[15:8] + 1) / 2$ . In dual 8-bit counters PWM mode, the lower 8-bits configure the high period of the output to $(CMP[7:0] + 1)$ and the upper 8-bits configure the low period of the output to $(CMP[15:8] + 1)$ . In 16-bit counter mode, the compare value can be used to generate the baud rate divider (if shift clock source is timer output) to equal $(CMP[15:0] + 1) * 2$ . When the shift clock source is a pin or trigger input, the compare register is used to set the number of bits in each word equal to $(CMP[15:0] + 1) / 2$ . |

# 22.2.1.23 Shifter Buffer N Nibble Byte Swapped (SHIFTBUFNBSa)

#### 22.2.1.23.1 Address

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFNBS0 | 400CA680h |
| SHIFTBUFNBS1 | 400CA684h |
| SHIFTBUFNBS2 | 400CA688h |
| SHIFTBUFNBS3 | 400CA68Ch |
| SHIFTBUFNBS4 | 400CA690h |
| SHIFTBUFNBS5 | 400CA694h |
| SHIFTBUFNBS6 | 400CA698h |
| SHIFTBUFNBS7 | 400CA69Ch |

### 22.2.1.23.2 Function

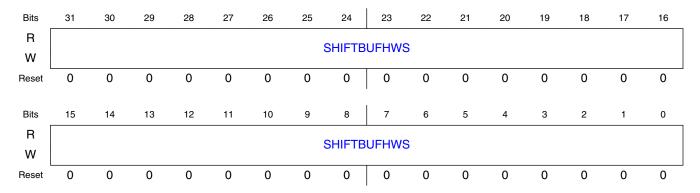
•

### 22.2.1.23.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24     | 23      | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|--------|---------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | SHIFTB | LIENIDO |    |    |    |    |    |    |    |
| w     |    |    |    |    |    |    |    | SHIFTE | OUTINDS | )  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |        |         |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8      | 7       | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | CLUETD | LIENDO  |    |    |    |    |    |    |    |
| w     |    |    |    |    |    |    |    | SHIFTB | OUTINDS | )  |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

### 22.2.1.23.4 Fields

| Field | Function                                                                                                                                                                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                                                                                                                                                              |
|       | Alias to SHIFTBUF register, except reads/writes to this register are nibble swapped within each byte. Reads return { SHIFTBUF[27:24], SHIFTBUF[31:28], SHIFTBUF[19:16], SHIFTBUF[23:20], SHIFTBUF[11:8], SHIFTBUF[15:12], SHIFTBUF[3:0], SHIFTBUF[7:4] }. |


# 22.2.1.24 Shifter Buffer N Half Word Swapped (SHIFTBUFHWSa)

#### 22.2.1.24.1 Address

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFHWS0 | 400CA700h |
| SHIFTBUFHWS1 | 400CA704h |
| SHIFTBUFHWS2 | 400CA708h |
| SHIFTBUFHWS3 | 400CA70Ch |
| SHIFTBUFHWS4 | 400CA710h |
| SHIFTBUFHWS5 | 400CA714h |
| SHIFTBUFHWS6 | 400CA718h |
| SHIFTBUFHWS7 | 400CA71Ch |

#### 22.2.1.24.2 Function

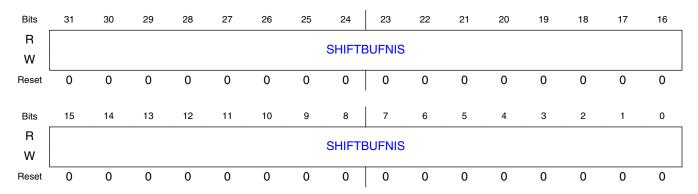
### 22.2.1.24.3 Diagram



#### 22.2.1.24.4 Fields

| Field | Function                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                                              |
|       | Alias to SHIFTBUF register, except reads/writes to this register are half word swapped. Reads return { SHIFTBUF[15:0], SHIFTBUF[31:24] }. |

# 22.2.1.25 Shifter Buffer N Nibble Swapped (SHIFTBUFNISa)


#### 22.2.1.25.1 **Address**

| Register     | Offset    |
|--------------|-----------|
| SHIFTBUFNIS0 | 400CA780h |
| SHIFTBUFNIS1 | 400CA784h |
| SHIFTBUFNIS2 | 400CA788h |
| SHIFTBUFNIS3 | 400CA78Ch |
| SHIFTBUFNIS4 | 400CA790h |
| SHIFTBUFNIS5 | 400CA794h |
| SHIFTBUFNIS6 | 400CA798h |
| SHIFTBUFNIS7 | 400CA79Ch |

KL28Z Reference Manual, Rev. 4, 06/2016 558 **NXP Semiconductors** 

### 22.2.1.25.2 Function

#### **Diagram** 22.2.1.25.3



#### 22.2.1.25.4 **Fields**

| Field | Function                                                                                                                                                                                                                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-0  | Shift Buffer                                                                                                                                                                                                                             |
|       | Alias to SHIFTBUF register, except reads/writes to this register are nibble swapped. Reads return { SHIFTBUF[3:0], SHIFTBUF[7:4], SHIFTBUF[11:8], SHIFTBUF[15:12], SHIFTBUF[19:16], SHIFTBUF[23:20], SHIFTBUF[27:24], SHIFTBUF[31:28] }. |

## 22.3 Functional description

#### **Shifter operation** 22.3.1

Shifters are responsible for buffering and shifting data into or out of the FlexIO. The timing of shift, load and store events are controlled by the Timer assigned to the Shifter via the SHIFTCTL[TIMSEL] register. The Shifters are designed to support either DMA, interrupt or polled operation. The following block diagram provides a detailed view of the Shifter microarchitecture.

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

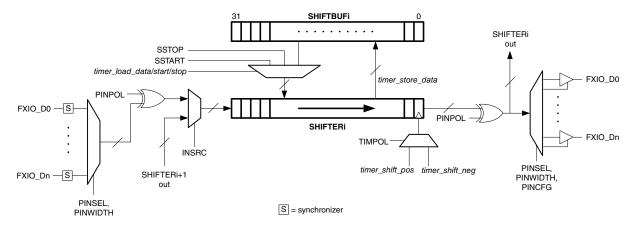



Figure 22-2. Shifter Microarchitecture

#### 22.3.1.1 **Transmit Mode**

When configured for Transmit mode (SHIFTCTL[SMOD]=Transmit), the shifter will load data from the SHIFTBUF register and shift data out when a load event is signalled by the assigned Timer. An optional start/stop bit can also be automatically loaded before/ after SHIFTBUF data by configuring the SHIFTCFG[SSTART], TIMCFG[TSTART] or SHIFTCFG[SSTOP], TIMCFG[TSTOP] registers in the Shifter and Timer. Note that the shifter will immediately load a stop bit when the Shifter is initially configured for Transmit mode if a stop bit is enabled.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set when data has been loaded from the SHIFTBUF register into the Shifter or when the Shifter is initially configured into Transmit mode. The flag will clear when new data has been written into the SHIFTBUF register.

The Shifter Error Flag (SHIFTERR[SEF]) and any enabled interrupts will set when an attempt to load data from an empty SHIFTBUF register occurs (buffer underrun). The flag can be cleared by writing it with logic 1.

#### 22.3.1.2 **Receive Mode**

When configured for Receive mode (SHIFTCTL[SMOD]=Receive), the shifter will shift data in and store data into the SHIFTBUF register when a store event is signalled by the assigned Timer. Checking for a start/stop bit can be enabled before/after shifter data is sampled by configuring the SHIFTCFG[SSTART], TIMCFG[TSTART] or SHIFTCFG[SSTOP], TIMCFG[TSTOP] registers in the Shifter and Timer.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set when data has been stored into the SHIFTBUF register from the Shifter. The flag will clear when the data has been read from the SHIFTBUF register.

The Shifter Error Flag (SHIFTERR[SEF]) and any enabled interrupts will set when an attempt to store data into a full SHIFTBUF register occurs (buffer overrun) or when a mismatch occurs on a start/stop bit check. The flag can be cleared by writing it with logic 1.

#### 22.3.1.3 Match Store Mode

When configured for Match Store mode (SHIFTCTL[SMOD]=Match Store), the shifter will shift data in, check for a match result and store matched data into the SHIFTBUF register when a store event is signalled by the assigned Timer. Checking for a start/stop bit can be enabled before/after shifter data is sampled by configuring the SHIFTCFG[SSTART], TIMCFG[TSTART] or SHIFTCFG[SSTOP], TIMCFG[TSTOP] registers in the Shifter and Timer. Up to 16-bits of data can be compared using SHIFTBUF[31:16] to configure the data to be matched and SHIFTBUF[15:0] to mask the match result.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set when a match occurs and matched data has been stored into the SHIFTBUF register from the Shifter. The flag will clear when the matched data has been read from the SHIFTBUF register.

The Shifter Error Flag (SHIFTERR[SEF]) and any enabled interrupts will set when an attempt to store matched data into a full SHIFTBUF register occurs (buffer overrun) or when a mismatch occurs on a start/stop bit check. The flag can be cleared by writing it with logic 1.

#### 22.3.1.4 Match Continuous Mode

When configured for Match Continuous mode (SHIFTCTL[SMOD]=Match Continuous), the shifter will shift data in and continuously check for a match result whenever a shift event is signalled by the assigned Timer. Up to 16-bits of data can be compared using SHIFTBUF[31:16] to configure the data to be matched and SHIFTBUF[15:0] to mask the match result.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set when a match occurs. The flag will clear automatically as soon as there is no longer a match between Shifter data and SHIFTBUF register.

#### **Functional description**

The Shifter Error Flag (SHIFTERR[SEF]) and any enabled interrupts will set when a match occurs. The flag will clear when there is a read from the SHIFTBUF register or it written with logic 1.

#### 22.3.1.5 State Mode

Using State mode enables the user to implement any state machine with up to 8 states, 8 outputs and 3 selectable inputs per state. This feature allows basic control functions to be offloaded from the CPU, which could potentially remain in a STOP/VLPS low power mode.

When configured for State mode (SHIFTCTL[SMOD]=State), the SHIFTBUF register is used to drive the output and compute next state values when the Shifter has been selected by the current state pointer (SHIFTSTATE[STATE]). The following diagram provides a detailed view of Shifter microarchitecture when configured for State mode.

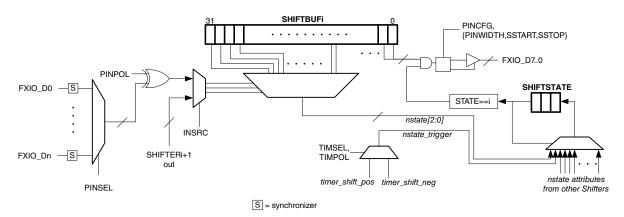



Figure 22-3. State Microarchitecture

When Shifter i has been selected by the current state pointer, output pins FXIO\_D[7:0] will be driven by SHIFTBUFi[31:24] using the configuration set by SHIFTCTLi[PINCFG]. When set,

SHIFTCFGi{PWIDTH[3:0],SSTOP[1:0],SSTART[1:0]} are respectively used to disable the output drive on pins FXIO\_D[7:0] for state machine applications which require less than 8 output pins.

The next state value is computed using the 3 input pins selected by SHIFTCTLi[PINSEL] together with SHIFTBUFi[23:0]. Note that each state could potentially use a different set of 3 input pins. The following table details how the next state value is computed when the current state pointer is pointing to Shifter i.

Table 22-2. Next State computation for SHIFTSTATE[STATE]=i

| FXIO_D[PINSEL+2] | FXIO_D[PINSEL+1] | FXIO_D[PINSEL] | Next State Value |
|------------------|------------------|----------------|------------------|

Table continues on the next page...

563

Table 22-2. Next State computation for SHIFTSTATE[STATE]=i (continued)

| 0 | 0 | 0 | SHIFTBUFi[2:0]   |
|---|---|---|------------------|
| 0 | 0 | 1 | SHIFTBUFi[5:3]   |
| 0 | 1 | 0 | SHIFTBUFi[8:6]   |
| 0 | 1 | 1 | SHIFTBUFi[11:9]  |
|   |   |   |                  |
| 1 | 1 | 1 | SHIFTBUFi[23:21] |

Note that other shifters/timers could potentially be configured to drive the input pins of a given state, allowing the user to create complex combinations of shifters/timers as desired e.g. the output of a Shifter configured for logic mode could potentially be used to drive a state machine input.

The next state transition is triggered using the Timer output selected by SHIFTCTLi[TIMSEL] with polarity controlled by SHIFTCTLi[TIMPOL]. Note that each state could potentially use a different Timer to trigger each next state transition, allowing a variety of internal/external trigger sources and clocking configurations to be used (see Timer section for more detail).

The current state pointer defaults to Shifter 0 at reset, however it can be written by the user to select a different Shifter for the initial state. If the current state pointer selects a Shifter which is not configured for State mode, then outputs will not be driven and a next state transition is never triggered.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set whenever the Shifter has been selected by the current state pointer. The flag will clear when the current state pointer is updated to a different Shifter.

## **22.3.1.6 Logic Mode**

Using logic mode enables the user to implement a small amount of programmable digital logic within a FlexIO Shifter. This feature allows board-level glue logic to be integrated on-chip using FlexIO hardware.

When configured for Logic mode (SHIFTCTL[SMOD]=Logic), the SHIFTBUF register is used to implement a 5-input, 32-bit programmable logic look-up table. The following diagram provides a detailed view of Shifter microarchitecture when configured for Logic mode.

#### **Functional description**

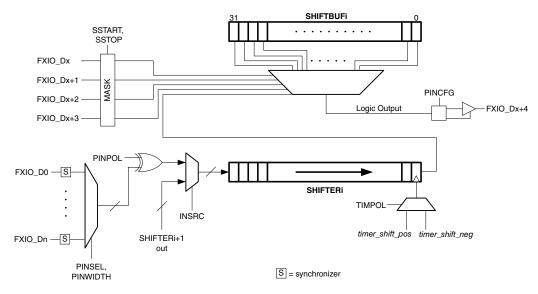



Figure 22-4. Logic Microarchitecture

The look-up table is driven using 4 pin inputs (maskable using SHIFTCFG[SSTOP] and SHFITCFG[SSTART]) plus 1 input from the internal shifter and can be configured to drive an output pin using the SHIFTCTL[PINCFG] field. Pin inputs and outputs are fixed for each logic look-up table and are not selectable. The following table lists the logic output value selected by the look-up table for Shifter 'i'.

| SHIFTERi[0] | FXIO_D[x+3] <sup>1</sup> | FXIO_D[x+2] | FXIO_D[x+1] | FXIO_D[x] | Logic Output to FXIO_D[x+4] |
|-------------|--------------------------|-------------|-------------|-----------|-----------------------------|
| 0           | 0                        | 0           | 0           | 0         | SHIFTBUFi[0]                |
| 0           | 0                        | 0           | 0           | 1         | SHIFTBUFi[1]                |
| 0           | 0                        | 0           | 1           | 0         | SHIFTBUFi[2]                |
| 0           | 0                        | 0           | 1           | 1         | SHIFTBUFi[3]                |
|             |                          |             |             |           |                             |
| 1           | 1                        | 1           | 1           | 1         | SHIFTBUFi[31]               |

Table 22-3. Logic Look-up table for Shifter 'i'

1. for Shifter i=0...3, x=i for Shifter i=4...7, x=i+4

To minimize output glitches, SHIFTCFG[SSTOP] and SHIFTCFG[SSTART] can be used to mask unused input pins. When set, {SSTOP[1:0], SSTART[1:0]} will mask FXIO\_D[x+3]...FXIO\_D[x] inputs respectively, so that any transitions on these pins will not cause the logic output to glitch.

Note that other shifters/timers could potentially be configured to drive the input pins of a given look-up table (without synchronization), allowing the user to concatenate look-up tables or create complex combinations of shifters/timers as desired.

SHIFTCFG[PWIDTH] will control the number of delay stages introduced by the internal shifter input (SHIFTERi[0]). For example, when configured for 1-bit shift (PWIDTH=0), the internal shifter will introduce a 32 Shift clock delay before passing its input (selected by SHIFTCTL[PINSEL]) to the look-up table. When configured for 32-bit shift (PWIDTH=16...31), the internal shifter will introduce a 1 Shift clock delay to its input.

The Shifter Status Flag (SHIFTSTAT[SSF]) and any enabled interrupts or DMA requests will set whenever the output pin allocated to the logic look-up table has a value of 1 (after being synchronized to the FlexIO clock). The flag will clear when the output pin has a value of 0. This also allows the SSF flag to be used as a trigger to a Timer if desired.

The Shifter Error Flag (SHIFTERR[SEF]) and any enabled interrupts will set when the output pin allocated to the logic look-up table has a value of 1. The flag can be cleared by writing it with logic 1.

## 22.3.2 Timer operation

The FlexIO 16-bit timers control the loading, shifting and storing of the shift registers, the counters load the contents of the compare register and decrement down to zero on the FlexIO clock. They can perform generic timer functions such as generating a clock or select output or a PWM waveform. Timers can be configured to enable in response to a trigger, pin or shifter condition; decrement always or only on a trigger or pin edge; reset in response to a trigger or pin condition; and disable on a trigger or pin condition or on a timer compare. Timers can optionally include a start condition and/or stop condition.

Each timer operates independently, although a timer can be configured to enable or disable at the same time as the previous timer (eg: timer1 can enable or disable at the same time as timer 0) and a timer output can be used to trigger any other timer. The trigger used by each timer is configured independently and can be configured to be a timer output, shifter status flag, pin input or an external trigger input (refer to the chip configuration section for details on the external trigger connections). The trigger configuration is separate from the pin configuration, which can be configured for input, output data or output enable.

The Timer Configuration Register (TIMCFGn) should be configured before setting the Timer Mode (TIMOD). Once the TIMOD is configured for the desired mode, when the condition configured by timer enable (TIMENA) is detected then the following events occur.

• Timer counter will load the current value of the Compare Register and start decrementing as configured by TIMDEC.

#### **Functional description**

- Timer output will set depending on the TIMOUT configuration.
- Transmit shifters controlled by this timer will either output their start bit value, or load the shift register from the shift buffer and output the first bit, as configured by SSTART.

The Timer will then generate the timer output and timer shift clock depending on the TIMOD and TIMDEC fields. The shifter clock is either equal to the timer output (when TIMDEC=00 or 01) or equal to the decrement clock (when TIMDEC=10 or 11). When TIMDEC is configured to decrement from a pin or trigger, the timer will decrement on both rising and falling edges.

When the Timer is configured to reset as configured in the TIMRST field then the Timer counter will load the current value of the Compare Register again, the timer output may also be affected by the reset as configured in TIMOUT.

If the Timer start bit is enabled, the timer counter will reload with the compare register on the first rising edge of the shift clock after the timer starts decrementing. If there is no falling edge on the shift clock before the first rising edge (for example, when TIMOUT=1), a shifter that is configured to shift on falling edge and load on the first shift will not load correctly.

When configured for 8-bit counter mode, whenever the lower 8-bit counter decrements to zero the timer output will toggle, the lower 8-bit counter register will reload from the compare register and the upper 8-bit counter will decrement. For 8-bit PWM mode, the lower 8-bit counter will only decrement when the output is high and the upper 8-bit counter will only decrement when the output is low. The timer output will toggle whenever either lower or upper 8-bit counter decrements to zero.

When the timer decrements to zero, a compare event occurs depending on the timer mode. For 8-bit counter or PWM modes, both halves of the counter must equal zero and the upper half must decrement for the timer compare event to occur, while in 16-bit mode the entire counter must equal zero and decrement. The timer compare event will cause the timer status flag to set, the timer counter to load the contents of the timer compare register, the timer output to toggle, any configured transmit shift registers to load and any configured receive shift registers to store.

When the is Timer is configured to add a stop bit on each compare, the following additional events will occur.

- Transmit shifters controlled by this timer will output their stop bit value (if configured by SSTOP).
- Receive shifters controlled by this timer will store the contents of the shift register in their shift buffer, as configured by SSTOP.
- On the first rising edge of the shifter clock after the compare, the timer counter will reload the current value of the Compare Register.

Transmit shifters must be configured to load on the first shift when the timer is configured to insert a stop bit on each compare.

When the condition configured by timer disable (TIMDIS) is detected, the following events occur.

- Timer counter will reload the current value of the Compare Register and start decrementing as configured by TIMDEC.
- Timer output will clear.
- Transmit shifters controlled by this timer will output their stop bit value (if configured by SSTOP).
- Receive shifters controlled by this timer will store the contents of the shift register in their shift buffer, as configured by SSTOP.

If the timer stop bit is enabled, the timer counter will continue decrementing until the next rising edge of the shift clock is detected, at which point it will finish. A timer enable condition can be detected in the same cycle as a timer disable condition (if timer stop bit is disabled), or on the first rising edge of the shift clock after the disable condition (if stop bit is enabled). Receive shift registers will stop bit enabled will store the contents of the shift register into the shift buffer and verify the state of the input data on the configured shift edge while the timer is in the stop state condition. If there is no configured edge between the timer disable and the next rising edge of the shift clock then the final store and verify do not occur.

## 22.3.3 Pin operation

The pin configuration for each timer and shifter can be configured to use any FlexIO pin with either polarity. Each timer and shifter can be configured as an input, output data, output enable or bidirectional output. A pin configured for output enable can be used as an open drain (with inverted polarity, since the output enable assertion would cause logic zero to be output on the pin) or to control the enable on the bidirectional output. Any timer or shifter could be configured to control the output enable for a pin where the bidirectional output data is driven by another timer or shifter.

In addition, shifters can also be configured to use multiple FlexIO pins in parallel using the SHIFTCFG[PWIDTH] field. PWIDTH is used to configure the following settings of a shifter:

- 1. Number of bits shifted per Shift clock.
- 2. Number of pins driven by the shifter per Shift clock (only on shifters supporting parallel transmit i.e. SHIFTER0, SHIFTER4).
- 3. Number of pins sampled by the shifter per Shift clock (only on Shifter supporting parallel receive i.e. SHIFTER3, SHIFTER7).

#### **Functional description**

When configured for parallel shift, either 4, 8, 16 or 32-bits can be shifted on every Shift clock. If an adjacent shifter is selected as the input source (SHIFTCFG[INSRC]=1), the least significant 4, 8, 16 or 32-bits from the adjacent shifter will be sampled on each Shift clock.

For shifters supporting parallel receive (SHIFTER3, SHIFTER7), the shifter can be configured to sample multiple pins (SHIFTCFG[INSRC]=0), with PWIDTH and PINSEL selecting the pins as follows: FXIO\_D[PINSEL+PWIDTH]:FXIO\_D[PINSEL]. Note that if PWIDTH is less than the number of bits being shifted on each Shift clock, then the most significant bits will be masked with 0 e.g. if PINSEL=7 and PWIDTH=6, then SHIFTER[31:24] will sample {0,0,FXIO\_D[12:7]} on each Shift clock.

For shifters supporting parallel transmit (SHIFTER0, SHIFTER4), the shifter can be configured to drive multiple pins using SHIFTCTL[PINCFG], with PWIDTH and PINSEL selecting the pins as follows: FXIO\_D[PINSEL+PWIDTH]:FXIO\_D[PINSEL]. Note that if PWIDTH is less than the number of bits being shifted on each Shift clock, then the most significant pins will not be driven e.g. if PINSEL=7 and PWIDTH=6, then SHIFTER[5:0] will drive only FXIO\_D[12:7] on each Shift clock.

When configuring a pin as an input (this includes a timer trigger configured as a pin input), the input signal is first synchronized to the FlexIO clock before the signal is used by a timer or shifter. This introduces a small latency of between 0.5 to 1.5 FlexIO clock cycles when using an external pin input to generate an output or control a shifter. This sets the maximum setup time at 1.5 FlexIO clock cycles.

If an input is used by more than one timer or shifter then the synchronization occurs once to ensure any edge is seen on the same cycle by all timers and shifters using that input.

Note that FlexIO pins are also connected internally, configuring a FlexIO shifter or timer to output data on an unused pin will make an internal connection that allows other shifters and timer to use this pin as an input. This allows a shifter output to be used to trigger a timer or a timer output to be shifted into a shifter. This path is also synchronized to the FlexIO clock and therefore incurs a 1 cycle latency.

So when using a Pin input as a Timer Trigger, Timer Clock or Shifter Data Input, the following synchronization delays occur:

- 1. 0.5 1.5 FlexIO clock cycles for external pin
- 2. 1 FlexIO clock cycle for an internally driven pin

For timing considerations such as output valid time and input setup time for specific applications (SPI Master, SPI Slave, I2C Master, I2S Master, I2S Slave) please refer to the FlexIO Application Information Section.

SHIFTBUF[7:0] to initiate an 8-bit

## 22.4 Application Information

This section provides examples for a variety of FlexIO module applications.

#### 22.4.1 UART Transmit

UART transmit can be supported using one Timer, one Shifter and one Pin (two Pins if supporting CTS). The start and stop bit insertion is handled automatically and multiple transfers can be supported using DMA controller. The timer status flag can be used to indicate when the stop bit of each word is transmitted.

Break and idle characters require software intervention, before transmitting a break or idle character the SSTART and SSTOP fields should be altered to transmit the required state and the data to transmit must equal 0xFF or 0x00. Supporting a second stop bit requires the stop bit to be inserted into the data stream using software (and increasing the number of bits to transmit). Note that when performing byte writes to SHIFTBUFn (or SHIFTBUFBIS for transmitting MSB first), the rest of the register remains unaltered allowing an address mark bit or additional stop bit to remain undisturbed.

FlexIO does not support automatic insertion of parity bits.

Register Value Comments 0x0000\_0032 **SHIFTCFGn** Configure start bit of 0 and stop bit of 1. SHIFTCTLn 0x0003\_0002 Configure transmit using Timer 0 on posedge of clock with output data on Pin 0. Can invert output data by setting PINPOL, or can support open drain by setting PINPOL=0x1 and PINCFG=0x1. 0x0000 0F01 Configure 8-bit transfer with baud rate of **TIMCMPn** divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1.Set TIMCMP[7:0] = (baud rate divider / 2) - 1. **TIMCFGn** 0x0000 2222 Configure start bit, stop bit, enable on trigger low and disable on compare. Can support CTS by configuring TIMEN=0x3. **TIMCTLn** Configure dual 8-bit counter using 0x01C0\_0001 Shifter 0 status flag as inverted internal trigger source. Can support CTS by configuring PINSEL=0x1 (for Pin 1) and PINPOL=0x1. **SHIFTBUFn** Data to transmit Transmit data can be written to

**Table 22-4. UART Transmit Configuration** 

KL28Z Reference Manual, Rev. 4, 06/2016

**Table 22-4. UART Transmit Configuration** 

| Register | Value | Comments                                 |
|----------|-------|------------------------------------------|
|          |       | transfer, use the Shifter Status Flag to |
|          |       | indicate when data can be written using  |
|          |       | interrupt or DMA request. Can support    |
|          |       | MSB first transfer by writing to         |
|          |       | SHIFTBUFBBS[7:0] register instead.       |

#### 22.4.2 UART Receive

UART receive can be supported using one Timer, one Shifter and one Pin (two Timers and two Pins if supporting RTS). The start and stop bit verification is handled automatically and multiple transfers can be supported using the DMA controller. The timer status flag can be used to indicate when the stop bit of each word is received.

Triple voting of the received data is not supported by FlexIO, data is sampled only once in the middle of each bit. Another timer can be used to implement a glitch filter on the incoming data, another Timer can also be used to detect an idle line of programmable length. Break characters will cause the error flag to set and the shifter buffer register will return 0x00.

FlexIO does not support automatic verification of parity bits.

Table 22-5. UART Receiver Configuration

| Register  | Value           | Comments                                                                                                                                                                |
|-----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn | 0x0000_0032     | Configure start bit of 0 and stop bit of 1.                                                                                                                             |
| SHIFTCTLn | 0x0080_0001     | Configure receive using Timer 0 on negedge of clock with input data on Pin 0. Can invert input data by setting PINPOL.                                                  |
| TIMCMPn   | 0x0000_0F01     | Configure 8-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1. |
| TIMCFGn   | 0x0204_2422     | Configure start bit, stop bit, enable on pin posedge and disable on compare. Enable resynchronization to received data with TIMOUT=0x2 and TIMRST=0x4.                  |
| TIMCTLn   | 0x0000_0081     | Configure dual 8-bit counter using inverted Pin 0 input.                                                                                                                |
| SHIFTBUFn | Data to receive | Received data can be read from SHIFTBUFBYS[7:0], use the Shifter Status Flag to indicate when data can be                                                               |

KL28Z Reference Manual, Rev. 4, 06/2016

**Table 22-5. UART Receiver Configuration** 

| Register | Value | Comments                               |
|----------|-------|----------------------------------------|
|          |       | read using interrupt or DMA request.   |
|          |       | Can support MSB first transfer by      |
|          |       | reading from SHIFTBUFBIS[7:0] register |
|          |       | instead.                               |

The UART Receiver with RTS configuration uses a 2nd Timer to generate the RTS output. The RTS will assert when the start bit is detected and negate when the data is read from the shifter buffer register. No start bit will be detected while the RTS is asserted, the received data is simply ignored.

Table 22-6. UART Receiver with RTS Configuration

| Register    | Value           | Comments                                                                                                                                                                                                                          |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn   | 0x0000_0032     | Configure start bit of 0 and stop bit of 1.                                                                                                                                                                                       |
| SHIFTCTLn   | 0x0080_0001     | Configure receive using Timer 0 on negedge of clock with input data on Pin 0. Can invert input data by setting PINPOL.                                                                                                            |
| TIMCMPn     | 0x0000_0F01     | Configure 8-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1.                                                           |
| TIMCFGn     | 0x0204_2522     | Configure start bit, stop bit, enable on pin posedge with trigger low and disable on compare. Enable resynchronization to received data with TIMOUT=0x2 and TIMRST=0x4.                                                           |
| TIMCTLn     | 0x03C0_0081     | Configure dual 8-bit counter using inverted Pin 0 input. Trigger is internal using inverted Pin 1 input.                                                                                                                          |
| TIMCMP(n+1) | 0x0000_FFFF     | Never compare.                                                                                                                                                                                                                    |
| TIMCFG(n+1) | 0x0030_6100     | Enable on Timer N enable and disable on trigger falling edge. Decrement on trigger to ensure no compare.                                                                                                                          |
| TIMCTL(n+1) | 0x0143_0083     | Configure 16-bit counter and output on Pin 1. Trigger is internal using Shifter 0 flag.                                                                                                                                           |
| SHIFTBUFn   | Data to receive | Received data can be read from SHIFTBUFBYS[7:0], use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request.  Can support MSB first transfer by reading from SHIFTBUFBIS[7:0] register instead. |

#### **SPI Master** 22.4.3

SPI master mode can be supported using two Timers, two Shifters and four Pins. Either CPHA=0 or CPHA=1 can be supported and transfers can be supported using the DMA controller. For CPHA=1, the select can remain asserted for multiple transfers and the timer status flag can be used to indicate the end of the transfer.

The stop bit is used to guarantee a minimum of 1 clock cycle between the slave select negating and before the next transfer. Writing to the transmit buffer by either core or DMA is used to initiate each transfer.

Due to synchronization delays, the setup time for the serial input data is 1.5 FlexIO clock cycles, so the maximum baud rate is divide by 4 of the FlexIO clock frequency.

Table 22-7. SPI Master (CPHA=0) Configuration

| Register      | Value            | Comments                                                                                                                                                                 |
|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0000      | Start and stop bit disabled.                                                                                                                                             |
| SHIFTCTLn     | 0x0083_0002      | Configure transmit using Timer 0 on negedge of clock with output data on Pin 0.                                                                                          |
| SHIFTCFG(n+1) | 0x0000_0000      | Start and stop bit disabled.                                                                                                                                             |
| SHIFTCTL(n+1) | 0x0000_0101      | Configure receive using Timer 0 on posedge of clock with input data on Pin 1.                                                                                            |
| TIMCMPn       | 0x0000_3F01      | Configure 32-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1. |
| TIMCFGn       | 0x0100_2222      | Configure start bit, stop bit, enable on trigger high and disable on compare, initial clock state is logic 0. Set PINPOL to invert the output shift clock.               |
| TIMCTLn       | 0x01C3_0201      | Configure dual 8-bit counter using Pin 2 output (shift clock), with Shifter 0 flag as the inverted trigger.                                                              |
| TIMCMP(n+1)   | 0x0000_FFFF      | Never compare.                                                                                                                                                           |
| TIMCFG(n+1)   | 0x0000_1100      | Enable when Timer 0 is enabled and disable when Timer 0 is disabled.                                                                                                     |
| TIMCTL(n+1)   | 0x0003_0383      | Configure 16-bit counter (never compare) using inverted Pin 3 output (as slave select).                                                                                  |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUF, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can                           |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 572 **NXP Semiconductors** 

Table 22-7. SPI Master (CPHA=0) Configuration (continued)

| Register      | Value           | Comments                                                                                                                                                                                                               |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                 | support MSB first transfer by writing to SHIFTBUFBBS register instead.                                                                                                                                                 |
| SHIFTBUF(n+1) | Data to receive | Received data can be read from SHIFTBUFBYS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support MSB first transfer by reading from SHIFTBUFBIS register instead. |

Table 22-8. SPI Master (CPHA=1) Configuration

| Register      | Value            | Comments                                                                                                                                                                                                                                                   |
|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0021      | Start bit loads data on first shift.                                                                                                                                                                                                                       |
| SHIFTCTLn     | 0x0003_0002      | Configure transmit using Timer 0 on posedge of clock with output data on Pin 0.                                                                                                                                                                            |
| SHIFTCFG(n+1) | 0x0000_0000      | Start and stop bit disabled.                                                                                                                                                                                                                               |
| SHIFTCTL(n+1) | 0x0080_0101      | Configure receive using Timer 0 on negedge of clock with input data on Pin 1.                                                                                                                                                                              |
| TIMCMPn       | 0x0000_3F01      | Configure 32-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1.                                                                                   |
| TIMCFGn       | 0x0100_2222      | Configure start bit, stop bit, enable on trigger high and disable on compare, initial clock state is logic 0. Set PINPOL to invert the output shift clock. Set TIMDIS=3 to keep slave select asserted for as long as there is data in the transmit buffer. |
| TIMCTLn       | 0x01C3_0201      | Configure dual 8-bit counter using Pin 2 output (shift clock), with Shifter 0 flag as the inverted trigger.                                                                                                                                                |
| TIMCMP(n+1)   | 0x0000_FFFF      | Never compare.                                                                                                                                                                                                                                             |
| TIMCFG(n+1)   | 0x0000_1100      | Enable when Timer 0 is enabled and disable when Timer 0 is disabled.                                                                                                                                                                                       |
| TIMCTL(n+1)   | 0x0003_0383      | Configure 16-bit counter (never compare) using inverted Pin 3 output (as slave select).                                                                                                                                                                    |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUF, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can support MSB first transfer by writing to SHIFTBUFBBS register instead.                                      |

Table continues on the next page...

Table 22-8. SPI Master (CPHA=1) Configuration (continued)

| Register      | Value           | Comments                                                                                                                                                                                                               |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTBUF(n+1) | Data to receive | Received data can be read from SHIFTBUFBYS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support MSB first transfer by reading from SHIFTBUFBIS register instead. |

### 22.4.4 SPI Slave

SPI slave mode can be supported using one Timer, two Shifters and four Pins. Either CPHA=0 or CPHA=1 can be supported and transfers can be supported using the DMA controller. For CPHA=1, the select can remain asserted for multiple transfers and the timer status flag can be used to indicate the end of the transfer.

The transmit data must be written to the transmit buffer register before the external slave select asserts, otherwise the shifter error flag will be set.

Due to synchronization delays, the output valid time for the serial output data is 2.5 FlexIO clock cycles, so the maximum baud rate is divide by 6 of the FlexIO clock frequency.

Table 22-9. SPI Slave (CPHA=0) Configuration

| Register      | Value            | Comments                                                                                                                                       |
|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0000      | Start and stop bit disabled.                                                                                                                   |
| SHIFTCTLn     | 0x0083_0002      | Configure transmit using Timer 0 on falling edge of shift clock with output data on Pin 0.                                                     |
| SHIFTCFG(n+1) | 0x0000_0000      | Start and stop bit disabled.                                                                                                                   |
| SHIFTCTL(n+1) | 0x0000_0101      | Configure receive using Timer 0 on rising edge of shift clock with input data on Pin 1.                                                        |
| TIMCMPn       | 0x0000_003F      | Configure 32-bit transfer. Set TIMCMP[15:0] = (number of bits x 2) - 1.                                                                        |
| TIMCFGn       | 0x0120_6000      | Configure enable on trigger rising edge, initial clock state is logic 0 and decrement on pin input.                                            |
| TIMCTLn       | 0x06C0_0203      | Configure 16-bit counter using Pin 2 input (shift clock), with Pin 3 input (slave select) as the inverted trigger.                             |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUF, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Table 22-9. SPI Slave (CPHA=0) Configuration (continued)

| Register      | Value           | Comments                                                                                                                                                                                                               |
|---------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                 | support MSB first transfer by writing to SHIFTBUFBBS register instead.                                                                                                                                                 |
| SHIFTBUF(n+1) | Data to receive | Received data can be read from SHIFTBUFBYS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support MSB first transfer by reading from SHIFTBUFBIS register instead. |

### Table 22-10. SPI Slave (CPHA=1) Configuration

| Register      | Value            | Comments                                                                                                                                                                                                               |
|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0001      | Shifter configured to load on first shift and stop bit disabled.                                                                                                                                                       |
| SHIFTCTLn     | 0x0003_0002      | Configure transmit using Timer 0 on rising edge of shift clock with output data on Pin 0.                                                                                                                              |
| SHIFTCFG(n+1) | 0x0000_0000      | Start and stop bit disabled.                                                                                                                                                                                           |
| SHIFTCTL(n+1) | 0x0080_0101      | Configure receive using Timer 0 on falling edge of shift clock with input data on Pin 1.                                                                                                                               |
| TIMCMPn       | 0x0000_003F      | Configure 32-bit transfer. Set TIMCMP[15:0] = (number of bits x 2) - 1.                                                                                                                                                |
| TIMCFGn       | 0x0120_6602      | Configure start bit, enable on trigger rising edge, disable on trigger falling edge, initial clock state is logic 0 and decrement on pin input.                                                                        |
| TIMCTLn       | 0x06C0_0203      | Configure 16-bit counter using Pin 2 input (shift clock), with Pin 3 input (slave select) as the inverted trigger.                                                                                                     |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUF, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can support MSB first transfer by writing to SHIFTBUFBBS register instead.  |
| SHIFTBUF(n+1) | Data to receive  | Received data can be read from SHIFTBUFBYS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support MSB first transfer by reading from SHIFTBUFBIS register instead. |

#### 22.4.5 I2C Master

I2C master mode can be supported using two Timers, two Shifters and two Pins. One timer is used to generate the SCL output and one timer is used to control the shifters. The two shifters are used to transmit and receive for every word, when receiving the transmitter must transmit 0xFF to tristate the output. FlexIO inserts a stop bit after every word to generate/verify the ACK/NACK. FlexIO waits for the first write to the transmit data buffer before enabling SCL generation. Data transfers can be supported using the DMA controller and the shifter error flag will set on transmit underrun or receive overflow.

The first timer generates the bit clock for the entire packet (START to Repeated START/STOP), so the compare register needs to be programmed with the total number of clock edges in the packet (minus one). The timer supports clock stretching using the reset counter when pin equal to output (although this increases both the clock high and clock low periods by at least 1 FlexIO clock cycle each). The second timer uses the SCL input pin to control the transmit/receive shift registers, this enforces an SDA data hold time by an extra 2 FlexIO clock cycles.

Both the transmit and receive shifters need to be serviced for each word in the transfer, the transmit shifter must transmit 0xFF when receiving and the receive shifter returns the data actually present on the SDA pin. The transmit shifter will load 1 additional word on the last falling edge of SCL pin, this word should be 0x00 if generating a STOP condition or 0xFF if generating a repeated START condition. During the last word of a master-receiver transfer, the transmit SSTOP bit should be set by software to generate a NACK.

The receive shift register will assert an error interrupt if a NACK is detected, but software is responsible for generating the STOP or repeated START condition. If a NACK is detected during master-transmit, the interrupt routine should immediately write the transmit shifter register with 0x00 (if generating STOP) or 0xFF (if generating repeated START). Software should then wait for the next rising edge on SCL and then disable both timers. The transmit shifter should then be disabled after waiting the setup delay for a repeated START or STOP condition.

Due to synchronization delays, the data valid time for the transmit output is 2 FlexIO clock cycles, so the maximum baud rate is divide by 6 of the FlexIO clock frequency.

The I2C master data valid is delayed 2 cycles because the clock output is passed through a synchronizer before clocking the transmit/receive shifter (to guarantee some SDA hold time). Since the SCL output is synchronous with FlexIO clock, the synchronization delay is 1 cycle and then 1 cycle to generate the output.

Table 22-11. I2C Master Configuration

| Register      | Value            | Comments                                                                                                                                                                   |
|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0032      | Start bit enabled (logic 0) and stop bit enabled (logic 1).                                                                                                                |
| SHIFTCTLn     | 0x0101_0082      | Configure transmit using Timer 1 on rising edge of clock with inverted output enable (open drain output) on Pin 0.                                                         |
| SHIFTCFG(n+1) | 0x0000_0020      | Start bit disabled and stop bit enabled (logic 0) for ACK/NACK detection.                                                                                                  |
| SHIFTCTL(n+1) | 0x0180_0001      | Configure receive using Timer 1 on falling edge of clock with input data on Pin 0.                                                                                         |
| TIMCMPn       | 0x0000_2501      | Configure 2 word transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of words x 18) + 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1. |
| TIMCFGn       | 0x0102_2222      | Configure start bit, stop bit, enable on trigger high, disable on compare, reset if output equals pin. Initial clock state is logic 0 and is not affected by reset.        |
| TIMCTLn       | 0x01C1_0101      | Configure dual 8-bit counter using Pin 1 output enable (SCL open drain), with Shifter 0 flag as the inverted trigger.                                                      |
| TIMCMP(n+1)   | 0x0000_000F      | Configure 8-bit transfer. Set TIMCMP[15:0] = (number of bits x 2) - 1.                                                                                                     |
| TIMCFG(n+1)   | 0x0020_1112      | Enable when Timer 0 is enabled, disable when Timer 0 is disabled, enable start bit and stop bit at end of each word, decrement on pin input.                               |
| TIMCTL(n+1)   | 0x01C0_0183      | Configure 16-bit counter using inverted Pin 1 input (SCL).                                                                                                                 |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUFBBS[7:0], use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request.                         |
| SHIFTBUF(n+1) | Data to receive  | Received data can be read from SHIFTBUFBIS[7:0], use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request.                             |

## 22.4.6 I2S Master

I2S master mode can be supported using two Timers, two Shifters and four Pins. One timer is used to generate the bit clock and control the shifters and one timer is used to generate the frame sync. FlexIO waits for the first write to the transmit data buffer before

#### **Application Information**

enabling bit clock and frame sync generation. Data transfers can be supported using the DMA controller and the shifter error flag will set on transmit underrun or receive overflow.

The bit clock frequency is an even integer divide of the FlexIO clock frequency, and the initial frame sync assertion occurs at the same time as the first bit clock edge. The timer uses the start bit to ensure the frame sync is generated one clock cycle before the first output data.

Due to synchronization delays, the setup time for the receiver input is 1.5 FlexIO clock cycles, so the maximum baud rate is divide by 4 of the FlexIO clock frequency.

**Table 22-12. I2S Master Configuration** 

| Register      | Value            | Comments                                                                                                                                                                                                              |
|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0001      | Load transmit data on first shift and stop bit disabled.                                                                                                                                                              |
| SHIFTCTLn     | 0x0003_0002      | Configure transmit using Timer 0 on rising edge of clock with output data on Pin 0.                                                                                                                                   |
| SHIFTCFG(n+1) | 0x0000_0000      | Start and stop bit disabled.                                                                                                                                                                                          |
| SHIFTCTL(n+1) | 0x0080_0101      | Configure receive using Timer 0 on falling edge of clock with input data on Pin 1.                                                                                                                                    |
| TIMCMPn       | 0x0000_3F01      | Configure 32-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of bits x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1.                                              |
| TIMCFGn       | 0x0000_0202      | Configure start bit, enable on trigger high and never disable. Initial clock state is logic 1.                                                                                                                        |
| TIMCTLn       | 0x01C3_0201      | Configure dual 8-bit counter using Pin 2 output (bit clock), with Shifter 0 flag as the inverted trigger. Set PINPOL to invert the output shift clock.                                                                |
| TIMCMP(n+1)   | 0x0000_007F      | Configure 32-bit transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:0] = (number of bits x baud rate divider) - 1.                                                                             |
| TIMCFG(n+1)   | 0x0000_0100      | Enable when Timer 0 is enabled and never disable.                                                                                                                                                                     |
| TIMCTL(n+1)   | 0x0003_0383      | Configure 16-bit counter using inverted Pin 3 output (as frame sync).                                                                                                                                                 |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUFBIS, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can support LSB first transfer by writing to SHIFTBUF register instead. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 22-12. I2S Master Configuration (continued)

| Register      | Value           | Comments                                                                                                                                                                                                            |
|---------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTBUF(n+1) | Data to receive | Received data can be read from SHIFTBUFBIS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support LSB first transfer by reading from SHIFTBUF register instead. |

## 22.4.7 I2S Slave

I2S slave mode can be supported using two Timers, two Shifters and four Pins (for single transmit and single receive, other combinations of transmit and receive are possible).

The transmit data must be written to the transmit buffer register before the external frame sync asserts, otherwise the shifter error flag will be set.

Due to synchronization delays, the output valid time for the serial output data is 2.5 FlexIO clock cycles, so the maximum baud rate is divide by 6 of the FlexIO clock frequency.

The output valid time of I2S slave is max 2.5 cycles because there is a maximum 1.5 cycle delay on the clock synchronization plus 1 cycle to output the data

Table 22-13. I2S Slave Configuration

| Register      | Value       | Comments                                                                                                                                                     |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFGn     | 0x0000_0000 | Start and stop bit disabled.                                                                                                                                 |
| SHIFTCTLn     | 0x0103_0002 | Configure transmit using Timer 1 on rising edge of shift clock with output data on Pin 0.                                                                    |
| SHIFTCFG(n+1) | 0x0000_0000 | Start and stop bit disabled.                                                                                                                                 |
| SHIFTCTL(n+1) | 0x0180_0101 | Configure receive using Timer 1 on falling edge of shift clock with input data on Pin 1.                                                                     |
| TIMCMPn       | 0x0000_007D | Configure two 32-bit transfers per frame.  Set TIMCMP[15:0] = (number of bits x 4)  - 3.                                                                     |
| TIMCFGn       | 0x0030_2400 | Configure enable on pin rising edge (inverted frame sync) and disable on compare, initial clock state is logic 1 and decrement on trigger input (bit clock). |
| TIMCTLn       | 0x0440_0383 | Configure 16-bit counter using inverted Pin 3 input (frame sync), with Pin 2 input (bit clock) as the trigger.                                               |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 579

Table 22-13. I2S Slave Configuration (continued)

| Register      | Value            | Comments                                                                                                                                                                                                              |
|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMCMP(n+1)   | 0x0000_003F      | Configure 32-bit transfers. Set TIMCMP[15:0] = (number of bits x 2) - 1.                                                                                                                                              |
| TIMCFG(n+1)   | 0x0020_3500      | Configure enable on pin rising edge with trigger high and disable on compare with trigger low, initial clock state is logic 0 and decrement on pin input.                                                             |
| TIMCTL(n+1)   | 0x0340_0203      | Configure 16-bit counter using Pin 2 input (bit clock), with Timer 0 output as the trigger.                                                                                                                           |
| SHIFTBUFn     | Data to transmit | Transmit data can be written to SHIFTBUFBIS, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. Can support LSB first transfer by writing to SHIFTBUF register instead. |
| SHIFTBUF(n+1) | Data to receive  | Received data can be read from SHIFTBUFBIS, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. Can support LSB first transfer by reading from SHIFTBUF register instead.   |

## 22.4.8 Camera Interface

Camera Interface can be supported using one Timer, one or more Shifters and multiple Pins. Multiple transfers can be supported using DMA controller.

The example below describes FlexIO configuration for interfacing to an 8-bit CMOS sensor with PCLK, VSYNC, HREF and D[7:0] outputs. The example uses a 128-bit buffer to capture 16-pixels of image data before interrupt or DMA transfer, however a bigger or smaller buffer may be used depending on system DMA performance and FlexIO resource usage by other applications. Note that additional timers may be used to track number of pixels per row and number of rows per frame or HREF/VSYNC may be assigned as GPIO interrupts for software tracking.

Table 22-14. Camera Interface Configuration for 8-bit CMOS sensor

| Register                  | Value       | Comments                                                          |
|---------------------------|-------------|-------------------------------------------------------------------|
| SHIFTCFGnn+2 <sup>1</sup> | 0x0007_0100 | Configure 8-bit parallel shift in from adjacent shifter.          |
| SHIFTCFGn+3               | 0x0007_0000 | Configure 8-bit parallel shift in from pins FXIO_D[7:0] (D[7:0]). |
| SHIFTCTLnn+3              | 0x0080_0001 | Configure receive using Timer 0 on negedge of clock.              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

581

Table 22-14. Camera Interface Configuration for 8-bit CMOS sensor (continued)

| Register     | Value           | Comments                                                                                                                                              |
|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMCMPn      | 0x0000_001F     | Configure 16-pixel (8 bits/pixel x 16 pixels = 128-bits) transfer. Set TIMCMP[15:0] = (number of pixels x 2) - 1.                                     |
| TIMCFGn      | 0x0120_6600     | Configure enable on trigger (HREF) rising edge and disable on trigger falling edge, initial Shift clock state is logic 0 and decrement on PCLK input. |
| TIMCTLn      | 0x12C0_0803     | Configure 16-bit counter using FXIO_D[8] input (PCLK), with FXIO_D[9] input (HREF) as the inverted trigger.                                           |
| SHIFTBUFnn+3 | Data to receive | Received data can be read from SHIFTBUFnn+3, use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request.            |

1. n=0 or 4

### 22.4.9 Motorola 68K/Intel 8080 Bus Interface

The Motorola 68K and Intel 8080 bus are two parallel interfaces commonly used by Smart/Asynchronous LCD controllers. In conjunction with GPIO, FlexIO is able to drive these interfaces using one Timer and one Shifter, although additional Shifters could be used to support large transfers via the DMA controller.

The configuration below provides an example of how to drive a 16-bit 68K or 8080 bus. For a 8080 bus, two GPIO are used to drive the nCS and RS pins. For a 68K bus, an additional GPIO is required to drive the RDWR pin.

Table 22-15. Motorola 68K/Intel 8080 Write Configuration

| Register   | Value                                          | Comments                                                                                                                                                                        |
|------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFG07 | 0x000F_0100                                    | Configure 16-bit parallel shift in from adjacent shifter.                                                                                                                       |
| SHIFTCTL0  | 0x0003_0002                                    | Configure transmit using Timer 0 on posedge of clock with data output to FXIO_D[15:0].                                                                                          |
| SHIFTCTL17 | 0x0000_0002                                    | Configure transmit using Timer 0 on posedge of clock.                                                                                                                           |
| TIMCMP0    | 0x0000_0101 (1-beat)<br>0x0000_1F01 (16-beats) | Configure 1 or 16-beat transfer with baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of beats x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1. |

Table continues on the next page...

#### **Application Information**

Table 22-15. Motorola 68K/Intel 8080 Write Configuration (continued)

| Register   | Value                                                                                                                                       | Comments                                                                                                                                                                                             |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMCFG0    | 0x0000_2200                                                                                                                                 | Configure enable on trigger high and disable on compare. Timer output high on enable.                                                                                                                |
| TIMCTL0    | 0x01C3_1001 (Motorola 68K, 1-beat) 0x1DC3_1001 (Motorola 68K, 16-beats) 0x01C3_1081 (Intel 8080, 1-beat) 0x1DC3_1081 (Intel 8080, 16-beats) | Configure dual 8-bit counter using FXIO_D[16] output (EN pin for 68K, nWR pin for 8080), with Shifter 0 (1-beat) or Shifter 7 (16-beats) flag as the inverted trigger.                               |
| SHIFTBUF07 | Data to transmit                                                                                                                            | Transmit data can be written to SHIFTBUFO (1-beat) or SHIFTBUFO7 (16-beats) to initiate a transfer, use the Shifter Status Flag to indicate when data can be written using interrupt or DMA request. |

Table 22-16. Motorola 68K/Intel 8080 Read Configuration

| Register   | Value                                | Comments                                                                                                                                                                  |
|------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFG06 | 0x000F_0100                          | Configure 16-bit parallel shift in from adjacent shifter.                                                                                                                 |
| SHIFTCFG7  | 0x000F_0000                          | Configure 16-bit parallel shift in from pin.                                                                                                                              |
| SHIFTCTL07 | 0x0080_0001                          | Configure receive using Timer 0 on negedge of clock with data input from FXIO_D[15:0].                                                                                    |
| TIMCMP0    | 0x0000_0101 (1-beat)                 | Configure 1 or 16-beat transfer with                                                                                                                                      |
|            | 0x0000_1F01 (16-beats)               | baud rate of divide by 4 of the FlexIO clock. Set TIMCMP[15:8] = (number of beats x 2) - 1. Set TIMCMP[7:0] = (baud rate divider / 2) - 1.                                |
| TIMCFG0    | 0x0000_2220                          | Configure stop_bit, enable on trigger high and disable on compare. Timer output high on enable.                                                                           |
| TIMCTL0    | 0x1DC3_1001 (Motorola 68K, 1 beat)   | Configure dual 8-bit counter using either                                                                                                                                 |
|            | 0x01C3_1001 (Motorola 68K, 16 beats) | FXIO_D[16] output (EN pin for 68K) or FXIO_D[17] output (nRD pin for 8080),                                                                                               |
|            | 0x1DC3_1181 (Intel 8080, 1 beat)     | with Shifter 7 flag (1-beat) or Shifter 0                                                                                                                                 |
|            | 0x01C3_1181 (Intel 8080, 16 beats)   | flag (16-beats) as the inverted trigger.                                                                                                                                  |
| SHIFTBUF07 | Data received                        | Received data can be read from SHIFTBUF0 (1-beat) or SHIFTBUF07 (16-beats), use the Shifter Status Flag to indicate when data can be read using interrupt or DMA request. |

In general, any operation to a 68K/8080 bus slave will begin with a register write cycle followed by one or more data read or write cycles. To accomplish this, the following program flow should be used:

- 1. Configure FlexIO with 1-beat write configuration
- 2. Configure GPIO to assert nCS, RS pins (and deassert RDWR pin for 68K)
- 3. Write register index data to SHIFTBUF0[15:0]
- 4. Configure GPIO to deassert RS pin (and assert RDWR pin for 68K data read)
- 5. Configure FlexIO with desired read or write configuration (e.g. 1 or 16-beats)
- 6. Use the Shifter Status Flag to trigger interrupt or DMA driven data transfers to/from SHIFTBUF registers
- 7. Configure GPIO to deassert nCS pin

#### 22.4.10 Low Power State Machine

The configuration below details a hypothetical state machine example to illustrate the flexibility allowed when using Shifter state mode.

In this example, FlexIO waits for the FXIO\_D[2] pin to assert and then drives a complementary square wave output at a frequency of FLEXIO\_CLK/131072 on the FXIO\_D[1:0] pins while the comparator output is asserted (assumes comparator is connected to external trigger 15, see Chip Configuration chapter for actual FlexIO trigger mappings). Throughout this operation, the CPU can be kept in a STOP/VLPS mode, by clearing the CTRL[DOZEN] bit and ensuring the FLEXIO\_CLK is enabled. The state diagram below shows the states and transitions implemented by this example.

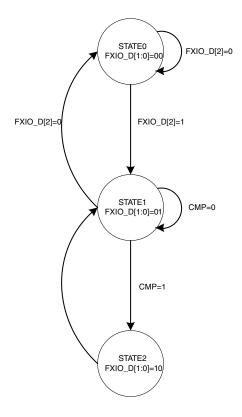



Figure 22-5. State Diagram

**Table 22-17. State Machine Configuration** 

| Register   | Value       | Comments                                                                                                                |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------|
| SHIFTCFG02 | 0x0000_0003 | Enable FXIO_D[1:0] as outputs.                                                                                          |
| SHIFTCTL0  | 0x0080_0206 | Configure for State mode using FXIO_D[4:2] as inputs to select next state and Timer0 output low to trigger next state.  |
| SHIFTBUF0  | 0x0020_8208 | State0: Drive FXIO_D[1:0]=00, transition to State0 if FXIO_D[2]=0, State1 if FXIO_D[2]=1.                               |
| SHIFTCTL1  | 0x0000_0206 | Configure for State mode using FXIO_D[4:2] as inputs to select next state and Timer0 output high to trigger next state. |
| SHIFTBUF1  | 0x0140_8408 | State1: Drive FXIO_D[1:0]=01, transition to State0 if FXIO_D[2]=0, State1 if CMP=0, State2 if CMP=1 (FXIO_D[3]=1)       |
| SHIFTCTL2  | 0x0080_0206 | Configure for State mode using FXIO_D[4:2] as inputs to select next state and Timer0 output low to trigger next state.  |
| SHIFTBUF2  | 0x0224_9249 | State2: Drive FXIO_D[1:0]=10, transition to State1 when Timer0 output low                                               |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 22 Flexible I/O (FlexIO)

# **Table 22-17. State Machine Configuration (continued)**

| Register | Value       | Comments                                                                                                     |
|----------|-------------|--------------------------------------------------------------------------------------------------------------|
| TIMCMP0  | 0x0000_FFFF | Configure baud rate of divide by 131072 of the FlexIO clock. Set TIMCMP[7:0] = (baud rate divider / 2) - 1.  |
| TIMCFG0  | 0x0000_0000 | Configure timer always enabled.                                                                              |
| TIMCTL0  | 0x0000_0003 | Configure single 16-bit counter.                                                                             |
| TIMCFG1  | 0x0010_7600 | Configure timer enabled on trigger rising edge, disabled on trigger falling edge, decrement on trigger edge. |
| TIMCTL1  | 0x0F03_0303 | Configure timer output enabled on FXIO_D[3], external trigger 15 (comparator output) selected.               |

**Application Information** 

# **Chapter 23 Flash Memory Controller (FMC)**

#### 23.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Flash Memory Controller (FMC) is a memory acceleration unit that provides:

- an interface between the device and the nonvolatile memory.
- buffers that can accelerate flash memory transfers.

#### 23.1.1 Overview

The Flash Memory Controller manages the interface between the device and the flash memory. The FMC receives status information detailing the configuration of the memory and uses this information to ensure a proper interface. The following table shows the supported read/write operations.

| Flash memory type    | Read                            | Write |
|----------------------|---------------------------------|-------|
| Program flash memory | 8-bit, 16-bit, and 32-bit reads | _1    |

1. A write operation to program flash memory results in a bus error.

The FMC has a 32-bit interface to the device. The flash memory has a 2-bank structure, with independent lower and upper banks (both banks are 64-bits wide). The FMC has 2 separate 64-bit interfaces to the flash memory, with one 64-bit interface to each bank.

In addition, the FMC provides 2 separate mechanisms for accelerating the interface between the device and the flash memory. A 64-bit speculation buffer can prefetch the next 64-bit flash memory location, and a shared 4-way, 4-set cache can store previously accessed flash memory data for quick access times.

## 23.1.2 Features

Interface features between the device and the flash memory include:

- 8-bit, 16-bit, and 32-bit read operations to program flash memory.
- Read accesses to consecutive 32-bit spaces in memory *that do not hit speculation* buffer or cache return the 2nd read data with no wait states.
- Crossbar master access protection for setting no access, read-only access, write-only access, or read/write access for each crossbar master.
- 64-bit prefetch speculation buffer with controls for instruction/data access per master
- Invalidation control for the speculation buffer
- 128 bytes = 4-way by 4-set by 64 bits per entry cache, with controls for caching instructions and/or data
- Enable and invalidation controls for cache
- Read accesses that hit a valid speculation or cache entry return the read data with no wait states

# 23.2 Modes of operation

The FMC only operates when a bus master accesses the flash memory.

In terms of device power modes, the FMC only operates in run and wait modes, including VLPR and VLPW modes.

For any device power mode where the flash memory cannot be accessed, the FMC is disabled.

## 23.3 External signal description

The FMC has no external signals.

# 23.4 Memory map and register descriptions

In this device, the PFC = Platform Flash Controller does not have any program model; therefore, there are no register definitions in the PFC chapter. All PFC operating controls are in the Platform Control Register (MCMx\_PLACR) in the MCM module.

# 23.5 Flash Access Control (FAC) Function

The Flash Access Control (FAC) is a configurable memory protection scheme optimized to allow end users to use software libraries while offering programmable restrictions to these libraries. The flash memory is divided into *equal size segments* that provide protection to proprietary software libraries. The protection of these segments is controlled: the FAC provides a cycle-by-cycle evaluation of the access rights for each transaction routed to the on-chip flash memory. Two levels of vendors can add their proprietary software to a device; FAC protection of segments for each level are defined once, using the PGMONCE command.

Flash access control aligns to the 3 privilege levels supported by ARM Cortex-M family products:

- Most secure state is supervisor/privileged secure: allows execute-only and provides supervisor-only access control.
- Mid-level state is execute-only.
- Unsecure state is where no access control states are set.

#### Features:

- Lightweight access control logic for on-chip flash memory
- Flash address space divided into (32 or 64) equal-sized segments (segment size is defined as flash\_size [bytes]/(32 or 64))
- Separate control bits for supervisor-only access and execute-only access per segment
- Access control evaluated on each bus cycle routed to the flash
- Access violation errors terminate the bus cycle and return zeroes for read data
- Programming model allows 2 levels of protected segments

# 23.5.1 Memory map and register definitions

The FAC registers are documented in the FTFA chapter.

## 23.5.2 FAC functional description

The access control functionality is implemented in 2 separate blocks within the SoC. The Flash Management Unit (FMU) includes non-volatile configuration information that is retrieved during reset and and sent to the platform to control access to the flash array during normal operation.

#### Flash Access Control (FAC) Function

There are (4) 64-bit NVM storage locations to support access control features. These NVM locations are summarized in the table below.

Table 23-1. NVM Locations

| NVM location     | Description                                                                                                                |                                                                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| NVSACC1, NVSACC2 | Two locations are ANDed together and loaded during reset into the <i>x</i> _SACC register to provide access configuration. | Segment-wise control for supervisor-only access vs. supervisor and user access |
| NVXACC1, NVXACC2 | Two locations are ANDed together and loaded during reset into the <i>x</i> _XACC register to provide access configuration. | Segment-wise control for execute-only vs. data and execute                     |

Each of these NVM locations is programmable through a Program Once flash command and can be programmed one time. These NVM locations are unaffected by Erase All Blocks flash command and debug interface initiated mass erase operations. Since the 2 NVXACCx fields are ANDed, the access protection can only be increased. A segment's access controls can be changed from data read and execute (XAn = 1) to execute-only (XAn = 0), or from supervisor and user mode (SAn = 1) to supervisor-only mode (SAn = 0).

The flash is released from reset early while the core continues to be held in reset. The FMU captures the NVM access control information in internal registers. The FMU ANDs the multiple execute-only fields to create a single execute-only field. This execute-only field driven to the platform is static prior to the core being released from reset. The supervisor-only field is handled in the same manner.

The FMU includes the FAC registers that provide control access to the flash address space. During the address phase of every attempted flash transfer, the supervisor access (SAn) and execute access (XAn) bits are examined to either allow or deny access. If access is denied, then the access is aborted and terminates with a bus error; the read data is also zeroed.

The next table shows segment assignments relative to the flash location.

**Table 23-2. Flash Protection Ranges** 

| SAn and XAn<br>Bit   | Protected Segment Address Range                | Segment Size (Fraction of total Flash) |
|----------------------|------------------------------------------------|----------------------------------------|
| 64 Segment Ence      | odings                                         |                                        |
| 0                    | 0x0_0000_0000 - (Flash_size/64-1)              | 1/64                                   |
| 1                    | (Flash_size/64) - 2*(Flash_size/64-1) 1/64     |                                        |
|                      |                                                |                                        |
| 63                   | 63*(Flash_size/64) – 62*(Flash_size/64-1) 1/64 |                                        |
| 32 Segment Encodings |                                                |                                        |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

**Table 23-2. Flash Protection Ranges (continued)** 

| SAn and XAn<br>Bit | Protected Segment Address Range           | Segment Size (Fraction of total Flash) |
|--------------------|-------------------------------------------|----------------------------------------|
| 0                  | 0x0_0000_0000 - (Flash_size/32-1)         | 1/32                                   |
| 1                  | (Flash_size/32) - 2*(Flash_size/32-1)     | 1/32                                   |
|                    |                                           |                                        |
| 31                 | 31*(Flash_size/32) - 30*(Flash_size/32-1) | 1/32                                   |

Individual segments within the flash memory can be independently protected from user access and data access. Protection is controlled by the individual bits within the  $x\_SACC$  and  $x\_XACC$  registers, as shown in the next figure.

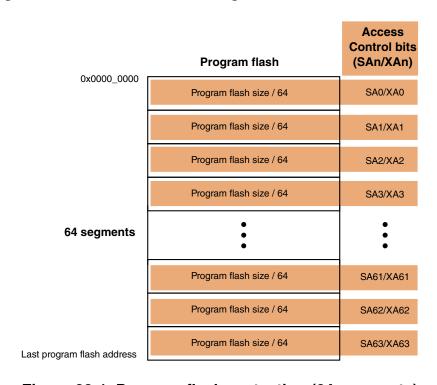



Figure 23-1. Program flash protection (64 segments)

## 23.5.2.1 Interface Signals

Table 23-3. Interface Signals

| Signal | Width    | From | То       | Description                                         |
|--------|----------|------|----------|-----------------------------------------------------|
| xacc   | 64 or 32 | FMU  | Platform | Direct xacc (execute-only access control) register  |
| sacc   | 64 or 32 | FMU  | Platform | Direct sacc (supervisor access control) register    |
| numsg  | 8        | FMU  | Platform | NUMSG bit field - Binary encoded number of segments |
|        |          |      |          | 0x40 for 64 segments                                |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 23-3. Interface Signals (continued)

| Signal     | Width | From | То  | Description                                                                                                                                              |
|------------|-------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |       |      |     | 0x20 for 32 segments                                                                                                                                     |
| fac_enable | 1     | SIM  | FMU | SIM Option bit - derived from an IFR bit and captured in SIM_SOPTx. A way to disable the flash access control for phantom devices without this feature.  |
|            |       |      |     | fac_enable==1 - Access Control feature is enabled                                                                                                        |
|            |       |      |     | fac_enable==0 - Access Control feature is disabled                                                                                                       |
|            |       |      |     | During the reset sequence, XACC registers are written to all "1"s.                                                                                       |
|            |       |      |     | <ul> <li>During the reset sequence, SACC registers are written to all 1"s.</li> <li>Implied protection based on XACC registers is turned off.</li> </ul> |

# 23.5.2.2 Flash Command Impact

| Program Longword/Phrase/<br>Section | If the targeted flash location is in an execute-only protected segment, then these program commands are not allowed unless a Read 1s All Blocks command is executed and returns with a pass code (which means the part has been fully erased). After the Read 1s All Blocks command is executed with a pass code returned, then the protected segment is open to program commands. To close off programmability to execute-only spaces once again, the device must be reset or a Read 1s All Blocks command is executed with a fail result. Attempts to program in a protected segment when not open to program commands causes a Protection Violation flag. |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| РСМСНК                              | The FMU will not execute the PGMCHK on a segment that has been configured as execute-only. The Flash Protection Violation flag is set if an attempt is made to execute PGMCHK command on an execute-only address.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Erase Flash Sector                  | If the targeted flash sector is in an execute-only protected segment, then the Erase Flash Sector command is not allowed, and sets the Protection Violation flag. The only means of erasing protected space is by an Erase All operation.                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ERSALL                              | The Erase All Blocks command is not affected by Access Control. An Erase All Blocks command will erase any libraries that have been programmed in any execute-only segment. The programmed execute-only assignment is not erased as part of the Erase All Blocks command, and access control regions remain as previously programmed.                                                                                                                                                                                                                                                                                                                        |  |
|                                     | NOTE: The ERSALL command may be used for field upgrades. Access control states remain programmed. Software must plan accordingly, possibly making extra space available for future use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

# 23.5.2.3 Core Platform Impact

| Platform core caches (Flash | If any segment is marked as execute-only, then the caches are hidden from the user. The tag   |
|-----------------------------|-----------------------------------------------------------------------------------------------|
| and LMEM caches)            | is read-only and cannot be written, and the data caches cannot be read or written. Writes to  |
|                             | the tag and data arrays are ignored, and reads of the data array return 0's. This will impact |
|                             | debug breakpoints. See the debug section for details.                                         |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

|                                                                                                                      | Chapter 23 Flash Memory Controller (FMC)                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Debug                                                                                                                | The debugger is a non-processor bus master and cannot step, trace or break in execute-only regions. In supervisor-only mode, the debugger is restricted from changing modes. Debug accesses to any segment of flash space marked as execute-only also terminate with a bus error.                                                                                                 |
| PC-relative addressing  The PC-relative addressing issue is still being understood and this section will the future. |                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                      | PC relative re-entry to execute-only segments will be allowed                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                      | Restrictions will be placed on software for PC relative addressing, because hardware cannot determine if PC relative data references are crossing segment boundaries.  • If ifetch is executing in a protected segment, then data references will be allowed.  • Hardware cannot track speculative ifetches across boundaries.                                                    |
| Interrupts                                                                                                           | If function calls are used to move into an execute-only segment, then this can be tracked by hardware when typical software controls are used (i.e., saving registers and states before executing new code).                                                                                                                                                                      |
| Reset Vector                                                                                                         | In the ARM core, the reset vector fetch is supervisor data, which poses issues if the reset vector is located in a segment marked execute-only. Additional logic has been implemented to allow supervisor data fetches to execute-only spaces, after reset until the first valid instruction fetch. After the first valid instruction fetch, the FAC logic follows normal checks. |

## 23.5.2.4 Software Impact

As implementation, verification and validation continue, there will be more details on software impact that will need to be communicated to tool and library vendors. The hardware cannot see all states of the ARM core and cannot track the software flow requiring software restrictions to work with the hardware for a robust solution.

Any segment marked as execute-only can see all code in the system. This means one execute-only segment can read the execute-only code in another segment. Therefore, if Freescale is sending pre-loaded code to another vendor, then that vendor will have access to Freescale code. Possibly use NDAs and legal agreements to deal with this issue.

For single pre-loads (for example, if Freescale is pre-loading for a GP market or if a vendor with a blank part is pre-loading proprietary code), then both levels of access control must be programmed, to protect the pre-loaded code.

If any portion of a protected segment is not used by pre-loaded code, then it (the portion of a protected segment that is not used by pre-loaded code) should be programmed with NOPs, to prevent additional code from being programmed in that segment by hackers.

## 23.5.2.5 Access Check Evaluation

The flash controller FAC provides a cycle-by-cycle evaluation of the access rights for each data transaction routed to the on-chip flash memory.

#### Flash Access Control (FAC) Function

The entire flash storage capacity is partitioned into equal sized segments. Two registers include a supervisor-only access control indicator and a execute-only access control indicator for each segment.

The FAC logic performs the required access control evaluation using the reference address and a 2-bit attribute (or "protection" field) as inputs from the bus cycle plus the contents of the programming model registers.

The following code example illustrates C code for FAC evaluation:

```
unsigned long long sacc; // supervisor-only map unsigned long long xacc; // execute-only map
                                       // 8-bit segment size
unsigned int seg_size;
unsigned int fac error;
fac evaluation (addr, prot)
  unsigned int addr; // access address unsigned int hprot; // encoded 2-bit "protection" field {supv, data}
   unsigned int sacc flag; // sacc flag for this segment
   unsigned int xacc_flag; // xacc flag for this segment
   unsigned int i;
                                       // segment index
                  = (addr >> (8 + seg_size & 0x0f)) & 0x3f; // form 6-bit segment index
  xacc flag = (xacc >> i) & 1;
                                                                  // extract xacc bit for this segment
   // create a 4-tuple concatenating the 2-bit protection field + {sacc, xacc} flags
   switch ((hprot & 3) << 2 | (sacc_flag << 1) | xacc_flag) {</pre>
   // all these combinations are allowed accesses
     case 0x2: // {user, ifetch} && {supv+user, ifetch-only}
case 0x3: // {user, ifetch} && {supv+user, ifetch+data}
     case 0x7: // {user, data} && {supv+user, ifetch+data}
case 0x8: // {supv, ifetch} && {supv-only, ifetch-only}
     case 0x9: // {supv, ifetch} && {supv-only, ifetch-only} case 0x9: // {supv, ifetch} && {supv-only, ifetch+data} case 0xa: // {supv, ifetch} && {supv+user, ifetch-only} case 0xb: // {supv, ifetch} && {supv+user, ifetch+data} case 0xd: // {supv, data} && {supv-only, ifetch+data} case 0xf: // {supv, data} && {supv+user, ifetch+data}
         fac error = 00;
        break;
   // all these combinations are unallowed, that is, errored accesses
     case 0x0: // {user, ifetch} && {supv-only, ifetch-only}
case 0x1: // {user, ifetch} && {supv-only, ifetch+data}
     case 0x4: // {user, data} && {supv-only, ifetch-only
     case 0x5: // {user, data} && {supv-only, ifetch+data} case 0x6: // {user, data} && {supv-user, ifetch-only} case 0xc: // {supv, data} && {supv-only, ifetch-only} case 0xe: // {supv, data} && {supv-user, ifetch-only}
         fac error = 1;
         break;
    } // switch()
} // fac_evaluation()
```

Q/

KL28Z Reference Manual, Rev. 4, 06/2016

## 23.5.2.6 FAC application tips

In one use case, the NVSACC1 and NVXACC1 locations are programmed by Freescale and they protect Freescale libraries that have been programmed into associated flash segments in a device. Later, the NVSACC2 and NVXACC2 NVM locations can optionally be programmed by a third-party vendor who wants to program their proprietary software and to extend the protection of protected flash segments to include their software libraries before supplying it all to their customers.

Their customer would then develop their own code to use the available libraries, and program their code into the remaining available on-chip flash. The device continues to support the end user with standard security features that further limit external access to flash resources.

# 23.6 Initialization and application information

The FMC does not require user initialization. Flash acceleration features are enabled by default.

The FMC has no visibility into flash memory erase and program cycles, because the Flash Memory module manages them directly. As a result, if an application is executing flash memory commands, then the FMC's cache might need to be disabled and/or flushed, to prevent the possibility of returning stale data. To invalidate the cache in this manner, use the Flash Cache Invalidate control register in the MCM.

Initialization and application information

KL28Z Reference Manual, Rev. 4, 06/2016

# **Chapter 24 Flash Memory Module (FTFA)**

#### 24.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The flash memory module includes the following accessible memory regions:

Program flash memory for vector space and code store

Flash memory is ideal for single-supply applications, permitting in-the-field erase and reprogramming operations without the need for any external high voltage power sources.

The flash memory module includes a memory controller that executes commands to modify flash memory contents. An erased bit reads '1' and a programmed bit reads '0'. The programming operation is unidirectional; it can only move bits from the '1' state (erased) to the '0' state (programmed). Only the erase operation restores bits from '0' to '1'; bits cannot be programmed from a '0' to a '1'.

#### CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-toback program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

The standard shipping condition for flash memory is erased with security disabled. Data loss over time may occur due to degradation of the erased ('1') states and/or programmed ('0') states. Therefore, it is recommended that each flash block or sector be re-erased immediately prior to factory programming to ensure that the full data retention capability is achieved.

#### **24.1.1 Features**

The flash memory module includes the following features.

#### NOTE

See the device's Chip Configuration details for the exact amount of flash memory available on your device.

## 24.1.1.1 Program Flash Memory Features

- Sector size of 2 KB
- Program flash protection scheme prevents accidental program or erase of stored data
- Program flash access control scheme prevents unauthorized access to selected code segments
- Automated, built-in, program and erase algorithms with verify
- Read access to one program flash block is possible while programming or erasing data in the other program flash block

## 24.1.1.2 Other Flash Memory Module Features

- Internal high-voltage supply generator for flash memory program and erase operations
- Optional interrupt generation upon flash command completion
- Supports MCU security mechanisms which prevent unauthorized access to the flash memory contents

# 24.1.2 Block Diagram

The block diagram of the flash memory module is shown in the following figure.

KL28Z Reference Manual, Rev. 4, 06/2016

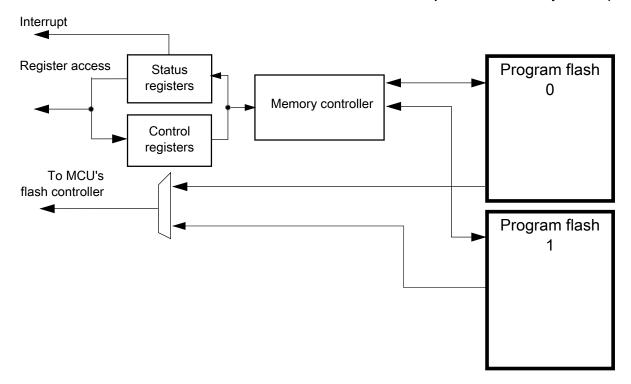



Figure 24-1. Flash Block Diagram

## 24.1.3 Glossary

**Command write sequence** — A series of MCU writes to the flash FCCOB register group that initiates and controls the execution of flash algorithms that are built into the flash memory module.

**Endurance** — The number of times that a flash memory location can be erased and reprogrammed.

**FCCOB** (**Flash Common Command Object**) — A group of flash registers that are used to pass command, address, data, and any associated parameters to the memory controller in the flash memory module.

**Flash block** — A macro within the flash memory module which provides the nonvolatile memory storage.

**Flash Memory Module** — All flash blocks plus a flash management unit providing high-level control and an interface to MCU buses.

**HSRUN** — An MCU power mode enabling high-speed access to the memory resources in the flash module. The user has no access to the flash command set when the MCU is in HSRUN mode.

#### **External Signal Description**

**IFR** — Nonvolatile information register found in each flash block, separate from the main memory array.

**Longword** — 32 bits of data with an aligned longword having byte-address[1:0] = 00.

**NVM** — Nonvolatile memory. A memory technology that maintains stored data during power-off. The flash array is an NVM using NOR-type flash memory technology.

**NVM Normal Mode** — An NVM mode that provides basic user access to flash memory module resources. The CPU or other bus masters initiate flash program and erase operations (or other flash commands) using writes to the FCCOB register group in the flash memory module.

**NVM Special Mode** — An NVM mode enabling external, off-chip access to the memory resources in the flash memory module. A reduced flash command set is available when the MCU is secured. See the Chip Configuration details for information on when this mode is used.

**Phrase** — 64 bits of data with an aligned phrase having byte-address[2:0] = 000.

**Program flash** — The program flash memory provides nonvolatile storage for vectors and code store.

**Program flash Sector** — The smallest portion of the program flash memory (consecutive addresses) that can be erased.

**Retention** — The length of time that data can be kept in the NVM without experiencing errors upon readout. Since erased (1) states are subject to degradation just like programmed (0) states, the data retention limit may be reached from the last erase operation (not from the programming time).

**RWW**— Read-While-Write. The ability to simultaneously read from one memory resource while commanded operations are active in another memory resource.

**Secure** — An MCU state conveyed to the flash memory module as described in the Chip Configuration details for this device. In the secure state, reading and changing NVM contents is restricted.

**Word** — 16 bits of data with an aligned word having byte-address[0] = 0.

## 24.2 External Signal Description

The flash memory module contains no signals that connect off-chip.

# 24.3 Memory Map and Registers

This section describes the memory map and registers for the flash memory module.

Data read from unimplemented memory space in the flash memory module is undefined. Writes to unimplemented or reserved memory space (registers) in the flash memory module are ignored.

## 24.3.1 Flash Configuration Field Description

The program flash memory contains a 16-byte flash configuration field that stores default protection settings (loaded on reset) and security information that allows the MCU to restrict access to the flash memory module.

| Flash Configuration Field Offset<br>Address | Size (Bytes) | Field Description                                                                                                                |
|---------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0x0_0400-0x0_0407                           | 8            | Backdoor Comparison Key. Refer to<br>Verify Backdoor Access Key Command<br>and Unsecuring the Chip Using<br>Backdoor Key Access. |
| 0x0_0408-0x0_040B                           | 4            | Program flash protection bytes. Refer to the description of the Program Flash Protection Registers (FPROT0-3).                   |
| 0x0_040F                                    | 1            | Reserved                                                                                                                         |
| 0x0_040E                                    | 1            | Reserved                                                                                                                         |
| 0x0_040D                                    | 1            | Flash nonvolatile option byte. Refer to the description of the Flash Option Register (FOPT).                                     |
| 0x0_040C                                    | 1            | Flash security byte. Refer to the description of the Flash Security Register (FSEC).                                             |

## 24.3.2 Program Flash IFR Map

The program flash IFR is nonvolatile information memory that can be read freely, but the user has no erase and limited program capabilities (see the Read Once, Program Once, and Read Resource commands in Read Once Command, Program Once Command and Read Resource Command).

The contents of the program flash IFR are summarized in the table found here and further described in the subsequent paragraphs.

#### **Memory Map and Registers**

The program flash IFR is located within the program flash 0 memory block.

| Address Range | Size (Bytes) | Field Description          |
|---------------|--------------|----------------------------|
| 0x00 – 0x9F   | 160          | Reserved                   |
| 0xA0 - 0xA3   | 4            | Program Once XACCH-1 Field |
|               |              | (index = 0x10)             |
| 0xA4 - 0xA7   | 4            | Program Once XACCL-1 Field |
|               |              | (index = 0x10)             |
| 0xA8 – 0xAB   | 4            | Program Once XACCH-2 Field |
|               |              | (index = 0x11)             |
| 0xAC – 0xAF   | 4            | Program Once XACCL-2 Field |
|               |              | (index = 0x11)             |
| 0xB0 - 0xB3   | 4            | Program Once SACCH-1 Field |
|               |              | (index = 0x12)             |
| 0xB4 - 0xB7   | 4            | Program Once SACCL-1 Field |
|               |              | (index = 0x12)             |
| 0xB8 - 0xBB   | 4            | Program Once SACCH-2 Field |
|               |              | (index = 0x13)             |
| 0xBC - 0xBF   | 4            | Program Once SACCL-2 Field |
|               |              | (index = 0x13)             |
| 0xC0 - 0xFF   | 64           | Program Once ID Field      |
|               |              | (index = 0x00 - 0x0F)      |

## 24.3.2.1 Program Once Field

The Program Once Field in the program flash IFR provides 96 bytes of user data storage separate from the program flash main array. The user can program the Program Once Field one time only as there is no program flash IFR erase mechanism available to the user. The Program Once Field can be read any number of times. This section of the program flash IFR is accessed in 4-byte or 8-Byte records using the Read Once and Program Once commands (see Read Once Command and Program Once Command).

## 24.3.3 Program Flash Erasable IFR Map

The program flash erasable IFR is nonvolatile information memory that can be erased but has limited program capabilities and limited read access. The contents of the program flash erasable IFR fields are summarized in the table found here.

603

| Address Range | Size (Bytes) | Field Description                          |
|---------------|--------------|--------------------------------------------|
| 0xC0 - 0xC3   | 4            | Erasable Program Once Field (index = 0x30) |
| 0xC4 - 0xC7   | 4            | Erasable Program Once Field (index = 0x31) |
| 0xC8 - 0xCB   | 4            | Erasable Program Once Field (index = 0x32) |
| 0xCC - 0xCF   | 4            | Erasable Program Once Field (index = 0x33) |

## 24.3.3.1 Erasable Program Once Field

The Program Once Field in the program flash erasable IFR with indexes 0x30 - 0x33 provides 16 bytes of user data storage that can be programmed using the Program Once command and read using the Read Once command. The program flash erasable IFR is erased using the Erase All Blocks command, Erase All Blocks Unsecure command, and using the external erase all feature (mass erase).

## 24.3.4 Register Descriptions

The flash memory module contains a set of memory-mapped control and status registers.

#### **NOTE**

While a command is running (FSTAT[CCIF]=0), register writes are not accepted to any register except FCNFG and FSTAT. The no-write rule is relaxed during the start-up reset sequence, prior to the initial rise of CCIF. During this initialization period the user may write any register. All register writes are also disabled (except for registers FCNFG and FSTAT) whenever an erase suspend request is active (FCNFG[ERSSUSP]=1).

#### FTFA memory map

| Absolute address (hex) | Register name                             |   | Access | Reset value | Section/<br>page |
|------------------------|-------------------------------------------|---|--------|-------------|------------------|
| 4002_0000              | Flash Status Register (FTFA_FSTAT)        | 8 | R/W    | 00h         | 24.3.4.1/<br>605 |
| 4002_0001              | Flash Configuration Register (FTFA_FCNFG) | 8 | R/W    | 00h         | 24.3.4.2/<br>607 |
| 4002_0002              | Flash Security Register (FTFA_FSEC)       | 8 | R      | Undefined   | 24.3.4.3/<br>608 |
| 4002_0003              | Flash Option Register (FTFA_FOPT)         | 8 | R      | Undefined   | 24.3.4.4/<br>609 |

Table continues on the next page...

# FTFA memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-----------------------------------------------------|--------------------|--------|-------------|------------------|
| 4002_0004                    | Flash Common Command Object Registers (FTFA_FCCOB3) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0005                    | Flash Common Command Object Registers (FTFA_FCCOB2) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0006                    | Flash Common Command Object Registers (FTFA_FCCOB1) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0007                    | Flash Common Command Object Registers (FTFA_FCCOB0) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0008                    | Flash Common Command Object Registers (FTFA_FCCOB7) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0009                    | Flash Common Command Object Registers (FTFA_FCCOB6) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000A                    | Flash Common Command Object Registers (FTFA_FCCOB5) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000B                    | Flash Common Command Object Registers (FTFA_FCCOB4) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000C                    | Flash Common Command Object Registers (FTFA_FCCOBB) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000D                    | Flash Common Command Object Registers (FTFA_FCCOBA) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000E                    | Flash Common Command Object Registers (FTFA_FCCOB9) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_000F                    | Flash Common Command Object Registers (FTFA_FCCOB8) | 8                  | R/W    | 00h         | 24.3.4.5/<br>610 |
| 4002_0010                    | Program Flash Protection Registers (FTFA_FPROT3)    | 8                  | R/W    | Undefined   | 24.3.4.6/<br>611 |
| 4002_0011                    | Program Flash Protection Registers (FTFA_FPROT2)    | 8                  | R/W    | Undefined   | 24.3.4.6/<br>611 |
| 4002_0012                    | Program Flash Protection Registers (FTFA_FPROT1)    | 8                  | R/W    | Undefined   | 24.3.4.6/<br>611 |
| 4002_0013                    | Program Flash Protection Registers (FTFA_FPROT0)    | 8                  | R/W    | Undefined   | 24.3.4.6/<br>611 |
| 4002_0018                    | Execute-only Access Registers (FTFA_XACCH3)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |
| 4002_0019                    | Execute-only Access Registers (FTFA_XACCH2)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |
| 4002_001A                    | Execute-only Access Registers (FTFA_XACCH1)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |
| 4002_001B                    | Execute-only Access Registers (FTFA_XACCH0)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |
| 4002_001C                    | Execute-only Access Registers (FTFA_XACCL3)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |
| 4002_001D                    | Execute-only Access Registers (FTFA_XACCL2)         | 8                  | R      | Undefined   | 24.3.4.7/<br>613 |

Table continues on the next page...

#### FTFA memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page  |
|------------------------------|---------------------------------------------------|--------------------|--------|-------------|-------------------|
| 4002_001E                    | Execute-only Access Registers (FTFA_XACCL1)       | 8                  | R      | Undefined   | 24.3.4.7/<br>613  |
| 4002_001F                    | Execute-only Access Registers (FTFA_XACCL0)       | 8                  | R      | Undefined   | 24.3.4.7/<br>613  |
| 4002_0020                    | Supervisor-only Access Registers (FTFA_SACCH3)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0021                    | Supervisor-only Access Registers (FTFA_SACCH2)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0022                    | Supervisor-only Access Registers (FTFA_SACCH1)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0023                    | Supervisor-only Access Registers (FTFA_SACCH0)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0024                    | Supervisor-only Access Registers (FTFA_SACCL3)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0025                    | Supervisor-only Access Registers (FTFA_SACCL2)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0026                    | Supervisor-only Access Registers (FTFA_SACCL1)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0027                    | Supervisor-only Access Registers (FTFA_SACCL0)    | 8                  | R      | Undefined   | 24.3.4.8/<br>614  |
| 4002_0028                    | Flash Access Segment Size Register (FTFA_FACSS)   | 8                  | R      | Undefined   | 24.3.4.9/<br>615  |
| 4002_002B                    | Flash Access Segment Number Register (FTFA_FACSN) | 8                  | R      | Undefined   | 24.3.4.10/<br>616 |

# 24.3.4.1 Flash Status Register (FTFA\_FSTAT)

The FSTAT register reports the operational status of the flash memory module.

The CCIF, RDCOLERR, ACCERR, and FPVIOL bits are readable and writable. The MGSTAT0 bit is read only. The unassigned bits read 0 and are not writable.

#### NOTE

When set, the Access Error (ACCERR) and Flash Protection Violation (FPVIOL) bits in this register prevent the launch of any more commands until the flag is cleared (by writing a one to it).

#### **Memory Map and Registers**

Address: 4002\_0000h base + 0h offset = 4002\_0000h

| Bit   | 7    | 6        | 5      | 4      | 3 | 2 | 1 | 0       |
|-------|------|----------|--------|--------|---|---|---|---------|
| Read  | CCIF | RDCOLERR | ACCERR | FPVIOL |   | 0 |   | MGSTAT0 |
| Write | w1c  | w1c      | w1c    | w1c    |   |   |   |         |
| Reset | 0    | 0        | 0      | 0      | 0 | 0 | 0 | 0       |

## FTFA\_FSTAT field descriptions

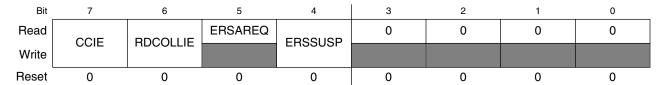
| Field           | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7               | Command Complete Interrupt Flag                                                                                                                                                                                                                                                                                                                                                    |
| CCIF            | Indicates that a flash command has completed. The CCIF flag is cleared by writing a 1 to CCIF to launch a command, and CCIF stays low until command completion or command violation.                                                                                                                                                                                               |
|                 | CCIF is reset to 0 but is set to 1 by the memory controller at the end of the reset initialization sequence. Depending on how quickly the read occurs after reset release, the user may or may not see the 0 hardware reset value.                                                                                                                                                 |
|                 | 0 Flash command in progress                                                                                                                                                                                                                                                                                                                                                        |
|                 | 1 Flash command has completed                                                                                                                                                                                                                                                                                                                                                      |
| 6               | Flash Read Collision Error Flag                                                                                                                                                                                                                                                                                                                                                    |
| RDCOLERR        | Indicates that the MCU attempted a read from a flash memory resource that was being manipulated by a flash command (CCIF=0). Any simultaneous access is detected as a collision error by the block arbitration logic. The read data in this case cannot be guaranteed. The RDCOLERR bit is cleared by writing a 1 to it. Writing a 0 to RDCOLERR has no effect.                    |
|                 | 0 No collision error detected                                                                                                                                                                                                                                                                                                                                                      |
|                 | 1 Collision error detected                                                                                                                                                                                                                                                                                                                                                         |
| 5<br>ACCERR     | Flash Access Error Flag  Indicates an illegal access has occurred to a flash memory resource caused by a violation of the command write sequence or issuing an illegal flash command. While ACCERR is set, the CCIF flag cannot be cleared to launch a command. The ACCERR bit is cleared by writing a 1 to ACCERR while CCIF is set. Writing a 0 to the ACCERR bit has no effect. |
|                 |                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 0 No access error detected                                                                                                                                                                                                                                                                                                                                                         |
|                 | 1 Access error detected                                                                                                                                                                                                                                                                                                                                                            |
| 4<br>FPVIOL     | Flash Protection Violation Flag  Indicates an attempt was made to program or erase an address in a protected area of program flash memory during a command write sequence. While FPVIOL is set, the CCIF flag cannot be cleared to launch a command. The FPVIOL bit is cleared by writing a 1 to FPVIOL while CCIF is set. Writing a 0 to the FPVIOL bit has no effect.            |
|                 | 0 No protection violation detected                                                                                                                                                                                                                                                                                                                                                 |
|                 | 1 Protection violation detected                                                                                                                                                                                                                                                                                                                                                    |
| 3–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| 0               | Memory Controller Command Completion Status Flag                                                                                                                                                                                                                                                                                                                                   |
| MGSTAT0         | The MGSTAT0 status flag is set if an error is detected during execution of a flash command or during the flash reset sequence. As a status flag, this field cannot (and need not) be cleared by the user like the other error flags in this register.                                                                                                                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

607

## FTFA\_FSTAT field descriptions (continued)


| Field | Description                                                                                                                                                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | The value of the MGSTAT0 bit for "command-N" is valid only at the end of the "command-N" execution when CCIF=1 and before the next command has been launched. At some point during the execution of "command-N+1," the previous result is discarded and any previous error is cleared. |

## 24.3.4.2 Flash Configuration Register (FTFA\_FCNFG)

This register provides information on the current functional state of the flash memory module.

The erase control bits (ERSAREQ and ERSSUSP) have write restrictions. The unassigned bits read as noted and are not writable.

Address: 4002\_0000h base + 1h offset = 4002\_0001h



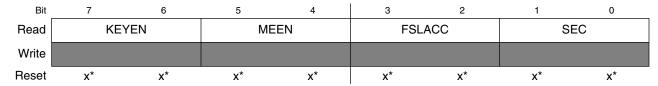
#### FTFA FCNFG field descriptions

| Field     | Description                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>CCIE | Command Complete Interrupt Enable                                                                                                                                                                                                                             |
| 0012      | Controls interrupt generation when a flash command completes.                                                                                                                                                                                                 |
|           | 0 Command complete interrupt disabled                                                                                                                                                                                                                         |
|           | 1 Command complete interrupt enabled. An interrupt request is generated whenever the FSTAT[CCIF] flag is set.                                                                                                                                                 |
| 6         | Read Collision Error Interrupt Enable                                                                                                                                                                                                                         |
| RDCOLLIE  | Controls interrupt generation when a flash memory read collision error occurs.                                                                                                                                                                                |
|           | 0 Read collision error interrupt disabled                                                                                                                                                                                                                     |
|           | 1 Read collision error interrupt enabled. An interrupt request is generated whenever a flash memory read collision error is detected (see the description of FSTAT[RDCOLERR]).                                                                                |
| 5         | Erase All Request                                                                                                                                                                                                                                             |
| ERSAREQ   | Issues a request to the memory controller to execute the Erase All Blocks command and release security. ERSAREQ is not directly writable but is under indirect user control. Refer to the device's Chip Configuration details on how to request this command. |
|           | ERSAREQ sets when an erase all request is triggered external to the flash memory module and CCIF is set (no command is currently being executed). ERSAREQ is cleared by the flash memory module when the operation completes.                                 |
|           | No request or request complete     Request to:         1. run the Erase All Blocks command,                                                                                                                                                                   |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### FTFA\_FCNFG field descriptions (continued)


| Field         | Description                                                                                                                                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ol> <li>verify the erased state,</li> <li>program the security byte in the Flash Configuration Field to the unsecure state, and</li> <li>release MCU security by setting the FSEC[SEC] field to the unsecure state.</li> </ol> |
| 4<br>ERSSUSP  | Erase Suspend  Allows the user to suspend (interrupt) the Erase Flash Sector command while it is executing.  O No suspend requested  Suspend the current Erase Flash Sector command execution.                                  |
| 3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |
| 2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |
| 1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |
| 0<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |

## 24.3.4.3 Flash Security Register (FTFA\_FSEC)

This read-only register holds all bits associated with the security of the MCU and flash memory module.

During the reset sequence, the register is loaded with the contents of the flash security byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value.

Address: 4002\_0000h base + 2h offset = 4002\_0002h



<sup>\*</sup> Notes:

• x = Undefined at reset.

### FTFA\_FSEC field descriptions

| Field        | Description                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------|
| 7–6<br>KEYEN | Backdoor Key Security Enable Enables or disables backdoor key access to the flash memory module.                       |
|              | 00 Backdoor key access disabled 01 Backdoor key access disabled (preferred KEYEN state to disable backdoor key access) |

Table continues on the next page...

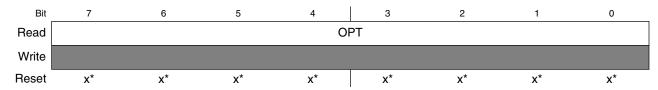
#### KL28Z Reference Manual, Rev. 4, 06/2016

#### FTFA\_FSEC field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 10 Backdoor key access enabled                                                                                                                                                                                                                                                                          |
|               | 11 Backdoor key access disabled                                                                                                                                                                                                                                                                         |
| 5–4<br>MEEN   | Mass Erase Enable                                                                                                                                                                                                                                                                                       |
|               | Enables and disables mass erase capability of the flash memory module at all times in all NVM modes.                                                                                                                                                                                                    |
|               | 00 Mass erase is enabled                                                                                                                                                                                                                                                                                |
|               | 01 Mass erase is enabled                                                                                                                                                                                                                                                                                |
|               | 10 Mass erase is disabled                                                                                                                                                                                                                                                                               |
|               | 11 Mass erase is enabled                                                                                                                                                                                                                                                                                |
| 3–2<br>FSLACC | Factory Security Level Access Code                                                                                                                                                                                                                                                                      |
| . 52 (55      | Enables or disables access to the flash memory contents during returned part failure analysis at NXP. When SEC is secure and FSLACC is denied, access to the program flash contents is denied and any failure analysis performed by NXP factory test must begin with a full erase to unsecure the part. |
|               | When access is granted (SEC is unsecure, or SEC is secure and FSLACC is granted), NXP factory testing has visibility of the current flash contents. The state of the FSLACC bits is only relevant when SEC is set to secure. When SEC is set to unsecure, the FSLACC setting does not matter.           |
|               | 00 NXP factory access granted                                                                                                                                                                                                                                                                           |
|               | 01 NXP factory access denied                                                                                                                                                                                                                                                                            |
|               | 10 NXP factory access denied                                                                                                                                                                                                                                                                            |
|               | 11 NXP factory access granted                                                                                                                                                                                                                                                                           |
| SEC           | Flash Security                                                                                                                                                                                                                                                                                          |
|               | Defines the security state of the MCU. In the secure state, the MCU limits access to flash memory module resources. The limitations are defined per device and are detailed in the Chip Configuration details. If the flash memory module is unsecured using backdoor key access, SEC is forced to 10b. |
|               | 00 MCU security status is secure.                                                                                                                                                                                                                                                                       |
|               | 01 MCU security status is secure.                                                                                                                                                                                                                                                                       |
|               | MCU security status is unsecure. (The standard shipping condition of the flash memory module is unsecure.)                                                                                                                                                                                              |
|               | 11 MCU security status is secure.                                                                                                                                                                                                                                                                       |

## 24.3.4.4 Flash Option Register (FTFA\_FOPT)

The flash option register allows the MCU to customize its operations by examining the state of these read-only bits, which are loaded from NVM at reset. The function of the bits is defined in the device's Chip Configuration details.


All bits in the register are read-only.

During the reset sequence, the register is loaded from the flash nonvolatile option byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value. However, the register is written to 0xFF if the contents of the flash nonvolatile option byte are 0x00.

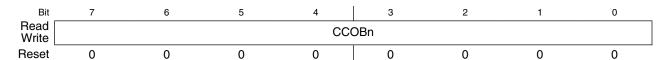
KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map and Registers**

Address: 4002\_0000h base + 3h offset = 4002\_0003h



<sup>\*</sup> Notes:


#### FTFA\_FOPT field descriptions

| Field | Description                                                                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPT   | Nonvolatile Option                                                                                                                                     |
|       | These bits are loaded from flash to this register at reset. Refer to the device's Chip Configuration details for the definition and use of these bits. |

## 24.3.4.5 Flash Common Command Object Registers (FTFA\_FCCOBn)

The FCCOB register group provides 12 bytes for command codes and parameters. The individual bytes within the set append a 0-B hex identifier to the FCCOB register name: FCCOB0, FCCOB1, ..., FCCOBB.

Address:  $4002\_0000h$  base + 4h offset +  $(1d \times i)$ , where i=0d to 11d



## FTFA\_FCCOBn field descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCOBn | The FCCOB register provides a command code and relevant parameters to the memory controller. The individual registers that compose the FCCOB data set can be written in any order, but you must provide all needed values, which vary from command to command. First, set up all required FCCOB fields and then initiate the command's execution by writing a 1 to the FSTAT[CCIF] bit. This clears the CCIF bit, which locks all FCCOB parameter fields and they cannot be changed by the user until the command completes (CCIF returns to 1). No command buffering or queueing is provided; the next command can be loaded only after the current command completes. |
|       | Some commands return information to the FCCOB registers. Any values returned to FCCOB are available for reading after the FSTAT[CCIF] flag returns to 1 by the memory controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | The following table shows a generic flash command format. The first FCCOB register, FCCOB0, always contains the command code. This 8-bit value defines the command to be executed. The command code is followed by the parameters required for this specific flash command, typically an address and/or data values.                                                                                                                                                                                                                                                                                                                                                    |

<sup>•</sup> x = Undefined at reset.

611

#### FTFA\_FCCOBn field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                                                                                 |                                              |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|
|       | <b>NOTE:</b> The command parameter table is written in terms of FCCOB Number (which is equivalent to the byte number). This number is a reference to the FCCOB register name and is not the register address.                                                                                                               |                                              |  |  |  |  |
|       | FCCOB Number                                                                                                                                                                                                                                                                                                                | Typical Command Parameter Contents [7:0]     |  |  |  |  |
|       | 0                                                                                                                                                                                                                                                                                                                           | FCMD (a code that defines the flash command) |  |  |  |  |
|       | 1                                                                                                                                                                                                                                                                                                                           | Flash address [23:16]                        |  |  |  |  |
|       | 2                                                                                                                                                                                                                                                                                                                           | Flash address [15:8]                         |  |  |  |  |
|       | 3                                                                                                                                                                                                                                                                                                                           | Flash address [7:0]                          |  |  |  |  |
|       | 4                                                                                                                                                                                                                                                                                                                           | Data Byte 0                                  |  |  |  |  |
|       | 5                                                                                                                                                                                                                                                                                                                           | Data Byte 1                                  |  |  |  |  |
|       | 6                                                                                                                                                                                                                                                                                                                           | Data Byte 2                                  |  |  |  |  |
|       | 7                                                                                                                                                                                                                                                                                                                           | Data Byte 3                                  |  |  |  |  |
|       | 8                                                                                                                                                                                                                                                                                                                           | Data Byte 4                                  |  |  |  |  |
|       | 9                                                                                                                                                                                                                                                                                                                           | Data Byte 5                                  |  |  |  |  |
|       | Α                                                                                                                                                                                                                                                                                                                           | Data Byte 6                                  |  |  |  |  |
|       | В                                                                                                                                                                                                                                                                                                                           | Data Byte 7                                  |  |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                             |                                              |  |  |  |  |
|       | FCCOB Endianness and Multi-Byte Access :                                                                                                                                                                                                                                                                                    |                                              |  |  |  |  |
|       | The FCCOB register group uses a big endian addressing convention. For all command parameter fields larger than 1 byte, the most significant data resides in the lowest FCCOB register number. The FCCOB register group may be read and written as individual bytes, aligned words (2 bytes) or aligned longwords (4 bytes). |                                              |  |  |  |  |

## 24.3.4.6 Program Flash Protection Registers (FTFA\_FPROT*n*)

The FPROT registers define which program flash regions are protected from program and erase operations. Protected flash regions cannot have their content changed; that is, these regions cannot be programmed and cannot be erased by any flash command. Unprotected regions can be changed by program and erase operations.

The four FPROT registers allow up to 32 protectable regions. Each bit protects a 1/32 region of the program flash memory except for memory configurations with less than 64 KB of program flash where each assigned bit protects 2 KB. For configurations with 48 KB of program flash memory or less, FPROT0 is not used. For configurations with 32 KB of program flash memory or less, FPROT1 is not used. For configurations with 16 KB of program flash memory, FPROT2 is not used. The bitfields are defined in each register as follows:

#### **Memory Map and Registers**

| Program flash protection register | Program flash protection bits |
|-----------------------------------|-------------------------------|
| FPROT0                            | PROT[31:24]                   |
| FPROT1                            | PROT[23:16]                   |
| FPROT2                            | PROT[15:8]                    |
| FPROT3                            | PROT[7:0]                     |

During the reset sequence, the FPROT registers are loaded with the contents of the program flash protection bytes in the Flash Configuration Field as indicated in the following table.

| Program flash protection register | Flash Configuration Field offset address |
|-----------------------------------|------------------------------------------|
| FPROT0                            | 0x000B                                   |
| FPROT1                            | 0x000A                                   |
| FPROT2                            | 0x0009                                   |
| FPROT3                            | 0x0008                                   |

To change the program flash protection that is loaded during the reset sequence, unprotect the sector of program flash memory that contains the Flash Configuration Field. Then, reprogram the program flash protection byte.

Address:  $4002\_0000h$  base + 10h offset + (1d × i), where i=0d to 3d

| Bit           | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
|---------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Read<br>Write | PROT       |            |            |            |            |            |            |            |
| Reset         | <b>x</b> * |

<sup>\*</sup> Notes:

#### FTFA\_FPROTn field descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PROT  | Program Flash Region Protect                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|       | Each program flash region can be protected from program and erase operations by setting the associated PROT bit.                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|       | In NVM Normal mode: The protection can only be increased, meaning that currently unprotected memory can be protected, but currently protected memory cannot be unprotected. Since unprotected regions are marked with a 1 and protected regions use a 0, only writes changing 1s to 0s are accepted. This 1-to-0 transition check is performed on a bit-by-bit basis. Those FPROT bits with 1-to-0 transitions are accepted while all bits with 0-to-1 transitions are ignored. |  |  |  |
|       | In NVM Special mode: All bits of FPROT are writable without restriction. Unprotected areas can be protected and protected areas can be unprotected.                                                                                                                                                                                                                                                                                                                             |  |  |  |
|       | Restriction: The user must never write to any FPROT register while a command is running (CCIF=0).                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|       | Trying to alter data in any protected area in the program flash memory results in a protection violation error and sets the FSTAT[FPVIOL] bit. A full block erase of a program flash block is not possible if it contains any protected region.                                                                                                                                                                                                                                 |  |  |  |

<sup>•</sup> x = Undefined at reset.

### FTFA\_FPROT*n* field descriptions (continued)

| Field | Description                                                                                                                                                                                         |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | Each bit in the 32-bit protection register represents 1/32 of the total program flash except for memory configurations with less than 64 KB of program flash where each assigned bit protects 2 KB. |  |
|       | Program flash region is protected.  Program flash region is not protected.                                                                                                                          |  |

## 24.3.4.7 Execute-only Access Registers (FTFA\_XACCn)

The XACC registers define which program flash segments are restricted to data read or execute only or both data and instruction fetches.

The eight XACC registers allow up to 64 restricted segments of equal memory size.

| Execute-only access register | Program flash execute-only access bits |
|------------------------------|----------------------------------------|
| XACCH0                       | XA[63:56]                              |
| XACCH1                       | XA[55:48]                              |
| XACCH2                       | XA[47:40]                              |
| XACCH3                       | XA[39:32]                              |
| XACCL0                       | XA[31:24]                              |
| XACCL1                       | XA[23:16]                              |
| XACCL2                       | XA[15:8]                               |
| XACCL3                       | XA[7:0]                                |

During the reset sequence, the XACC registers are loaded with the logical AND of Program Flash IFR addresses A and B as indicated in the following table.

| Execute-only access register | Program Flash IFR address A | Program Flash IFR address B |
|------------------------------|-----------------------------|-----------------------------|
| XACCH0                       | 0xA3                        | 0xAB                        |
| XACCH1                       | 0xA2                        | 0xAA                        |
| XACCH2                       | 0xA1                        | 0xA9                        |
| XACCH3                       | 0xA0                        | 0xA8                        |
| XACCL0                       | 0xA7                        | 0xAF                        |
| XACCL1                       | 0xA6                        | 0xAE                        |
| XACCL2                       | 0xA5                        | 0xAD                        |
| XACCL3                       | 0xA4                        | 0xAC                        |

Use the Program Once command to program the execute-only access control fields that are loaded during the reset sequence.

#### **Memory Map and Registers**

Address:  $4002\_0000h$  base + 18h offset + (1d × i), where i=0d to 7d



<sup>\*</sup> Notes:

### FTFA\_XACCn field descriptions

| Field | Description                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| XA    | Execute-only access control                                                                                                                     |
|       | Associated segment is accessible in execute mode only (as an instruction fetch)     Associated segment is accessible as data or in execute mode |

## 24.3.4.8 Supervisor-only Access Registers (FTFA\_SACCn)

The SACC registers define which program flash segments are restricted to supervisor only or user and supervisor access.

The eight SACC registers allow up to 64 restricted segments of equal memory size.

| Supervisor-only access register | Program flash supervisor-only access bits |
|---------------------------------|-------------------------------------------|
| SACCH0                          | SA[63:56]                                 |
| SACCH1                          | SA[55:48]                                 |
| SACCH2                          | SA[47:40]                                 |
| SACCH3                          | SA[39:32]                                 |
| SACCL0                          | SA[31:24]                                 |
| SACCL1                          | SA[23:16]                                 |
| SACCL2                          | SA[15:8]                                  |
| SACCL3                          | SA[7:0]                                   |

During the reset sequence, the SACC registers are loaded with the logical AND of Program Flash IFR addresses A and B as indicated in the following table.

| Supervisor-only access register | Program Flash IFR address A | Program Flash IFR address B |
|---------------------------------|-----------------------------|-----------------------------|
| SACCH0                          | 0xB3                        | 0xBB                        |
| SACCH1                          | 0xB2                        | 0xBA                        |
| SACCH2                          | 0xB1                        | 0xB9                        |
| SACCH3                          | 0xB0                        | 0xB8                        |

Table continues on the next page...

x = Undefined at reset.

| Supervisor-only access register | Program Flash IFR address A | Program Flash IFR address B |
|---------------------------------|-----------------------------|-----------------------------|
| SACCL0                          | 0xB7                        | 0xBF                        |
| SACCL1                          | 0xB6                        | 0xBE                        |
| SACCL2                          | 0xB5                        | 0xBD                        |
| SACCL3                          | 0xB4                        | 0xBC                        |

Use the Program Once command to program the supervisor-only access control fields that are loaded during the reset sequence.

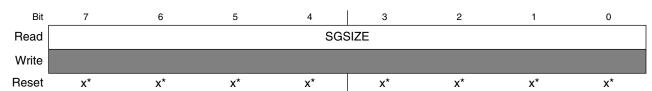




<sup>\*</sup> Notes:

### FTFA\_SACCn field descriptions

| Field | Description                                                   |
|-------|---------------------------------------------------------------|
| SA    | Supervisor-only access control                                |
|       | 0 Associated segment is accessible in supervisor mode only    |
|       | 1 Associated segment is accessible in user or supervisor mode |


## 24.3.4.9 Flash Access Segment Size Register (FTFA\_FACSS)

The flash access segment size register determines which bits in the address are used to index into the SACC and XACC bitmaps to get the appropriate permission flags.

All bits in the register are read-only.

The contents of this register are loaded during the reset sequence.

Address: 4002\_0000h base + 28h offset = 4002\_0028h



<sup>\*</sup> Notes:

<sup>•</sup> x = Undefined at reset.

x = Undefined at reset.

### FTFA\_FACSS field descriptions

| Field  | Description                                                                                   |              |                       |
|--------|-----------------------------------------------------------------------------------------------|--------------|-----------------------|
| SGSIZE | Segment Size                                                                                  |              |                       |
|        | The segment size is a fixed value based on the available program flash size divided by NUMSG. |              |                       |
|        | Program Flash Size                                                                            | Segment Size | Segment Size Encoding |
|        | 64 KBytes                                                                                     | 2 KBytes     | 0x3                   |
|        | 128 KBytes                                                                                    | 4 KBytes     | 0x4                   |
|        | 160 KBytes                                                                                    | 4 KBytes     | 0x4                   |
|        | 256 KBytes                                                                                    | 4 KBytes     | 0x4                   |
|        | 512 KBytes                                                                                    | 8 KBytes     | 0x5                   |


# 24.3.4.10 Flash Access Segment Number Register (FTFA\_FACSN)

The flash access segment number register provides the number of program flash segments that are available for XACC and SACC permissions.

All bits in the register are read-only.

The contents of this register are loaded during the reset sequence.

Address: 4002\_0000h base + 2Bh offset = 4002\_002Bh



<sup>\*</sup> Notes:

### FTFA\_FACSN field descriptions

| Field | Description                                                                        |  |  |
|-------|------------------------------------------------------------------------------------|--|--|
| NUMSG | Number of Segments Indicator                                                       |  |  |
|       | The NUMSG field indicates the number of equal-sized segments in the program flash. |  |  |
|       | 0x20 Program flash memory is divided into 32 segments (64 Kbytes, 128 Kbytes)      |  |  |
|       | 0x28 Program flash memory is divided into 40 segments (160 Kbytes)                 |  |  |
|       | 0x4x Program flash memory is divided into 64 segments (256 Kbytes, 512 Kbytes)     |  |  |

<sup>•</sup> x = Undefined at reset.

# 24.4 Functional Description

The information found here describes functional details of the flash memory module.

### 24.4.1 Flash Protection

Individual regions within the flash memory can be protected from program and erase operations.

Protection is controlled by the following registers:

- FPROT*n*
  - For 2<sup>n</sup> program flash sizes, four registers typically protect 32 regions of the program flash memory as shown in the following figure

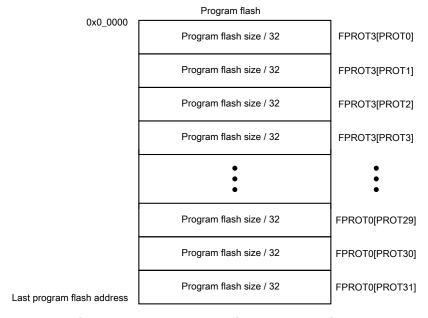



Figure 24-2. Program flash protection

#### NOTE

Flash protection features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features. Not all features described in the application note are available on this device.

### 24.4.2 Flash Access Protection

Individual segments within the program flash memory can be designated for restricted access. Specific flash commands (Program Check, Program Longword, Erase Flash Block, Erase Flash Sector) monitor FXACC contents to protect flash memory but the FSACC contents do not impact flash command operation.

See AN5112: Using the Kinetis Flash Execute-Only Access Control Feature for further details.

Access is controlled by the following registers:

- FTFA XACC
  - For 2<sup>n</sup> program flash sizes greater than 128KB, eight registers control 64 segments of the program flash memory as shown in the following figure

|                            | Program flash           |              |
|----------------------------|-------------------------|--------------|
| 0x0_0000                   | Program flash size / 64 | XACCL3[XA0]  |
|                            | Program flash size / 64 | XACCL3[XA1]  |
|                            | Program flash size / 64 | XACCL3[XA2]  |
|                            | Program flash size / 64 | XACCL3[XA3]  |
|                            | Program flash size / 64 | XACCL3[XA4]  |
|                            | •                       | •            |
|                            | Program flash size / 64 | XACCL0[XA31] |
|                            | Program flash size / 64 | XACCH3[XA32] |
|                            | •                       | :            |
|                            | Program flash size / 64 | XACCH0[XA59] |
|                            | Program flash size / 64 | XACCH0[XA60] |
|                            | Program flash size / 64 | XACCH0[XA61] |
|                            | Program flash size / 64 | XACCH0[XA62] |
| Last program flash address | Program flash size / 64 | XACCH0[XA63] |

Figure 24-3. Program flash execute-only access control (256KB or 512KB of program flash)

- FTFA SACC
  - For 2<sup>n</sup> program flash sizes greater than 128KB, eight registers control 64 segments of the program flash memory as shown in the following figure

| i rogram nasn           |                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program flash size / 64 | SACCL3[SA0]                                                                                                                                                                                                                                                                                                             |
| Program flash size / 64 | SACCL3[SA1]                                                                                                                                                                                                                                                                                                             |
| Program flash size / 64 | SACCL3[SA2]                                                                                                                                                                                                                                                                                                             |
| Program flash size / 64 | SACCL3[SA3]                                                                                                                                                                                                                                                                                                             |
| Program flash size / 64 | SACCL3[SA4]                                                                                                                                                                                                                                                                                                             |
| :                       | •                                                                                                                                                                                                                                                                                                                       |
| Program flash size / 64 | SACCL0[SA31]                                                                                                                                                                                                                                                                                                            |
| Program flash size / 64 | SACCH3[SA32]                                                                                                                                                                                                                                                                                                            |
| :                       | •                                                                                                                                                                                                                                                                                                                       |
| Program flash size / 64 | SACCH0[SA59]                                                                                                                                                                                                                                                                                                            |
| Program flash size / 64 | SACCH0[SA60]                                                                                                                                                                                                                                                                                                            |
| Program flash size / 64 | SACCH0[SA61]                                                                                                                                                                                                                                                                                                            |
| Program flash size / 64 | SACCH0[SA62]                                                                                                                                                                                                                                                                                                            |
| Program flash size / 64 | SACCH0[SA63]                                                                                                                                                                                                                                                                                                            |
|                         | Program flash size / 64 |

Program flash

Figure 24-4. Program flash supervisor access control (256KB or 512KB of program flash)

## 24.4.3 Interrupts

The flash memory module can generate interrupt requests to the MCU upon the occurrence of various flash events.

These interrupt events and their associated status and control bits are shown in the following table.

| Flash Event                | Readable                | Interrupt              |
|----------------------------|-------------------------|------------------------|
| Flash Command Complete     | Status Bit  FSTAT[CCIF] | Enable Bit FCNFG[CCIE] |
| Flash Read Collision Error | FSTAT[RDCOLERR]         | FCNFG[RDCOLLIE]        |

**Table 24-1. Flash Interrupt Sources** 

#### **Note**

Vector addresses and their relative interrupt priority are determined at the MCU level.

Some devices also generate a bus error response as a result of a Read Collision Error event. See the chip configuration information to determine if a bus error response is also supported.

KL28Z Reference Manual, Rev. 4, 06/2016

## 24.4.4 Flash Operation in Low-Power Modes

### 24.4.4.1 Wait Mode

When the MCU enters wait mode, the flash memory module is not affected. The flash memory module can recover the MCU from wait via the command complete interrupt (see Interrupts).

### 24.4.4.2 Stop Mode

When the MCU requests stop mode, if a flash command is active (CCIF = 0) the command execution completes before the MCU is allowed to enter stop mode.

### **CAUTION**

The MCU should never enter stop mode while any flash command is running (CCIF = 0).

#### NOTE

While the MCU is in very-low-power modes (VLPR, VLPW, VLPS), the flash memory module does not accept flash commands.

## 24.4.5 Functional Modes of Operation

The flash memory module has two operating modes: NVM Normal and NVM Special.

The operating mode affects the command set availability (see Table 24-2). Refer to the Chip Configuration details of this device for how to activate each mode.

## 24.4.6 Flash Reads and Ignored Writes

The flash memory module requires only the flash address to execute a flash memory read.

The MCU must not read from the flash memory while commands are running (as evidenced by CCIF=0) on that block. Read data cannot be guaranteed from a flash block while any command is processing within that block. The block arbitration logic detects any simultaneous access and reports this as a read collision error (see the FSTAT[RDCOLERR] bit).

## 24.4.7 Read While Write (RWW)

The following simultaneous accesses are allowed:

• The user may read from one logical program flash memory space while flash commands are active in the other logical program flash memory space.

Simultaneous operations are further discussed in Allowed Simultaneous Flash Operations.

## 24.4.8 Flash Program and Erase

All flash functions except read require the user to setup and launch a flash command through a series of peripheral bus writes.

The user cannot initiate any further flash commands until notified that the current command has completed. The flash command structure and operation are detailed in Flash Command Operations.

## 24.4.9 Flash Command Operations

Flash command operations are typically used to modify flash memory contents.

The next sections describe:

- The command write sequence used to set flash command parameters and launch execution
- A description of all flash commands available

### 24.4.9.1 Command Write Sequence

Flash commands are specified using a command write sequence illustrated in Figure 24-5. The flash memory module performs various checks on the command (FCCOB) content and continues with command execution if all requirements are fulfilled.

Before launching a command, the ACCERR and FPVIOL bits in the FSTAT register must be zero and the CCIF flag must read 1 to verify that any previous command has completed. If CCIF is zero, the previous command execution is still active, a new command write sequence cannot be started, and all writes to the FCCOB registers are ignored.

Attempts to launch a flash command in VLP mode will be ignored. Attempts to launch a flash command in HSRUN mode will be trapped with the ACCERR flag being set.

### 24.4.9.1.1 Load the FCCOB Registers

The user must load the FCCOB registers with all parameters required by the desired flash command. The individual registers that make up the FCCOB data set can be written in any order.

### 24.4.9.1.2 Launch the Command by Clearing CCIF

Once all relevant command parameters have been loaded, the user launches the command by clearing FSTAT[CCIF] by writing a '1' to it. FSTAT[CCIF] remains 0 until the flash command completes.

The FSTAT register contains a blocking mechanism that prevents a new command from launching (can't clear FSTAT[CCIF]) if the previous command resulted in an access error (FSTAT[ACCERR]=1) or a protection violation (FSTAT[FPVIOL]=1). In error scenarios, two writes to FSTAT are required to initiate the next command: the first write clears the error flags, the second write clears CCIF.

## 24.4.9.1.3 Command Execution and Error Reporting

The command processing has several steps:

1. The flash memory module reads the command code and performs a series of parameter checks and protection checks, if applicable, which are unique to each command.

If the parameter check fails, the FSTAT[ACCERR] (access error) flag is set. FSTAT[ACCERR] reports invalid instruction codes and out-of bounds addresses. Usually, access errors suggest that the command was not set-up with valid parameters in the FCCOB register group.

Program and erase commands also check the address to determine if the operation is requested to execute on protected areas. If the protection check fails, FSTAT[FPVIOL] (protection error) flag is set.

Command processing never proceeds to execution when the parameter or protection step fails. Instead, command processing is terminated after setting FSTAT[CCIF].

- 2. If the parameter and protection checks pass, the command proceeds to execution. Run-time errors, such as failure to erase verify, may occur during the execution phase. Run-time errors are reported in FSTAT[MGSTAT0]. A command may have access errors, protection errors, and run-time errors, but the run-time errors are not seen until all access and protection errors have been corrected.
- 3. Command execution results, if applicable, are reported back to the user via the FCCOB and FSTAT registers.
- 4. The flash memory module sets FSTAT[CCIF] signifying that the command has completed.

The flow for a generic command write sequence is illustrated in the following figure.

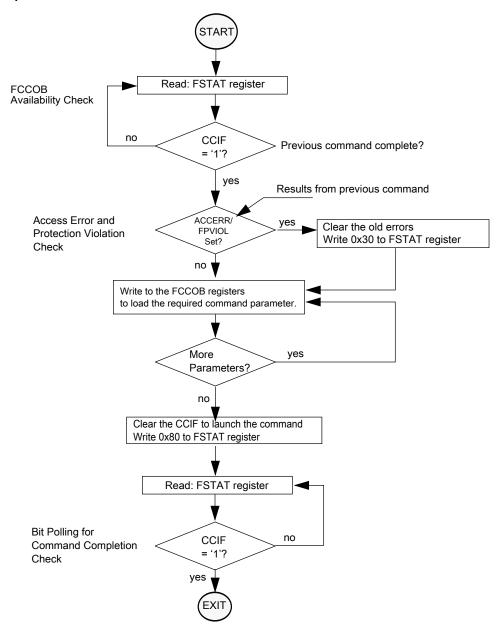



Figure 24-5. Generic flash command write sequence flowchart

### 24.4.9.2 Flash Commands

The following table summarizes the function of all flash commands.

| FCMD | Command       | Program flash 0 | Program flash 1 | Function                                     |
|------|---------------|-----------------|-----------------|----------------------------------------------|
| 0x00 | Read 1s Block | ×               | ×               | Verify that a program flash block is erased. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

### **Chapter 24 Flash Memory Module (FTFA)**

| FCMD | Command                       | Program flash 0 | Program flash 1 | Function                                                                                                        |
|------|-------------------------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| 0x01 | Read 1s Section               | ×               | ×               | Verify that a given<br>number of program<br>flash locations from a<br>starting address are<br>erased.           |
| 0x02 | Program Check                 | ×               | ×               | Tests previously-<br>programmed locations<br>at margin read levels.                                             |
| 0x03 | Read Resource                 | IFR, ID         | IFR             | Read 4 bytes from program flash IFR or version ID.                                                              |
| 0x06 | Program Longword              | ×               | ×               | Program 4 bytes in a program flash block.                                                                       |
| 0x08 | Erase Flash Block             | ×               | ×               | Erase a program flash<br>block. An erase of any<br>flash block is only<br>possible when<br>unprotected.         |
| 0x09 | Erase Flash Sector            | ×               | ×               | Erase all bytes in a program flash sector.                                                                      |
| 0x40 | Read 1s All Blocks            | ×               | ×               | Verify that all program flash blocks are erased then release MCU security.                                      |
| 0x41 | Read Once                     | IFR             |                 | Read 4 bytes of a dedicated 64 byte field in the program flash 0 IFR.                                           |
| 0x43 | Program Once                  | IFR             |                 | One-time program of 4 bytes of a dedicated 64-byte field in the program flash 0 IFR.                            |
| 0x44 | Erase All Blocks              | ×               | ×               | Erase all program flash<br>blocks. Then, verify-<br>erase and release<br>MCU security.<br>NOTE: An erase is     |
|      |                               |                 |                 | only possible when all memory locations are unprotected.                                                        |
| 0x45 | Verify Backdoor<br>Access Key | ×               | ×               | Release MCU security after comparing a set of user-supplied security keys to those stored in the program flash. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional Description**

| FCMD | Command                               | Program flash 0 | Program flash 1 | Function                                                                                                                 |
|------|---------------------------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|
| 0x49 | Erase All Blocks<br>Unsecure          | ×               | ×               | Erase all program flash<br>blocks, verify-erase,<br>program security byte<br>to unsecure state,<br>release MCU security. |
| 0x4A | Read 1s All Execute-<br>only Segments | ×               | ×               | Verify that all program flash execute-only (XA) segments are erased then release flash access control.                   |
| 0x4B | Erase All Execute-only<br>Segments    | ×               | ×               | Erase all program flash execute-only (XA) segments then release flash access control.                                    |

# 24.4.9.3 Flash Commands by Mode

The following table shows the flash commands that can be executed in each flash operating mode.

Table 24-2. Flash Commands by Mode

| FCMD | Command                            | NVM Normal NVM Special |        |         |          |        |         |
|------|------------------------------------|------------------------|--------|---------|----------|--------|---------|
| FCMD | Command                            | Unsecure               | Secure | MEEN=10 | Unsecure | Secure | MEEN=10 |
| 0x00 | Read 1s Block                      | ×                      | ×      | ×       | ×        | _      | _       |
| 0x01 | Read 1s Section                    | ×                      | ×      | ×       | ×        | _      | _       |
| 0x02 | Program Check                      | ×                      | ×      | ×       | ×        | _      | _       |
| 0x03 | Read Resource                      | ×                      | ×      | ×       | ×        | _      | _       |
| 0x06 | Program Longword                   | ×                      | ×      | ×       | ×        | _      | _       |
| 0x08 | Erase Flash Block                  | ×                      | ×      | ×       | ×        | _      | _       |
| 0x09 | Erase Flash Sector                 | ×                      | ×      | ×       | ×        | _      | _       |
| 0x40 | Read 1s All Blocks                 | ×                      | ×      | _       | ×        | ×      | _       |
| 0x41 | Read Once                          | ×                      | ×      | ×       | ×        | _      | _       |
| 0x43 | Program Once                       | ×                      | ×      | ×       | ×        | _      | _       |
| 0x44 | Erase All Blocks                   | ×                      | ×      | _       | ×        | ×      | _       |
| 0x45 | Verify Backdoor Access<br>Key      | ×                      | ×      | ×       | ×        | _      | _       |
| 0x49 | Erase All Blocks Unsecure          | ×                      | ×      | _       | ×        | ×      | _       |
| 0x4A | Read 1s All Execute-only Segments  | ×                      | ×      | ×       | ×        | _      | _       |
| 0x4B | Erase All Execute-only<br>Segments | ×                      | ×      | ×       | ×        | _      | _       |

## 24.4.9.4 Allowed Simultaneous Flash Operations

Only the operations marked 'OK' in the following table are permitted to run simultaneously on the program flash memories. Some operations cannot be executed simultaneously because certain hardware resources are shared by the memories.

|                    |              | Program Flash 0 |         |              | F    | Program Flash | 1            |
|--------------------|--------------|-----------------|---------|--------------|------|---------------|--------------|
|                    |              | Read            | Program | Sector Erase | Read | Program       | Sector Erase |
| _                  | Read         | _               |         |              |      | OK            | OK           |
| Program<br>flash 0 | Program      |                 | _       |              | OK   |               |              |
|                    | Sector Erase |                 |         | _            | OK   |               |              |
| _                  | Read         |                 | OK      | OK           | _    |               |              |
| Program<br>flash 1 | Program      | OK              |         |              |      | _             |              |
|                    | Sector Erase | OK              |         |              |      |               | _            |

**Table 24-3. Allowed Simultaneous Memory Operations** 

## 24.4.10 Margin Read Commands

The Read-1s commands (Read 1s All Blocks, Read 1s Block, Read 1s Section, Read 1s All Execute-only Segments) and the Program Check command have a margin choice parameter that allows the user to apply non-standard read reference levels to the program flash array reads performed by these commands. Using the preset 'user' and 'factory' margin levels, these commands perform their associated read operations at tighter tolerances than a 'normal' read. These non-standard read levels are applied only during the command execution. Basic flash array reads use the standard, un-margined, read reference level.

Only the 'normal' read level should be employed during normal flash usage. The non-standard, 'user' and 'factory' margin levels should be employed only in special cases. They can be used during special diagnostic routines to gain confidence that the device is not suffering from the end-of-life data loss customary of flash memory devices.

Erased ('1') and programmed ('0') bit states can degrade due to elapsed time and data cycling (number of times a bit is erased and re-programmed). The lifetime of the erased states is relative to the last erase operation. The lifetime of the programmed states is measured from the last program time.

The 'user' and 'factory' levels become, in effect, a minimum safety margin; i.e. if the reads pass at the tighter tolerances of the 'user' and 'factory' margins, then the 'normal' reads have at least this much safety margin before they experience data loss.

#### **Functional Description**

The 'user' margin is a small delta to the normal read reference level. 'User' margin levels can be employed to check that flash memory contents have adequate margin for normal level read operations. If unexpected read results are encountered when checking flash memory contents at the 'user' margin levels, loss of information might soon occur during 'normal' readout.

The 'factory' margin is a bigger deviation from the norm, a more stringent read criteria that should only be attempted immediately (or very soon) after completion of an erase or program command, early in the cycling life. 'Factory' margin levels can be used to check that flash memory contents have adequate margin for long-term data retention at the normal level setting. If unexpected results are encountered when checking flash memory contents at 'factory' margin levels, the flash memory contents should be erased and reprogrammed.

#### CAUTION

Factory margin levels must only be used during verify of the initial factory programming.

## 24.4.11 Flash Command Description

This section describes all flash commands that can be launched by a command write sequence.

The flash memory module sets the FSTAT[ACCERR] bit and aborts the command execution if any of the following illegal conditions occur:

- There is an unrecognized command code in the FCCOB FCMD field.
- There is an error in a FCCOB field for the specific commands. Refer to the error handling table provided for each command.

Ensure that FSTAT[ACCERR] and FSTAT[FPVIOL] are cleared prior to starting the command write sequence. As described in Launch the Command by Clearing CCIF, a new command cannot be launched while these error flags are set.

Do not attempt to read a flash block while the flash memory module is running a command (FSTAT[CCIF] = 0) on that same block. The flash memory module may return invalid data to the MCU with the collision error flag (FSTAT[RDCOLERR]) set.

#### CAUTION

Flash data must be in the erased state before being programmed. Cumulative programming of bits (adding more zeros) is not allowed.

KL28Z Reference Manual, Rev. 4, 06/2016

### 24.4.11.1 Read 1s Block Command

The Read 1s Block command checks to see if an entire program flash block has been erased to the specified margin level. The FCCOB flash address bits determine which flash block is erase-verified.

| FCCOB Number | FCCOB Contents [7:0]                                               |
|--------------|--------------------------------------------------------------------|
| 0            | 0x00 (RD1BLK)                                                      |
| 1            | Flash address [23:16] in the flash block to be verified            |
| 2            | Flash address [15:8] in the flash block to be verified             |
| 3            | Flash address [7:0] <sup>1</sup> in the flash block to be verified |
| 4            | Read-1 Margin Choice                                               |

Table 24-4. Read 1s Block Command FCCOB Requirements

After clearing CCIF to launch the Read 1s Block command, the flash memory module sets the read margin for 1s according to Table 24-5 and then reads all locations within the selected program flash block.

| Read Margin Choice | Margin Level Description                              |
|--------------------|-------------------------------------------------------|
| 0x00               | Use the 'normal' read level for 1s                    |
| 0x01               | Apply the 'User' margin to the normal read-1 level    |
| 0x02               | Apply the 'Factory' margin to the normal read-1 level |

Table 24-5. Margin Level Choices for Read 1s Block

| Table 24-6. | Read 1s Block Command Erro | r Handling |
|-------------|----------------------------|------------|
|-------------|----------------------------|------------|

| Error Condition                                                         | Error Bit      |
|-------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                          | FSTAT[ACCERR]  |
| An invalid margin choice is specified                                   | FSTAT[ACCERR]  |
| Program flash is selected and the address is out of program flash range | FSTAT[ACCERR]  |
| Flash address is not longword aligned                                   | FSTAT[ACCERR]  |
| Read-1s fails                                                           | FSTAT[MGSTAT0] |

### 24.4.11.2 Read 1s Section Command

The Read 1s Section command checks if a section of program flash memory is erased to the specified read margin level. The Read 1s Section command defines the starting address and the number of phrases to be verified.

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>1.</sup> Must be longword aligned (Flash address [1:0] = 00).

Table 24-7. Read 1s Section Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0]                                                |
|--------------|---------------------------------------------------------------------|
| 0            | 0x01 (RD1SEC)                                                       |
| 1            | Flash address [23:16] of the first phrase to be verified            |
| 2            | Flash address [15:8] of the first phrase to be verified             |
| 3            | Flash address [7:0] <sup>1</sup> of the first phrase to be verified |
| 4            | Number of phrases to be verified [15:8]                             |
| 5            | Number of phrases to be verified [7:0]                              |
| 6            | Read-1 Margin Choice                                                |

<sup>1.</sup> Must be phrase aligned (Flash address [2:0] = 000).

Upon clearing CCIF to launch the Read 1s Section command, the flash memory module sets the read margin for 1s according to Table 24-8 and then reads all locations within the specified section of flash memory. If the flash memory module fails to read all 1s (that is, the flash section is not erased), FSTAT[MGSTAT0] is set. FSTAT[CCIF] sets after the Read 1s Section operation completes.

Table 24-8. Margin Level Choices for Read 1s Section

| Read Margin Choice | Margin Level Description                              |
|--------------------|-------------------------------------------------------|
| 0x00               | Use the 'normal' read level for 1s                    |
| 0x01               | Apply the 'User' margin to the normal read-1 level    |
| 0x02               | Apply the 'Factory' margin to the normal read-1 level |

Table 24-9. Read 1s Section Command Error Handling

| Error condition                                       | Error bit      |
|-------------------------------------------------------|----------------|
| Command not available in current mode/security        | FSTAT[ACCERR]  |
| An invalid margin code is supplied.                   | FSTAT[ACCERR]  |
| An invalid flash address is supplied.                 | FSTAT[ACCERR]  |
| Flash address is not phrase aligned.                  | FSTAT[ACCERR]  |
| The requested section crosses a Flash block boundary. | FSTAT[ACCERR]  |
| The requested number of phrases is 0.                 | FSTAT[ACCERR]  |
| Read-1s fails.                                        | FSTAT[MGSTAT0] |

### 24.4.11.3 Program Check Command

The Program Check command tests a previously programmed program flash longword to see if it reads correctly at the specified margin level.

**Table 24-10. Program Check Command FCCOB Requirements** 

| FCCOB Number | FCCOB Contents [7:0]             |  |
|--------------|----------------------------------|--|
| 0            | 0x02 (PGMCHK)                    |  |
| 1            | Flash address [23:16]            |  |
| 2            | Flash address [15:8]             |  |
| 3            | Flash address [7:0] <sup>1</sup> |  |
| 4            | Margin Choice                    |  |
| 8            | Byte 0 expected data             |  |
| 9            | Byte 1 expected data             |  |
| A            | Byte 2 expected data             |  |
| В            | Byte 3 expected data             |  |

<sup>1.</sup> Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Program Check command, the flash memory module sets the read margin for 1s according to Table 24-11, reads the specified longword, and compares the actual read data to the expected data provided by the FCCOB. If the comparison at margin-1 fails, FSTAT[MGSTAT0] is set.

The flash memory module then sets the read margin for 0s, re-reads, and compares again. If the comparison at margin-0 fails, FSTAT[MGSTAT0] is set. FSTAT[CCIF] is set after the Program Check operation completes.

The supplied address must be longword aligned (the lowest two bits of the byte address must be 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10,
- Byte 0 data is programmed to byte address start+0b11.

#### NOTE

See the description of margin reads, Margin Read Commands

Table 24-11. Margin Level Choices for Program Check

| Read Margin Choice | Margin Level Description                          |
|--------------------|---------------------------------------------------|
| 0x01               | Read at 'User' margin-1 and 'User' margin-0       |
| 0x02               | Read at 'Factory' margin-1 and 'Factory' margin-0 |

Table 24-12. Program Check Command Error Handling

| Error Condition                                | Error Bit     |
|------------------------------------------------|---------------|
| Command not available in current mode/security | FSTAT[ACCERR] |
| An invalid flash address is supplied           | FSTAT[ACCERR] |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

**Table 24-12. Program Check Command Error Handling (continued)** 

| Error Condition                                                                                                                                                                                | Error Bit      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Flash address is not longword aligned                                                                                                                                                          | FSTAT[ACCERR]  |
| An invalid margin choice is supplied                                                                                                                                                           | FSTAT[ACCERR]  |
| Flash address is located in an XA controlled segment and the Erase All Blocks, Erase All Blocks Unsecure or the Read 1s All Blocks command has not successfully completed since the last reset | FSTAT[FPVIOL]  |
| Either of the margin reads does not match the expected data                                                                                                                                    | FSTAT[MGSTAT0] |

### 24.4.11.4 Read Resource Command

The Read Resource command allows the user to read data from special-purpose memory resources located within the flash memory module. The special-purpose memory resources available include program flash IFR space and the Version ID field. Each resource is assigned a select code as shown in Table 24-14.

**Table 24-13. Read Resource Command FCCOB Requirements** 

| FCCOB Number | FCCOB Contents [7:0]                   |  |  |
|--------------|----------------------------------------|--|--|
| 0            | 0x03 (RDRSRC)                          |  |  |
| 1            | Flash address [23:16]                  |  |  |
| 2            | Flash address [15:8]                   |  |  |
| 3            | Flash address [7:0] <sup>1</sup>       |  |  |
|              | Returned Values                        |  |  |
| 4            | Read Data [31:24]                      |  |  |
| 5            | Read Data [23:16]                      |  |  |
| 6            | Read Data [15:8]                       |  |  |
| 7            | Read Data [7:0]                        |  |  |
|              | User-provided values                   |  |  |
| 8            | Resource Select Code (see Table 24-14) |  |  |

1. Must be longword aligned (Flash address [1:0] = 00).

Table 24-14. Read Resource Select Codes

| Resource<br>Select Code | Description         | Resource Size | Local Address Range |
|-------------------------|---------------------|---------------|---------------------|
| 0x00                    | Program Flash 0 IFR | 256 Bytes     | 0x00_0000-0x00_00FF |
| 0x01 <sup>1</sup>       | Version ID          | 8 Bytes       | 0x00_0000-0x00_0007 |

1. Located in program flash 0 reserved space.

After clearing CCIF to launch the Read Resource command, four consecutive bytes are read from the selected resource at the provided relative address and stored in the FCCOB register. The CCIF flag sets after the Read Resource operation completes. The Read Resource command exits with an access error if an invalid resource code is provided or if the address for the applicable area is out-of-range.

Table 24-15. Read Resource Command Error Handling

| Error Condition                                          | Error Bit     |
|----------------------------------------------------------|---------------|
| Command not available in current mode/security           | FSTAT[ACCERR] |
| An invalid resource code is entered                      | FSTAT[ACCERR] |
| Flash address is out-of-range for the targeted resource. | FSTAT[ACCERR] |
| Flash address is not longword aligned                    | FSTAT[ACCERR] |

## 24.4.11.5 Program Longword Command

The Program Longword command programs four previously-erased bytes in the program flash memory using an embedded algorithm.

#### CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-to-back program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

**Table 24-16. Program Longword Command FCCOB Requirements** 

| FCCOB Number | FCCOB Contents [7:0]             |
|--------------|----------------------------------|
| 0            | 0x06 (PGM4)                      |
| 1            | Flash address [23:16]            |
| 2            | Flash address [15:8]             |
| 3            | Flash address [7:0] <sup>1</sup> |
| 4            | Byte 0 program value             |
| 5            | Byte 1 program value             |
| 6            | Byte 2 program value             |
| 7            | Byte 3 program value             |

1. Must be longword aligned (Flash address [1:0] = 00).

#### **Functional Description**

Upon clearing CCIF to launch the Program Longword command, the flash memory module programs the data bytes into the flash using the supplied address. The targeted flash locations must be currently unprotected (see the description of the FPROT registers) to permit execution of the Program Longword operation.

The programming operation is unidirectional. It can only move NVM bits from the erased state ('1') to the programmed state ('0'). Erased bits that fail to program to the '0' state are flagged as errors in FSTAT[MGSTAT0]. The CCIF flag is set after the Program Longword operation completes.

The supplied address must be longword aligned (flash address [1:0] = 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10, and
- Byte 0 data is programmed to byte address start+0b11.

Table 24-17. Program Longword Command Error Handling

| Error Condition                                                                                                                                                                                      | Error Bit      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                                                                                                                                                       | FSTAT[ACCERR]  |
| An invalid flash address is supplied                                                                                                                                                                 | FSTAT[ACCERR]  |
| Flash address is not longword aligned                                                                                                                                                                | FSTAT[ACCERR]  |
| Flash address points to a protected area                                                                                                                                                             | FSTAT[FPVIOL]  |
| Flash address is located in an XA controlled segment and the Erase All<br>Blocks, Erase All Blocks Unsecure or the Read 1s All Blocks command<br>has not successfully completed since the last reset | FSTAT[FPVIOL]  |
| Any errors have been encountered during the verify operation                                                                                                                                         | FSTAT[MGSTAT0] |

### 24.4.11.6 Erase Flash Block Command

The Erase Flash Block operation erases all addresses in a single program flash.

Table 24-18. Erase Flash Block Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0]                                             |
|--------------|------------------------------------------------------------------|
| 0            | 0x08 (ERSBLK)                                                    |
| 1            | Flash address [23:16] in the flash block to be erased            |
| 2            | Flash address [15:8] in the flash block to be erased             |
| 3            | Flash address [7:0] <sup>1</sup> in the flash block to be erased |

1. Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Erase Flash Block command, the flash memory module erases the main array of the selected flash block and verifies that it is erased. The Erase Flash Block command aborts and sets the FSTAT[FPVIOL] bit if any region within the block is protected (see the description of the FPROT registers). If the erase verify fails, FSTAT[MGSTAT0] is set. The CCIF flag will set after the Erase Flash Block operation has completed.

Table 24-19. Erase Flash Block Command Error Handling

| Error Condition                                                                                                                                                                                              | Error Bit      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                                                                                                                                                               | FSTAT[ACCERR]  |
| Program flash is selected and the address is out of program flash range                                                                                                                                      | FSTAT[ACCERR]  |
| Flash address is not longword aligned                                                                                                                                                                        | FSTAT[ACCERR]  |
| Any area of the selected flash block is protected                                                                                                                                                            | FSTAT[FPVIOL]  |
| The selected program flash block contains an XA controlled segment and the Erase All Blocks, Erase All Blocks Unsecure or the Read 1s All Blocks command has not successfully completed since the last reset | FSTAT[FPVIOL]  |
| Any errors have been encountered during the verify operation <sup>1</sup>                                                                                                                                    | FSTAT[MGSTAT0] |

<sup>1.</sup> User margin read may be run using the Read 1s Block command to verify all bits are erased.

### 24.4.11.7 Erase Flash Sector Command

The Erase Flash Sector operation erases all addresses in a flash sector.

Table 24-20. Erase Flash Sector Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0]                                              |  |
|--------------|-------------------------------------------------------------------|--|
| 0            | 0x09 (ERSSCR)                                                     |  |
| 1            | Flash address [23:16] in the flash sector to be erased            |  |
| 2            | Flash address [15:8] in the flash sector to be erased             |  |
| 3            | Flash address [7:0] <sup>1</sup> in the flash sector to be erased |  |

<sup>1.</sup> Must be phrase aligned (flash address [2:0] = 000).

After clearing CCIF to launch the Erase Flash Sector command, the flash memory module erases the selected program flash sector and then verifies that it is erased. The Erase Flash Sector command aborts if the selected sector is protected (see the description of the FPROT registers). If the erase-verify fails the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase Flash Sector operation completes. The Erase Flash Sector command is suspendable (see the FCNFG[ERSSUSP] bit and Figure 24-6).

Table 24-21. Erase Flash Sector Command Error Handling

| Error Condition                                                                                                                                                                                                    | Error Bit      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                                                                                                                                                                     | FSTAT[ACCERR]  |
| An invalid Flash address is supplied                                                                                                                                                                               | FSTAT[ACCERR]  |
| Flash address is not phrase aligned                                                                                                                                                                                | FSTAT[ACCERR]  |
| The selected program flash sector is protected                                                                                                                                                                     | FSTAT[FPVIOL]  |
| The selected program flash sector is located in an XA controlled segment and the Erase All Blocks, Erase All Blocks Unsecure or the Read 1s All Blocks command has not successfully completed since the last reset | FSTAT[FPVIOL]  |
| Any errors have been encountered during the verify operation <sup>1</sup>                                                                                                                                          | FSTAT[MGSTAT0] |

<sup>1.</sup> User margin read may be run using the Read 1s Section command to verify all bits are erased.

### 24.4.11.7.1 Suspending an Erase Flash Sector Operation

To suspend an Erase Flash Sector operation set the FCNFG[ERSSUSP] bit when CCIF, ACCERR, and FPVIOL are clear and the CCOB command field holds the code for the Erase Flash Sector command. During the Erase Flash Sector operation (see Erase Flash Sector Command), the flash memory module samples the state of the ERSSUSP bit at convenient points. If the flash memory module detects that the ERSSUSP bit is set, the Erase Flash Sector operation is suspended and the flash memory module sets CCIF. While ERSSUSP is set, all writes to flash registers are ignored except for writes to the FSTAT and FCNFG registers.

If an Erase Flash Sector operation effectively completes before the flash memory module detects that a suspend request has been made, the flash memory module clears the ERSSUSP bit prior to setting CCIF. When an Erase Flash Sector operation has been successfully suspended, the flash memory module sets CCIF and leaves the ERSSUSP bit set. While CCIF is set, the ERSSUSP bit can only be cleared to prevent the withdrawal of a suspend request before the flash memory module has acknowledged it.

### 24.4.11.7.2 Resuming a Suspended Erase Flash Sector Operation

If the ERSSUSP bit is still set when CCIF is cleared to launch the next command, the previous Erase Flash Sector operation resumes. The flash memory module acknowledges the request to resume a suspended operation by clearing the ERSSUSP bit. A new suspend request can then be made by setting ERSSUSP. A single Erase Flash Sector operation can be suspended and resumed multiple times.

There is a minimum elapsed time limit of 4.3 msec between the request to resume the Erase Flash Sector operation (CCIF is cleared) and the request to suspend the operation again (ERSSUSP is set). This minimum time period is required to ensure that the Erase Flash Sector operation will eventually complete. If the minimum period is continually

violated, i.e. the suspend requests come repeatedly and too quickly, no forward progress is made by the Erase Flash Sector algorithm. The resume/suspend sequence runs indefinitely without completing the erase.

### 24.4.11.7.3 Aborting a Suspended Erase Flash Sector Operation

The user may choose to abort a suspended Erase Flash Sector operation by clearing the ERSSUSP bit prior to clearing CCIF for the next command launch. When a suspended operation is aborted, the flash memory module starts the new command using the new FCCOB contents.

#### **Note**

Aborting the erase leaves the bitcells in an indeterminate, partially-erased state. Data in this sector is not reliable until a new erase command fully completes.

The following figure shows how to suspend and resume the Erase Flash Sector operation.

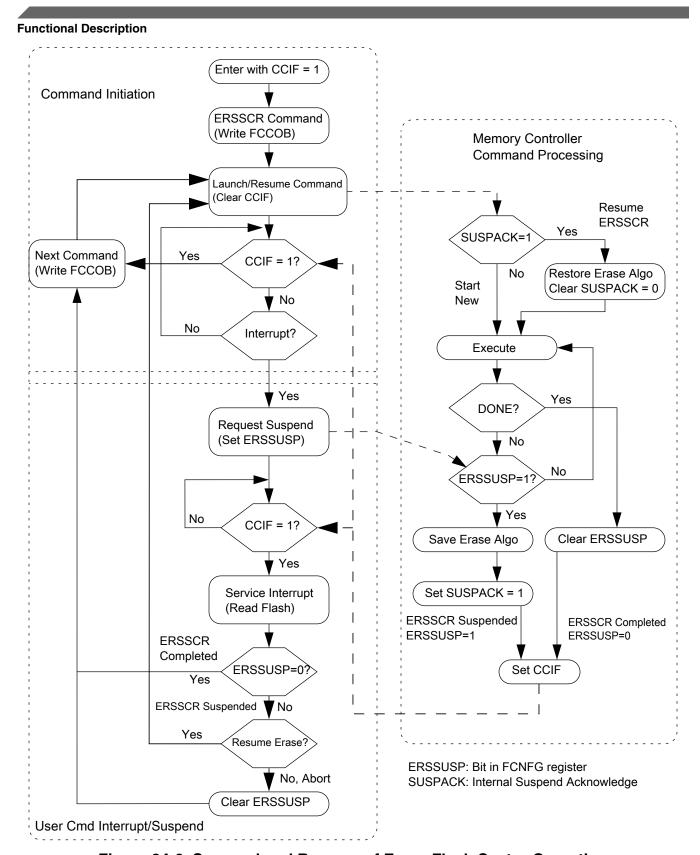



Figure 24-6. Suspend and Resume of Erase Flash Sector Operation

### 24.4.11.8 Read 1s All Blocks Command

The Read 1s All Blocks command checks if the program flash blocks and program flash erasable IFR have been erased to the specified read margin level, if applicable, and releases security if the readout passes, i.e. all data reads as '1'.

Table 24-22. Read 1s All Blocks Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] |  |
|--------------|----------------------|--|
| 0            | 0x40 (RD1ALL)        |  |
| 1            | Read-1 Margin Choice |  |

After clearing CCIF to launch the Read 1s All Blocks command, the flash memory module :

- sets the read margin for 1s according to Table 24-23,
- checks the contents of the program flash and program flash erasable IFR are in the erased state.

If the flash memory module confirms that these memory resources are erased, access control is disabled and security is released by setting the FSEC[SEC] field to the unsecure state. The security byte in the flash configuration field (see Flash Configuration Field Description) remains unaffected by the Read 1s All Blocks command. If the read fails, i.e. all memory resources are not in the fully erased state, the FSTAT[MGSTAT0] bit is set.

The CCIF flag sets after the Read 1s All Blocks operation has completed.

Table 24-23. Margin Level Choices for Read 1s All Blocks

| Read Margin Choice | Margin Level Description                              |  |
|--------------------|-------------------------------------------------------|--|
| 0x00               | Use the 'normal' read level for 1s                    |  |
| 0x01               | Apply the 'User' margin to the normal read-1 level    |  |
| 0x02               | Apply the 'Factory' margin to the normal read-1 level |  |

Table 24-24. Read 1s All Blocks Command Error Handling

| Error Condition                                | Error Bit      |
|------------------------------------------------|----------------|
| Command not available in current mode/security | FSTAT[ACCERR]  |
| An invalid margin choice is specified          | FSTAT[ACCERR]  |
| Read-1s fails                                  | FSTAT[MGSTAT0] |

### 24.4.11.9 Read Once Command

The Read Once command provides read access to special 96-byte fields located in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once ID field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. Access to the Program Once XACC and SACC fields are via 4 records (index values 0x10 - 0x13), each of which is 8 bytes long. These fields are programmed using the Program Once command described in Program Once Command.

The Read Once command also provides read access to special 4-byte records (index values 0x30 - 0x33) located in the program flash erasable IFR (see Program Flash Erasable IFR Map and Erasable Program Once Field). These fields are programmed using the Program Once command.

**FCCOB Number** FCCOB Contents [7:0] 0 0x41 (RDONCE) 1 Program Once record index (0x00 - 0x13, 0x30 - 0x33) 2 Not used 3 Not used Returned Values 4 Program Once byte 0 value 5 Program Once byte 1 value 6 Program Once byte 2 value 7 Program Once byte 3 value 8 Program Once byte 4 value (index 0x10 - 0x13) 9 Program Once byte 5 value (index 0x10 - 0x13) Program Once byte 6 value (index 0x10 - 0x13) 10 11 Program Once byte 7 value (index 0x10 - 0x13)

**Table 24-25. Read Once Command FCCOB Requirements** 

After clearing CCIF to launch the Read Once command, a 4-byte or 8-byte Program Once record is read and stored in the FCCOB register. The CCIF flag is set after the Read Once operation completes. Valid record index values for the Read Once command range from 0x00 - 0x13, 0x30 - 0x33. During execution of the Read Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data. The Read Once command can be executed any number of times.

Table 24-26. Read Once Command Error Handling

| Error Condition                                | Error Bit     |
|------------------------------------------------|---------------|
| Command not available in current mode/security | FSTAT[ACCERR] |
| An invalid record index is supplied            | FSTAT[ACCERR] |

641

## 24.4.11.10 Program Once Command

The Program Once command enables programming to special 96-byte fields in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once ID field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. Access to the Program Once XACC and SACC fields are via 4 records (index values 0x10 - 0x13), each of which is 8 bytes long. These records can be read using the Read Once command (see Read Once Command) or using the Read Resource command (see Read Resource Command). These records can be programmed only once since the program flash 0 IFR cannot be erased.

The Program Once command enables programming to special 4-byte records located in the program flash erasable IFR (see Program Flash Erasable IFR Map and Erasable Program Once Field). Record index values 0x30 - 0x33 can be read using the Read Once command. These records can be reprogrammed since the program flash erasable IFR can be erased using the Erase All Blocks command and Erase All Blocks Unsecure command.

**FCCOB Number** FCCOB Contents [7:0] 0 0x43 (PGMONCE) 1 Program Once record index (0x00 - 0x13, 0x30 - 0x33) 2 Not Used 3 Not Used 4 Program Once byte 0 value 5 Program Once byte 1 value 6 Program Once byte 2 value 7 Program Once byte 3 value 8 Program Once byte 4 value (index 0x10 - 0x13) 9 Program Once byte 5 value (index 0x10 - 0x13) 10 Program Once byte 6 value (index 0x10 - 0x13) Program Once byte 7 value (index 0x10 - 0x13) 11

Table 24-27. Program Once Command FCCOB Requirements

After clearing CCIF to launch the Program Once command, the flash memory module first verifies that the selected record is erased. If erased, then the selected record is programmed using the values provided. The Program Once command also verifies that the programmed values read back correctly. The CCIF flag is set after the Program Once operation has completed.

#### **Functional Description**

Any attempt to program one of these records when the existing value is not Fs (erased) is not allowed. Valid record index values for the Program Once command range from 0x00 - 0x13, 0x30 - 0x33. During execution of the Program Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data.

| <b>Table 24-28.</b> | <b>Program Once Command Error Handling</b> |
|---------------------|--------------------------------------------|
|---------------------|--------------------------------------------|

| Error Condition                                                                   | Error Bit      |
|-----------------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                                    | FSTAT[ACCERR]  |
| An invalid record index is supplied                                               | FSTAT[ACCERR]  |
| The requested record has already been programmed to a non-FFFF value <sup>1</sup> | FSTAT[ACCERR]  |
| Any errors have been encountered during the verify operation                      | FSTAT[MGSTAT0] |

<sup>1.</sup> If a Program Once record is initially programmed to 0xFFFF\_FFFF (0xFFFF\_FFFF\_FFFF\_FFFF for index 0x10 - 0x13), the Program Once command is allowed to execute again on that same record.

### 24.4.11.11 Erase All Blocks Command

The Erase All Blocks operation erases all flash memory, verifies all memory contents, and releases MCU security.

Table 24-29. Erase All Blocks Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] |
|--------------|----------------------|
| 0            | 0x44 (ERSALL)        |

After clearing CCIF to launch the Erase All Blocks command, the flash memory module erases all program flash memory and the program flash erasable IFR space, then verifies that all are erased.

If the flash memory module verifies that all flash memories were properly erased, access control is disabled and security is released by setting the FSEC[SEC] field to the unsecure state. The Erase All Blocks command aborts if any flash region is protected. The security byte and all other contents of the flash configuration field (see Flash Configuration Field Description) are erased by the Erase All Blocks command. If the erase-verify fails, the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase All Blocks operation completes.

Access control determined by the contents of the FXACC registers will not block execution of the Erase All Blocks command. While most Flash memory will be erased, the program flash IFR space containing the Program Once XACC and SACC fields will not be erased and, therefore, the contents of the Program Once XACC and SACC fields will not change. The contents of the FXACC and FSACC registers will not be impacted

by the execution of the Erase All Blocks command. After completion of the Erase All Blocks command, access control is disabled until the next reset of the flash module or the Read 1s All Blocks command is executed and fails (FSTAT[MGSTAT0] is set).

Table 24-30. Erase All Blocks Command Error Handling

| Error Condition                                                           | Error Bit      |
|---------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                            | FSTAT[ACCERR]  |
| Any region of the program flash memory is protected                       | FSTAT[FPVIOL]  |
| Any errors have been encountered during the verify operation <sup>1</sup> | FSTAT[MGSTAT0] |

<sup>1.</sup> User margin read may be run using the Read 1s All Blocks command to verify all bits are erased.

### 24.4.11.11.1 Triggering an Erase All External to the Flash Memory Module

The functionality of the Erase All Blocks/Erase All Blocks Unsecure command is also available in an uncommanded fashion outside of the flash memory. Refer to the device's Chip Configuration details for information on this functionality.

Before invoking the external erase all function, the FSTAT[ACCERR and PVIOL] flags must be cleared and the FCCOB0 register must not contain 0x44. When invoked, the erase-all function erases all program flash memory and the program flash erasable IFR space regardless of the protection settings. If the post-erase verify passes, access control determined by the contents of the FXACC registers is disabled and the routine then releases security by setting the FSEC[SEC] field register to the unsecure state. The security byte in the Flash Configuration Field is also programmed to the unsecure state. The status of the erase-all request is reflected in the FCNFG[ERSAREQ] bit. The FCNFG[ERSAREQ] bit is cleared once the operation completes and the normal FSTAT error reporting is available, except FPVIOL, as described in Erase All Blocks Command/Erase All Blocks Unsecure Command.

## 24.4.11.12 Verify Backdoor Access Key Command

The Verify Backdoor Access Key command only executes if the mode and security conditions are satisfied (see Flash Commands by Mode). Execution of the Verify Backdoor Access Key command is further qualified by the FSEC[KEYEN] bits. The Verify Backdoor Access Key command releases security if user-supplied keys in the FCCOB match those stored in the Backdoor Comparison Key bytes of the Flash Configuration Field (see Flash Configuration Field Description). The column labelled Flash Configuration Field offset address shows the location of the matching byte in the Flash Configuration Field.

**Functional Description** 

Table 24-31. Verify Backdoor Access Key Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] | Flash Configuration Field Offset Address |
|--------------|----------------------|------------------------------------------|
| 0            | 0x45 (VFYKEY)        |                                          |
| 1-3          | Not Used             |                                          |
| 4            | Key Byte 0           | 0x0_0003                                 |
| 5            | Key Byte 1           | 0x0_0002                                 |
| 6            | Key Byte 2           | 0x0_0001                                 |
| 7            | Key Byte 3           | 0x0_0000                                 |
| 8            | Key Byte 4           | 0x0_0007                                 |
| 9            | Key Byte 5           | 0x0_0006                                 |
| А            | Key Byte 6           | 0x0_0005                                 |
| В            | Key Byte 7           | 0x0_0004                                 |

After clearing CCIF to launch the Verify Backdoor Access Key command, the flash memory module checks the FSEC[KEYEN] bits to verify that this command is enabled. If not enabled, the flash memory module sets the FSTAT[ACCERR] bit and terminates. If the command is enabled, the flash memory module compares the key provided in FCCOB to the backdoor comparison key in the Flash Configuration Field. If the backdoor keys match, the FSEC[SEC] field is changed to the unsecure state and security is released. If the backdoor keys do not match, security is not released and all future attempts to execute the Verify Backdoor Access Key command are immediately aborted and the FSTAT[ACCERR] bit is (again) set to 1 until a reset of the flash memory module module occurs. If the entire 8-byte key is all zeros or all ones, the Verify Backdoor Access Key command fails with an access error. The CCIF flag is set after the Verify Backdoor Access Key operation completes.

Table 24-32. Verify Backdoor Access Key Command Error Handling

| Error Condition                                                                              | Error Bit     |
|----------------------------------------------------------------------------------------------|---------------|
| Command not available in current mode/security                                               | FSTAT[ACCERR] |
| The supplied key is all-0s or all-Fs                                                         | FSTAT[ACCERR] |
| An incorrect backdoor key is supplied                                                        | FSTAT[ACCERR] |
| Backdoor key access has not been enabled (see the description of the FSEC register)          | FSTAT[ACCERR] |
| This command is launched and the backdoor key has mismatched since the last power down reset | FSTAT[ACCERR] |

### 24.4.11.13 Erase All Blocks Unsecure Command

The Erase All Blocks Unsecure operation erases all flash memory, verifies all memory contents, programs the security byte in the Flash Configuration Field to the unsecure state, and releases MCU security.

Table 24-33. Erase All Blocks Unsecure Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] |
|--------------|----------------------|
| 0            | 0x49 (ERSALLU)       |

After clearing CCIF to launch the Erase All Blocks Unsecure command, the flash memory module erases all program flash memory and the program flash erasable IFR space, then verifies that all are erased.

If the flash memory module verifies that all program flash memory and the program flash erasable IFR space was properly erased, access control is disabled, security is released by setting the FSEC[SEC] field to the unsecure state, and the security byte (see Flash Configuration Field Description) is programmed to the unsecure state by the Erase All Blocks Unsecure command. If the erase or program verify fails, the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase All Blocks Unsecure operation completes.

Access control determined by the contents of the FXACC registers will not block execution of the Erase All Blocks Unsecure command. While most Flash memory will be erased, the program flash IFR space containing the Program Once XACC and SACC fields will not be erased and, therefore, the contents of the Program Once XACC and SACC fields will not change. The contents of the FXACC and FSACC registers will not be impacted by the execution of the Erase All Blocks Unsecure command. After completion of the Erase All Blocks Unsecure command, access control is disabled until the next reset of the flash module or the Read 1s All Blocks command is executed and fails (FSTAT[MGSTAT0] is set).

Table 24-34. Erase All Blocks Unsecure Command Error Handling

| Error Condition                                                            | Error Bit      |
|----------------------------------------------------------------------------|----------------|
| Command not available in current mode/security                             | FSTAT[ACCERR]  |
| Any errors have been encountered during erase or program verify operations | FSTAT[MGSTAT0] |

### 24.4.11.14 Read 1s All Execute-only Segments Command

The Read 1s All Execute-only Segments command checks if the program flash execute-only segments defined by the FXACC registers have been erased to the specified read margin level, if applicable, and releases flash access control if the readout passes, i.e. all data reads as '1'.

Table 24-35. Read 1s All Execute-only Segments Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] |  |
|--------------|----------------------|--|
| 0            | 0x4A (RD1XA)         |  |
| 1            | Read-1 Margin Choice |  |

After clearing CCIF to launch the Read 1s All Execute-only Segments command, the flash memory module :

- sets the read margin for 1s according to Table 24-36,
- checks the contents of the program flash execute-only segments are in the erased state.

If the flash memory module confirms that these segments are erased, flash access control is disabled until the next reset or, after programming any of the execute-only segments, the Read 1s All Execute-only Segments command is executed and fails with the FSTAT[MGSTAT0] bit set. If the read fails, i.e. all segments are not in the fully erased state, the FSTAT[MGSTAT0] bit is set.

The CCIF flag sets after the Read 1s All Execute-only Segments operation has completed.

Table 24-36. Margin Level Choices for Read 1s All Execute-only Segments

| Read Margin Choice | Margin Level Description                              |  |
|--------------------|-------------------------------------------------------|--|
| 0x00               | Use the 'normal' read level for 1s                    |  |
| 0x01               | Apply the 'User' margin to the normal read-1 level    |  |
| 0x02               | Apply the 'Factory' margin to the normal read-1 level |  |

Table 24-37. Read 1s All Execute-only Segments Command Error Handling

| Error Condition                                | Error Bit      |
|------------------------------------------------|----------------|
| Command not available in current mode/security | FSTAT[ACCERR]  |
| An invalid margin choice is specified          | FSTAT[ACCERR]  |
| Sector size is larger than segment size        | FSTAT[ACCERR]  |
| Read-1s fails                                  | FSTAT[MGSTAT0] |

## 24.4.11.15 Erase All Execute-only Segments Command

The Erase All Execute-only Segments operation erases all program flash execute-only segments defined by the FXACC registers, verifies all segments are erased, and releases flash access control.

Table 24-38. Erase All Execute-only Segments Command FCCOB Requirements

| FCCOB Number | FCCOB Contents [7:0] |  |
|--------------|----------------------|--|
| 0            | 0x4B (ERSXA)         |  |

After clearing CCIF to launch the Erase All Execute-only Segments command, the flash memory module erases all program flash execute-only segments, then verifies that all segments are erased.

If the flash memory module verifies that all segments were properly erased, flash access control is disabled until the next reset or, after programming any of the execute-only segments, the Read 1s All Execute-only Segments command is executed and fails with the FSTAT[MGSTAT0] bit set. The Erase All Execute-only Segments command aborts if any XA controlled segment is protected. If the erase-verify fails, the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase All Execute-only Segments operation completes.

Access control determined by the contents of the FXACC registers will not block execution of the Erase All Execute-only Segments command. While all XA controlled segments will be erased, the program flash IFR space containing the Program Once XACC fields will not be erased and, therefore, the contents of the Program Once XACC fields will not change. The contents of the FXACC registers will not be impacted by the execution of the Erase All Execute-only Segments command.

Table 24-39. Erase All Execute-only Segments Command Error Handling

| Error Condition                                                    | Error Bit      |
|--------------------------------------------------------------------|----------------|
| Command not available in current mode/security                     | FSTAT[ACCERR]  |
| Sector size is larger than segment size                            | FSTAT[ACCERR]  |
| Any XA controlled segment in the program flash memory is protected | FSTAT[FPVIOL]  |
| Any errors have been encountered during the verify operation       | FSTAT[MGSTAT0] |

**Functional Description** 

## **24.4.12 Security**

The flash memory module provides security information to the MCU based on contents of the FSEC security register.

The MCU then limits access to flash memory resources as defined in the device's Chip Configuration details. During reset, the flash memory module initializes the FSEC register using data read from the security byte of the Flash Configuration Field (see Flash Configuration Field Description).

The following fields are available in the FSEC register. The settings are described in the Flash Security Register (FTFA\_FSEC) details.

Flash security features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features. Note that not all features described in the application note are available on this device.

FSEC field Description

KEYEN Backdoor Key Access

MEEN Mass Erase Capability

FSLACC Factory Security Level Access

SEC MCU security

Table 24-40. FSEC register fields

# 24.4.12.1 Flash Memory Access by Mode and Security

The following table summarizes how access to the flash memory module is affected by security and operating mode.

Table 24-41. Flash Memory Access Summary

| Operating Mode | Chip Security State |                                                                                             |  |
|----------------|---------------------|---------------------------------------------------------------------------------------------|--|
| Operating wode | Unsecure            | Secure                                                                                      |  |
| NVM Normal     | Full command set    |                                                                                             |  |
| NVM Special    | Full command set    | Only the Erase All Blocks, Erase All Blocks<br>Unsecure and Read 1s All Blocks<br>commands. |  |

## 24.4.12.2 Changing the Security State

The security state out of reset can be permanently changed by programming the security byte of the flash configuration field. This assumes that you are starting from a mode where the necessary program flash erase and program commands are available and that the region of the program flash containing the flash configuration field is unprotected. If the flash security byte is successfully programmed, its new value takes affect after the next chip reset.

## 24.4.12.2.1 Unsecuring the Chip Using Backdoor Key Access

The user code stored in the program flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN bits are in the enabled state, the chip can be unsecured by the following backdoor key access sequence:

- 1. Follow the command sequence for the Verify Backdoor Access Key command as explained in Verify Backdoor Access Key Command
- 2. If the Verify Backdoor Access Key command is successful, the chip is unsecured and the FSEC[SEC] bits are forced to the unsecure state

An illegal key provided to the Verify Backdoor Access Key command prohibits further use of the Verify Backdoor Access Key command. A reset of the chip is the only method to re-enable the Verify Backdoor Access Key command when a comparison fails.

After the backdoor keys have been correctly matched, the chip is unsecured by changing the FSEC[SEC] bits. A successful execution of the Verify Backdoor Access Key command changes the security in the FSEC register only. It does not alter the security byte or the keys stored in the Flash Configuration Field (Flash Configuration Field Description). After the next reset of the chip, the security state of the flash memory

#### **Functional Description**

module reverts back to the flash security byte in the Flash Configuration Field. The Verify Backdoor Access Key command sequence has no effect on the program and erase protections defined in the program flash protection registers.

If the backdoor keys successfully match, the unsecured chip has full control of the contents of the Flash Configuration Field. The chip may erase the sector containing the Flash Configuration Field and reprogram the flash security byte to the unsecure state and change the backdoor keys to any desired value.

## 24.4.13 Reset Sequence

On each system reset the flash memory module executes a sequence which establishes initial values for the flash block configuration parameters, FPROT, FOPT, FSEC, FXACC, FSACC, and FACNFG registers.

FSTAT[CCIF] is cleared throughout the reset sequence. The flash memory module holds off CPU access during the reset sequence. Flash reads are possible when the hold is removed. Completion of the reset sequence is marked by setting CCIF which enables flash user commands.

If a reset occurs while any flash command is in progress, that command is immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed. Commands and operations do not automatically resume after exiting reset.

# **Chapter 25 Interrupt Multiplexer (INTMUX)**

#### 25.1 About this module

#### 25.1.1 Introduction

The Interrupt Multiplexer (INTMUX) expands the number of peripherals that can interrupt the core via 4 channels of the NVIC module.

- The INTMUX module has 4 channels that are assigned to 4 NVIC interrupt slots.
- Each INTMUX channel can provide up to 32 additional interrupt sources, which can be logically OR'd or ANDed.
- The Interrupt Multiplexer (INTMUX) routes the interrupt sources to the interrupt outputs.

## 25.1.2 Features

**INTMUX** features:

- Supports 4 multiplex channels
- Each channel receives 32 interrupt sources and has 1 interrupt output
- Each interrupt source can be enabled or disabled
- Each channel supports *Logic AND* or *Logic OR* of all enabled interrupt sources

# 25.1.3 Block diagram

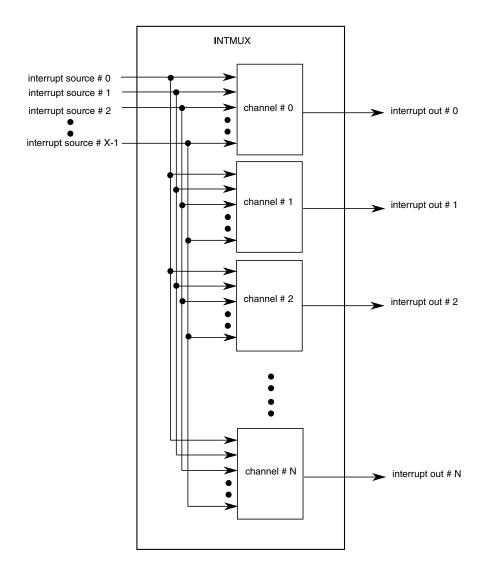
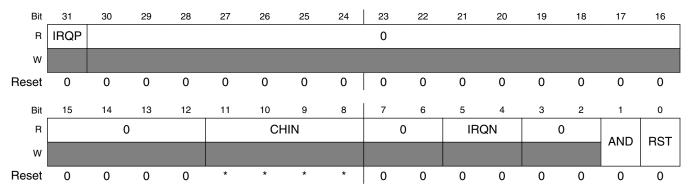



Figure 25-1. INTMUX Block diagram

N: Interrupt Channel Instance Number (N=3)

X: Interrupt Source Number for each channel (X=32)

#### **Memory Map and register definition** 25.2


This section includes the module memory map and detailed descriptions of all registers.

## **INTMUX** memory map

| Absolute<br>address<br>(hex) | Register name                                               | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4002_4000                    | Channel n Control Status Register (INTMUX0_CH0_CSR)         | 32                 | R/W    | See section | 25.2.1/653       |
| 4002_4004                    | Channel n Vector Number Register (INTMUX0_CH0_VEC)          | 32                 | R      | 0000_0000h  | 25.2.2/654       |
| 4002_4010                    | Channel n Interrupt Enable Register (INTMUX0_CH0_IER_31_0)  | 32                 | R/W    | 0000_0000h  | 25.2.3/655       |
| 4002_4020                    | Channel n Interrupt Pending Register (INTMUX0_CH0_IPR_31_0) | 32                 | R      | 0000_0000h  | 25.2.4/655       |
| 4002_4040                    | Channel n Control Status Register (INTMUX0_CH1_CSR)         | 32                 | R/W    | See section | 25.2.1/653       |
| 4002_4044                    | Channel n Vector Number Register (INTMUX0_CH1_VEC)          | 32                 | R      | 0000_0000h  | 25.2.2/654       |
| 4002_4050                    | Channel n Interrupt Enable Register (INTMUX0_CH1_IER_31_0)  | 32                 | R/W    | 0000_0000h  | 25.2.3/655       |
| 4002_4060                    | Channel n Interrupt Pending Register (INTMUX0_CH1_IPR_31_0) | 32                 | R      | 0000_0000h  | 25.2.4/655       |
| 4002_4080                    | Channel n Control Status Register (INTMUX0_CH2_CSR)         | 32                 | R/W    | See section | 25.2.1/653       |
| 4002_4084                    | Channel n Vector Number Register (INTMUX0_CH2_VEC)          | 32                 | R      | 0000_0000h  | 25.2.2/654       |
| 4002_4090                    | Channel n Interrupt Enable Register (INTMUX0_CH2_IER_31_0)  | 32                 | R/W    | 0000_0000h  | 25.2.3/655       |
| 4002_40A0                    | Channel n Interrupt Pending Register (INTMUX0_CH2_IPR_31_0) | 32                 | R      | 0000_0000h  | 25.2.4/655       |
| 4002_40C0                    | Channel n Control Status Register (INTMUX0_CH3_CSR)         | 32                 | R/W    | See section | 25.2.1/653       |
| 4002_40C4                    | Channel n Vector Number Register (INTMUX0_CH3_VEC)          | 32                 | R      | 0000_0000h  | 25.2.2/654       |
| 4002_40D0                    | Channel n Interrupt Enable Register (INTMUX0_CH3_IER_31_0)  | 32                 | R/W    | 0000_0000h  | 25.2.3/655       |
| 4002_40E0                    | Channel n Interrupt Pending Register (INTMUX0_CH3_IPR_31_0) | 32                 | R      | 0000_0000h  | 25.2.4/655       |

#### 25.2.1 Channel n Control Status Register (INTMUXx\_CHn\_CSR)

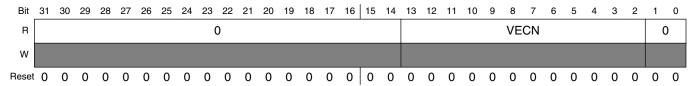
Address:  $4002\_4000h$  base + 0h offset +  $(64d \times i)$ , where i=0d to 3d



<sup>\*</sup> Notes:

KL28Z Reference Manual, Rev. 4, 06/2016 653 **NXP Semiconductors** 

<sup>•</sup> CHIN field: The reset value of CHIN depends on the channel number.

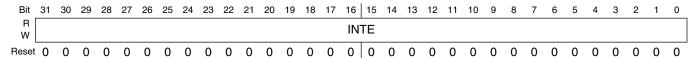

#### Memory Map and register definition

## INTMUXx\_CHn\_CSR field descriptions

| Field             | Description                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------|
| 31<br>IRQP        | Channel Interrupt Request Pending  This bit is available for polling purposes and represents the channel output. |
|                   |                                                                                                                  |
|                   | 0 No interrupt is pending.                                                                                       |
|                   | 1 The interrupt output of this channel is pending.                                                               |
| 30–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                             |
| 11–8              | Channel Instance Number                                                                                          |
| CHIN              |                                                                                                                  |
|                   | These bits represent the instance number of this channel.                                                        |
|                   | N Channel N                                                                                                      |
| 7–6               | This field is reserved.                                                                                          |
| Reserved          | This read-only field is reserved and always has the value 0.                                                     |
| 5–4<br>IRQN       | Channel Input Number                                                                                             |
| in total          | These bits represent the interrupt input number of this channel.                                                 |
|                   | 00 32 interrupt inputs                                                                                           |
|                   | 01 Reserved                                                                                                      |
|                   | 10 Reserved                                                                                                      |
|                   | 11 Reserved                                                                                                      |
| 3–2<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                             |
| neserved<br>1     | Logic AND                                                                                                        |
| AND               | LOGIC AND                                                                                                        |
|                   | This bit used to Logic AND or Logic OR all enabled interrupt inputs of this channel and generate the             |
|                   | interrput output of this channel.                                                                                |
|                   | 0 Logic OR all enabled interrupt inputs.                                                                         |
|                   | 1 Logic AND all enabled interrupt inputs.                                                                        |
| 0<br>RST          | Software Reset                                                                                                   |
| noi               | This bit is used to software reset this channel. This bit always reads as 0.                                     |
|                   | 0 No operation.                                                                                                  |
|                   | 1 Perform a software reset on this channel.                                                                      |

# 25.2.2 Channel n Vector Number Register (INTMUXx\_CHn\_VEC)

Address:  $4002_4000h$  base + 4h offset +  $(64d \times i)$ , where i=0d to 3d

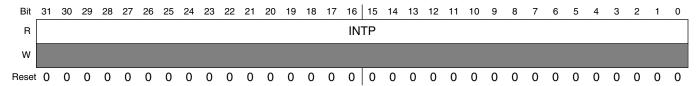



#### INTMUXx\_CHn\_VEC field descriptions

| Field             | Description                                                                                                                                                                                                                     |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |  |
| 13–2<br>VECN      | Vector Number  These bits represent the vector number for the highest priority interrupt source of this channel.  VECN[13:2] = (CPU vectors + NVIC vectors)  + Number of the highest priority interrupt source of this channel. |  |
|                   | <b>NOTE:</b> The interrupt priority is based on the Interrupt Pending Register. The smaller the interrupt source number, the higher the priority.                                                                               |  |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                            |  |

# 25.2.3 Channel n Interrupt Enable Register (INTMUXx\_CHn\_IER\_31\_0)

Address:  $4002_{4000h}$  base + 10h offset + (64d × i), where i=0d to 3d




#### INTMUXx\_CHn\_IER\_31\_0 field descriptions

| Field | Description                                                          |
|-------|----------------------------------------------------------------------|
| INTE  | Interrupt Enable                                                     |
|       | These bits are used to enable the interrupt sources of this channel. |
|       | 0 Interrupt is disabled.                                             |
|       | 1 Interrupt is enabled.                                              |

# 25.2.4 Channel n Interrupt Pending Register (INTMUXx\_CHn\_IPR\_31\_0)

Address:  $4002_4000h$  base + 20h offset + (64d × i), where i=0d to 3d



KL28Z Reference Manual, Rev. 4, 06/2016

#### INTMUXx\_CHn\_IPR\_31\_0 field descriptions

| Field | Description                                                               |
|-------|---------------------------------------------------------------------------|
| INTP  | Interrupt Pending                                                         |
|       | These bits represent the interrupt source pending status of this channel. |
|       | 0 No interrupt.                                                           |
|       | 1 Interrupt is pending.                                                   |

# 25.3 Functional Description

The Interrupt Multiplexer (INTMUX) routes the interrupt sources to the interrupt outputs.

There is one interrupt output for each channel available in the INTMUX. All interrupt sources are available to each channel. There are 4 multiplex channels, and there are 32 interrupt sources.

The INTMUX module provides interrupt status registers to monitor interrupt pending status and vector numbers. This module also implements the ability to logical AND or OR enabled interrupts on a given channel. Software resets can also be performed on a given channel.

See the chip specific Interrupt section for more information regarding the interrupt vectors and sources.

## 25.3.1 Configuring Output Channels

There is a single set of 32 source interrupts for the INTMUX. Each of the 4 output channels can be configured to output any combination of the source interrupts.

To enable source interrupts on a channel, write a mask value to the Channel n Interrupt Enable Register (CHn\_IER\_31\_0). Each bit of these registers corresponds to one of the 32 source interrupts. Bit n enables source interrupt n on the given channel.

Further control for each output channel is available by selecting the Boolean operation to perform on pending interrupts. The default is logical OR, but logical AND can be selected via the CHn\_CSR[AND] register bit.

### 25.3.2 INTMUX Vectors

The INTMUX is designed so that it integrates with the standard NVIC vector table. Each INTMUX source interrupt has a vector associated with it. These source vectors are intended to immediately follow the NVIC vectors in the vector table pointed to by the CPU's VTOR register. Interrupt service routine addresses can be placed in the INTMUX source vectors, just like NVIC vectors.

The ISR for each of the INTMUX output channels should read the CHn\_VEC register to determine the highest priority active source interrupt out of those enabled for the given channel. The CHn\_VEC[VECN] bitfield returns the source interrupt number. The VECN field starts at bit 2 of the CHn\_VEC register, so reading the register as a whole will return the VECN field multiplied by 4. This is the offset in bytes of the active source vector from the start of the vector table (i.e., VTOR).

If multiple source interrupts become pending simultaneously on a single channel, the CHn\_VEC[VECN] field will read as the highest priority vector number. Priority of source interrupts is determined by the source interrupt number. Lower numbers are higher priority, with source interrupt 0 being highest priority.

#### NOTE

Unlike the NVIC, the INTMUX does not latch pending source interrupts. This means that the INTMUX output channel ISRs must check for and handle a 0 value of the CHn\_VEC register to account for spurious interrupts.

**Functional Description** 

# Chapter 26 Low-Leakage Wakeup Unit (LLWU)

#### 26.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The LLWU module allows the user to select up to 32 external pins and up to 8 internal modules as interrupt wake-up sources from low-leakage power modes. It also supports up to 8 internal modules as temporary DMA wake-up sources.

The input sources are described in the device's chip configuration details. Each of the available wake-up sources can be individually enabled.

The RESET pin is an additional source for triggering an exit from low-leakage power modes, and causes the MCU to exit both LLS and VLLS through a reset flow.

The LLWU module also includes four optional digital pin filters for the external wakeup pins.

See AN4503: Power Management for Kinetis MCUs for further details on using the LLWU.

## 26.1.1 Features

The LLWU module features include:

- Support for up to 32 external input pins and up to 8 internal modules with individual enable bits for MCU interrupt from low leakage modes
- Support for up to 8 internal modules with individual enable bits for DMA wakeup from low leakage modes

#### Introduction

- Input sources may be external pins or from internal peripherals capable of running in LLS or VLLS. See the chip configuration information for wakeup input sources for this device.
- External pin wake-up inputs, each of which is programmable as falling-edge, rising-edge, or any change
- Wake-up inputs that are activated after MCU enters a low-leakage power mode
- Optional digital filters provided to qualify an external pin detect. Note that when the LPO clock is disabled, the filters are disabled and bypassed.

## 26.1.2 Modes of operation

The LLWU module becomes functional on entry into a low-leakage power mode. After recovery from LLS, the LLWU is immediately disabled. After recovery from VLLS, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up via a write to PMC\_REGSC[ACKISO].

#### 26.1.2.1 LLS mode

Wake-up events due to external pin inputs (LLWU\_Px) and internal module interrupt inputs (LLWU\_MxIF) result in an interrupt flow when exiting LLS. Wake-up events due to internal module DMA requests (LLWU\_MxDF) allow the system to temporarily exit LLS with the CPU clock disabled, allowing the DMA request to be serviced. When the module DMA request negates, the system will re-enter LLS.

#### NOTE

The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit Stop mode on an LLS recovery.

#### 26.1.2.2 VLLS modes

All wakeup and reset events result in VLLS exit via a reset flow.

## 26.1.2.3 Non-low leakage modes

The LLWU is not active in all non-low leakage modes where detection and control logic are in a static state. The LLWU registers are accessible in non-low leakage modes and are available for configuring and reading status when bus transactions are possible.

661

When the wake-up pin filters are enabled, filter operation begins immediately. If a low leakage mode is entered within five LPO clock cycles of an active edge, the edge event will be detected by the LLWU.

## **26.1.2.4 Debug mode**

When the chip is in Debug mode and then enters LLS or a VLLSx mode, no debug logic works in the fully-functional low-leakage mode. Upon an exit from the LLS or VLLSx mode, the LLWU becomes inactive.

## 26.1.3 Block diagram

The following figure is the block diagram for the LLWU module.

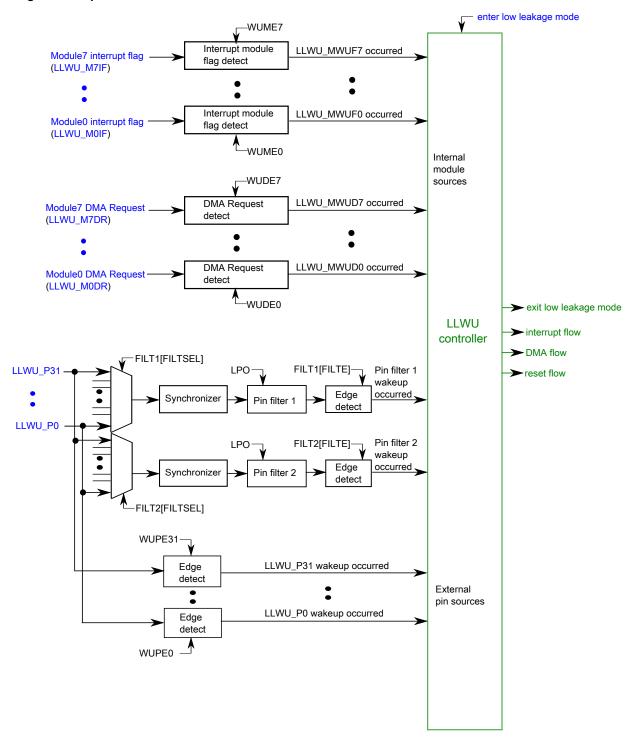



Figure 26-1. LLWU block diagram

# 26.2 LLWU signal descriptions

The signal properties of LLWU are shown in the table found here.

The external wakeup input pins can be enabled to detect either rising-edge, falling-edge, or on any change.

Table 26-1. LLWU signal descriptions

| Signal  | Description               | I/O |
|---------|---------------------------|-----|
| LLWU_Pn | Wakeup inputs (n = 0- 31) | I   |

# 26.3 Memory map/register definition

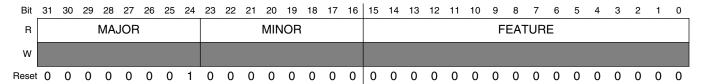
The LLWU includes the following registers:

- Wake-up source enable registers
  - Enable external pin input sources
  - Enable internal peripheral interrupt sources
  - Enable internal peripheral DMA sources
- Wake-up flag registers
  - Indication of wakeup source that caused exit from a low-leakage power mode includes external pin or internal module interrupt
- Wake-up pin filter enable registers

#### NOTE

The LLWU registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

Registers for Pin/Module sources marked "Reserved" in the LLWU chip configuration information will not be writable and will return 0 when read.

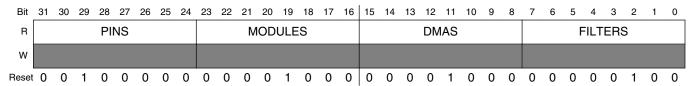

All LLWU registers are reset by Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. Each register's displayed reset value represents this subset of reset types. LLWU registers are unaffected by reset types that do not trigger Chip Reset not VLLS. For more information about the types of reset on this chip, refer to the Introduction details.

## **LLWU** memory map

| Absolute<br>address<br>(hex) | Register name                                    | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|--------------------------------------------------|--------------------|--------|-------------|------------------|
| 4006_1000                    | Version ID Register (LLWU0_VERID)                | 32                 | R      | 0100_0000h  | 26.3.1/664       |
| 4006_1004                    | Parameter Register (LLWU0_PARAM)                 | 32                 | R      | 2008_0804h  | 26.3.2/665       |
| 4006_1008                    | LLWU Pin Enable 1 register (LLWU0_PE1)           | 32                 | R/W    | 0000_0000h  | 26.3.3/665       |
| 4006_100C                    | LLWU Pin Enable 2 register (LLWU0_PE2)           | 32                 | R/W    | 0000_0000h  | 26.3.4/668       |
| 4006_1018                    | LLWU Module Interrupt Enable register (LLWU0_ME) | 32                 | R/W    | 0000_0000h  | 26.3.5/671       |
| 4006_101C                    | LLWU Module DMA Enable register (LLWU0_DE)       | 32                 | R/W    | 0000_0000h  | 26.3.6/673       |
| 4006_1020                    | LLWU Pin Flag register (LLWU0_PF)                | 32                 | R/W    | 0000_0000h  | 26.3.7/675       |
| 4006_1028                    | LLWU Module Interrupt Flag register (LLWU0_MF)   | 32                 | R      | 0000_0000h  | 26.3.8/680       |
| 4006_1030                    | LLWU Pin Filter register (LLWU0_FILT)            | 32                 | R/W    | 0000_0000h  | 26.3.9/682       |

# 26.3.1 Version ID Register (LLWUx\_VERID)

Address: 4006\_1000h base + 0h offset = 4006\_1000h




#### LLWUx\_VERID field descriptions

| Field          | Description                                                                         |
|----------------|-------------------------------------------------------------------------------------|
| 31–24<br>MAJOR | Major Version Number                                                                |
| IVI/ (OO) (    | This read only field returns the major version number for the module specification. |
| 23–16<br>MINOR | Minor Version Number                                                                |
|                | This read only field returns the minor version number for the module specification. |
| FEATURE        | Feature Specification Number                                                        |
|                | This read only field returns the feature set number.                                |
|                | 0x0000 Standard features implemented                                                |

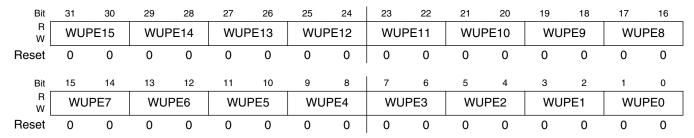
## 26.3.2 Parameter Register (LLWUx\_PARAM)

Address: 4006\_1000h base + 4h offset = 4006\_1004h



#### LLWUx\_PARAM field descriptions

| Field            | Description                               |
|------------------|-------------------------------------------|
| 31–24            | Pin Number                                |
| PINS             | Number of Pin wakeup sources supported    |
| 23–16<br>MODULES | Module Number                             |
| MODULES          | Number of Module wakeup sources supported |
| 15–8             | DMA Number                                |
| DMAS             | Number of DMA wakeup sources supported    |
| FILTERS          | Filter Number                             |
|                  | Number of Pin Filters implemented         |


## 26.3.3 LLWU Pin Enable 1 register (LLWUx\_PE1)

LLWU\_PE1 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU\_P15-LLWU\_P0.

#### NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4006\_1000h base + 8h offset = 4006\_1008h



KL28Z Reference Manual, Rev. 4, 06/2016

## Memory map/register definition

# LLWUx\_PE1 field descriptions

| Field           | Description                                                   |
|-----------------|---------------------------------------------------------------|
| 31–30           | Wakeup Pin Enable For LLWU_P15                                |
| WUPE15          |                                                               |
|                 | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 29–28           | Wakeup Pin Enable For LLWU_P14                                |
| WUPE14          | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 27–26           | Wakeup Pin Enable For LLWU_P13                                |
| WUPE13          | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 25–24<br>WUPE12 | Wakeup Pin Enable For LLWU_P12                                |
|                 | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 23–22           | Wakeup Pin Enable For LLWU_P11                                |
| WUPE11          | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 21–20<br>WUPE10 | Wakeup Pin Enable For LLWU_P10                                |
| VVOI LIU        | Enables and configures the edge detection for the wakeup pin. |
|                 | 00 External input pin disabled as wakeup input                |
|                 | 01 External input pin enabled with rising edge detection      |
|                 | 10 External input pin enabled with falling edge detection     |
|                 | 11 External input pin enabled with any change detection       |
| 19–18<br>WUPE9  | Wakeup Pin Enable For LLWU_P9                                 |
|                 | Enables and configures the edge detection for the wakeup pin. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# LLWUx\_PE1 field descriptions (continued)

| Field          | Description                                                   |
|----------------|---------------------------------------------------------------|
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 17–16<br>WUPE8 | Wakeup Pin Enable For LLWU_P8                                 |
|                | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 15–14          | Wakeup Pin Enable For LLWU_P7                                 |
| WUPE7          | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 13–12          | Wakeup Pin Enable For LLWU_P6                                 |
| WUPE6          |                                                               |
|                | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 11–10<br>WUPE5 | Wakeup Pin Enable For LLWU_P5                                 |
|                | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 9–8<br>WUPE4   | Wakeup Pin Enable For LLWU_P4                                 |
|                | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |
|                | 10 External input pin enabled with falling edge detection     |
|                | 11 External input pin enabled with any change detection       |
| 7–6<br>WUPE3   | Wakeup Pin Enable For LLWU_P3                                 |
|                | Enables and configures the edge detection for the wakeup pin. |
|                | 00 External input pin disabled as wakeup input                |
|                | 01 External input pin enabled with rising edge detection      |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### LLWUx\_PE1 field descriptions (continued)

| Field        | Description                                                   |
|--------------|---------------------------------------------------------------|
|              | 10 External input pin enabled with falling edge detection     |
|              | 11 External input pin enabled with any change detection       |
| 5–4<br>WUPE2 | Wakeup Pin Enable For LLWU_P2                                 |
|              | Enables and configures the edge detection for the wakeup pin. |
|              | 00 External input pin disabled as wakeup input                |
|              | 01 External input pin enabled with rising edge detection      |
|              | 10 External input pin enabled with falling edge detection     |
|              | 11 External input pin enabled with any change detection       |
| 3–2<br>WUPE1 | Wakeup Pin Enable For LLWU_P1                                 |
|              | Enables and configures the edge detection for the wakeup pin. |
|              | 00 External input pin disabled as wakeup input                |
|              | 01 External input pin enabled with rising edge detection      |
|              | 10 External input pin enabled with falling edge detection     |
|              | 11 External input pin enabled with any change detection       |
| WUPE0        | Wakeup Pin Enable For LLWU_P0                                 |
|              | Enables and configures the edge detection for the wakeup pin. |
|              | 00 External input pin disabled as wakeup input                |
|              | 01 External input pin enabled with rising edge detection      |
|              | 10 External input pin enabled with falling edge detection     |
|              | 11 External input pin enabled with any change detection       |

# 26.3.4 LLWU Pin Enable 2 register (LLWUx\_PE2)

LLWU\_PE2 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU\_P31-LLWU\_P16.

#### **NOTE**

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4006\_1000h base + Ch offset = 4006\_100Ch

| Bit    | 31  | 30   | 29  | 28   | 27  | 26   | 25  | 24   | 23  | 22   | 21  | 20   | 19  | 18   | 17  | 16   |
|--------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
| R<br>W | WUF | PE31 | WUF | PE30 | WUF | PE29 | WUF | PE28 | WUF | PE27 | WUF | PE26 | WUF | PE25 | WUF | PE24 |
| Reset  | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |

| Bit    | 15  | 14   | 13  | 12   | 11  | 10   | 9   | 8    | 7   | 6    | 5   | 4    | 3   | 2    | 1   | 0    |
|--------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
| R<br>W | WUF | PE23 | WUF | PE22 | WUF | PE21 | WUF | PE20 | WUF | PE19 | WUF | PE18 | WUF | PE17 | WUF | PE16 |
| Reset  | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |

# LLWUx\_PE2 field descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30           | Wakeup Pin Enable For LLWU_P31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WUPE31          | Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 00 External input pin disabled as wakeup input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 10 External input pin enabled with falling edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 11 External input pin enabled with any change detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29–28<br>WUPE30 | Wakeup Pin Enable For LLWU_P30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 00 External input pin disabled as wakeup input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 10 External input pin enabled with falling edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 11 External input pin enabled with any change detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27–26<br>WUPE29 | Wakeup Pin Enable For LLWU_P29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 00 External input pin disabled as wakeup input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 10 External input pin enabled with falling edge detection 11 External input pin enabled with any change detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25.04           | The state of the s |
| 25–24<br>WUPE28 | Wakeup Pin Enable For LLWU_P28  Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 00 External input pin disabled as wakeup input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 10 External input pin enabled with falling edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 11 External input pin enabled with any change detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 23–22<br>WUPE27 | Wakeup Pin Enable For LLWU_P27  Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 00 External input pin disabled as wakeup input 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 10 External input pin enabled with falling edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 11 External input pin enabled with any change detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21–20           | Wakeup Pin Enable For LLWU_P26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WUPE26          | Enables and configures the edge detection for the wakeup pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 00 External input pin disabled as wakeup input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 01 External input pin enabled with rising edge detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table continues on the next page...

#### Memory map/register definition

# LLWUx\_PE2 field descriptions (continued)

| Field           | Description                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |
| 19–18<br>WUPE25 | Wakeup Pin Enable For LLWU_P25                                                                                                              |
| VVUPE25         | Enables and configures the edge detection for the wakeup pin.                                                                               |
|                 | 00 External input pin disabled as wakeup input                                                                                              |
|                 | 01 External input pin enabled with rising edge detection                                                                                    |
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |
| 17–16<br>WUPE24 | Wakeup Pin Enable For LLWU_P24                                                                                                              |
|                 | Enables and configures the edge detection for the wakeup pin.                                                                               |
|                 | 00 External input pin disabled as wakeup input                                                                                              |
|                 | 01 External input pin enabled with rising edge detection                                                                                    |
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |
| 15–14<br>WUPE23 | Wakeup Pin Enable For LLWU_P23                                                                                                              |
|                 | Enables and configures the edge detection for the wakeup pin.                                                                               |
|                 | 00 External input pin disabled as wakeup input                                                                                              |
|                 | 01 External input pin enabled with rising edge detection                                                                                    |
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |
| 13–12<br>WUPE22 | Wakeup Pin Enable For LLWU_P22  Enables and configures the edge detection for the wakeup pin.                                               |
|                 | 00. Estamal insularia dischlad on underun insula                                                                                            |
|                 | 00 External input pin disabled as wakeup input 01 External input pin enabled with rising edge detection                                     |
|                 |                                                                                                                                             |
|                 | <ul><li>10 External input pin enabled with falling edge detection</li><li>11 External input pin enabled with any change detection</li></ul> |
| 11–10           | Wakeup Pin Enable For LLWU P21                                                                                                              |
| WUPE21          | Enables and configures the edge detection for the wakeup pin.                                                                               |
|                 | 00 External input pin disabled as wakeup input                                                                                              |
|                 | 01 External input pin enabled with rising edge detection                                                                                    |
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |
| 9–8             | Wakeup Pin Enable For LLWU_P20                                                                                                              |
| WUPE20          | Enables and configures the edge detection for the wakeup pin.                                                                               |
|                 |                                                                                                                                             |
|                 | 00 External input pin disabled as wakeup input                                                                                              |
|                 | 01 External input pin enabled with rising edge detection                                                                                    |
|                 | 10 External input pin enabled with falling edge detection                                                                                   |
|                 | 11 External input pin enabled with any change detection                                                                                     |

Table continues on the next page...

671

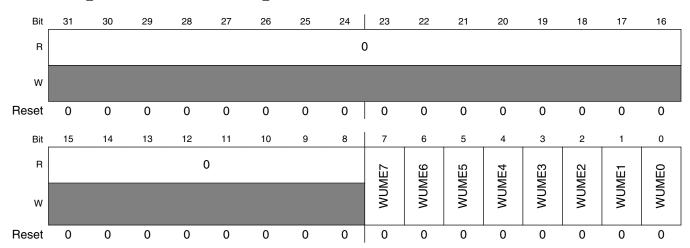
## LLWUx\_PE2 field descriptions (continued)

| Field         | Description                                                   |
|---------------|---------------------------------------------------------------|
| 7–6           | Wakeup Pin Enable For LLWU_P19                                |
| WUPE19        | Enables and configures the edge detection for the wakeup pin. |
|               |                                                               |
|               | 00 External input pin disabled as wakeup input                |
|               | 01 External input pin enabled with rising edge detection      |
|               | 10 External input pin enabled with falling edge detection     |
|               | 11 External input pin enabled with any change detection       |
| 5–4<br>WUPE18 | Wakeup Pin Enable For LLWU_P18                                |
|               | Enables and configures the edge detection for the wakeup pin. |
|               | 00 External input pin disabled as wakeup input                |
|               | 01 External input pin enabled with rising edge detection      |
|               | 10 External input pin enabled with falling edge detection     |
|               | 11 External input pin enabled with any change detection       |
| 3–2<br>WUPE17 | Wakeup Pin Enable For LLWU_P17                                |
|               | Enables and configures the edge detection for the wakeup pin. |
|               | 00 External input pin disabled as wakeup input                |
|               | 01 External input pin enabled with rising edge detection      |
|               | 10 External input pin enabled with falling edge detection     |
|               | 11 External input pin enabled with any change detection       |
| WUPE16        | Wakeup Pin Enable For LLWU_P16                                |
|               | Enables and configures the edge detection for the wakeup pin. |
|               | 00 External input pin disabled as wakeup input                |
|               | 01 External input pin enabled with rising edge detection      |
|               | 10 External input pin enabled with falling edge detection     |
|               | 11 External input pin enabled with any change detection       |

# 26.3.5 LLWU Module Interrupt Enable register (LLWUx\_ME)

LLWU\_ME contains the bits to enable an internal module interrupt as a wakeup source for inputs LLWU\_M7IF - LLWU\_M0IF.

#### **NOTE**


This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

KL28Z Reference Manual, Rev. 4, 06/2016

VD 0 . . . .

#### Memory map/register definition

Address: 4006\_1000h base + 18h offset = 4006\_1018h



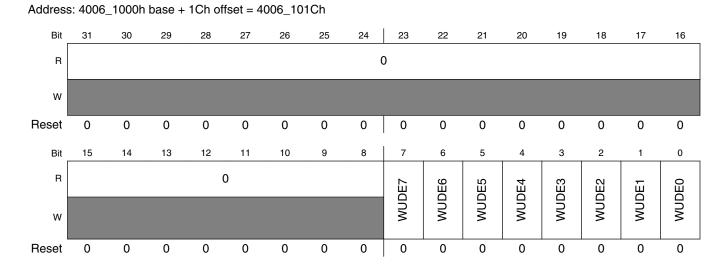
## LLWUx\_ME field descriptions

| Field            | Description                                                                             |
|------------------|-----------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.    |
| 7<br>WUME7       | Wakeup Module Enable For Module 7  Enables an internal module as a wakeup source input. |
|                  | 0 Internal module flag not used as wakeup source                                        |
| 6                | 1 Internal module flag used as wakeup source                                            |
| WUME6            | Wakeup Module Enable For Module 6                                                       |
|                  | Enables an internal module as a wakeup source input.                                    |
|                  | 0 Internal module flag not used as wakeup source                                        |
|                  | 1 Internal module flag used as wakeup source                                            |
| 5<br>WUME5       | Wakeup Module Enable For Module 5                                                       |
|                  | Enables an internal module as a wakeup source input.                                    |
|                  | 0 Internal module flag not used as wakeup source                                        |
|                  | 1 Internal module flag used as wakeup source                                            |
| 4<br>WUME4       | Wakeup Module Enable For Module 4                                                       |
| VVOIVIE4         | Enables an internal module as a wakeup source input.                                    |
|                  | 0 Internal module flag not used as wakeup source                                        |
|                  | 1 Internal module flag used as wakeup source                                            |
| 3<br>WUME3       | Wakeup Module Enable For Module 3                                                       |
|                  | Enables an internal module as a wakeup source input.                                    |
|                  | 0 Internal module flag not used as wakeup source                                        |
|                  | 1 Internal module flag used as wakeup source                                            |
| 2<br>WUME2       | Wakeup Module Enable For Module 2                                                       |
|                  | Enables an internal module as a wakeup source input.                                    |

Table continues on the next page...

673

#### LLWUx\_ME field descriptions (continued)


| Field      | Description                                          |
|------------|------------------------------------------------------|
|            | 0 Internal module flag not used as wakeup source     |
|            | 1 Internal module flag used as wakeup source         |
| 1<br>WUME1 | Wakeup Module Enable for Module 1                    |
|            | Enables an internal module as a wakeup source input. |
|            | 0 Internal module flag not used as wakeup source     |
|            | 1 Internal module flag used as wakeup source         |
| 0<br>WUME0 | Wakeup Module Enable For Module 0                    |
|            | Enables an internal module as a wakeup source input. |
|            | 0 Internal module flag not used as wakeup source     |
|            | 1 Internal module flag used as wakeup source         |

## 26.3.6 LLWU Module DMA Enable register (LLWUx\_DE)

LLWU\_DE contains the bits to enable an internal module DMA request as a wakeup source for inputs LLWU\_M7DR - LLWU\_M0DR .

#### **NOTE**

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

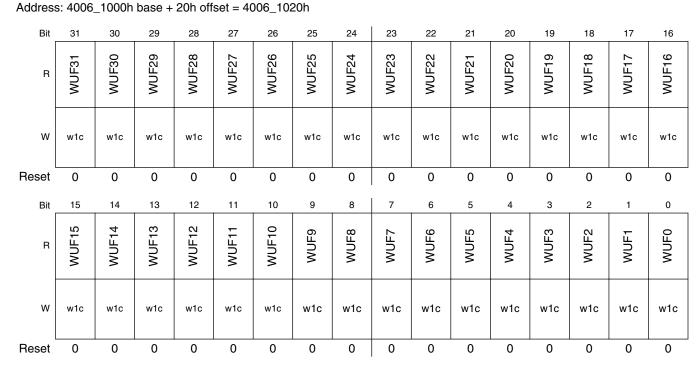


### Memory map/register definition

# LLWUx\_DE field descriptions

| Field                                   | Description                                                                                                                              |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved                        | This field is reserved. This read-only field is reserved and always has the value 0.                                                     |
| 7                                       | DMA Wakeup Enable For Module 7                                                                                                           |
| WUDE7                                   | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         |                                                                                                                                          |
|                                         | <ul> <li>Internal module request not used as a DMA wakeup source</li> <li>Internal module request used as a DMA wakeup source</li> </ul> |
| 6                                       | DMA Wakeup Enable For Module 6                                                                                                           |
| WUDE6                                   | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         |                                                                                                                                          |
|                                         | Internal module request not used as a DMA wakeup source                                                                                  |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 5<br>WUDE5                              | DMA Wakeup Enable For Module 5                                                                                                           |
|                                         | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 4<br>WUDE4                              | DMA Wakeup Enable For Module 4                                                                                                           |
|                                         | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 3<br>WUDE3                              | DMA Wakeup Enable For Module 3                                                                                                           |
|                                         | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 2<br>WUDE2                              | DMA Wakeup Enable For Module 2                                                                                                           |
| -                                       | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 1<br>WUDE1                              | DMA Wakeup Enable for Module 1                                                                                                           |
| *************************************** | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |
| 0<br>WUDE0                              | DMA Wakeup Enable For Module 0                                                                                                           |
|                                         | Enables an internal module as a DMA wakeup source.                                                                                       |
|                                         | 0 Internal module request not used as a DMA wakeup source                                                                                |
|                                         | 1 Internal module request used as a DMA wakeup source                                                                                    |

KL28Z Reference Manual, Rev. 4, 06/2016


## 26.3.7 LLWU Pin Flag register (LLWUx\_PF)

LLWU\_PF contains the wakeup flags indicating which wakeup source caused the MCU to exit LLS or VLLS mode. For LLS, this is the source causing the CPU interrupt flow. For VLLS, this is the source causing the MCU reset flow.

The external wakeup flags are read-only and clearing a flag is accomplished by a write of a 1 to the corresponding WUFx bit. The wakeup flag (WUFx), if set, will remain set if the associated WUPEx bit is cleared.

#### NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.



#### LLWUx\_PF field descriptions

| Field       | Description                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>WUF31 | Wakeup Flag For LLWU_P31                                                                                                                |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF31. |
|             | 0 LLWU_P31 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P31 input was a wakeup source                                                                                                    |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map/register definition

# LLWUx\_PF field descriptions (continued)

| Field       | Description                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 30          | Wakeup Flag For LLWU_P30                                                                                                                |
| WUF30       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF30. |
|             | 0 LLWU_P30 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P30 input was a wakeup source                                                                                                    |
| 29          | Wakeup Flag For LLWU_P29                                                                                                                |
| WUF29       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF29. |
|             | 0 LLWU_P29 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P29 input was a wakeup source                                                                                                    |
| 28          | Wakeup Flag For LLWU_P28                                                                                                                |
| WUF28       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF28. |
|             | 0 LLWU_P28 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P28 input was a wakeup source                                                                                                    |
| 27          | Wakeup Flag For LLWU_P27                                                                                                                |
| WUF27       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF27. |
|             | 0 LLWU_P27 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P27 input was a wakeup source                                                                                                    |
| 26          | Wakeup Flag For LLWU_P26                                                                                                                |
| WUF26       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF26. |
|             | 0 LLWU_P26 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P26 input was a wakeup source                                                                                                    |
| 25<br>WUF25 | Wakeup Flag For LLWU_P25                                                                                                                |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF25. |
|             | 0 LLWU_P25 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P25 input was a wakeup source                                                                                                    |
| 24<br>WUF24 | Wakeup Flag For LLWU_P24                                                                                                                |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF24. |
|             | 0 LLWU_P24 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P24 input was a wakeup source                                                                                                    |
| 23<br>WUF23 | Wakeup Flag For LLWU_P23                                                                                                                |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# LLWUx\_PF field descriptions (continued)

| Field       | Description                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF23.                           |
|             | LLWU_P23 input was not a wakeup source     LLWU_P23 input was a wakeup source                                                                                     |
|             | ·                                                                                                                                                                 |
| 22<br>WUF22 | Wakeup Flag For LLWU_P22  Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF22. |
|             | 0 LLWU_P22 input was not a wakeup source                                                                                                                          |
|             | 1 LLWU_P22 input was a wakeup source                                                                                                                              |
| 21<br>WUF21 | Wakeup Flag For LLWU_P21                                                                                                                                          |
| WOLL        | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF21.                           |
|             | 0 LLWU_P21 input was not a wakeup source                                                                                                                          |
|             | 1 LLWU_P21 input was a wakeup source                                                                                                                              |
| 20<br>WUF20 | Wakeup Flag For LLWU_P20                                                                                                                                          |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF20.                           |
|             | LLWU_P20 input was not a wakeup source     LLWU_P20 input was a wakeup source                                                                                     |
| 19<br>WUF19 | Wakeup Flag For LLWU_P19                                                                                                                                          |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF19.                           |
|             | 0 LLWU_P19 input was not a wakeup source                                                                                                                          |
|             | 1 LLWU_P19 input was a wakeup source                                                                                                                              |
| 18<br>WUF18 | Wakeup Flag For LLWU_P18                                                                                                                                          |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF18.                           |
|             | 0 LLWU_P18 input was not a wakeup source                                                                                                                          |
|             | 1 LLWU_P18 input was a wakeup source                                                                                                                              |
| 17<br>WUF17 | Wakeup Flag For LLWU_P17                                                                                                                                          |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF17.                           |
|             | 0 LLWU_P17 input was not a wakeup source                                                                                                                          |
|             | 1 LLWU_P17 input was a wakeup source                                                                                                                              |
| 16<br>WUF16 | Wakeup Flag For LLWU_P16                                                                                                                                          |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF16.                           |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Memory map/register definition

# LLWUx\_PF field descriptions (continued)

| Field       | Description                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|             | 0 LLWU_P16 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P16 input was a wakeup source                                                                                                    |
| 15<br>WUF15 | Wakeup Flag For LLWU_P15                                                                                                                |
| World       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF15. |
|             | LLWU_P15 input was not a wakeup source     LLWU_P15 input was a wakeup source                                                           |
| 14          | Wakeup Flag For LLWU_P14                                                                                                                |
| WUF14       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF14. |
|             | 0 LLWU_P14 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P14 input was a wakeup source                                                                                                    |
| 13          | Wakeup Flag For LLWU_P13                                                                                                                |
| WUF13       |                                                                                                                                         |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF13. |
|             | 0 LLWU_P13 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P13 input was a wakeup source                                                                                                    |
| 12<br>WUF12 | Wakeup Flag For LLWU_P12                                                                                                                |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF12. |
|             | 0 LLWU_P12 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P12 input was a wakeup source                                                                                                    |
| 11          | Wakeup Flag For LLWU_P11                                                                                                                |
| WUF11       | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF11. |
|             | 0 LLWU_P11 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P11 input was a wakeup source                                                                                                    |
| 10<br>WUF10 | Wakeup Flag For LLWU_P10                                                                                                                |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF10. |
|             | 0 LLWU_P10 input was not a wakeup source                                                                                                |
|             | 1 LLWU_P10 input was a wakeup source                                                                                                    |
| 9<br>WUF9   | Wakeup Flag For LLWU_P9                                                                                                                 |
|             | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF9.  |
|             | 0 LLWU_P9 input was not a wakeup source                                                                                                 |
|             | 1 LLWU_P9 input was a wakeup source                                                                                                     |
|             |                                                                                                                                         |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# LLWUx\_PF field descriptions (continued)

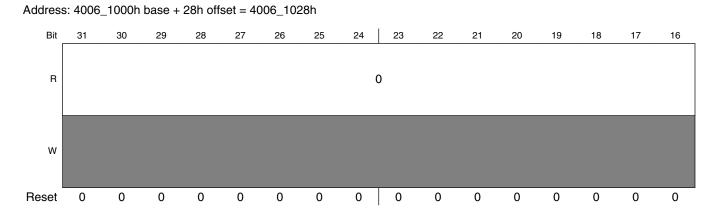
| Field     | Description                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| 8         | Wakeup Flag For LLWU_P8                                                                                                                |
| WUF8      | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF8. |
|           | 0 LLWU_P8 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P8 input was a wakeup source                                                                                                    |
| 7         | Wakeup Flag For LLWU_P7                                                                                                                |
| WUF7      | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF7. |
|           | 0 LLWU_P7 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P7 input was a wakeup source                                                                                                    |
| 6         | Wakeup Flag For LLWU_P6                                                                                                                |
| WUF6      | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF6. |
|           | 0 LLWU_P6 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P6 input was a wakeup source                                                                                                    |
| 5         | Wakeup Flag For LLWU_P5                                                                                                                |
| WUF5      | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF5. |
|           | 0 LLWU_P5 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P5 input was a wakeup source                                                                                                    |
| 4         | Wakeup Flag For LLWU_P4                                                                                                                |
| WUF4      | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF4. |
|           | 0 LLWU_P4 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P4 input was a wakeup source                                                                                                    |
| 3<br>WUF3 | Wakeup Flag For LLWU_P3                                                                                                                |
|           | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF3. |
|           | 0 LLWU_P3 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P3 input was a wakeup source                                                                                                    |
| 2<br>WUF2 | Wakeup Flag For LLWU_P2                                                                                                                |
|           | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF2. |
|           | 0 LLWU_P2 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P2 input was a wakeup source                                                                                                    |
| 1<br>WUF1 | Wakeup Flag For LLWU_P1                                                                                                                |

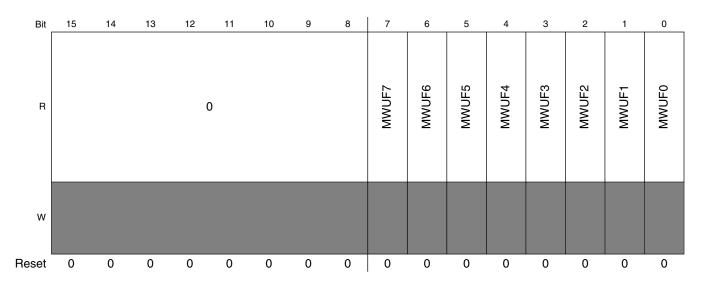
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### LLWUx\_PF field descriptions (continued)

| Field     | Description                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
|           | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF1. |
|           | 0 LLWU_P1 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P1 input was a wakeup source                                                                                                    |
| 0<br>WUF0 | Wakeup Flag For LLWU_P0                                                                                                                |
|           | Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag write a one to WUF0. |
|           | 0 LLWU_P0 input was not a wakeup source                                                                                                |
|           | 1 LLWU_P0 input was a wakeup source                                                                                                    |


## 26.3.8 LLWU Module Interrupt Flag register (LLWUx\_MF)


LLWU\_MF contains the wakeup flags indicating which internal module interrupt caused the MCU to exit LLS or VLLS mode. For LLS, this is the source causing the CPU interrupt flow. For VLLS, this is the source causing the MCU reset flow.

For internal peripherals that are capable of running in a low-leakage power mode, such as a real time clock module or CMP module, the flag from the associated peripheral is accessible as the MWUFx bit. The flag will need to be cleared in the peripheral instead of writing a 1 to the MWUFx bit.

#### **NOTE**

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.





## LLWUx\_MF field descriptions

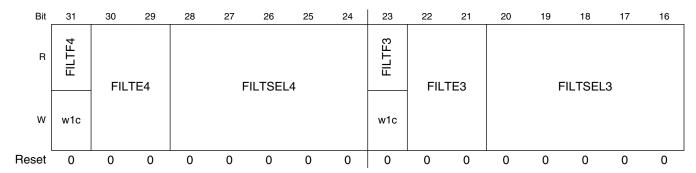
| Field            | Description                                                                                                                                                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                       |
| 7<br>MWUF7       | Wakeup flag For module 7                                                                                                                                                   |
|                  | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|                  | 0 Module 7 input was not a wakeup source                                                                                                                                   |
|                  | 1 Module 7 input was a wakeup source                                                                                                                                       |
| 6<br>MWUF6       | Wakeup flag For module 6                                                                                                                                                   |
|                  | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|                  | 0 Module 6 input was not a wakeup source                                                                                                                                   |
|                  | 1 Module 6 input was a wakeup source                                                                                                                                       |
| 5<br>MWUF5       | Wakeup flag For module 5                                                                                                                                                   |
|                  | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|                  | 0 Module 5 input was not a wakeup source                                                                                                                                   |
|                  | 1 Module 5 input was a wakeup source                                                                                                                                       |
| 4<br>MWUF4       | Wakeup flag For module 4                                                                                                                                                   |
|                  | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|                  | 0 Module 4 input was not a wakeup source                                                                                                                                   |
|                  | 1 Module 4 input was a wakeup source                                                                                                                                       |
| 3<br>MWUF3       | Wakeup flag For module 3                                                                                                                                                   |
|                  | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |

Table continues on the next page...

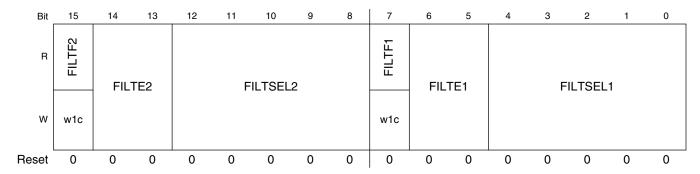
KL28Z Reference Manual, Rev. 4, 06/2016

#### LLWUx\_MF field descriptions (continued)

| Field      | Description                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0 Module 3 input was not a wakeup source                                                                                                                                   |
|            | 1 Module 3 input was a wakeup source                                                                                                                                       |
| 2<br>MWUF2 | Wakeup flag For module 2                                                                                                                                                   |
|            | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|            | 0 Module 2 input was not a wakeup source                                                                                                                                   |
|            | 1 Module 2 input was a wakeup source                                                                                                                                       |
| 1<br>MWUF1 | Wakeup flag For module 1                                                                                                                                                   |
|            | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|            | 0 Module 1 input was not a wakeup source                                                                                                                                   |
|            | 1 Module 1 input was a wakeup source                                                                                                                                       |
| 0<br>MWUF0 | Wakeup flag For module 0                                                                                                                                                   |
|            | Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism. |
|            | 0 Module 0 input was not a wakeup source                                                                                                                                   |
|            | 1 Module 0 input was a wakeup source                                                                                                                                       |


# 26.3.9 LLWU Pin Filter register (LLWUx\_FILT)

LLWU\_FILT is a control and status register that is used to enable/disable the digital filter features for an external pin.


#### **NOTE**

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4006\_1000h base + 30h offset = 4006\_1030h



KL28Z Reference Manual, Rev. 4, 06/2016



## LLWUx\_FILT field descriptions

| Field             | Description                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>FILTF4      | Filter 4 Flag  Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage                                      |
|                   | power mode. To clear the flag write a one to FILTF.                                                                                                             |
|                   | 0 Pin Filter 1 was not a wakeup source                                                                                                                          |
|                   | 1 Pin Filter 1 was a wakeup source                                                                                                                              |
| 30–29<br>FILTE4   | Filter 4 Enable                                                                                                                                                 |
|                   | Controls the digital filter 4 options for the external pin detect.                                                                                              |
|                   | 00 Filter disabled                                                                                                                                              |
|                   | 01 Filter posedge detect enabled                                                                                                                                |
|                   | 10 Filter negedge detect enabled                                                                                                                                |
|                   | 11 Filter any edge detect enabled                                                                                                                               |
| 28–24<br>FILTSEL4 | Filter 4 Pin Select                                                                                                                                             |
|                   | Selects 1 of the wakeup pins to be muxed into filter 4.                                                                                                         |
|                   | 00000 Select LLWU_P0 for filter                                                                                                                                 |
|                   | 11111 Select LLWU_P31 for filter                                                                                                                                |
| 23<br>FILTF3      | Filter 3 Flag                                                                                                                                                   |
|                   | Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF. |
|                   | 0 Pin Filter 1 was not a wakeup source                                                                                                                          |
|                   | 1 Pin Filter 1 was a wakeup source                                                                                                                              |
| 22–21<br>FILTE3   | Filter 3 Enable                                                                                                                                                 |
|                   | Controls the digital filter 3 options for the external pin detect.                                                                                              |
|                   | 00 Filter disabled                                                                                                                                              |
|                   | 01 Filter posedge detect enabled                                                                                                                                |
|                   | 10 Filter negedge detect enabled                                                                                                                                |
|                   | 11 Filter any edge detect enabled                                                                                                                               |
| 20–16<br>FILTSEL3 | Filter 3 Pin Select                                                                                                                                             |
|                   | Selects 1 of the wakeup pins to be muxed into filter 3.                                                                                                         |

Table continues on the next page...

### Memory map/register definition

# LLWUx\_FILT field descriptions (continued)

| Field            | Description                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 00000 Select LLWU_P0 for filter                                                                                                                                 |
|                  |                                                                                                                                                                 |
| 4.5              | 11111 Select LLWU_P31 for filter                                                                                                                                |
| 15<br>FILTF2     | Filter 2 Flag                                                                                                                                                   |
|                  | Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF. |
|                  | 0 Pin Filter 1 was not a wakeup source                                                                                                                          |
|                  | 1 Pin Filter 1 was a wakeup source                                                                                                                              |
| 14–13<br>FILTE2  | Filter 2 Enable                                                                                                                                                 |
| FILTE2           | Controls the digital filter 2 options for the external pin detect.                                                                                              |
|                  | 00 Filter disabled                                                                                                                                              |
|                  | 01 Filter posedge detect enabled                                                                                                                                |
|                  | 10 Filter negedge detect enabled                                                                                                                                |
|                  | 11 Filter any edge detect enabled                                                                                                                               |
| 12–8<br>FILTSEL2 | Filter 2 Pin Select                                                                                                                                             |
|                  | Selects 1 of the wakeup pins to be muxed into filter 2.                                                                                                         |
|                  | 00000 Select LLWU_P0 for filter                                                                                                                                 |
|                  | 11111 Select LLWU_P31 for filter                                                                                                                                |
| 7                | Filter 1 Flag                                                                                                                                                   |
| FILTF1           | Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF. |
|                  | 0 Pin Filter 1 was not a wakeup source                                                                                                                          |
|                  | 1 Pin Filter 1 was a wakeup source                                                                                                                              |
| 6–5<br>FILTE1    | Filter 1 Enable                                                                                                                                                 |
|                  | Controls the digital filter 1 options for the external pin detect.                                                                                              |
|                  | 00 Filter disabled                                                                                                                                              |
|                  | 01 Filter posedge detect enabled                                                                                                                                |
|                  | <ul><li>10 Filter negedge detect enabled</li><li>11 Filter any edge detect enabled</li></ul>                                                                    |
| FILTSEL1         | Filter 1 Pin Select                                                                                                                                             |
|                  | Selects 1 of the wakeup pins to be muxed into filter 1.                                                                                                         |
|                  | 00000 Select LLWU_P0 for filter                                                                                                                                 |
|                  | <br>11111 Select LLWU_P31 for filter                                                                                                                            |

KL28Z Reference Manual, Rev. 4, 06/2016

### 26.4 Functional description

Thie low-leakage wakeup unit (LLWU) module allows internal peripherals and external input pins as a source of wakeup from low-leakage modes.

It is operational only in LLS and VLLSx modes.

The LLWU module contains pin enables for each external pin and internal module. For each external pin, the user can disable or select the edge type for the wakeup with the following options:

- Falling-edge
- Rising-edge
- Either-edge

When an external pin is enabled as a wakeup source, the pin must be configured as an input pin.

The LLWU implements optional 3-cycle glitch filters, based on the LPO clock. A detected external pin is required to remain asserted until the enabled glitch filter times out. Additional latency of up to 2 cycles is due to synchronization, which results in a total of up to 5 cycles of delay before the detect circuit alerts the system to the wakeup or reset event when the filter function is enabled. Four wakeup detect filters are available for selected external pins. Glitch filtering is not provided on the internal modules.

For internal module interrupts, the WUMEx bit enables the associated module interrupt as a wakeup source.

For internal module DMA requests, the WUDEx bit enables the associated module DMA request as a temporary wakeup source.

### 26.4.1 LLS mode

Wakeup events triggered from either an external pin input or an internal module interrupt, result in a CPU interrupt flow to begin user code execution.

Wakeup events triggered from an internal module DMA request, result in a temporary wake-up from LLS with CPU remaining clock gated to allow the DMA request to be serviced. After the DMA request to the LLWU negates, the system will re-enter LLS mode.

#### **26.4.2 VLLS modes**

For any wakeup from VLLS, recovery is always via a reset flow and RCM\_SRS[WAKEUP] is set indicating the low-leakage mode was active. State retention data is lost and I/O will be restored after PMC\_REGSC[ACKISO] has been written.

A VLLS exit event due to RESET pin assertion causes an exit via a system reset. State retention data is lost and the I/O states immediately return to their reset state. The RCM\_SRS[WAKEUP] and RCM\_SRS[PIN] bits are set and the system executes a reset flow before CPU operation begins with a reset vector fetch.

#### 26.4.3 Initialization

For an enabled peripheral wakeup input, the peripheral flag must be cleared by software before entering LLS or VLLSx mode to avoid an immediate exit from the mode.

Flags associated with external input pins, filtered and unfiltered, must also be cleared by software prior to entry to LLS or VLLSx mode.

After enabling an external pin filter or changing the source pin, wait at least five LPO clock cycles before entering LLS or VLLSx mode to allow the filter to initialize.

#### **NOTE**

After recovering from a VLLS mode, user must restore chip configuration before clearing PMC\_REGSC[ACKISO]. In particular, pin configuration for enabled LLWU wake-up pins must be restored to avoid any LLWU flag from being falsely set when PMC\_REGSC[ACKISO] is cleared.

The signal selected as a wake-up source pin must be a digital pin, as selected in the pin mux control.

# **Chapter 27 Low Power Inter-Integrated Circuit (LPI2C)**

#### 27.1 Introduction

#### **27.1.1** Overview

The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a master and/or a slave. The LPI2C can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses. The LPI2C implements logic support for standard-mode, fast-mode plus and ultra-fast modes of operation. The LPI2C module also complies with the System Management Bus (SMBus) Specification, version 2.

### 27.1.2 Features

The LPI2C supports the following features of the I2C specification:

- Standard, Fast, Fast+ and Ultra Fast modes are supported.
- HS-mode supported in slave mode.
- HS-mode supported for master mode, provided SCL pin implements current source pull-up (device specific).
- Multi-master support including synchronization and arbitration.
- Clock stretching.
- General call, 7-bit and 10-bit addressing.
- Software reset, START byte and Device ID require software support.

The LPI2C master supports the following features:

- Command/transmit FIFO of 4 words.
- Receive FIFO of 4 words.

#### Introduction

- Command FIFO will wait for idle I2C bus before initiating transfer
- Command FIFO can initiate (repeated) START and STOP conditions and one or more master-receiver transfers.
- STOP condition can be generated from command FIFO or automatically when the transmit FIFO is empty.
- Host request input can be used to control the start time of an I2C bus transfer.
- Flexible receive data match can generate interrupt on data match and/or discard unwanted data.
- Flag and optional interrupt to signal Repeated START condition, STOP condition, loss of arbitration, unexpected NACK and command word errors.
- Supports configurable bus idle timeout and pin stuck low timeout.

#### The LPI2C slave supports the following features:

- Separate I2C slave registers to minimize software overhead due to master/slave switching.
- Support for 7-bit or 10-bit addressing, address range, SMBus alert and general call address.
- Transmit data register supporting interrupt or DMA requests.
- Receive data register supporting interrupt or DMA requests.
- Software controllable ACK or NACK, with optional clock stretching on ACK/ NACK bit.
- Configurable clock stretching to avoid transmit FIFO underrun and receive FIFO overrun.
- Flag and optional interrupt at end of packet, STOP condition or bit error detection.

KL28Z Reference Manual, Rev. 4, 06/2016

# 27.1.3 Block Diagram

### LPI2C block diagram

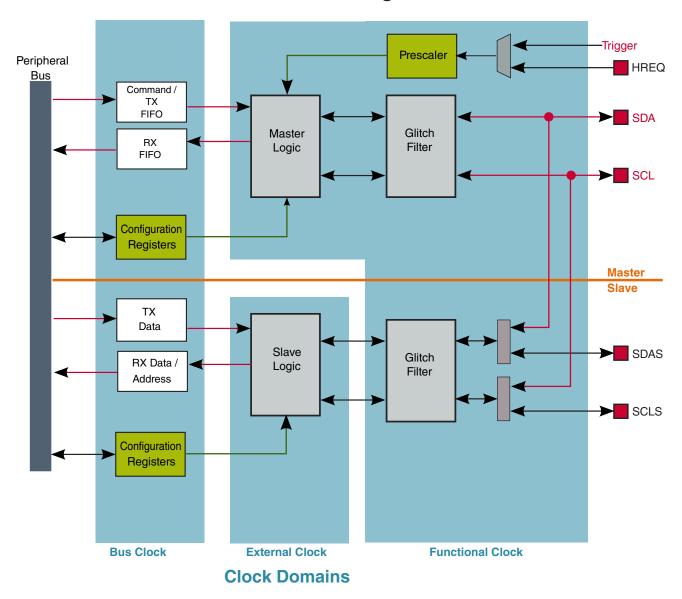



Figure 27-1. LPI2C block diagram

# 27.1.4 Modes of operation

The LPI2C module supports the chip modes described in the following table.

NXP Semiconductors

689

Table 27-1. Chip modes supported by the LPI2C module

| Chip mode        | LPI2C Operation                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run              | Normal operation                                                                                                                                                                    |
| Stop/Wait        | Can continue operating provided the Doze Enable bit (MCR[DOZEN]) is set and the LPI2C is using an external or internal clock source which remains operating during stop/wait modes. |
| Low Leakage Stop | The Doze Enable (MCR[DOZEN]) bit is ignored and the LPI2C will wait for the current transfer to complete any pending operation before acknowledging low leakage mode entry.         |
| Debug            | Can continue operating provided the Debug Enable bit (MCR[DBGE]) is set.                                                                                                            |

# 27.1.5 Signal Descriptions

| Signal | Description                                                                                                                                                    | I/O |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SCL    | LPI2C clock line. In 4-wire mode, this is the SCL input pin.                                                                                                   | I/O |
| SDA    | LPI2C data line. In 4-wire mode, this is the SDA input pin.                                                                                                    | I/O |
| HREQ   | Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle.                                                                       |     |
| SCLS   | Secondary I2C clock line. In 4-wire mode, this is the SCL output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SCL pin. | I/O |
| SDAS   | Secondary I2C data line. In 4-wire mode, this is the SDA output pin. If LPI2C master/slave are configured to use separate pins, this the LPI2C slave SDA pin.  | I/O |

# 27.2 Memory Map and Registers

### **LPI2C** memory map

| Absolute<br>address<br>(hex) | Register name                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------|--------------------|--------|-------------|------------------|
| 0                            | Version ID Register (LPI2C_VERID)   | 32                 | R      | See section | 27.2.1/692       |
| 4                            | Parameter Register (LPI2C_PARAM)    | 32                 | R      | See section | 27.2.2/692       |
| 10                           | Master Control Register (LPI2C_MCR) | 32                 | R/W    | 0000_0000h  | 27.2.3/693       |

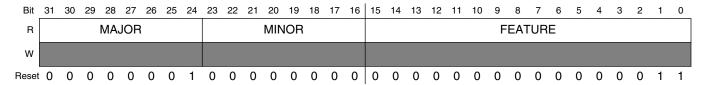
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# LPI2C memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                       | Width (in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-----------------------------------------------------|-----------------|--------|-------------|------------------|
| 14                           | Master Status Register (LPI2C_MSR)                  | 32              | R/W    | 0000_0001h  | 27.2.4/694       |
| 18                           | Master Interrupt Enable Register (LPI2C_MIER)       | 32              | R/W    | 0000_0000h  | 27.2.5/696       |
| 1C                           | Master DMA Enable Register (LPI2C_MDER)             | 32              | R/W    | 0000_0000h  | 27.2.6/698       |
| 20                           | Master Configuration Register 0 (LPI2C_MCFGR0)      | 32              | R/W    | 0000_0000h  | 27.2.7/699       |
| 24                           | Master Configuration Register 1 (LPI2C_MCFGR1)      | 32              | R/W    | 0000_0000h  | 27.2.8/700       |
| 28                           | Master Configuration Register 2 (LPI2C_MCFGR2)      | 32              | R/W    | 0000_0000h  | 27.2.9/702       |
| 2C                           | Master Configuration Register 3 (LPI2C_MCFGR3)      | 32              | R/W    | 0000_0000h  | 27.2.10/<br>703  |
| 40                           | Master Data Match Register (LPI2C_MDMR)             | 32              | R/W    | 0000_0000h  | 27.2.11/<br>703  |
| 48                           | Master Clock Configuration Register 0 (LPI2C_MCCR0) | 32              | R/W    | 0000_0000h  | 27.2.12/<br>704  |
| 50                           | Master Clock Configuration Register 1 (LPI2C_MCCR1) | 32              | R/W    | 0000_0000h  | 27.2.13/<br>705  |
| 58                           | Master FIFO Control Register (LPI2C_MFCR)           | 32              | R/W    | 0000_0000h  | 27.2.14/<br>706  |
| 5C                           | Master FIFO Status Register (LPI2C_MFSR)            | 32              | R      | 0000_0000h  | 27.2.15/<br>706  |
| 60                           | Master Transmit Data Register (LPI2C_MTDR)          | 32              | W      | 0000_0000h  | 27.2.16/<br>707  |
| 70                           | Master Receive Data Register (LPI2C_MRDR)           | 32              | R      | 0000_4000h  | 27.2.17/<br>708  |
| 110                          | Slave Control Register (LPI2C_SCR)                  | 32              | R/W    | 0000_0000h  | 27.2.18/<br>709  |
| 114                          | Slave Status Register (LPI2C_SSR)                   | 32              | R/W    | 0000_0000h  | 27.2.19/<br>710  |
| 118                          | Slave Interrupt Enable Register (LPI2C_SIER)        | 32              | R/W    | 0000_0000h  | 27.2.20/<br>713  |
| 11C                          | Slave DMA Enable Register (LPI2C_SDER)              | 32              | R/W    | 0000_0000h  | 27.2.21/<br>714  |
| 124                          | Slave Configuration Register 1 (LPI2C_SCFGR1)       | 32              | R/W    | 0000_0000h  | 27.2.22/<br>715  |
| 128                          | Slave Configuration Register 2 (LPI2C_SCFGR2)       | 32              | R/W    | 0000_0000h  | 27.2.23/<br>717  |
| 140                          | Slave Address Match Register (LPI2C_SAMR)           | 32              | R/W    | 0000_0000h  | 27.2.24/<br>718  |
| 150                          | Slave Address Status Register (LPI2C_SASR)          | 32              | R      | 0000_4000h  | 27.2.25/<br>719  |
| 154                          | Slave Transmit ACK Register (LPI2C_STAR)            | 32              | R/W    | 0000_0000h  | 27.2.26/<br>720  |
| 160                          | Slave Transmit Data Register (LPI2C_STDR)           | 32              | W      | 0000_0000h  | 27.2.27/<br>720  |

Table continues on the next page...


### LPI2C memory map (continued)

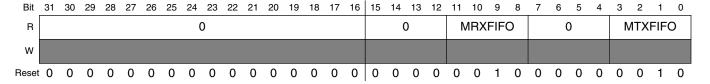
| Absolute<br>address<br>(hex) | Register name                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------|--------------------|--------|-------------|------------------|
| 170                          | Slave Receive Data Register (LPI2C_SRDR) | 32                 | R      | 0000_4000h  | 27.2.28/<br>721  |

# 27.2.1 Version ID Register (LPI2C\_VERID)

•

Address: 0h base + 0h offset = 0h

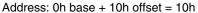


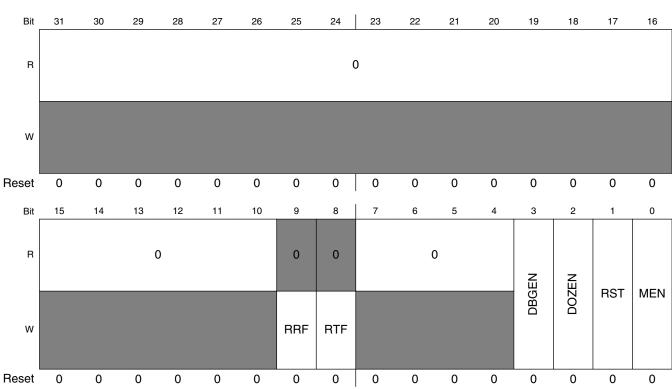

#### LPI2C\_VERID field descriptions

| Field          | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
| 31–24<br>MAJOR | Major Version Number                                                         |
|                | This read only field returns the major version number for the specification. |
| 23–16<br>MINOR | Minor Version Number                                                         |
|                | This read only field returns the minor version number for the specification. |
| FEATURE        | Feature Specification Number                                                 |
|                | This read only field returns the feature set number.                         |
|                | 0x0002 Master only with standard feature set.                                |
|                | 0x0003 Master and slave with standard feature set.                           |

# 27.2.2 Parameter Register (LPI2C\_PARAM)

•


Address: 0h base + 4h offset = 4h




### LPI2C\_PARAM field descriptions

| Field             | Description                                                                            |
|-------------------|----------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.   |
| 15–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.   |
| 11–8<br>MRXFIFO   | Master Receive FIFO Size  The number of words in the master receive FIFO is 2^MRXFIFO. |
| 7–4<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.   |
| MTXFIFO           | Master Transmit FIFO Size                                                              |
|                   | The number of words in the master transmit FIFO is 2^MTXFIFO.                          |

# 27.2.3 Master Control Register (LPI2C\_MCR)

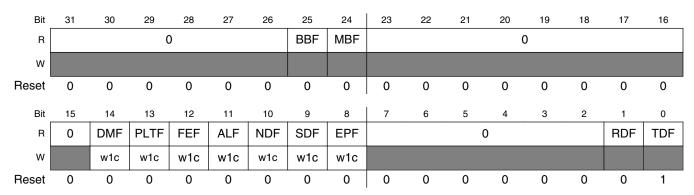




### LPI2C\_MCR field descriptions

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–10    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

### LPI2C\_MCR field descriptions (continued)

| Field      | Description                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------|
| 9<br>RRF   | Reset Receive FIFO                                                                                                        |
|            | 0 No effect.                                                                                                              |
|            | 1 Receive FIFO is reset.                                                                                                  |
| 8<br>RTF   | Reset Transmit FIFO                                                                                                       |
|            | 0 No effect.                                                                                                              |
|            | 1 Transmit FIFO is reset.                                                                                                 |
| 7–4        | This field is reserved.                                                                                                   |
| Reserved   | This read-only field is reserved and always has the value 0.                                                              |
| 3<br>DBGEN | Debug Enable                                                                                                              |
|            | 0 Master is disabled in debug mode.                                                                                       |
|            | 1 Master is enabled in debug mode.                                                                                        |
| 2<br>DOZEN | Doze mode enable                                                                                                          |
|            | Enables or disables Doze mode for the master.                                                                             |
|            | 0 Master is enabled in Doze mode.                                                                                         |
|            | 1 Master is disabled in Doze mode.                                                                                        |
| 1<br>RST   | Software Reset                                                                                                            |
|            | Reset all internal master logic and registers, except the Master Control Register. Remains set until cleared by software. |
|            | 0 Master logic is not reset.                                                                                              |
|            | 1 Master logic is reset.                                                                                                  |
| 0<br>MEN   | Master Enable                                                                                                             |
|            | 0 Master logic is disabled.                                                                                               |
|            | 1 Master logic is enabled.                                                                                                |

# 27.2.4 Master Status Register (LPI2C\_MSR)

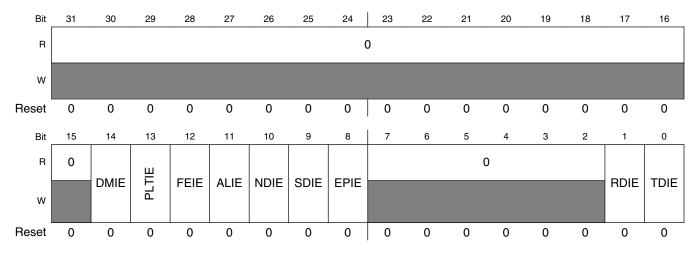
Address: 0h base + 14h offset = 14h



# LPI2C\_MSR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                  |
| 25<br>BBF         | Bus Busy Flag  0 I2C Bus is idle. 1 I2C Bus is busy.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24<br>MBF         | Master Busy Flag  0 I2C Master is idle. 1 I2C Master is busy.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23–15<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                  |
| 14<br>DMF         | Data Match Flag  Indicates that the received data has matched the MATCH0 and/or MATCH1 fields as configured by MATCFG. Received data that is discarded due to CMD field does not cause this flag to set.  O Have not received matching data.  1 Have received matching data.                                                                                                                                                                                          |
| 13<br>PLTF        | Pin Low Timeout Flag  Will set when the SCL and/or SDA input is low for more than PINLOW cycles, even when the LPI2C master is idle. Software is responsible for resolving the pin low condition. This flag cannot be cleared for as long as the pin low timeout continues and must be cleared before the LPI2C can initiate a START condition.  O Pin low timeout has not occurred or is disabled.                                                                   |
| 12<br>FEF         | 1 Pin low timeout has occurred.  FIFO Error Flag  Detects an attempt to send or receive data without first generating a (repeated) START condition. This can occur if the transmit FIFO underflows when the AUTOSTOP bit is set. When this flag is set, the LPI2C master will send a STOP condition (if busy) and will not initiate a new START condition until this flag has been cleared.  0 No error.  1 Master sending or receiving data without START condition. |
| 11<br>ALF         | Arbitration Lost Flag  This flag will set if the LPI2C master transmits a logic one and detects a logic zero on the I2C bus, or if it detects a START or STOP condition while it is transmitting data. When this flag sets, the LPI2C master will release the bus (go idle) and will not initiate a new START condition until this flag has been cleared.  0 Master has not lost arbitration.  1 Master has lost arbitration.                                         |
| 10<br>NDF         | NACK Detect Flag  This flag will set if the LPI2C master detects a NACK when transmitting an address or data. If a NACK is expected for a given address (as configured by the command word) then the flag will set if a NACK is not generated. When set, the master will transmit a STOP condition and will not initiate a new START condition until this flag has been cleared.                                                                                      |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

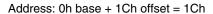
### LPI2C\_MSR field descriptions (continued)

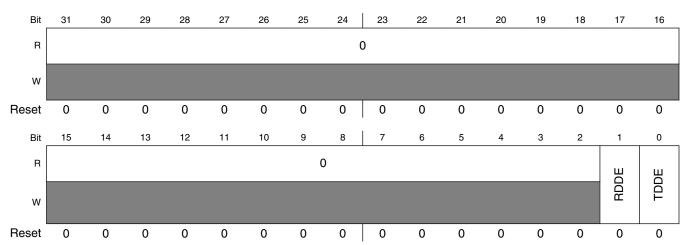
| Field    | Description                                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0 Unexpected NACK not detected.                                                                                                                                    |
|          | 1 Unexpected NACK was detected.                                                                                                                                    |
| 9<br>SDF | STOP Detect Flag                                                                                                                                                   |
|          | This flag will set when the LPI2C master generates a STOP condition.                                                                                               |
|          | 0 Master has not generated a STOP condition.                                                                                                                       |
|          | 1 Master has generated a STOP condition.                                                                                                                           |
| 8<br>EPF | End Packet Flag                                                                                                                                                    |
|          | This flag will set when the LPI2C master generates either a repeated START or a STOP condition. It does not set when the master first generates a START condition. |
|          | 0 Master has not generated a STOP or Repeated START condition.                                                                                                     |
|          | 1 Master has generated a STOP or Repeated START condition.                                                                                                         |
| 7–2      | This field is reserved.                                                                                                                                            |
| Reserved | This read-only field is reserved and always has the value 0.                                                                                                       |
| 1        | Receive Data Flag                                                                                                                                                  |
| RDF      | The Receive Data Flag is set whenever the number of words in the receive FIFO is greater than RXWATER.                                                             |
|          | 0 Receive Data is not ready.                                                                                                                                       |
|          | 1 Receive data is ready.                                                                                                                                           |
| 0<br>TDF | Transmit Data Flag                                                                                                                                                 |
|          | The Transmit Data Flag is set whenever the number of words in the transmit FIFO is equal or less than TXWATER.                                                     |
|          | 0 Transmit data not requested.                                                                                                                                     |
|          | 1 Transmit data is requested.                                                                                                                                      |

# 27.2.5 Master Interrupt Enable Register (LPI2C\_MIER)

Address: 0h base + 18h offset = 18h



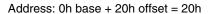

KL28Z Reference Manual, Rev. 4, 06/2016

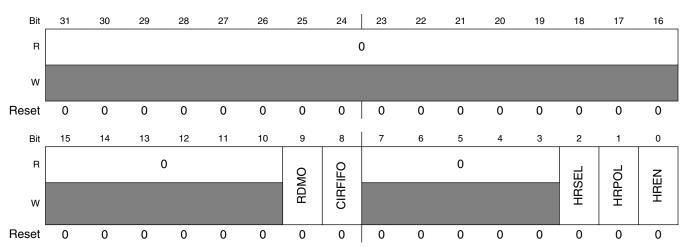

### Chapter 27 Low Power Inter-Integrated Circuit (LPI2C)

# LPI2C\_MIER field descriptions

| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| 31–15           | This field is reserved.                                                              |
| Reserved        | This read-only field is reserved and always has the value 0.                         |
| 14<br>DMIE      | Data Match Interrupt Enable                                                          |
| DIVIL           | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 13<br>PLTIE     | Pin Low Timeout Interrupt Enable                                                     |
| 1 2112          | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 12<br>FEIE      | FIFO Error Interrupt Enable                                                          |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 11<br>ALIE      | Arbitration Lost Interrupt Enable                                                    |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 10<br>NDIE      | NACK Detect Interrupt Enable                                                         |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 9<br>SDIE       | STOP Detect Interrupt Enable                                                         |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 8<br>EPIE       | End Packet Interrupt Enable                                                          |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled.                                                                 |
| 7–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 1               |                                                                                      |
| RDIE            | Receive Data Interrupt Enable                                                        |
|                 | Interrupt disabled.  Interrupt enabled.                                              |
|                 |                                                                                      |
| 0<br>TDIE       | Transmit Data Interrupt Enable                                                       |
|                 | 0 Interrupt disabled.                                                                |
|                 | 1 Interrupt enabled                                                                  |

# 27.2.6 Master DMA Enable Register (LPI2C\_MDER)




### LPI2C\_MDER field descriptions

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 1<br>RDDE        | Receive Data DMA Enable                                                              |
|                  | 0 DMA request disabled.                                                              |
|                  | 1 DMA request enabled.                                                               |
| 0<br>TDDE        | Transmit Data DMA Enable                                                             |
|                  | 0 DMA request disabled.                                                              |
|                  | 1 DMA request enabled                                                                |

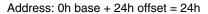
# 27.2.7 Master Configuration Register 0 (LPI2C\_MCFGR0)

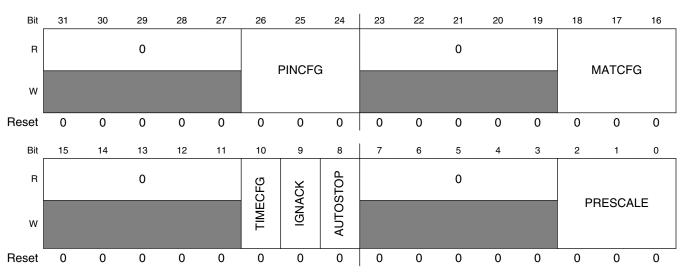




### LPI2C\_MCFGR0 field descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–10           | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9<br>RDMO       | Receive Data Match Only                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | When enabled, all received data that does not cause DMF to set is discarded. Once DMF is set, the RDMO configuration is ignored. When disabling RDMO, clear RDMO before clearing DMF to ensure no receive data is lost.                                                                                                                                                                                                                                                            |
|                 | 0 Received data is stored in the receive FIFO as normal.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 1 Received data is discarded unless the RMF is set.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8<br>CIRFIFO    | Circular FIFO Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | When enabled, the transmit FIFO read pointer is saved to a temporary register. The transmit FIFO will be emptied as normal, but once the LPI2C master is idle and the transmit FIFO is empty, then the read pointer value will be restored from the temporary register. This will cause the contents of the transmit FIFO to be cycled through repeatedly. If AUTOSTOP is set, a STOP condition will be sent whenever the transmit FIFO is empty and the read pointer is restored. |
|                 | 0 Circular FIFO is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 1 Circular FIFO is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>HRSEL      | Host Request Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Selects the source of the host request input.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 0 Host request input is pin LPI2C_HREQ.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | 1 Host request input is input trigger.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1<br>HRPOL      | Host Request Polarity                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


Table continues on the next page...


### LPI2C\_MCFGR0 field descriptions (continued)

| Field     | Description                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Configures the polarity of the host request input pin.                                                                                                                               |
|           | 0 Active low.                                                                                                                                                                        |
|           | 1 Active high.                                                                                                                                                                       |
| 0<br>HREN | Host Request Enable                                                                                                                                                                  |
|           | When enabled, the LPI2C master will only initiate a START condition if the host request input is asserted and the bus is idle. A repeated START is not affected by the host request. |
|           | 0 Host request input is disabled.                                                                                                                                                    |
|           | 1 Host request input is enabled.                                                                                                                                                     |

### 27.2.8 Master Configuration Register 1 (LPI2C\_MCFGR1)

The MCFGR1 should only be written when the I2C Master is disabled.





### LPI2C\_MCFGR1 field descriptions

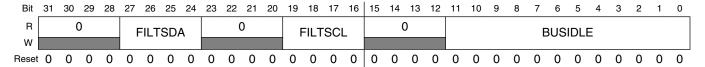
| Field             | Description                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                            |
| 26–24<br>PINCFG   | Pin Configuration  Configures the pin mode.                                                                                                                                                                                                     |
|                   | <ul> <li>LPI2C configured for 2-pin open drain mode.</li> <li>LPI2C configured for 2-pin output only mode (ultra-fast mode).</li> <li>LPI2C configured for 2-pin push-pull mode.</li> <li>LPI2C configured for 4-pin push-pull mode.</li> </ul> |

Table continues on the next page...

# LPI2C\_MCFGR1 field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 100 LPI2C configured for 2-pin open drain mode with separate LPI2C slave.  101 LPI2C configured for 2-pin output only mode (ultra-fast mode) with separate LPI2C slave.  110 LPI2C configured for 2-pin push-pull mode with separate LPI2C slave.  111 LPI2C configured for 4-pin push-pull mode (inverted outputs).                                                                                                                                                     |
| 23–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                     |
| 18–16<br>MATCFG   | Match Configuration  Configures the condition that will cause the DMF to set.                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 000 Match disabled. 001 Reserved. 010 Match enabled (1st data word equals MATCH0 OR MATCH1). 011 Match enabled (any data word equals MATCH0 OR MATCH1). 100 Match enabled (1st data word equals MATCH0 AND 2nd data word equals MATCH1). 101 Match enabled (any data word equals MATCH0 AND next data word equals MATCH1). 110 Match enabled (1st data word AND MATCH1 equals MATCH0 AND MATCH1). 111 Match enabled (any data word AND MATCH1 equals MATCH0 AND MATCH1). |
| 15–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                     |
| 10<br>TIMECFG     | Timeout Configuration  O Pin Low Timeout Flag will set if SCL is low for longer than the configured timeout.  Pin Low Timeout Flag will set if either SCL or SDA is low for longer than the configured timeout.                                                                                                                                                                                                                                                          |
| 9<br>IGNACK       | When set, the received NACK field is ignored and assumed to be ACK. This bit is required to be set in Ultra-Fast Mode.                                                                                                                                                                                                                                                                                                                                                   |
|                   | <ul> <li>LPI2C Master will receive ACK and NACK normally.</li> <li>LPI2C Master will treat a received NACK as if it was an ACK.</li> </ul>                                                                                                                                                                                                                                                                                                                               |
| 8<br>AUTOSTOP     | Automatic STOP Generation  When enabled, a STOP condition is generated whenever the LPI2C master is busy and the transmit FIFO is empty. The STOP condition can also be generated using a transmit FIFO command.  No effect.  STOP condition is automatically generated whenever the transmit FIFO is empty and LPI2C master is                                                                                                                                          |
| 7–3               | busy.  This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                             |
| PRESCALE          | Prescaler  Configures the clock prescaler used for all LPI2C master logic, except the digital glitch filters.  000 Divide by 1.                                                                                                                                                                                                                                                                                                                                          |
|                   | <ul> <li>001 Divide by 2.</li> <li>010 Divide by 4.</li> <li>011 Divide by 8.</li> <li>100 Divide by 16.</li> <li>101 Divide by 32.</li> </ul>                                                                                                                                                                                                                                                                                                                           |

Table continues on the next page...


### LPI2C\_MCFGR1 field descriptions (continued)

| Field | Description       |
|-------|-------------------|
|       | 10 Divide by 64.  |
|       | 11 Divide by 128. |

# 27.2.9 Master Configuration Register 2 (LPI2C\_MCFGR2)

The MCFGR2 should only be written when the I2C Master is disabled.

Address: 0h base + 28h offset = 28h



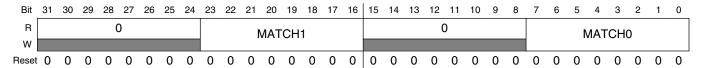
#### LPI2C\_MCFGR2 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                          |
| 27–24<br>FILTSDA  | Glitch Filter SDA  Configures the I2C master digital glitch filters for SDA input, a configuration of 0 will disable the glitch filter. Glitches equal to or less than FILTSDA cycles long will be filtered out and ignored. The latency through the glitch filter is equal to FILTSDA cycles and must be configured less than the minimum SCL low or high period.                                                                                                            |
|                   | The glitch filter cycle count is not affected by the PRESCALE configuration and is automatically bypassed in High Speed mode.                                                                                                                                                                                                                                                                                                                                                 |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                          |
| 19–16<br>FILTSCL  | Glitch Filter SCL  Configures the I2C master digital glitch filters for SCL input, a configuration of 0 will disable the glitch filter. Glitches equal to or less than FILTSCL cycles long will be filtered out and ignored. The latency through the glitch filter is equal to FILTSCL cycles and must be configured less than the minimum SCL low or high period.  The glitch filter cycle count is not affected by the PRESCALE configuration and is automatically bypassed |
| 15–12             | in High Speed mode.  This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BUSIDLE           | Bus Idle Timeout  Configures the bus idle timeout period in clock cycles. If both SCL and SDA are high for longer than BUSIDLE cycles, then the I2C bus is assumed to be idle and the master can generate a START condition. When set to zero, this feature is disabled.                                                                                                                                                                                                      |

### 27.2.10 Master Configuration Register 3 (LPI2C\_MCFGR3)

The MCFGR3 should only be written when the I2C Master is disabled.

Address: 0h base + 2Ch offset = 2Ch



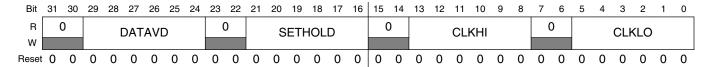

#### LPI2C\_MCFGR3 field descriptions

| Field             | Description                                                                                                                                                                                        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                               |
| 19–8<br>PINLOW    | Pin Low Timeout  Configures the pin low timeout flag in clock cycles. If SCL and/or SDA is low for longer than (PINLOW * 256) cycles then PLTF is set. When set to zero, this feature is disabled. |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                               |

### 27.2.11 Master Data Match Register (LPI2C\_MDMR)

Address: 0h base + 40h offset = 40h



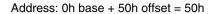

#### LPI2C\_MDMR field descriptions

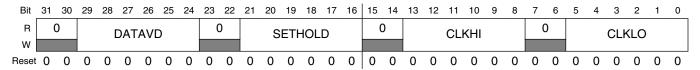
| Field             | Description                                                                           |
|-------------------|---------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.  |
| 23–16<br>MATCH1   | Match 1 Value  Compared against the received data when receive data match is enabled. |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.  |
| MATCH0            | Match 0 Value  Compared against the received data when receive data match is enabled. |

# 27.2.12 Master Clock Configuration Register 0 (LPI2C\_MCCR0)

The MCCR0 cannot be changed when the I2C master is enabled and is used for standard, fast, fast-mode plus and ultra-fast transfers.

Address: 0h base + 48h offset = 48h



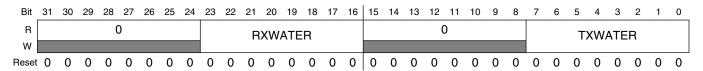


#### LPI2C\_MCCR0 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| 29–24<br>DATAVD   | Data Valid Delay  Minimum number of cycles (minus one) that is used as the data hold time for SDA. Must be configured less than the minimum SCL low period.                                                                                                                                                                                                                        |
| 23–22<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| 21-16<br>SETHOLD  | Minimum number of cycles (minus one) that is used by the master as the setup and hold time for a (repeated) START condition and setup time for a STOP condition. The setup time is extended by the time it takes to detect a rising edge on the external SCL pin. Ignoring any additional board delay due to external loading, this is equal to (2 + FILTSCL) / 2^PRESCALE cycles. |
| 15–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| 13–8<br>CLKHI     | Clock High Period  Minimum number of cycles (minus one) that the SCL clock is driven high by the master. The SCL high time is extended by the time it takes to detect a rising edge on the external SCL pin. Ignoring any additional board delay due to external loading, this is equal to (2 + FILTSCL) / 2^PRESCALE cycles.                                                      |
| 7–6<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| CLKLO             | Clock Low Period  Minimum number of cycles (minus one) that the SCL clock is driven low by the master. This value is also used for the minimum bus free time between a STOP and a START condition.                                                                                                                                                                                 |

### 27.2.13 Master Clock Configuration Register 1 (LPI2C\_MCCR1)

The MCCR1 cannot be changed when the I2C master is enabled and is used for high speed mode transfers. The separate clock configuration for high speed mode allows arbitration to take place in Fast mode (with timing configured by MCCR0), before switching to high speed mode (with timing configured by MCCR1).



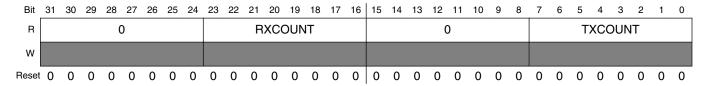



#### LPI2C\_MCCR1 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                 |
| 29–24<br>DATAVD   | Data Valid Delay  Minimum number of cycles (minus one) that is used as the data hold time for SDA. Must be configured less than the minimum SCL low period.                                                                                                                                                                                                                                          |
| 23–22<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                 |
| 21–16<br>SETHOLD  | Setup Hold Delay  Minimum number of cycles (minus one) that is used by the master as the setup and hold time for a (repeated) START condition and setup time for a STOP condition. The setup time is extended by the time it takes to detect a rising edge on the external SCL pin. Ignoring any additional board delay due to external loading, this is equal to (2 + FILTSCL) / 2^PRESCALE cycles. |
| 15–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                 |
| 13–8<br>CLKHI     | Clock High Period  Minimum number of cycles (minus one) that the SCL clock is driven high by the master. The SCL high time is extended by the time it takes to detect a rising edge on the external SCL pin. Ignoring any additional board delay due to external loading, this is equal to (2 + FILTSCL) / 2^PRESCALE cycles.                                                                        |
| 7–6<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                 |
| CLKLO             | Clock Low Period  Minimum number of cycles (minus one) that the SCL clock is driven low by the master. This value is also used for the minimum bus free time between a STOP and a START condition.                                                                                                                                                                                                   |

### 27.2.14 Master FIFO Control Register (LPI2C\_MFCR)

Address: 0h base + 58h offset = 58h



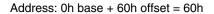

#### LPI2C\_MFCR field descriptions

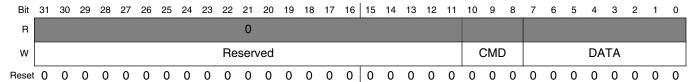
| Field             | Description                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| 23–16<br>RXWATER  | Receive FIFO Watermark  The Receive Data Flag is set whenever the number of words in the receive FIFO is greater than RXWATER. Writing a value equal or greater than the FIFO size will be truncated.          |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| TXWATER           | Transmit FIFO Watermark  The Transmit Data Flag is set whenever the number of words in the transmit FIFO is equal or less than TXWATER. Writing a value equal or greater than the FIFO size will be truncated. |

### 27.2.15 Master FIFO Status Register (LPI2C\_MFSR)

Address: 0h base + 5Ch offset = 5Ch



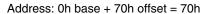

#### LPI2C\_MFSR field descriptions

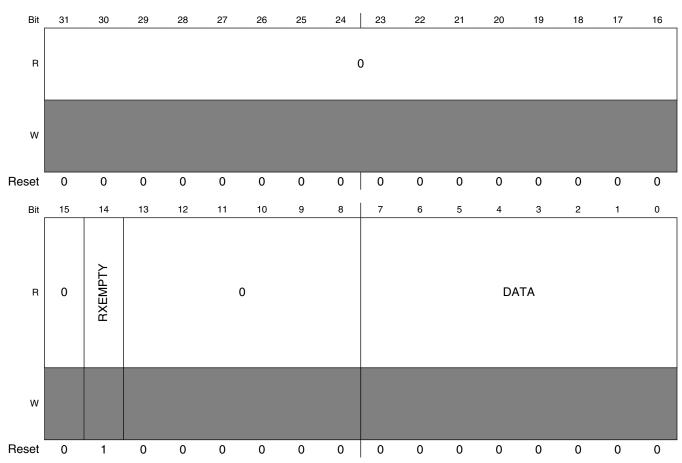

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 23–16<br>RXCOUNT  | Receive FIFO Count  Returns the number of words in the receive FIFO.                 |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| TXCOUNT           | Transmit FIFO Count  Returns the number of words in the transmit FIFO.               |

KL28Z Reference Manual, Rev. 4, 06/2016

### 27.2.16 Master Transmit Data Register (LPI2C\_MTDR)

An 8-bit write to the CMD field will store the data in the Command FIFO, but does not increment the FIFO write pointer. An 8-bit write to the DATA field will zero extend the CMD field unless the CMD field has been written separately since the last FIFO write, it also increments the FIFO write pointer. A 16-bit or 32-bit will write both the CMD and DATA fields and increment the FIFO.



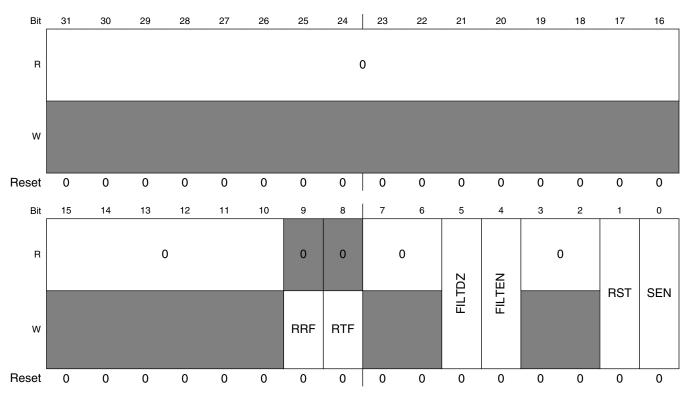




#### LPI2C\_MTDR field descriptions

| Field             | Description                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 31–11<br>Reserved | This field is reserved.                                                                                                             |
| 10–8<br>CMD       | Command Data                                                                                                                        |
|                   | 000 Transmit DATA[7:0].                                                                                                             |
|                   | 001 Receive (DATA[7:0] + 1) bytes.                                                                                                  |
|                   | 010 Generate STOP condition.                                                                                                        |
|                   | 011 Receive and discard (DATA[7:0] + 1) bytes.                                                                                      |
|                   | 100 Generate (repeated) START and transmit address in DATA[7:0].                                                                    |
|                   | 101 Generate (repeated) START and transmit address in DATA[7:0]. This transfer expects a NACK to be returned.                       |
|                   | 110 Generate (repeated) START and transmit address in DATA[7:0] using high speed mode.                                              |
|                   | 111 Generate (repeated) START and transmit address in DATA[7:0] using high speed mode. This transfer expects a NACK to be returned. |
| DATA              | Transmit Data                                                                                                                       |
|                   | Performing an 8-bit write to DATA will zero extend the CMD field.                                                                   |

# 27.2.17 Master Receive Data Register (LPI2C\_MRDR)






### LPI2C\_MRDR field descriptions

| Field    | Description                                                                                                                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–15    | This field is reserved.                                                                                                                                                                                         |
| Reserved | This read-only field is reserved and always has the value 0.                                                                                                                                                    |
| 14       | RX Empty                                                                                                                                                                                                        |
| RXEMPTY  |                                                                                                                                                                                                                 |
|          | 0 Receive FIFO is not empty.                                                                                                                                                                                    |
|          | 1 Receive FIFO is empty.                                                                                                                                                                                        |
| 13–8     | This field is reserved.                                                                                                                                                                                         |
| Reserved | This read-only field is reserved and always has the value 0.                                                                                                                                                    |
| DATA     | Receive Data                                                                                                                                                                                                    |
|          | Destination with a sistent was the data was included by the 100 was to the the same the same discounted Destina                                                                                                 |
|          | Reading this register returns the data received by the I2C master that has not been discarded. Receive data can be discarded due to the CMD field or the master can be configured to discard non-matching data. |

# 27.2.18 Slave Control Register (LPI2C\_SCR)

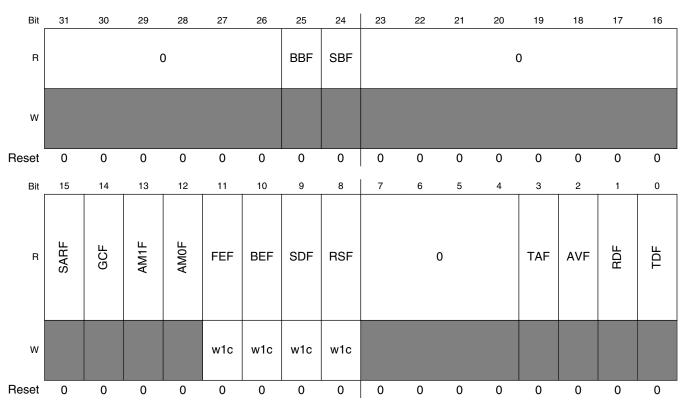
Address: 0h base + 110h offset = 110h



### LPI2C\_SCR field descriptions

| Field    | Description                                                       |
|----------|-------------------------------------------------------------------|
| 31–10    | This field is reserved.                                           |
| Reserved | This read-only field is reserved and always has the value 0.      |
| 9        | Reset Receive FIFO                                                |
| RRF      | 0 No effect.                                                      |
|          | 1.000.000.000.000.000.000.000.000.000.0                           |
|          | Receive Data Register is now empty.                               |
| 8        | Reset Transmit FIFO                                               |
| RTF      | 0 No effect.                                                      |
|          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                           |
|          | 1 Transmit Data Register is now empty.                            |
| 7–6      | This field is reserved.                                           |
| Reserved | This read-only field is reserved and always has the value 0.      |
| 5        | Filter Doze Enable                                                |
| FILTDZ   |                                                                   |
|          | O Filter remains enabled in Doze mode.                            |
|          | 1 Filter is disabled in Doze mode.                                |
| 4        | Filter Enable                                                     |
| FILTEN   | O Disable district files and extract delay assets for elevery     |
|          | O Disable digital filter and output delay counter for slave mode. |
|          | 1 Enable digital filter and output delay counter for slave mode.  |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

### LPI2C\_SCR field descriptions (continued)

| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| 3–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 1<br>RST        | Software Reset  O Slave logic is not reset.  Slave logic is reset.                   |
| 0<br>SEN        | Slave Enable  O Slave mode is disabled.  1 Slave mode is enabled.                    |

# 27.2.19 Slave Status Register (LPI2C\_SSR)

Address: 0h base + 114h offset = 114h



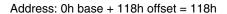
### LPI2C\_SSR field descriptions

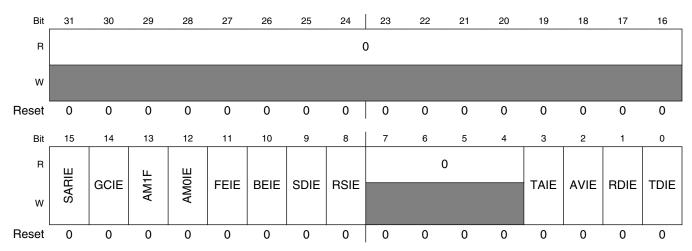
| Field     | Description                                                                          |
|-----------|--------------------------------------------------------------------------------------|
|           | This field is reserved. This read-only field is reserved and always has the value 0. |
| 25<br>BBF | Bus Busy Flag                                                                        |

Table continues on the next page...

### LPI2C\_SSR field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0 I2C Bus is idle.                                                                                                                                                                                                               |
|            | 1 I2C Bus is busy.                                                                                                                                                                                                               |
| 24<br>SBF  | Slave Busy Flag                                                                                                                                                                                                                  |
|            | <ul><li>0 I2C Slave is idle.</li><li>1 I2C Slave is busy.</li></ul>                                                                                                                                                              |
| 23–16      | This field is reserved.                                                                                                                                                                                                          |
| Reserved   | This read-only field is reserved and always has the value 0.                                                                                                                                                                     |
| 15<br>SARF | SMBus Alert Response Flag                                                                                                                                                                                                        |
|            | This flag is cleared by reading the Address Status Register. This flag cannot generate an asynchronous wakeup.                                                                                                                   |
|            | 0 SMBus Alert Response disabled or not detected.                                                                                                                                                                                 |
|            | 1 SMBus Alert Response enabled and detected.                                                                                                                                                                                     |
| 14<br>GCF  | General Call Flag                                                                                                                                                                                                                |
|            | This flag is cleared by reading the Address Status Register. This flag cannot generate an asynchronous wakeup.                                                                                                                   |
|            | <ul><li>0 Slave has not detected the General Call Address or General Call Address disabled.</li><li>1 Slave has detected the General Call Address.</li></ul>                                                                     |
| 13<br>AM1F | Address Match 1 Flag                                                                                                                                                                                                             |
|            | Indicates that the received address has matched the ADDR1 field or ADDR0 to ADDR1 range as configured by ADDRCFG. This flag is cleared by reading the Address Status Register. This flag cannot generate an asynchronous wakeup. |
|            | <ul> <li>Have not received ADDR1 or ADDR0/ADDR1 range matching address.</li> <li>Have received ADDR1 or ADDR0/ADDR1 range matching address.</li> </ul>                                                                           |
| 12<br>AM0F | Address Match 0 Flag                                                                                                                                                                                                             |
| AIVIOF     | Indicates that the received address has matched the ADDR0 field as configured by ADDRCFG. This flag is cleared by reading the Address Status Register. This flag cannot generate an asynchronous wakeup.                         |
|            | 0 Have not received ADDR0 matching address.                                                                                                                                                                                      |
|            | 1 Have received ADDR0 matching address.                                                                                                                                                                                          |
| 11<br>FEF  | FIFO Error Flag                                                                                                                                                                                                                  |
|            | FIFO error flag can only set when clock stretching is disabled.                                                                                                                                                                  |
|            | FIFO underflow or overflow not detected.  I FIFO underflow or overflow detected.                                                                                                                                                 |
| 10         | Bit Error Flag                                                                                                                                                                                                                   |
| BEF        | This flag will set if the LPI2C slave transmits a logic one and detects a logic zero on the I2C bus. The                                                                                                                         |
|            | slave will ignore the rest of the transfer until the next (repeated) START condition.                                                                                                                                            |
| 1          | 0 Slave has not detected a bit error.                                                                                                                                                                                            |
|            | 1 Slave has detected a bit error.                                                                                                                                                                                                |


Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016

# LPI2C\_SSR field descriptions (continued)

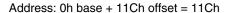
| Field           | Description                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>SDF        | STOP Detect Flag  This flag will set when the LPI2C slave detects a STOP condition, provided the LPI2C slave matched the last address byte.                                                                                                                                    |
|                 | <ul><li>0 Slave has not detected a STOP condition.</li><li>1 Slave has detected a STOP condition.</li></ul>                                                                                                                                                                    |
| 8<br>RSF        | Repeated Start Flag  This flag will set when the LPI2C slave detects a repeated START condition, provided the LPI2C slave matched the last address byte. It does not set when the slave first detects a START condition.  O Slave has not detected a Repeated START condition. |
|                 | 1 Slave has detected a Repeated START condition.                                                                                                                                                                                                                               |
| 7–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                           |
| 3<br>TAF        | Transmit ACK Flag  This flag is cleared by writing the transmit ACK register.                                                                                                                                                                                                  |
|                 | <ul><li>Transmit ACK/NACK is not required.</li><li>Transmit ACK/NACK is required.</li></ul>                                                                                                                                                                                    |
| 2<br>AVF        | Address Valid Flag  This flag is cleared by reading the address status register. When RXCFG is set, this flag is also cleared by reading the receive data register.  O Address Status Register is not valid.                                                                   |
|                 | 1 Address Status Register is valid.                                                                                                                                                                                                                                            |
| 1<br>RDF        | Receive Data Flag  This flag is cleared by reading the receive data register. When RXCFG is set, this flag is not cleared when reading the receive data register and AVF is set.  0 Receive Data is not ready. 1 Receive data is ready.                                        |
| 0               | Transmit Data Flag                                                                                                                                                                                                                                                             |
| TDF             | This flag is cleared by writing the transmit data register. When TXCFG is clear, it is also cleared if a NACK or Repeated START or STOP condition is detected.                                                                                                                 |
|                 | <ul><li>0 Transmit data not requested.</li><li>1 Transmit data is requested.</li></ul>                                                                                                                                                                                         |

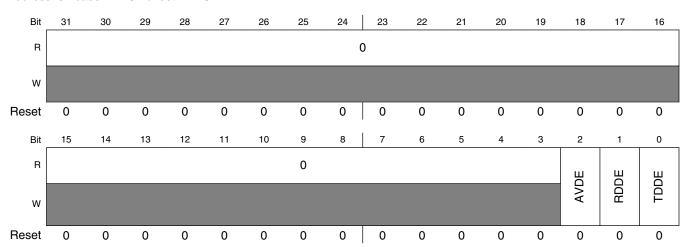
# 27.2.20 Slave Interrupt Enable Register (LPI2C\_SIER)





### LPI2C\_SIER field descriptions


| Field       | Description                                                  |
|-------------|--------------------------------------------------------------|
| 31–16       | This field is reserved.                                      |
| Reserved    | This read-only field is reserved and always has the value 0. |
| 15<br>SARIE | SMBus Alert Response Interrupt Enable                        |
|             | 0 Interrupt disabled.                                        |
|             | 1 Interrupt enabled.                                         |
| 14<br>GCIE  | General Call Interrupt Enable                                |
|             | 0 Interrupt disabled.                                        |
|             | 1 Interrupt enabled.                                         |
| 13<br>AM1F  | Address Match 1 Interrupt Enable                             |
|             | 0 Interrupt disabled.                                        |
|             | 1 Interrupt enabled.                                         |
| 12<br>AM0IE | Address Match 0 Interrupt Enable                             |
|             | 0 Interrupt enabled.                                         |
|             | 1 Interrupt disabled.                                        |
| 11<br>FEIE  | FIFO Error Interrupt Enable                                  |
|             | 0 Interrupt disabled.                                        |
|             | 1 Interrupt enabled.                                         |
| 10<br>BEIE  | Bit Error Interrupt Enable                                   |
|             | 0 Interrupt disabled.                                        |
|             | 1 Interrupt enabled.                                         |
| 9<br>SDIE   | STOP Detect Interrupt Enable                                 |

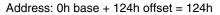

Table continues on the next page...

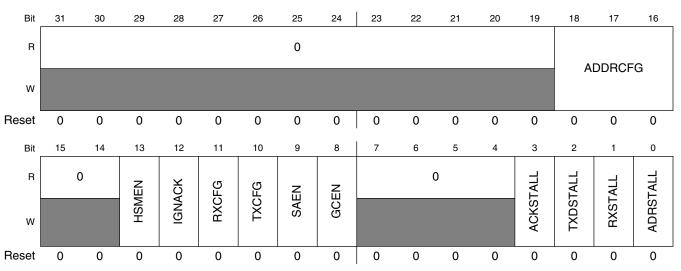
### LPI2C\_SIER field descriptions (continued)

| Field     | Description                                                  |
|-----------|--------------------------------------------------------------|
|           | 0 Interrupt disabled.                                        |
|           | 1 Interrupt enabled.                                         |
| 8<br>RSIE | Repeated Start Interrupt Enable                              |
|           | 0 Interrupt disabled.                                        |
|           | 1 Interrupt enabled.                                         |
| 7–4       | This field is reserved.                                      |
| Reserved  | This read-only field is reserved and always has the value 0. |
| 3         | Transmit ACK Interrupt Enable                                |
| TAIE      | 0 Interrupt disabled.                                        |
|           | 1 Interrupt disabled.                                        |
| 0         | · · · · · · · · · · · · · · · · · · ·                        |
| 2<br>AVIE | Address Valid Interrupt Enable                               |
| 7.012     | 0 Interrupt disabled.                                        |
|           | 1 Interrupt enabled.                                         |
| 1<br>RDIE | Receive Data Interrupt Enable                                |
|           | 0 Interrupt disabled.                                        |
|           | 1 Interrupt enabled.                                         |
| 0<br>TDIE | Transmit Data Interrupt Enable                               |
|           | 0 Interrupt disabled.                                        |
|           | 1 Interrupt enabled                                          |

# 27.2.21 Slave DMA Enable Register (LPI2C\_SDER)







### LPI2C\_SDER field descriptions

| Field    | Description                                                                                          |
|----------|------------------------------------------------------------------------------------------------------|
| 31–3     | This field is reserved.                                                                              |
| Reserved | This read-only field is reserved and always has the value 0.                                         |
| 2        | Address Valid DMA Enable                                                                             |
| AVDE     |                                                                                                      |
|          | The Address Valid DMA request is shared with the Receive Data DMA request. If both are enabled, then |
|          | set RXCFG to allow the DMA to read the address from the Receive Data Register.                       |
|          | O DMA nament disable d                                                                               |
|          | 0 DMA request disabled.                                                                              |
|          | 1 DMA request enabled.                                                                               |
| 1        | Receive Data DMA Enable                                                                              |
| RDDE     |                                                                                                      |
|          | 0 DMA request disabled.                                                                              |
|          | 1 DMA request enabled.                                                                               |
| 0        | Transmit Data DMA Enable                                                                             |
| TDDE     |                                                                                                      |
|          | 0 DMA request disabled.                                                                              |
|          | 1 DMA request enabled                                                                                |

# 27.2.22 Slave Configuration Register 1 (LPI2C\_SCFGR1)

The SCFGR1 should only be written when the I2C Slave is disabled.





#### LPI2C\_SCFGR1 field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 18–16<br>ADDRCFG  | Address Configuration                                                                |

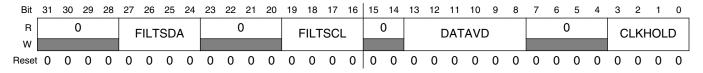
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# LPI2C\_SCFGR1 field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Configures the condition that will cause an address to match.                                                                                                                                                                                                                                                                                                                     |
|                   | 000 Address match 0 (7-bit).                                                                                                                                                                                                                                                                                                                                                      |
|                   | 001 Address match 0 (10-bit).                                                                                                                                                                                                                                                                                                                                                     |
|                   | 010 Address match 0 (7-bit) or Address match 1 (7-bit).                                                                                                                                                                                                                                                                                                                           |
|                   | 011 Address match 0 (10-bit) or Address match 1 (10-bit).                                                                                                                                                                                                                                                                                                                         |
|                   | 100 Address match 0 (7-bit) or Address match 1 (10-bit).                                                                                                                                                                                                                                                                                                                          |
|                   | 101 Address match 0 (10-bit) or Address match 1 (7-bit).                                                                                                                                                                                                                                                                                                                          |
|                   | 110 From Address match 0 (7-bit) to Address match 1 (7-bit).                                                                                                                                                                                                                                                                                                                      |
|                   | 111 From Address match 0 (10-bit) to Address match 1 (10-bit).                                                                                                                                                                                                                                                                                                                    |
| 15–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                              |
| 13<br>HSMEN       | High Speed Mode Enable                                                                                                                                                                                                                                                                                                                                                            |
|                   | Enables detection of the High-speed Mode master code of slave address 0000_1XX, but does not cause an address match on this code. When set and any Hs-mode master code is detected, the FILTEN and ACKSTALL bits are ignored until the next STOP condition is detected.                                                                                                           |
|                   | 0 Disables detection of Hs-mode master code.                                                                                                                                                                                                                                                                                                                                      |
|                   | 1 Enables detection of Hs-mode master code.                                                                                                                                                                                                                                                                                                                                       |
| 12<br>IGNACK      | Ignore NACK                                                                                                                                                                                                                                                                                                                                                                       |
|                   | When set, the LPI2C slave will continue transfers after a NACK is detected. This bit is required to be set in Ultra-Fast Mode.                                                                                                                                                                                                                                                    |
|                   | 0 Slave will end transfer when NACK detected.                                                                                                                                                                                                                                                                                                                                     |
|                   | 1 Slave will not end transfer when NACK detected.                                                                                                                                                                                                                                                                                                                                 |
| 11<br>RXCFG       | Receive Data Configuration                                                                                                                                                                                                                                                                                                                                                        |
|                   | 0 Reading the receive data register will return receive data and clear the receive data flag.                                                                                                                                                                                                                                                                                     |
|                   | 1 Reading the receive data register when the address valid flag is set will return the address status register and clear the address valid flag. Reading the receive data register when the address valid flag is clear will return receive data and clear the receive data flag.                                                                                                 |
| 10                | Transmit Flag Configuration                                                                                                                                                                                                                                                                                                                                                       |
| TXCFG             | The transmit data flag will always assert before a NACK is detected at the end of a slave-transmit transfer. This can cause an extra word to be written to the transmit data FIFO.                                                                                                                                                                                                |
|                   | When TXCFG=0, the transmit data register is automatically emptied when a slave-transmit transfer is detected. This cause the transmit data flag to assert whenever a slave-transmit transfer is detected and negate at the end of the slave-transmit transfer.                                                                                                                    |
|                   | When TXCFG=1, the transmit data flag will assert whenver the transit data register is empty and negate when the transmit data register is full. This allows the transmit data register to be filled before a slave-transmit transfer is detected, but can cause the transmit data register to be written before a NACK is detected on the last byte of a slave transmit transfer. |
|                   | O Transmit Data Flag will only assert during a slave-transmit transfer when the transmit data register is empty.                                                                                                                                                                                                                                                                  |
|                   | 1 Transmit Data Flag will assert whenever the transmit data register is empty.                                                                                                                                                                                                                                                                                                    |
| 9<br>SAEN         | SMBus Alert Enable                                                                                                                                                                                                                                                                                                                                                                |

Table continues on the next page...

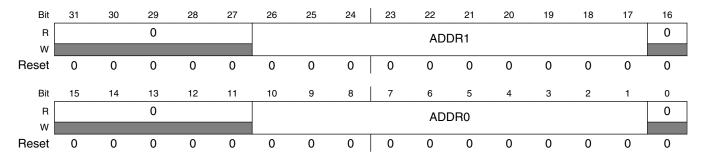

### LPI2C\_SCFGR1 field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 0 Disables match on SMBus Alert.                                                                                                                                                                                                                                                                                       |
|               | 1 Enables match on SMBus Alert.                                                                                                                                                                                                                                                                                        |
| 8<br>GCEN     | General Call Enable                                                                                                                                                                                                                                                                                                    |
|               | 0 General Call address is disabled.                                                                                                                                                                                                                                                                                    |
|               | 1 General call address is enabled.                                                                                                                                                                                                                                                                                     |
| 7–4           | This field is reserved.                                                                                                                                                                                                                                                                                                |
| Reserved      | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                           |
| 3             | ACK SCL Stall                                                                                                                                                                                                                                                                                                          |
| ACKSTALL      | Enables SCL clock stretching during slave-transmit address byte(s) and slave-receiver address and data byte(s) to allow software to write the Transmit ACK Register before the ACK or NACK is transmitted. Clock stretching occurs when transmitting the 9th bit and is therefore not compatible with high speed mode. |
|               | When ACKSTALL is enabled, there is no need to set either RXSTALL or ADRSTALL                                                                                                                                                                                                                                           |
|               | 0 Clock stretching disabled.                                                                                                                                                                                                                                                                                           |
|               | 1 Clock stretching enabled.                                                                                                                                                                                                                                                                                            |
| 2<br>TXDSTALL | TX Data SCL Stall                                                                                                                                                                                                                                                                                                      |
|               | Enables SCL clock stretching when the transmit data flag is set during a slave-transmit transfer. Clock stretching occurs following the 9th bit and is therefore compatible with high speed mode.                                                                                                                      |
|               | 0 Clock stretching disabled.                                                                                                                                                                                                                                                                                           |
|               | 1 Clock stretching enabled.                                                                                                                                                                                                                                                                                            |
| 1<br>RXSTALL  | RX SCL Stall                                                                                                                                                                                                                                                                                                           |
|               | Enables SCL clock stretching when receive data flag is set during a slave-receive transfer. Clock stretching occurs following the 9th bit and is therefore compatible with high speed mode.                                                                                                                            |
|               | 0 Clock stretching disabled.                                                                                                                                                                                                                                                                                           |
|               | 1 Clock stretching enabled.                                                                                                                                                                                                                                                                                            |
| 0<br>ADRSTALL | Address SCL Stall                                                                                                                                                                                                                                                                                                      |
| ,,_,,_        | Enables SCL clock stretching when the address valid flag is asserted. Clock stretching only occurs following the 9th bit and is therefore compatible with high speed mode.                                                                                                                                             |
|               | 0 Clock stretching disabled.                                                                                                                                                                                                                                                                                           |
|               | 1 Clock stretching enabled.                                                                                                                                                                                                                                                                                            |
|               | I .                                                                                                                                                                                                                                                                                                                    |

# 27.2.23 Slave Configuration Register 2 (LPI2C\_SCFGR2)

The SCFGR2 should only be written when the I2C Slave is disabled.

Address: 0h base + 128h offset = 128h



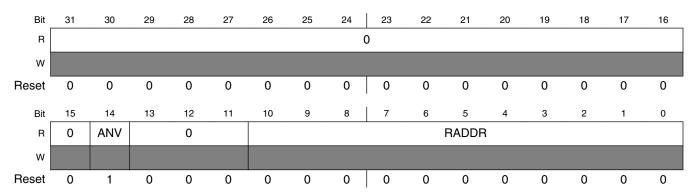

# LPI2C\_SCFGR2 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                 |
| 27–24<br>FILTSDA  | Glitch Filter SDA  Configures the I2C slave digital glitch filters for SDA input, a configuration of 0 will disable the glitch filter. Glitches equal to or less than FILTSDA cycles long will be filtered out and ignored. The latency through the glitch filter is equal to FILTSDA+3 cycles and must be configured less than the minimum SCL low or high period.  |
|                   | The glitch filter cycle count is not affected by the PRESCALE configuration, and is disabled in high speed mode.                                                                                                                                                                                                                                                     |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                 |
| 19–16<br>FILTSCL  | Glitch Filter SCL  Configures the I2C slave digital glitch filters for SCL input, a configuration of 0 will disable the glitch filter.  Glitches equal to or less than FILTSCL cycles long will be filtered out and ignored. The latency through the glitch filter is equal to FILTSCL+3 cycles and must be configured less than the minimum SCL low or high period. |
|                   | The glitch filter cycle count is not affected by the PRESCALE configuration, and is disabled in high speed mode.                                                                                                                                                                                                                                                     |
| 15–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                 |
| 13–8<br>DATAVD    | Data Valid Delay  Configures the SDA data valid delay time for the I2C slave equal to FILTSCL+DATAVD+3 cycles. This data valid delay must be configured to less than the minimum SCL low period.  The I2C slave data valid delay time is not affected by the PRESCALE configuration, and is disabled in high speed mode.                                             |
| 7–4<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                 |
| CLKHOLD           | Clock Hold Time  Configures the minimum clock hold time for the I2C slave, when clock stretching is enabled. The minimum hold time is equal to CLKHOLD+3 cycles. The I2C slave clock hold time is not affected by the PRESCALE configuration, and is disabled in high speed mode.                                                                                    |

# 27.2.24 Slave Address Match Register (LPI2C\_SAMR)

Address: 0h base + 140h offset = 140h




KL28Z Reference Manual, Rev. 4, 06/2016

### LPI2C\_SAMR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                          |
| 26–17<br>ADDR1    | Address 1 Value  Compared against the received address to detect the Slave Address. In 10-bit mode, the first address byte is compared to { 11110, ADDR1[10:9] } and the second address byte is compared to ADDR1[8:1]. In 7-bit mode, the address is compared to ADDR1[7:1]. |
| 16–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                          |
| 10–1<br>ADDR0     | Address 0 Value  Compared against the received address to detect the Slave Address. In 10-bit mode, the first address byte is compared to { 11110, ADDR0[10:9] } and the second address byte is compared to ADDR0[8:1]. In 7-bit mode, the address is compared to ADDR0[7:1]. |
| 0<br>Reserved     | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                          |

# 27.2.25 Slave Address Status Register (LPI2C\_SASR)

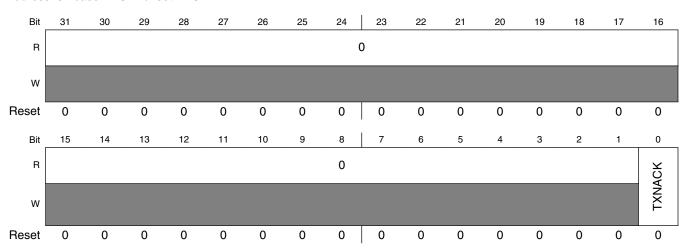
Address: 0h base + 150h offset = 150h



### LPI2C\_SASR field descriptions

| Field             | Description                                                                                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–15<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                             |
| 14<br>ANV         | Address Not Valid  RADDR is valid.  RADDR is not valid.                                                                                                                                                                          |
| 13–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                             |
| RADDR             | Received Address  RADDR updates whenever the AMF is set and the AMF is cleared by reading this register. In 7-bit mode, the address byte is store in RADDR[7:0]. In 10-bit mode, the first address byte is { 11110, RADDR[10:9], |

Table continues on the next page...

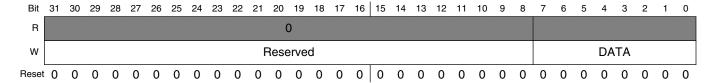

#### KL28Z Reference Manual, Rev. 4, 06/2016

### LPI2C\_SASR field descriptions (continued)

|   | Field | Description                                                                                               |
|---|-------|-----------------------------------------------------------------------------------------------------------|
| Ī |       | RADDR[0] } and the second address byte is RADDR[8:1]. The R/W bit is therefore always stored in RADDR[0]. |

# 27.2.26 Slave Transmit ACK Register (LPI2C\_STAR)

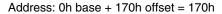
Address: 0h base + 154h offset = 154h

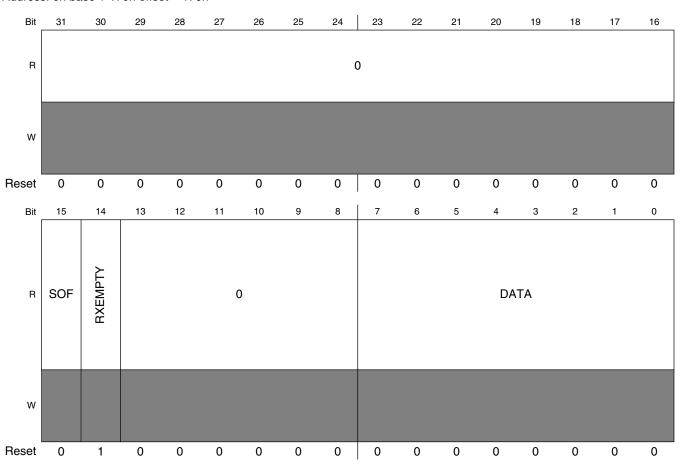



#### LPI2C\_STAR field descriptions

| Field            | Description                                                                                                                                                                                                                                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                              |
| 0<br>TXNACK      | Transmit NACK  When NACKSTALL is set, must be written once for each matching address byte and each received word.  Can also be written when LPI2C Slave is disabled or idle to configure the default ACK/NACK.  Transmit ACK for received word.  Transmit NACK for received word. |

# 27.2.27 Slave Transmit Data Register (LPI2C\_STDR)


Address: 0h base + 160h offset = 160h




## LPI2C\_STDR field descriptions

| Field            | Description                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved.                                                                           |
| DATA             | Transmit Data  Writing this register will store I2C slave transmit data in the transmit register. |

# 27.2.28 Slave Receive Data Register (LPI2C\_SRDR)





### LPI2C\_SRDR field descriptions

| Field             | Description                                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                       |
| 15<br>SOF         | Start Of Frame  O Indicates this is not the first data word since a (repeated) START or STOP condition.  Indicates this is the first data word since a (repeated) START or STOP condition. |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

### LPI2C\_SRDR field descriptions (continued)

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 14<br>RXEMPTY    | RX Empty                                                                             |
|                  | 0 The Receive Data Register is not empty.                                            |
|                  | 1 The Receive Data Register is empty.                                                |
| 13–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| DATA             | Receive Data                                                                         |
|                  | Reading this register returns the data received by the I2C slave.                    |

# 27.3 Functional description

# 27.3.1 Clocking and Resets

#### 27.3.1.1 Functional clock

The LPI2C functional clock is asynchronous to the bus clock and can remain enabled in low power modes to support I2C bus transfers by the LPI2C master. It is also used by the LPI2C slave to support digital filter and data hold time configurations. The LPI2C master divides the functional clock by a prescaler and the resulting frequency must be at least eight times faster than the I2C bus bandwidth.

### 27.3.1.2 External clock

The LPI2C slave logic is clocked directly from the external pins LPI2C\_SCL and LPI2C\_SDA (or LPI2C\_SCLS and LPI2C\_SDAS if master and slave are implemented on separate pins). This allows the LPI2C slave to remain operational, even when the LPI2C functional clock is disabled. Note that the LPI2C slave digital filter must be disabled if the LPI2C functional clock is disabled and this can effect compliance with some of the timing parameters of the I2C specification, such as the data hold time.

#### 27.3.1.3 Bus clock

The bus clock is only used for bus accesses to the control and configuration registers. The bus clock frequency must be sufficient to support the data bandwidth requirements of the LPI2C master and slave registers.

# 27.3.1.4 Chip reset

The logic and registers for the LPI2C master and slave are reset to their default state on a chip reset.

### 27.3.1.5 Software reset

The LPI2C master implements a software reset bit in its Control Register. The MCR[RST] will reset all master logic and registers to their default state, except for the MCR itself.

The LPI2C slave implements a software reset bit in its Control Register. The SCR[RST] will reset all slave logic and registers to their default state, except for the SCR itself.

#### 27.3.1.6 FIFO reset

The LPI2C master implements write-only control bits that resets the transmit FIFO (MCR[RTF] and receive FIFO (MCR[RRF]). A FIFO is empty after being reset.

The LPI2C slave implements write-only control bits that resets the transmit data register (SCR[RTF] and receive data register (SCR[RRF]). A data register is empty after being reset.

# 27.3.2 Master Mode

The LPI2C master logic operates independently from the slave logic to perform all master mode transfers on the I2C bus.

# 27.3.2.1 Transmit and Command FIFO

The transmit FIFO stores command data to initiate the various I2C operations. The following operations can be initiated through commands in the transmit FIFO:

#### **Functional description**

- START or Repeated START condition with address byte and expecting ACK or NACK
- Transmit data (this is the default for zero extended byte writes to the transmit FIFO).
- Receive 1-256 bytes of data (can also be configured to discard receive data and not store in receive FIFO).
- STOP condition (can also be configured to send STOP condition when transmit FIFO is empty).

Multiple transmit and receive commands can be inserted between the START condition and STOP condition, transmit and receive commands must not be interleaved in order to comply with the I2C specification. The receive data command and the receive data and discard command can be interleaved to ensure only the desired received data is stored in the receive FIFO (or compared with the data match logic).

The LPI2C master supports 10-bit addressing through a (repeated) START condition, followed by a transmit byte with the second address byte, followed by any number of data bytes with the master-transmit data.

A START or Repeated START condition that is expecting a NACK (for example, hsmode master code) must be followed by a STOP or (repeated) START condition.

# 27.3.2.2 Master Operation

Whenever the LPI2C is enabled, it monitors the I2C bus to detect when the I2C bus is idle (MSR[BBF]). The I2C bus is no longer considered idle if either SCL or SDA are low and becomes idle if a STOP condition is detected or if a bus idle timeout is detected (as configured by MCFGR2[BUSIDLE]). Once the I2C bus is idle, the transmit FIFO is not empty, and the host request is either asserted or disabled, then the LPI2C master will initiate a transfer on the I2C bus. This involves the following steps:

- Wait the bus idle time equal to (MCCR0[CLKLO] + 1) multiplied by the prescaler.
- Transmit a START condition and address byte using the timing configuration in MCCR0, if a high speed mode transfer is configured then timing configuration from MCCR1 is used instead.
- Perform master-transmit or master-receive transfers, as configured by the transmit FIFO.
- Transmit a Repeated START or STOP condition as configured by the transmit FIFO and/or MCFGR1[AUTOSTOP]. A repeated START can change which timing configuration register is used.

When the LPI2C master is disabled (either due to MCR[MEN] being clear or automatically due to mode entry), the LPI2C will continue to empty the transmit FIFO until a STOP condition is transmitted. However, it will no longer stall the I2C bus waiting for the transmit or receive FIFO and once the transmit FIFO is empty it will generate a STOP condition automatically.

The LPI2C master can stall the I2C bus under certain conditions, this will result in SCL pulled low continuously on the first bit of a byte until the condition is removed:

- LPI2C master is enabled and busy, transmit FIFO is empty, and MCFGR1[AUTOSTOP] is clear.
- LPI2C master is enabled and receiving data, receive data is not being discarded (due to command or receive data match), and receive FIFO is full.

#### 27.3.2.3 Receive FIFO and Data Match

The receive FIFO is used to store receive data during master-receiver transfers. Receive data can also be configured to discard receive data instead of storing in the receive FIFO, this is configured by the command word in the transmit FIFO.

Receive data supports a receive data match function that can match received data against one of two bytes or against a masked data byte. The data match function can also be configured to compare only the first one or two received data words since the last (repeated) START condition. Receive data that is already discarded due to the command word cannot cause the data match to set and will delay the match on first received data word until after the discarded data is received. The receiver match function can also be configured to discard all receive data until a data match is detected, using the MCFGR0[RDMO] control bit. When clearing the MCFGR0[RDMO] control bit following a data match, clear MCFGR0[RDMO] before clearing MSR[DMF] to allow all subsequent data to be received.

# 27.3.2.4 Timing Parameters

The following timing parameters can be configured by the LPI2C master. Parameters are configured separately for high speed mode (MCCR1) and other modes (MCCR0). This allows the high speed mode master code to be sent using the regular timing parameters and then switch to the high speed mode timing (following a repeated START) until the next STOP condition.

The LPI2C master timing parameters in LPI2C functional clock cycles are configured as follows. They must be configured to meet the I2C timing specification for the required mode.

#### **Functional description**

- Bus idle time is always (MCCR0[CLKLO] + 1) multiplied by the prescaler. This is extended by the time it takes to detect external SDA rising edge.
- START or repeated START hold time is equal to (MCCR0/1[SETHOLD] + 1) multiplied by the prescaler.
- START, or repeated START, or STOP setup time is equal to (MCCR0/1[SETHOLD] + 1) multiplied by the prescaler. This is extended by the time it takes to detect external SCL rising edge.
- SCL low time (before clock stretching) is equal to (MCCR0/1[CLKLO] + 1) multiplied by the prescaler.
- SCL high time is equal to (MCCR0/1[CLKHI] + 1) multiplied by the prescaler. This is extended by the time it takes to detect external SCL rising edge.
- SDA output delay is equal to (MCCR0/1[DATAVD] + 1) multiplied by the prescaler.

The time taken to detect an external rising edge depends on a number of factors including the bus loading and external pull-up resistor sizing. The minimum delay equals two plus the pin input digital filter setting (which are configured separately for SCL and SDA), divided by the prescaler (since the pin input digital filters are not affected by the prescaler setting).

The following timing restrictions must be enforced to avoid unexpected START or STOP conditions on the I2C bus or unexpected START or STOP conditions detected by the LPI2C master. They can be summarized as SDA cannot change when SCL is high outside of a transmitted (repeated) START or STOP condition.

**Table 27-2. Timing Parameters** 

| Timing Parameter | Minimum               | Maximum                                    | Comment                                                                  |
|------------------|-----------------------|--------------------------------------------|--------------------------------------------------------------------------|
| CLKLO            | 0x03                  | -                                          | CLKLO must also be greater than delay through the SCL filter.            |
|                  |                       |                                            | inter:                                                                   |
| CLKHI            | 0x01                  | -                                          |                                                                          |
| SETHOLD          | 0x02                  | -                                          |                                                                          |
| DATAVD           | 0x01                  | CLKLO - [(FILTSDA+2) / (2 ^<br>PRESCALER)] | DATAVD must be less than<br>CLKLO minus delay through<br>the SDA filter. |
| FILTSCL          | 0x00                  | [CLKLO × (2 ^ PRESCALER)]<br>- 3           |                                                                          |
| FILTSDA          | FILTSCL               | [CLKLO × (2 ^ PRESCALER)]<br>- 3           | Does not apply if compensating for board level skew between SCL and SDA. |
| BUSIDLE          | (CLKLO+SETHOLD+2) × 2 | -                                          | Must also be greater than CLKHI+1.                                       |

The timing parameters must be configured to meet the requirements of the I2C specification, this will depend on the mode being supported, the frequency of the LPI2C functional clock. Some example configurations are provided below.

**SETHOLD Baud Rate PRESCAL** FILTSCL/ **CLKLO CLKHI I2C Mode** Clock **DATAVD FILTSDA** Frequency **ER** Fast 8 MHz 400 kbps 0x0 0x0/0x00x04 0x0B 0x05 0x02 Fast+ 8 MHz 1 Mbps 0x0/0x00x02 0x03 0x01 0x01 0x0 Fast 48 MHz 400 kbps 0x2 0x1/0x1 0x07 0x11 0x0B 0x03 Fast+ 48 MHz 1 Mbps 0x2 0x1/0x10x03 0x06 0x04 0x04 48 MHz Fast+ 1 Mbps 0x0 0x1/0x10x1D 0x18 0x13 0x0F HS-mode 48 MHz 3.2 Mbps 0x0 0x0/0x00x07 80x0 0x03 0x01 Fast 60 MHz 400 kbps 0x1 0x2/0x2 0x11 0x28 0x21 80x0 Fast+ 0x0F 60 MHz 1 Mbps 0x1 0x2/0x2 0x07 0x0B 0x01 HS-mode 60 MHz 3.33 Mbps 0x1 0x0/0x00x04 0x03 0x04 0x01 Ultrafast 60 MHz 5 Mbps 0x0 0x0/0x00x02 0x05 0x03 0x01

**Table 27-3. LPI2C Example Timing Configurations** 

The formula to calculate number of cycles per bit is as follows:

 $Baud\ rate\ divide = ((CLKLO + CLKHI + 2)*2^PRESCALER) + ROUNDDOWN((2+FILTSCL)/2^PRESCALER)$ 

This assumes SCL will pull high within 1 cycle of the LPI2C functional clock, this will depend on the pullup resistor and loading on the SCL pin.

# 27.3.2.5 Error Conditions

The LPI2C master will monitor for errors while it is active, the following conditions will generate an error flag and block a new START condition from being sent until the flag is cleared by software:

- START or STOP condition detected and not generated by LPI2C master (sets MSR[ALF]).
- Transmitting data on SDA and different value being received (sets MSR[ALF]).
- NACK detected when transmitting data, provided MCFGR1[IGNACK] is clear (sets MSR[NDF]).
- NACK detected and expecting ACK for address byte, provided MCFGR1[IGNACK] is clear (sets MSR[NDF]).
- ACK detected and expecting NACK for address byte, provided MCFGR1[IGNACK] is clear (sets MSR[NDF]).

#### **Functional description**

- Transmit FIFO requesting to transmit or receive data without a START condition (sets MSR[FEF]).
- SCL (or SDA if MCFGR1[TIMECFG] is set) is low for (MCFGR2[TIMELOW] \* 256) prescaler cycles without a pin transition (sets MSR[PLTF]).

Software must respond to the MSR[PTLF] flag to terminate the existing command either cleanly (by clearing MCR[MEN]) or abruptly (by setting MCR[SWRST]).

The MCFGR2[BUSIDLE] field can be used to force the I2C bus to be considered idle when SCL and SDA remain high for (BUSIDLE+1) prescaler cycles. The I2C bus is normally considered idle when the LPI2C master is first enabled, but when BUSIDLE is configured greater than zero then SCL and/or SDA must be high for (BUSIDLE+1) prescaler cycles before the I2C bus is first considered idle.

# 27.3.2.6 Pin Configuration

The LPI2C master defaults to open-drain configuration of the LPI2C\_SDA and LPI2C\_SCL pins. Support for true open drain is device specific and requires the pins where LPI2C pins are muxed to support true open drain. Support for high speed mode is also device specific and requires the LPI2C\_SCL pin to support the current source pull-up required in the I2C specification.

The LPI2C master also supports the output only push-pull function required for I2C ultra-fast mode using the LPI2C\_SDA and LPI2C\_SCL pins. Support for ultra-fast mode also requires the IGNACK bit to be set.

A push-pull 2 wire configuration is also available to the LPI2C master that may support a partial high speed mode provided the LPI2C is the only master and all I2C pins on the bus are at the same voltage. This will configure the LPI2C\_SCL pin as push-pull for every clock except the 9th clock pulse to allow high speed mode compatible slaves to perform clock stretching. In this mode, the LPI2C\_SDA pin is tristated for master-receive data bits and master-transmit ACK/NACK bits.

The push-pull 4 wire configuration separates the SCL input and output and the SDA input and output onto separate pins, with SCL/SDA used as the input pins and SCLS/SDAS used as the output pins with configurable polarity. This simplifies the external connections when connecting the I2C bus to external level shifters. The LPI2C master logic and LPI2C slave logic are not able to connect to separate I2C buses when using this configuration.

# 27.3.3 Slave Mode

The LPI2C slave logic operates independently from the master logic to perform all slave mode transfers on the I2C bus.

#### 27.3.3.1 Address Match

The LPI2C slave can be configured to match one of two addresses using either 7-bit or 10-bit addressing modes for each address, or to match a range of addresses in either 7-bit or 10-bit addressing modes. Separately, it can be configured to match the General Call Address or the SMBus Alert Address and generate appropriate flags. The LPI2C slave can also be configured to detect the high speed mode master code and to disable the digital filters and output valid delay time until the next STOP condition is detected.

Once a valid address is matched, the LPI2C slave will automatically perform slave-transmit or slave-receive transfers until a NACK is detected (unless IGNACK is set), a bit error is detected (the LPI2C slave is driving SDA, but a different value is sampled), or a (repeated) START or STOP condition is detected.

#### 27.3.3.2 Transmit and Receive

The transmit and receive data registers are double buffered and only update during a slave-transmit and slave-receive transfer respectively. The slave address that was received can be configured to be read from either the receive data register (for example, when using DMA to transfer data) or from the address status register. The transmit data register can be configured to only request data once a slave-transmit transfer is detected or to request new data whenever the transmit data register is empty.

The transmit data register should only be written when the transmit data flag is set. The receive data register should only be read when the received data flag is set (or the address valid flag is set and RXCFG=1). The address status register should only be read when the address valid flag is set.

# 27.3.3.3 Clock Stretching

The LPI2C slave supports many configurable options for when clock stretching is performed. The following conditions can be configured to perform clock stretching.

- During 9th clock pulse of address byte and address valid flag is set.
- During 9th clock pulse of slave-transmit transfer and transmit data flag is set.
- During 9th clock pulse of slave-receive transfer and receive data flag is set.

#### **Functional description**

- During 8th clock pulse of address byte or slave-receive transfer and transmit ACK flag is set. This is disabled in high speed mode.
- Clock stretching can also be extended for CLKHOLD cycles to allow additional setup time to sample the SDA pin externally. This is disabled in high speed mode.

Unless extended by the CLKHOLD configuration, clock stretching will extend for one peripheral bus clock cycle after SDA updates when clock stretching is enabled.

# 27.3.3.4 Timing Parameters

The LPI2C slave can configure the following timing parameters, these parameters are disabled when SCR[FILTEN] is clear, when SCR[FILTDZ] is set in Doze mode, and when LPI2C slave detects high speed mode. When disabled, the LPI2C slave is clocked directly from the I2C bus and may not satisfy all timing requirements of the I2C specification (such as SDA minimum hold time in Standard/Fast mode).

- SDA data valid time from SCL negation to SDA update.
- SCL hold time when clock stretching is enabled to increase setup time when sampling SDA externally.
- SCL glitch filter time.
- SDA glitch filter time.

The LPI2C slave imposes the following restrictions on the timing parameters.

- FILTSDA must be configured to greater than or equal to FILTSCL (unless compensating for board level skew between SDA and SCL).
- DATAVD must be configured less than the minimum SCL low period.

# 27.3.3.5 Error Conditions

The LPI2C slave can detect the following error conditions.

- Bit error flag will set when the LPI2C slave is driving SDA, but samples a different value than what is expected.
- FIFO error flag will set due to a transmit data underrun or a receive data overrun. Clock stretching can be enabled to eliminate the possibility of underrun and overrun occurring.
- FIFO error flag will also set due to an address overrun when RXCFG is set, otherwise an address overrun is not flagged. Clock stretching can be enabled to eliminate the possibility of overrun occurring.

The LPI2C slave does not implement a timeout due to SCL and/or SDA being stuck low. If this detection is required, the LPI2C master logic should be used and software can reset the LPI2C slave when this condition is detected.

# 27.3.4 Interrupts and DMA Requests

The LPI2C master and slave interrupts may be combined depending on the device.

The LPI2C master and slave transmit DMA requests may be combined depending on the device.

The LPI2C master and slave receive DMA requests may be combined depending on the device.

#### 27.3.4.1 Master mode

The following table illustrates the master mode sources that can generate the LPI2C master interrupt and LPI2C master transmit/receive DMA requests.

**Table 27-4. Master Interrupts and DMA Requests** 

| Flag | Description                                                                                                                                                                          | Interrupt | DMA Request | Low Power Wakeup |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|
| TDF  | Data can be written to transmit FIFO, as configured by TXWATER.                                                                                                                      | Y         | ТХ          | Y                |
| RDF  | Data can be read from<br>the receive FIFO, as<br>configured by<br>RXWATER.                                                                                                           | Y         | RX          | Y                |
| EPF  | Master has transmitted<br>Repeated START or<br>STOP condition.                                                                                                                       | Y         | N           | Y                |
| SDF  | Master has transmitted STOP condition.                                                                                                                                               | Y         | N           | Y                |
| NDF  | Master detected NACK during address byte when expecting ACK, master detected ACK during address byte and expecting NACK, or master detected NACK during mastertransmitter data byte. | Υ         | N           | Y                |
| ALF  | Master lost arbitration due to START/STOP condition detected at                                                                                                                      | Y         | N           | Y                |

Table continues on the next page...

NXP Semiconductors

731

Table 27-4. Master Interrupts and DMA Requests (continued)

| Flag | Description                                                                                                                                            | Interrupt | DMA Request | Low Power Wakeup |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|
|      | wrong time, or Master was transmitting data but received different data than what was transmitted.                                                     |           |             |                  |
| FEF  | Master expecting START condition in command FIFO and next entry in FIFO is not START condition.                                                        | Υ         | N           | Y                |
| PLTF | Pin low timeout is enabled and SCL (or SDA if configured) is low for longer than the configured timeout.                                               | Y         | N           | Y                |
| DMF  | Received data matches<br>the configured data<br>match, and receive data<br>not discarded due to<br>command FIFO entry.                                 | Y         | N           | Y                |
| MBF  | LPI2C master is busy transmitting/receiving data.                                                                                                      | N         | N           | N                |
| BBF  | LPI2C master is enabled and activity detected on I2C bus, but STOP condition has not been detected and bus idle timeout (if enabled) has not occurred. | N         | N           | N                |

### 27.3.4.2 Slave mode

The following table illustrates the slave mode sources that can generate the LPI2C slave interrupt and the LPI2C slave transmit/receive DMA requests.

Table 27-5. Slave Interrupts and DMA Requests

| Flag | Description                                      | Interrupt | DMA Request | Low Power Wakeup |
|------|--------------------------------------------------|-----------|-------------|------------------|
| TDF  | Data can be written to transmit data register.   | Υ         | TX          | Y                |
| RDF  | Data can be read from the receive data register. | Υ         | RX          | Y                |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 732 **NXP Semiconductors** 

Table 27-5. Slave Interrupts and DMA Requests (continued)

| Flag | Description                                                                                                                                      | Interrupt | DMA Request | Low Power Wakeup |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|
| AVF  | Address can be read from the address status register.                                                                                            | Y         | RX          | Y                |
| TAF  | ACK/NACK can be written to the transmit ACK register.                                                                                            | Y         | N           | Y                |
| RSF  | Slave has detected an address match followed by a Repeated START condition.                                                                      | Υ         | N           | Y                |
| SDF  | Slave has detected an address match followed by a STOP condition.                                                                                | Y         | N           | Y                |
| BEF  | Slave was transmitting data, but received different data than what was transmitted.                                                              | Y         | N           | Y                |
| FEF  | Transmit data underrun, receive data overrun or address status overrun (when RXCFG=1). This flag can only set when clock stretching is disabled. | Y         | N           | Y                |
| AM0F | Slave detected address<br>match with ADDR0<br>field.                                                                                             | Y         | N           | N                |
| AM1F | Slave detected address<br>match with ADDR1 field<br>or address range.                                                                            | Y         | N           | N                |
| GCF  | Slave detected address match with general call address.                                                                                          | Y         | N           | N                |
| SARF | Slave detected address match with SMBus alert address.                                                                                           | Υ         | N           | N                |
| SBF  | LPI2C slave is busy receiving address byte or transmitting/receiving data.                                                                       | N         | N           | N                |
| BBF  | LPI2C slave is enabled<br>and START condition<br>detected on I2C bus,<br>but STOP condition has<br>not been detected.                            | N         | N           | N                |

**Application Information** 

# 27.3.5 Peripheral Triggers

The connection of the LPI2C peripheral triggers with other peripherals are device specific.

# 27.3.5.1 Master Output Trigger

The LPI2C master generates an output trigger that can be connected to other peripherals on the device. The master output trigger asserts on both a Repeated START or STOP condition and remains asserted for one cycle of the LPI2C functional clock divided by the prescaler.

# 27.3.5.2 Slave Output Trigger

The LPI2C slave generates an output trigger that can be connected to other peripherals on the device. The slave output trigger asserts on both a Repeated START or STOP condition that occurs following a slave address match. It remains asserted until the next slave SCL pin negation.

# 27.3.5.3 Input Trigger

The LPI2C input trigger can be selected in place of the LPI2C\_HREQ pin to control the start of a LPI2C master bus transfer. The input trigger must assert for longer than one LPI2C functional clock cycle to be detected.

# 27.4 Application Information

# **Chapter 28 Low Power Interrupt Timer (LPIT)**

### 28.1 Introduction

### 28.1.1 Overview

The Low Power Periodic Interrupt Timer (LPIT) is a multi-channel timer module generating independent pre-trigger and trigger outputs. These timer channels can operate individually or can be chained together. The LPIT can operate in low power modes if configured to do so. The pre-trigger and trigger outputs can be used to trigger other modules on the device.

Each timer channel can be configured to run independently and made to work in either compare or capture modes. In compare mode, the timers decrement when enabled and generate an output pre-trigger and timeout pulse. The trigger output is 1 clock cycle delayed of the pre-trigger pulse. Each timer channel start, reload and restart can be controlled via control bits. The timer can be configured to always decrement, or decrement on selected trigger inputs or previous channel timeout (when channels are chained). By chaining timer channels, applications can achieve larger timeout durations. In capture mode, the timer can be used to perform measurements as the timer value is captured (in the timer value register) when a selected trigger input is asserted. In capture mode, the timer can support once-off or multiple measurements (for example, frequency measurements).

The timer channels operate on an asynchronous clock, which is independent from the register read/write access clock. Clock synchronization between the clock domains ensures normal operations.

# 28.1.2 Block Diagram

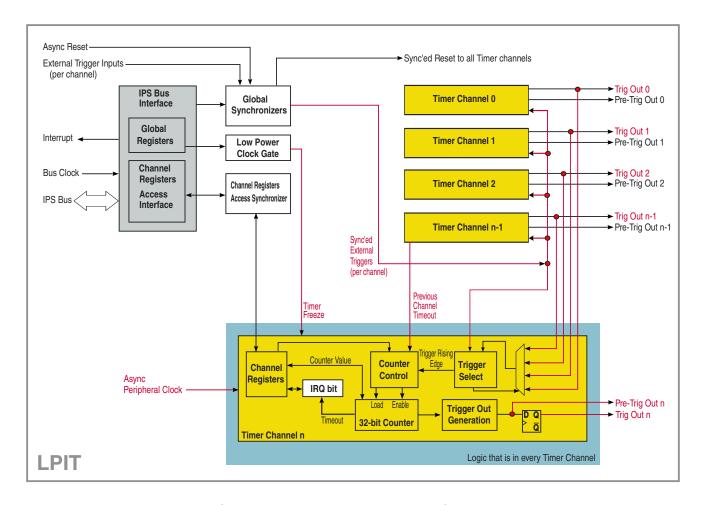



Figure 28-1. Top Level Block Diagram

# 28.2 Modes of operation

The LPIT module supports the chip modes described in the following table.

Table 28-1. Chip modes supported by the LPIT module

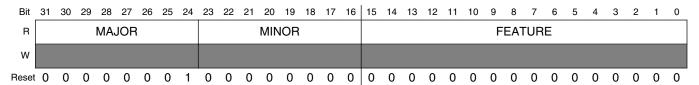
| Chip mode        | LPIT Operation                                                                                                                                                                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run              | Normal operation                                                                                                                                                                     |
| Stop/Wait        | Can continue operating provided the Doze Enable bit (MCR[DOZE_EN]) is set and the LPIT is using an external or internal clock source which remains operating during stop/wait modes. |
| Low Leakage Stop | The Doze Enable (MCR[DOZE_EN]) bit is ignored and the LPIT will be disabled for the duration of low leakage mode.                                                                    |
| Debug            | Can continue operating provided the Debug Enable bit (MCR[DBG_EN]) is set.                                                                                                           |

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map and Registers** 28.3

The memory map comprises of 32-bit aligned registers which can be accessed via 8-bit, 16-bit, or 32-bit accesses. Write access to reserved locations will generate a transfer error. Read access to reserved locations will also generate a transfer error and the read data bus will show all 0s. The Memory Map and complete module is in Big Endian format.

The module will not check for correctness of programmed values in the registers and software must ensure that correct values are being written.


#### **LPIT** memory map

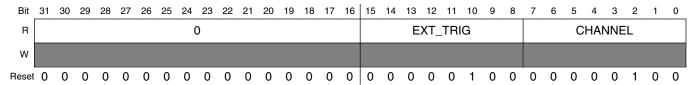
| Absolute address (hex) | Register name                                 | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------|-----------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4003_0000              | Version ID Register (LPIT0_VERID)             | 32                 | R                        | 0100_0000h  | 28.3.1/738       |
| 4003_0004              | Parameter Register (LPIT0_PARAM)              | 32                 | R                        | 0000_0404h  | 28.3.2/738       |
| 4003_0008              | Module Control Register (LPIT0_MCR)           | 32                 | R/W                      | 0000_0000h  | 28.3.3/739       |
| 4003_000C              | Module Status Register (LPIT0_MSR)            | 32                 | w1c                      | 0000_0000h  | 28.3.4/740       |
| 4003_0010              | Module Interrupt Enable Register (LPIT0_MIER) | 32                 | R/W                      | 0000_0000h  | 28.3.5/741       |
| 4003_0014              | Set Timer Enable Register (LPIT0_SETTEN)      | 32                 | R/W                      | 0000_0000h  | 28.3.6/742       |
| 4003_0018              | Clear Timer Enable Register (LPIT0_CLRTEN)    | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 28.3.7/743       |
| 4003_0020              | Timer Value Register (LPIT0_TVAL0)            | 32                 | R/W                      | 0000_0000h  | 28.3.8/744       |
| 4003_0024              | Current Timer Value (LPIT0_CVAL0)             | 32                 | R                        | FFFF_FFFFh  | 28.3.9/745       |
| 4003_0028              | Timer Control Register (LPIT0_TCTRL0)         | 32                 | R/W                      | 0000_0000h  | 28.3.10/<br>746  |
| 4003_0030              | Timer Value Register (LPIT0_TVAL1)            | 32                 | R/W                      | 0000_0000h  | 28.3.8/744       |
| 4003_0034              | Current Timer Value (LPIT0_CVAL1)             | 32                 | R                        | FFFF_FFFFh  | 28.3.9/745       |
| 4003_0038              | Timer Control Register (LPIT0_TCTRL1)         | 32                 | R/W                      | 0000_0000h  | 28.3.10/<br>746  |
| 4003_0040              | Timer Value Register (LPIT0_TVAL2)            | 32                 | R/W                      | 0000_0000h  | 28.3.8/744       |
| 4003_0044              | Current Timer Value (LPIT0_CVAL2)             | 32                 | R                        | FFFF_FFFFh  | 28.3.9/745       |
| 4003_0048              | Timer Control Register (LPIT0_TCTRL2)         | 32                 | R/W                      | 0000_0000h  | 28.3.10/<br>746  |
| 4003_0050              | Timer Value Register (LPIT0_TVAL3)            | 32                 | R/W                      | 0000_0000h  | 28.3.8/744       |
| 4003_0054              | Current Timer Value (LPIT0_CVAL3)             | 32                 | R                        | FFFF_FFFFh  | 28.3.9/745       |
| 4003_0058              | Timer Control Register (LPIT0_TCTRL3)         | 32                 | R/W                      | 0000_0000h  | 28.3.10/<br>746  |

KL28Z Reference Manual, Rev. 4, 06/2016 737 **NXP Semiconductors** 

# 28.3.1 Version ID Register (LPITx\_VERID)

Address: 4003\_0000h base + 0h offset = 4003\_0000h



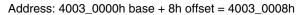

#### LPITx\_VERID field descriptions

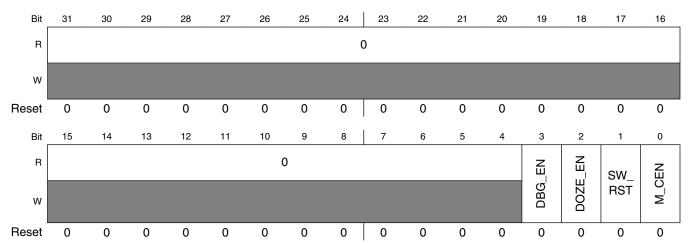
| Field          | Description                                                                        |
|----------------|------------------------------------------------------------------------------------|
| 31–24<br>MAJOR | Major Version Number                                                               |
| WIAJOR         | This read only field returns the major version number for the module specification |
| 23–16<br>MINOR | Minor Version Number                                                               |
|                | This read only field returns the minor version number for the module specification |
| FEATURE        | Feature Number                                                                     |
|                | This read only field returns the feature set number.                               |

# 28.3.2 Parameter Register (LPITx\_PARAM)

This register provides details on the parameter settings that were used while including this module in the device.

Address: 4003\_0000h base + 4h offset = 4003\_0004h





### LPITx\_PARAM field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>EXT_TRIG  | Number of External Trigger Inputs                                                    |
| _                 | Number of external triggers implemented.                                             |
| CHANNEL           | Number of Timer Channels                                                             |
|                   | Number of timer channels implemented.                                                |

739

# 28.3.3 Module Control Register (LPITx\_MCR)

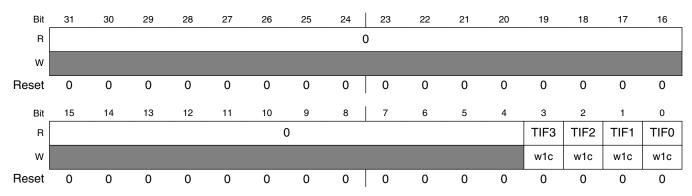




### LPITx\_MCR field descriptions

| Field        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4         | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reserved     | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3            | Debug Enable Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DBG_EN       | Allows the timer channels to be stopped when the device enters the Debug mode                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | 0 Timer channels are stopped in Debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | 1 Timer channels continue to run in Debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>DOZE_EN | DOZE Mode Enable Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Allows the timer channels to be stopped or continue to run when the device enters the DOZE mode                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 0 Timer channels are stopped in DOZE mode                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 1 Timer channels continue to run in DOZE mode                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1<br>SW_RST  | Software Reset Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | Resets all channels and registers, except the Module Control Register. Remains set until cleared by software.                                                                                                                                                                                                                                                                                                                                                                       |
|              | 0 Timer channels and registers are not reset                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | 1 Timer channels and registers are reset                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0<br>M_CEN   | Module Clock Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IVI_OLIV     | Enables the peripheral clock to the module timers. M_CEN bit must be asserted when writing to timer registers. Both clocks (bus clock and peripheral clock) must be enabled, to allow for clock synchronization and update of register bits.  NOTE: Writing to the MSR, SETTEN, CLRTEN, TCTRL, and TVAL registers while M_CEN = 0, will lead to the assertion of a transfer error for that bus cycle. Writing to CVAL and reserved registers will always generate a transfer error. |

Table continues on the next page...


#### **Memory Map and Registers**

# LPITx\_MCR field descriptions (continued)

| Field | Description                            |
|-------|----------------------------------------|
|       | 0 Protocol clock to timers is disabled |
|       | 1 Protocol clock to timers is enabled  |

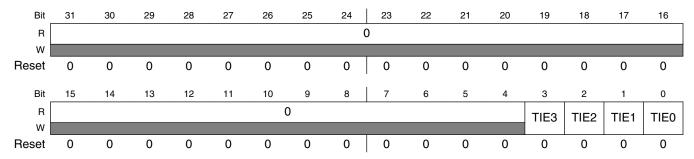
# 28.3.4 Module Status Register (LPITx\_MSR)

Address: 4003\_0000h base + Ch offset = 4003\_000Ch



### LPITx\_MSR field descriptions

| Field     | Description                                                                                                                                                                        |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4      | This field is reserved.                                                                                                                                                            |
| Reserved  | This read-only field is reserved and always has the value 0.                                                                                                                       |
| 3<br>TIF3 | Channel 3 Timer Interrupt Flag                                                                                                                                                     |
|           | In compare modes, sets to 1 at the end of the timer period. In capture modes, sets to 1 when the trigger asserts. Writing logic 1 to this flag clears it. Writing 0 has no effect. |
|           | 0 Timer has not timed out                                                                                                                                                          |
|           | 1 Timeout has occurred                                                                                                                                                             |
| 2<br>TIF2 | Channel 2 Timer Interrupt Flag                                                                                                                                                     |
|           | In compare modes, sets to 1 at the end of the timer period. In capture modes, sets to 1 when the trigger asserts. Writing logic 1 to this flag clears it. Writing 0 has no effect. |
|           | 0 Timer has not timed out                                                                                                                                                          |
|           | 1 Timeout has occurred                                                                                                                                                             |
| 1<br>TIF1 | Channel 1 Timer Interrupt Flag                                                                                                                                                     |
|           | In compare modes, sets to 1 at the end of the timer period. In capture modes, sets to 1 when the trigger asserts. Writing logic 1 to this flag clears it. Writing 0 has no effect. |
|           | 0 Timer has not timed out                                                                                                                                                          |
|           | 1 Timeout has occurred                                                                                                                                                             |
| 0<br>TIF0 | Channel 0 Timer Interrupt Flag                                                                                                                                                     |
|           | In compare modes, sets to 1 at the end of the timer period. In capture modes, sets to 1 when the trigger asserts. Writing logic 1 to this flag clears it. Writing 0 has no effect. |

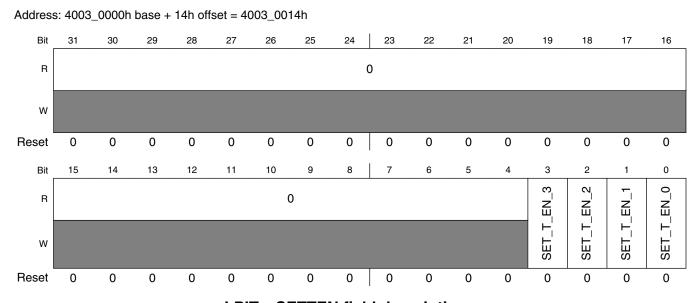

Table continues on the next page...

# LPITx\_MSR field descriptions (continued)

| Field | Description               |
|-------|---------------------------|
|       | 0 Timer has not timed out |
|       | 1 Timeout has occurred    |

# 28.3.5 Module Interrupt Enable Register (LPITx\_MIER)

Address: 4003\_0000h base + 10h offset = 4003\_0010h




### LPITx\_MIER field descriptions

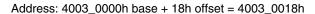
| Field            | Description                                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                |
| 3<br>TIE3        | Channel 3 Timer Interrupt Enable  Enables interrupt generation when this bit is set to 1 and if corresponding Timer Interrupt Flag is asserted.                                     |
|                  | <ul><li>0 Interrupt generation is disabled</li><li>1 Interrupt generation is enabled</li></ul>                                                                                      |
| 2<br>TIE2        | Channel 2 Timer Interrupt Enable  Enables interrupt generation when this bit is set to 1 and if corresponding Timer Interrupt Flag is asserted.  O Interrupt generation is disabled |
|                  | 1 Interrupt generation is enabled                                                                                                                                                   |
| 1<br>TIE1        | Channel 1 Timer Interrupt Enable  Enables interrupt generation when this bit is set to 1 and if corresponding Timer Interrupt Flag is asserted.                                     |
|                  | 0 Interrupt generation is disabled                                                                                                                                                  |
|                  | 1 Interrupt generation is enabled                                                                                                                                                   |
| 0<br>TIE0        | Channel 0 Timer Interrupt Enable  Enables interrupt generation when this bit is set to 1 and if corresponding Timer Interrupt Flag is asserted.                                     |
|                  | 0 Interrupt generation is disabled                                                                                                                                                  |
|                  | 1 Interrupt generation is enabled                                                                                                                                                   |

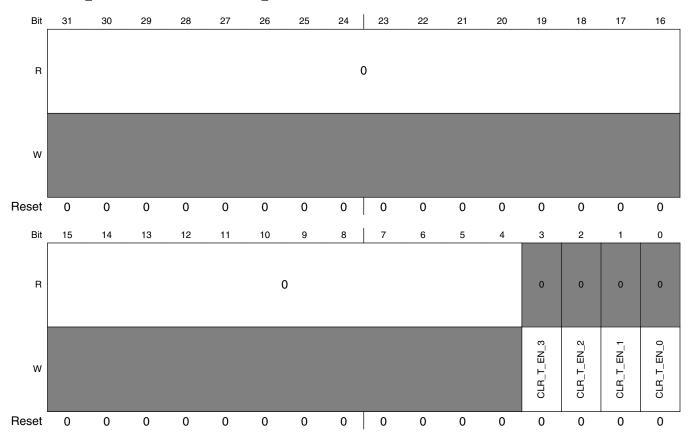
# 28.3.6 Set Timer Enable Register (LPITx\_SETTEN)

This register allows simulataneous enabling of timer channels. Timer channels can be enabled either by writing '1' to T\_EN in respective TCTRLn register or setting the corresponding bit in this register. Writing a '0' to this register has no effect. CLRTEN register should be used to disable timer channels simultaneously.



LPITx\_SETTEN field descriptions


| Field            | Description                                                                                                                                                                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                               |
| 3<br>SET_T_EN_3  | Set Timer 3 Enable  Writing '1' to this bit will enable the timer channel 3. This bit can be used in addition to T_EN bit in TCTRL3 register. Writing a 0 will not disable the counter. This bit will be cleared when T_EN bit in TCTRL3 is set to '0' or '1' is written to the CLR_T_EN_3 bit in CLRTEN register. |
|                  | No effect     Enables the Timer Channel 3                                                                                                                                                                                                                                                                          |
| 2<br>SET_T_EN_2  | Set Timer 2 Enable  Writing '1' to this bit will enable the timer channel 2. This bit can be used in addition to T_EN bit in TCTRL2 register. Writing a 0 will not disable the counter. This bit will be cleared when T_EN bit in TCTRL2 is set to '0' or '1' is written to the CLR_T_EN_2 bit in CLRTEN register. |
|                  | No Effect     Enables the Timer Channel 2                                                                                                                                                                                                                                                                          |
| 1<br>SET_T_EN_1  | Set Timer 1 Enable                                                                                                                                                                                                                                                                                                 |


Table continues on the next page...

# LPITx\_SETTEN field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Writing '1' to this bit will enable the timer channel 1. This bit can be used in addition to T_EN bit in TCTRL1 register. Writing a 0 will not disable the counter. This bit will be cleared when T_EN bit in TCTRL1 is set to '0' or '1' is written to the CLR_T_EN_1 bit in CLRTEN register.                                |
|                 | <ul><li>0 No Effect</li><li>1 Enables the Timer Channel 1</li></ul>                                                                                                                                                                                                                                                           |
| 0<br>SET_T_EN_0 | Set Timer 0 Enable  Writing '1' to this bit will enable the timer channel 0. This bit can be used in addition to T_EN bit in TCTRL0 register. Writing a 0 will not disable the counter. This bit will be cleared when T_EN bit in TCTRL0 is set to 0 or '1' is written to the CLR_T_EN_0 bit in CLRTEN register.  0 No effect |
|                 | 1 Enables the Timer Channel 0                                                                                                                                                                                                                                                                                                 |

# 28.3.7 Clear Timer Enable Register (LPITx\_CLRTEN)





### LPITx\_CLRTEN field descriptions

| Field      | Description                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4       | This field is reserved.                                                                                                                                                                                                 |
| Reserved   | This read-only field is reserved and always has the value 0.                                                                                                                                                            |
| 3          | Clear Timer 3 Enable                                                                                                                                                                                                    |
| CLR_T_EN_3 | Writing a '1' to this bit will disable the timer channel 3. This bit can be used in addition to T_EN bit in                                                                                                             |
|            | TCTRL3 register. Writing a 1 will not enable the counter. This bit is self clearing and will always read 0.                                                                                                             |
|            | 0 No Action                                                                                                                                                                                                             |
|            | 1 Clear T_EN bit for Timer Channel 3                                                                                                                                                                                    |
| 2          | Clear Timer 2 Enable                                                                                                                                                                                                    |
| CLR_T_EN_2 | Mulaina a 141 to this his will dischis the times about 10. This his can be used in addition to T. EN his in                                                                                                             |
|            | Writing a '1' to this bit will disable the timer channel 2. This bit can be used in addition to T_EN bit in TCTRL2 register. Writing a 1 will not enable the counter. This bit is self clearing and will always read 0. |
|            | 10 THEZ register. Writing a T will not enable the counter. This bit is sell cleaning and will always read of                                                                                                            |
|            | 0 No Action                                                                                                                                                                                                             |
|            | 1 Clear T_EN bit for Timer Channel 2                                                                                                                                                                                    |
| 1          | Clear Timer 1 Enable                                                                                                                                                                                                    |
| CLR_T_EN_1 | NATE: 141. 01.10. 01.0. 1.0. 0. 1. 1.4. TU. 10. 1. 1.0. 1.0. T.                                                                                                                     |
|            | Writing a '1' to this bit will disable the timer channel 1. This bit can be used in addition to T_EN bit in TCTRL1 register. Writing a 1 will not enable the counter. This bit is self clearing and will always read 0. |
|            | 0 No Action                                                                                                                                                                                                             |
|            | 1 Clear T_EN bit for Timer Channel 1                                                                                                                                                                                    |
| 0          | Clear Timer 0 Enable                                                                                                                                                                                                    |
| CLR_T_EN_0 | Marine - Milas also his will also his about the single of This his see he would be added to T.                                                                                      |
|            | Writing a '1' to this bit will disable the timer channel 0. This bit can be used in addition to T_EN bit in TCTRL0 register. Writing a 1 will not enable the counter. This bit is self clearing and will always read 0. |
|            | TO THE Diegister. Writing a T will not enable the counter. This bit is sell cleaning and will always fead 0.                                                                                                            |
|            | 0 No action                                                                                                                                                                                                             |
|            | 1 Clear T_EN bit for Timer Channel 0                                                                                                                                                                                    |

# 28.3.8 Timer Value Register (LPITx\_TVALn)

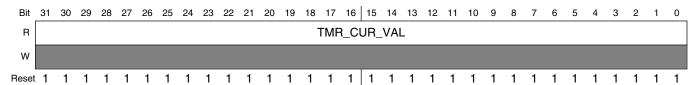
In compare modes, these registers select the timeout period for the timer channels. In capture modes, these registers are loaded with the value of the counter when the trigger asserts.

Address:  $4003\_0000h$  base + 20h offset + (16d × i), where i=0d to 3d



### LPITx\_TVALn field descriptions

| Field   | Description | l |
|---------|-------------|---|
| TMR_VAL | Timer Value |   |


# LPITx\_TVALn field descriptions (continued)

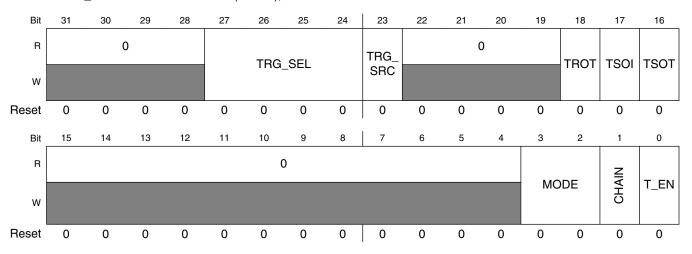
| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | In compare modes, sets the timer channel start value. The timer will count down until it reaches 0, then it will generate an interrupt and load this register value again. Writing a new value to this register will not restart the timer channel; instead the value will be loaded after the timer expires. To abort the current cycle and start a timer period with the new value, the timer channel must be disabled and enabled again. |
|       | In capture modes, this register stores the inverse of the counter whenever the trigger asserts.                                                                                                                                                                                                                                                                                                                                             |
|       | <ul> <li>Invalid load value in compare modes</li> <li>Value to be loaded (Compare Mode) or Value of Timer (Capture Mode)</li> </ul>                                                                                                                                                                                                                                                                                                         |

# 28.3.9 Current Timer Value (LPITx\_CVALn)

These registers indicate the current timer counter value.

Address:  $4003_0000h$  base + 24h offset + (16d × i), where i=0d to 3d




### LPITx\_CVALn field descriptions

| Field       | Description                                                  |
|-------------|--------------------------------------------------------------|
| TMR_CUR_VAL | Current Timer Value                                          |
|             | Represents the current timer value, if the timer is enabled. |

# 28.3.10 Timer Control Register (LPITx\_TCTRLn)

These registers contain the control bits for each timer channel

Address:  $4003_0000h$  base + 28h offset + (16d × i), where i=0d to 3d



# LPITx\_TCTRLn field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27–24<br>TRG_SEL  | Trigger Select  Selects the trigger to use for starting and/or reloading the LPIT timer. This field should only be changed when the LPIT timer channel is disabled. The TRG_SRC bit selects between internal and external trigger signals for each channel.  The TRG_SEL bits select one trigger from the set of internal or external triggers selected by TRG_SRC.  Timer channel 0 trigger source is selected  Timer channel 1 trigger source is selected  Timer channel 2 trigger source is selected  Timer channel 2 trigger source is selected |
|                   | n Timer channel 'n' trigger source is selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23<br>TRG_SRC     | Trigger Source  Selects between internal or external trigger sources. The final trigger is selected by TRG_SEL depending on which trigger source out of internal triggers or external triggers are selected by TRG_SRC.  Refer to the chip configuration section for available external trigger options. If a channel does not have an associated external trigger then this bit for that channel should be set to 1.  O Trigger source selected in external  Trigger source selected is the internal trigger                                       |
| 22–19             | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18<br>TROT        | Timer Reload On Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table continues on the next page...

# LPITx\_TCTRLn field descriptions (continued)

| Field            | Description                                                                                                                                                                                                                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | When set, the LPIT timer will reload when a rising edge is detected on the selected trigger input. The trigger input is ignored if the LPIT is disabled during debug mode or DOZE mode (DOZE_EN or DBGEN = 0)                                                                                             |
|                  | 0 Timer will not reload on selected trigger                                                                                                                                                                                                                                                               |
|                  | 1 Timer will reload on selected trigger                                                                                                                                                                                                                                                                   |
| 17<br>TSOI       | Timer Stop On Interrupt                                                                                                                                                                                                                                                                                   |
|                  | This bit controls whether the channel timer will stop after it times out and when it can restart (when TSOT = 0). If TSOT = 1, then the timer will stop on timeout and will restart after a rising edge on the selected trigger is detected. If TSOT = 0, then this bit controls when the timer restarts. |
|                  | 0 Timer does not stop after timeout                                                                                                                                                                                                                                                                       |
|                  | 1 Timer will stop after timeout and will restart after rising edge on the T_EN bit is detected (i.e. timer channel is disabled and then enabled)                                                                                                                                                          |
| 16<br>TSOT       | Timer Start On Trigger                                                                                                                                                                                                                                                                                    |
|                  | This bit controls when the timer starts decrementing.                                                                                                                                                                                                                                                     |
|                  | 0 Timer starts to decrement immediately based on restart condition (controlled by TSOI bit)                                                                                                                                                                                                               |
|                  | 1 Timer starts to decrement when rising edge on selected trigger is detected                                                                                                                                                                                                                              |
| 15–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                      |
| 3–2<br>MODE      | Timer Operation Mode                                                                                                                                                                                                                                                                                      |
|                  | Configures the Channel Timer Mode of Operation. The mode bits control how the timer decrements. See Functional Description for more details.                                                                                                                                                              |
|                  | 00 32-bit Periodic Counter                                                                                                                                                                                                                                                                                |
|                  | 01 Dual 16-bit Periodic Counter                                                                                                                                                                                                                                                                           |
|                  | 10 32-bit Trigger Accumulator                                                                                                                                                                                                                                                                             |
|                  | 11 32-bit Trigger Input Capture                                                                                                                                                                                                                                                                           |
| 1<br>CHAIN       | Chain Channel                                                                                                                                                                                                                                                                                             |
|                  | When enabled, timer channel will decrement when channel N-1 trigger asserts. Channel 0 cannot be chained.                                                                                                                                                                                                 |
|                  | 0 Channel Chaining is disabled. Channel Timer runs independently.                                                                                                                                                                                                                                         |
|                  | 1 Channel Chaining is enabled. Timer decrements on previous channel's timeout                                                                                                                                                                                                                             |
| 0<br>T_EN        | Timer Enable                                                                                                                                                                                                                                                                                              |
|                  | Enables or disables the Timer Channel                                                                                                                                                                                                                                                                     |
|                  | 0 Timer Channel is disabled                                                                                                                                                                                                                                                                               |
|                  | 1 Timer Channel is enabled                                                                                                                                                                                                                                                                                |

# 28.4 Functional description

### 28.4.1 Initialization

The following steps can be used to initialize the LPIT module

• Enable the protocol clock by setting the M\_CEN bit in the MCR register.

#### **NOTE**

Writing to certain registers while M\_CEN = 0 will lead to assertion of transfer error for that bus access. These registers are MSR, SETTEN, CLRTEN, TVAL, and TCTRL. Writing to CVAL and Reserved registers will generate a transfer error irrespective of M\_CEN bit value. Reads to these registers can happen irrespective of M\_CEN bit value.

- Wait for 4 protocol clock cycles to allow time for clock synchronization and reset deassertion.
- For each timer channel that is to be enabled, configure the timer mode of operation (MODE bits), Trigger source selection (TRG\_SEL & TRG\_SRC) and Trigger control bits (TROT, TSOT, TSOI bits) in the TCTRLn register.
- Configure the channels that are to be chained by setting the CHAIN bit in the corresponding channel's TCTRLn register.
- For channels configured in Compare Mode, set the timer timeout value by programming the appropriate value in TVAL register for those channels.
- Configure TIEn bits in MIER register for those channels which are required to generate interrupt on timer timeout.
- Configure the low power mode functionality of the module by setting the DBG\_EN and DOZE\_EN bits in the MCR register. This is common to all timer channels.
- Enable the channel timers by setting the corresponding T\_EN bit in the corresponding channel's TCRTLn register.
- For channels configured in Capture Mode, the timer value can be read from TVALn register when channel timeout occurs.
- At any time, the current value of the timer for any channel can be read by reading the corresponding channel's CVALn register.
- The timer interrupt flag bits (TIFn) in MSR register get asserted on timer timeout. These bits can be cleared by writing '1' to them.

# 28.4.2 Timer Modes

The timer mode is configured by setting an appropriate value in the MODE bits in TCTRLn register. The timer modes supported are:

- <u>32-bit Periodic Counter:</u> In this mode the counter will load and then decrement down to zero. It will then set the timer interrupt flag and assert the output pre-trigger.
- <u>Dual 16-bit Periodic Counter:</u> In this mode, the counter will load and then the lower 16-bits will decrement down to zero, which will assert the output pre-trigger. The upper 16-bits will then decrement down to zero, which will negate the output pre-trigger and set the timer interrupt flag.
- <u>32-bit Trigger Accumulator:</u> In this mode, the counter will load on the first trigger rising edge and then decrement down to zero on each trigger rising edge. It will then set the timer interrupt flag and assert the output pre-trigger.
- <u>32-bit Trigger Input Capture:</u> In this mode, the counter will load with 0xFFFF\_FFFF and then decrement down to zero. If a trigger rising edge is detected, it will store the inverse of the current counter value in the load value register, set the timer interrupt flag and assert the output pre-trigger.

The timer operation is further controlled by Trigger Control bits (TSOT, TSOI, TROT) which control the timer load, reload, start and restart of the timers.

#### NOTE

- The trigger output is asserted one Protocol Timer Clock cycle later than pre-trigger output. The trigger output and the pre-trigger output de-assert at the same time.
- The pre-trigger output is asserted for two clock cycles and trigger output is asserted for one clock cycle (except in 16-bit Periodic Counter mode where both pre-trigger and trigger are asserted for many cycles depending on TMR\_VAL[31:16]).

# 28.4.3 Trigger Control for Timers

The TSOT, TROT, TSOI and TRG\_SEL, TRG\_SRC bits control how the trigger input affects the timer operation. The TRG\_SEL selects the input trigger for the channel from all other channel's trigger outputs. The TRG\_SRC further selects between the selected internal trigger and the external trigger input to the channel.

The selected trigger affects the timer operation based on TROT, TSOI & TSOT bits. The behavior due to these bits is as follows:

• If TSOI = 1, counter stops on TIF assertion. Requires trigger (if TSOT = 1) or T\_EN rising edge (if TSOT = 0), to reload and decrement. If TSOI = 0, counter does not stop after timeout.

#### **Functional description**

- If TROT = 1, counter is loaded on each trigger; else, counter is loaded on every T\_EN rising edge or timeout rising edge (timeout not used in Capture modes).
- If TSOT = 1, counter will start to decrement on trigger. Subsequent triggers are ignored till a counter timeout. If TSOT = 0, counter decrements immediately from the next clock edge. TSOT has no effect when channel is Chained or in Capture mode.

These bits affect the timer operation differently in different timer modes:

- In 32-bit Periodic Counter and Dual 16-bit Periodic Counter modes, all bits (TSOT, TSOI & TROT) affect the timer operation as described above.
- In 32-bit Trigger Accumulator mode, only TSOI bit controls the timer function. TROT & TSOT bits have no effect on timer operation.
- In 32-bit Input Trigger Capture mode, TSOI and TROT bits control the timer function. TSOT bit has no effect on timer operation.

# 28.4.4 Channel Chaining

Individual timer channels can be chained together to achieve a larger value of timeout. Chaining the timer channel causes them to work in a 'nested loop' manner thereby leading to an effective timeout value of  $TVAL_{CHn} \times (TVAL_{CHn-1} + 1)$ .

The channels are chained by setting the CHAIN bit in corresponding channel's TCTRLn register. When a channel is chained, that channel's timer decrements on previous channel's timeout pulse, irrespective of the timer mode (MODE bits). The TSOT bit does not have any effect if the channel timer (Channel 'n') is chained to previous channel's timer (Channel 'n-1').

# **Chapter 29 Low Power Serial Peripheral Interface (LPSPI)**

### 29.1 Introduction

### **29.1.1 Overview**

The LPSPI is a low power Serial Peripheral Interface (SPI) module that supports an efficient interface to an SPI bus as a master and/or a slave. The LPSPI can continue operating in stop modes provided an appropriate clock is available and is designed for low CPU overhead with DMA offloading of FIFO register accesses.

### **29.1.2 Features**

The LPSPI supports the following features:

- Word size = 32 bits
- Command/transmit FIFO of 4 words.
- Receive FIFO of 4 words.
- Host request input can be used to control the start time of an SPI bus transfer.

# 29.1.3 Block Diagram

# LPSPI block diagram

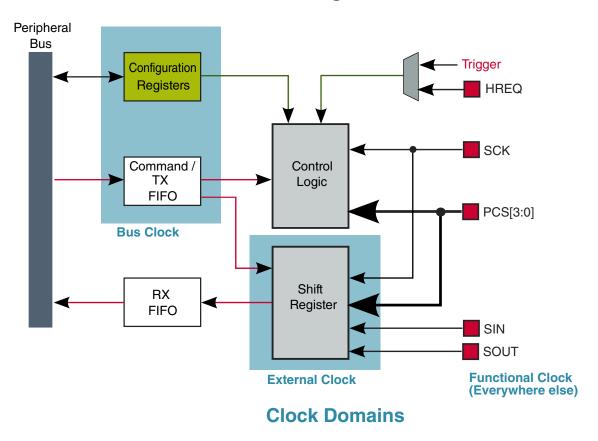



Figure 29-1. Block Diagram

# 29.1.4 Modes of operation

The LPSPI module supports the chip modes described in the following table.

Table 29-1. Chip modes supported by the LPSPI module

| Chip mode                                | LPSPI Operation                                                                                                                                                                          |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Run                                      | Normal operation                                                                                                                                                                         |
| Stop/Wait                                | Can continue operating if the Doze Enable bit (MCR[DOZEN]) is set and the LPSPI is using an external or internal clock source, which remains operating during stop/wait modes.           |
| Low Leakage Stop (LLS/VLLS modes)        | The Doze Enable (MCR[DOZEN]) bit is ignored and the LPSPI will wait for the current transfer to finish any pending operation, before the LPSPI acknowledges entry into low leakage mode. |
| Debug (the core is in Debug/Halted mode) | Can continue operating if the Debug Enable bit (MCR[DBGE]) is set.                                                                                                                       |

# 29.1.5 Signal Descriptions

| Signal           | Description                                                                                                                                                                                | I/O |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SCK              | Serial clock. Input in slave mode, output in master mode.                                                                                                                                  | I/O |
| PCS[0]           | Peripheral Chip Select. Input in slave mode, output in master mode.                                                                                                                        | I/O |
| PCS[1] / HREQ    | Peripheral Chip Select or Host Request.<br>Host Request pin is selected when<br>HREN=1 and HRSEL=0. Input in either<br>slave mode or when used as Host<br>Request, output in master mode.  | I/O |
| PCS[2] / DATA[2] | Peripheral Chip Select or data pin 2 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |
| PCS[3] / DATA[3] | Peripheral Chip Select or data pin 3 during quad-data transfers. Input in slave mode, output in master mode, input in quad-data receive transfers, output in quad-data transmit transfers. | I/O |
| SOUT / DATA[0]   | Serial Data Output. Can be configured as serial data input signal. Used as data pin 0 in quad-data and dual-data transfers.                                                                | I/O |
| SIN / DATA[1]    | Serial Data Input. Can be configured as serial data output signal. Used as data pin 1 in quad-data and dual-data transfers.                                                                | I/O |

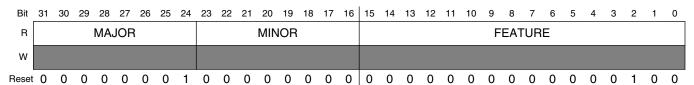
# 29.2 Memory Map and Registers

### **LPSPI** memory map

| Absolute address (hex) | Register name                          | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|----------------------------------------|--------------------|--------|-------------|------------------|
| 0                      | Version ID Register (LPSPI_VERID)      | 32                 | R      | 0100_0004h  | 29.2.1/754       |
| 4                      | Parameter Register (LPSPI_PARAM)       | 32                 | R      | See section | 29.2.2/755       |
| 10                     | Control Register (LPSPI_CR)            | 32                 | R/W    | 0000_0000h  | 29.2.3/756       |
| 14                     | Status Register (LPSPI_SR)             | 32                 | R/W    | 0000_0001h  | 29.2.4/757       |
| 18                     | Interrupt Enable Register (LPSPI_IER)  | 32                 | R/W    | 0000_0000h  | 29.2.5/759       |
| 1C                     | DMA Enable Register (LPSPI_DER)        | 32                 | R/W    | 0000_0000h  | 29.2.6/760       |
| 20                     | Configuration Register 0 (LPSPI_CFGR0) | 32                 | R/W    | 0000_0000h  | 29.2.7/761       |

Table continues on the next page...

### KL28Z Reference Manual, Rev. 4, 06/2016


#### **Memory Map and Registers**

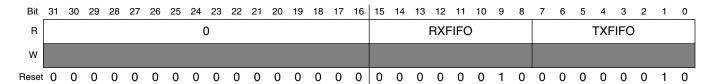
# LPSPI memory map (continued)

| Absolute<br>address<br>(hex) | Register name                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------|--------------------|--------|-------------|------------------|
| 24                           | Configuration Register 1 (LPSPI_CFGR1)   | 32                 | R/W    | 0000_0000h  | 29.2.8/762       |
| 30                           | Data Match Register 0 (LPSPI_DMR0)       | 32                 | R/W    | 0000_0000h  | 29.2.9/764       |
| 34                           | Data Match Register 1 (LPSPI_DMR1)       | 32                 | R/W    | 0000_0000h  | 29.2.10/<br>764  |
| 40                           | Clock Configuration Register (LPSPI_CCR) | 32                 | R/W    | 0000_0000h  | 29.2.11/<br>765  |
| 58                           | FIFO Control Register (LPSPI_FCR)        | 32                 | R/W    | 0000_0000h  | 29.2.12/<br>766  |
| 5C                           | FIFO Status Register (LPSPI_FSR)         | 32                 | R      | 0000_0000h  | 29.2.13/<br>766  |
| 60                           | Transmit Command Register (LPSPI_TCR)    | 32                 | R/W    | 0000_001Fh  | 29.2.14/<br>767  |
| 64                           | Transmit Data Register (LPSPI_TDR)       | 32                 | W      | 0000_0000h  | 29.2.15/<br>770  |
| 70                           | Receive Status Register (LPSPI_RSR)      | 32                 | R      | 0000_0002h  | 29.2.16/<br>771  |
| 74                           | Receive Data Register (LPSPI_RDR)        | 32                 | R      | 0000_0000h  | 29.2.17/<br>772  |

# 29.2.1 Version ID Register (LPSPI\_VERID)

Address: 0h base + 0h offset = 0h



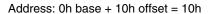

### LPSPI\_VERID field descriptions

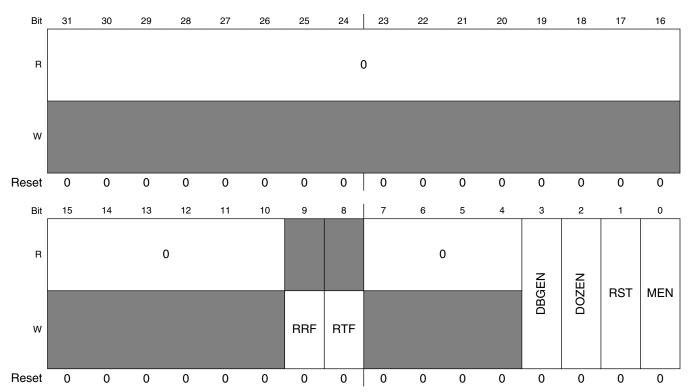
| Field   | Description                                                                         |
|---------|-------------------------------------------------------------------------------------|
| 31–24   | Major Version Number                                                                |
| MAJOR   | This read only field returns the major version number for the module specification. |
| 23–16   | Minor Version Number                                                                |
| MINOR   | This read only field returns the minor version number for the module specification. |
| FEATURE | Module Identification Number                                                        |
|         | This read only field returns the feature set number.                                |
|         | 0x0004 Standard feature set supporting 32-bit shift register.                       |

#### KL28Z Reference Manual, Rev. 4, 06/2016

# 29.2.2 Parameter Register (LPSPI\_PARAM)

Address: 0h base + 4h offset = 4h





### LPSPI\_PARAM field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>RXFIFO    | Receive FIFO Size  The number of words in the receive FIFO is 2^RXFIFO.              |
| TXFIFO            | Transmit FIFO Size  The number of words in the transmit FIFO is 2^TXFIFO.            |

KL28Z Reference Manual, Rev. 4, 06/2016

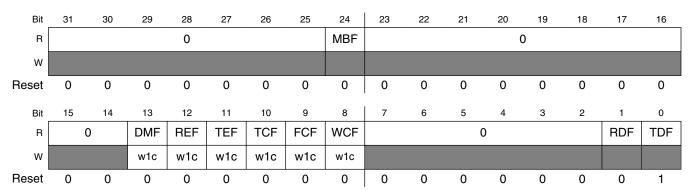
# 29.2.3 Control Register (LPSPI\_CR)





### LPSPI\_CR field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 9<br>RRF          | Reset Receive FIFO                                                                   |
|                   | 0 No effect.                                                                         |
|                   | 1 Receive FIFO is reset.                                                             |
| 8<br>RTF          | Reset Transmit FIFO                                                                  |
|                   | 0 No effect.                                                                         |
|                   | 1 Transmit FIFO is reset.                                                            |
| 7–4               | This field is reserved.                                                              |
| Reserved          | This read-only field is reserved and always has the value 0.                         |
| 3<br>DBGEN        | Debug Enable                                                                         |
|                   | 0 Module is disabled in debug mode.                                                  |
|                   | 1 Module is enabled in debug mode.                                                   |
| 2<br>DOZEN        | Doze mode enable                                                                     |
|                   | Enables or disables Doze mode                                                        |


Table continues on the next page...

# LPSPI\_CR field descriptions (continued)

| Field | Description                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | 0 Module is enabled in Doze mode.                                                                           |
|       | 1 Module is disabled in Doze mode.                                                                          |
| 1     | Software Reset                                                                                              |
| RST   | Reset all internal logic and registers, except the Control Register. Remains set until cleared by software. |
|       | 0 Master logic is not reset.                                                                                |
|       | 1 Master logic is reset.                                                                                    |
| 0     | Module Enable                                                                                               |
| MEN   |                                                                                                             |
|       | 0 Module is disabled.                                                                                       |
|       | 1 Module is enabled.                                                                                        |

# 29.2.4 Status Register (LPSPI\_SR)

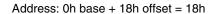
Address: 0h base + 14h offset = 14h

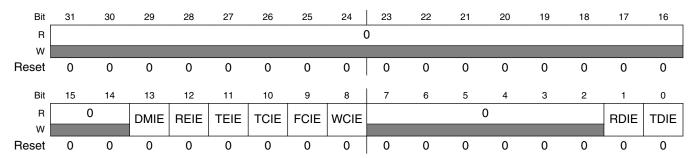


#### LPSPI\_SR field descriptions

| Field             | Description                                                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–25<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                      |
| 24<br>MBF         | Module Busy Flag  0 LPSPI is idle. 1 LPSPI is busy.                                                                                                                                       |
| 23–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                      |
| 13<br>DMF         | Data Match Flag  Indicates that the received data has matched the MATCH0 and/or MATCH1 fields as configured by MATCFG.  0 Have not received matching data. 1 Have received matching data. |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016


## **Memory Map and Registers**

# LPSPI\_SR field descriptions (continued)

| Field                                   | Description                                                                                                    |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 12                                      | Receive Error Flag                                                                                             |
| REF                                     | This flag will set when the Receiver FIFO overflows.                                                           |
|                                         |                                                                                                                |
|                                         | Receive FIFO has not overflowed.     Receive FIFO has overflowed.                                              |
| 11                                      | Transmit Error Flag                                                                                            |
| TEF                                     |                                                                                                                |
|                                         | This flag will set when the Transmit FIFO underruns.                                                           |
|                                         | 0 Transmit FIFO underrun has not occurred.                                                                     |
|                                         | 1 Transmit FIFO underrun has occurred                                                                          |
| 10                                      | Transfer Complete Flag                                                                                         |
| TCF                                     | This flag will set in master mode when the LPSPI returns to idle state with the transmit FIFO empty.           |
|                                         | 0 All transfers have not completed.                                                                            |
|                                         | 1 All transfers have completed.                                                                                |
| 9<br>FCF                                | Frame Complete Flag                                                                                            |
|                                         | This flag will set at the end of each frame transfer, when the PCS negates.                                    |
|                                         | 0 Frame transfer has not completed.                                                                            |
|                                         | 1 Frame transfer has completed.                                                                                |
| 8<br>WCF                                | Word Complete Flag                                                                                             |
| *************************************** | This flag will set when the last bit of a received word is sampled.                                            |
|                                         | 0 Transfer word not completed.                                                                                 |
|                                         | 1 Transfer word completed.                                                                                     |
| 7–2<br>Reserved                         | This field is reserved.                                                                                        |
|                                         | This read-only field is reserved and always has the value 0.  Receive Data Flag                                |
| 1<br>RDF                                | Receive Data Flag                                                                                              |
|                                         | The Receive Data Flag is set whenever the number of words in the receive FIFO is greater than RXWATER.         |
|                                         | 0 Receive Data is not ready.                                                                                   |
|                                         | 1 Receive data is ready.                                                                                       |
| 0<br>TDF                                | Transmit Data Flag                                                                                             |
|                                         | The Transmit Data Flag is set whenever the number of words in the transmit FIFO is equal or less than TXWATER. |
|                                         | 0 Transmit data not requested.                                                                                 |
|                                         | 1 Transmit data is requested.                                                                                  |

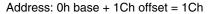
# 29.2.5 Interrupt Enable Register (LPSPI\_IER)

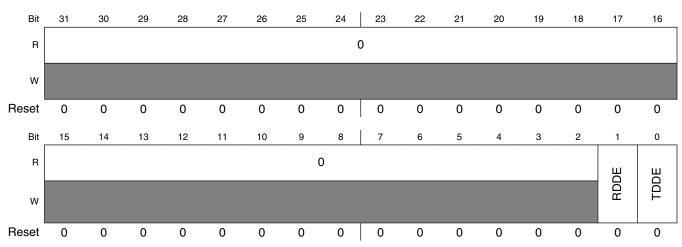




#### LPSPI\_IER field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 13<br>DMIE        | Data Match Interrupt Enable  0 Interrupt disabled.                                   |
|                   | 1 Interrupt enabled.                                                                 |
| 12<br>REIE        | Receive Error Interrupt Enable                                                       |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |
| 11<br>TEIE        | Transmit Error Interrupt Enable                                                      |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |
| 10<br>TCIE        | Transfer Complete Interrupt Enable                                                   |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |
| 9<br>FCIE         | Frame Complete Interrupt Enable                                                      |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |
| 8<br>WCIE         | Word Complete Interrupt Enable                                                       |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |
| 7–2<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0. |
| 1<br>RDIE         | Receive Data Interrupt Enable                                                        |
|                   | <ul><li>0 Interrupt disabled.</li><li>1 Interrupt enabled.</li></ul>                 |

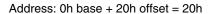

Table continues on the next page...

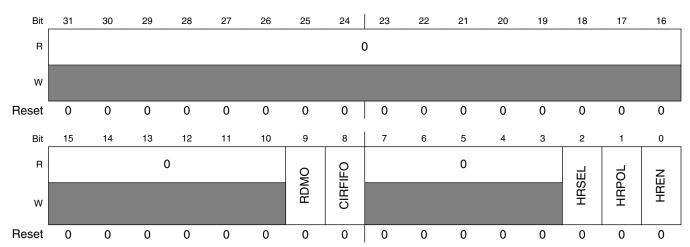

#### **Memory Map and Registers**

# LPSPI\_IER field descriptions (continued)

| Field     | Description                    |
|-----------|--------------------------------|
| 0<br>TDIE | Transmit Data Interrupt Enable |
|           | 0 Interrupt disabled.          |
|           | 1 Interrupt enabled            |

# 29.2.6 DMA Enable Register (LPSPI\_DER)




## LPSPI\_DER field descriptions

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–2     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 1        | Receive Data DMA Enable                                      |
| RDDE     |                                                              |
|          | 0 DMA request disabled.                                      |
|          | 1 DMA request enabled.                                       |
| 0        | Transmit Data DMA Enable                                     |
| TDDE     |                                                              |
|          | 0 DMA request disabled.                                      |
|          | 1 DMA request enabled                                        |

# 29.2.7 Configuration Register 0 (LPSPI\_CFGR0)

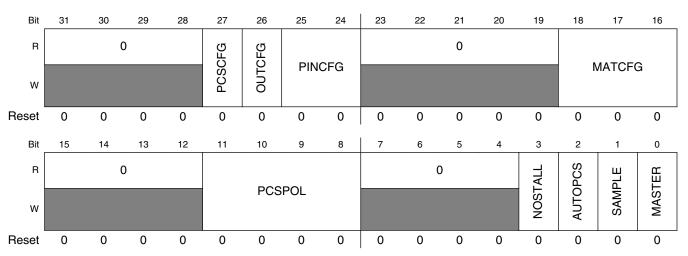




## LPSPI\_CFGR0 field descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–10           | This field is reserved.                                                                                                                                                                                                                                                                                                                                                   |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                              |
| 9<br>RDMO       | Receive Data Match Only  When enabled, all received data that does not cause DMF to set is discarded. Once DMF is set, the RDMO configuration is ignored. When disabling RDMO, clear RDMO before clearing DMF to ensure no receive data is lost.                                                                                                                          |
|                 | 0 Received data is stored in the receive FIFO as normal.                                                                                                                                                                                                                                                                                                                  |
|                 | 1 Received data is discarded unless the DMF is set.                                                                                                                                                                                                                                                                                                                       |
| 8<br>CIRFIFO    | Circular FIFO Enable  When enabled, the transmit FIFO read pointer is saved to a temporary register. The transmit FIFO will be emptied as normal, but once the LPSPI is idle and the transmit FIFO is empty, then the read pointer value will be restored from the temporary register. This will cause the contents of the transmit FIFO to be cycled through repeatedly. |
|                 | 0 Circular FIFO is disabled.                                                                                                                                                                                                                                                                                                                                              |
|                 | 1 Circular FIFO is enabled.                                                                                                                                                                                                                                                                                                                                               |
| 7–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                      |
| 2<br>HRSEL      | Host Request Select                                                                                                                                                                                                                                                                                                                                                       |
|                 | Selects the source of the host request input. When the host request function is enabled with the LPSPI_HREQ pin, the LPSPI_PCS[1] function is disabled.                                                                                                                                                                                                                   |
|                 | 0 Host request input is pin LPSPI_HREQ.                                                                                                                                                                                                                                                                                                                                   |
|                 | 1 Host request input is input trigger.                                                                                                                                                                                                                                                                                                                                    |
| 1<br>HRPOL      | Host Request Polarity                                                                                                                                                                                                                                                                                                                                                     |

Table continues on the next page...


## LPSPI\_CFGR0 field descriptions (continued)

| Field     | Description                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
|           | Configures the polarity of the host request pin.                                                                                         |
|           | O Active low.  Active high.                                                                                                              |
| 0<br>HREN | Host Request Enable  When enabled in master mode, the LPSPI will only initiate a SPI bus transfer if the host request input is asserted. |
|           | <ul><li>0 Host request is disabled.</li><li>1 Host request is enabled.</li></ul>                                                         |

# 29.2.8 Configuration Register 1 (LPSPI\_CFGR1)

The CFGR1 should only be written when the LPSPI is disabled.

Address: 0h base + 24h offset = 24h



# LPSPI\_CFGR1 field descriptions

| Field             | Description                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                       |
| 27<br>PCSCFG      | Peripheral Chip Select Configuration  PCSCFG must be set if performing 4-bit transfers.  0 PCS[3:2] are enabled.  1 PCS[3:2] are disabled. |
| 26<br>OUTCFG      | Output Config  Configures if the output data is tristated between accesses (LPSPI_PCS is negated).                                         |

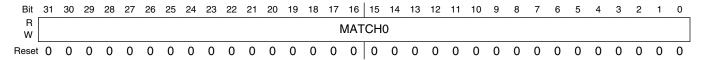
Table continues on the next page...

# LPSPI\_CFGR1 field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Output data retains last value when chip select is negated.                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 1 Output data is tristated when chip select is negated.                                                                                                                                                                                                                                                                                                                                                                             |
| 25–24<br>PINCFG   | Pin Configuration                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Configures which pins are used for input and output data during single bit transfers.                                                                                                                                                                                                                                                                                                                                               |
|                   | 00 SIN is used for input data and SOUT for output data.                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 01 SIN is used for both input and output data.                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 10 SOUT is used for both input and output data.                                                                                                                                                                                                                                                                                                                                                                                     |
| 00.40             | 11 SOUT is used for input data and SIN for output data.                                                                                                                                                                                                                                                                                                                                                                             |
| 23–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                |
| 18–16<br>MATCFG   | Match Configuration                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MATORA            | Configures the condition that will cause the DMF to set.                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 000 Match disabled.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 001 Reserved                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | 010 Match enabled (1st data word equals MATCH) OR MATCH).                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 011 Match enabled (any data word equals MATCH) OR MATCH).                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 100 Match enabled (1st data word equals MATCH0 AND 2nd data word equals MATCH1).  101 Match enabled (any data word equals MATCH0 AND next data word equals MATCH1)                                                                                                                                                                                                                                                                  |
|                   | 110 Match enabled (1st data word AND MATCH1 equals MATCH0 AND MATCH1)                                                                                                                                                                                                                                                                                                                                                               |
|                   | 111 Match enabled (any data word AND MATCH1 equals MATCH0 AND MATCH1).                                                                                                                                                                                                                                                                                                                                                              |
| 15–12             | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                        |
| 11–8<br>PCSPOL    | Peripheral Chip Select Polarity                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Configures the polarity of each Peripheral Chip Select pin.                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 0 The PCSx is active low.                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 1 The PCSx is active high.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7–4<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                |
| 3                 | No Stall                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NOSTALL           | TVO Otali                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | In master mode, the LPSPI will stall transfers when the transmit FIFO is empty or receive FIFO is full ensuring that no transmit FIFO underrun or receive FIFO overrun can occur. Setting this bit will disable this functionality.                                                                                                                                                                                                 |
|                   | <ul> <li>Transfers will stall when transmit FIFO is empty or receive FIFO is full.</li> <li>Transfers will not stall, allowing transmit FIFO underrun or receive FIFO overrun to occur.</li> </ul>                                                                                                                                                                                                                                  |
| 2<br>AUTOPCS      | Automatic PCS                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | The LPSPI slave normally requires the PCS to negate between frames for correct operation. Setting this bit will cause the LPSPI to generate an internal PCS signal at the end of each transfer word when CPHA=1. When this bit is set, the SCK must remain idle for at least 4 LPSPI functional clock cycles (divided by PRESCALE configuration) between each word to ensure correct operation. This bit is ignored in master mode. |

Table continues on the next page...

**NXP Semiconductors** 

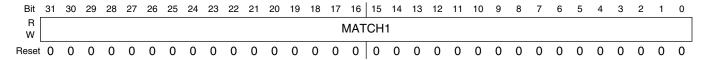

763

## LPSPI\_CFGR1 field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 0 Automatic PCS generation disabled.                                                                                                                                                                                                                                                             |
|             | 1 Automatic PCS generation enabled.                                                                                                                                                                                                                                                              |
| 1<br>SAMPLE | Sample Point                                                                                                                                                                                                                                                                                     |
|             | When set, the LPSPI master will sample the input data on a delayed LPSPI_SCK edge. This improves the setup time when sampling data. The input data setup time in master mode with delayed LPSPI_SCK edge is equal to the input data setup time in slave mode. This bit is ignored in slave mode. |
|             | 0 Input data sampled on SCK edge.                                                                                                                                                                                                                                                                |
|             | 1 Input data sampled on delayed SCK edge.                                                                                                                                                                                                                                                        |
| 0<br>MASTER | Master Mode                                                                                                                                                                                                                                                                                      |
| WACTER      | Configures the LPSPI in master or slave mode. This bit directly controls the direction of the LPSPI_SCK and LPCPI_PCS pins.                                                                                                                                                                      |
|             | 0 Slave mode.                                                                                                                                                                                                                                                                                    |
|             | 1 Master mode.                                                                                                                                                                                                                                                                                   |

# 29.2.9 Data Match Register 0 (LPSPI\_DMR0)

Address: 0h base + 30h offset = 30h




#### LPSPI\_DMR0 field descriptions

| Field  | Description                                                            |
|--------|------------------------------------------------------------------------|
| MATCH0 | Match 0 Value                                                          |
|        | Compared against the received data when receive data match is enabled. |

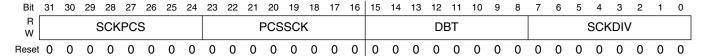
# 29.2.10 Data Match Register 1 (LPSPI\_DMR1)

Address: 0h base + 34h offset = 34h



#### LPSPI DMR1 field descriptions

| Field  | Description   |  |
|--------|---------------|--|
| MATCH1 | Match 1 Value |  |

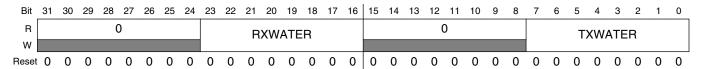

## LPSPI\_DMR1 field descriptions (continued)

| Field | Description                                                            |  |
|-------|------------------------------------------------------------------------|--|
|       | Compared against the received data when receive data match is enabled. |  |

# 29.2.11 Clock Configuration Register (LPSPI\_CCR)

The CCR is only used in master mode and cannot be changed when the LPSPI is enabled.

Address: 0h base + 40h offset = 40h

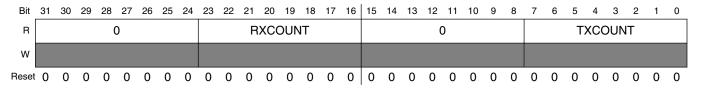



## LPSPI\_CCR field descriptions

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–24<br>SCKPCS | SCK to PCS Delay  Configures the delay in master mode from the last SCK edge to the PCS negation. The delay is equal to (SCKPCS + 1) cycles of the LPSPI functional clock divided by the PRESCALE configuration, and the minimum delay is 1 cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 23–16<br>PCSSCK | PCS to SCK Delay  Configures the delay in master mode from the PCS assertion to the first SCK edge. The delay is equal to (PCSSCK + 1) cycles of the LPSPI functional clock divided by the PRESCALE configuration, and the minimum delay is 1 cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 15–8<br>DBT     | Delay Between Transfers  Configures the delay in master mode from the PCS negation to the next PCS assertion. The delay is equal to (DBT + 2) cycles of the LPSPI functional clock divided by the PRESCALE configuration, and the minimum delay is 2 cycles. Note that half the delay occurs before PCS assertion and the other half of the delay occurs after PCS negation; the full command word can only update in the middle.  Also configures the delay in master mode from the last SCK edge of a transfer word and the first SCK edge of the next transfer word in a continuous transfer. The delay is equal to (DBT + 1) cycles of the LPSPI functional clock divided by the PRESCALE configuration, and the minimum delay is 1 cycle. |  |
| SCKDIV          | SCK Divider  Configures the divide ratio of the SCK pin in master mode. The SCK period is equal to (SCKDIV+2) cycles of the LPSPI functional clock divided by the PRESCALE configuration, and the minimum period is 2 cycles. If the period is an odd number of cycles, then the first half of the period will be one cycle longer than the second half of the period.                                                                                                                                                                                                                                                                                                                                                                         |  |

# 29.2.12 FIFO Control Register (LPSPI\_FCR)

Address: 0h base + 58h offset = 58h




## LPSPI\_FCR field descriptions

| Field             | Description                                                                                                                                                                                                    |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–24<br>Reserved | This field is reserved.<br>This read-only field is reserved and always has the value 0.                                                                                                                        |  |
| 23–16<br>RXWATER  | ceive FIFO Watermark  Receive Data Flag is set whenever the number of words in the receive FIFO is greater than WATER. Writing a value equal or greater than the FIFO size will be truncated.                  |  |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |  |
| TXWATER           | Transmit FIFO Watermark  The Transmit Data Flag is set whenever the number of words in the transmit FIFO is equal or less than TXWATER. Writing a value equal or greater than the FIFO size will be truncated. |  |

## 29.2.13 FIFO Status Register (LPSPI\_FSR)

Address: 0h base + 5Ch offset = 5Ch

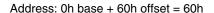


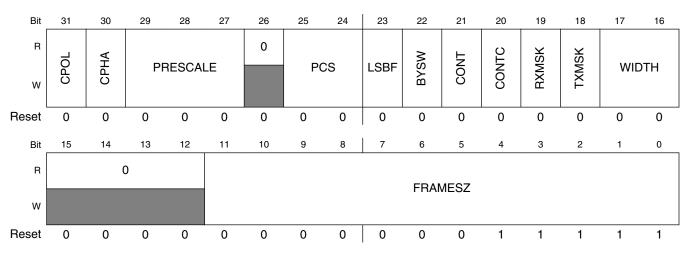
#### LPSPI\_FSR field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 23–16<br>RXCOUNT  | Receive FIFO Count  Returns the number of words in the receive FIFO.                 |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| TXCOUNT           | Transmit FIFO Count  Returns the number of words in the transmit FIFO.               |

KL28Z Reference Manual, Rev. 4, 06/2016

# 29.2.14 Transmit Command Register (LPSPI\_TCR)


Writes to either the Transmit Command Register or Transmit Data Register will push the data into the transmit FIFO in the order they are written. Command Register writes will be tagged and cause the command register to update once that entry reaches the top of the FIFO. This allows changes to the command word and the transmit data itself to be interleaved. Changing the command word will cause all subsequent SPI bus transfer to be performed using the new command word.


In master mode, writing a new command word does not initiate a new transfer, unless TXMSK is set. Transfers are initiated by transmit data in the transmit FIFO, or a new command word with TXMSK set. Hardware will clear TXMSK when the LPSPI\_PCS negates.

In master mode if the command word is changed before an existing frame has completed, then the existing frame will terminate and the command word will then update. The command word can be changed during a continuous transfer, provided CONTC of the new command word is set and the command word is written on a frame size boundary.

In slave mode, the command word should be changed only when the LPSPI is idle and there is no SPI bus transfer.

Reading the Transmit Command Register will return the current state of the command register.





#### LPSPI\_TCR field descriptions

| Field      | Description                                |  |
|------------|--------------------------------------------|--|
| 31<br>CPOL | Clock Polarity                             |  |
|            | This field is only updated between frames. |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

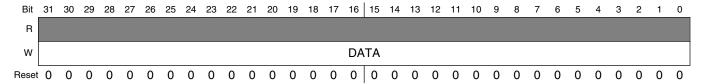
## **Memory Map and Registers**

# LPSPI\_TCR field descriptions (continued)

| Field          | Description                                                                                                                                                                                                      |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                | 0 The inactive state value of SCK is low.                                                                                                                                                                        |  |  |
|                | 1 The inactive state value of SCK is high.                                                                                                                                                                       |  |  |
| 30<br>CPHA     | Clock Phase                                                                                                                                                                                                      |  |  |
|                | This field is only updated between frames.                                                                                                                                                                       |  |  |
|                | <ul> <li>Data is captured on the leading edge of SCK and changed on the following edge.</li> <li>Data is changed on the leading edge of SCK and captured on the following edge.</li> </ul>                       |  |  |
| 29–27          | Prescaler Value                                                                                                                                                                                                  |  |  |
| PRESCALE       |                                                                                                                                                                                                                  |  |  |
|                | Prescaler applied to the clock configuration register for all SPI bus transfers. This field is only updated between frames.                                                                                      |  |  |
|                | 000 Divide by 1.                                                                                                                                                                                                 |  |  |
|                | 001 Divide by 2.                                                                                                                                                                                                 |  |  |
|                | 010 Divide by 4.                                                                                                                                                                                                 |  |  |
|                | 011 Divide by 8.                                                                                                                                                                                                 |  |  |
|                | 100 Divide by 16.                                                                                                                                                                                                |  |  |
|                | 101 Divide by 32.                                                                                                                                                                                                |  |  |
|                | 110 Divide by 64. 111 Divide by 128.                                                                                                                                                                             |  |  |
|                | 11.17                                                                                                                                                                                                            |  |  |
| 26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                             |  |  |
| 25–24          | Peripheral Chip Select                                                                                                                                                                                           |  |  |
| PCS            | Configures the peripheral chip select used for the transfer. This field is only updated between frames.                                                                                                          |  |  |
|                | 00 Transfer using LPSPI_PCS[0]                                                                                                                                                                                   |  |  |
|                | 01 Transfer using LPSPI_PCS[1]                                                                                                                                                                                   |  |  |
|                | 10 Transfer using LPSPI_PCS[2]                                                                                                                                                                                   |  |  |
|                | 11 Transfer using LPSPI_PCS[3]                                                                                                                                                                                   |  |  |
| 23<br>LSBF     | LSB First                                                                                                                                                                                                        |  |  |
|                | 0 Data is transferred MSB first.                                                                                                                                                                                 |  |  |
|                | 1 Data is transferred LSB first.                                                                                                                                                                                 |  |  |
| 22<br>BYSW     | Byte Swap                                                                                                                                                                                                        |  |  |
|                | Byte swap will swap the contents of [31:24] with [7:0] and [23:16] with [15:8] for each transmit data word read from the FIFO and each received data word stored to the FIFO (or compared with match registers). |  |  |
|                | 0 Byte swap disabled.                                                                                                                                                                                            |  |  |
|                | Byte swap disabled.  Byte swap enabled.                                                                                                                                                                          |  |  |
| 21             | Continuous Transfer                                                                                                                                                                                              |  |  |
| CONT           |                                                                                                                                                                                                                  |  |  |
|                | In master mode, continuous transfer will keep the PCS asserted at the end of the frame size, until a command word is received that starts a new frame.                                                           |  |  |
|                | In slave mode, when continuous transfer is enabled the LPSPI will only transmit the first FRAMESZ bits, after which it will transmit received data assuming a 32-bit shift register.                             |  |  |

Table continues on the next page...

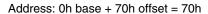
# LPSPI\_TCR field descriptions (continued)

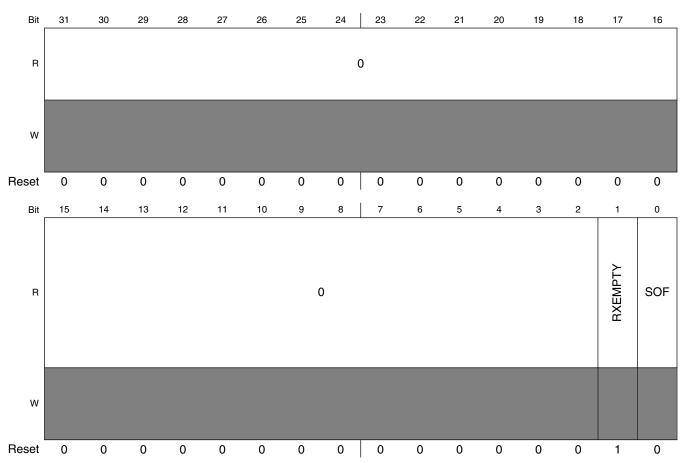

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | 0 Continuous transfer disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                   | 1 Continuous transfer enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 20<br>CONTC       | Continuing Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CONTO             | In master mode, this bit allows the command word to be changed within a continuous transfer. The initial command word must enable continuous transfer (CONT=1), the continuing command must set this bit (CONTC=1) and the continuing command word must be loaded on a frame size boundary. For example, if the continuous transfer has a frame size of 64-bits, then a continuing command word must be loaded on a 64-bit boundary.                                                                                                                    |  |
|                   | 0 Command word for start of new transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                   | 1 Command word for continuing transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 19                | Receive Data Mask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| RXMSK             | When set, receive data is masked (receive data is not stored in receive FIFO).                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                   | 0 Normal transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                   | 1 Receive data is masked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 18<br>TXMSK       | Transmit Data Mask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                   | When set, transmit data is masked (no data is loaded from transmit FIFO and output pin is tristated). In master mode, this bit will initiate a new transfer which cannot be aborted by another command word and the bit will be cleared by hardware at the end of the transfer.                                                                                                                                                                                                                                                                         |  |
|                   | 00 Normal transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                   | 01 Mask transmit data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 17–16             | Transfer Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| WIDTH             | Either RXMSK or TXMSK must be set for 2-bit or 4-bit transfers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                   | 00 Single bit transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                   | 01 Two bit transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                   | 10 Four bit transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                   | 11 Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 15–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| FRAMESZ           | Frame Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                   | Configures the frame size in number of bits equal to (FRAMESZ + 1). The minimum frame size is 8 bits. If the frame size is larger than 32 bits, data will be loaded from the transmit FIFO and stored to the receive FIFO every 32 bits. If the size of the transfer word is not divisible by 32, then the last load of the transmit FIFO and store of the receive FIFO will contain the remainder bits (e.g.: a 72-bit transfer will load/store 32-bits from the FIFO and then another 32-bits from the FIFO and then the final 8-bits from the FIFO). |  |

KL28Z Reference Manual, Rev. 4, 06/2016

# 29.2.15 Transmit Data Register (LPSPI\_TDR)

Writes to either the Transmit Command Register or Transmit Data Register will push the data into the transmit FIFO in the order it was written.


Address: 0h base + 64h offset = 64h



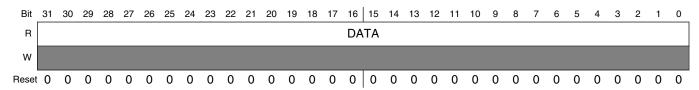

## LPSPI\_TDR field descriptions

| Field | Description                                                                                                                              |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | Transmit Data  Both 8-bit and 16-bit writes of transmit data will zero extend the data written and push the data into the transmit FIFO. |  |

# 29.2.16 Receive Status Register (LPSPI\_RSR)






## LPSPI\_RSR field descriptions

| Field    | Description                                                                    |  |
|----------|--------------------------------------------------------------------------------|--|
| 31–2     | This field is reserved.                                                        |  |
| Reserved | This read-only field is reserved and always has the value 0.                   |  |
| 1        | RX FIFO Empty                                                                  |  |
| RXEMPTY  |                                                                                |  |
|          | 0 RX FIFO is not empty.                                                        |  |
|          | 1 RX FIFO is empty.                                                            |  |
| 0        | Start Of Frame                                                                 |  |
| SOF      |                                                                                |  |
|          | Indicates that this is the first data word received after LPSPI_PCS assertion. |  |
|          | 0 Subsequent data word received after LPSPI_PCS assertion.                     |  |
|          | 1 First data word received after LPSPI_PCS assertion.                          |  |

KL28Z Reference Manual, Rev. 4, 06/2016

## 29.2.17 Receive Data Register (LPSPI\_RDR)

Address: 0h base + 74h offset = 74h



#### LPSPI\_RDR field descriptions

| Field | Description Description |  |
|-------|-------------------------|--|
| DATA  | Receive Data            |  |

# 29.3 Functional description

# 29.3.1 Clocking and Resets

## 29.3.1.1 Functional clock

The LPSPI functional clock is asynchronous to the bus clock and can remain enabled in low power modes to support SPI bus transfers in both master and slave modes. If the functional clock is disabled in slave mode, the LPSPI can transfer a single word before the functional clock needs to be enabled. The LPSPI divides the functional clock by a prescaler and the resulting frequency must be at least two times faster than the SPI clock frequency.

## 29.3.1.2 External clock

The LPSPI shift register is clocked directly by the external pins. This allows the LPISPI slave to remain operational in low power modes, even when the LPSPI functional clock is disabled, although this is limited to a single word transfer.

#### 29.3.1.3 Bus clock

The bus clock is only used for bus accesses to the control and configuration registers. The bus clock frequency must be sufficient to support the data bandwidth requirements of the LPSPI registers, including FIFOs.

# 29.3.1.4 Chip reset

The logic and registers for the LPSPI are reset to their default state on a chip reset.

#### 29.3.1.5 Software reset

The LPSPI implements a software reset bit in the Control Register. The MCR[RST] will reset all logic and registers to their default state, except for the MCR itself.

#### 29.3.1.6 FIFO reset

The LPSPI implements write-only control bits that resets the transmit/command FIFO (MCR[RTF] and receive FIFO (MCR[RRF]). A FIFO is empty after being reset.

## 29.3.2 Master Mode

# 29.3.2.1 Transmit and Command FIFO

The transmit and command FIFO is a combined FIFO that includes both transmit data and command words. Command words are stored to the transmit/command FIFO by writing the transmit command register. Transmit data words are stored to the transmit/command FIFO by writing the transmit data register.

When a command word is at the top of the transmit/command FIFO, the following actions can occur:

- If the LPSPI is between frames, the command word is pulled from the FIFO and controls all subsequent transfers.
- If the LPSPI is busy and either the existing CONT bit is clear or the new CONTC value is clear, the SPI frame will complete at the end of the existing word, ignoring

#### **Functional description**

- the FRAMESZ configuration. The command word is then pulled from the FIFO and controls all subsequent transfers (or until the next update to the command word).
- If the LPSPI is busy and the existing CONT bit is set and the new CONTC value is set, the command word is pulled from the FIFO during the last LPSPI\_SCK pulse of the existing frame (based on FRAMESZ configuration) and the frame continues using the new command value for the rest of the frame (or until the next update to the command word). When CONTC is set, only the lower 24-bits of the command word are updated.

The current state of the existing command word can be read by reading the transmit command register. It requires at least three LPSPI functional clock cycles for the transmit command register to update after it is written (assuming an empty FIFO) and the LPSPI must be enabled (MCR[MEN] is set).

Writing the transmit command register does not initiate a SPI bus transfer, unless the TXMSK bit is set. When TXMSK is set, a new command word will not be loaded until the end of the existing frame (based on FRAMESZ configuration) and the TXMSK bit will be cleared at the end of the transfer.

The following table describes the attributes that are controlled by the command word.

Description **Modify During Transfer Field CPOL** Configures polarity of the LPSPI\_SCK pin. Any change of CPOL value will cause a transition on the LPSPI SCK pin. **CPHA** Configures clock phase of transfer. Ν **PRESCALE** Ν Configures prescaler used to divide the LPSPI functional clock to generate the timing parameters of the SPI bus transfer. Changing PRESCALE in conjunction with PCS allows the LPSPI to connect to different slave devices at different frequencies. **PCS** Configures which LPSPI PCS asserts Ν for the transfer, the polarity of LPSPI\_PCS is static and configured by PCSPOL. If PCSCFG is set, then PCS[3:2] should not be selected. Configures if LSB (bit 0) or MSB (bit 31 Υ **LSBF** for a 32-bit word) is transmitted/received first. **BYSW** Υ Enables byte swap on each 32-bit word when transmitting and receiving data. Can be useful when interfacing to devices that organize data as big endean.

Table 29-2. LPSPI Command Word

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 29-2. LPSPI Command Word (continued)

| Field   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modify During Transfer |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| CONT    | Configures for a continuous transfer that keeps PCS asserted between frames (as configured by FRAMESZ). A new command word is required to cause PCS to negate. Also supports changing the command word at frame size boundaries.                                                                                                                                                                                                                                                                                         | Y                      |
| CONTC   | Indicates this is a new command word for the existing continuous transfer. This bit is ignored when not written to the transmit/command FIFO on a frame boundary.                                                                                                                                                                                                                                                                                                                                                        | Y                      |
| RXMSK   | Masks the receive data and does not store to the receive FIFO or perform receive data matching. Useful for half-duplex transfers or to configure which fields are compared during receive data matching.                                                                                                                                                                                                                                                                                                                 | Y                      |
| TXMSK   | Masks the transmit data, so that data is not pulled from transmit FIFO and the output data pin is tristated (unless configured by OUTCFG). Useful for half-duplex transfers.                                                                                                                                                                                                                                                                                                                                             | Y                      |
| WIDTH   | Configures the number of bits shifted on each LPSPI_SCK pulse. Single bit transfers support traditional SPI bus transfers in either half-duplex or full-duplex data formats. Two and four bit transfers are useful for interfacing to QuadSPI memory devices and only support half-duplex data formats (at least one of TXMSK or RXMSK must also be set).                                                                                                                                                                | Y                      |
| FRAMESZ | Configures the number of bits in each frame to FRAMESZ+1. The minimum frame size is 8-bits and the maximum frame size is 4096-bits. If the frame size is less than or equal to 32-bits, the word size and frame size are identical. If the frame size is greater than 32-bits, then the word size is 32-bits for each word except the last (the last word contains the remainder bits if the frame size is not divisible by 32). The minimum word size is 2-bits, a frame size of 33-bits (or similar) is not supported. | Y                      |

The LPSPI initiates a SPI bus transfer when data is written to the transmit FIFO, the HREQ pin is asserted (or disabled) and the LPSPI is enabled. The SPI bus transfer uses the attributes configured in the transmit command register and timing parameters from the clock configuration register to perform the transfer. The SPI bus transfer ends once

#### **Functional description**

the FRAMESZ configuration is reached, or at the end of a word when a new transmit command word is at the top of the transmit/command FIFO. The HREQ input is only checked the next time the LPSPI goes idle (completes the current transfer and transmit/command register is empty).

The transmit/command FIFO also supports a Circular FIFO feature. This allows the LPSPI master to (periodically) repeat a short data transfer that can fit within the transmit/command FIFO, without requiring additional FIFO accesses. When the circular FIFO is enabled, the current state of the FIFO read pointer is saved and the status flags do not update. Once the transmit/command FIFO is considered empty and the LPSPI is idle, the FIFO read pointer is restored with the saved version, so the contents of the transmit/command FIFO are not permanently pulled from the FIFO while circular FIFO mode is enabled.

## 29.3.2.2 Receive FIFO and Data Match

The receive FIFO is used to store receive data during SPI bus transfers. When RXMSK is set, receive data is discarded instead of storing in the receive FIFO.

Receive data supports a receive data match function that can match received data against one of two words or against a masked data word. The data match function can also be configured to compare only the first one or two received data words since the start of the frame. Receive data that is already discarded due to RXMSK bit cannot cause the data match to set and will delay the match on first received data word until after all discarded data is received. The receiver match function can also be configured to discard all receive data until a data match is detected, using the MCFGR0[RDMO] control bit. When clearing the MCFGR0[RDMO] control bit following a data match, clear MCFGR0[RDMO] before clearing MSR[DMF] to allow all subsequent data to be received.

## 29.3.2.3 Timing Parameters

The following table lists the timing parameters that are used for all SPI bus transfers, these timing parameters are relative to the LPSPI functional clock divided by the PRESCALE configuration. Although the Clock Configuration Register cannot be changed when the LPSPI is busy, the PRESCALE configuration can be altered between transfers using the command register, to support interfacing to different slave devices at different frequencies.

**Table 29-3. LPSPI Timing Parameters** 

| Field  | Description                                                                                                                                                                                                                                                              | Min          | Max              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| SCKDIV | Configures the LPSPI_SCK clock period to (SCKDIV+2) cycles. When configured to an odd number of cycles, the first half of the LPSPI_SCK cycle is one cycle longer than the second half.                                                                                  | 0 (2 cycles) | 255 (257 cycles) |
| DBT    | Configures the minimum delay between PCS negation and the next PCS assertion to (DBT + 2) cycles. When the command word is updated between transfers, there is a minimum of (DBT/2)+1 cycles between the command word update and any change on LPSPI_PCS pins.           | 0 (2 cycles) | 255 (257 cycles) |
| DBT    | Configures the delay during a continuous transfer between the last SCK edge of a frame and the first SCK edge of the continuing frame to (DBT + 1) cycles. This is useful where the external slave requires a large delay between different words of a SPI bus transfer. | 0 (1 cycle)  | 255 (256 cycles) |
| PCSSCK | Configures the minimum delay between PCS assertion and the first SCK edge to (PCSSCK + 1) cycles.                                                                                                                                                                        | 0 (1 cycle)  | 255 (256 cycles) |
| SCKPCS | Configures the minimum delay between the last SCK edge and the PCS assertion to (SCKPCS + 1) cycles.                                                                                                                                                                     | 0 (1 cycle)  | 255 (256 cycles) |

# 29.3.2.4 Pin Configuration

The LPSPI\_SIN and LPSPI\_SOUT pins can be configured via the PINCFG configuration to swap directions or even support half-duplex transfers on the same pin.

The OUTCFG configuration can be used to determine if output data pin (eg: LPSPI\_SOUT) will tristate when the LPSPI\_PCS is negated, or if it will simply retain the last value. When configuring for half-duplex transfers using the same data pin in single bit transfer mode, or any transfer in 2-bit and 4-bit transfer modes, then the output data pins must be configured to tristate when LPSPI\_PCS is negated.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 777

#### **Functional description**

The PCSCFG configuration is used to disable LPSPI\_PCS[3:2] functions and to use them for quad-data transfers. This option must be enabled when performing quad-data transfers.

#### 29.3.3 Slave Mode

LPSPI slave mode uses the same shift register and logic as the master mode, but does not use the clock configuration register and the transmit command register must remain static during SPI bus transfers.

#### 29.3.3.1 Transmit and Command FIFO

The transmit command register should be initialized before enabling the LPSPI in slave mode, although the command register will not update until after the LPSPI is enabled. Once enabled, the transmit command register should only be changed if the LPSPI is idle. The following table lists how the command register functions in slave mode.

Table 29-4. LPSPI Command Word in Slave Mode

| Field    | Description                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPOL     | Configures polarity of the external LPSPI_SCK input.                                                                                                                                                                                                 |
| СРНА     | Configures clock phase of transfer.                                                                                                                                                                                                                  |
| PRESCALE | Configures LPSPI functional clock prescaler.                                                                                                                                                                                                         |
| PCS      | Configures which LPSPI_PCS is used, the polarity of LPSPI_PCS is static and configured by PCSPOL. If PCSCFG is set, then PCS[3:2] should not be selected.                                                                                            |
| LSBF     | Configures if LSB (bit 0) or MSB (bit 31 for a 32-bit word) is transmitted/received first.                                                                                                                                                           |
| BYSW     | Enables byte swap on each 32-bit word when transmitting and receiving data. Can be useful when interfacing to devices that organize data as big endean.                                                                                              |
| CONT     | When set, only the first FRAMSZ bits will be transmitted/<br>received by the LPSPI.                                                                                                                                                                  |
| CONTC    | This bit is reserved in slave mode.                                                                                                                                                                                                                  |
| RXMSK    | Masks the receive data and does not store to the receive FIFO or perform receive data matching. Useful for half-duplex transfers or to configure which fields are compared during receive data matching.                                             |
| TXMSK    | Masks the transmit data, so that data is not pulled from transmit FIFO and the output data pin is tristated (unless configured by OUTCFG). Useful for half-duplex transfers.                                                                         |
| WIDTH    | Configures the number of bits shifted on each LPSPI_SCK pulse. Single bit transfers support traditional SPI bus transfers in either half-duplex or full-duplex data formats. Two and four bit transfers are useful for interfacing to QuadSPI memory |

Table continues on the next page...

Table 29-4. LPSPI Command Word in Slave Mode (continued)

| Field   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | devices and only support half-duplex data formats (at least one of TXMSK or RXMSK must also be set).                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FRAMESZ | Configures the number of bits in each frame to FRAMESZ+1.\ The minimum frame size is 8-bits and the maximum frame size is 4096-bits. If the frame size is less than or equal to 32-bits, the word size and frame size are identical. If the frame size is greater than 32-bits, then the word size is 32-bits for each word except the last (the last word contains the remainder bits if the frame size is not divisible by 32). The minimum word size is 2-bits, a frame size of 33-bits (or similar) is not supported. |

The transmit FIFO must be filled with transmit data before the LPSPI\_PCS input asserts, otherwise the transmit error flag will set.

#### 29.3.3.2 Receive FIFO and Data Match

The receive FIFO is used to store receive data during SPI bus transfers. When RXMSK is set, receive data is discarded instead of storing in the receive FIFO.

Receive data supports a receive data match function that can match received data against one of two words or against a masked data word. The data match function can also be configured to compare only the first one or two received data words since the start of the frame. Receive data that is already discarded due to RXMSK bit cannot cause the data match to set and will delay the match on first received data word until after all discarded data is received. The receiver match function can also be configured to discard all receive data until a data match is detected, using the MCFGR0[RDMO] control bit. When clearing the MCFGR0[RDMO] control bit following a data match, clear MCFGR0[RDMO] before clearing MSR[DMF] to allow all subsequent data to be received.

## 29.3.3.3 Clocked Interface

The LPSPI supports interfacing to external masters that provide only clock and data pins (LPSPI\_PCS is not required). This requires using CPHA=1, configuring the LPSPI\_PCS input to be always asserted (configure PCSPOL) and setting the AUTOPCS bit. When AUTOPCS is set, a minimum of four LPSPI functional clock cycles (divided by PRESCALE configuration) is required between the last LPSPI\_SCK edge of one word and the first LPSPI\_SCK edge of the next word.

NXP Semiconductors

779

#### 29.3.4 **Interrupts and DMA Requests**

The following table illustrates the status flags that can generate the LPSPI interrupt and LPSPI transmit/receive DMA requests.

Table 29-5. LPSPI Interrupts and DMA Requests

| Flag | Description                                                                                                               | Interrupt | DMA Request | Low Power Wakeup |
|------|---------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------------------|
| TDF  | Data can be written to transmit FIFO, as configured by TXWATER.                                                           | Y         | ТХ          | Y                |
| RDF  | Data can be read from<br>the receive FIFO, as<br>configured by<br>RXWATER.                                                | Y         | RX          | Y                |
| WCF  | Word complete, last bit of word has been sampled.                                                                         | Y         | N           | Y                |
| FCF  | Frame complete, PCS has negated .                                                                                         | Υ         | N           | Y                |
| TCF  | Transfer complete, PCS has negated and transmit/command FIFO is empty.                                                    | Y         | N           | Y                |
| TEF  | Transmit error flag, indicates transmit/ command FIFO underrun. This bit cannot set in master mode when NOSTALL is clear. | Y         | N           | Υ                |
| REF  | Receive error flag, indicates receive FIFO overflow. This bit cannot set in master mode when NOSTALL is clear.            | Y         | N           | Y                |
| DMF  | Data match flag,<br>received data has<br>matched the configured<br>data match value.                                      | Y         | N           | Y                |
| MBF  | LPSPI is busy performing a SPI bus transfer.                                                                              | N         | N           | N                |

KL28Z Reference Manual, Rev. 4, 06/2016 780 **NXP Semiconductors** 

# 29.3.5 Peripheral Triggers

The connection of the LPSPI peripheral triggers with other peripherals are device specific.

# 29.3.5.1 Output Triggers

The LPSPI generates two output triggers that can be connected to other peripherals on the device. The frame output trigger asserts at the end of each frame (when PCS negates) and remains asserted until PCS next asserts. The word output trigger asserts at the end of each received word and remains asserted for one LPSPI\_SCK period.

# 29.3.5.2 Input Trigger

The LPSPI input trigger can be selected in place of the LPSPI\_HREQ input to control the start of a LPSPI bus transfer. The input trigger must assert for longer than one LPSPI functional clock cycle to be detected.

# 29.4 Application Information

**Application Information** 

# **Chapter 30 Low-Power Timer (LPTMR)**

## 30.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

## 30.1.1 Features

The features of the LPTMR module include:

- 16-bit time counter or pulse counter with compare
  - Optional interrupt can generate asynchronous wakeup from any low-power mode
  - Hardware trigger output
  - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter
  - Rising-edge or falling-edge

# 30.1.2 Modes of operation

The following table describes the operation of the LPTMR module in various modes.

Table 30-1. Modes of operation

| Modes       | Description                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------|
| Run         | The LPTMR operates normally.                                                                                                 |
| Wait        | The LPTMR continues to operate normally and can be configured to exit the low-power mode by generating an interrupt request. |
| Stop        | The LPTMR continues to operate normally and can be configured to exit the low-power mode by generating an interrupt request. |
| Low-Leakage | The LPTMR continues to operate normally and can be configured to exit the low-power mode by generating an interrupt request. |
| Debug       | The LPTMR operates normally in Pulse Counter mode, but the counter does not increment in Time Counter mode.                  |

# 30.2 LPTMR signal descriptions

Table 30-2. LPTMR signal descriptions

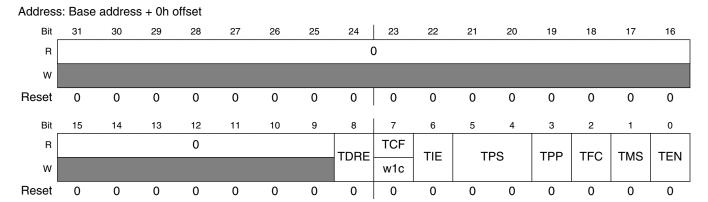
| Signal     | I/O | Description             |
|------------|-----|-------------------------|
| LPTMR_ALTn | I   | Pulse Counter Input pin |

# 30.2.1 Detailed signal descriptions

Table 30-3. LPTMR interface—detailed signal descriptions

| Signal     | I/O | Description                 |                                                                                                                       |
|------------|-----|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| LPTMR_ALTn | I   | Pulse Counter Input         |                                                                                                                       |
|            |     | The LPTMR can select one of | of the input pins to be used in Pulse Counter mode.                                                                   |
|            |     | State meaning               | Assertion—If configured for pulse counter mode with active-high input, then assertion causes the CNR to increment.    |
|            |     |                             | Deassertion—If configured for pulse counter mode with active-low input, then deassertion causes the CNR to increment. |
|            |     | Timing                      | Assertion or deassertion may occur at any time; input may assert asynchronously to the bus clock.                     |

# 30.3 Memory map and register definition


#### NOTE

The LPTMR registers are reset only on a POR or LVD event. See LPTMR power and reset for more details.

#### **LPTMR** memory map

| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4003_4000                    | Low Power Timer Control Status Register (LPTMR0_CSR) | 32                 | R/W    | 0000_0000h  | 30.3.1/785       |
| 4003_4004                    | Low Power Timer Prescale Register (LPTMR0_PSR)       | 32                 | R/W    | 0000_0000h  | 30.3.2/787       |
| 4003_4008                    | Low Power Timer Compare Register (LPTMR0_CMR)        | 32                 | R/W    | 0000_0000h  | 30.3.3/788       |
| 4003_400C                    | Low Power Timer Counter Register (LPTMR0_CNR)        | 32                 | R/W    | 0000_0000h  | 30.3.4/789       |
| 400B_5000                    | Low Power Timer Control Status Register (LPTMR1_CSR) | 32                 | R/W    | 0000_0000h  | 30.3.1/785       |
| 400B_5004                    | Low Power Timer Prescale Register (LPTMR1_PSR)       | 32                 | R/W    | 0000_0000h  | 30.3.2/787       |
| 400B_5008                    | Low Power Timer Compare Register (LPTMR1_CMR)        | 32                 | R/W    | 0000_0000h  | 30.3.3/788       |
| 400B_500C                    | Low Power Timer Counter Register (LPTMR1_CNR)        | 32                 | R/W    | 0000_0000h  | 30.3.4/789       |

# 30.3.1 Low Power Timer Control Status Register (LPTMRx\_CSR)



#### LPTMRx CSR field descriptions

| Field            | Description                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–9<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                            |
| 8<br>TDRE        | Timer DMA Request Enable  When TDRE is set, the LPTMR DMA Request is generated whenever TCF is also set and the TCF is cleared when the DMA Controller is done. |

Table continues on the next page...

NXP Semiconductors 785

#### KL28Z Reference Manual, Rev. 4, 06/2016

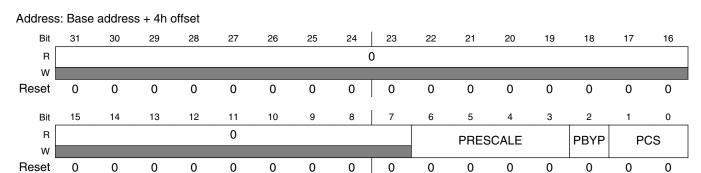
## Memory map and register definition

# LPTMRx\_CSR field descriptions (continued)

| Field    | Description                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0 Timer DMA Request disabled.                                                                                                                            |
|          | 1 Timer DMA Request enabled.                                                                                                                             |
| 7        | Timer Compare Flag                                                                                                                                       |
| TCF      |                                                                                                                                                          |
|          | TCF is set when the LPTMR is enabled and the CNR equals the CMR and increments. TCF is cleared when the LPTMR is disabled or a logic 1 is written to it. |
|          | 0 The value of CNR is not equal to CMR and increments.                                                                                                   |
|          | 1 The value of CNR is equal to CMR and increments.                                                                                                       |
| 6        | Timer Interrupt Enable                                                                                                                                   |
| TIE      | When TIE is set, the LPTMR Interrupt is generated whenever TCF is also set.                                                                              |
|          | 0 Timer interrupt disabled.                                                                                                                              |
|          | 1 Timer interrupt enabled.                                                                                                                               |
| 5–4      | Timer Pin Select                                                                                                                                         |
| TPS      |                                                                                                                                                          |
|          | Configures the input source to be used in Pulse Counter mode. TPS must be altered only when the                                                          |
|          | LPTMR is disabled. The input connections vary by device. See the chip configuration information about connections to these inputs.                       |
|          | connections to these inputs.                                                                                                                             |
|          | 00 Pulse counter input 0 is selected.                                                                                                                    |
|          | 01 Pulse counter input 1 is selected.                                                                                                                    |
|          | 10 Pulse counter input 2 is selected.                                                                                                                    |
|          | 11 Pulse counter input 3 is selected.                                                                                                                    |
| 3<br>TPP | Timer Pin Polarity                                                                                                                                       |
| ""       | Configures the polarity of the input source in Pulse Counter mode. TPP must be changed only when the LPTMR is disabled.                                  |
|          | 0 Pulse Counter input source is active-high, and the CNR will increment on the rising-edge.                                                              |
|          | 1 Pulse Counter input source is active-low, and the CNR will increment on the falling-edge.                                                              |
| 2        | Timer Free-Running Counter                                                                                                                               |
| TFC      |                                                                                                                                                          |
|          | When clear, TFC configures the CNR to reset whenever TCF is set. When set, TFC configures the CNR to                                                     |
|          | reset on overflow. TFC must be altered only when the LPTMR is disabled.                                                                                  |
|          | 0 CNR is reset whenever TCF is set.                                                                                                                      |
|          | 1 CNR is reset on overflow.                                                                                                                              |
| 1        | Timer Mode Select                                                                                                                                        |
| TMS      | Configures the mode of the LPTMR. TMS must be altered only when the LPTMR is disabled.                                                                   |
|          | Configures the filode of the LF Tivin. Tivio must be aftered only when the LF Tivin is disabled.                                                         |
|          | 0 Time Counter mode.                                                                                                                                     |
|          | 1 Pulse Counter mode.                                                                                                                                    |
| 0        | Timer Enable                                                                                                                                             |
| TEN      | When TEN is clear, it resets the LPTMR internal logic, including the CNR and TCF. When TEN is set, the                                                   |
|          | LPTMR is enabled. While writing 1 to this field, CSR[5:1] must not be altered.                                                                           |
|          | 0 LPTMR is disabled and internal logic is reset.                                                                                                         |
|          | 1 LPTMR is enabled.                                                                                                                                      |
|          |                                                                                                                                                          |

KL28Z Reference Manual, Rev. 4, 06/2016

0


#### Low Power Timer Prescale Register (LPTMRx\_PSR) 30.3.2

0

0

0

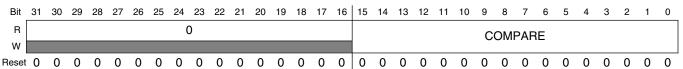
0



## LPTMRx\_PSR field descriptions

| Field            | Description                                                                                                                                                              |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31–7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                     |  |  |  |
| 6–3              | Prescale Value                                                                                                                                                           |  |  |  |
| PRESCALE         | Configures the size of the Prescaler in Time Counter mode or width of the glitch filter in Pulse Counter mode. PRESCALE must be altered only when the LPTMR is disabled. |  |  |  |
|                  | 0000 Prescaler divides the prescaler clock by 2; glitch filter does not support this configuration.                                                                      |  |  |  |
|                  | O001 Prescaler divides the prescaler clock by 4; glitch filter recognizes change on input pin after 2 risin clock edges.                                                 |  |  |  |
|                  | O010 Prescaler divides the prescaler clock by 8; glitch filter recognizes change on input pin after 4 risin clock edges.                                                 |  |  |  |
|                  | O011 Prescaler divides the prescaler clock by 16; glitch filter recognizes change on input pin after 8 rising clock edges.                                               |  |  |  |
|                  | O100 Prescaler divides the prescaler clock by 32; glitch filter recognizes change on input pin after 16 rising clock edges.                                              |  |  |  |
|                  | O101 Prescaler divides the prescaler clock by 64; glitch filter recognizes change on input pin after 32 rising clock edges.                                              |  |  |  |
|                  | O110 Prescaler divides the prescaler clock by 128; glitch filter recognizes change on input pin after 64 rising clock edges.                                             |  |  |  |
|                  | O111 Prescaler divides the prescaler clock by 256; glitch filter recognizes change on input pin after 128 rising clock edges.                                            |  |  |  |
|                  | 1000 Prescaler divides the prescaler clock by 512; glitch filter recognizes change on input pin after 256 rising clock edges.                                            |  |  |  |
|                  | 1001 Prescaler divides the prescaler clock by 1024; glitch filter recognizes change on input pin after 51 rising clock edges.                                            |  |  |  |
|                  | 1010 Prescaler divides the prescaler clock by 2048; glitch filter recognizes change on input pin after 1024 rising clock edges.                                          |  |  |  |
|                  | Prescaler divides the prescaler clock by 4096; glitch filter recognizes change on input pin after 2048 rising clock edges.                                               |  |  |  |
|                  | Prescaler divides the prescaler clock by 8192; glitch filter recognizes change on input pin after 4096 rising clock edges.                                               |  |  |  |
|                  | Prescaler divides the prescaler clock by 16,384; glitch filter recognizes change on input pin after 8192 rising clock edges.                                             |  |  |  |

Table continues on the next page...

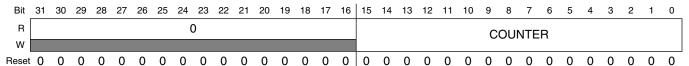

#### Memory map and register definition

## LPTMRx\_PSR field descriptions (continued)

| Field     | Description                                                                                                                                                                                                                                                                            |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | Prescaler divides the prescaler clock by 32,768; glitch filter recognizes change on input pin after 16,384 rising clock edges.                                                                                                                                                         |  |
|           | Prescaler divides the prescaler clock by 65,536; glitch filter recognizes change on input pin after 32,768 rising clock edges.                                                                                                                                                         |  |
| 2<br>PBYP | Prescaler Bypass                                                                                                                                                                                                                                                                       |  |
|           | When PBYP is set, the selected prescaler clock in Time Counter mode or selected input source in Pulse Counter mode directly clocks the CNR. When PBYP is clear, the CNR is clocked by the output of the prescaler/glitch filter. PBYP must be altered only when the LPTMR is disabled. |  |
|           | 0 Prescaler/glitch filter is enabled.                                                                                                                                                                                                                                                  |  |
|           | 1 Prescaler/glitch filter is bypassed.                                                                                                                                                                                                                                                 |  |
| PCS       | Prescaler Clock Select                                                                                                                                                                                                                                                                 |  |
|           | Selects the clock to be used by the LPTMR prescaler/glitch filter. PCS must be altered only when the LPTMR is disabled. The clock connections vary by device.                                                                                                                          |  |
|           | NOTE: See the chip configuration details for information on the connections to these inputs.                                                                                                                                                                                           |  |
|           | 00 Prescaler/glitch filter clock 0 selected.                                                                                                                                                                                                                                           |  |
|           | 01 Prescaler/glitch filter clock 1 selected.                                                                                                                                                                                                                                           |  |
|           | 10 Prescaler/glitch filter clock 2 selected.                                                                                                                                                                                                                                           |  |
|           | 11 Prescaler/glitch filter clock 3 selected.                                                                                                                                                                                                                                           |  |

# 30.3.3 Low Power Timer Compare Register (LPTMRx\_CMR)

Address: Base address + 8h offset




#### LPTMRx\_CMR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                               |
| COMPARE           | Compare Value  When the LPTMR is enabled and the CNR equals the value in the CMR and increments, TCF is set and the hardware trigger asserts until the next time the CNR increments. If the CMR is 0, the hardware trigger will remain asserted until the LPTMR is disabled. If the LPTMR is enabled, the CMR must be altered only |
|                   | when TCF is set.                                                                                                                                                                                                                                                                                                                   |

## 30.3.4 Low Power Timer Counter Register (LPTMRx\_CNR)

Address: Base address + Ch offset



#### LPTMRx CNR field descriptions

| Field    | Description                                                                                        |  |
|----------|----------------------------------------------------------------------------------------------------|--|
| 31–16    | This field is reserved.                                                                            |  |
| Reserved | This read-only field is reserved and always has the value 0.                                       |  |
| COUNTER  | Counter Value                                                                                      |  |
|          | The CNR returns the current value of the LPTMR counter at the time this register was last written. |  |

# 30.4 Functional description

# 30.4.1 LPTMR power and reset

The LPTMR remains powered in all power modes, including low-leakage modes. If the LPTMR is not required to remain operating during a low-power mode, then it must be disabled before entering the mode.

The LPTMR is reset only on global Power On Reset (POR) or Low Voltage Detect (LVD). When configuring the LPTMR registers, the CSR must be initially written with the timer disabled, before configuring the PSR and CMR. Then, CSR[TIE] must be set as the last step in the initialization. This ensures the LPTMR is configured correctly and the LPTMR counter is reset to zero following a warm reset.

# 30.4.2 LPTMR clocking

The LPTMR prescaler/glitch filter can be clocked by one of the four clocks. The clock source must be enabled before the LPTMR is enabled.

#### **NOTE**

The clock source selected may need to be configured to remain enabled in low-power modes, otherwise the LPTMR will not operate during low-power modes.

#### **Functional description**

In Pulse Counter mode with the prescaler/glitch filter bypassed, the selected input source directly clocks the CNR and no other clock source is required. To minimize power in this case, configure the prescaler clock source for a clock that is not toggling.

#### NOTE

The clock source or pulse input source selected for the LPTMR should not exceed the frequency  $f_{LPTMR}$  defined in the device datasheet.

# 30.4.3 LPTMR prescaler/glitch filter

The LPTMR prescaler and glitch filter share the same logic which operates as a prescaler in Time Counter mode and as a glitch filter in Pulse Counter mode.

#### **NOTE**

The prescaler/glitch filter configuration must not be altered when the LPTMR is enabled.

## 30.4.3.1 Prescaler enabled

In Time Counter mode, when the prescaler is enabled, the output of the prescaler directly clocks the CNR. When the LPTMR is enabled, the CNR will increment every  $2^2$  to  $2^{16}$  prescaler clock cycles. After the LPTMR is enabled, the first increment of the CNR will take an additional one or two prescaler clock cycles due to synchronization logic.

# 30.4.3.2 Prescaler bypassed

In Time Counter mode, when the prescaler is bypassed, the selected prescaler clock increments the CNR on every clock cycle. When the LPTMR is enabled, the first increment will take an additional one or two prescaler clock cycles due to synchronization logic.

## 30.4.3.3 Glitch filter

In Pulse Counter mode, when the glitch filter is enabled, the output of the glitch filter directly clocks the CNR. When the LPTMR is first enabled, the output of the glitch filter is asserted, that is, logic 1 for active-high and logic 0 for active-low. The following table shows the change in glitch filter output with the selected input source.

| If                                                                                                                                   | Then                                         |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| The selected input source remains deasserted for at least 2 <sup>1</sup> to 2 <sup>15</sup> consecutive prescaler clock rising edges | The glitch filter output will also deassert. |
| The selected input source remains asserted for at least 2 <sup>1</sup> to 2 <sup>15</sup> consecutive prescaler clock rising-edges   | The glitch filter output will also assert.   |

#### NOTE

The input is only sampled on the rising clock edge.

The CNR will increment each time the glitch filter output asserts. In Pulse Counter mode, the maximum rate at which the CNR can increment is once every  $2^2$  to  $2^{16}$  prescaler clock edges. When first enabled, the glitch filter will wait an additional one or two prescaler clock edges due to synchronization logic.

# 30.4.3.4 Glitch filter bypassed

In Pulse Counter mode, when the glitch filter is bypassed, the selected input source increments the CNR every time it asserts. Before the LPTMR is first enabled, the selected input source is forced to be asserted. This prevents the CNR from incrementing if the selected input source is already asserted when the LPTMR is first enabled.

## 30.4.4 LPTMR compare

When the CNR equals the value of the CMR and increments, the following events occur:

- CSR[TCF] is set.
- LPTMR interrupt is generated if CSR[TIE] is also set.
- LPTMR hardware trigger is generated.
- CNR is reset if CSR[TFC] is clear.

When the LPTMR is enabled, the CMR can be altered only when CSR[TCF] is set. When updating the CMR, the CMR must be written and CSR[TCF] must be cleared before the LPTMR counter has incremented past the new LPTMR compare value.

### 30.4.5 LPTMR counter

The CNR increments by one on every:

- Prescaler clock in Time Counter mode with prescaler bypassed
- Prescaler output in Time Counter mode with prescaler enabled
- Input source assertion in Pulse Counter mode with glitch filter bypassed
- Glitch filter output in Pulse Counter mode with glitch filter enabled

The CNR is reset when the LPTMR is disabled or if the counter register overflows. If CSR[TFC] is cleared, then the CNR is also reset whenever CSR[TCF] is set.

When the core is halted in Debug mode:

- If configured for Pulse Counter mode, the CNR continues incrementing.
- If configured for Time Counter mode, the CNR stops incrementing.

The CNR cannot be initialized, but can be read at any time. On each read of the CNR, software must first write to the CNR with any value. This will synchronize and register the current value of the CNR into a temporary register. The contents of the temporary register are returned on each read of the CNR.

When reading the CNR, the bus clock must be at least two times faster than the rate at which the LPTMR counter is incrementing, otherwise incorrect data may be returned.

# 30.4.6 LPTMR hardware trigger

The LPTMR hardware trigger asserts at the same time the CSR[TCF] is set and can be used to trigger hardware events in other peripherals without software intervention. The hardware trigger is always enabled.

| When                                    | Then                                                                                                       |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|
| The CMR is set to 0 with CSR[TFC] clear | The LPTMR hardware trigger will assert on the first compare and does not deassert.                         |
|                                         | The LPTMR hardware trigger will assert on each compare and deassert on the following increment of the CNR. |

# 30.4.7 LPTMR interrupt

The LPTMR interrupt is generated whenever CSR[TIE] and CSR[TCF] are set. CSR[TCF] is cleared by disabling the LPTMR or by writing a logic 1 to it.

CSR[TIE] can be altered and CSR[TCF] can be cleared while the LPTMR is enabled.

The LPTMR interrupt is generated asynchronously to the system clock and can be used to generate a wakeup from any low-power mode, including the low-leakage modes, provided the LPTMR is enabled as a wakeup source.

Functional description

KL28Z Reference Manual, Rev. 4, 06/2016

# Chapter 31 Low Power Universal Asynchronous Receiver/ Transmitter (LPUART)

#### 31.1 Introduction

#### **31.1.1 Features**

Features of the LPUART module include:

- Full-duplex, standard non-return-to-zero (NRZ) format
- Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4x to 32x
- Transmit and receive baud rate can operate asynchronous to the bus clock:
  - Baud rate can be configured independently of the bus clock frequency
  - Supports operation in Stop modes
- Interrupt, DMA or polled operation:
  - Transmit data register empty and transmission complete
  - Receive data register full
  - Receive overrun, parity error, framing error, and noise error
  - Idle receiver detect
  - Active edge on receive pin
  - Break detect supporting LIN
  - Receive data match
- Hardware parity generation and checking
- Programmable 8-bit, 9-bit or 10-bit character length
- Programmable 1-bit or 2-bit stop bits
- Three receiver wakeup methods:
  - Idle line wakeup
  - Address mark wakeup
  - Receive data match
- Automatic address matching to reduce ISR overhead:

#### Introduction

- Address mark matching
- Idle line address matching
- Address match start, address match end
- Optional 13-bit break character generation / 11-bit break character detection
- Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters
- Selectable transmitter output and receiver input polarity
- Hardware flow control support for request to send (RTS) and clear to send (CTS) signals
- Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width
- Independent FIFO structure for transmit and receive
  - Separate configurable watermark for receive and transmit requests
  - Option for receiver to assert request after a configurable number of idle characters if receive FIFO is not empty

## 31.1.2 Modes of operation

## 31.1.2.1 Stop mode

The LPUART will remain functional during Stop mode, provided the asynchronous transmit and receive clock remains enabled. The LPUART can generate an interrupt or DMA request to cause a wakeup from Stop mode.

#### 31.1.2.2 Wait mode

The LPUART can be configured to Stop in Wait modes, when the DOZEEN bit is set. The transmitter and receiver will finish transmitting/receiving the current word.

### 31.1.2.3 Debug mode

The LPUART remains functional in debug mode.

# 31.1.3 Signal Descriptions

| Signal     | Description                                                                                                                                                                               | I/O |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| LPUART_TX  | Transmit data. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or transmit direction is configured for receive data. | 1/0 |
| LPUART_RX  | Receive data.                                                                                                                                                                             | I . |
| LPUART_CTS | Clear to send.                                                                                                                                                                            | I   |
| LPUART_RTS | Request to send.                                                                                                                                                                          | 0   |

# 31.1.4 Block diagram

The following figure shows the transmitter portion of the LPUART.

#### Introduction

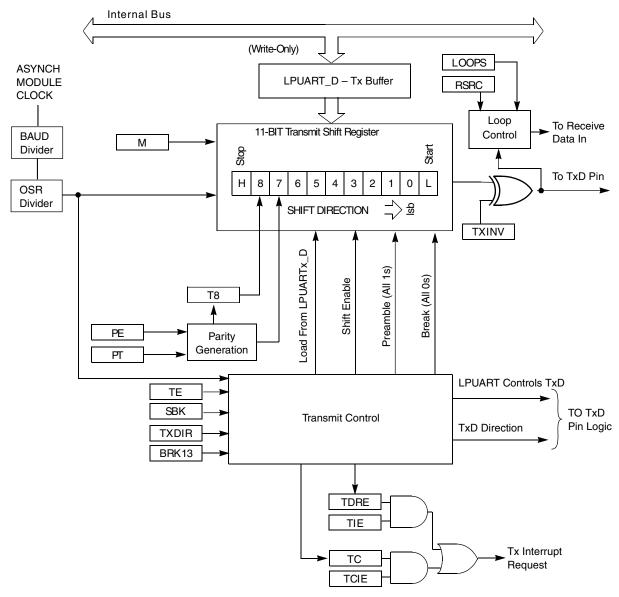



Figure 31-1. LPUART transmitter block diagram

The following figure shows the receiver portion of the LPUART.

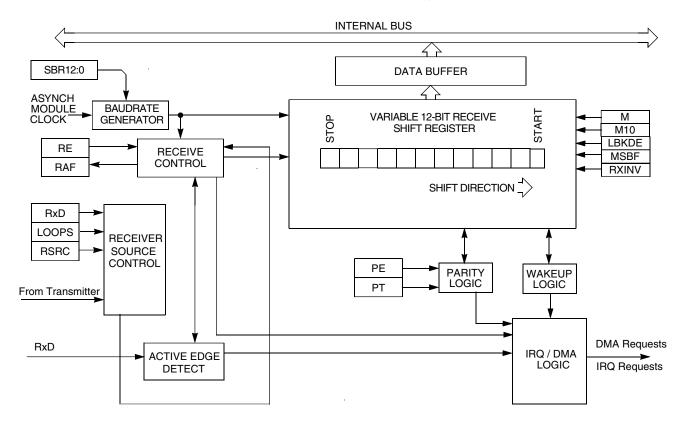



Figure 31-2. LPUART receiver block diagram

## 31.2 Register definition

20

The LPUART includes registers to control baud rate, select LPUART options, report LPUART status, and for transmit/receive data. Access to an address outside the valid memory map will generate a bus error.

#### **Absolute** Width Section/ address Register name Reset value **Access** (in bits) page (hex) Version ID Register (LPUART\_VERID) 0 32 R 0400\_0003h 31.2.1/800 4 Parameter Register (LPUART\_PARAM) 32 R 31.2.2/800 See section LPUART Global Register (LPUART\_GLOBAL) 32 R/W 0000 0000h 31.2.3/801 8 С LPUART Pin Configuration Register (LPUART\_PINCFG) 32 R/W 0000\_0000h 31.2.4/802 10 LPUART Baud Rate Register (LPUART\_BAUD) 32 R/W 0F00\_0004h 31.2.5/802 14 LPUART Status Register (LPUART\_STAT) 32 R/W 00C0\_0000h 31.2.6/805 LPUART Control Register (LPUART\_CTRL) R/W 0000\_0000h 18 32 31.2.7/809 LPUART Data Register (LPUART\_DATA) 1C 32 R/W 0000\_1000h 31.2.8/814

LPUART memory map

Table continues on the next page...

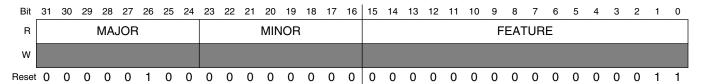
R/W

0000 0000h

31.2.9/816

32

KL28Z Reference Manual, Rev. 4, 06/2016

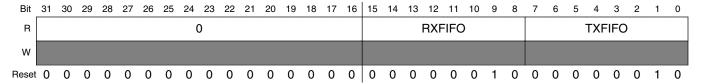

LPUART Match Address Register (LPUART\_MATCH)

#### LPUART memory map (continued)

| Absolute<br>address<br>(hex) | Register name                             | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------|--------------------|--------|-------------|------------------|
| 24                           | LPUART Modem IrDA Register (LPUART_MODIR) | 32                 | R/W    | 0000_0000h  | 31.2.10/<br>816  |
| 28                           | LPUART FIFO Register (LPUART_FIFO)        | 32                 | R/W    | See section | 31.2.11/<br>819  |
| 2C                           | LPUART Watermark Register (LPUART_WATER)  | 32                 | R/W    | 0000_0000h  | 31.2.12/<br>822  |

# 31.2.1 Version ID Register (LPUART\_VERID)

Address: 0h base + 0h offset = 0h



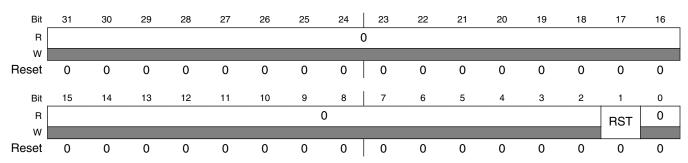

#### LPUART\_VERID field descriptions

| Field   | Description                                                                         |
|---------|-------------------------------------------------------------------------------------|
| 31–24   | Major Version Number                                                                |
| MAJOR   | This read only field returns the major version number for the module specification. |
| 23–16   | Minor Version Number                                                                |
| MINOR   | This read only field returns the minor version number for the module specification. |
| FEATURE | Feature Identification Number                                                       |
|         | This read only field returns the feature set number.                                |
|         | 0x0001 Standard feature set.                                                        |
|         | 0x0003 Standard feature set with MODEM/IrDA support.                                |

## 31.2.2 Parameter Register (LPUART\_PARAM)

Address: 0h base + 4h offset = 4h



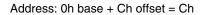

#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

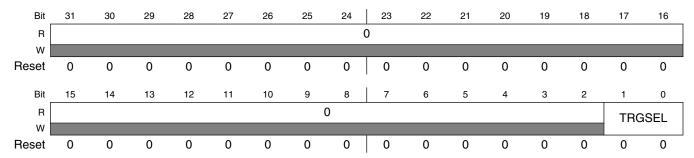
#### LPUART\_PARAM field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>RXFIFO    | Receive FIFO Size  The number of words in the receive FIFO is 2^RXFIFO.              |
| TXFIFO            | Transmit FIFO Size  The number of words in the transmit FIFO is 2^TXFIFO.            |

# LPUART Global Register (LPUART\_GLOBAL)

Address: 0h base + 8h offset = 8h



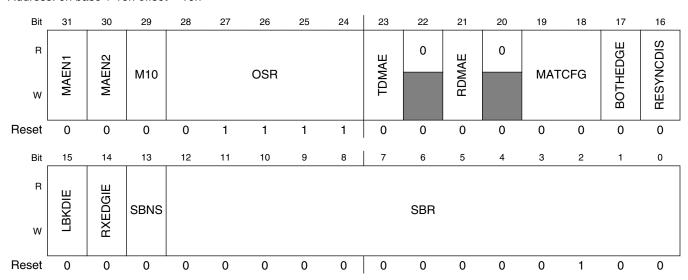


#### LPUART\_GLOBAL field descriptions

| Field            | Description                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                               |
| 1<br>RST         | Software Reset  Reset all internal logic and registers, except the Global Register. Remains set until cleared by software.  O Module is not reset. |
| 0<br>Reserved    | Module is reset.  This field is reserved. This read-only field is reserved and always has the value 0.                                             |

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 801

## 31.2.4 LPUART Pin Configuration Register (LPUART\_PINCFG)






#### LPUART\_PINCFG field descriptions

| Field            | Description                                                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                 |
| TRGSEL           | Trigger Select  Configures the input trigger usage.  00 Input trigger is disabled.  01 Input trigger is used instead of RXD pin input.  10 Input trigger is used instead of CTS pin input.  11 Input trigger is used to modulate the TXD pin output. |

## 31.2.5 LPUART Baud Rate Register (LPUART\_BAUD)

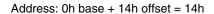
Address: 0h base + 10h offset = 10h

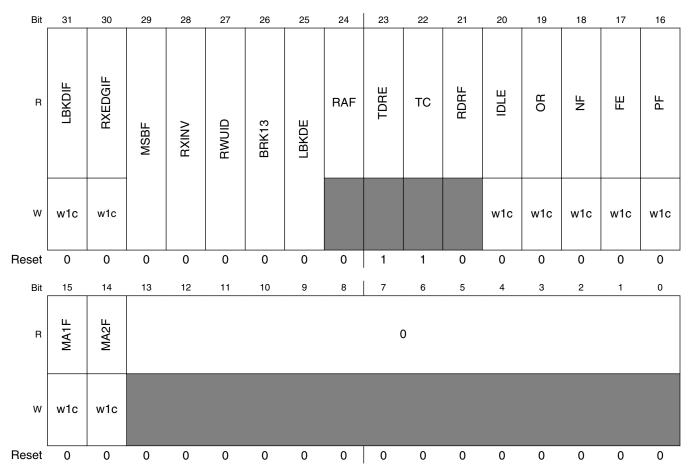


#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

## LPUART\_BAUD field descriptions

| Field          | Description                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>MAEN1    | Match Address Mode Enable 1                                                                                                                                                                                                                                                                                                                                                      |
|                | 0 Normal operation.                                                                                                                                                                                                                                                                                                                                                              |
|                | 1 Enables automatic address matching or data matching mode for MATCH[MA1].                                                                                                                                                                                                                                                                                                       |
| 30<br>MAEN2    | Match Address Mode Enable 2                                                                                                                                                                                                                                                                                                                                                      |
|                | <ul><li>Normal operation.</li><li>Enables automatic address matching or data matching mode for MATCH[MA2].</li></ul>                                                                                                                                                                                                                                                             |
| 29<br>M10      | 10-bit Mode select                                                                                                                                                                                                                                                                                                                                                               |
| IWITO          | The M10 bit causes a tenth bit to be part of the serial transmission. This bit should only be changed when the transmitter and receiver are both disabled.                                                                                                                                                                                                                       |
|                | 0 Receiver and transmitter use 8-bit or 9-bit data characters.                                                                                                                                                                                                                                                                                                                   |
|                | 1 Receiver and transmitter use 10-bit data characters.                                                                                                                                                                                                                                                                                                                           |
| 28–24<br>OSR   | Oversampling Ratio                                                                                                                                                                                                                                                                                                                                                               |
| 9911           | This field configures the oversampling ratio for the receiver between 4x (00011) and 32x (11111). Writing an invalid oversampling ratio (for example, a value not between 4x and 32x) will default to an oversampling ratio of 16 (01111). The OSR field should only be changed when the transmitter and receiver are both disabled. Note that the oversampling ratio = OSR + 1. |
| 23             | Transmitter DMA Enable                                                                                                                                                                                                                                                                                                                                                           |
| TDMAE          | TDMAE configures the transmit data register empty flag, LPUART_STAT[TDRE], to generate a DMA request.                                                                                                                                                                                                                                                                            |
|                | 0 DMA request disabled.                                                                                                                                                                                                                                                                                                                                                          |
|                | 1 DMA request enabled.                                                                                                                                                                                                                                                                                                                                                           |
| 22<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                             |
| 21             | Receiver Full DMA Enable                                                                                                                                                                                                                                                                                                                                                         |
| RDMAE          | RDMAE configures the receiver data register full flag, LPUART_STAT[RDRF], to generate a DMA request.                                                                                                                                                                                                                                                                             |
|                | 0 DMA request disabled.                                                                                                                                                                                                                                                                                                                                                          |
|                | 1 DMA request enabled.                                                                                                                                                                                                                                                                                                                                                           |
| 20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                             |
| 19–18          | Match Configuration                                                                                                                                                                                                                                                                                                                                                              |
| MATCFG         | Configures the match addressing mode used.                                                                                                                                                                                                                                                                                                                                       |
|                | 00 Address Match Wakeup                                                                                                                                                                                                                                                                                                                                                          |
|                | 01 Idle Match Wakeup                                                                                                                                                                                                                                                                                                                                                             |
|                | <ul> <li>Match On and Match Off</li> <li>Enables RWU on Data Match and Match On/Off for transmitter CTS input</li> </ul>                                                                                                                                                                                                                                                         |
| 17             | Both Edge Sampling                                                                                                                                                                                                                                                                                                                                                               |
| BOTHEDGE       |                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Enables sampling of the received data on both edges of the baud rate clock, effectively doubling the number of times the receiver samples the input data for a given oversampling ratio. This bit must be set for                                                                                                                                                                |


Table continues on the next page...


#### Register definition

## LPUART\_BAUD field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | oversampling ratios between x4 and x7 and is optional for higher oversampling ratios. This bit should only be changed when the receiver is disabled.                                                                                                                                                                             |
|                 | 0 Receiver samples input data using the rising edge of the baud rate clock.                                                                                                                                                                                                                                                      |
|                 | 1 Receiver samples input data using the rising and falling edge of the baud rate clock.                                                                                                                                                                                                                                          |
| 16<br>RESYNCDIS | Resynchronization Disable                                                                                                                                                                                                                                                                                                        |
|                 | When set, disables the resynchronization of the received data word when a data one followed by data zero transition is detected. This bit should only be changed when the receiver is disabled.                                                                                                                                  |
|                 | 0 Resynchronization during received data word is supported                                                                                                                                                                                                                                                                       |
|                 | 1 Resynchronization during received data word is disabled                                                                                                                                                                                                                                                                        |
| 15<br>LBKDIE    | LIN Break Detect Interrupt Enable                                                                                                                                                                                                                                                                                                |
|                 | LBKDIE enables the LIN break detect flag, LBKDIF, to generate interrupt requests.                                                                                                                                                                                                                                                |
|                 | 0 Hardware interrupts from LPUART_STAT[LBKDIF] disabled (use polling).                                                                                                                                                                                                                                                           |
|                 | Hardware interrupt requested when LPUART_STAT[LBKDIF] flag is 1.                                                                                                                                                                                                                                                                 |
| 14<br>RXEDGIE   | RX Input Active Edge Interrupt Enable                                                                                                                                                                                                                                                                                            |
|                 | Enables the receive input active edge, RXEDGIF, to generate interrupt requests. Changing CTRL[LOOP] or CTRL[RSRC] when RXEDGIE is set can cause the RXEDGIF to set.                                                                                                                                                              |
|                 | 0 Hardware interrupts from LPUART_STAT[RXEDGIF] disabled (use polling).                                                                                                                                                                                                                                                          |
|                 | Hardware interrupt requested when LPUART_STAT[RXEDGIF] flag is 1.                                                                                                                                                                                                                                                                |
| 13<br>SBNS      | Stop Bit Number Select                                                                                                                                                                                                                                                                                                           |
|                 | SBNS determines whether data characters are one or two stop bits. This bit should only be changed when the transmitter and receiver are both disabled.                                                                                                                                                                           |
|                 | 0 One stop bit.                                                                                                                                                                                                                                                                                                                  |
|                 | 1 Two stop bits.                                                                                                                                                                                                                                                                                                                 |
| SBR             | Baud Rate Modulo Divisor.                                                                                                                                                                                                                                                                                                        |
|                 | The 13 bits in SBR[12:0] set the modulo divide rate for the baud rate generator. When SBR is 1 - 8191, the baud rate equals "baud clock / ((OSR+1) × SBR)". The 13-bit baud rate setting [SBR12:SBR0] must only be updated when the transmitter and receiver are both disabled (LPUART_CTRL[RE] and LPUART_CTRL[TE] are both 0). |

## 31.2.6 LPUART Status Register (LPUART\_STAT)





#### LPUART\_STAT field descriptions

| Field         | Description                                                                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>LBKDIF  | LIN Break Detect Interrupt Flag                                                                                                                    |
|               | LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break character is detected. LBKDIF is cleared by writing a 1 to it.        |
|               | 0 No LIN break character has been detected.                                                                                                        |
|               | 1 LIN break character has been detected.                                                                                                           |
| 30<br>RXEDGIF | LPUART_RX Pin Active Edge Interrupt Flag                                                                                                           |
|               | RXEDGIF is set when an active edge, falling if RXINV = 0, rising if RXINV=1, on the LPUART_RX pin occurs. RXEDGIF is cleared by writing a 1 to it. |
|               | 0 No active edge on the receive pin has occurred.                                                                                                  |
|               | 1 An active edge on the receive pin has occurred.                                                                                                  |
| 29            | MSB First                                                                                                                                          |
| MSBF          |                                                                                                                                                    |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### Register definition

## LPUART\_STAT field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Setting this bit reverses the order of the bits that are transmitted and received on the wire. This bit does not affect the polarity of the bits, the location of the parity bit or the location of the start or stop bits. This bit should only be changed when the transmitter and receiver are both disabled.                                                                                                                                     |
|             | 0 LSB (bit0) is the first bit that is transmitted following the start bit. Further, the first bit received after the start bit is identified as bit0.                                                                                                                                                                                                                                                                                                |
|             | MSB (bit9, bit8, bit7 or bit6) is the first bit that is transmitted following the start bit depending on the setting of CTRL[M], CTRL[PE] and BAUD[M10]. Further, the first bit received after the start bit is identified as bit9, bit8, bit7 or bit6 depending on the setting of CTRL[M] and CTRL[PE].                                                                                                                                             |
| 28<br>RXINV | Receive Data Inversion                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TOMAY       | Setting this bit reverses the polarity of the received data input.                                                                                                                                                                                                                                                                                                                                                                                   |
|             | NOTE: Setting RXINV inverts the LPUART_RX input for all cases: data bits, start and stop bits, break, and idle.                                                                                                                                                                                                                                                                                                                                      |
|             | 0 Receive data not inverted.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 1 Receive data inverted.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27<br>RWUID | Receive Wake Up Idle Detect                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | For RWU on idle character, RWUID controls whether the idle character that wakes up the receiver sets the IDLE bit. For address match wakeup, RWUID controls if the IDLE bit is set when the address does not match. This bit should only be changed when the receiver is disabled.                                                                                                                                                                   |
|             | O During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. During address match wakeup, the IDLE bit does not get set when an address does not match.                                                                                                                                                                                                                                              |
|             | 1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character. During address match wakeup, the IDLE bit does get set when an address does not match.                                                                                                                                                                                                                                                          |
| 26          | Break Character Generation Length                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BRK13       | BRK13 selects a longer transmitted break character length. Detection of a framing error is not affected by the state of this bit. This bit should only be changed when the transmitter is disabled.                                                                                                                                                                                                                                                  |
|             | <ul> <li>Break character is transmitted with length of 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).</li> <li>Break character is transmitted with length of 13 bit times (if M = 0, SBNS = 0) or 14 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 15 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 16 (if M10 = 1, SNBS = 1).</li> </ul> |
| 25          | LIN Break Detection Enable                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LBKDE       | LBKDE selects a longer break character detection length. While LBKDE is set, receive data is not stored in the receive data buffer.                                                                                                                                                                                                                                                                                                                  |
|             | <ul> <li>Break character is detected at length 10 bit times (if M = 0, SBNS = 0) or 11 (if M = 1, SBNS = 0 or M = 0, SBNS = 1) or 12 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 13 (if M10 = 1, SNBS = 1).</li> <li>Break character is detected at length of 11 bit times (if M = 0, SBNS = 0) or 12 (if M = 1, SBNS = 0 or</li> </ul>                                                                                                             |
|             | M = 0, SBNS = 1) or 14 (if M = 1, SBNS = 1 or M10 = 1, SNBS = 0) or 15 (if M10 = 1, SNBS = 1).                                                                                                                                                                                                                                                                                                                                                       |
| 24<br>RAF   | Receiver Active Flag                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | RAF is set when the receiver detects the beginning of a valid start bit, and RAF is cleared automatically when the receiver detects an idle line.                                                                                                                                                                                                                                                                                                    |

Table continues on the next page...

#### LPUART\_STAT field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | LPUART receiver idle waiting for a start bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 1 LPUART receiver active (LPUART_RX input not idle).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23<br>TDRE | Transmit Data Register Empty Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TOTAL      | When the transmit FIFO is enabled, TDRE will set when the number of datawords in the transmit FIFO (LPUART_DATA) is equal to or less than the number indicated by LPUART_WATER[TXWATER]). To clear TDRE, write to the LPUART data register (LPUART_DATA) until the number of words in the transmit FIFO is greater than the number indicated by LPUART_WATER[TXWATER]. When the transmit FIFO is disabled, TDRE will set when the transmit data register (LPUART_DATA) is empty. To clear TDRE, write to the LPUART data register (LPUART_DATA).                                                                                                                                                                                                                                                                                                                                                                    |
|            | TDRE is not affected by a character that is in the process of being transmitted, it is updated at the start of each transmitted character.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | O Transmit data buffer full.  Transmit data buffer empty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 22         | Transmission Complete Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TC         | TC is cleared when there is a transmission in progress or when a preamble or break character is loaded. TC is set when the transmit buffer is empty and no data, preamble, or break character is being transmitted. When TC is set, the transmit data output signal becomes idle (logic 1). TC is cleared by writing to LPUART_DATA to transmit new data, queuing a preamble by clearing and then setting LPUART_CTRL[TE], queuing a break character by writing 1 to LPUART_CTRL[SBK].                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 0 Transmitter active (sending data, a preamble, or a break).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 1 Transmitter idle (transmission activity complete).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21<br>RDRF | Receive Data Register Full Flag  When the receive FIFO is enabled, RDRF is set when the number of datawords in the receive buffer is greater than the number indicated by LPUART_WATER[RXWATER]. To clear RDRF, read LPUART_DATA until the number of datawords in the receive data buffer is equal to or less than the number indicated by LPUART_WATER[RXWATER]. When the receive FIFO is disabled, RDRF is set when the receive buffer (LPUART_DATA) is full. To clear RDRF, read the LPUART_DATA register.                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | A character that is in the process of being received does not cause a change in RDRF until the entire character is received. Even if RDRF is set, the character will continue to be received until an overrun condition occurs once the entire character is received.  O Receive data buffer empty.  Receive data buffer full.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20         | Idle Line Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IDLE       | IDLE is set when the LPUART receive line becomes idle for a full character time after a period of activity. When ILT is cleared, the receiver starts counting idle bit times after the start bit. If the receive character is all 1s, these bit times and the stop bits time count toward the full character time of logic high, 10 to 13 bit times, needed for the receiver to detect an idle line. When ILT is set, the receiver doesn't start counting idle bit times until after the stop bits. The stop bits and any logic high bit times at the end of the previous character do not count toward the full character time of logic high needed for the receiver to detect an idle line.  To clear IDLE, write logic 1 to the IDLE flag. After IDLE has been cleared, it cannot become set again until after a new character has been stored in the receive buffer or a LIN break character has set the LBKDIF |
|            | flag . IDLE is set only once even if the receive line remains idle for an extended period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | <ul><li>0 No idle line detected.</li><li>1 Idle line was detected.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table continues on the next page...

#### Register definition

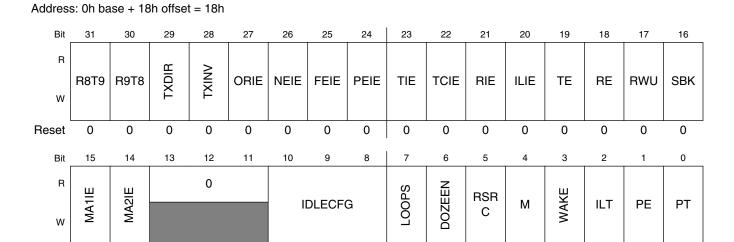
## LPUART\_STAT field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19         | Receiver Overrun Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OR         | OR is set when software fails to prevent the receive data register from overflowing with data. The OR bit is set immediately after the stop bit has been completely received for the dataword that overflows the buffer and all the other error flags (FE, NF, and PF) are prevented from setting. The data in the shift register is lost, but the data already in the LPUART data registers is not affected. If LBKDE is enabled and a LIN Break is detected, the OR field asserts if LBKDIF is not cleared before the next data character is received. |
|            | While the OR flag is set, no additional data is stored in the data buffer even if sufficient room exists. To clear OR, write logic 1 to the OR flag.                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 0 No overrun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 1 Receive overrun (new LPUART data lost).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18<br>NF   | Noise Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | The advanced sampling technique used in the receiver takes three samples in each of the received bits. If any of these samples disagrees with the rest of the samples within any bit time in the frame then noise is detected for that character. NF is set whenever the next character to be read from LPUART_DATA was received with noise detected within the character. To clear NF, write logic one to the NF.                                                                                                                                       |
|            | 0 No noise detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 1 Noise detected in the received character in LPUART_DATA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17<br>FE   | Framing Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | FE is set whenever the next character to be read from LPUART_DATA was received with logic 0 detected where a stop bit was expected. To clear FE, write logic one to the FE.                                                                                                                                                                                                                                                                                                                                                                              |
|            | <ul><li>No framing error detected. This does not guarantee the framing is correct.</li><li>Framing error.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16         | Parity Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PF         | PF is set whenever the next character to be read from LPUART_DATA was received when parity is enabled (PE = 1) and the parity bit in the received character does not agree with the expected parity value. To clear PF, write a logic one to the PF.                                                                                                                                                                                                                                                                                                     |
|            | 0 No parity error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 1 Parity error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15<br>MA1F | Match 1 Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WATI       | MA1F is set whenever the next character to be read from LPUART_DATA matches MA1. To clear MA1F, write a logic one to the MA1F.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 0 Received data is not equal to MA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 1 Received data is equal to MA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14<br>MA2F | Match 2 Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | MA2F is set whenever the next character to be read from LPUART_DATA matches MA2. To clear MA2F, write a logic one to the MA2F.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 0 Received data is not equal to MA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 1 Received data is equal to MA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

KL28Z Reference Manual, Rev. 4, 06/2016

0

## 31.2.7 LPUART Control Register (LPUART\_CTRL)


Reset

0

0

0

This read/write register controls various optional features of the LPUART system. This register should only be altered when the transmitter and receiver are both disabled.



#### LPUART\_CTRL field descriptions

0

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>R8T9  | Receive Bit 8 / Transmit Bit 9  R8 is the ninth data bit received when the LPUART is configured for 9-bit or 10-bit data formats. When reading 9-bit or 10-bit data, read R8 before reading LPUART_DATA.                                                                                                                                                                                                                                                                    |
|             | T9 is the tenth data bit received when the LPUART is configured for 10-bit data formats. When writing 10-bit data, write T9 before writing LPUART_DATA. If T9 does not need to change from its previous value, such as when it is used to generate address mark or parity, they it need not be written each time LPUART_DATA is written.                                                                                                                                    |
| 30<br>R9T8  | Receive Bit 9 / Transmit Bit 8  R9 is the tenth data bit received when the LPUART is configured for 10-bit data formats. When reading 10-bit data, read R9 before reading LPUART_DATA                                                                                                                                                                                                                                                                                       |
|             | T8 is the ninth data bit received when the LPUART is configured for 9-bit or 10-bit data formats. When writing 9-bit or 10-bit data, write T8 before writing LPUART_DATA. If T8 does not need to change from its previous value, such as when it is used to generate address mark or parity, they it need not be written each time LPUART_DATA is written.                                                                                                                  |
| 29<br>TXDIR | LPUART_TX Pin Direction in Single-Wire Mode  When the LPUART is configured for single-wire half-duplex operation (LOOPS = RSRC = 1), this bit determines the direction of data at the LPUART_TX pin. When clearing TXDIR, the transmitter will finish receiving the current character (if any) before the receiver starts receiving data from the LPUART_TX pin.  0    LPUART_TX pin is an input in single-wire mode.  1    LPUART_TX pin is an output in single-wire mode. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Register definition

## LPUART\_CTRL field descriptions (continued)

| Field      | Description                                                                                                      |
|------------|------------------------------------------------------------------------------------------------------------------|
| 28         | Transmit Data Inversion                                                                                          |
| TXINV      | Setting this bit reverses the polarity of the transmitted data output.                                           |
|            | NOTE: Setting TXINV inverts the LPUART_TX output for all cases: data bits, start and stop bits, break, and idle. |
|            | 0 Transmit data not inverted.                                                                                    |
|            | 1 Transmit data inverted.                                                                                        |
| 27<br>ORIE | Overrun Interrupt Enable  This bit enables the overrun flag (OR) to generate hardware interrupt requests.        |
|            |                                                                                                                  |
|            | 0 OR interrupts disabled; use polling.                                                                           |
|            | 1 Hardware interrupt requested when OR is set.                                                                   |
| 26<br>NEIE | Noise Error Interrupt Enable                                                                                     |
| INCIE      | This bit enables the noise flag (NF) to generate hardware interrupt requests.                                    |
|            | 0 NF interrupts disabled; use polling.                                                                           |
|            | 1 Hardware interrupt requested when NF is set.                                                                   |
| 25<br>FEIE | Framing Error Interrupt Enable                                                                                   |
|            | This bit enables the framing error flag (FE) to generate hardware interrupt requests.                            |
|            | 0 FE interrupts disabled; use polling.                                                                           |
|            | 1 Hardware interrupt requested when FE is set.                                                                   |
| 24         | Parity Error Interrupt Enable                                                                                    |
| PEIE       | This bit enables the parity error flag (PF) to generate hardware interrupt requests.                             |
|            | 0 PF interrupts disabled; use polling).                                                                          |
|            | 1 Hardware interrupt requested when PF is set.                                                                   |
| 23<br>TIE  | Transmit Interrupt Enable                                                                                        |
| 115        | Enables STAT[TDRE] to generate interrupt requests.                                                               |
|            | Hardware interrupts from TDRE disabled; use polling.                                                             |
|            | 1 Hardware interrupt requested when TDRE flag is 1.                                                              |
| 22<br>TCIE | Transmission Complete Interrupt Enable for                                                                       |
| TOIL       | TCIE enables the transmission complete flag, TC, to generate interrupt requests.                                 |
|            | 0 Hardware interrupts from TC disabled; use polling.                                                             |
|            | 1 Hardware interrupt requested when TC flag is 1.                                                                |
| 21<br>RIE  | Receiver Interrupt Enable                                                                                        |
|            | Enables STAT[RDRF] to generate interrupt requests.                                                               |
|            | 0 Hardware interrupts from RDRF disabled; use polling.                                                           |
|            | 1 Hardware interrupt requested when RDRF flag is 1.                                                              |

Table continues on the next page...

#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

#### LPUART\_CTRL field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20          | Idle Line Interrupt Enable                                                                                                                                                                                                                                                                                                                                                                                                 |
| ILIE        | ILIE enables the idle line flag, STAT[IDLE], to generate interrupt requests.                                                                                                                                                                                                                                                                                                                                               |
|             | 0 Hardware interrupts from IDLE disabled; use polling.                                                                                                                                                                                                                                                                                                                                                                     |
|             | 1 Hardware interrupt requested when IDLE flag is 1.                                                                                                                                                                                                                                                                                                                                                                        |
| 19          | Transmitter Enable                                                                                                                                                                                                                                                                                                                                                                                                         |
| TE          | Enables the LPUART transmitter. TE can also be used to queue an idle preamble by clearing and then setting TE. When TE is cleared, this register bit will read as 1 until the transmitter has completed the current character and the LPUART_TX pin is tristated.                                                                                                                                                          |
|             | 0 Transmitter disabled.                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 1 Transmitter enabled.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18          | Receiver Enable                                                                                                                                                                                                                                                                                                                                                                                                            |
| RE          | Enables the LPUART receiver. When RE is written to 0, this register bit will read as 1 until the receiver finishes receiving the current character (if any).                                                                                                                                                                                                                                                               |
|             | 0 Receiver disabled.                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 1 Receiver enabled.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17<br>RWU   | Receiver Wakeup Control  This field can be set to place the LPUART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when CTRL[WAKE] is clear or an address match when CTRL[WAKE] is set with STAT[RWUID] is clear.                                                                                                                                                   |
|             | NOTE: RWU must be set only with CTRL[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by STAT[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the LPUART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to be reasserted.             |
|             | 0 Normal receiver operation.                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 1 LPUART receiver in standby waiting for wakeup condition.                                                                                                                                                                                                                                                                                                                                                                 |
| 16<br>SBK   | Send Break  Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional break characters of 10 to 13, or 13 to 16 if LPUART_STATBRK13] is set, bit times of logic 0 are queued as long as SBK is set. Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a second break character may be queued before software clears SBK. |
|             | O. Navenal transposition and existing                                                                                                                                                                                                                                                                                                                                                                                      |
|             | <ul><li>Normal transmitter operation.</li><li>Queue break character(s) to be sent.</li></ul>                                                                                                                                                                                                                                                                                                                               |
| 15          | Match 1 Interrupt Enable                                                                                                                                                                                                                                                                                                                                                                                                   |
| MA1IE       | ·                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 0 MA1F interrupt disabled                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 1 MA1F interrupt enabled                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14<br>MA2IE | Match 2 Interrupt Enable                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 0 MA2F interrupt disabled                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 1 MA2F interrupt enabled                                                                                                                                                                                                                                                                                                                                                                                                   |

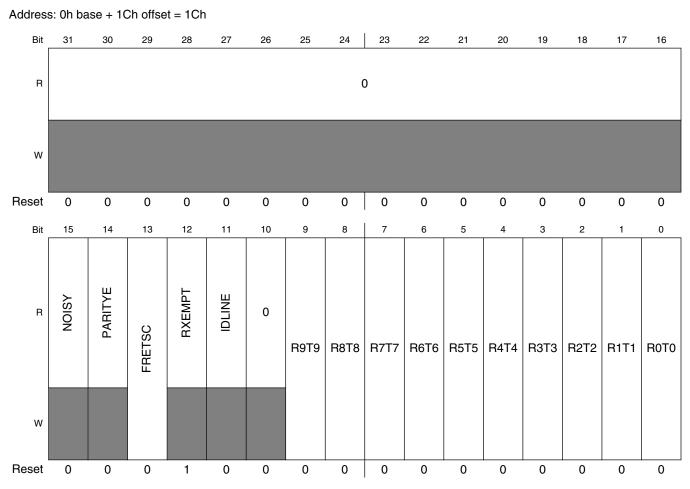
Table continues on the next page...

#### Register definition

## LPUART\_CTRL field descriptions (continued)

| Field           | Description                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13–11           | This field is reserved.                                                                                                                                                                                                   |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                                                                                              |
| 10–8<br>IDLECFG | Idle Configuration                                                                                                                                                                                                        |
|                 | Configures the number of idle characters that must be received before the IDLE flag is set.                                                                                                                               |
|                 | 000 1 idle character                                                                                                                                                                                                      |
|                 | 001 2 idle characters                                                                                                                                                                                                     |
|                 | 010 4 idle characters                                                                                                                                                                                                     |
|                 | 011 8 idle characters                                                                                                                                                                                                     |
|                 | 100 16 idle characters                                                                                                                                                                                                    |
|                 | 101 32 idle characters                                                                                                                                                                                                    |
|                 | 110 64 idle characters                                                                                                                                                                                                    |
|                 | 111 128 idle characters                                                                                                                                                                                                   |
| 7<br>LOOPS      | Loop Mode Select                                                                                                                                                                                                          |
|                 | When LOOPS is set, the LPUART_RX pin is disconnected from the LPUART and the transmitter output is internally connected to the receiver input. The transmitter and the receiver must be enabled to use the loop function. |
|                 | 0 Normal operation - LPUART_RX and LPUART_TX use separate pins.                                                                                                                                                           |
|                 | 1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input (see RSRC bit).                                                                                                      |
| 6<br>DOZEEN     | Doze Enable                                                                                                                                                                                                               |
|                 | 0 LPUART is enabled in Doze mode.                                                                                                                                                                                         |
|                 | 1 LPUART is disabled in Doze mode.                                                                                                                                                                                        |
| 5               | Receiver Source Select                                                                                                                                                                                                    |
| RSRC            |                                                                                                                                                                                                                           |
|                 | This field has no meaning or effect unless the LOOPS field is set. When LOOPS is set, the RSRC field determines the source for the receiver shift register input.                                                         |
|                 | 0 Provided LOOPS is set, RSRC is cleared, selects internal loop back mode and the LPUART does not use the LPUART_RX pin.                                                                                                  |
|                 | 1 Single-wire LPUART mode where the LPUART_TX pin is connected to the transmitter output and receiver input.                                                                                                              |
| 4               | 9-Bit or 8-Bit Mode Select                                                                                                                                                                                                |
| M               | O Pagaiver and transmitter use 9 hit data characters                                                                                                                                                                      |
|                 | Receiver and transmitter use 8-bit data characters.     Receiver and transmitter use 9-bit data characters.                                                                                                               |
|                 |                                                                                                                                                                                                                           |
| 3<br>WAKE       | Receiver Wakeup Method Select                                                                                                                                                                                             |
|                 | Determines which condition wakes the LPUART when RWU=1:  • Address mark in the most significant bit position of a received data character, or                                                                             |
|                 | An idle condition on the receive pin input signal.                                                                                                                                                                        |
|                 | 0 Configures RWU for idle-line wakeup.                                                                                                                                                                                    |
|                 | 1 Configures RWU with address-mark wakeup.                                                                                                                                                                                |
| 2<br>ILT        | Idle Line Type Select                                                                                                                                                                                                     |

Table continues on the next page...


#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

## LPUART\_CTRL field descriptions (continued)

| Field   | Description                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Determines when the receiver starts counting logic 1s as idle character bits. The count begins either after a valid start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit can cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. |
|         | <b>NOTE:</b> In case the LPUART is programmed with ILT = 1, a logic 0 is automatically shifted after a received stop bit, therefore resetting the idle count.                                                                                                                                                                                                                                                                      |
|         | 0 Idle character bit count starts after start bit.                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 1 Idle character bit count starts after stop bit.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br>PE | Parity Enable                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | Enables hardware parity generation and checking. When parity is enabled, the bit immediately before the stop bit is treated as the parity bit.                                                                                                                                                                                                                                                                                     |
|         | 0 No hardware parity generation or checking.                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 1 Parity enabled.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0<br>PT | Parity Type                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in the data character, including the parity bit, is even.                                                                                                                                                      |
|         | 0 Even parity.                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 1 Odd parity.                                                                                                                                                                                                                                                                                                                                                                                                                      |

## 31.2.8 LPUART Data Register (LPUART\_DATA)

This register is actually two separate registers. Reads return the contents of the read-only receive data buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also involved in the automatic flag clearing mechanisms for some of the LPUART status flags.

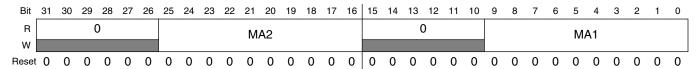


LPUART\_DATA field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15<br>NOISY       | The current received dataword contained in DATA[R9:R0] was received with noise.      |
|                   | 0 The dataword was received without noise.                                           |
|                   | 1 The data was received with noise.                                                  |

Table continues on the next page...

#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

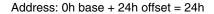

## **LPUART\_DATA** field descriptions (continued)

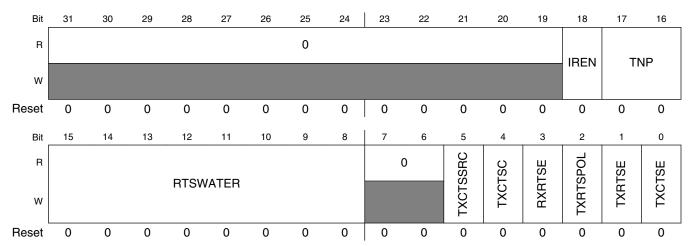
| Field          | Description                                                                                                                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14<br>PARITYE  | The current received dataword contained in DATA[R9:R0] was received with a parity error.                                                                                                                                                                                                                                                          |
|                | O The dataword was received without a parity error.                                                                                                                                                                                                                                                                                               |
|                | 1 The dataword was received with a parity error.                                                                                                                                                                                                                                                                                                  |
| 13<br>FRETSC   | Frame Error / Transmit Special Character                                                                                                                                                                                                                                                                                                          |
|                | For reads, indicates the current received dataword contained in DATA[R9:R0] was received with a frame error. For writes, indicates a break or idle character is to be transmitted instead of the contents in DATA[T9:T0]. T9 is used to indicate a break character when 0 and a idle character when 1, he contents of DATA[T8:T0] should be zero. |
|                | <ul> <li>The dataword was received without a frame error on read, transmit a normal character on write.</li> <li>The dataword was received with a frame error, transmit an idle or break character on transmit.</li> </ul>                                                                                                                        |
| 10             |                                                                                                                                                                                                                                                                                                                                                   |
| 12<br>RXEMPT   | Receive Buffer Empty                                                                                                                                                                                                                                                                                                                              |
| I DIE          | Asserts when there is no data in the receive buffer. This field does not take into account data that is in the receive shift register.                                                                                                                                                                                                            |
|                | Receive buffer contains valid data.                                                                                                                                                                                                                                                                                                               |
|                | Receive buffer is empty, data returned on read is not valid.                                                                                                                                                                                                                                                                                      |
| 11<br>IDLINE   | Idle Line                                                                                                                                                                                                                                                                                                                                         |
| IDEINE         | Indicates the receiver line was idle before receiving the character in DATA[9:0]. Unlike the IDLE flag, this bit can set for the first character received when the receiver is first enabled.                                                                                                                                                     |
|                | <ul> <li>Receiver was not idle before receiving this character.</li> <li>Receiver was idle before receiving this character.</li> </ul>                                                                                                                                                                                                            |
| 10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                              |
| 9<br>R9T9      | Read receive data buffer 9 or write transmit data buffer 9.                                                                                                                                                                                                                                                                                       |
| 8<br>R8T8      | Read receive data buffer 8 or write transmit data buffer 8.                                                                                                                                                                                                                                                                                       |
| 7<br>R7T7      | Read receive data buffer 7 or write transmit data buffer 7.                                                                                                                                                                                                                                                                                       |
| 6<br>R6T6      | Read receive data buffer 6 or write transmit data buffer 6.                                                                                                                                                                                                                                                                                       |
| 5<br>R5T5      | Read receive data buffer 5 or write transmit data buffer 5.                                                                                                                                                                                                                                                                                       |
| 4<br>R4T4      | Read receive data buffer 4 or write transmit data buffer 4.                                                                                                                                                                                                                                                                                       |
| 3<br>R3T3      | Read receive data buffer 3 or write transmit data buffer 3.                                                                                                                                                                                                                                                                                       |
| 2<br>R2T2      | Read receive data buffer 2 or write transmit data buffer 2.                                                                                                                                                                                                                                                                                       |
| 1<br>R1T1      | Read receive data buffer 1 or write transmit data buffer 1.                                                                                                                                                                                                                                                                                       |
| 0<br>R0T0      | Read receive data buffer 0 or write transmit data buffer 0.                                                                                                                                                                                                                                                                                       |

KL28Z Reference Manual, Rev. 4, 06/2016

## 31.2.9 LPUART Match Address Register (LPUART\_MATCH)

Address: 0h base + 20h offset = 20h





#### LPUART\_MATCH field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| 25–16<br>MA2      | Match Address 2  The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated BAUD[MAEN] bit is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. Software should only write a MA register when the associated BAUD[MAEN] bit is clear. |
| 15–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                               |
| MA1               | Match Address 1  The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated BAUD[MAEN] bit is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. Software should only write a MA register when the associated BAUD[MAEN] bit is clear. |

## 31.2.10 LPUART Modem IrDA Register (LPUART\_MODIR)

The MODEM register controls options for setting the modem configuration.



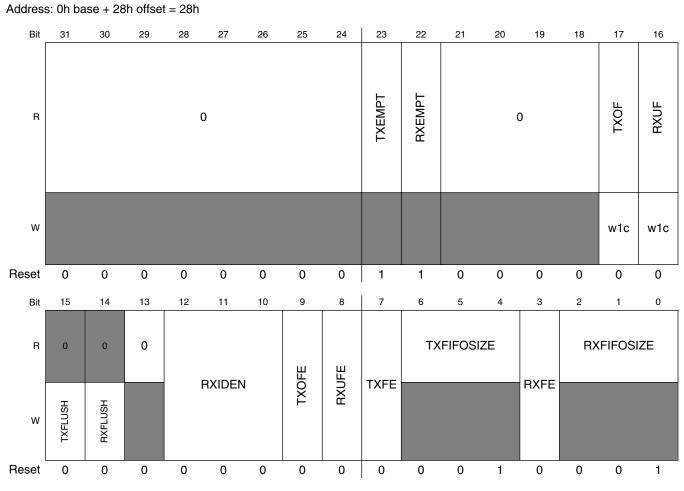


#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

## LPUART\_MODIR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                           |
| 18                | Infrared enable                                                                                                                                                                                                                                                                |
| IREN              | Enables/disables the infrared modulation/demodulation.                                                                                                                                                                                                                         |
|                   | 0 IR disabled.                                                                                                                                                                                                                                                                 |
|                   | 1 IR enabled.                                                                                                                                                                                                                                                                  |
| 17–16<br>TNP      | Transmitter narrow pulse                                                                                                                                                                                                                                                       |
|                   | Enables whether the LPUART transmits a 1/OSR, 2/OSR, 3/OSR or 4/OSR narrow pulse.                                                                                                                                                                                              |
|                   | 00 1/OSR.                                                                                                                                                                                                                                                                      |
|                   | 01 2/OSR.                                                                                                                                                                                                                                                                      |
|                   | 10 3/OSR.<br>11 4/OSR.                                                                                                                                                                                                                                                         |
| 15–8              | Receive RTS Configuration                                                                                                                                                                                                                                                      |
| RTSWATER          |                                                                                                                                                                                                                                                                                |
|                   | Configures the point at which the RX RTS output negates based on the number of additional characters that can be stored in the Receive FIFO. When configured to 0, RTS negates when the the start bit is detetected for the character that will cause the FIFO to become full. |
|                   | 0 RTS asserts when the receiver FIFO is full or receiving a character that causes the FIFO to become full.                                                                                                                                                                     |
|                   | 1 RTS asserts when the receive FIFO is less than or equal to the RXWATER configuration and negates when the receive FIFO is greater than the RXWATER configuration.                                                                                                            |
| 7–6               | This field is reserved.                                                                                                                                                                                                                                                        |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                   |
| 5<br>TXCTSSRC     | Transmit CTS Source                                                                                                                                                                                                                                                            |
|                   | Configures the source of the CTS input.                                                                                                                                                                                                                                        |
|                   | 0 CTS input is the LPUART_CTS pin.                                                                                                                                                                                                                                             |
|                   | 1 CTS input is the inverted Receiver Match result.                                                                                                                                                                                                                             |
| 4                 | Transmit CTS Configuration                                                                                                                                                                                                                                                     |
| TXCTSC            | Configures if the CTS state is checked at the start of each character or only when the transmitter is idle.                                                                                                                                                                    |
|                   | 0 CTS input is sampled at the start of each character.                                                                                                                                                                                                                         |
|                   | 1 CTS input is sampled when the transmitter is idle.                                                                                                                                                                                                                           |
| 3                 | Receiver request-to-send enable                                                                                                                                                                                                                                                |
| RXRTSE            | Allows the RTS output to control the CTS input of the transmitting device to prevent receiver overrun.                                                                                                                                                                         |
|                   | NOTE: Do not set both RXRTSE and TXRTSE.                                                                                                                                                                                                                                       |
|                   | 0 The receiver has no effect on RTS.                                                                                                                                                                                                                                           |
|                   | 1 RTS assertion is configured by the RTSWATER field                                                                                                                                                                                                                            |
| 2                 | Transmitter request-to-send polarity                                                                                                                                                                                                                                           |
| TXRTSPOL          | Controls the polarity of the transmitter RTS. TXRTSPOL does not affect the polarity of the receiver RTS. RTS will remain negated in the active low state unless TXRTSE is set.                                                                                                 |

Table continues on the next page...


#### Register definition

## LPUART\_MODIR field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                                                                                    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 0 Transmitter RTS is active low.                                                                                                                                                                                                                                                                                                                               |
|             | 1 Transmitter RTS is active high.                                                                                                                                                                                                                                                                                                                              |
| 1<br>TXRTSE | Transmitter request-to-send enable                                                                                                                                                                                                                                                                                                                             |
|             | Controls RTS before and after a transmission.                                                                                                                                                                                                                                                                                                                  |
|             | 0 The transmitter has no effect on RTS.                                                                                                                                                                                                                                                                                                                        |
|             | 1 When a character is placed into an empty transmitter data buffer, RTS asserts one bit time before the start bit is transmitted. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit.                                                                          |
| 0<br>TXCTSE | Transmitter clear-to-send enable                                                                                                                                                                                                                                                                                                                               |
|             | TXCTSE controls the operation of the transmitter. TXCTSE can be set independently from the state of TXRTSE and RXRTSE.                                                                                                                                                                                                                                         |
|             | 0 CTS has no effect on the transmitter.                                                                                                                                                                                                                                                                                                                        |
|             | 1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to send a character. If CTS is asserted, the character is sent. If CTS is deasserted, the signal TXD remains in the mark state and transmission is delayed until CTS is asserted. Changes in CTS as a character is being sent do not affect its transmission. |

## 31.2.11 LPUART FIFO Register (LPUART\_FIFO)

This register provides the ability for the programmer to turn on and off FIFO functionality. It also provides the size of the FIFO that has been implemented. This register may be read at any time. This register must be written only when CTRL[RE] and CTRL[TE] are cleared/not set and when the data buffer/FIFO is empty.



LPUART\_FIFO field descriptions

| Field             | Description                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                    |
|                   | Transmit Buffer/FIFO Empty  Asserts when there is no data in the Transmit FIFO/buffer. This field does not take into account data that is in the transmit shift register.  O Transmit buffer is not empty.  1 Transmit buffer is empty. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Register definition

## LPUART\_FIFO field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22                | Receive Buffer/FIFO Empty                                                                                                                                                                                                                               |
| RXEMPT            | Asserts when there is no data in the receive FIFO/Buffer. This field does not take into account data that is in the receive shift register.                                                                                                             |
|                   | <ul><li>0 Receive buffer is not empty.</li><li>1 Receive buffer is empty.</li></ul>                                                                                                                                                                     |
| 21–18<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                    |
| 17                | Transmitter Buffer Overflow Flag                                                                                                                                                                                                                        |
| TXOF              | Indicates that more data has been written to the transmit buffer than it can hold. This field will assert regardless of the value of TXOFE. However, an interrupt will be issued to the host only if TXOFE is set. This flag is cleared by writing a 1. |
|                   | No transmit buffer overflow has occurred since the last time the flag was cleared.                                                                                                                                                                      |
|                   | 1 At least one transmit buffer overflow has occurred since the last time the flag was cleared.                                                                                                                                                          |
| 16                | Receiver Buffer Underflow Flag                                                                                                                                                                                                                          |
| RXUF              | Indicates that more data has been read from the receive buffer than was present. This field will assert regardless of the value of RXUFE. However, an interrupt will be issued to the host only if RXUFE is set. This flag is cleared by writing a 1.   |
|                   | <ul> <li>No receive buffer underflow has occurred since the last time the flag was cleared.</li> <li>At least one receive buffer underflow has occurred since the last time the flag was cleared.</li> </ul>                                            |
| 15                | Transmit FIFO/Buffer Flush                                                                                                                                                                                                                              |
| TXFLUSH           | Writing to this field causes all data that is stored in the transmit FIFO/buffer to be flushed. This does not affect data that is in the transmit shift register.                                                                                       |
|                   | 0 No flush operation occurs.                                                                                                                                                                                                                            |
|                   | 1 All data in the transmit FIFO/Buffer is cleared out.                                                                                                                                                                                                  |
| 14                | Receive FIFO/Buffer Flush                                                                                                                                                                                                                               |
| RXFLUSH           | Writing to this field causes all data that is stored in the receive FIFO/buffer to be flushed. This does not affect data that is in the receive shift register.                                                                                         |
|                   | <ul><li>0 No flush operation occurs.</li><li>1 All data in the receive FIFO/buffer is cleared out.</li></ul>                                                                                                                                            |
| 13<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                    |
| 12–10             | Receiver Idle Empty Enable                                                                                                                                                                                                                              |
| RXIDEN            | When set, enables the assertion of RDRF when the receiver is idle for a number of idle characters and the FIFO is not empty.                                                                                                                            |
|                   | 000 Disable RDRF assertion due to partially filled FIFO when receiver is idle.                                                                                                                                                                          |
|                   | 001 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 1 character.                                                                                                                                                           |
|                   | 010 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 2 characters.                                                                                                                                                          |
|                   | 011 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 4 characters.                                                                                                                                                          |
|                   | 100 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 8 characters.                                                                                                                                                          |
|                   | 101 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 16 characters.                                                                                                                                                         |

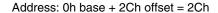
Table continues on the next page...

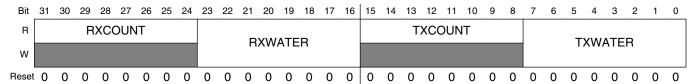
#### Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

#### **LPUART\_FIFO** field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 110 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 32 characters.                                                                                                                                                                                                                                                           |
|                   | 111 Enable RDRF assertion due to partially filled FIFO when receiver is idle for 64 characters.                                                                                                                                                                                                                                                           |
| 9<br>TXOFE        | Transmit FIFO Overflow Interrupt Enable                                                                                                                                                                                                                                                                                                                   |
| INOIL             | When this field is set, the TXOF flag generates an interrupt to the host.                                                                                                                                                                                                                                                                                 |
|                   | 0 TXOF flag does not generate an interrupt to the host.                                                                                                                                                                                                                                                                                                   |
|                   | 1 TXOF flag generates an interrupt to the host.                                                                                                                                                                                                                                                                                                           |
| 8<br>RXUFE        | Receive FIFO Underflow Interrupt Enable                                                                                                                                                                                                                                                                                                                   |
|                   | When this field is set, the RXUF flag generates an interrupt to the host.                                                                                                                                                                                                                                                                                 |
|                   | 0 RXUF flag does not generate an interrupt to the host.                                                                                                                                                                                                                                                                                                   |
|                   | 1 RXUF flag generates an interrupt to the host.                                                                                                                                                                                                                                                                                                           |
| 7<br>TXFE         | Transmit FIFO Enable                                                                                                                                                                                                                                                                                                                                      |
| , , u <u>-</u>    | When this field is set, the built in FIFO structure for the transmit buffer is enabled. The size of the FIFO structure is indicated by TXFIFOSIZE. If this field is not set, the transmit buffer operates as a FIFO of depth one dataword regardless of the value in TXFIFOSIZE. Both CTRL[TE] and CTRL[RE] must be cleared prior to changing this field. |
|                   | 0 Transmit FIFO is not enabled. Buffer is depth 1. (Legacy support).                                                                                                                                                                                                                                                                                      |
|                   | 1 Transmit FIFO is enabled. Buffer is depth indicated by TXFIFOSIZE.                                                                                                                                                                                                                                                                                      |
| 6–4<br>TXFIFOSIZE | Transmit FIFO. Buffer Depth                                                                                                                                                                                                                                                                                                                               |
|                   | The maximum number of transmit datawords that can be stored in the transmit buffer. This field is read only.                                                                                                                                                                                                                                              |
|                   | 000 Transmit FIFO/Buffer depth = 1 dataword.                                                                                                                                                                                                                                                                                                              |
|                   | 001 Transmit FIFO/Buffer depth = 4 datawords.                                                                                                                                                                                                                                                                                                             |
|                   | 010 Transmit FIFO/Buffer depth = 8 datawords.                                                                                                                                                                                                                                                                                                             |
|                   | 011 Transmit FIFO/Buffer depth = 16 datawords.                                                                                                                                                                                                                                                                                                            |
|                   | 100 Transmit FIFO/Buffer depth = 32 datawords.                                                                                                                                                                                                                                                                                                            |
|                   | 101 Transmit FIFO/Buffer depth = 64 datawords.                                                                                                                                                                                                                                                                                                            |
|                   | 110 Transmit FIFO/Buffer depth = 128 datawords.                                                                                                                                                                                                                                                                                                           |
|                   | 111 Transmit FIFO/Buffer depth = 256 datawords                                                                                                                                                                                                                                                                                                            |
| 3                 | Receive FIFO Enable                                                                                                                                                                                                                                                                                                                                       |
| RXFE              | When this field is set, the built in FIFO structure for the receive buffer is enabled. The size of the FIFO structure is indicated by the RXFIFOSIZE field. If this field is not set, the receive buffer operates as a FIFO of depth one dataword regardless of the value in RXFIFOSIZE. Both CTRL[TE] and CTRL[RE] must be                               |
|                   | cleared prior to changing this field.                                                                                                                                                                                                                                                                                                                     |
|                   | 0 Receive FIFO is not enabled. Buffer is depth 1. (Legacy support)                                                                                                                                                                                                                                                                                        |
|                   | 1 Receive FIFO is enabled. Buffer is depth indicted by RXFIFOSIZE.                                                                                                                                                                                                                                                                                        |
| RXFIFOSIZE        | Receive FIFO. Buffer Depth                                                                                                                                                                                                                                                                                                                                |
|                   | The maximum number of receive datawords that can be stored in the receive buffer before an overrun occurs. This field is read only.                                                                                                                                                                                                                       |
|                   | 000 Receive FIFO/Buffer depth = 1 dataword.                                                                                                                                                                                                                                                                                                               |

Table continues on the next page...


KL28Z Reference Manual, Rev. 4, 06/2016


#### LPUART\_FIFO field descriptions (continued)

| Field |     | Description                                |
|-------|-----|--------------------------------------------|
|       | 001 | Receive FIFO/Buffer depth = 4 datawords.   |
|       | 010 | Receive FIFO/Buffer depth = 8 datawords.   |
|       | 011 | Receive FIFO/Buffer depth = 16 datawords.  |
|       | 100 | Receive FIFO/Buffer depth = 32 datawords.  |
|       | 101 | Receive FIFO/Buffer depth = 64 datawords.  |
|       | 110 | Receive FIFO/Buffer depth = 128 datawords. |
|       | 111 | Receive FIFO/Buffer depth = 256 datawords. |

## 31.2.12 LPUART Watermark Register (LPUART\_WATER)

This register provides the ability to set a programmable threshold for notification of needing additional transmit data. This register may be read at any time but must be written only when CTRL[TE] is not set.





#### LPUART\_WATER field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>RXCOUNT | Receive Counter  The value in this register indicates the number of datawords that are in the receive FIFO/buffer. If a dataword is being received, that is, in the receive shift register, it is not included in the count. This value may be used in conjunction with FIFO[RXFIFOSIZE] to calculate how much room is left in the receive FIFO/buffer.        |
| 23–16<br>RXWATER | Receive Watermark  When the number of datawords in the receive FIFO/buffer is greater than the value in this register field, an interrupt or a DMA request is generated. For proper operation, the value in RXWATER must be set to be less than the receive FIFO/buffer size as indicated by FIFO[RXFIFOSIZE] and FIFO[RXFE] and must be greater than 0.       |
| 15–8<br>TXCOUNT  | Transmit Counter  The value in this register indicates the number of datawords that are in the transmit FIFO/buffer. If a dataword is being transmitted, that is, in the transmit shift register, it is not included in the count. This value may be used in conjunction with FIFO[TXFIFOSIZE] to calculate how much room is left in the transmit FIFO/buffer. |
| TXWATER          | Transmit Watermark  When the number of datawords in the transmit FIFO/buffer is equal to or less than the value in this register field, an interrupt or a DMA request is generated. For proper operation, the value in TXWATER must be set to be less than the size of the transmit buffer/FIFO size as indicated by FIFO[TXFIFOSIZE] and FIFO[TXFE].          |

KL28Z Reference Manual, Rev. 4, 06/2016

#### LPUART\_WATER field descriptions (continued)

| Field | Description |
|-------|-------------|
|-------|-------------|

## 31.3 Functional description

The LPUART supports full-duplex, asynchronous, NRZ serial communication and comprises a baud rate generator, transmitter, and receiver block. The transmitter and receiver operate independently, although they use the same baud rate generator. The following describes each of the blocks of the LPUART.

## 31.3.1 Baud rate generation

A 13-bit modulus counter in the baud rate generator derive the baud rate for both the receiver and the transmitter. The value from 1 to 8191 written to SBR[12:0] determines the baud clock divisor for the asynchronous LPUART baud clock. The SBR bits are in the LPUART baud rate registers, BDH and BDL. The baud rate clock drives the receiver, while the transmitter is driven by the baud rate clock divided by the over sampling ratio. Depending on the over sampling ratio, the receiver has an acquisition rate of 4 to 32 samples per bit time.

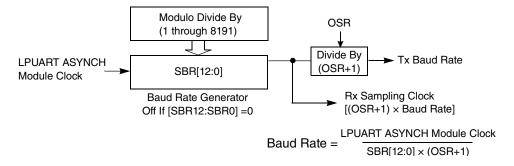



Figure 31-3. LPUART baud rate generation

Baud rate generation is subject to two sources of error:

- Integer division of the asynchronous LPUART baud clock may not give the exact target frequency.
- Synchronization with the asynchronous LPUART baud clock can cause phase shift.

## 31.3.2 Transmitter functional description

This section describes the overall block diagram for the LPUART transmitter, as well as specialized functions for sending break and idle characters.

The transmitter output (LPUART\_TX) idle state defaults to logic high, CTRL[TXINV] is cleared following reset. The transmitter output is inverted by setting CTRL[TXINV]. The transmitter is enabled by setting the CTRL[TE] bit. This queues a preamble character that is one full character frame of the idle state. The transmitter then remains idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the LPUART data register.

The central element of the LPUART transmitter is the transmit shift register that is 10-bit to 13 bits long depending on the setting in the CTRL[M], BAUD[M10] and BAUD[SBNS] control bits. For the remainder of this section, assume CTRL[M], BAUD[M10] and BAUD[SBNS] are cleared, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new character, the value waiting in the transmit data register is transferred to the shift register, synchronized with the baud rate clock, and the transmit data register empty (STAT[TDRE]) status flag is set to indicate another character may be written to the transmit data buffer at LPUART\_DATA.

If no new character is waiting in the transmit data buffer after a stop bit is shifted out the LPUART\_TX pin, the transmitter sets the transmit complete flag and enters an idle mode, with LPUART\_TX high, waiting for more characters to transmit.

Writing 0 to CTRL[TE] does not immediately disable the transmitter. The current transmit activity in progress must first be completed (that could include a data character, idle character or break character), although the transmitter will not start transmitting another character.

### 31.3.2.1 Send break and queued idle

The LPUART\_CTRL[SBK] bit sends break characters originally used to gain the attention of old teletype receivers. Break characters are a full character time of logic 0, 10-bit to 12-bit times including the start and stop bits. A longer break of 13-bit times can be enabled by setting LPUART\_STAT[BRK13]. Normally, a program would wait for LPUART\_STAT[TDRE] to become set to indicate the last character of a message has moved to the transmit shifter, write 1, and then write 0 to the LPUART\_CTRL[SBK] bit. This action queues a break character to be sent as soon as the shifter is available. If LPUART\_CTRL[SBK] remains 1 when the queued break moves into the shifter,

synchronized to the baud rate clock, an additional break character is queued. If the receiving device is another LPUART, the break characters are received as 0s in all data bits and a framing error (LPUART\_STAT[FE] = 1) occurs.

A break character can also be transmitted by writing to the LPUART\_DATA register with bit 13 set and the data bits clear. This supports transmitting the break character as part of the normal data stream and also allows the DMA to transmit a break character.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake up any sleeping receivers. Normally, a program would wait for LPUART\_STAT[TDRE] to become set to indicate the last character of a message has moved to the transmit shifter, then write 0 and then write 1 to the LPUART\_CTRL[TE] bit. This action queues an idle character to be sent as soon as the shifter is available. As long as the character in the shifter does not finish while LPUART\_CTRL[TE] is cleared, the LPUART transmitter never actually releases control of the LPUART\_TX pin.

An idle character can also be transmitted by writing to the LPUART\_DATA register with bit 13 set and the data bits also set. This supports transmitting the idle character as part of the normal data stream and also allows the DMA to transmit a break character.

The length of the break character is affected by the LPUART\_STAT[BRK13], LPUART\_CTRL[M], LPUART\_BAUD[M10] and LPUART\_BAUD[SNBS] bits as shown below.

M10 **BRK13** M **SBNS Break character** length 0 0 0 0 10 bit times 0 0 0 1 11 bit times 1 0 0 0 11 bit times 0 1 0 1 12 bit times 0 Χ 1 0 12 bit times Х 0 1 1 13 bit times 1 0 0 0 13 bit times 1 0 0 1 13 bit times 1 0 0 1 14 bit times 1 0 1 1 14 bit times Χ 1 15 bit times 1 0 Х 1 1 1 15 bit times

Table 31-1. Break character length

#### 31.3.2.2 Hardware flow control

The transmitter supports hardware flow control by gating the transmission with the value of CTS. If the clear-to-send operation is enabled, the character is transmitted when CTS is asserted. If CTS is deasserted in the middle of a transmission with characters remaining in the receiver data buffer, the character in the shift register is sent and LPUART\_TX remains in the mark state until CTS is reasserted.

If the clear-to-send operation is disabled, the transmitter ignores the state of CTS.

The transmitter's CTS signal can also be enabled even if the same LPUART receiver's RTS signal is disabled.

#### 31.3.2.3 Transceiver driver enable

The transmitter can use LPUART\_RTS as an enable signal for the driver of an external transceiver. See Transceiver driver enable using LPUART\_RTS for details. If the request-to-send operation is enabled, when a character is placed into an empty transmitter data buffer, LPUART\_RTS asserts one bit time before the start bit is transmitted. LPUART\_RTS remains asserted for the whole time that the transmitter data buffer has any characters. LPUART\_RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. Transmitting a break character also asserts LPUART\_RTS, with the same assertion and deassertion timing as having a character in the transmitter data buffer.

The transmitter's LPUART\_RTS signal asserts only when the transmitter is enabled. However, the transmitter's LPUART\_RTS signal is unaffected by its LPUART\_CTS signal. LPUART\_RTS will remain asserted until the transfer is completed, even if the transmitter is disabled mid-way through a data transfer.

## 31.3.3 Receiver functional description

In this section, the receiver block diagram is a guide for the overall receiver functional description. Next, the data sampling technique used to reconstruct receiver data is described in more detail. Finally, different variations of the receiver wakeup function are explained.

The receiver input is inverted by setting LPUART\_STAT[RXINV]. The receiver is enabled by setting the LPUART\_CTRL[RE] bit. Character frames consist of a start bit of logic 0, eight to ten data bits (msb or lsb first), and one or two stop bits of logic 1. For

information about 9-bit or 10-bit data mode, refer to 8-bit, 9-bit and 10-bit data modes. For the remainder of this discussion, assume the LPUART is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is transferred to the receive data register and the receive data register full (LPUART\_STAT[RDRF]) status flag is set. If LPUART\_STAT[RDRF] was already set indicating the receive data register (buffer) was already full, the overrun (OR) status flag is set and the new data is lost. Because the LPUART receiver is double-buffered, the program has one full character time after LPUART\_STAT[RDRF] is set before the data in the receive data buffer must be read to avoid a receiver overrun.

When a program detects that the receive data register is full (LPUART\_STAT[RDRF] = 1), it gets the data from the receive data register by reading LPUART\_DATA. Refer to Interrupts and status flags for details about flag clearing.

#### 31.3.3.1 Data sampling technique

The LPUART receiver supports a configurable oversampling rate of between 4× and 32× of the baud rate clock for sampling. The receiver starts by taking logic level samples at the oversampling rate times the baud rate to search for a falling edge on the LPUART\_RX serial data input pin. A falling edge is defined as a logic 0 sample after three consecutive logic 1 samples. The oversampling baud rate clock divides the bit time into 4 to 32 segments from 1 to OSR (where OSR is the configured oversampling ratio). When a falling edge is located, three more samples are taken at (OSR/2), (OSR/2)+1, and (OSR/2)+2 to make sure this was a real start bit and not merely noise. If at least two of these three samples are 0, the receiver assumes it is synchronized to a received character. If another falling edge is detected before the receiver is considered synchronized, the receiver restarts the sampling from the first segment.

The receiver then samples each bit time, including the start and stop bits, at (OSR/2), (OSR/2)+1, and (OSR/2)+2 to determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples taken during the bit time. If any sample in any bit time, including the start and stop bits, in a character frame fails to agree with the logic level for that bit, the noise flag (LPUART\_STAT[NF]) is set when the received character is transferred to the receive data buffer.

#### **Functional description**

When the LPUART receiver is configured to sample on both edges of the baud rate clock, the number of segments in each received bit is effectively doubled (from 1 to OSR×2). The start and data bits are then sampled at OSR, OSR+1 and OSR+2. Sampling on both edges of the clock must be enabled for oversampling rates of 4× to 7× and is optional for higher oversampling rates.

The falling edge detection logic continuously looks for falling edges. If an edge is detected, the sample clock is resynchronized to bit times (unless resynchronization has been disabled). This improves the reliability of the receiver in the presence of noise or mismatched baud rates. It does not improve worst case analysis because some characters do not have any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected almost immediately.

#### 31.3.3.2 Receiver wakeup operation

Receiver wakeup and receiver address matching is a hardware mechanism that allows an LPUART receiver to ignore the characters in a message intended for a different receiver.

During receiver wakeup, all receivers evaluate the first character(s) of each message, and as soon as they determine the message is intended for a different receiver, they write logic 1 to the receiver wake up control bit (LPUART\_CTRL[RWU]). When RWU bit and LPUART\_S2[RWUID] bit are set, the status flags associated with the receiver, with the exception of the idle bit, IDLE, are inhibited from setting, thus eliminating the software overhead for handling the unimportant message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force LPUART\_CTRL[RWU] to 0 so all receivers wake up in time to look at the first character(s) of the next message.

During receiver address matching, the address matching is performed in hardware and the LPUART receiver will ignore all characters that do not meet the address match requirements.

**RWU** MA1 | MA2 **MATCFG** WAKE:RWUID **Receiver Wakeup** 0 0 Х Х Normal operation 1 0 00 00 Receiver wakeup on idle line, IDLE flag not 0 00 01 Receiver wakeup on idle line, IDLE flag set

Table 31-2. Receiver Wakeup Options

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 31-2. Receiver Wakeup Options (continued)

| RWU | MA1   MA2 | MATCFG  | WAKE:RWUID | Receiver Wakeup                                                                    |  |       |  |                               |  |
|-----|-----------|---------|------------|------------------------------------------------------------------------------------|--|-------|--|-------------------------------|--|
| 1   | 0         | 00      | 10         | Receiver wakeup on address mark                                                    |  |       |  |                               |  |
| 1   | 1         | 1 11 X0 |            |                                                                                    |  | 11 X0 |  | Receiver wakeup on data match |  |
| 0   | 1         | 00 X0   |            | Address mark address<br>match, IDLE flag not set<br>for discarded<br>characters    |  |       |  |                               |  |
| 0   | 1         | 00      | X1         | Address mark address match, IDLE flag set for discarded characters                 |  |       |  |                               |  |
| 0   | 1         | 01      | X0         | Idle line address match                                                            |  |       |  |                               |  |
| 0   | 1         | 10      | X0         | Address match on and address match off, IDLE flag not set for discarded characters |  |       |  |                               |  |
| 0   | 1         | 10      | X1         | Address match on and address match off, IDLE flag set for discarded characters     |  |       |  |                               |  |

## 31.3.3.2.1 Idle-line wakeup

When wake is cleared, the receiver is configured for idle-line wakeup. In this mode, LPUART\_CTRL[RWU] is cleared automatically when the receiver detects a full character time of the idle-line level. The LPUART\_CTRL[M] and LPUART\_BAUD[M10] control bit selects 8-bit to 10-bit data mode and the LPUART\_BAUD[SBNS] bit selects 1-bit or 2-bit stop bit number that determines how many bit times of idle are needed to constitute a full character time, 10 to 13 bit times because of the start and stop bits.

When LPUART\_CTRL[RWU] is one and LPUART\_STAT[RWUID] is zero, the idle condition that wakes up the receiver does not set the LPUART\_STAT[IDLE] flag. The receiver wakes up and waits for the first data character of the next message that sets the LPUART\_STAT[RDRF] flag and generates an interrupt if enabled. When LPUART\_STAT[RWUID] is one, any idle condition sets the LPUART\_STAT[IDLE] flag and generates an interrupt if enabled, regardless of whether LPUART\_CTRL[RWU] is zero or one.

The idle-line type (LPUART\_CTRL[ILT]) control bit selects one of two ways to detect an idle line. When LPUART\_CTRL[ILT] is cleared, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full

#### **Functional description**

character time of idle. When LPUART\_CTRL[ILT] is set, the idle bit counter does not start until after the stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

## 31.3.3.2.2 Address-mark wakeup

When LPUART\_CTRL[WAKE] is set, the receiver is configured for address-mark wakeup. In this mode, LPUART\_CTRL[RWU] is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character.

Address-mark wakeup allows messages to contain idle characters, but requires the MSB be reserved for use in address frames. The logic 1 in the MSB of an address frame clears the LPUART\_CTRL[RWU] bit before the stop bits are received and sets the LPUART\_STAT[RDRF] flag. In this case, the character with the MSB set is received even though the receiver was sleeping during most of this character time.

## 31.3.3.2.3 Data match wakeup

When LPUART\_CTRL[RWU] is set and LPUART\_BAUD[MATCFG] equals 11, the receiver is configured for data match wakeup. In this mode, LPUART\_CTRL[RWU] is cleared automatically when the receiver detects a character that matches MATCH[MA1] field when BAUD[MAEN1] is set, or that matches MATCH[MA2] when BAUD[MAEN2] is set.

## 31.3.3.2.4 Address Match operation

Address match operation is enabled when the LPUART\_BAUD[MAEN1] or LPUART\_BAUD[MAEN2] bit is set and LPUART\_BAUD[MATCFG] is equal to 00. In this function, a character received by the LPUART\_RX pin with a logic 1 in the bit position immediately preceding the stop bit is considered an address and is compared with the associated MATCH[MA1] or MATCH[MA2] field. The character is only transferred to the receive buffer, and LPUART\_STAT[RDRF] is set, if the comparison matches. All subsequent characters received with a logic 0 in the bit position immediately preceding the stop bit are considered to be data associated with the address and are transferred to the receive data buffer. If no marked address match occurs then no transfer is made to the receive data buffer, and all following characters with logic zero in the bit position immediately preceding the stop bit are also discarded. If both the LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Address match operation functions in the same way for both MATCH[MA1] and MATCH[MA2] fields.

- If only one of LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] is asserted, a marked address is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] are asserted, a marked address is compared with both match registers and data is transferred only on a match with either register.

## 31.3.3.2.5 Idle Match operation

Idle match operation is enabled when the LPUART\_BAUD[MAEN1] or LPUART\_BAUD[MAEN2] bit is set and LPUART\_BAUD[MATCFG] is equal to 01. In this function, the first character received by the LPUART\_RX pin after an idle line condition is considered an address and is compared with the associated MA1 or MA2 register. The character is only transferred to the receive buffer, and LPUART\_STAT[RDRF] is set, if the comparison matches. All subsequent characters are considered to be data associated with the address and are transferred to the receive data buffer until the next idle line condition is detected. If no address match occurs then no transfer is made to the receive data buffer, and all following frames until the next idle condition are also discarded. If both the LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Idle match operation functions in the same way for both MA1 and MA2 registers.

- If only one of LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] is asserted, the first character after an idle line is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] are asserted, the first character after an idle line is compared with both match registers and data is transferred only on a match with either register.

## 31.3.3.2.6 Match On Match Off operation

Match on, match off operation is enabled when both LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] are set and LPUART\_BAUD[MATCFG] is equal to 10. In this function, a character received by the LPUART\_RX pin that matches MATCH[MA1] is received and transferred to the receive buffer, and LPUART\_STAT[RDRF] is set. All subsequent characters are considered to be data and are also transferred to the receive data buffer, until a character is received that matches MATCH[MA2] register. The character that matches MATCH[MA2] and all following characters are discarded, this

#### **Functional description**

continues until another character that matches MATCH[MA1] is received. If both the LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] bits are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

#### NOTE

Match on, match off operation requires both LPUART\_BAUD[MAEN1] and LPUART\_BAUD[MAEN2] to be asserted.

## 31.3.3.3 Hardware flow control

To support hardware flow control, the receiver can be programmed to automatically deassert and assert LPUART\_RTS.

- LPUART\_RTS remains asserted until the transfer is complete, even if the transmitter is disabled midway through a data transfer. See Transceiver driver enable using LPUART\_RTS for more details.
- If the receiver request-to-send functionality is enabled, the receiver automatically deasserts LPUART\_RTS if the number of characters in the receiver data register is full or a start bit is detected that will cause the receiver data register to be full.
- The receiver asserts LPUART\_RTS when the number of characters in the receiver data register is not full and has not detected a start bit that will cause the receiver data register to be full. It is not affected if STAT[RDRF] is asserted.
- Even if LPUART\_RTS is deasserted, the receiver continues to receive characters until the receiver data buffer is overrun.
- If the receiver request-to-send functionality is disabled, the receiver LPUART\_RTS remains deasserted.

## 31.3.3.4 Infrared decoder

The infrared decoder converts the received character from the IrDA format to the NRZ format used by the receiver. It also has a OSR oversampling baud rate clock counter that filters noise and indicates when a 1 is received.

## 31.3.3.4.1 Start bit detection

When STAT[RXINV] is cleared, the first falling edge of the received character corresponds to the start bit. The infrared decoder resets its counter. At this time, the receiver also begins its start bit detection process. After the start bit is detected, the

receiver synchronizes its bit times to this start bit time. For the rest of the character reception, the infrared decoder's counter and the receiver's bit time counter count independently from each other.

### 31.3.3.4.2 Noise filtering

Any further rising edges detected during the first half of the infrared decoder counter are ignored by the decoder. Any pulses less than one oversampling baud clock can be undetected by it regardless of whether it is seen in the first or second half of the count.

#### 31.3.3.4.3 Low-bit detection

During the second half of the decoder count, a rising edge is decoded as a 0, which is sent to the receiver. The decoder counter is also reset.

## 31.3.3.4.4 High-bit detection

At OSR oversampling baud rate clocks after the previous rising edge, if a rising edge is not seen, then the decoder sends a 1 to the receiver.

If the next bit is a 0, which arrives late, then a low-bit is detected according to Low-bit detection. The value sent to the receiver is changed from 1 to a 0. Then, if a noise pulse occurs outside the receiver's bit time sampling period, then the delay of a 0 is not recorded as noise.

## 31.3.4 Additional LPUART functions

The following sections describe additional LPUART functions.

## 31.3.4.1 8-bit, 9-bit and 10-bit data modes

The LPUART transmitter and receiver can be configured to operate in 9-bit data mode by setting the LPUART\_CTRL[M] or 10-bit data mode by setting LPUART\_CTRL[M10]. In 9-bit mode, there is a ninth data bit in 10-bit mode there is a tenth data bit. For the transmit data buffer, these bits are stored in LPUART\_CTRL[T8] and LPUART\_CTRL[T9]. For the receiver, these bits are held in LPUART\_CTRL[R8] and LPUART\_CTRL[R9]. They are also accessible via 16-bit or 32-bit accesses to the LPUART\_DATA register.

#### **Functional description**

For coherent 8-bit writes to the transmit data buffer, write to LPUART\_CTRL[T8] and LPUART\_CTRL[T9] before writing to LPUART\_DATA[7:0]. For 16-bit and 32-bit writes to the LPUART\_DATA register all 10 transmit bits are written to the transmit data buffer at the same time.

If the bit values to be transmitted as the ninth and tenth bit of a new character are the same as for the previous character, it is not necessary to write to LPUART\_CTRL[T8] and LPUART\_CTRL[T9] again. When data is transferred from the transmit data buffer to the transmit shifter, the value in LPUART\_CTRL[T8] and LPUART\_CTRL[T9] is copied at the same time data is transferred from LPUART\_DATA[7:0] to the shifter.

The 9-bit data mode is typically used with parity to allow eight bits of data plus the parity in the ninth bit, or it is used with address-mark wakeup so the ninth data bit can serve as the wakeup bit. The 10-bit data mode is typically used with parity and address-mark wakeup so the ninth data bit can serve as the wakeup bit and the tenth bit as the parity bit. In custom protocols, the ninth and/or tenth bits can also serve as software-controlled markers.

## 31.3.4.2 Idle length

An idle character is a character where the start bit, all data bits and stop bits are in the mark postion. The CTRL[ILT] register can be configured to start detecting an idle character from the previous start bit (any data bits and stop bits count towards the idle character detection) or from the previous stop bit.

The number of idle characters that must be received before an idle line condition is detected can also be configured using the CTRL[IDLECFG] field. This field configures the number of idle characters that must be received before the STAT[IDLE] flag is set, the STAT[RAF] flag is cleared and the DATA[IDLINE] flag is set with the next received character.

Idle-line wakeup and idle match operation are also affected by the CTRL[IDLECFG] field. When address match or match on/off operation is enabled, setting the STAT[RWUID] bit will cause any discarded characters to be treated as if they were idle characters.

## 31.3.4.3 Loop mode

When LPUART\_CTRL[LOOPS] is set, the LPUART\_CTRL[RSRC] bit in the same register chooses between loop mode (LPUART\_CTRL[RSRC] = 0) or single-wire mode (LPUART\_CTRL[RSRC] = 1). Loop mode is sometimes used to check software,

independent of connections in the external system, to help isolate system problems. In this mode, the transmitter output is internally connected to the receiver input and the LPUART\_RX pin is not used by the LPUART.

## 31.3.4.4 Single-wire operation

When LPUART\_CTRL[LOOPS] is set, the RSRC bit in the same register chooses between loop mode (LPUART\_CTRL[RSRC] = 0) or single-wire mode (LPUART\_CTRL[RSRC] = 1). Single-wire mode implements a half-duplex serial connection. The receiver is internally connected to the transmitter output and to the LPUART\_TX pin (the LPUART\_RX pin is not used).

In single-wire mode, the LPUART\_CTRL[TXDIR] bit controls the direction of serial data on the LPUART\_TX pin. When LPUART\_CTRL[TXDIR] is cleared, the LPUART\_TX pin is an input to the receiver and the transmitter is temporarily disconnected from the LPUART\_TX pin so an external device can send serial data to the receiver. When LPUART\_CTRL[TXDIR] is set, the LPUART\_TX pin is an output driven by the transmitter, the internal loop back connection is disabled, and as a result the receiver cannot receive characters that are sent out by the transmitter.

## 31.3.5 Infrared interface

The LPUART provides the capability of transmitting narrow pulses to an IR LED and receiving narrow pulses and transforming them to serial bits, which are sent to the LPUART. The IrDA physical layer specification defines a half-duplex infrared communication link for exchanging data. The full standard includes data rates up to 16 Mbits/s. This design covers data rates only between 2.4 kbits/s and 115.2 kbits/s.

The LPUART has an infrared transmit encoder and receive decoder. The LPUART transmits serial bits of data that are encoded by the infrared submodule to transmit a narrow pulse for every zero bit. No pulse is transmitted for every one bit. When receiving data, the IR pulses are detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder, external from the LPUART. The narrow pulses are then stretched by the infrared receive decoder to get back to a serial bit stream to be received by the LPUART. The polarity of transmitted pulses and expected receive pulses can be inverted so that a direct connection can be made to external IrDA transceiver modules that use active high pulses.

The infrared submodule receives its clock sources from the LPUART. One of these two clocks are selected in the infrared submodule to generate either 1/OSR, 2/OSR, 3/OSR, or 4/OSR narrow pulses during transmission.

#### 31.3.5.1 Infrared transmit encoder

The infrared transmit encoder converts serial bits of data from transmit shift register to the LPUART\_TX signal. A narrow pulse is transmitted for a zero bit and no pulse for a one bit. The narrow pulse is sent at the start of the bit with a duration of 1/OSR, 2/OSR, 3/OSR, or 4/OSR of a bit time. A narrow low pulse is transmitted for a zero bit when LPUART\_CTRL[TXINV] is cleared, while a narrow high pulse is transmitted for a zero bit when LPUART\_CTRL[TXINV] is set.

#### 31.3.5.2 Infrared receive decoder

The infrared receive block converts data from the LPUART\_RX signal to the receive shift register. A narrow pulse is expected for each zero received and no pulse is expected for each one received. A narrow low pulse is expected for a zero bit when LPUART\_STAT[RXINV] is cleared, while a narrow high pulse is expected for a zero bit when LPUART\_STAT[RXINV] is set. This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared physical layer specification.

## 31.3.6 Interrupts and status flags

The LPUART transmitter has two status flags that can optionally generate hardware interrupt requests. Transmit data register empty LPUART\_STAT[TDRE]) indicates when there is room in the transmit data buffer to write another transmit character to LPUART\_DATA. If the transmit interrupt enable LPUART\_CTRL[TIE]) bit is set, a hardware interrupt is requested when LPUART\_STAT[TDRE] is set. Transmit complete (LPUART\_STAT[TC]) indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle with LPUART\_TX at the inactive level. This flag is often used in systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt enable (LPUART\_CTRL[TCIE]) bit is set, a hardware interrupt is requested when LPUART\_STAT[TC] is set. Instead of hardware interrupts, software polling may be used to monitor the LPUART\_STAT[TDRE] and LPUART\_STAT[TC] status flags if the corresponding LPUART\_CTRL[TIE] or LPUART\_CTRL[TCIE] local interrupt masks are cleared.

When a program detects that the receive data register is full (LPUART\_STAT[RDRF] = 1), it gets the data from the receive data register by reading LPUART\_DATA. The LPUART\_STAT[RDRF] flag is cleared by reading LPUART\_DATA.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the LPUART\_RX line remains idle for an extended period of time. IDLE is cleared by writing 1 to the LPUART\_STAT[IDLE] flag. After LPUART\_STAT[IDLE] has been cleared, it cannot become set again until the receiver has received at least one new character and has set LPUART\_STAT[RDRF].

If the associated error was detected in the received character that caused LPUART\_STAT[RDRF] to be set, the error flags - noise flag (LPUART\_STAT[NF]), framing error (LPUART\_STAT[FE]), and parity error flag (LPUART\_STAT[PF]) - are set at the same time as LPUART\_STAT[RDRF]. These flags are not set in overrun cases.

If LPUART\_STAT[RDRF] was already set when a new character is ready to be transferred from the receive shifter to the receive data buffer, the overrun (LPUART\_STAT[OR]) flag is set instead of the data along with any associated NF, FE, or PF condition is lost.

If the received character matches the contents of MATCH[MA1] and/or MATCH[MA2] then the LPUART\_STAT[MA1F] and/or LPUART\_STAT[MA2F] flags are set at the same time that LPUART\_STAT[RDRF] is set.

At any time, an active edge on the LPUART\_RX serial data input pin causes the LPUART\_STAT[RXEDGIF] flag to set. The LPUART\_STAT[RXEDGIF] flag is cleared by writing a 1 to it. This function depends on the receiver being enabled (LPUART\_CTRL[RE] = 1).

Functional description

# **Chapter 32 Memory-Mapped Divide and Square Root (MMDVSQ)**

#### 32.1 Introduction

ARM processor cores in the Cortex-M family implementing the ARMv6-M instruction set architecture do not include hardware support for integer divide operations. The affected processors include the Cortex-M0+ core. However, in certain deeply embedded application spaces, hardware support for this class of arithmetic operation (along with an unsigned square root function) is important to maximize system performance and minimize device power dissipation. Accordingly, the MMDVSQ module is included in select microcontrollers, to serve as a memory-mapped co-processor located in a special address space (within the system memory map) that is accessible only to the processor core.

The MMDVSQ module supports execution of the integer divide operations defined in the ARMv7-M instruction set architecture, plus an unsigned integer square root operation. The supported integer divide operations include 32/32 signed (SDIV) and unsigned (UDIV) calculations.

## 32.1.1 Features

The key features of the MMDVSQ include:

- Lightweight implementation of 32-bit integer divide and square root arithmetic operations
  - Supports 32/32 signed and unsigned divide (or remainder) calculations
  - Supports 32-bit unsigned square root calculations
- Simple programming model includes input data and result registers plus a control/ status register
- Programming model interface optimized for activation from inline code or software library call

#### Introduction

- "Fast Start" configuration minimizes the memory-mapped register write overhead
- Supports two methods to determine when result is valid, including software polling
- Configurable divide-by-zero response
- Pipelined design processes 2 bits per cycle with early termination exit for minimum execution time

## 32.1.2 Block diagram

A generic block diagram of the processor core and platform for this class of ultra low-end microcontrollers is shown in Figure 32-1. The MMDVSQ module's location as a memory-mapped co-processor is highlighted.

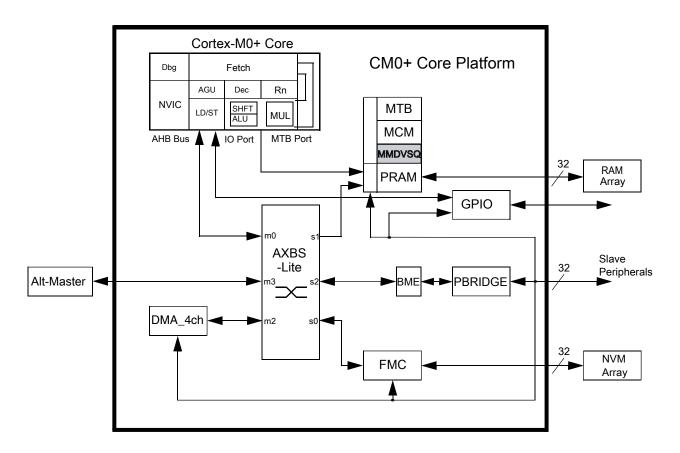



Figure 32-1. Generic Cortex-M0+ Core Platform Block Diagram

Next, a block diagram of the internal structure of the MMDVSQ module is presented. See Figure 32-2.

KL28Z Reference Manual, Rev. 4, 06/2016

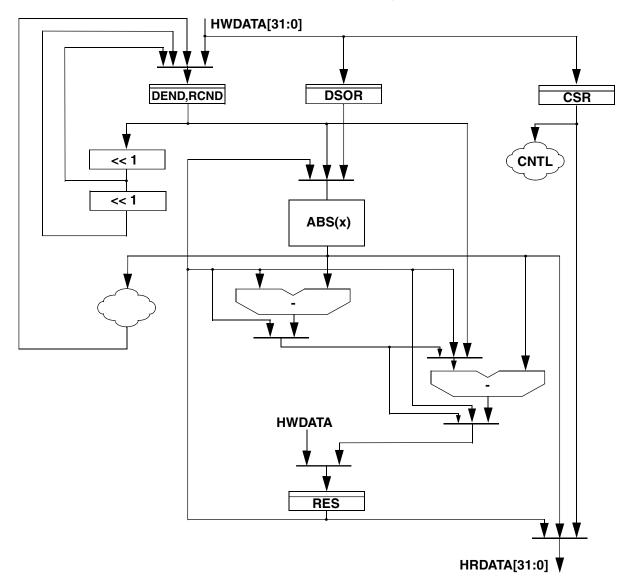



Figure 32-2. MMDVSQ Block Diagram

## 32.1.3 Modes of operation

The MMDVSQ module does not support any special modes of operation. As a memory-mapped device located on a crossbar slave AHB system bus port, MMDVSQ responds based strictly on memory addresses to its programming model.

All functionality associated with the MMDVSQ module resides in the core platform's clock domain; this includes its connections with the crossbar slave port. To minimize power dissipation, the design supports an architectural clock gate for the entire module, that is, the MMDVSQ is only clocked when responding to bus requests to its programming model or is busy performing a calculation.

NXP Semiconductors

841

## 32.2 External signal description

The MMDVSQ module does not directly support any external interfaces.

The internal interface includes a standard 32-bit AHB bus as shown in Figure 32-1.

## 32.3 Memory map and register definition

The MMDVSQ module supports a small number of program-visible registers used for passing input operands and retrieving the output result plus a configuration/status register.

The programming model occupies the first 20 bytes of a standard 4 Kb address slot. It can only be accessed via word-sized (32 bit) accesses. Attempted accesses using smaller data sizes, reading the write-only location or to reserved space are terminated with an error.

At any instant in time, the MMDVSQ can perform either a divide or square root calculation. The basic integer operations supported by the MMDVSQ are:

#### For divide:

```
MMDVSQ_RES = quotient (MMDVSQ_DEND / MMDVSQ_DSOR)
MMDVSQ RES = remainder (MMDVSQ DEND % MMDVSQ DSOR)
```

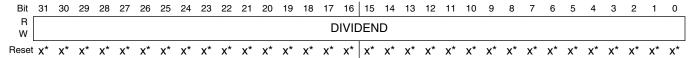
## For square root:

```
MMDVSQ_RES = integer (\sqrt{MMDVSQ_RCND})
```

The register usage, based on the operation (divide, square root), is detailed in Table 32-1.

Table 32-1. Register Usage = f(Divide, Square Root)

| Register                    | Divide | Square<br>Root | Description                                           |
|-----------------------------|--------|----------------|-------------------------------------------------------|
| Dividend (MMDVSQ_DEND)      | Yes    | No             | Input dividend (numerator) for the divide             |
| Divisor (MMDVSQ_DSOR)       | Yes    | No             | Input divisor (denominator) for the divide            |
| Control/Status (MMDVSQ_CSR) | Yes    | Yes            | Control for divide, status for divide and square root |
| Result (MMDVSQ_RES)         | Yes    | Yes            | Output result                                         |
| Radicand (MMDVSQ_RCND)      | No     | Yes            | Input "square" data                                   |


#### MMDVSQ memory map

| Absolute<br>address<br>(hex) | Register name                         | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------|--------------------|--------|-------------|------------------|
| F000_4000                    | Dividend Register (MMDVSQ0_DEND)      | 32                 | R/W    | Undefined   | 32.3.1/843       |
| F000_4004                    | Divisor Register (MMDVSQ0_DSOR)       | 32                 | R/W    | Undefined   | 32.3.2/843       |
| F000_4008                    | Control/Status Register (MMDVSQ0_CSR) | 32                 | R/W    | See section | 32.3.3/845       |
| F000_400C                    | Result Register (MMDVSQ0_RES)         | 32                 | R/W    | Undefined   | 32.3.4/848       |
| F000_4010                    | Radicand Register (MMDVSQ0_RCND)      | 32                 | W      | Undefined   | 32.3.5/848       |

## 32.3.1 Dividend Register (MMDVSQx\_DEND)

This register is loaded with the input dividend operand before a divide operation is initiated. The register is updated by the MMDVSQ hardware during the execution of a divide or square root calculation. Any memory access (read or write) of the DEND register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.

Address: F000\_4000h base + 0h offset = F000\_4000h



<sup>\*</sup> Notes:

#### MMDVSQx\_DEND field descriptions

| Field    | Description                                                 |  |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|
| DIVIDEND | Dividend                                                    |  |  |  |  |  |  |  |  |
|          | This is the input dividend operand for divide calculations. |  |  |  |  |  |  |  |  |

## 32.3.2 Divisor Register (MMDVSQx\_DSOR)

This register is loaded with the input divisor operand before a divide operation is initiated. If CSR[DFS] = 0, a write to this register initiates a divide operation. Any memory access (read or write) of the DSOR register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> x = Undefined at reset.

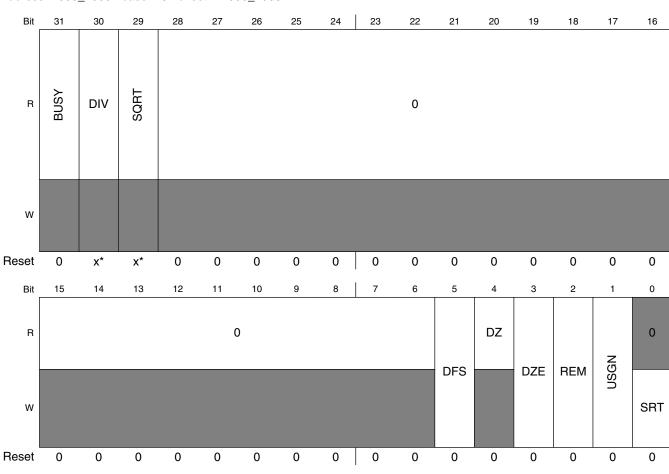
#### Memory map and register definition

If a divide operation is inititated with DSOR = 0, the hardware signals a divide-by-zero condition and sets RES = 0 and CSR[DZ] = 1. If CSR[DZE] = 1, an attempted read of the RES result is error terminated.

Address: F000\_4000h base + 4h offset = F000\_4004h



<sup>\*</sup> Notes:


#### MMDVSQx\_DSOR field descriptions

| Field   | Description                                                |  |  |  |  |  |  |  |  |  |
|---------|------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| DIVISOR | Divisor                                                    |  |  |  |  |  |  |  |  |  |
|         | This is the input divisor operand for divide calculations. |  |  |  |  |  |  |  |  |  |

<sup>•</sup> x = Undefined at reset.

## 32.3.3 Control/Status Register (MMDVSQx\_CSR)

This register defines the operating configuration of divide operations and provides status information. The upper 3 bits provide busy status indicators, while the low-order byte defines the configuration for divide operations. The read-only status bits in CSR[31:29] are valid for both divide and square root operations; the configuration and status bit in CSR[5:0] are only valid for divides. A memory write access of the CSR register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.



Address: F000\_4000h base + 8h offset = F000\_4008h

#### MMDVSQx\_CSR field descriptions

| Field      | Description                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>BUSY | BUSY                                                                                                                                                                                                         |
|            | This read-only bit is asserted when the MMDVSQ is performing a divide or square root. When an operation is initiated, the hardware sets this flag. It remains asserted until the operation completes and the |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

<sup>\*</sup> Notes:

x = Undefined at reset.

#### Memory map and register definition

## MMDVSQx\_CSR field descriptions (continued)

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | hardware automatically clears the indicator. This bit can be used to poll the DVSQ's execution status. The combined CSR[BUSY, DIV, SQRT] indicators provide an encoded module status:  • If 0b001, then MMDVSQ is idle and the last calculation was a square root  • If 0b010, then MMDVSQ is idle and the last calculation was a divide  • If 0b101, then MMDVSQ is busy processing a square root calculation  • If 0b110, then MMDVSQ is busy processing a divide calculation |
|                  | The remaining encodings of CSR[BUSY, DIV, SQRT] are reserved.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | MMDVSQ is idle     MMDVSQ is busy performing a divide or square root calculation                                                                                                                                                                                                                                                                                                                                                                                                |
| 30<br>DIV        | DIVIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Current or last operation was a divide. This read-only indicator bit signals if the current or last operation performed by the MMDVSQ was a divide.                                                                                                                                                                                                                                                                                                                             |
|                  | Current or last MMDVSQ operation was not a divide     Current or last MMDVSQ operation was a divide                                                                                                                                                                                                                                                                                                                                                                             |
| 29<br>SQRT       | SQUARE ROOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | Current or last operation was a square root. This read-only indicator bit signals if the current or last operation performed by the MMDVSQ was a square root.                                                                                                                                                                                                                                                                                                                   |
|                  | Current or last MMDVSQ operation was not a square root     Current or last MMDVSQ operation was a square root                                                                                                                                                                                                                                                                                                                                                                   |
| 28–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                | Disable Fast Start                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DFS              | The MMDVSQ supports 2 mechanisms for initiating a divide operation. The default mechanism is a "fast start" where a write to the DSOR register begins the divide. Alternatively, the start mechanism can begin after a write to the CSR register with CSR[SRT] set. The CSR[DFS] indicator selects the divide start mechanism.                                                                                                                                                  |
|                  | 0 A divide operation is initiated by a write to the DSOR register                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 1 A divide operation is initiated by a write to the CSR register with CSR[SRT] = 1                                                                                                                                                                                                                                                                                                                                                                                              |
| 4<br>DZ          | Divide-by-Zero  This read-only status indicator signals the last divide operation had a zero divisor, that is, DSOR = 0x0000_0000. For this case, RES is set to 0x0000_0000 and this indicator bit set. After a divide-by-zero operation, a read of the RES register returns either the zero result, or, if CSR[DZE] = 1, terminates the read with an error. The CSR[DZ] indicator is cleared by the hardware at the beginning of each operation.                               |
|                  | <ul> <li>The last divide operation had a non-zero divisor, that is, DSOR != 0</li> <li>The last divide operation had a zero divisor, that is, DSOR = 0</li> </ul>                                                                                                                                                                                                                                                                                                               |
| 3                | Divide-by-Zero-Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DZE              | This indicator configures the MMDVSQ's response to divide-by-zero calculations. If both CSR[DZ] and CSR[DZE] are set, then a subsequent read of the RES register is error terminated to signal the processor of the attempted divide-by-zero.                                                                                                                                                                                                                                   |

Table continues on the next page...

846

## Chapter 32 Memory-Mapped Divide and Square Root (MMDVSQ)

## MMDVSQx\_CSR field descriptions (continued)

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|           | 0 Reads of the RES register return the register contents                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|           | 1 If CSR[DZ] = 1, an attempted read of RES register is error terminated to signal a divide-by-zero, else the register contents are returned                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
| 2<br>REM  | REMainder calculation                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|           | This indicator selects whether the quotient or the remainder is returned in the RES register. The combined CSR[REM] and CSR[USGN] bits define four possible divide operations:  • If CSR[REM, USGN] = 0b00, perform a signed divide, returning the quotient  • If CSR[REM, USGN] = 0b01, perform an unsigned divide, returning the remainder  • If CSR[REM, USGN] = 0b10, perform a signed divide, returning the remainder |  |  |  |  |  |  |  |  |  |  |  |
|           | 0 Return the quotient in the RES for the divide calculation                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|           | 1 Return the remainder in the RES for the divide calculation                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
| 1<br>USGN | Unsigned calculation                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |
|           | This indicator selects whether a signed (default) or unsigned divide is performed. See the CSR[REM] description for the encoding of the four possible divide operations.                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |
|           | 0 Perform a signed divide                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1 Perform an unsigned divide                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |
| 0<br>SRT  | Start                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |
|           | When written with a logical one and CSR[DFS] = 1, this flag initiates a divide operation. If written as a logical one with CSR[DFS] = 0, it is ignored. This bit always reads as a zero. The state of the register write data defines this bit's function.                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|           | <ul> <li>No operation initiated</li> <li>If CSR[DFS] = 1, then initiate a divide calculation, else ignore</li> </ul>                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |

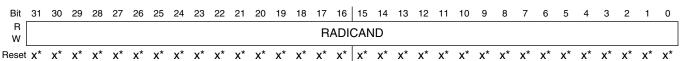
#### Result Register (MMDVSQx RES) 32.3.4

This register is loaded with the result of the divide or square root calculation. It is updated by the MMDVSQ hardware at the completion of the calculation. When a square root operation is performed (on an unsigned 32-bit number), the result is limited to a 16bit value with RES[31:16] = 0x0000. Any memory access (read or write) of the RES register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes and the new result written into the register.

Address: F000\_4000h base + Ch offset = F000\_400Ch

| Bit   | 31     | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|-------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| R     | RESULT |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| W     | RESULT |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Reset | х*     | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | х* | x* |

<sup>\*</sup> Notes:


#### MMDVSQx\_RES field descriptions

| Field  | Description                                                        |  |  |  |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| RESULT | Result                                                             |  |  |  |  |  |  |  |  |  |  |
|        | This is the output result for a divide or square root calculation. |  |  |  |  |  |  |  |  |  |  |

#### Radicand Register (MMDVSQx\_RCND) 32.3.5

The write-only radicand register is loaded with the input "square" number. A memory write to the radicand register initiates a square root calculation. While the MMDVSQ module is busy performing a square root calculation, any memory write access to the RCND register causes the write access to be stalled (using wait states) until the square root calculation finishes. Any attempted read of the radicand register terminates with an error.

Address: F000\_4000h base + 10h offset = F000\_4010h



<sup>\*</sup> Notes:

KL28Z Reference Manual, Rev. 4, 06/2016 848 NXP Semiconductors

<sup>•</sup> x = Undefined at reset.

x = Undefined at reset.

#### MMDVSQx\_RCND field descriptions

| Field    | Description                                                                                   |
|----------|-----------------------------------------------------------------------------------------------|
| RADICAND | Radicand                                                                                      |
|          | This is the input radicand for a square root calculation, that is, the input "square" number. |

## 32.4 Functional description

This section details the algorithms, execution times of the MMDVSQ, and the software interface to the module.

## 32.4.1 Algorithms

This section provides more details on the integer divide and square root algorithms.

## 32.4.1.1 Integer divide including special cases

#### 32.4.1.1.1 Overview

The MMDVSQ module implements a "shift, test, and restore" radix-2 algorithm for unsigned integer divide operations. When performing a signed divide calculation, negative input operands are converted into 2's complement positive numbers first, an unsigned divide performed, and the sign of the results based on the input operand signs, namely:

- The sign of the remainder is the same as the sign of the dividend
- The quotient is negated if the signs of the dividend and divisor are different

The hardware implementation processes two bits per machine cycle and includes "early termination" logic where the execution time is data dependent, based on the magnitude of the positive dividend. See Table 32-4 for more execution time details.

## 32.4.1.1.2 Special case: Overflow

There is a single "special overflow case" affecting signed integer divides. If the dividend  $= 0x8000\_0000$  and the divisor  $= 0xFFFF\_FFF$ , the result of this  $(-2^{31}/-1)$  operation cannot be expressed as a 32-bit 2's complement number. For this case, the MMDVSQ exactly follows the ARM Cortex-Mx definition and returns  $0x8000\_0000$  (the lower 32 bits of the  $+2^{31}$  result) as the quotient with no indication of the overflow condition. If the remainder is selected as the output of this calculation, it returns  $0x0000\_0000$ .

KL28Z Reference Manual, Rev. 4, 06/2016

## 32.4.1.1.3 Special case: Divide-by-Zero

For both signed and unsigned divides, if the divisor is zero, the MMDVSQ hardware detects this condition and the CSR[DZ] indicator set. The quotient result is forced to  $0x0000\_0000$ . If the remainder is selected as the output of this calculation, it also returns  $0x0000\_0000$ . Additionally, if CSR[DZE] = 1, then an attempted read of the Result register (RES) is error terminated to provide a simple mechanism to signal software of the divide-by-zero condition.

## 32.4.1.2 Integer square root

#### 32.4.1.2.1 Overview

The unsigned square root algorithm begins by creating a 32-bit "one-hot" bit vector signaling the highest power of four of the contents of the Radicand register (RCND). It then iterates through an algorithm involving magnitude comparisons of the RCND register versus the working result plus bit vector summation, conditional decrementing of the radicand, a 1-bit right shift of the result, and a 2-bit right shift of the one-hot bit vector.

Processing two bits of the radicand per cycle, the result register finishes with the integer portion of the square root calculation. The module includes early termination logic so that the execution time is data dependent, based on the magnitude of the input radicand. See Table 32-5 for more execution time details. Since both algorithms share common hardware structures, the incremental cost of the square root logic is an extremely small delta to the basic divide hardware.

The square root algorithm was exhaustively compared (that is, all  $2^{32}$  possible input values) against the standard GNU C library implementation, which converts the unsigned integer input into a double-precision floating-point number, calculates the double-precision square root and then converts it back into an unsigned integer. Each input value calculated identical square root results.

## 32.4.1.2.2 Square root using Q notation

Consider the use of Q notation for square root calculations returning fractional values. The following description is taken from http://en.wikipedia.org/wiki/Q\_(number\_format).

Q is a fixed point number format where the number of fractional bits (and optionally the number of integer bits) is specified. For example, a Q15 number has 15 fractional bits; a Q1.14 number has 1 integer bit and 14 fractional bits. Q format is often used in hardware that does not have a floating-point unit and in applications that require constant resolution.

Q format numbers are (notionally) fixed point numbers (but not actually a number itself); that is, they are stored and operated upon as regular binary numbers (i.e. signed integers), thus allowing standard integer hardware/ALU to perform rational number calculations. The number of integer bits, fractional bits and the underlying word size are to be chosen by the programmer on an application-specific basis - the programmer's choices of the foregoing will depend on the range and resolution needed for the numbers. The machine itself remains oblivious to the notional fixed point representation being employed - it merely performs integer arithmetic the way it knows how. Ensuring that the computational results are valid in the Q format representation is the responsibility of the programmer.

The Q notation is written as Qm.n, where:

- *Q* designates that the number is in the *Q* format notation the Texas Instruments representation for signed fixed-point numbers (the "Q" being reminiscent of the standard symbol for the set of rational numbers).
- m is the number of bits set aside to designate the two's complement integer portion of the number, exclusive of the sign bit (therefore if m is not specified it is taken as zero).
- n is the number of bits used to designate the fractional portion of the number, i.e. the number of bits to the right of the binary point. (If n = 0, the Q numbers are integers the degenerate case).

Note that the most significant bit is always designated as the sign bit (the number is stored as a two's complement number) in order to allow standard arithmetic-logic hardware to manipulate Q numbers. Representing a signed fixed-point data type in Q format therefore always requires m+n+1 bits to account for the sign bit. Hence the smallest machine word size required to accommodate a Qm.n number is m+n+1, with the Q number left justified in the machine word.

For a given Qm.n format, using an m+n+1 bit signed integer container with n fractional bits:

- its range is  $[-2^m, 2^m 2^{-n}]$
- its resolution is 2<sup>-n</sup>

#### Integer square root

For the unsigned integer format used in the MMDVSQ's square root calculation, an u(nsigned)Qm.n notation requires m+n bits (m+n=32) for the input radicand. An uQm.n format produces an uQ(m/2).(n/2) square root. As examples, consider the following tables involving the square root of 2 and square root of "pi" calculations. As expected, as the number of fractional bits (n) increases, the error between the calculated square root and the "actual" result decreases.

**RCND** [Hex] **RCND Q format** Results [Hex] **RES Q Format Decimal** % Error 0x0000 0002 uQ32.00 0x0000\_0001 1.0 uQ16.00 -29.289% 0x0002\_0000 uQ16.16 0x0000\_016A uQ08.08 1.4140625 -0.011% 0x0200\_0000 uQ08.24 0x0000\_16A0 uQ04.12 1.4140625 -0.011% 0x2000\_0000 uQ04.28 0x0000\_5A82 uQ02.14 1.4141845703 -0.002% 0x8000\_0000 0x0000\_B504 1.4141845703 uQ02.30 uQ01.15 -0.002%

Table 32-2. Square Root of 2 Calculations ( $\sqrt{2} = 1.4142135623$ )

Table 32-3. Square Root of Pi Calculations (,/Pi = 1.7724538509)

| RCND [Hex]  | RCND Q format | Results [Hex] | RES Q Format | Decimal      | % Error  |
|-------------|---------------|---------------|--------------|--------------|----------|
| 0x0000_0003 | uQ32.0        | 0x0000_0001   | uQ16.00      | 1.0          | -43.581% |
| 0x0003_243F | uQ16.16       | 0x0000_01C5   | uQ08.08      | 1.76953125   | -0.165%  |
| 0x0324_3F6A | uQ08.24       | 0x0000_1C5B   | uQ04.12      | 1.772216769  | -0.013%  |
| 0x3243_F6A8 | uQ04.28       | 0x0000_716F   | uQ02.14      | 1.7723999023 | -0.003%  |
| 0xC90F_DAA0 | uQ02.30       | 0x0000_E2DF   | uQ01.15      | 1.7724304199 | -0.001%  |

The application of the Q notation for square root calculations provides a powerful extension for these types of fractional numeric computations using fixed-point integer processing hardware.

## 32.4.2 Execution times

The MMDVSQ module includes early termination logic to finish both divide and square root calculations as quickly as possible, based on the magnitude of the input operand. Accordingly, the execution time for the calculations is data dependent as defined in Table 32-4 and Table 32-5. In this context, the execution time is defined from the register write to initiate the calculation until the result register has been updated and available to read. Stated differently, it represents the time CSR[BUSY] is asserted for a given calculation. In the following two tables, "x" signals a bit with a don't care value.

#### Chapter 32 Memory-Mapped Divide and Square Root (MMDVSQ)

## **Table 32-4. Divide Execution Times**

| CSR[USGN] ? DEND[31:0] // unsigned divide : abs(DEND[31:0]) // signed divide | Execution Time with CSR[BUSY] = 1 [cycles] |
|------------------------------------------------------------------------------|--------------------------------------------|
| (01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx                                           | 17                                         |
| 00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx                                      | 16                                         |
| 0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxxx_xxxx                                     | 15                                         |
| 0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx                                      | 14                                         |
| 0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx                                       | 13                                         |
| 0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx                                       | 12                                         |
| 0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx                                  | 11                                         |
| 0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx                                  | 10                                         |
| 0000_0000_0000_0000(01,1x)xx_xxxx_xxxx_xxxx                                  | 9                                          |
| 0000_0000_0000_000000(01,1x)_xxxx_xxxxx                                      | 8                                          |
| 0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx                                 | 7                                          |
| 0000_0000_0000_0000_0000000(01,1x)_xxxx_xxxx                                 | 6                                          |
| 0000_0000_0000_0000_0000_(01,1x)xx_xxxx                                      | 5                                          |
| 0000_0000_0000_0000_0000_00(01,1x)_xxxx                                      | 4                                          |
| 0000_0000_0000_0000_0000_0000_0000_(01,1x)xx                                 | 3                                          |
| 0000_0000_0000_0000_0000_0000_000(01,1x)                                     | 2                                          |
| 0000_0000_0000_0000_0000_0000_0000                                           | 1                                          |

**Table 32-5. Square Root Execution Times** 

| RCND[31:0]                                   | Execution Time with CSR[BUSY] = 1 [cycles] |
|----------------------------------------------|--------------------------------------------|
| (01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx           | 17                                         |
| 00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx      | 16                                         |
| 0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxxx_xxxx     | 15                                         |
| 0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx      | 14                                         |
| 0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx       | 13                                         |
| 0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx_xxxx  | 12                                         |
| 0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx  | 11                                         |
| 0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx  | 10                                         |
| 0000_0000_0000_0000(01,1x)xx_xxxx_xxxx_xxxx  | 9                                          |
| 0000_0000_0000_000000(01,1x)_xxxx_xxxxx_xxxx | 8                                          |
| 0000_0000_0000_00000000_(01,1x)xx_xxxx_xxxx  | 7                                          |
| 0000_0000_0000_000000000_00(01,1x)_xxxx_xxxx | 6                                          |
| 0000_0000_0000_0000_0000_(01,1x)xx_xxxx      | 5                                          |
| 0000_0000_0000_0000_0000_00(01,1x)_xxxx      | 4                                          |
| 0000_0000_0000_0000_0000_0000_(01,1x)xx      | 3                                          |
| 0000_0000_0000_0000_0000_0000_00(01,1x)      | 2                                          |
| 0000_0000_0000_0000_0000_0000_0000           | 2                                          |

#### 32.4.3 Software interface

The programming model of the MMDVSQ is organized to be similar to the input arguments passed to software libraries for integer divide and square root functions.

## 32.4.3.1 Operation activation and result retrieval

The MMDVSQ supports 2 mechanisms for initiating a divide operation:

- The default mechanism is a "fast start" where a write to the DSOR register begins the divide.
- Alternatively, the start mechanism can begin after a write to the CSR register with the CSR[SRT] set.

The CSR[DFS] indicator selects the divide start mechanism.

```
if CSR[DFS] = 0
    then a divide is initiated by a write to the DSOR register
    else a divide is initiated by a write to the CSR register with CSR[SRT] = 1
```

A square root calculation is initiated by a write to the RCND register.

For both divide and square root calculations, the result of the operation is retrieved by reading the RES register. A memory read of this register while the calculation is still being performed causes the access to be stalled via the insertion of bus wait states until the new result is loaded into the register. Note a stalled bus cycle cannot be interrupted, so if system interrupt latency is a concern, the processor should execute a simple wait loop, for example, polling CSR[BUSY], before reading the RES register. This code construct is fully interruptible, so interrupt latency is minimized.

## 32.4.3.2 Context save and restore

Given that multiple memory-mapped register accesses are needed for each divide and square root calculation, interrupts may occur during the required sequence of operations. As a result, the MMDVSQ's programming model can be saved at entry to an interrupt service routine (ISR) and then restored when redispatching to the interrupted task.

The module's context can be saved by reading the DEND, DSOR, CSR, and RES registers and storing them as part of the task state. There is one special consideration for the task state save. If the last calculation was a zero divide and the divide-by-zero enable is set (CSR[DZE] = 1), then a read of the RES register is error terminated. To avoid a zero-divide error termination during a context save, the following sequence can be used:

1. Read DEND, DSOR, and CSR registers and save the values as part of the task state.

- 2. Clear CSR[DZE].
- 3. Read the RES register and save its value as part of the task state.

When restoring the context, special care must be taken to not initiate another divide calculation. Specifically, CSR[DFS] must be set first before reloading the DEND and DSOR registers. For example, the following sequence can be used for the context reload:

- 1. Write 0x0000 0020 to the CSR to disable the fast start mechanism.
- 2. Reload DEND, DSOR, CSR, and RES registers from the saved state.

Since the original context save of the control/status register is guaranteed to have CSR[SRT] = 0, there is no divide operation initiated when this register is reloaded in step 2.

KL28Z Reference Manual, Rev. 4, 06/2016

Integer square root

## **Chapter 33 Miscellaneous Control Module (MCM)**

## 33.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Miscellaneous Control Module (MCM) provides a myriad of miscellaneous control functions.

## **33.1.1 Features**

The MCM includes the following features:

- Program-visible information on the platform configuration
- Crossbar master arbitration policy selection
- Flash controller speculation buffer and cache configurations

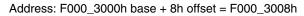
## 33.2 Memory map/register descriptions

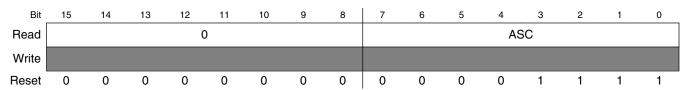
The memory map and register descriptions found here describe the registers using byte addresses. The registers can be written only when in supervisor mode.

## **MCM** memory map

| Absolute address (hex) | Register name                                           | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|---------------------------------------------------------|--------------------|--------|-------------|------------------|
| FOOD 3008              | Crossbar Switch (AXBS) Slave Configuration (MCM0_PLASC) | 16                 | R      | 000Fh       | 33.2.1/858       |

Table continues on the next page...


#### Memory map/register descriptions

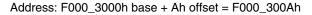

## MCM memory map (continued)

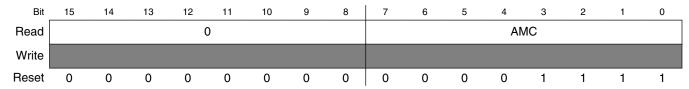
| Absolute<br>address<br>(hex) | Register name                                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------------|--------------------|--------|-------------|------------------|
| F000_300A                    | Crossbar Switch (AXBS) Master Configuration (MCM0_PLAMC) | 16                 | R      | See section | 33.2.2/859       |
| F000_300C                    | Platform Control Register (MCM0_PLACR)                   | 32                 | R/W    | See section | 33.2.3/859       |
| F000_3040                    | Compute Operation Control Register (MCM0_CPO)            | 32                 | R/W    | 0000_0000h  | 33.2.4/862       |

## 33.2.1 Crossbar Switch (AXBS) Slave Configuration (MCMx\_PLASC)

PLASC is a 16-bit read-only register identifying the presence/absence of bus slave connections to the device's crossbar switch.







## MCMx\_PLASC field descriptions

| Field            | Description                                                                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                      |
| ASC              | Each bit in the ASC field indicates whether there is a corresponding connection to the crossbar switch's slave input port.                                |
|                  | <ul> <li>A bus slave connection to AXBS input port <i>n</i> is absent.</li> <li>A bus slave connection to AXBS input port <i>n</i> is present.</li> </ul> |

## 33.2.2 Crossbar Switch (AXBS) Master Configuration (MCMx\_PLAMC)

PLAMC is a 16-bit read-only register identifying the presence/absence of bus master connections to the device's crossbar switch. For MCM0\_PLAMC, the reset value is 0x000F. For MCM1\_PLAMC, the reset value is 0x0007.





#### MCMx\_PLAMC field descriptions

| Field            | Description                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------|
| 15–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                           |
| AMC              | Each bit in the AMC field indicates whether there is a corresponding connection to the AXBS master input port. |
|                  | 0 A bus master connection to AXBS input port <i>n</i> is absent                                                |
|                  | 1 A bus master connection to AXBS input port <i>n</i> is present                                               |

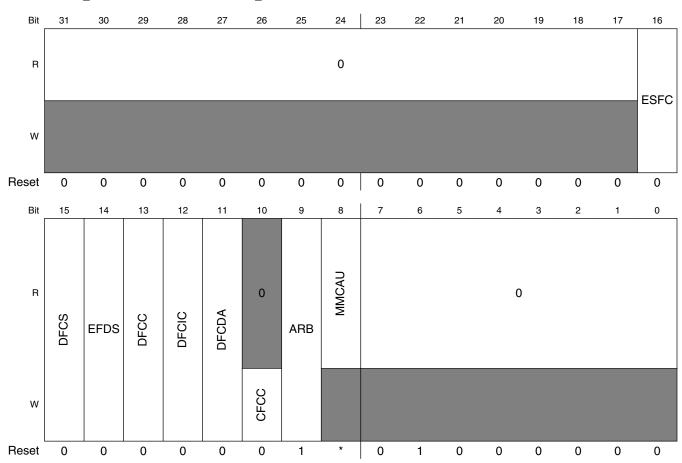
## 33.2.3 Platform Control Register (MCMx\_PLACR)

The PLACR register selects the arbitration policy for the crossbar masters and configures the flash memory controller.

The speculation buffer and cache in the flash memory controller is configurable via PLACR[15:10].

The speculation buffer is enabled only for instructions after reset. It is possible to have these states for the speculation buffer:

| DFCS | EFDS | Description                                                |  |
|------|------|------------------------------------------------------------|--|
| 0    | 0    | Speculation buffer is on for instruction and off for data. |  |
| 0    | 1    | Speculation buffer is on for instruction and on for data.  |  |
| 1    | Х    | Speculation buffer is off.                                 |  |


KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map/register descriptions

The cache in flash controller is enabled and caching both instruction and data type fetches after reset. It is possible to have these states for the cache:

| DFCC | DFCIC | DFCDA | Description                                   |
|------|-------|-------|-----------------------------------------------|
| 0    | 0     | 0     | Cache is on for both instruction and data.    |
| 0    | 0     | 1     | Cache is on for instruction and off for data. |
| 0    | 1     | 0     | Cache is off for instruction and on for data. |
| 0    | 1     | 1     | Cache is off for both instruction and data.   |
| 1    | Х     | X     | Cache is off.                                 |

Address: F000\_3000h base + Ch offset = F000\_300Ch



<sup>\*</sup> Notes:

<sup>•</sup> MMCAU field: Reset value loaded during reset from Flash IFR.

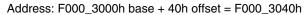
861

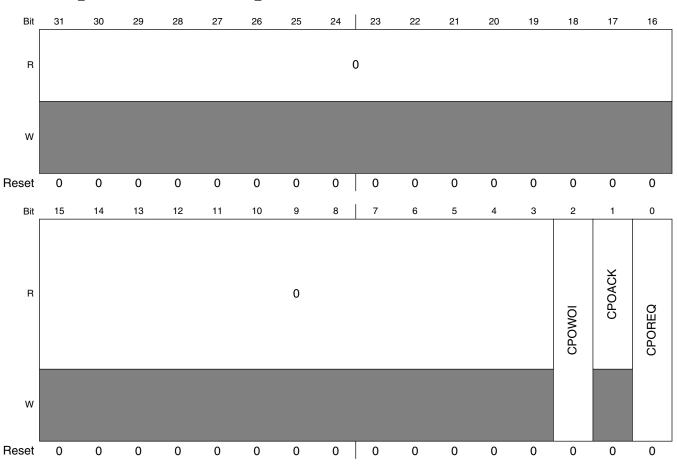
## MCMx\_PLACR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                        |
| 16                | Enable Stalling Flash Controller                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ESFC              | Enables stalling flash controller when flash is busy.                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | When software needs to access the flash memory while a flash memory resource is being manipulated by a flash command, software can enable a stall mechanism to avoid a read collision. The stall mechanism allows software to execute code from the same block on which flash operations are being performed. However, software must ensure the sector the flash operations are being performed on is not the same sector from which the code is executing. |
|                   | ESFC enables the stall mechanism. This bit must be set only just before the flash operation is executed and must be cleared when the operation completes.                                                                                                                                                                                                                                                                                                   |
|                   | <ul> <li>Disable stalling flash controller when flash is busy.</li> <li>Enable stalling flash controller when flash is busy.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| 15                | Disable Flash Controller Speculation                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DFCS              | Disables flash controller speculation.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 0 Enable flash controller speculation.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 1 Disable flash controller speculation.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14<br>EFDS        | Enable Flash Data Speculation  Enables flash data speculation.                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0 Disable flash data speculation.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 1 Enable flash data speculation.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                | Disable Flash Controller Cache                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DFCC              | Disables flash controller cache.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 0 Enable flash controller cache.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 1 Disable flash controller cache.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12<br>DFCIC       | Disable Flash Controller Instruction Caching                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Disables flash controller instruction caching.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0 Enable flash controller instruction caching.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 1 Disable flash controller instruction caching.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11<br>DFCDA       | Disable Flash Controller Data Caching                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DECDA             | Disables flash controller data caching.                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | <ul><li>0 Enable flash controller data caching</li><li>1 Disable flash controller data caching.</li></ul>                                                                                                                                                                                                                                                                                                                                                   |
| 10                | Clear Flash Controller Cache                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFCC              | Writing a 1 to this field clears the cache. Writing a 0 to this field is ignored. This field always reads as 0.                                                                                                                                                                                                                                                                                                                                             |
| 9<br>ARB          | Arbitration select                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### Memory map/register descriptions


## MCMx\_PLACR field descriptions (continued)

| Field      | Description                                                                          |  |
|------------|--------------------------------------------------------------------------------------|--|
|            | 0 Fixed-priority arbitration for the crossbar masters                                |  |
|            | 1 Round-robin arbitration for the crossbar masters                                   |  |
| 8<br>MMCAU | MMCAU Present  0 MMCAU is disabled                                                   |  |
|            | 1 MMCAU is enabled                                                                   |  |
| Reserved   | This field is reserved. This read-only field is reserved and always has the value 0. |  |

## 33.2.4 Compute Operation Control Register (MCMx\_CPO)

This register controls the Compute Operation.





#### MCMx\_CPO field descriptions

| Field       | Description                                                                          |
|-------------|--------------------------------------------------------------------------------------|
| 31–3        | This field is reserved.                                                              |
| Reserved    | This read-only field is reserved and always has the value 0.                         |
| 2<br>CPOWOI | Compute Operation Wake-up on Interrupt                                               |
|             | 0 No effect.                                                                         |
|             | 1 When set, the CPOREQ is cleared on any interrupt or exception vector fetch.        |
| 1           | Compute Operation Acknowledge                                                        |
| CPOACK      |                                                                                      |
|             | O Compute operation entry has not completed or compute operation exit has completed. |
|             | 1 Compute operation entry has completed or compute operation exit has not completed. |
| 0<br>CPOREQ | Compute Operation Request                                                            |
|             | This bit is auto-cleared by vector fetching if CPOWOI = 1.                           |
|             | 0 Request is cleared.                                                                |
|             | 1 Request Compute Operation.                                                         |

## 33.3 Functional description

This section describes the functional description of MCM module.

## 33.3.1 Interrupts

The MCM generates two interrupt requests:

- Non-maskable interrupt
- Normal interrupt

## 33.3.1.1 Non-maskable interrupt

The MCM's NMI is generated if:

- ISCR[ETBN] is set, when
  - The ETB counter is enabled, ETBCC[CNTEN] = 1
  - The ETB count expires
  - The response to counter expiration is an NMI, MCM\_ETBCC[RSPT] = 10

## 33.3.1.2 Normal interrupt

The MCM's normal interrupt is generated if any of the following is true:

- ISCR[ETBI] is set, when
  - The ETB counter is enabled, ETBCC[CNTEN] = 1
  - The ETB count expires
  - The response to counter expiration is a normal interrupt, ETBCC[RSPT] = 01

# **Chapter 34 Miscellaneous System Control Module (MSCM)**

## 34.1 Chip-Specific Information

This device has a single core (Core 0).

#### 34.2 Overview

The Miscellaneous System Control Module (MSCM) contains CPU configuration registers for Core 0 and on-chip memory controller registers.

## 34.3 Chip Configuration and Boot

The device configuration is defined by e-fuse bits, supported memory sizes and packing options. Collectively, these configuration bits define a reset configuration value (RCON).

After the core has fetched the needed reset vector(s), it is expected that the core reads core and system configuration information from a globally-accessible slave peripheral that properly converts the information into more appropriate values. More specifically, the core accesses configuration information from a common set of peripheral addresses, and the chip configuration logic properly evaluates configuration info based on the requesting processor, and returns the appropriate value for the given processor, including core identification.

For example, there is a single 32-bit read-only location for the core identification. A 32-bit read from this location returns a 4-character ASCII string: 0x43\_4D\_30\_01 ("CM0").

The programming model associated with the core configuration information is included as part of the Miscellaneous System Control Module (MSCM). It specifically includes multiple views of the processor configuration; one view that is available generically to the core, and other views that are available to any bus masters in the system.

## 34.4 MSCM Memory Map/Register Definition

## 34.4.1 CPU Configuration Memory Map and Registers

The CPU configuration portion of the MSCM module provides a set of memory-mapped read-only addresses defining the processor set-up. This portion of the MSCM programming model can only be accessed with privileged mode 32-bit read references; any other access type or size are terminated with an error. If the processor is logically not included in the chip configuration, then reads of its configuration registers return zeroes.

The CPU Configuration registers are organized based on the logical processor number (not any type of physical port number) and partitioned into 3 equal sections:

Offset addresses

Function

0x000 - 0x01F

Defines the generic processor "x" configuration. This region is only accessible to the processor core; reads by non-core bus masters are treated as read-as-zero (RAZ) accesses.

0x020 - 0x03F

Defines the configuration information for processor 0 (CP0). This region is accessible to any bus master.

0x040 - 0x05F

Reserved; reads of this section are read as zero (RAZ).

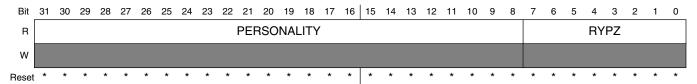
**Table 34-1. CPU Configuration Register Sections** 

Reads from any other bus master return all zeroes. Attempted user mode or write accesses are terminated with an error.

| <b>MSCM</b> | memory | map |
|-------------|--------|-----|
|-------------|--------|-----|

| Absolute<br>address<br>(hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_1000                    | Processor X Type Register (MSCM_CPxTYPE)          | 32                 | R      | See section | 34.4.2/867       |
| 4000_1004                    | Processor X Number Register (MSCM_CPxNUM)         | 32                 | R      | See section | 34.4.3/868       |
| 4000_1008                    | Processor X Master Register (MSCM_CPxMASTER)      | 32                 | R      | See section | 34.4.4/869       |
| 4000_100C                    | Processor X Count Register (MSCM_CPxCOUNT)        | 32                 | R      | See section | 34.4.5/870       |
| 4000_1010                    | Processor X Configuration Register (MSCM_CPxCFG0) | 32                 | R      | See section | 34.4.6/870       |
| 4000_1014                    | Processor X Configuration Register (MSCM_CPxCFG1) | 32                 | R      | See section | 34.4.6/870       |
| 4000_1018                    | Processor X Configuration Register (MSCM_CPxCFG2) | 32                 | R      | See section | 34.4.6/870       |
| 4000_101C                    | Processor X Configuration Register (MSCM_CPxCFG3) | 32                 | R      | See section | 34.4.6/870       |
| 4000_1020                    | Processor 0 Type Register (MSCM_CP0TYPE)          | 32                 | R      | See section | 34.4.7/871       |
| 4000_1024                    | Processor 0 Number Register (MSCM_CP0NUM)         | 32                 | R      | See section | 34.4.8/872       |
| 4000_1028                    | Processor 0 Master Register (MSCM_CP0MASTER)      | 32                 | R      | See section | 34.4.9/873       |

Table continues on the next page...


#### **MSCM** memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------------|--------------------|--------|-------------|------------------|
| 4000_102C                    | Processor 0 Count Register (MSCM_CP0COUNT)        | 32                 | R      | See section | 34.4.10/<br>874  |
| 4000_1030                    | Processor 0 Configuration Register (MSCM_CP0CFG0) | 32                 | R      | 0000_0000h  | 34.4.11/<br>874  |
| 4000_1034                    | Processor 0 Configuration Register (MSCM_CP0CFG1) | 32                 | R      | 0000_0000h  | 34.4.11/<br>874  |
| 4000_1038                    | Processor 0 Configuration Register (MSCM_CP0CFG2) | 32                 | R      | 0000_0000h  | 34.4.11/<br>874  |
| 4000_103C                    | Processor 0 Configuration Register (MSCM_CP0CFG3) | 32                 | R      | 0000_0000h  | 34.4.11/<br>874  |
| 4000_1400                    | On-Chip Memory Descriptor Register (MSCM_OCMDR0)  | 32                 | R/W    | See section | 34.4.12/<br>875  |
| 4000_1404                    | On-Chip Memory Descriptor Register (MSCM_OCMDR1)  | 32                 | R/W    | See section | 34.4.12/<br>875  |
| 4000_1408                    | On-Chip Memory Descriptor Register (MSCM_OCMDR2)  | 32                 | R/W    | See section | 34.4.12/<br>875  |

## 34.4.2 Processor X Type Register (MSCM\_CPxTYPE)

The register provides a CPU-specific response indicating the personality of the core making the access. The 32-bit response includes 3 ASCII characters that define the CPU type, along with a byte that defines the logical revision number. The logical revision number follows ARM's rYpZ nomenclature.

Address: 4000\_1000h base + 0h offset = 4000\_1000h



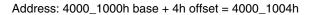
- \* Notes:
- · PERSONALITY field: See bit field description
- RYPZ field: See bit field description

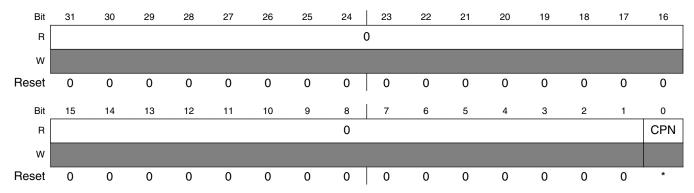
#### MSCM\_CPxTYPE field descriptions

| Field       | Description                                                    |
|-------------|----------------------------------------------------------------|
|             | Processor x Personality                                        |
| PERSONALITY | This read-only field defines the processor personality for CPx |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### MSCM Memory Map/Register Definition


## **MSCM\_CPxTYPE** field descriptions (continued)

| Field | Description                                                  |  |  |  |  |  |
|-------|--------------------------------------------------------------|--|--|--|--|--|
|       | if CPx = Cortex-M0, then PERSONALITY = 0x43_4D_30 ("CM0").   |  |  |  |  |  |
| RYPZ  | RYPZ Processor x Revision                                    |  |  |  |  |  |
|       | This read-only field defines the processor revision for CPx: |  |  |  |  |  |
|       | 0x00 corresponds to the r0p0 core release.                   |  |  |  |  |  |
|       | 0x01 corresponds to the r0p1 core release.                   |  |  |  |  |  |
|       |                                                              |  |  |  |  |  |

## 34.4.3 Processor X Number Register (MSCM\_CPxNUM)

The register provides a CPU-specific response indicating the logical processor number of the core making the access. The logical processor number is always 0.

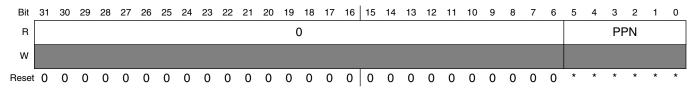




<sup>\*</sup> Notes:

#### MSCM\_CPxNUM field descriptions

| Field            | Description                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------|
| 31–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.            |
| 0<br>CPN         | Processor x Number  This zero-filled word defines the logical processor number for CPx  CPN = 0 |


<sup>•</sup> CPN field: See bit field description

## 34.4.4 Processor X Master Register (MSCM\_CPxMASTER)

The register provides a CPU-specific response indicating the physical bus master number of the core that is making the access. The 32-bit response defines the physical master number for processor x.

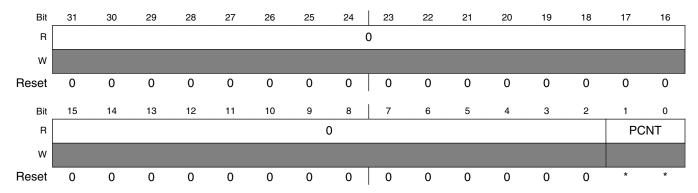
- A privileged read from the CM0+ returns the appropriate processor information.
- Reads from any other bus master return all zeroes.
- Attempted user mode or write accesses are terminated with an error.

Address: 4000\_1000h base + 8h offset = 4000\_1008h



<sup>\*</sup> Notes:

#### MSCM\_CPxMASTER field descriptions


| Field            | Description                                                                          |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 31–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |  |  |  |  |  |  |  |
| PPN              | Processor x Physical Port Number                                                     |  |  |  |  |  |  |  |
|                  | This read-only field defines the physical port number for the core.                  |  |  |  |  |  |  |  |
|                  | For the core, PPN = 0x00                                                             |  |  |  |  |  |  |  |

<sup>·</sup> PPN field: See the bit field description.

## 34.4.5 Processor X Count Register (MSCM\_CPxCOUNT)

The register provides a CPU-specific response indicating the total number of processor cores in the chip configuration.

Address: 4000\_1000h base + Ch offset = 4000\_100Ch



<sup>\*</sup> Notes:

#### MSCM\_CPxCOUNT field descriptions

| Field            | Description                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                     |
| PCNT             | Processor Count  This read-only field defines the processor count for the chip configuration:  PCNT = 00 |

## 34.4.6 Processor X Configuration Register (MSCM\_CPxCFGn)

The register provides information on the Level 1 caches (if present).

#### NOTE

Reset values for the 4 Processor X Configuration Registers:

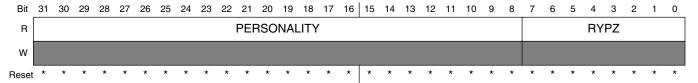
- $MSCM_CPxCFG0 = 0x0000_0000$
- $MSCM_CPxCFG1 = 0x0000_0000$
- MSCM\_CPxCFG2 = 0x0001\_0001
- $MSCM_CPxCFG3 = 0x0000_0120$

<sup>•</sup> PCNT field: See bit field description

Address: 4000\_1000h base + 10h offset + (4d × i), where i=0d to 3d

| Bit   | 31 | 30 | 29 | 28  | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20  | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3  | 2 | 1 | 0 |
|-------|----|----|----|-----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|-----|----|---|---|---|
| R     |    |    |    | ICS | SZ |    |    |    |    |    |    | ICV | ۷Y |    |    |    |    |    |    | DC | SZ |    |   |   |   |   |   | DC' | WY |   |   |   |
| w     |    |    |    |     |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |    |    |   |   |   |   |   |     |    |   |   |   |
| Reset | *  | *  | *  | *   | *  | *  | *  | *  | *  | *  | *  | *   | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | * | * | * | * | * | *   | *  | * | * | * |

- \* Notes:
- ICSZ field: See register description for reset values.
- ICWY field: See register description for reset values.
- DCSZ field: See register description for reset values.
- · DCWY field: See register description for reset values.


#### MSCM\_CPxCFGn field descriptions

| Field         | Description                                                                                                                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>ICSZ | Level 1 Instruction Cache Size  This read-only field provides an encoded value of the Instruction Cache size. The capacity of the memory is expressed as Size [bytes] = 2 <sup>(8+SZ)</sup> , where SZ is non-zero; a SZ = 0 indicates the memory is not present. |
| 23–16<br>ICWY | Level 1 Instruction Cache Ways  This read-only field provides the number of cache ways for the Instruction Cache.                                                                                                                                                 |
| 15–8<br>DCSZ  | Level 1 Data Cache Size  This read-only field provides an encoded value of the Data Cache size. The capacity of the memory is expressed as Size [bytes] = 2 <sup>(8+SZ)</sup> , where SZ is non-zero; a SZ = 0 indicates the memory is not present.               |
| DCWY          | Level 1 Data Cache Ways  This read-only field provides the number of cache ways for the Data Cache.                                                                                                                                                               |

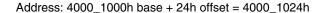
## 34.4.7 Processor 0 Type Register (MSCM\_CP0TYPE)

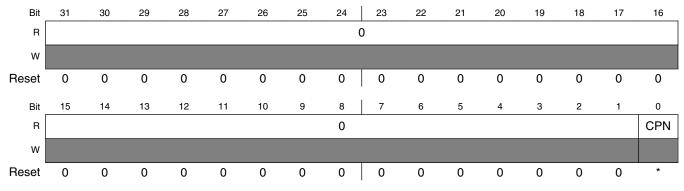
The register provides a CPU-specific response indicating the personality of the core making the access. The 32-bit response includes 3 ASCII characters defining the CPU type, along with a byte defining the logical revision number. The logical revision number follows ARM's rYpZ nomenclature.

Address: 4000\_1000h base + 20h offset = 4000\_1020h



- \* Notes:
- · PERSONALITY field: See bit field description
- RYPZ field: See bit field description


#### **MSCM Memory Map/Register Definition**


## **MSCM\_CP0TYPE** field descriptions

| Field       | Description                                                    |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------|--|--|--|--|--|--|
| 31–8        | Processor x Personality                                        |  |  |  |  |  |  |
| PERSONALITY | This read-only field defines the processor personality for CPx |  |  |  |  |  |  |
|             | if CPx = Cortex-M0, then PERSONALITY = 0x43_4D_30 ("CM0").     |  |  |  |  |  |  |
| RYPZ        | Processor x Revision                                           |  |  |  |  |  |  |
|             | This read-only field defines the processor revision for CPx:   |  |  |  |  |  |  |
|             | 0x00 corresponds to the r0p0 core release.                     |  |  |  |  |  |  |
|             | 0x01 corresponds to the r0p1 core release.                     |  |  |  |  |  |  |
|             |                                                                |  |  |  |  |  |  |

## 34.4.8 Processor 0 Number Register (MSCM\_CP0NUM)

The register provides a CPU-specific response indicating the logical processor number of the core making the access. The logical processor number is always 0.





<sup>\*</sup> Notes:

#### MSCM\_CP0NUM field descriptions

| Field            | Description                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------|
| 31–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.            |
| 0<br>CPN         | Processor x Number  This zero-filled word defines the logical processor number for CPx  CPN = 0 |

<sup>·</sup> CPN field: See bit field description

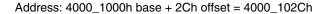
## 34.4.9 Processor 0 Master Register (MSCM\_CP0MASTER)

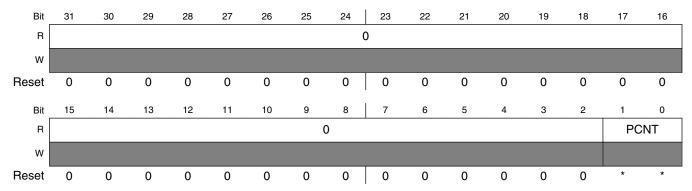
The register provides a CPU-specific response, that indicates the physical bus master number of the core making the access. The 32-bit response defines the physical master number for processor x.

- A privileged read from the CM0+ returns the appropriate processor information.
- Reads from any other bus master return all zeroes.
- Attempted user mode or write accesses are terminated with an error.

Address: 4000\_1000h base + 28h offset = 4000\_1028h




- \* Notes:
- PPN field: See the bit field description.


#### MSCM\_CP0MASTER field descriptions

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| PPN              | Processor x Physical Port Number                                                     |
|                  | This read-only field defines the physical port number for CPUx.                      |
|                  | For CPU0, PPN = $0x00$                                                               |

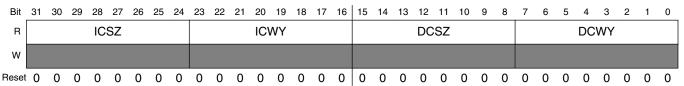
## 34.4.10 Processor 0 Count Register (MSCM\_CP0COUNT)

The register provides a CPU-specific response indicating the total number of processor cores in the chip configuration.





<sup>\*</sup> Notes:


#### MSCM\_CP0COUNT field descriptions

| Field            | Description                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                     |
| PCNT             | Processor Count  This read-only field defines the processor count for the chip configuration:  PCNT = 00 |

## 34.4.11 Processor 0 Configuration Register (MSCM\_CP0CFGn)

The register provides information on the Level 1 caches (if present).

Address:  $4000_{1000h}$  base + 30h offset +  $(4d \times i)$ , where i=0d to 3d



KL28Z Reference Manual, Rev. 4, 06/2016

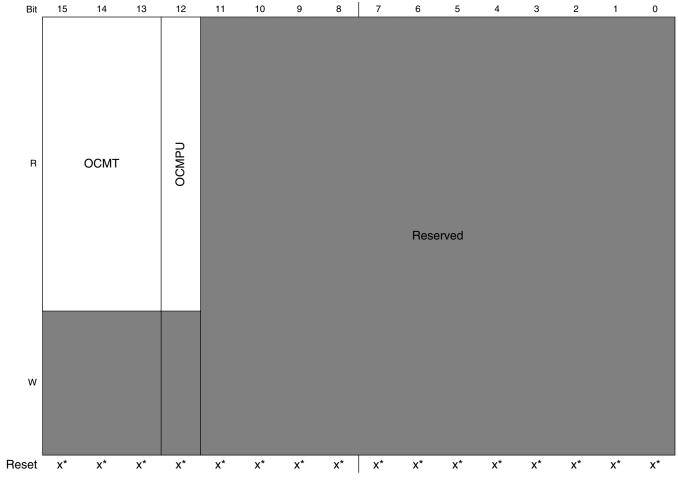
<sup>·</sup> PCNT field: See bit field description

#### MSCM\_CP0CFGn field descriptions

| Field         | Description                                                                                                                                                                                                                                                       |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>ICSZ | Level 1 Instruction Cache Size  This read-only field provides an encoded value of the Instruction Cache size. The capacity of the memory is expressed as Size [bytes] = 2 <sup>(8+SZ)</sup> , where SZ is non-zero; a SZ = 0 indicates the memory is not present. |
| 23–16<br>ICWY | Level 1 Instruction Cache Ways  This read-only field provides the number of cache ways for the Instruction Cache.                                                                                                                                                 |
| 15–8<br>DCSZ  | Level 1 Data Cache Size  This read-only field provides an encoded value of the Data Cache size. The capacity of the memory is expressed as Size [bytes] = 2 <sup>(8+SZ)</sup> , where SZ is non-zero; a SZ = 0 indicates the memory is not present.               |
| DCWY          | Level 1 Data Cache Ways  This read-only field provides the number of cache ways for the Data Cache.                                                                                                                                                               |

## 34.4.12 On-Chip Memory Descriptor Register (MSCM\_OCMDRn)

This section of the programming model is an array of 32-bit generic on-chip memory descriptor registers that provide static information about the attached memories, as well as configurable controls (where appropriate).


- Privileged 32-bit reads from a processor core or the debugger return the appropriate processor information.
- Reads from any other bus master return all zeroes.
- Privileged writes from a processor core or the debugger to writeable registers update the appropriate fields.
- Privileged writes from other bus masters are ignored.
- Attempted user mode accesses or any access with a size other than 32 bits are terminated with an error.

KL28Z Reference Manual, Rev. 4, 06/2016

#### MSCM Memory Map/Register Definition

Address:  $4000\_1000h$  base + 400h offset +  $(4d \times i)$ , where i=0d to 2d

| Bit   | 31         | 30       | 29       | 28     | 27         | 26         | 25         | 24 | 23         | 22         | 21         | 20         | 19 | 18   | 17         | 16 |
|-------|------------|----------|----------|--------|------------|------------|------------|----|------------|------------|------------|------------|----|------|------------|----|
| R     | V          | Reserved | Reserved | OCMSZH |            | OCM        | MSZ        |    |            | Rese       | erved      |            |    | OCMW |            | RO |
| w     | <b>X</b> * | 1        | X*       | X*     | <b>x</b> * | <b>X</b> * | <b>X</b> * | χ* | <b>X</b> * | <b>X</b> * | <b>X</b> * | <b>X</b> * | X* | X*   | <b>X</b> * | x* |
| neset | Х          | ı        | Х        | Х      | Х          | Х          | Х          | Х  | X          | Х          | Х          | Х          | Х  | Х    | Х          | Х  |



<sup>\*</sup> Notes:

#### MSCM\_OCMDRn field descriptions

| Field        | Description                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>V      | OCMEM Valid bit. This read-only field defines the validity (presence) of the on-chip memory                                                                     |
|              | 0 OCMEMn is not present.                                                                                                                                        |
|              | 1 OCMEMn is present.                                                                                                                                            |
| 30           | This field is reserved.                                                                                                                                         |
| Reserved     | This Reserved field always has the value of 1.                                                                                                                  |
| 29           | This field is reserved.                                                                                                                                         |
| Reserved     |                                                                                                                                                                 |
| 28<br>OCMSZH | OCMEM Size "Hole". For on-chip memories that are not fully populated, that is, include a memory "hole" in the upper 25% of the address range, this bit is used. |
|              | 0 OCMEMn is a power-of-2 capacity.                                                                                                                              |
|              | 1 OCMEMn is not a power-of-2, with a capacity is 0.75 * OCMSZ.                                                                                                  |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> The reset values are different for the individual OCMDR registers. OCMDR0: 0xD904\_0000; OCMDR1: 0xC704\_0000; OCMDR2: 0xC704\_6000x = Undefined at reset.

#### **MSCM Memory Map/Register Definition**

## MSCM\_OCMDRn field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27–24<br>OCMSZ    | OCMEM Size. This read-only field provides an encoded value of the on-chip memory size. The capacity of the memory is expressed as Size [bytes] = 2(8+SZ) where SZ is non-zero; a SZ = 0 indicates the memory is not present. |
|                   | 0000 no OCMEMn                                                                                                                                                                                                               |
|                   | 0100 4KB OCMEMn                                                                                                                                                                                                              |
|                   | 0101 8KB OCMEMn                                                                                                                                                                                                              |
|                   | 0110 16KB OCMEMn                                                                                                                                                                                                             |
|                   | 0111 32KB OCMEMn                                                                                                                                                                                                             |
|                   | 1111 8192KB OCMEMn                                                                                                                                                                                                           |
| 23–20<br>Reserved | This field is reserved.                                                                                                                                                                                                      |
| 19–17<br>OCMW     | OCMEM datapath Width. This read-only field defines the width of the on-chip memory:                                                                                                                                          |
|                   | 000-001 Reserved                                                                                                                                                                                                             |
|                   | 010 OCMEMn 32-bits wide<br>011 OCMEMn 64-bits wide                                                                                                                                                                           |
|                   | 011 OCMEMn 64-bits wide<br>100-111 Reserved                                                                                                                                                                                  |
| 10                | 100 111 11001100                                                                                                                                                                                                             |
| 16<br>RO          | Read-Only. This register bit provides a mechanism to "lock" the configuration state defined by OCMDRn[11:0]. Once asserted, attempted writes to the OCMDRn[11:0] register are ignored until the next reset clears the flag.  |
|                   | 0 Writes to the OCMDRn[11:0] are allowed                                                                                                                                                                                     |
|                   | 1 Writes to the OCMDRn[11:0] are ignored                                                                                                                                                                                     |
| 15–13<br>OCMT     | OCMEM Type. This field defines the type of the on-chip memory:                                                                                                                                                               |
|                   | 000 OCMEMn is a system RAM.                                                                                                                                                                                                  |
|                   | 001 OCMEMn is a graphics RAM.                                                                                                                                                                                                |
|                   | 010 Reserved                                                                                                                                                                                                                 |
|                   | 011 OCMEMn is a ROM.                                                                                                                                                                                                         |
|                   | 100 Reserved                                                                                                                                                                                                                 |
|                   | 101 Reserved                                                                                                                                                                                                                 |
|                   | 110 Reserved                                                                                                                                                                                                                 |
|                   | 111 Reserved                                                                                                                                                                                                                 |
| 12<br>OCMPU       | OCMEM Memory Protection Unit. This field is reserved for this device.                                                                                                                                                        |
| Reserved          | This field is reserved.                                                                                                                                                                                                      |

# **Chapter 35 Micro Trace Buffer (MTB)**

#### 35.1 Introduction

Microcontrollers using the Cortex-M0+ processor core include support for a CoreSight Micro Trace Buffer to provide program trace capabilities.

The proper name for this function is the CoreSight Micro Trace Buffer for the Cortex-M0+ Processor; in this document, it is simply abbreviated as the MTB.

The simple program trace function creates instruction address change-of-flow data packets in a user-defined region of the system RAM. Accordingly, the system RAM controller manages requests from two sources:

- AMBA-AHB reads and writes from the system bus
- program trace packet writes from the processor

As part of the MTB functionality, there is a DWT (Data Watchpoint and Trace) module that allows the user to define watchpoint addresses, or optionally, an address and data value, that when triggered, can be used to start or stop the program trace recording.

This document details the functionality of both the MTB\_RAM and MTB\_DWT capabilities.

## **35.1.1 Overview**

A generic block diagram of the processor core and platform for this class of ultra low-end microcontrollers is shown as follows:

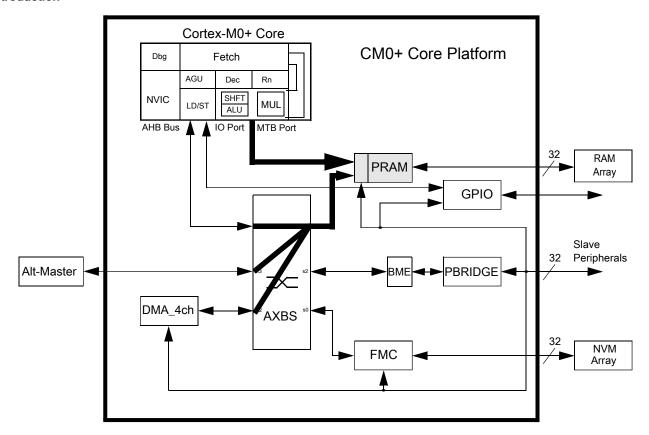



Figure 35-1. Generic Cortex-M0+ core platform block diagram

As shown in the block diagram, the platform RAM (PRAM) controller connects to two input buses:

- the crossbar slave port for system bus accesses
- a "private execution MTB port" from the core

The logical paths from the crossbar master input ports to the PRAM controller are highlighted along with the private execution trace port from the processor core. The private MTB port signals the instruction address information needed for the 64-bit program trace packets written into the system RAM. The PRAM controller output interfaces to the attached RAM array. In this document, the PRAM controller is the MTB\_RAM controller.

The following information is taken from the ARM CoreSight Micro Trace Buffer documentation.

"The execution trace packet consists of a pair of 32-bit words that the MTB generates when it detects the processor PC value changes non-sequentially. A non-sequential PC change can occur during branch instructions or during exception entry.

The processor can cause a trace packet to be generated for any instruction.

The following figure shows how the execution trace information is stored in memory as a sequence of packets.

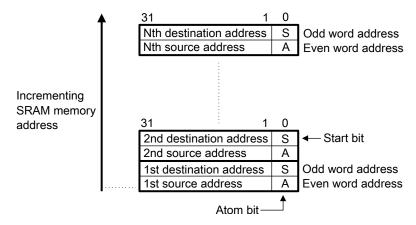



Figure 35-2. MTB execution trace storage format

The first, lower addressed, word contains the source of the branch, the address it branched from. The value stored only records bits[31:1] of the source address, because Thumb instructions are at least halfword aligned. The least significant bit of the value is the A-bit. The A-bit indicates the atomic state of the processor at the time of the branch, and can differentiate whether the branch originated from an instruction in a program, an exception, or a PC update in Debug state. When it is zero the branch originated from an instruction, when it is one the branch originated from an exception or PC update in Debug state. This word is always stored at an even word location.

The second, higher addressed word contains the destination of the branch, the address it branched to. The value stored only records bits[31:1] of the branch address. The least significant bit of the value is the S-bit. The S-bit indicates where the trace started. An S-bit value of 1 indicates where the first packet after the trace started and a value of 0 is used for other packets. Because it is possible to start and stop tracing multiple times in a trace session, the memory might contain several packets with the S-bit set to 1. This word is always stored in the next higher word in memory, an odd word address.

When the A-bit is set to 1, the source address field contains the architecturally-preferred return address for the exception. For example, if an exception was caused by an SVC instruction, then the source address field contains the address of the following instruction. This is different from the case where the A-bit is set to 0. In this case, the source address contains the address of the branch instruction.

For an exception return operation, two packets are generated:

- The first packet has the:
  - Source address field set to the address of the instruction that causes the exception return, BX or POP.

#### Introduction

- Destination address field set to bits[31:1] of the EXC\_RETURN value. See the ARM v6-M Architecture Reference Manual.
- The A-bit set to 0.
- The second packet has the:
  - Source address field set to bits[31:1] of the EXC\_RETURN value.
  - Destination address field set to the address of the instruction where execution commences.
  - A-bit set to 1."

Given the recorded change-of-flow trace packets in system RAM and the memory image of the application, a debugger can read out the data and create an instruction-by-instruction program trace. In keeping with the low area and power implementation cost design targets, the MTB trace format is less efficient than other CoreSight trace modules, for example, the ETM (Embedded Trace Macrocell). Since each branch packet is 8 bytes in size, a 1 KB block of system RAM can contain 128 branches. Using the Dhrystone 2.1 benchmark's dynamic runtime as an example, this corresponds to about 875 instructions per KB of trace RAM, or with a zero wait state memory, this corresponds to approximately 1600 processor cycles per KB. This metric is obviously very sensitive to the runtime characteristics of the user code.

The MTB\_DWT function (not shown in the core platform block diagram) monitors the processor address and data buses so that configurable watchpoints can be detected to trigger the appropriate response in the MTB recording.

## 35.1.2 Features

The key features of the MTB\_RAM and MTB\_DWT include:

- Memory controller for system RAM and Micro Trace Buffer for program trace packets
- Read/write capabilities for system RAM accesses, write-only for program trace packets
- Supports zero wait state response to system bus accesses when no trace data is being written
- Can buffer two AHB address phases and one data write for system RAM accesses
- Supports 64-bit program trace packets including source and destination instruction addresses
- Program trace information in RAM available to MCU's application code or external debugger
- Program trace watchpoint configuration accessible by MCU's application code or debugger
- Location and size of RAM trace buffer is configured by software

- Two DWT comparators (addresses or address + data) provide programmable start/ stop recording
- CoreSight compliant debug functionality

## 35.1.3 Modes of operation

The MTB\_RAM and MTB\_DWT functions do not support any special modes of operation. The MTB\_RAM controller, as a memory-mapped device located on the platform's slave AHB system bus, responds strictly on the basis of memory addresses for accesses to its attached RAM array. The MTB private execution bus provides program trace packet write information to the RAM controller. Both the MTB\_RAM and MTB\_DWT modules are memory-mapped, so their programming models can be accessed.

All functionality associated with the MTB\_RAM and MTB\_DWT modules resides in the core platform's clock domain; this includes its connections with the RAM array.

## 35.2 External signal description

The MTB\_RAM and MTB\_DWT modules do not directly support any external interfaces.

The internal interface includes a standard AHB bus with a 32-bit datapath width from the appropriate crossbar slave port plus the private execution trace bus from the processor core. The signals in the private execution trace bus are detailed in the following table taken from the ARM CoreSight Micro Trace Buffer documentation. The signal direction is defined as viewed by the MTB\_RAM controller.

Table 35-1. Private execution trace port from the core to MTB\_RAM

| Signal     | Direction | Description                                                                                                                                                                                                                                      |
|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCKUP     | Input     | Indicates the processor is in the Lockup state. This signal is driven LOW for cycles when the processor is executing normally and driven HIGH for every cycle the processor is waiting in the Lockup state. This signal is valid on every cycle. |
| IAESEQ     | Input     | Indicates the next instruction address in execute, IAEX, is sequential, that is non-branching.                                                                                                                                                   |
| IAEXEN     | Input     | IAEX register enable.                                                                                                                                                                                                                            |
| IAEX[30:0] | Input     | Registered address of the instruction in the execution stage, shifted right by one bit, that is, PC >> 1.                                                                                                                                        |
| ATOMIC     | Input     | Indicates the processor is performing non-instruction related activities.                                                                                                                                                                        |
| EDBGRQ     | Output    | Request for the processor to enter the Debug state, if enabled, and halt.                                                                                                                                                                        |

#### Memory map and register definition

In addition, there are two signals formed by the MTB\_DWT module and driven to the MTB\_RAM controller: TSTART (trace start) and TSTOP (trace stop). These signals can be configured using the trace watchpoints to define programmable addresses and data values to affect the program trace recording state.

## 35.3 Memory map and register definition

The MTB\_RAM and MTB\_DWT modules each support a sparsely-populated 4 KB address space for their programming models. For each address space, there are a variety of control and configurable registers near the base address, followed by a large unused address space and finally a set of CoreSight registers to support dynamic determination of the debug configuration for the device.

Accesses to the programming model follow standard ARM conventions. Taken from the ARM CoreSight Micro Trace Buffer documentation, these are:

- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in UNPREDICTABLE behavior.
- The behavior of the MTB is UNPREDICTABLE if the registers with UNKNOWN reset values are not programmed prior to enabling trace.
- Unless otherwise stated in the accompanying text:
  - Do not modify reserved register bits
  - Ignore reserved register bits on reads
  - All register bits are reset to a logic 0 by a system or power-on reset
  - Use only word size, 32-bit, transactions to access all registers

## 35.3.1 MTB\_RAM Memory Map

#### MTB memory map

| Absolute<br>address<br>(hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------------|--------------------|--------|-------------|------------------|
| F000_0000                    | MTB Position Register (MTB0_POSITION)             | 32                 | R/W    | Undefined   | 35.3.1.1/<br>886 |
| F000_0004                    | MTB Master Register (MTB0_MASTER)                 | 32                 | R/W    | See section | 35.3.1.2/<br>887 |
| F000_0008                    | MTB Flow Register (MTB0_FLOW)                     | 32                 | R/W    | Undefined   | 35.3.1.3/<br>889 |
| F000_000C                    | MTB Base Register (MTB0_BASE)                     | 32                 | R      | Undefined   | 35.3.1.4/<br>891 |
| F000_0F00                    | Integration Mode Control Register (MTB0_MODECTRL) | 32                 | R      | 0000_0000h  | 35.3.1.5/<br>891 |

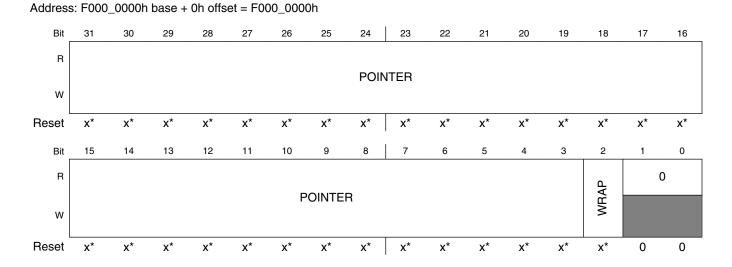
Table continues on the next page...

## MTB memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                      | Width<br>(in bits) | Access | Reset value | Section/<br>page  |
|------------------------------|----------------------------------------------------|--------------------|--------|-------------|-------------------|
| F000_0FA0                    | Claim TAG Set Register (MTB0_TAGSET)               | 32                 | R      | 0000_0000h  | 35.3.1.6/<br>892  |
| F000_0FA4                    | Claim TAG Clear Register (MTB0_TAGCLEAR)           | 32                 | R      | 0000_0000h  | 35.3.1.7/<br>892  |
| F000_0FB0                    | Lock Access Register (MTB0_LOCKACCESS)             | 32                 | R      | 0000_0000h  | 35.3.1.8/<br>893  |
| F000_0FB4                    | Lock Status Register (MTB0_LOCKSTAT)               | 32                 | R      | 0000_0000h  | 35.3.1.9/<br>893  |
| F000_0FB8                    | Authentication Status Register (MTB0_AUTHSTAT)     | 32                 | R      | 0000_0000h  | 35.3.1.10/<br>893 |
| F000_0FBC                    | Device Architecture Register (MTB0_DEVICEARCH)     | 32                 | R      | 4770_0A31h  | 35.3.1.11/<br>894 |
| F000_0FC8                    | Device Configuration Register (MTB0_DEVICECFG)     | 32                 | R      | 0000_0000h  | 35.3.1.12/<br>895 |
| F000_0FCC                    | Device Type Identifier Register (MTB0_DEVICETYPID) | 32                 | R      | 0000_0031h  | 35.3.1.13/<br>895 |
| F000_0FD0                    | Peripheral ID Register (MTB0_PERIPHID4)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FD4                    | Peripheral ID Register (MTB0_PERIPHID5)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FD8                    | Peripheral ID Register (MTB0_PERIPHID6)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FDC                    | Peripheral ID Register (MTB0_PERIPHID7)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FE0                    | Peripheral ID Register (MTB0_PERIPHID0)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FE4                    | Peripheral ID Register (MTB0_PERIPHID1)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FE8                    | Peripheral ID Register (MTB0_PERIPHID2)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FEC                    | Peripheral ID Register (MTB0_PERIPHID3)            | 32                 | R      | See section | 35.3.1.14/<br>896 |
| F000_0FF0                    | Component ID Register (MTB0_COMPID0)               | 32                 | R      | See section | 35.3.1.15/<br>896 |
| F000_0FF4                    | Component ID Register (MTB0_COMPID1)               | 32                 | R      | See section | 35.3.1.15/<br>896 |
| F000_0FF8                    | Component ID Register (MTB0_COMPID2)               | 32                 | R      | See section | 35.3.1.15/<br>896 |
| F000_0FFC                    | Component ID Register (MTB0_COMPID3)               | 32                 | R      | See section | 35.3.1.15/<br>896 |

## 35.3.1.1 MTB Position Register (MTBx\_POSITION)

The MTB\_POSITION register contains the Trace Write Address Pointer and Wrap fields. This register can be modified by the explicit programming model writes. It is also automatically updated by the MTB hardware when trace packets are being recorded.


The base address of the system RAM in the memory map dictates special consideration for the placement of the MTB. Consider the following guidelines:

For the standard configuration where the size of the MTB is  $\leq 25\%$  of the total RAM capacity, it is recommended the MTB be based at the address defined by the MTB\_BASE register. The read-only MTB\_BASE register is defined by the expression (0x2000\_0000 - (RAM\_Size/4)). For this configuration, the MTB0\_POSITION register is initialized to MTB0\_BASE & 0x0000\_1FF8.

If the size of the MTB is more than 25% but less than or equal to 50% of the total RAM capacity, then it is recommended the MTB be based at address  $0x2000\_0000$ . In this configuration, the MTB\_POSITION register is initialized to  $(0x2000\_0000$  &  $0x0000\_7FF8$ ) =  $0x0000\_00000$ .

Following these two suggested placements provides a full-featured circular memory buffer containing program trace packets.

In the unlikely event an even larger trace buffer is required, a write-once capacity of 75% of the total RAM capacity can be based at address 0x2000\_0000. The MTB\_POSITION register is initialized to (0x2000\_0000 & 0x0000\_7FF8) = 0x0000\_0000. However, this configuration cannot support operation as a circular queue and instead requires the use of the MTB\_FLOW[WATERMARK] capability to automatically disable tracing or halting the processor as the number of packet writes approach the buffer capacity. See the MTB\_FLOW register description for more details.



KL28Z Reference Manual, Rev. 4, 06/2016

- \* Notes:
- x = Undefined at reset.

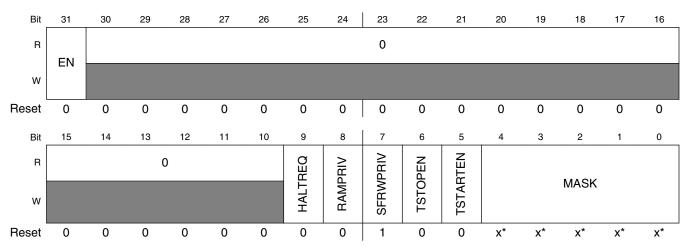
#### MTBx\_POSITION field descriptions

| Field           | Description                                                                                                                                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–3<br>POINTER | Trace Packet Address Pointer[28:0]                                                                                                                                                                                                                                                    |
| TOWNER          | Because a packet consists of 2 words, the POINTER field is the address of the first word of a packet. This field contains bits[31:3] of the RAM address where the next trace packet is written. Therefore, it points to an unused location and is automatically incremented.          |
|                 | A debug agent can calculate the system memory map address for the current location in the MTB, using the following "generic" equation:                                                                                                                                                |
|                 | Given mtb_size = 1 << (MTB_MASTER[MASK] + 4),                                                                                                                                                                                                                                         |
|                 | systemAddress = MTB_BASE + (((MTB_POSITION & 0xFFFF_FFF8) + (mtb_size - (MTB_BASE & (mtb_size-1)))) & 0x0000_7FF8);                                                                                                                                                                   |
|                 | For this device, a simpler expression (in pseudo-code) also applies:                                                                                                                                                                                                                  |
|                 | if ((MTB_POSITION >> 15) == 0x3) systemAddress = (0x1FFF << 16) + (MTB_POSITION & 0xFFF8); else systemAddress = (0x2000 << 16) + (MTB_POSITION & 0x1FFF8);                                                                                                                            |
|                 | <b>NOTE:</b> The size of the RAM is parameterized and the most significant bits of the POINTER field are RAZ/WI.                                                                                                                                                                      |
|                 | For these devices, POSITION[31:17] == POSITION[POINTER[28:14]] are RAZ/WI. Therefore, the active bits in this field are POSITION[16:3] == POSITION[POINTER[13:0]].                                                                                                                    |
| 2               | WRAP                                                                                                                                                                                                                                                                                  |
| WRAP            | This field is set to 1 automatically when the POINTER value wraps (as determined by the MTB_MASTER[MASK] field in the MASTER Trace Control Register). A debug agent might use the WRAP field to determine whether the trace information above and below the pointer address is valid. |
| Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                  |

## 35.3.1.2 MTB Master Register (MTBx\_MASTER)

The MTB\_MASTER register contains the main program trace enable plus other trace controls. This register can be modified by the explicit programming model writes. MTB\_MASTER[EN] and MTB\_MASTER[HALTREQ] fields are also automatically updated by the MTB hardware.

Before MTB\_MASTER[EN] or MTB\_MASTER[TSTARTEN] are set to 1, the software must initialize the MTB\_POSITION and MTB\_FLOW registers.


If MTB\_FLOW[WATERMARK] is used to stop tracing or to halt the processor, MTB\_MASTER[MASK] must still be set to a value that prevents MTB\_POSITION[POINTER] from wrapping before it reaches the MTB\_FLOW[WATERMARK] value.

#### Memory map and register definition

## **NOTE**

## The format of this mask field is different than MTBDWT\_MASKn[MASK].

Address: F000\_0000h base + 4h offset = F000\_0004h



- \* Notes:
- x = Undefined at reset.

#### MTBx\_MASTER field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>EN          | Main Trace Enable                                                                                                                                                                                                                                                                                                 |
| EN                | When this field is 1, trace data is written into the RAM memory location addressed by MTB_POSITION[POINTER]. The MTB_POSITION[POINTER] value auto increments after the trace data packet is written.                                                                                                              |
|                   | EN can be automatically set to 0 using the MTB_FLOW[WATERMARK] field and the MTB_FLOW[AUTOSTOP] bit.                                                                                                                                                                                                              |
|                   | EN is automatically set to 1 if TSTARTEN is 1 and the TSTART signal is HIGH.                                                                                                                                                                                                                                      |
|                   | EN is automatically set to 0 if TSTOPEN is 1 and the TSTOP signal is HIGH.                                                                                                                                                                                                                                        |
|                   | NOTE: If EN is set to 0 because MTB_FLOW[WATERMARK] is set, then it is not automatically set to 1 if TSTARTEN is 1 and the TSTART input is HIGH. In this case, tracing can only be restarted if MTB_FLOW[WATERMARK] or MTB_POSITION[POINTER] value is changed by software.                                        |
| 30–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                              |
| 9<br>HALTREQ      | Halt Request  This field is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, the EDBFGRQ is asserted if DBGEN (invasive debug enable, one of the debug authentication interface signals) is also HIGH. HALTREQ can be automatically set to 1 using MTB_FLOW[WATERMARK]. |
| 8                 | RAM Privilege                                                                                                                                                                                                                                                                                                     |
| RAMPRIV           | If this field is 0, then user or privileged AHB read and write accesses to the RAM are permitted. If this field is 1, then only privileged AHB read and write accesses to the RAM are permitted and user accesses are RAZ/WI. The HPROT[1] signal determines if an access is a user or privileged mode reference. |

Table continues on the next page...

#### MTBx\_MASTER field descriptions (continued)

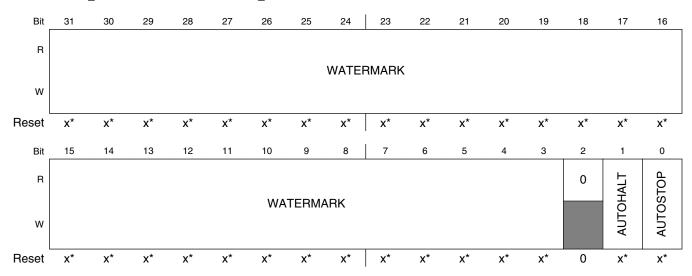
| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>SFRWPRIV | Special Function Register Write Privilege                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | If this field is 0, then user or privileged AHB read and write accesses to the MTB_RAM Special Function Registers (programming model) are permitted. If this field is 1, then only privileged write accesses are permitted; user write accesses are ignored. The HPROT[1] signal determines if an access is user or privileged. Note MTB_RAM SFR read access are not controlled by this bit and are always permitted.                                         |
| 6<br>TSTOPEN  | Trace Stop Input Enable                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ISTOPEN       | If this field is 1 and the TSTOP signal is HIGH, then EN is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped.                                                                                                                                                                                                                                                                                         |
| 5<br>TSTARTEN | Trace Start Input Enable                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ISTANIEN      | If this field is 1 and the TSTART signal is HIGH, then EN is set to 1. Tracing continues until a stop condition occurs.                                                                                                                                                                                                                                                                                                                                       |
| MASK          | Mask                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | This value determines the maximum size of the trace buffer in RAM. It specifies the most-significant bit of the MTB_POSITION[POINTER] field that can be updated by automatic increment. If the trace tries to advance past this power of 2, the MTB_POSITION[WRAP] bit is set to 1, the MTB_POSITION[MASK+3:3] == MTB_POSITION[POINTER[MASK:0]] bits are set to 0, and the MTB_POSITION[14:MASK+3] == MTB_POSITION[POINTER[11:MASK+1]] bits remain unchanged. |
|               | This field causes the trace packet information to be stored in a circular buffer of size 2^[MASK+4] bytes, that can be positioned in memory at multiples of this size. As detailed in the MTB_POSITION description, typical "upper limits" for the MTB size are RAM_Size/4 or RAM_Size/2. Values greater than the maximum have the same effect as the maximum.                                                                                                |

## 35.3.1.3 MTB Flow Register (MTBx FLOW)

The MTB\_FLOW register contains the watermark address and the autostop/autohalt control bits.

If tracing is stopped using the watermark autostop feature, it cannot be restarted until software clears the watermark autostop. This can be achieved in one of the following ways:

- Changing the MTB\_POSITION[POINTER] field value to point to the beginning of the trace buffer, or
- Setting MTB\_FLOW[AUTOSTOP] = 0.


A debug agent can use MTB\_FLOW[AUTOSTOP] to fill the trace buffer once only without halting the processor.

A debug agent can use MTB\_FLOW[AUTOHALT] to fill the trace buffer once before causing the Cortex-M0+ processor to enter the Debug state. To enter Debug state, the Cortex-M0+ processor might have to perform additional branch type operations. Therefore, the MTB\_FLOW[WATERMARK] field must be set below the final entry in the trace buffer region.

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definition

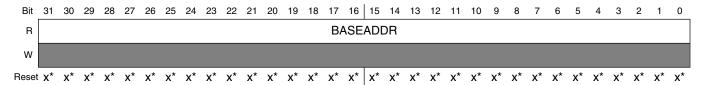
Address: F000\_0000h base + 8h offset = F000\_0008h



<sup>\*</sup> Notes:

#### MTBx\_FLOW field descriptions

| Field             | Description                                                                                                                                                                                                                                        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–3<br>WATERMARK | WATERMARK[28:0]                                                                                                                                                                                                                                    |
|                   | This field contains an address in the same format as the MTB_POSITION[POINTER] field. When MTB_POSITION[POINTER] matches the WATERMARK field value, actions defined by the AUTOHALT and AUTOSTOP bits are performed.                               |
| 2                 | This field is reserved.                                                                                                                                                                                                                            |
| Reserved          | This read-only field is reserved and always has the value 0.                                                                                                                                                                                       |
| 1                 | AUTOHALT                                                                                                                                                                                                                                           |
| AUTOHALT          | If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[HALTREQ] is automatically set to 1. If the DBGEN signal is HIGH, the MTB asserts this halt request to the Cortex-M0+ processor by asserting the EDBGRQ signal. |
| 0<br>AUTOSTOP     | AUTOSTOP                                                                                                                                                                                                                                           |
|                   | If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[EN] is automatically set to 0. This stops tracing.                                                                                                             |


<sup>•</sup> x = Undefined at reset.

891

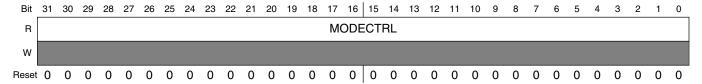
## 35.3.1.4 MTB Base Register (MTBx\_BASE)

The read-only MTB\_BASE Register indicates where the RAM is located in the system memory map. This register is provided to enable auto discovery of the MTB RAM location by a debug agent, and is defined by a hardware design parameter.

Address: F000\_0000h base + Ch offset = F000\_000Ch



<sup>\*</sup> Notes:


#### MTBx\_BASE field descriptions

| Field    | Description                                             |
|----------|---------------------------------------------------------|
| BASEADDR | BASEADDR                                                |
|          | This value is defined (hardwired): 0x1FFF_8000 (Core 0) |

## 35.3.1.5 Integration Mode Control Register (MTBx\_MODECTRL)

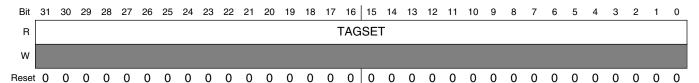
This register enables the device to switch from a functional mode, or default behavior, into integration mode. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_0000h base + F00h offset = F000\_0F00h



#### MTBx\_MODECTRL field descriptions

| Field    | Description              |
|----------|--------------------------|
| MODECTRL | MODECTRL                 |
|          | Hardwired to 0x0000_0000 |


KL28Z Reference Manual, Rev. 4, 06/2016

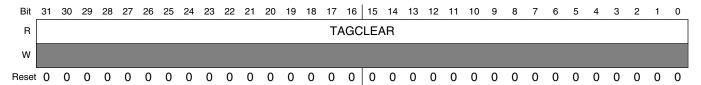
x = Undefined at reset.

## 35.3.1.6 Claim TAG Set Register (MTBx\_TAGSET)

The Claim Tag Set Register returns the number of bits that can be set on a read, and enables individual bits to be set on a write. It is hardwired to specific values used during the auto-discovery process by an external debug agent.






#### MTBx\_TAGSET field descriptions

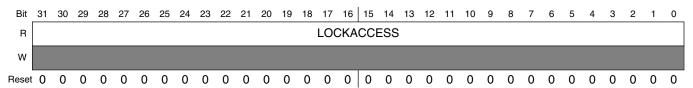
| Field  | Description              |
|--------|--------------------------|
| TAGSET | TAGSET                   |
|        | Hardwired to 0x0000_0000 |

## 35.3.1.7 Claim TAG Clear Register (MTBx\_TAGCLEAR)

The read/write Claim Tag Clear Register is used to read the claim status on debug resources. A read indicates the claim tag status. Writing 1 to a specific bit clears the corresponding claim tag to 0. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

#### Address: F000\_0000h base + FA4h offset = F000\_0FA4h




#### MTBx\_TAGCLEAR field descriptions

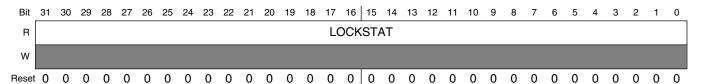
| Field    | Description              |
|----------|--------------------------|
| TAGCLEAR | TAGCLEAR                 |
|          | Hardwired to 0x0000_0000 |

## 35.3.1.8 Lock Access Register (MTBx\_LOCKACCESS)

The Lock Access Register enables a write access to component registers. It is hardwired to specific values used during the auto-discovery process by an external debug agent.






#### MTBx\_LOCKACCESS field descriptions

| Field      | Description              |
|------------|--------------------------|
| LOCKACCESS | Hardwired to 0x0000_0000 |

## 35.3.1.9 Lock Status Register (MTBx\_LOCKSTAT)

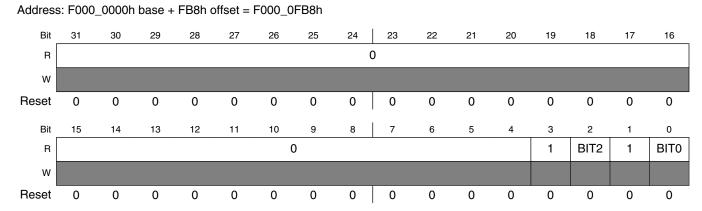
The Lock Status Register indicates the status of the lock control mechanism. This register is used in conjunction with the Lock Access Register. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_0000h base + FB4h offset = F000\_0FB4h



#### MTBx\_LOCKSTAT field descriptions

| Field    | Description              |
|----------|--------------------------|
| LOCKSTAT | LOCKSTAT                 |
|          | Hardwired to 0x0000_0000 |


## 35.3.1.10 Authentication Status Register (MTBx\_AUTHSTAT)

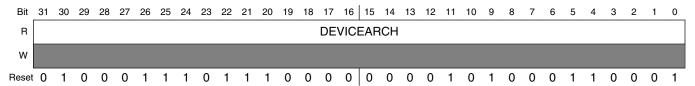
The Authentication Status Register reports the required security level and current status of the security enable bit pairs. Where functionality changes on a given security level, this change must be reported in this register. It is connected to specific signals used during the auto-discovery process by an external debug agent.

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definition

MTB\_AUTHSTAT[3:2] indicates if nonsecure, noninvasive debug is enabled or disabled, while MTB\_AUTHSTAT[1:0] indicates the enabled/disabled state of nonsecure, invasive debug. For both 2-bit fields, 0b10 indicates the functionality is disabled and 0b11 indicates it is enabled.



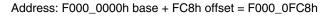

#### MTBx\_AUTHSTAT field descriptions

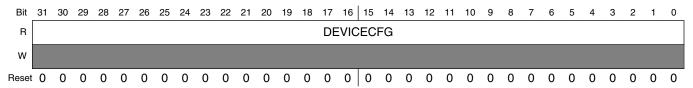
| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–4     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 3        | BIT3                                                         |
| Reserved |                                                              |
|          | This read-only field is reserved and always has the value 1. |
| 2        | BIT2                                                         |
| BIT2     |                                                              |
|          | Connected to NIDEN or DBGEN signal.                          |
| 1        | BIT1                                                         |
| Reserved |                                                              |
|          | This read-only field is reserved and always has the value 1. |
| 0        | Connected to DBGEN.                                          |
| BIT0     |                                                              |

## 35.3.1.11 Device Architecture Register (MTBx\_DEVICEARCH)

This register indicates the device architecture. It is hardwired to specific values used during the auto-discovery process by an external debug agent.







#### MTBx\_DEVICEARCH field descriptions

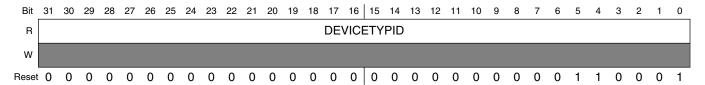
| Field      | Description               |
|------------|---------------------------|
| DEVICEARCH | DEVICEARCH                |
|            | Hardwired to 0x4770_0A31. |

## 35.3.1.12 Device Configuration Register (MTBx\_DEVICECFG)

This register indicates the device configuration. It is hardwired to specific values used during the auto-discovery process by an external debug agent.






#### MTBx\_DEVICECFG field descriptions

| Field     | Description               |
|-----------|---------------------------|
| DEVICECFG | DEVICECFG                 |
|           | Hardwired to 0x0000_0000. |

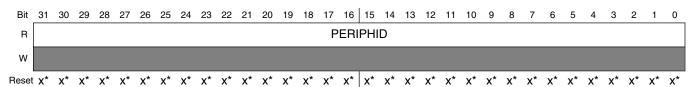
## 35.3.1.13 Device Type Identifier Register (MTBx\_DEVICETYPID)

This register indicates the device type ID. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_0000h base + FCCh offset = F000\_0FCCh



#### MTBx\_DEVICETYPID field descriptions


| Field       | Description               |
|-------------|---------------------------|
| DEVICETYPID | DEVICETYPID               |
|             | Hardwired to 0x0000_0031. |

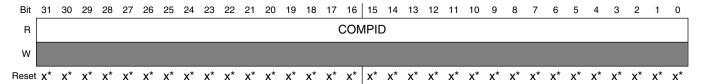
KL28Z Reference Manual, Rev. 4, 06/2016

## 35.3.1.14 Peripheral ID Register (MTBx\_PERIPHIDn)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_0000h base + FD0h offset + (4d × i), where i=0d to 7d




#### MTBx\_PERIPHIDn field descriptions

| Field    | Description                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| PERIPHID | PERIPHID                                                                                                                                   |
|          | Peripheral ID4 is hardwired to 0x0000_0004; ID0 to 0x0000_0032; ID1 to 0x0000_00B9; ID2 to 0x0000_001B; and all the others to 0x0000_0000. |

## 35.3.1.15 Component ID Register (MTBx\_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_0000h base + FF0h offset +  $(4d \times i)$ , where i=0d to 3d

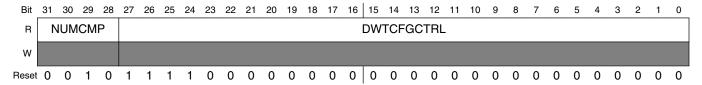


#### MTBx\_COMPIDn field descriptions

| l  | Field | Description                                                                                            |
|----|-------|--------------------------------------------------------------------------------------------------------|
| CC | OMPID | Component ID                                                                                           |
|    |       | Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0090; ID2 to 0x0000_0005; ID3 to 0x0000_00B1. |

## 35.3.2 MTB\_DWT Memory Map

The MTB\_DWT programming model supports a very simplified subset of the v7M debug architecture and follows the standard ARM DWT definition.


## MTB\_DWT memory map

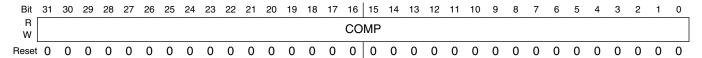
| Absolute<br>address<br>(hex) | Register name                                           | Width<br>(in bits) | Access | Reset value | Section/<br>page  |
|------------------------------|---------------------------------------------------------|--------------------|--------|-------------|-------------------|
| F000_1000                    | MTB DWT Control Register (MTB0_DWT_CTRL)                | 32                 | R      | 2F00_0000h  | 35.3.2.1/<br>898  |
| F000_1020                    | MTB_DWT Comparator Register (MTB0_DWT_COMP0)            | 32                 | R/W    | 0000_0000h  | 35.3.2.2/<br>899  |
| F000_1024                    | MTB_DWT Comparator Mask Register (MTB0_DWT_MASK0)       | 32                 | R/W    | 0000_0000h  | 35.3.2.3/<br>899  |
| F000_1028                    | MTB_DWT Comparator Function Register 0 (MTB0_DWT_FCT0)  | 32                 | R/W    | 0000_0000h  | 35.3.2.4/<br>900  |
| F000_1030                    | MTB_DWT Comparator Register (MTB0_DWT_COMP1)            | 32                 | R/W    | 0000_0000h  | 35.3.2.2/<br>899  |
| F000_1034                    | MTB_DWT Comparator Mask Register (MTB0_DWT_MASK1)       | 32                 | R/W    | 0000_0000h  | 35.3.2.3/<br>899  |
| F000_1038                    | MTB_DWT Comparator Function Register 1 (MTB0_DWT_FCT1)  | 32                 | R/W    | 0000_0000h  | 35.3.2.5/<br>902  |
| F000_1200                    | MTB_DWT Trace Buffer Control Register (MTB0_DWT_TBCTRL) | 32                 | R/W    | 2000_0000h  | 35.3.2.6/<br>903  |
| F000_1FC8                    | Device Configuration Register (MTB0_DWT_DEVICECFG)      | 32                 | R      | 0000_0000h  | 35.3.2.7/<br>905  |
| F000_1FCC                    | Device Type Identifier Register (MTB0_DWT_DEVICETYPID)  | 32                 | R      | 0000_0004h  | 35.3.2.8/<br>905  |
| F000_1FD0                    | Peripheral ID Register (MTB0_DWT_PERIPHID4)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FD4                    | Peripheral ID Register (MTB0_DWT_PERIPHID5)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FD8                    | Peripheral ID Register (MTB0_DWT_PERIPHID6)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FDC                    | Peripheral ID Register (MTB0_DWT_PERIPHID7)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FE0                    | Peripheral ID Register (MTB0_DWT_PERIPHID0)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FE4                    | Peripheral ID Register (MTB0_DWT_PERIPHID1)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FE8                    | Peripheral ID Register (MTB0_DWT_PERIPHID2)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FEC                    | Peripheral ID Register (MTB0_DWT_PERIPHID3)             | 32                 | R      | See section | 35.3.2.9/<br>906  |
| F000_1FF0                    | Component ID Register (MTB0_DWT_COMPID0)                | 32                 | R      | See section | 35.3.2.10/<br>906 |
| F000_1FF4                    | Component ID Register (MTB0_DWT_COMPID1)                | 32                 | R      | See section | 35.3.2.10/<br>906 |
| F000_1FF8                    | Component ID Register (MTB0_DWT_COMPID2)                | 32                 | R      | See section | 35.3.2.10/<br>906 |
| F000_1FFC                    | Component ID Register (MTB0_DWT_COMPID3)                | 32                 | R      | See section | 35.3.2.10/<br>906 |

## 35.3.2.1 MTB DWT Control Register (MTBx0\_DWT\_CTRL)

The MTBDWT\_CTRL register provides read-only information on the watchpoint configuration for the MTB\_DWT.

Address: F000\_1000h base + 0h offset = F000\_1000h




#### MTBx0\_DWT\_CTRL field descriptions

| Field           | Description                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>NUMCMP | Number of comparators                                                                                                          |
|                 | The MTB_DWT implements two comparators.                                                                                        |
| DWTCFGCTRL      | DWT configuration controls                                                                                                     |
|                 | This field is hardwired to 0xF00_0000, disabling all the remaining DWT functionality. The specific fields and their state are: |
|                 | MTBDWT_CTRL[27] = NOTRCPKT = 1, trace sample and exception trace is not supported                                              |
|                 | MTBDWT_CTRL[26] = NOEXTTRIG = 1, external match signals are not supported                                                      |
|                 | MTBDWT_CTRL[25] = NOCYCCNT = 1, cycle counter is not supported                                                                 |
|                 | MTBDWT_CTRL[24] = NOPRFCNT = 1, profiling counters are not supported                                                           |
|                 | MTBDWT_CTRL[22] = CYCEBTENA = 0, no POSTCNT underflow packets generated                                                        |
|                 | MTBDWT_CTRL[21] = FOLDEVTENA = 0, no folded instruction counter overflow events                                                |
|                 | MTBDWT_CTRL[20] = LSUEVTENA = 0, no LSU counter overflow events                                                                |
|                 | MTBDWT_CTRL[19] = SLEEPEVTENA = 0, no sleep counter overflow events                                                            |
|                 | MTBDWT_CTRL[18] = EXCEVTENA = 0, no exception overhead counter events                                                          |
|                 | MTBDWT_CTRL[17] = CPIEVTENA = 0, no CPI counter overflow events                                                                |
|                 | MTBDWT_CTRL[16] = EXCTRCENA = 0, generation of exception trace disabled                                                        |
|                 | MTBDWT_CTRL[12] = PCSAMPLENA = 0, no periodic PC sample packets generated                                                      |
|                 | MTBDWT_CTRL[11:10] = SYNCTAP = 0, no synchronization packets                                                                   |
|                 | MTBDWT_CTRL[9] = CYCTAP = 0, cycle counter is not supported                                                                    |
|                 | MTBDWT_CTRL[8:5] = POSTINIT = 0, cycle counter is not supported                                                                |
|                 | MTBDWT_CTRL[4:1] = POSTPRESET = 0, cycle counter is not supported                                                              |
|                 | MTBDWT_CTRL[0] = CYCCNTENA = 0, cycle counter is not supported                                                                 |

## 35.3.2.2 MTB\_DWT Comparator Register (MTBx0\_DWT\_COMPn)

The MTBDWT\_COMPn registers provide the reference value for comparator n.

Address: F000\_1000h base + 20h offset + (16d  $\times$  i), where i=0d to 1d



#### MTBx0\_DWT\_COMPn field descriptions

| Field | Description                                                                                                                                                                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Reference value for comparison  If MTBDWT_COMP0 is used for a data value comparator and the access size is byte or halfword, the data                                                                                                                                                    |
|       | value must be replicated across all appropriate byte lanes of this register. For example, if the data is a byte-sized "x" value, then COMP[31:24] = COMP[23:16] = COMP[15:8] = COMP[7:0] = "x". Likewise, if the data is a halfword-size "y" value, then COMP[31:16] = COMP[15:0] = "y". |

# 35.3.2.3 MTB\_DWT Comparator Mask Register (MTBx0\_DWT\_MASKn)

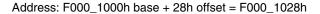
The MTBDWT\_MASKn registers define the size of the ignore mask applied to the reference address for address range matching by comparator n. Note the format of this mask field is different than the MTB\_MASTER[MASK].

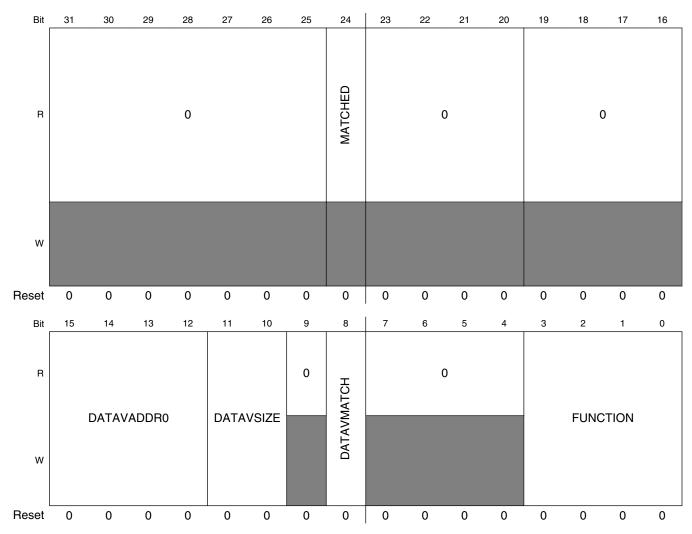
Address: F000\_1000h base + 24h offset + (16d  $\times$  i), where i=0d to 1d



#### MTBx0 DWT MASKn field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–5<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                          |
| MASK             | MASK  The value of the ignore mask, 0-31 bits, is applied to address range matching. MASK = 0 is used to include all bits of the address in the comparison, except if MASK = 0 and the comparator is configured to watch instruction fetch addresses, address bit [0] is ignored by the hardware since all fetches must be at least halfword aligned. For MASK != 0 and regardless of watch type, address bits [x-1:0] are ignored in the address comparison. |


Table continues on the next page...


## MTBx0\_DWT\_MASKn field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                                             |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | Using a mask means the comparator matches on a range of addresses, defined by the unmasked most significant bits of the address, bits [31:x]. The maximum MASK value is 24, producing a 16 Mbyte mask. An attempted write of a MASK value > 24 is limited by the MTBDWT hardware to 24. |  |
|       | If MTBDWT_COMP0 is used as a data value comparator, then MTBDWT_MASK0 should be programmed to zero.                                                                                                                                                                                     |  |

# 35.3.2.4 MTB\_DWT Comparator Function Register 0 (MTBx0\_DWT\_FCT0)

The MTBDWT\_FCTn registers control the operation of comparator n.

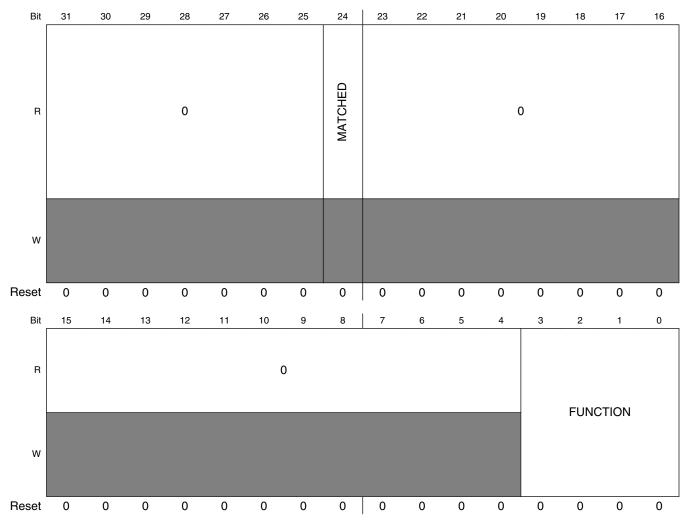




### MTBx0\_DWT\_FCT0 field descriptions

| Field               | Description                                                                                                                                                                                                                                                                                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–25<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                            |
| 24<br>MATCHED       | Comparator match  If this read-only flag is asserted, it indicates the operation defined by the FUNCTION field occurred since the last read of the register. Reading the register clears this bit.                                                                                                              |
|                     | O No match.  Match occurred.                                                                                                                                                                                                                                                                                    |
| 23–20<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                            |
| 19–16<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                            |
| 15–12<br>DATAVADDR0 | Data Value Address 0                                                                                                                                                                                                                                                                                            |
| BATTANABBITO        | Since the MTB_DWT implements two comparators, the DATAVADDR0 field is restricted to values {0,1}. When the DATAVMATCH bit is asserted, this field defines the comparator number to use for linked address comparison.                                                                                           |
|                     | If MTBDWT_COMP0 is used as a data watchpoint and MTBDWT_COMP1 as an address watchpoint, DATAVADDR0 must be set.                                                                                                                                                                                                 |
| 11–10<br>DATAVSIZE  | Data Value Size                                                                                                                                                                                                                                                                                                 |
| Briting             | For data value matching, this field defines the size of the required data comparison.                                                                                                                                                                                                                           |
|                     | 00 Byte.                                                                                                                                                                                                                                                                                                        |
|                     | 01 Halfword. 10 Word.                                                                                                                                                                                                                                                                                           |
|                     | 11 Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.                                                                                                                                                                                                                                  |
| 9<br>Reserved       | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                            |
| 8                   | Data Value Match                                                                                                                                                                                                                                                                                                |
| DATAVMATCH          | When this field is 1, it enables data value comparison. For this implementation, MTBDWT_COMP0 supports address or data value comparisons; MTBDWT_COMP1 only supports address comparisons.                                                                                                                       |
|                     | 0 Perform address comparison.                                                                                                                                                                                                                                                                                   |
| 7–4                 | 1 Perform data value comparison.  This field is reserved.                                                                                                                                                                                                                                                       |
| Reserved            | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                    |
| FUNCTION            | Function                                                                                                                                                                                                                                                                                                        |
|                     | Selects the action taken on a comparator match. If MTBDWT_COMP0 is used for a data value and MTBDWT_COMP1 for an address value, then MTBDWT_FCT1[FUNCTION] must be set to zero. For this configuration, MTBDWT_MASK1 can be set to a non-zero value, so the combined comparators match on a range of addresses. |
|                     | 0000 Disabled.                                                                                                                                                                                                                                                                                                  |
|                     | 0100 Instruction fetch.                                                                                                                                                                                                                                                                                         |
|                     | 0101 Data operand read.                                                                                                                                                                                                                                                                                         |
|                     | 0110 Data operand write. 0111 Data operand (read + write).                                                                                                                                                                                                                                                      |
|                     | others Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.                                                                                                                                                                                                                              |

KL28Z Reference Manual, Rev. 4, 06/2016


#### MTBx0\_DWT\_FCT0 field descriptions (continued)

| Field Description |  |
|-------------------|--|
|-------------------|--|

## 35.3.2.5 MTB\_DWT Comparator Function Register 1 (MTBx0\_DWT\_FCT1)

The MTBDWT\_FCTn registers control the operation of comparator n. Since the MTB\_DWT only supports data value comparisons on comparator 0, there are several fields in the MTBDWT\_FCT1 register that are RAZ/WI (bits 12, 11:10, 8).



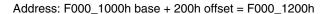


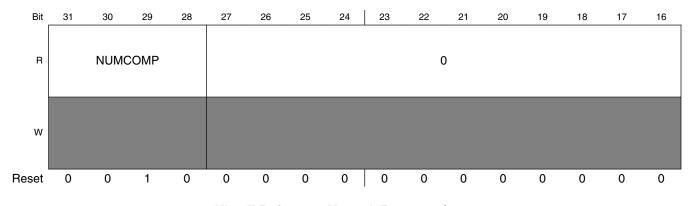
#### MTBx0\_DWT\_FCT1 field descriptions

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–25    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |

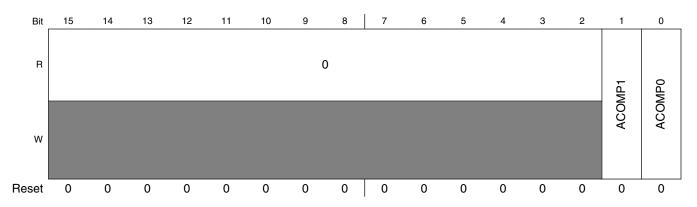
Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016


#### MTBx0\_DWT\_FCT1 field descriptions (continued)


| Field         | Description                                                                                                                                                                                                                                                                                                     |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 24<br>MATCHED | Comparator match                                                                                                                                                                                                                                                                                                |  |  |  |
|               | If this read-only flag is asserted, it indicates the operation defined by the FUNCTION field occurred since the last read of the register. Reading the register clears this bit.                                                                                                                                |  |  |  |
|               | 0 No match.                                                                                                                                                                                                                                                                                                     |  |  |  |
|               | 1 Match occurred.                                                                                                                                                                                                                                                                                               |  |  |  |
| 23–4          | This field is reserved.                                                                                                                                                                                                                                                                                         |  |  |  |
| Reserved      | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                    |  |  |  |
| FUNCTION      | Function                                                                                                                                                                                                                                                                                                        |  |  |  |
|               | Selects the action taken on a comparator match. If MTBDWT_COMP0 is used for a data value and MTBDWT_COMP1 for an address value, then MTBDWT_FCT1[FUNCTION] must be set to zero. For this configuration, MTBDWT_MASK1 can be set to a non-zero value, so the combined comparators match on a range of addresses. |  |  |  |
|               | 0000 Disabled.                                                                                                                                                                                                                                                                                                  |  |  |  |
|               | 0100 Instruction fetch.                                                                                                                                                                                                                                                                                         |  |  |  |
|               | 0101 Data operand read.                                                                                                                                                                                                                                                                                         |  |  |  |
|               | 0110 Data operand write.                                                                                                                                                                                                                                                                                        |  |  |  |
|               | 0111 Data operand (read + write).                                                                                                                                                                                                                                                                               |  |  |  |
|               | others Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.                                                                                                                                                                                                                              |  |  |  |

# 35.3.2.6 MTB\_DWT Trace Buffer Control Register (MTBx0\_DWT\_TBCTRL)


The MTBDWT\_TBCTRL register defines how the watchpoint comparisons control the actual trace buffer operation.

Recall the MTB supports starting and stopping the program trace based on the watchpoint comparisons signaled via TSTART and TSTOP. The watchpoint comparison signals are enabled in the MTB's control logic by setting the appropriate enable bits, MTB\_MASTER[TSTARTEN, TSTOPEN]. In the event of simultaneous assertion of both TSTART and TSTOP, TSTART takes priority.

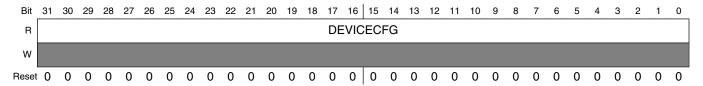




KL28Z Reference Manual, Rev. 4, 06/2016



### MTBx0\_DWT\_TBCTRL field descriptions


| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>NUMCOMP | Number of Comparators  This read-only field specifies the number of comparators in the MTB_DWT. This implementation includes two registers.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>ACOMP1      | Action based on Comparator 1 match  When the MTBDWT_FCT1[MATCHED] is set, it indicates MTBDWT_COMP1 address compare has triggered and the trace buffer's recording state is changed.  O Trigger TSTOP based on the assertion of MTBDWT_FCT1[MATCHED].  Trigger TSTART based on the assertion of MTBDWT_FCT1[MATCHED].                                                                                                                                                                                                                                                                                |
| 0<br>ACOMP0      | Action based on Comparator 0 match  When the MTBDWT_FCT0[MATCHED] is set, it indicates MTBDWT_COMP0 address compare has triggered and the trace buffer's recording state is changed. The assertion of MTBDWT_FCT0[MATCHED] is caused by the following conditions:  • Address match in MTBDWT_COMP0 when MTBDWT_FCT0[DATAVMATCH] = 0  • Data match in MTBDWT_COMP0 when MTBDWT_FCT0[DATAVMATCH, DATAVADDR0] = {1,0}  • Data match in MTBDWT_COMP0 and address match in MTBDWT_COMP1 when MTBDWT_FCT0[DATAVMATCH, DATAVADDR0] = {1,1}  0 Trigger TSTOP based on the assertion of MTBDWT_FCT0[MATCHED]. |
|                  | 1 Trigger TSTART based on the assertion of MTBDWT_FCT0[MATCHED].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

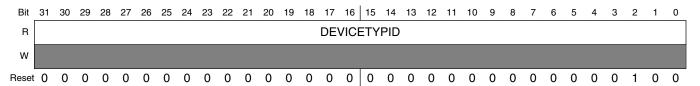
KL28Z Reference Manual, Rev. 4, 06/2016

### 35.3.2.7 Device Configuration Register (MTBx0\_DWT\_DEVICECFG)

This register indicates the device configuration. It is hardwired to specific values used during the auto-discovery process by an external debug agent.






#### MTBx0\_DWT\_DEVICECFG field descriptions

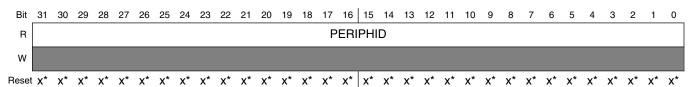
| Field     | Description               |
|-----------|---------------------------|
| DEVICECFG | DEVICECFG                 |
|           | Hardwired to 0x0000_0000. |

### 35.3.2.8 Device Type Identifier Register (MTBx0\_DWT\_DEVICETYPID)

This register indicates the device type ID. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_1000h base + FCCh offset = F000\_1FCCh




#### MTBx0\_DWT\_DEVICETYPID field descriptions

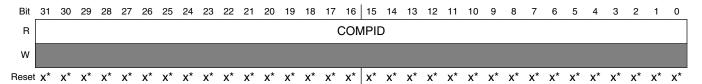
| Field       | Description               |
|-------------|---------------------------|
| DEVICETYPID | DEVICETYPID               |
|             | Hardwired to 0x0000_0004. |

### 35.3.2.9 Peripheral ID Register (MTBx0\_DWT\_PERIPHIDn)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_1000h base + FD0h offset +  $(4d \times i)$ , where i=0d to 7d




#### MTBx0\_DWT\_PERIPHIDn field descriptions

| Field    | Description                                                                                        |
|----------|----------------------------------------------------------------------------------------------------|
| PERIPHID | PERIPHID                                                                                           |
|          | Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000. |

### 35.3.2.10 Component ID Register (MTBx0\_DWT\_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_1000h base + FF0h offset + (4d × i), where i=0d to 3d



#### MTBx0\_DWT\_COMPIDn field descriptions

| Field | Description                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------|
|       | Component ID  Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0090; ID2 to 0x0000_0005; ID3 to 0x0000_00B1. |

### 35.3.3 System ROM Memory Map

The System ROM Table registers are also mapped into a sparsely-populated 4 KB address space.

For core configurations like that supported by Cortex-M0+, ARM recommends that a debugger identifies and connects to the debug components using the CoreSight debug infrastructure.

ARM recommends that a debugger follows the flow as shown in the following figure to discover the components in the CoreSight debug infrastructure. In this case, a debugger reads the peripheral and component ID registers for each CoreSight component in the CoreSight system.

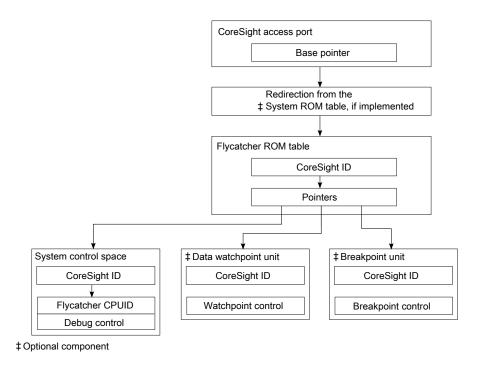


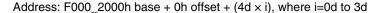

Figure 35-3. CoreSight discovery process

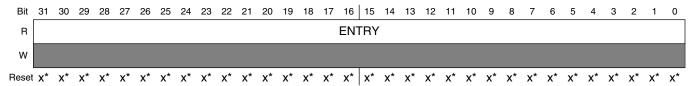
#### MTB\_ROM memory map

| Absolute address (hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|---------------------------------------------------|--------------------|--------|-------------|------------------|
| F000_2000              | Entry (MTB0_ROM_ENTRY0)                           | 32                 | R      | See section | 35.3.3.1/<br>908 |
| F000_2004              | Entry (MTB0_ROM_ENTRY1)                           | 32                 | R      | See section | 35.3.3.1/<br>908 |
| F000_2008              | Entry (MTB0_ROM_ENTRY2)                           | 32                 | R      | See section | 35.3.3.1/<br>908 |
| F000_200C              | Entry (MTB0_ROM_ENTRY3)                           | 32                 | R      | See section | 35.3.3.1/<br>908 |
| F000_2010              | End of Table Marker Register (MTB0_ROM_TABLEMARK) | 32                 | R      | 0000_0000h  | 35.3.3.2/<br>909 |
| F000_2FCC              | System Access Register (MTB0_ROM_SYSACCESS)       | 32                 | R      | 0000_0001h  | 35.3.3.3/<br>909 |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### MTB\_ROM memory map (continued)

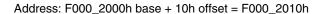

| Absolute address (hex) | Register name                               | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|---------------------------------------------|--------------------|--------|-------------|------------------|
| F000_2FD0              | Peripheral ID Register (MTB0_ROM_PERIPHID4) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FD4              | Peripheral ID Register (MTB0_ROM_PERIPHID5) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FD8              | Peripheral ID Register (MTB0_ROM_PERIPHID6) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FDC              | Peripheral ID Register (MTB0_ROM_PERIPHID7) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FE0              | Peripheral ID Register (MTB0_ROM_PERIPHID0) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FE4              | Peripheral ID Register (MTB0_ROM_PERIPHID1) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FE8              | Peripheral ID Register (MTB0_ROM_PERIPHID2) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FEC              | Peripheral ID Register (MTB0_ROM_PERIPHID3) | 32                 | R      | See section | 35.3.3.4/<br>910 |
| F000_2FF0              | Component ID Register (MTB0_ROM_COMPID0)    | 32                 | R      | See section | 35.3.3.5/<br>910 |
| F000_2FF4              | Component ID Register (MTB0_ROM_COMPID1)    | 32                 | R      | See section | 35.3.3.5/<br>910 |
| F000_2FF8              | Component ID Register (MTB0_ROM_COMPID2)    | 32                 | R      | See section | 35.3.3.5/<br>910 |
| F000_2FFC              | Component ID Register (MTB0_ROM_COMPID3)    | 32                 | R      | See section | 35.3.3.5/<br>910 |

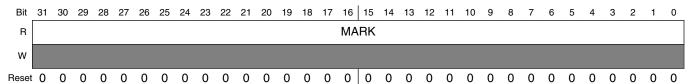
### **35.3.3.1** Entry (MTBx0\_ROM\_ENTRY*n*)

The System ROM Table begins with "n" relative 32-bit addresses, one for each debug component present in the device and terminating with an all-zero value signaling the end of the table at the "n+1"-th value.

It is hardwired to specific values used during the auto-discovery process by an external debug agent.







#### MTBx0\_ROM\_ENTRYn field descriptions

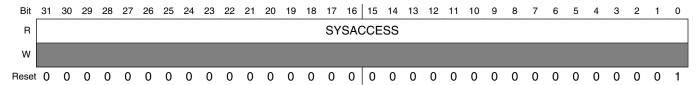
| Field | Description                               |
|-------|-------------------------------------------|
| ENTRY | ENTRY                                     |
|       | Entryn values are hardwired:              |
|       | Entry 0 (MTB) is hardwired to 0xFFFF_E003 |
|       | Entry 1 (MTBDWT) to 0xFFFF_F003           |
|       | Entry 2 (CM0PCTI) to 0x0000_4003          |
|       | Entry 3 (CM0+ ROM Table) to 0xF00F_D003   |

### 35.3.3.2 End of Table Marker Register (MTBx0\_ROM\_TABLEMARK)

This register indicates end of table marker. It is hardwired to specific values used during the auto-discovery process by an external debug agent.






#### MTBx0\_ROM\_TABLEMARK field descriptions

| Field | Description              |
|-------|--------------------------|
| MARK  | MARK                     |
|       | Hardwired to 0x0000_0000 |

### 35.3.3.3 System Access Register (MTBx0\_ROM\_SYSACCESS)

This register indicates system access. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

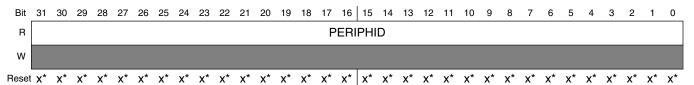
Address: F000\_2000h base + FCCh offset = F000\_2FCCh



#### MTBx0\_ROM\_SYSACCESS field descriptions

| Field     | Description |
|-----------|-------------|
| SYSACCESS | SYSACCESS   |

KL28Z Reference Manual, Rev. 4, 06/2016


#### MTBx0\_ROM\_SYSACCESS field descriptions (continued)

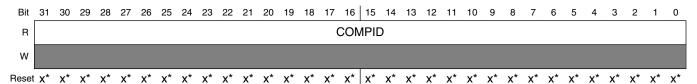
| Field | Description              |
|-------|--------------------------|
|       | Hardwired to 0x0000_0001 |

### 35.3.3.4 Peripheral ID Register (MTBx0\_ROM\_PERIPHIDn)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_2000h base + FD0h offset +  $(4d \times i)$ , where i=0d to 7d




#### MTBx0\_ROM\_PERIPHIDn field descriptions

| Field    | Description                                                                                        |  |
|----------|----------------------------------------------------------------------------------------------------|--|
| PERIPHID | PERIPHID                                                                                           |  |
|          | Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000. |  |

### 35.3.3.5 Component ID Register (MTBx0\_ROM\_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000\_2000h base + FF0h offset + (4d  $\times$  i), where i=0d to 3d



#### MTBx0\_ROM\_COMPIDn field descriptions

| Field | Description                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------|
|       | Component ID  Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0010; ID2 to 0x0000_0005; ID3 to 0x0000_00B1. |

# **Chapter 36 Peripheral Clock Control (PCC)**

### 36.1 Introduction

The Peripheral Clock Control module (PCC) provides peripheral clock control and configuration registers.

In addition to the peripheral clock gates, clock multiplexors, and clock dividers, the PCC contains an interface between the peripherals and the system to control and acknowledge the Stop, Doze, and Debug signals.

#### **36.1.1 Features**

The PCC module enables software to configure the following clocking options for each peripheral:

- Clock gating
- Clock source selection
- Clock divide values

The following figure is a block diagram of the PCC clock source selection and clock gating. Some peripherals also have a clock divider available. See the peripheral's PCC register for more information.

#### **PCC - Peripheral Clock Muxing and Gating**

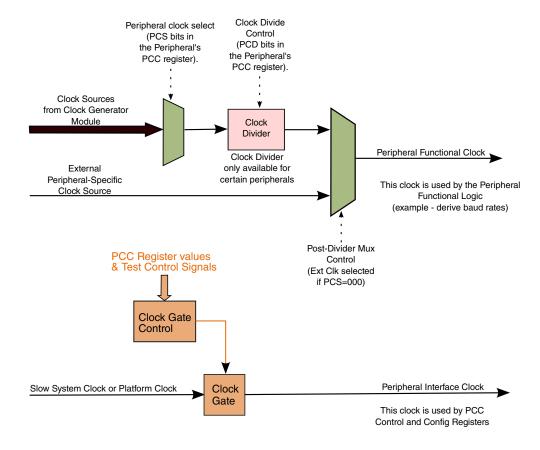



Figure 36-1. PCC Clock Source Selection and Gating

### 36.2 Memory map and register definition

Each peripheral has its own dedicated PCC Register, which controls the clock gating, clock source and dividers for that specific peripheral.

PCC registers can only be written in supervisor mode.

#### NOTE

Write accesses to unused PCC registers are blocked and result in a bus error.

### 36.2.1 PCC Register Descriptions

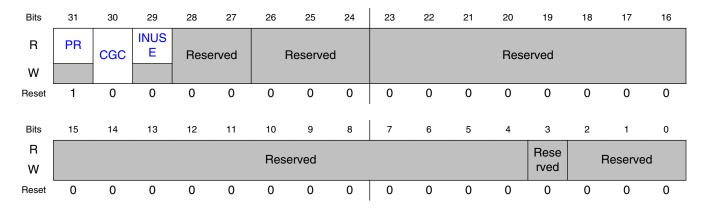
These register may not be applicable to all instances of PCC. For more details on the registers supported on each module instance, please refer to "The PCC as implemented on the chip."

Table 36-1. PCC Memory Map

| Offset    | Register                  | Width     | Access | Reset value |
|-----------|---------------------------|-----------|--------|-------------|
|           |                           | (In bits) |        |             |
| 4007A020h | PCC DMA0 (PCC_DMA0)       | 32        | RW     | 80000000h   |
| 4007A080h | PCC FLASH (PCC_FLASH)     | 32        | RW     | C0000000h   |
| 4007A084h | PCC DMAMUX0 (PCC_DMAMUX0) | 32        | RW     | 80000000h   |
| 4007A090h | PCC INTMUX0 (PCC_INTMUX0) | 32        | RW     | 80000000h   |
| 4007A0B8h | PCC TPM2 (PCC_TPM2)       | 32        | RW     | 80000000h   |
| 4007A0C0h | PCC LPIT0 (PCC_LPIT0)     | 32        | RW     | 80000000h   |
| 4007A0D0h | PCC LPTMR0 (PCC_LPTMR0)   | 32        | RW     | 80000000h   |
| 4007A0E0h | PCC RTC (PCC_RTC)         | 32        | RW     | 80000000h   |
| 4007A0F8h | PCC LPSPI2 (PCC_LPSPI2)   | 32        | RW     | 80000000h   |
| 4007A108h | PCC LPI2C2 (PCC_LPI2C2)   | 32        | RW     | 80000000h   |
| 4007A118h | PCC LPUART2 (PCC_LPUART2) | 32        | RW     | 80000000h   |
| 4007A130h | PCC SAI0 (PCC_SAI0)       | 32        | RW     | 80000000h   |
| 4007A138h | PCC EMVSIM0 (PCC_EMVSIM0) | 32        | RW     | 80000000h   |
| 4007A154h | PCC USB0FS (PCC_USB0FS)   | 32        | RW     | 80000000h   |
| 4007A168h | PCC PORTA (PCC_PORTA)     | 32        | RW     | 80000000h   |
| 4007A16Ch | PCC PORTB (PCC_PORTB)     | 32        | RW     | 80000000h   |
| 4007A170h | PCC PORTC (PCC_PORTC)     | 32        | RW     | 80000000h   |
| 4007A174h | PCC PORTD (PCC_PORTD)     | 32        | RW     | 80000000h   |
| 4007A178h | PCC PORTE (PCC_PORTE)     | 32        | RW     | 80000000h   |
| 4007A188h | PCC TSI0 (PCC_TSI0)       | 32        | RW     | 80000000h   |
| 4007A198h | PCC ADC0 (PCC_ADC0)       | 32        | RW     | 80000000h   |
| 4007A1A8h | PCC DAC0 (PCC_DAC0)       | 32        | RW     | 80000000h   |
| 4007A1B8h | PCC CMP0 (PCC_CMP0)       | 32        | RW     | 80000000h   |
| 4007A1C8h | PCC VREF (PCC_VREF)       | 32        | RW     | 80000000h   |
| 4007A1E0h | PCC CRC (PCC_CRC)         | 32        | RW     | 80000000h   |

### 36.2.1.1 PCC Register Descriptions

### 36.2.1.2 PCC DMA0 (PCC\_DMA0)


### 36.2.1.2.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_DMA0 | 4007A020h |

#### 36.2.1.2.2 Function

**PCC** Register

### 36.2.1.2.3 Diagram

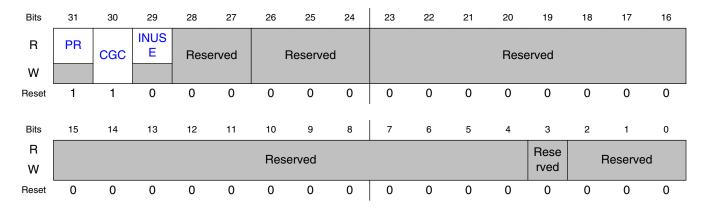


#### 36.2.1.2.4 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.3 PCC FLASH (PCC\_FLASH)

#### 36.2.1.3.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_FLASH | 4007A080h |

### **PCC** Register

### 36.2.1.3.2 Diagram



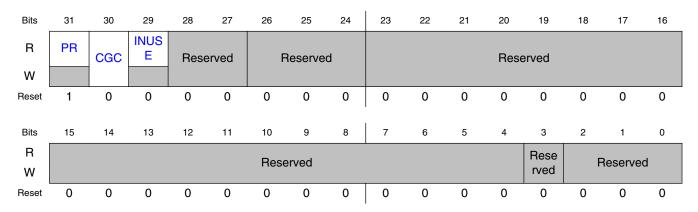
#### 36.2.1.3.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.4 PCC DMAMUX0 (PCC\_DMAMUX0)

#### 36.2.1.4.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_DMAMUX0 | 4007A084h |

### **PCC** Register

### 36.2.1.4.2 Diagram



### 36.2.1.4.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

### 36.2.1.5 PCC INTMUX0 (PCC\_INTMUX0)

### 36.2.1.5.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_INTMUX0 | 4007A090h |

### PCC Register

### 36.2.1.5.2 Diagram

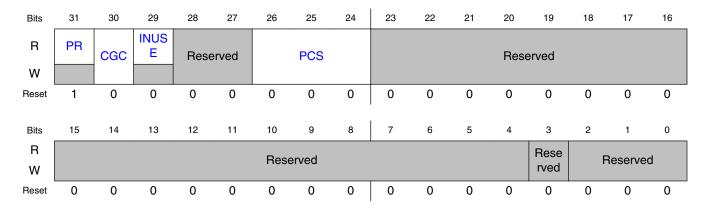
| Bits   | 31 | 30                         | 29        | 28    | 27                                     | 26        | 25      | 24 | 23       | 22        | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|----|----------------------------|-----------|-------|----------------------------------------|-----------|---------|----|----------|-----------|----|----|----|----|----|----|
| R      | PR | CGC                        | INUS<br>E | Rese  | erved                                  | F         | Reserve | d  | Reserved |           |    |    |    |    |    |    |
| W      |    |                            |           | 11000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ricscrvcd |         |    |          | .10001700 |    |    |    |    |    |    |
| Reset  | 1  | 0                          | 0         | 0     | 0                                      | 0         | 0       | 0  | 0        | 0         | 0  | 0  | 0  | 0  | 0  | 0  |
| Bits   | 15 | 14                         | 13        | 12    | 11                                     | 10        | 9       | 8  | 7        | 6         | 5  | 4  | 3  | 2  | 1  | 0  |
| R<br>W |    | Reserved Reserved Reserved |           |       |                                        |           |         |    |          |           |    | b  |    |    |    |    |
| Reset  | 0  | 0                          | 0         | 0     | 0                                      | 0         | 0       | 0  | 0        | 0         | 0  | 0  | 0  | 0  | 0  | 0  |

### 36.2.1.5.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

### **36.2.1.6 PCC TPM2 (PCC\_TPM2)**

KL28Z Reference Manual, Rev. 4, 06/2016


919

### 36.2.1.6.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_TPM2 | 4007A0B8h |

### PCC Register

### 36.2.1.6.2 Diagram



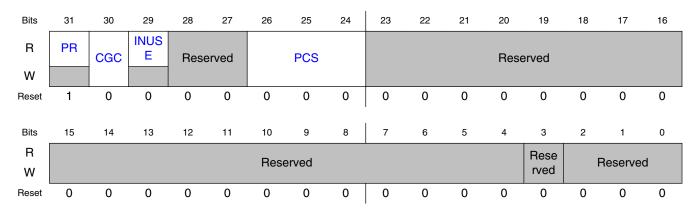
#### 36.2.1.6.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - Peripheral is not present.                                                                                                   |
|       | 1 - Peripheral is present.                                                                                                       |
| 30    | This read/write bit enables the clock for the peripheral.                                                                        |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                |
|       | 100 - Reserved.                                                  |
|       | 101 - Reserved.                                                  |
|       | 110 - SCGPCLK System PLL clock .                                 |
|       | 111 - Reserved.                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.7 PCC LPIT0 (PCC\_LPIT0)

#### 36.2.1.7.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_LPIT0 | 4007A0C0h |

### **PCC** Register

### 36.2.1.7.2 Diagram



### 36.2.1.7.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - Peripheral is not present.                                                                                                   |
|       | 1 - Peripheral is present.                                                                                                       |
| 30    | This read/write bit enables the clock for the peripheral.                                                                        |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

### 36.2.1.8 PCC LPTMR0 (PCC\_LPTMR0)

### 36.2.1.8.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPTMR0 | 4007A0D0h |

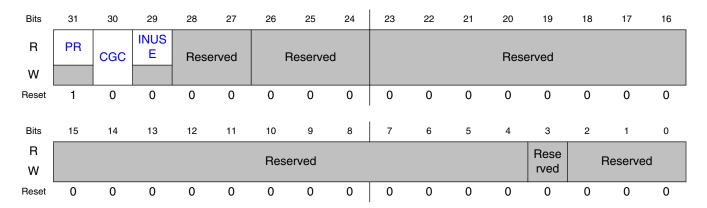
### PCC Register

### 36.2.1.8.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27              | 26   | 25    | 24       | 23 | 22 | 21 | 20 | 19   | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-----------------|------|-------|----------|----|----|----|----|------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | served Reserved |      |       | Reserved |    |    |    |    |      |    |         |    |
| W     |    |     |           |      |                 |      |       |          |    |    |    |    |      |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0               | 0    | 0     | 0        | 0  | 0  | 0  | 0  | 0    | 0  | 0       | 0  |
|       |    |     |           |      |                 |      |       |          | I  |    |    |    |      |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11              | 10   | 9     | 8        | 7  | 6  | 5  | 4  | 3    | 2  | 1       | 0  |
| R     |    |     |           |      |                 | Door | n rod |          |    |    |    |    | Rese | _  | 2000110 | d  |
| W     |    |     |           |      |                 | nese | erved |          |    |    |    |    | rved | Г  | Reserve | J  |
| Reset | 0  | 0   | 0         | 0    | 0               | 0    | 0     | 0        | 0  | 0  | 0  | 0  | 0    | 0  | 0       | 0  |

### 36.2.1.8.3 Fields

| Field | Function                                                         |  |  |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |  |  |
| PR    | 0 - Peripheral is not present.                                   |  |  |  |  |  |  |
|       | 1 - Peripheral is present.                                       |  |  |  |  |  |  |
| 30    | This read/write bit enables the clock for the peripheral.        |  |  |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |  |  |
|       | 1 - Clock enabled                                                |  |  |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.       |  |  |  |  |  |  |
| INUSE | 0 - Peripheral is not being used.                                |  |  |  |  |  |  |
|       | 1 - Peripheral is being used.                                    |  |  |  |  |  |  |
| 28-27 | This read-only bit field is reserved and always has the value 0. |  |  |  |  |  |  |
| _     |                                                                  |  |  |  |  |  |  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |  |  |  |  |  |  |
| _     |                                                                  |  |  |  |  |  |  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |  |  |  |  |  |  |
| _     |                                                                  |  |  |  |  |  |  |
| 3     | This read-only bit field is reserved and always has the value 0. |  |  |  |  |  |  |
|       |                                                                  |  |  |  |  |  |  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |  |  |  |  |  |  |
| _     |                                                                  |  |  |  |  |  |  |


### 36.2.1.9 PCC RTC (PCC\_RTC)

#### 36.2.1.9.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_RTC  | 4007A0E0h |

### **PCC** Register

### 36.2.1.9.2 Diagram



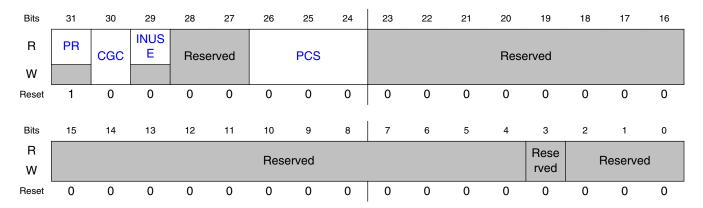
### 36.2.1.9.3 Fields

| Field | Function                                                         |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |
| PR    | 0 - Peripheral is not present.                                   |  |  |  |  |
|       | 1 - Peripheral is present.                                       |  |  |  |  |
| 30    | This read/write bit enables the clock for the peripheral.        |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |
|       | 1 - Clock enabled                                                |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.       |  |  |  |  |
| INUSE | 0 - Peripheral is not being used.                                |  |  |  |  |
|       | 1 - Peripheral is being used.                                    |  |  |  |  |
| 28-27 | This read-only bit field is reserved and always has the value 0. |  |  |  |  |
| _     |                                                                  |  |  |  |  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |  |  |  |  |
| _     |                                                                  |  |  |  |  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.10 PCC LPSPI2 (PCC\_LPSPI2)

#### 36.2.1.10.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPSPI2 | 4007A0F8h |

### **PCC** Register

### 36.2.1.10.2 Diagram



### 36.2.1.10.3 Fields

| Field | Function                                                         |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |
| PR    | 0 - Peripheral is not present.                                   |  |  |  |  |
|       | 1 - Peripheral is present.                                       |  |  |  |  |
| 30    | This read/write bit enables the clock for the peripheral.        |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                                         |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|       | 1 - Clock enabled                                                                                                                |  |  |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |  |  |  |  |  |  |
| INUSE | 0 - Peripheral is not being used.                                                                                                |  |  |  |  |  |  |
|       | 1 - Peripheral is being used.                                                                                                    |  |  |  |  |  |  |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |  |  |  |  |  |  |
| _     |                                                                                                                                  |  |  |  |  |  |  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |  |  |  |  |  |  |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |  |  |  |  |  |  |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |  |  |  |  |  |  |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |  |  |  |  |  |  |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |  |  |  |  |  |  |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |  |  |  |  |  |  |
|       | 100 - Reserved.                                                                                                                  |  |  |  |  |  |  |
|       | 101 - Reserved.                                                                                                                  |  |  |  |  |  |  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |  |  |  |  |  |  |
|       | 111 - Reserved.                                                                                                                  |  |  |  |  |  |  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |  |  |  |  |  |  |
| _     |                                                                                                                                  |  |  |  |  |  |  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |  |  |  |  |  |  |
| _     |                                                                                                                                  |  |  |  |  |  |  |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                 |  |  |  |  |  |  |
| _     |                                                                                                                                  |  |  |  |  |  |  |

### 36.2.1.11 PCC LPI2C2 (PCC\_LPI2C2)

### 36.2.1.11.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPI2C2 | 4007A108h |

### PCC Register

### 36.2.1.11.2 Diagram

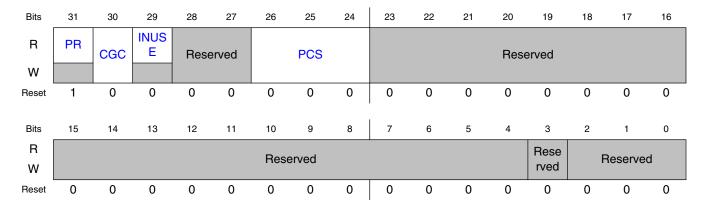
| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17        | 16 |
|-------|----|-----|-----------|------|-------|------|-------|----|----|----|----|------|-------|----|-----------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved |      | PCS   |    |    |    |    | Rese | erved |    |           |    |
| W     |    |     |           |      |       |      |       |    |    |    |    |      |       |    |           |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0         | 0  |
|       |    |     |           |      |       |      |       |    |    |    |    |      |       |    |           |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1         | 0  |
| R     |    |     |           |      |       | Poor | erved |    |    |    |    |      | Rese  | _  | Reserve   | 4  |
| W     |    |     |           |      |       | nese | erveu |    |    |    |    |      | rved  |    | nesei vei | J  |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0         | 0  |

### 36.2.1.11.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - Peripheral is not present.                                                                                                   |
|       | 1 - Peripheral is present.                                                                                                       |
| 30    | This read/write bit enables the clock for the peripheral.                                                                        |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.12 PCC LPUART2 (PCC\_LPUART2)

### 36.2.1.12.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_LPUART2 | 4007A118h |

### **PCC** Register

### 36.2.1.12.2 Diagram



#### 36.2.1.12.3 Fields

| Field | Function                                                         |  |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |  |  |  |  |
| PR    | 0 - Peripheral is not present.                                   |  |  |  |  |  |  |  |  |
|       | 1 - Peripheral is present.                                       |  |  |  |  |  |  |  |  |
| 30    | This read/write bit enables the clock for the peripheral.        |  |  |  |  |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |  |  |  |  |
|       | 1 - Clock enabled                                                |  |  |  |  |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.       |  |  |  |  |  |  |  |  |

Table continues on the next page...

### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                 |
|       |                                                                                                                                  |

### 36.2.1.13 PCC SAI0 (PCC\_SAI0)

### 36.2.1.13.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_SAI0 | 4007A130h |

### PCC Register

### 36.2.1.13.2 Diagram

| Bits   | 31 | 30  | 29        | 28    | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20    | 19           | 18 | 17      | 16 |
|--------|----|-----|-----------|-------|-------|------|-------|----|----|----|----|-------|--------------|----|---------|----|
| R      | PR | CGC | INUS<br>E | Rese  | erved |      | PCS   |    |    |    |    | Res   | erved        |    |         |    |
| W      |    |     |           | 11030 | , ved |      | 100   |    |    |    |    | 11000 | orvea        |    |         |    |
| Reset  | 1  | 0   | 0         | 0     | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0     | 0            | 0  | 0       | 0  |
| Bits   | 15 | 14  | 13        | 12    | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4     | 3            | 2  | 1       | 0  |
| R<br>W |    |     |           |       |       | Rese | erved |    |    |    |    |       | Rese<br>rved | F  | Reserve | b  |
| Reset  | 0  | 0   | 0         | 0     | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0     | 0            | 0  | 0       | 0  |

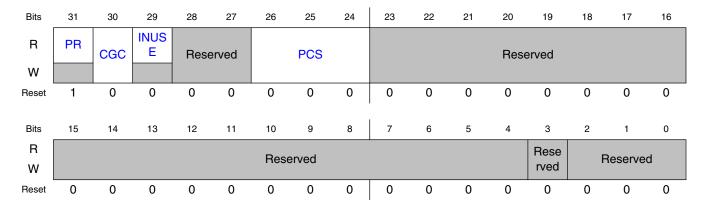
### 36.2.1.13.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - Peripheral is not present.                                                                                                   |
|       | 1 - Peripheral is present.                                                                                                       |
| 30    | This read/write bit enables the clock for the peripheral.                                                                        |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled) An external clock can be enabled for this peripheral.                              |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.14 PCC EMVSIM0 (PCC\_EMVSIM0)

#### 36.2.1.14.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_EMVSIM0 | 4007A138h |

### **PCC** Register

### 36.2.1.14.2 Diagram



#### 36.2.1.14.3 Fields

| Field | Function                                                         |  |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |  |  |  |  |
| PR    | 0 - Peripheral is not present.                                   |  |  |  |  |  |  |  |  |
|       | 1 - Peripheral is present.                                       |  |  |  |  |  |  |  |  |
| 30    | This read/write bit enables the clock for the peripheral.        |  |  |  |  |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |  |  |  |  |
|       | 1 - Clock enabled                                                |  |  |  |  |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.       |  |  |  |  |  |  |  |  |

Table continues on the next page...

### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |
|       |                                                                                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

### 36.2.1.15 PCC USB0FS (PCC\_USB0FS)

### 36.2.1.15.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_USB0FS | 4007A154h |

### PCC Register

### 36.2.1.15.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17  | 16 |
|-------|----|-----|-----------|------|-------|------|-------|----|----|----|----|------|-------|----|-----|----|
| R     | PR | CGC | INUS<br>E | Rese | erved |      | PCS   |    |    |    |    | Rese | erved |    |     |    |
| W     |    |     |           |      |       |      |       |    |    |    |    |      |       |    |     |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0   | 0  |
|       |    |     |           |      |       |      |       |    |    |    |    |      |       |    |     |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1   | 0  |
| R     |    |     |           |      |       | Daa  | d     |    |    |    |    |      | EDAC  |    | DOD |    |
| W     |    |     |           |      |       | Hese | erved |    |    |    |    |      | FRAC  |    | PCD |    |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0   | 0  |

### 36.2.1.15.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - Peripheral is not present.                                                                                                   |
|       | 1 - Peripheral is present.                                                                                                       |
| 30    | This read/write bit enables the clock for the peripheral.                                                                        |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled) An external clock can be enabled for this peripheral.                              |
|       | 001 - OSCCLK - System Oscillator Platform Clock.                                                                                 |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

Table continues on the next page...

| Field      | Function                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>FRAC  | This read/write bit field sets the fraction multiply value for the fractional clock divider used as a clock source. Divider output clock = Divider input clock x [(FRAC+1)/(DIV+1)]. |
|            | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                     |
|            | 0 - Fractional value is 0.                                                                                                                                                           |
|            | 1 - Fractional value is 1.                                                                                                                                                           |
| 2-0<br>PCD | This read/write bit field is used for peripherals that require a clock divider. At SOC integration, each peripheral is assigned either a divider or not.                             |
| . 02       | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                     |
|            | 000 - Divide by 1 (pass-through, no clock divide).                                                                                                                                   |
|            | 001 - Divide by 2.                                                                                                                                                                   |
|            | 010 - Divide by 3.                                                                                                                                                                   |
|            | 011 - Divide by 4.                                                                                                                                                                   |
|            | 100 - Divide by 5.                                                                                                                                                                   |
|            | 101 - Divide by 6.                                                                                                                                                                   |
|            | 110 - Divide by 7.                                                                                                                                                                   |
|            | 111 - Divide by 8.                                                                                                                                                                   |

### 36.2.1.16 PCC PORTA (PCC\_PORTA)

### 36.2.1.16.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_PORTA | 4007A168h |

### PCC Register

### 36.2.1.16.2 Diagram

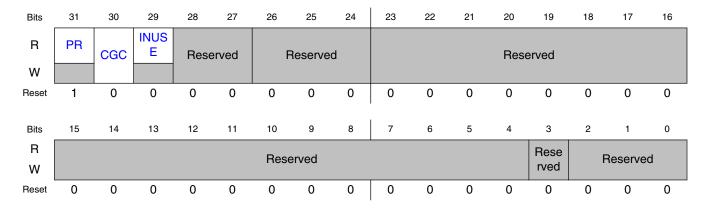
| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25      | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-------|------|---------|----|----|----|----|------|-------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved | F    | Reserve | d  |    |    |    | Rese | erved |    |         |    |
| W     |    |     |           |      |       |      |         |    |    |    |    |      |       |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |
|       |    |     |           |      |       |      |         |    | I  |    |    |      |       |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9       | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0  |
| R     |    |     |           |      |       | Dage |         |    |    |    |    |      | Rese  |    |         | al |
| W     |    |     |           |      |       | Hese | erved   |    |    |    |    |      | rved  | F  | Reserve | J  |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |

### 36.2.1.16.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

### 36.2.1.17 PCC PORTB (PCC\_PORTB)

KL28Z Reference Manual, Rev. 4, 06/2016


934

### 36.2.1.17.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_PORTB | 4007A16Ch |

### **PCC** Register

### 36.2.1.17.2 Diagram



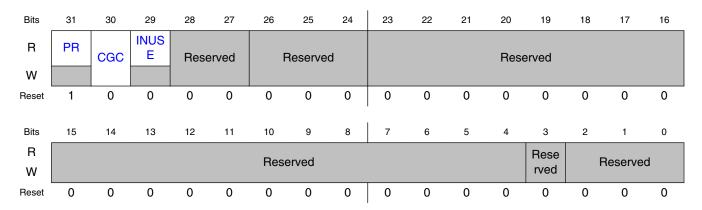
#### 36.2.1.17.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


### 36.2.1.18 PCC PORTC (PCC\_PORTC)

#### 36.2.1.18.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_PORTC | 4007A170h |

### PCC Register

### 36.2.1.18.2 Diagram



#### 36.2.1.18.3 Fields

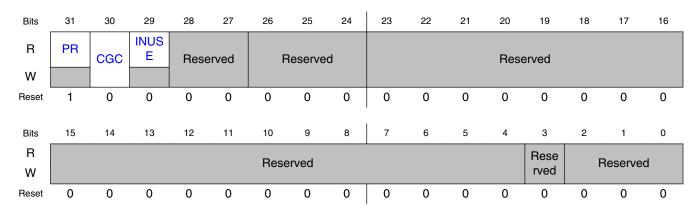
| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### **Chapter 36 Peripheral Clock Control (PCC)**

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.19 PCC PORTD (PCC\_PORTD)

#### 36.2.1.19.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_PORTD | 4007A174h |

# **PCC** Register

# 36.2.1.19.2 Diagram



# 36.2.1.19.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

# 36.2.1.20 PCC PORTE (PCC\_PORTE)

# 36.2.1.20.1 Address

| Register  | Offset    |
|-----------|-----------|
| PCC_PORTE | 4007A178h |

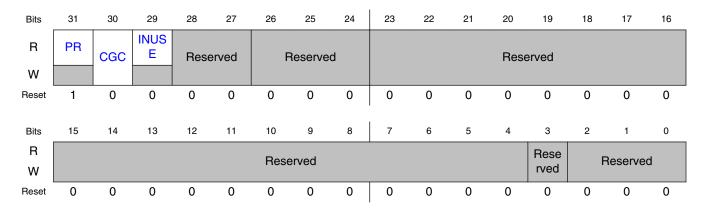
# PCC Register

# 36.2.1.20.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25      | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16    |
|-------|----|-----|-----------|------|-------|------|---------|----|----|----|----|------|-------|----|---------|-------|
| R     | PR | CGC | INUS<br>E | Rese | erved | F    | Reserve | d  |    |    |    | Rese | erved |    |         |       |
| W     |    |     |           |      |       |      |         |    |    |    |    |      |       |    |         |       |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0     |
|       |    |     |           |      |       |      |         |    | i  |    |    |      |       |    |         |       |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9       | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0     |
| R     |    |     |           |      |       | D    |         |    |    |    |    |      | Rese  |    |         | -1    |
| W     |    |     |           |      |       | Hese | erved   |    |    |    |    |      | rved  | F  | Reserve | a<br> |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0     |

# 36.2.1.20.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.21 PCC TSI0 (PCC\_TSI0)

#### 36.2.1.21.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_TSI0 | 4007A188h |

# **PCC** Register

# 36.2.1.21.2 Diagram

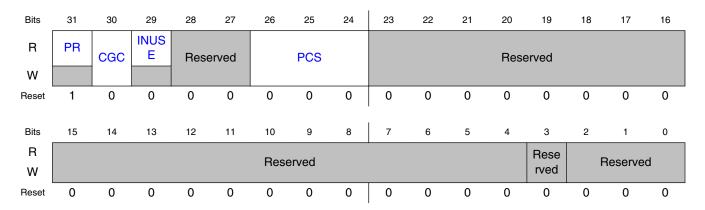


#### 36.2.1.21.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.22 PCC ADC0 (PCC\_ADC0)

#### 36.2.1.22.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_ADC0 | 4007A198h |

# PCC Register

# 36.2.1.22.2 Diagram



#### 36.2.1.22.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections.                                         |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

# 36.2.1.23 PCC DAC0 (PCC\_DAC0)

#### 36.2.1.23.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_DAC0 | 4007A1A8h |

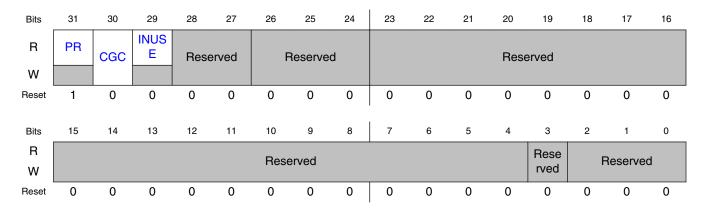
# PCC Register

# 36.2.1.23.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25      | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-------|------|---------|----|----|----|----|------|-------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved | F    | Reserve | d  |    |    |    | Rese | erved |    |         |    |
| W     |    |     |           |      |       |      |         |    |    |    |    |      |       |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |
|       |    |     |           |      |       |      |         |    | I  |    |    |      |       |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9       | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0  |
| R     |    |     |           |      |       | Dage |         |    |    |    |    |      | Rese  |    |         |    |
| W     |    |     |           |      |       | Rese | erved   |    |    |    |    |      | rved  | r  | Reserve | J  |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0       | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |

# 36.2.1.23.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.24 PCC CMP0 (PCC\_CMP0)

# 36.2.1.24.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_CMP0 | 4007A1B8h |

# PCC Register

# 36.2.1.24.2 Diagram

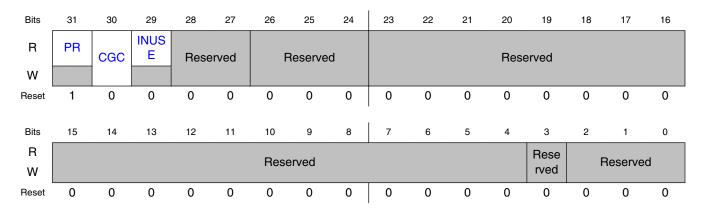


#### 36.2.1.24.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.25 PCC VREF (PCC\_VREF)

#### 36.2.1.25.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_VREF | 4007A1C8h |

# **PCC** Register

# 36.2.1.25.2 Diagram



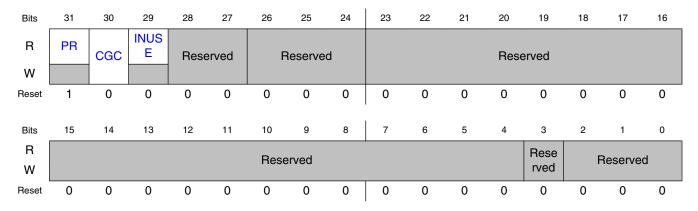
#### 36.2.1.25.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| cgc   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |

Table continues on the next page...

# KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.1.26 PCC CRC (PCC\_CRC)

#### 36.2.1.26.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_CRC  | 4007A1E0h |

# **PCC** Register

# 36.2.1.26.2 Diagram



#### 36.2.1.26.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - Peripheral is not present.                                   |
|       | 1 - Peripheral is present.                                       |
| 30    | This read/write bit enables the clock for the peripheral.        |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
|       |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

# 36.2.2 PCC Register Descriptions

These register may not be applicable to all instances of PCC. For more details on the registers supported on each module instance, please refer to "The PCC as implemented on the chip."

Table 36-2. PCC Memory Map

| Offset    | Register                | Width     | Access | Reset value |
|-----------|-------------------------|-----------|--------|-------------|
|           |                         | (In bits) |        |             |
| 400FA094h | PCC TRNG (PCC_TRNG)     | 32        | RW     | 80000000h   |
| 400FA0B0h | PCC TPM0 (PCC_TPM0)     | 32        | RW     | 80000000h   |
| 400FA0B4h | PCC TPM1 (PCC_TPM1)     | 32        | RW     | 80000000h   |
| 400FA0D4h | PCC LPTMR1 (PCC_LPTMR1) | 32        | RW     | 80000000h   |
| 400FA0F0h | PCC LPSPI0 (PCC_LPSPI0) | 32        | RW     | 80000000h   |
| 400FA0F4h | PCC LPSPI1 (PCC_LPSPI1) | 32        | RW     | 80000000h   |
| 400FA100h | PCC LPI2C0 (PCC_LPI2C0) | 32        | RW     | 80000000h   |

Table continues on the next page...

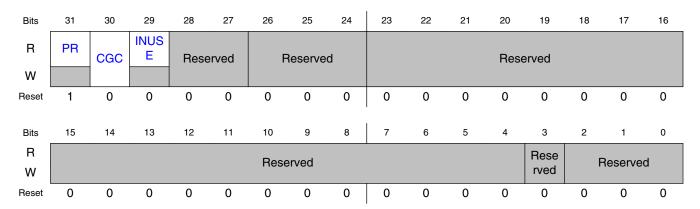
KL28Z Reference Manual, Rev. 4, 06/2016

Table 36-2. PCC Memory Map (continued)

| Offset    | Register                  | Width     | Access | Reset value |
|-----------|---------------------------|-----------|--------|-------------|
|           |                           | (In bits) |        |             |
| 400FA104h | PCC LPI2C1 (PCC_LPI2C1)   | 32        | RW     | 80000000h   |
| 400FA110h | PCC LPUART0 (PCC_LPUART0) | 32        | RW     | 80000000h   |
| 400FA114h | PCC LPUART1 (PCC_LPUART1) | 32        | RW     | 80000000h   |
| 400FA128h | PCC FLEXIO0 (PCC_FLEXIO0) | 32        | RW     | 80000000h   |
| 400FA1BCh | PCC CMP1 (PCC_CMP1)       | 32        | RW     | 80000000h   |

# 36.2.2.1 PCC Register Descriptions

# 36.2.2.2 PCC TRNG (PCC\_TRNG)


#### 36.2.2.2.1 Address

| Register | Offset    |  |  |  |  |  |  |
|----------|-----------|--|--|--|--|--|--|
| PCC_TRNG | 400FA094h |  |  |  |  |  |  |

#### 36.2.2.2. Function

**PCC** Register

#### 36.2.2.2.3 Diagram



# 36.2.2.2.4 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - disabled                                                     |
|       | 1 - enabled                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.   |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

# 36.2.2.3 PCC TPM0 (PCC\_TPM0)

# 36.2.2.3.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_TPM0 | 400FA0B0h |

# PCC Register

# 36.2.2.3.2 Diagram

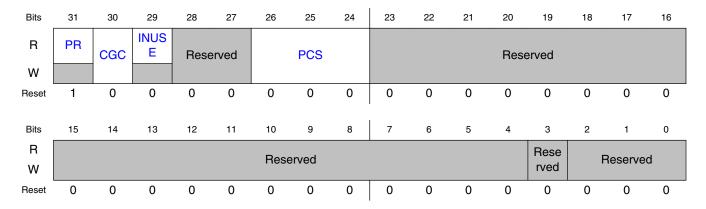
| Bits  | 31 | 30  | 29        | 28   | 27       | 26   | 25     | 24 | 23       | 22 | 21 | 20 | 19   | 18 | 17      | 16 |
|-------|----|-----|-----------|------|----------|------|--------|----|----------|----|----|----|------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | Reserved |      | PCS    |    | Reserved |    |    |    |      |    |         |    |
| W     |    |     |           |      |          |      |        |    |          |    |    |    |      |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0        | 0    | 0      | 0  | 0        | 0  | 0  | 0  | 0    | 0  | 0       | 0  |
|       |    |     |           |      |          |      |        |    |          |    |    |    |      |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11       | 10   | 9      | 8  | 7        | 6  | 5  | 4  | 3    | 2  | 1       | 0  |
| R     |    |     |           |      |          | Door | an rad |    |          |    |    |    | Rese | _  | 200010  | a  |
| W     |    |     |           |      |          | nese | erved  |    |          |    |    |    | rved |    | Reserve | J  |
| Reset | 0  | 0   | 0         | 0    | 0        | 0    | 0      | 0  | 0        | 0  | 0  | 0  | 0    | 0  | 0       | 0  |

# 36.2.2.3.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - disabled                                                                                                                     |
|       | 1 - enabled                                                                                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.                                                                   |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections. At SOC integration,                     |
| PCS   | each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices.                           |
|       | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.4 PCC TPM1 (PCC\_TPM1)

#### 36.2.2.4.1 Address

| Register | Offset    |
|----------|-----------|
| PCC_TPM1 | 400FA0B4h |

# **PCC** Register

# 36.2.2.4.2 Diagram



#### 36.2.2.4.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - disabled                                                     |
|       | 1 - enabled                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.   |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field        | Function                                                                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29           | This read-only bit indicates the peripheral is being used.                                                                                                                                                          |
| INUSE        | 0 - Peripheral is not being used.                                                                                                                                                                                   |
|              | 1 - Peripheral is being used.                                                                                                                                                                                       |
| 28-27        | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 26-24<br>PCS | This read/write bit field is used for peripherals that support various clock selections. At SOC integration, each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices. |
|              | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                                                    |
|              | 000 - Clock is off (or test clock is enabled).                                                                                                                                                                      |
|              | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                                                                                                         |
|              | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                                                                                                    |
|              | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                                                                                                   |
|              | 100 - Reserved.                                                                                                                                                                                                     |
|              | 101 - Reserved.                                                                                                                                                                                                     |
|              | 110 - SCGPCLK System PLL clock .                                                                                                                                                                                    |
|              | 111 - Reserved.                                                                                                                                                                                                     |
| 23-4         | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 3            | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 2-0          | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |

# 36.2.2.5 PCC LPTMR1 (PCC\_LPTMR1)

# 36.2.2.5.1 Address

| Register   | Offset    |  |  |  |  |  |  |
|------------|-----------|--|--|--|--|--|--|
| PCC_LPTMR1 | 400FA0D4h |  |  |  |  |  |  |

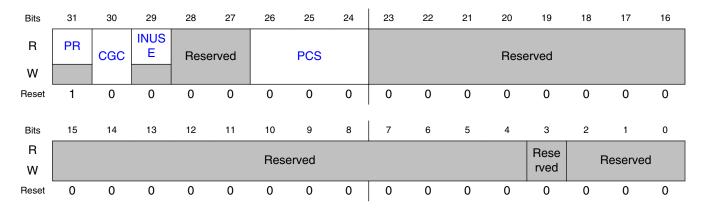
# PCC Register

# 36.2.2.5.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27       | 26   | 25       | 24 | 23 | 22       | 21 | 20 | 19   | 18 | 17      | 16 |  |
|-------|----|-----|-----------|------|----------|------|----------|----|----|----------|----|----|------|----|---------|----|--|
| R     | PR | CGC | INUS<br>E | Rese | Reserved |      | Reserved |    |    | Reserved |    |    |      |    |         |    |  |
| W     |    |     |           |      |          |      |          |    |    |          |    |    |      |    |         |    |  |
| Reset | 1  | 0   | 0         | 0    | 0        | 0    | 0        | 0  | 0  | 0        | 0  | 0  | 0    | 0  | 0       | 0  |  |
|       |    |     |           |      |          |      |          |    | I  |          |    |    |      |    |         |    |  |
| Bits  | 15 | 14  | 13        | 12   | 11       | 10   | 9        | 8  | 7  | 6        | 5  | 4  | 3    | 2  | 1       | 0  |  |
| R     |    |     |           |      |          | Dage |          |    |    |          |    |    | Rese |    |         |    |  |
| W     |    |     |           |      |          | Rese | erved    |    |    |          |    |    | rved | r  | Reserve | J  |  |
| Reset | 0  | 0   | 0         | 0    | 0        | 0    | 0        | 0  | 0  | 0        | 0  | 0  | 0    | 0  | 0       | 0  |  |

# 36.2.2.5.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - disabled                                                     |
|       | 1 - enabled                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.   |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.6 PCC LPSPI0 (PCC\_LPSPI0)

#### 36.2.2.6.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPSPI0 | 400FA0F0h |

# **PCC** Register

# 36.2.2.6.2 Diagram

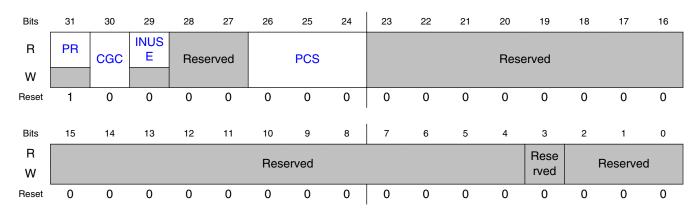


#### 36.2.2.6.3 Fields

| Field | Function                                                                                                                         |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |  |  |  |  |  |
| PR    | 0 - disabled                                                                                                                     |  |  |  |  |  |
|       | 1 - enabled                                                                                                                      |  |  |  |  |  |
| 30    | This read/write bit enables the clock gate for the peripheral.                                                                   |  |  |  |  |  |
| CGC   | 0 - Clock disabled                                                                                                               |  |  |  |  |  |
|       | 1 - Clock enabled                                                                                                                |  |  |  |  |  |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |  |  |  |  |  |
| INUSE | 0 - Peripheral is not being used.                                                                                                |  |  |  |  |  |
|       | 1 - Peripheral is being used.                                                                                                    |  |  |  |  |  |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |  |  |  |  |  |
| _     |                                                                                                                                  |  |  |  |  |  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections. At SOC integration,                     |  |  |  |  |  |
| PCS   | each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices.                           |  |  |  |  |  |
|       | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |  |  |  |  |  |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |  |  |  |  |  |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |  |  |  |  |  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
|       | 010 - SCGIRCLK - Slow IRC Clock.                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                |
|       | 100 - Reserved.                                                  |
|       | 101 - Reserved.                                                  |
|       | 110 - SCGPCLK System PLL clock .                                 |
|       | 111 - Reserved.                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.7 PCC LPSPI1 (PCC\_LPSPI1)

#### 36.2.2.7.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPSPI1 | 400FA0F4h |

# **PCC** Register

#### 36.2.2.7.2 **Diagram**



KL28Z Reference Manual, Rev. 4, 06/2016 955 **NXP Semiconductors** 

# 36.2.2.7.3 Fields

| Field        | Function                                                                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31           | This bit shows whether the peripheral is present on this device.                                                                                                                                                    |
| PR           | 0 - disabled                                                                                                                                                                                                        |
|              | 1 - enabled                                                                                                                                                                                                         |
| 30           | This read/write bit enables the clock gate for the peripheral.                                                                                                                                                      |
| CGC          | 0 - Clock disabled                                                                                                                                                                                                  |
|              | 1 - Clock enabled                                                                                                                                                                                                   |
| 29           | This read-only bit indicates the peripheral is being used.                                                                                                                                                          |
| INUSE        | 0 - Peripheral is not being used.                                                                                                                                                                                   |
|              | 1 - Peripheral is being used.                                                                                                                                                                                       |
| 28-27        | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 26-24<br>PCS | This read/write bit field is used for peripherals that support various clock selections. At SOC integration, each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices. |
| 1 00         | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                                                    |
|              | 000 - Clock is off (or test clock is enabled).                                                                                                                                                                      |
|              | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                                                                                                         |
|              | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                                                                                                    |
|              | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                                                                                                   |
|              | 100 - Reserved.                                                                                                                                                                                                     |
|              | 101 - Reserved.                                                                                                                                                                                                     |
|              | 110 - SCGPCLK System PLL clock .                                                                                                                                                                                    |
|              | 111 - Reserved.                                                                                                                                                                                                     |
| 23-4         | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 3            | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 2-0          | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |

# 36.2.2.8 PCC LPI2C0 (PCC\_LPI2C0)

# 36.2.2.8.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPI2C0 | 400FA100h |

# PCC Register

# 36.2.2.8.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-------|------|-------|----|----|----|----|------|-------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved |      | PCS   |    |    |    |    | Rese | erved |    |         |    |
| W     |    |     |           |      |       |      |       |    |    |    |    |      |       |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |
|       |    |     |           |      |       |      |       |    | I  |    |    |      |       |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0  |
| R     |    |     |           |      |       | Daa  |       |    |    |    |    |      | Rese  | _  |         |    |
| W     |    |     |           |      |       | Hese | erved |    |    |    |    |      | rved  | r  | Reserve | J. |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |

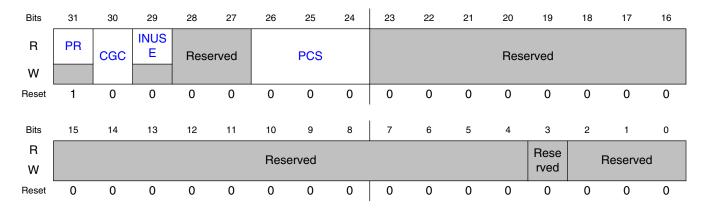
# 36.2.2.8.3 Fields

| Field        | Function                                                                                                                                                                                                            |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31           | This bit shows whether the peripheral is present on this device.                                                                                                                                                    |  |  |  |
| PR           | 0 - disabled                                                                                                                                                                                                        |  |  |  |
|              | 1 - enabled                                                                                                                                                                                                         |  |  |  |
| 30           | This read/write bit enables the clock gate for the peripheral.                                                                                                                                                      |  |  |  |
| CGC          | 0 - Clock disabled                                                                                                                                                                                                  |  |  |  |
|              | 1 - Clock enabled                                                                                                                                                                                                   |  |  |  |
| 29           | This read-only bit indicates the peripheral is being used.                                                                                                                                                          |  |  |  |
| INUSE        | 0 - Peripheral is not being used.                                                                                                                                                                                   |  |  |  |
|              | 1 - Peripheral is being used.                                                                                                                                                                                       |  |  |  |
| 28-27        | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |  |  |  |
| _            |                                                                                                                                                                                                                     |  |  |  |
| 26-24<br>PCS | This read/write bit field is used for peripherals that support various clock selections. At SOC integration, each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices. |  |  |  |
|              | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                                                    |  |  |  |
|              | 000 - Clock is off (or test clock is enabled).                                                                                                                                                                      |  |  |  |
|              | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                                                                                                         |  |  |  |
|              | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                                                                                                    |  |  |  |
|              | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                                                                                                   |  |  |  |
|              | 100 - Reserved.                                                                                                                                                                                                     |  |  |  |
|              | 101 - Reserved.                                                                                                                                                                                                     |  |  |  |
|              | 110 - SCGPCLK System PLL clock .                                                                                                                                                                                    |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
|       | 111 - Reserved.                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.9 PCC LPI2C1 (PCC\_LPI2C1)

#### 36.2.2.9.1 Address

| Register   | Offset    |
|------------|-----------|
| PCC_LPI2C1 | 400FA104h |

# **PCC** Register

# 36.2.2.9.2 Diagram



#### 36.2.2.9.3 Fields

| Field | Function                                                         |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |
| PR    | 0 - disabled                                                     |  |  |  |  |
|       | 1 - enabled                                                      |  |  |  |  |

Table continues on the next page...

| Field | Function                                                                                                                                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30    | This read/write bit enables the clock gate for the peripheral.                                                                                                                                                      |
| CGC   | 0 - Clock disabled                                                                                                                                                                                                  |
|       | 1 - Clock enabled                                                                                                                                                                                                   |
| 29    | This read-only bit indicates the peripheral is being used.                                                                                                                                                          |
| INUSE | 0 - Peripheral is not being used.                                                                                                                                                                                   |
|       | 1 - Peripheral is being used.                                                                                                                                                                                       |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _     |                                                                                                                                                                                                                     |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections. At SOC integration, each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices. |
| PCS   | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                                                    |
|       | 000 - Clock is off (or test clock is enabled).                                                                                                                                                                      |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                                                                                                         |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                                                                                                    |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                                                                                                   |
|       | 100 - Reserved.                                                                                                                                                                                                     |
|       | 101 - Reserved.                                                                                                                                                                                                     |
|       | 110 - SCGPCLK System PLL clock .                                                                                                                                                                                    |
|       | 111 - Reserved.                                                                                                                                                                                                     |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _     |                                                                                                                                                                                                                     |
| 3     | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
|       |                                                                                                                                                                                                                     |
| 2-0   | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _     |                                                                                                                                                                                                                     |

# 36.2.2.10 PCC LPUARTO (PCC\_LPUARTO)

#### 36.2.2.10.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_LPUART0 | 400FA110h |

# PCC Register

# 36.2.2.10.2 Diagram

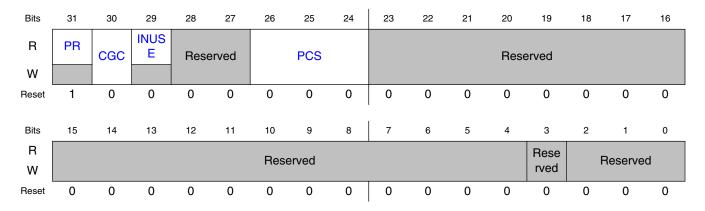
| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-------|------|-------|----|----|----|----|------|-------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved |      | PCS   |    |    |    |    | Rese | erved |    |         |    |
| W     |    |     |           |      |       |      |       |    |    |    |    |      |       |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |
|       |    |     |           |      |       |      |       |    | ı  |    |    |      |       |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0  |
| R     |    |     |           |      |       |      |       |    |    |    |    |      | Rese  |    |         |    |
| W     |    |     |           |      |       | Hese | erved |    |    |    |    |      | rved  | F  | Reserve | נ  |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |

# 36.2.2.10.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - disabled                                                                                                                     |
|       | 1 - enabled                                                                                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.                                                                   |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections. At SOC integration,                     |
| PCS   | each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices.                           |
|       | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.11 PCC LPUART1 (PCC\_LPUART1)

#### 36.2.2.11.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_LPUART1 | 400FA114h |

# **PCC** Register

# 36.2.2.11.2 Diagram



#### 36.2.2.11.3 Fields

| Field | Function                                                         |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|--|--|--|
| 31    | This bit shows whether the peripheral is present on this device. |  |  |  |  |  |  |  |
| PR    | disabled                                                         |  |  |  |  |  |  |  |
|       | 1 - enabled                                                      |  |  |  |  |  |  |  |
| 30    | This read/write bit enables the clock gate for the peripheral.   |  |  |  |  |  |  |  |
| CGC   | 0 - Clock disabled                                               |  |  |  |  |  |  |  |
|       | 1 - Clock enabled                                                |  |  |  |  |  |  |  |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field        | Function                                                                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29           | This read-only bit indicates the peripheral is being used.                                                                                                                                                          |
| INUSE        | 0 - Peripheral is not being used.                                                                                                                                                                                   |
|              | 1 - Peripheral is being used.                                                                                                                                                                                       |
| 28-27        | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 26-24<br>PCS | This read/write bit field is used for peripherals that support various clock selections. At SOC integration, each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices. |
| . 66         | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked.                                                                                    |
|              | 000 - Clock is off (or test clock is enabled).                                                                                                                                                                      |
|              | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                                                                                                         |
|              | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                                                                                                    |
|              | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                                                                                                   |
|              | 100 - Reserved.                                                                                                                                                                                                     |
|              | 101 - Reserved.                                                                                                                                                                                                     |
|              | 110 - SCGPCLK System PLL clock .                                                                                                                                                                                    |
|              | 111 - Reserved.                                                                                                                                                                                                     |
| 23-4         | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 3            | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |
| 2-0          | This read-only bit field is reserved and always has the value 0.                                                                                                                                                    |
| _            |                                                                                                                                                                                                                     |

# 36.2.2.12 PCC FLEXIO0 (PCC\_FLEXIO0)

#### 36.2.2.12.1 Address

| Register    | Offset    |
|-------------|-----------|
| PCC_FLEXIO0 | 400FA128h |

# PCC Register

# 36.2.2.12.2 Diagram

| Bits  | 31 | 30  | 29        | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17      | 16 |
|-------|----|-----|-----------|------|-------|------|-------|----|----|----|----|------|-------|----|---------|----|
| R     | PR | CGC | INUS<br>E | Rese | erved |      | PCS   |    |    |    |    | Rese | erved |    |         |    |
| W     |    |     |           |      |       |      |       |    |    |    |    |      |       |    |         |    |
| Reset | 1  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |
|       |    |     |           |      |       |      |       |    |    |    |    |      |       |    |         |    |
| Bits  | 15 | 14  | 13        | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1       | 0  |
| R     |    |     |           |      |       | Daa  |       |    |    |    |    |      | Rese  |    |         | -1 |
| W     |    |     |           |      |       | Hese | erved |    |    |    |    |      | rved  | r  | Reserve | J  |
| Reset | 0  | 0   | 0         | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0     | 0  | 0       | 0  |

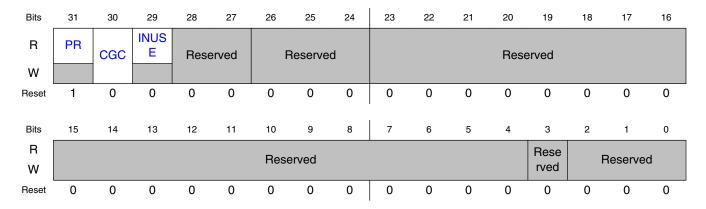
# 36.2.2.12.3 Fields

| Field | Function                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device.                                                                 |
| PR    | 0 - disabled                                                                                                                     |
|       | 1 - enabled                                                                                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.                                                                   |
| CGC   | 0 - Clock disabled                                                                                                               |
|       | 1 - Clock enabled                                                                                                                |
| 29    | This read-only bit indicates the peripheral is being used.                                                                       |
| INUSE | 0 - Peripheral is not being used.                                                                                                |
|       | 1 - Peripheral is being used.                                                                                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |
| 26-24 | This read/write bit field is used for peripherals that support various clock selections. At SOC integration,                     |
| PCS   | each peripheral is assigned either the 'slow' clock source choices or the 'fast' clock source choices.                           |
|       | This field can only be written when the CGC bit is 0 (clock disabled). Likewise, if the INUSE flag is set, this field is locked. |
|       | 000 - Clock is off (or test clock is enabled).                                                                                   |
|       | 001 - OSCCLK - System Oscillator Bus Clock.                                                                                      |
|       | 010 - SCGIRCLK - Slow IRC Clock.                                                                                                 |
|       | 011 - SCGFIRCLK - Fast IRC Clock.                                                                                                |
|       | 100 - Reserved.                                                                                                                  |
|       | 101 - Reserved.                                                                                                                  |
|       | 110 - SCGPCLK System PLL clock .                                                                                                 |
|       | 111 - Reserved.                                                                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0.                                                                 |
| _     |                                                                                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |


# 36.2.2.13 PCC CMP1 (PCC\_CMP1)

#### 36.2.2.13.1 Address

| Register | Offset    |  |
|----------|-----------|--|
| PCC_CMP1 | 400FA1BCh |  |

# **PCC** Register

# 36.2.2.13.2 Diagram



#### 36.2.2.13.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the peripheral is present on this device. |
| PR    | 0 - disabled                                                     |
|       | 1 - enabled                                                      |
| 30    | This read/write bit enables the clock gate for the peripheral.   |
| CGC   | 0 - Clock disabled                                               |
|       | 1 - Clock enabled                                                |

Table continues on the next page...

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 29    | This read-only bit indicates the peripheral is being used.       |
| INUSE | 0 - Peripheral is not being used.                                |
|       | 1 - Peripheral is being used.                                    |
| 28-27 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 26-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-4  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 3     | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 2-0   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

# 36.3 Functional description

The Peripheral Clock Control (PCC) module provides clock gating and clock source selection to each peripheral.

Each peripheral has it's own unique PCCn register that provide clock gating for the peripheral's interface clock and where applicable it's functional clock.

Optional peripheral functional clock sources can come from the SCG (xxxDIVy\_CLK) or other modules eg LPO. Not all peripherals will make use of all available peripheral functional clocks.

The peripheral interface clock can be either DIVSLOW\_CLK or DIVCORE\_CLK.

See each peripherals PCCn register for details.

Functional description

# **Chapter 37 Power Management Controller (PMC)**

#### 37.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The power management controller (PMC) contains the internal voltage regulator, power on reset (POR), and low voltage detect system (LVD) and high voltage detect system (HVD).

See AN4503: Power Management for Kinetis MCUs for further details on using the PMC.

# 37.2 Features

A list of included PMC features can be found here.

- Internal voltage regulator
- Active POR providing brown-out detect
- Low-voltage detect supporting two low-voltage trip points with four warning levels per trip point
- High-voltage detect supporting two high-voltage trip points

# 37.3 Low-voltage detect (LVD) system

This device includes a system to guard against low-voltage conditions. This protects memory contents and controls MCU system states during supply voltage variations.

#### Low-voltage detect (LVD) system

The system is comprised of a power-on reset (POR) circuit and a LVD circuit with a user-selectable trip voltage: high ( $V_{LVDH}$ ) or low ( $V_{LVDL}$ ). The trip voltage is selected by LVDSC1[LVDV]. The LVD is disabled upon entering VLPx, LLS, and VLLSx modes.

Two flags are available to indicate the status of the low-voltage detect system:

- The Low Voltage Detect Flag in the Low Voltage Status and Control 1 Register (LVDSC1[LVDF]) operates in a level sensitive manner. LVDSC1[LVDF] is set when the supply voltage falls below the selected trip point (VLVD). LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC1[LVDF] remains set.
- The Low Voltage Warning Flag (LVWF) in the Low Voltage Status and Control 2 Register (LVDSC2[LVWF]) operates in a level sensitive manner. LVDSC2[LVWF] is set when the supply voltage falls below the selected monitor trip point (VLVW). LVDSC2[LVWF] is cleared by writing one to LVDSC2[LVWACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC2[LVWF] remains set.

# 37.3.1 LVD reset operation

By setting LVDSC1[LVDRE], the LVD generates a reset upon detection of a low-voltage condition. The low-voltage detection threshold is determined by LVDSC1[LVDV]. After an LVD reset occurs, the LVD system holds the MCU in reset until the supply voltage rises above this threshold. The LVD field in the SRS register of the RCM module (RCM\_SRS[LVD]) is set following an LVD or power-on reset.

# 37.3.2 LVD interrupt operation

By configuring the LVD circuit for interrupt operation (LVDSC1[LVDIE] set and LVDSC1[LVDRE] clear), LVDSC1[LVDF] is set and an LVD interrupt request occurs upon detection of a low voltage condition. LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK].

# 37.3.3 Low-voltage warning (LVW) interrupt operation

The LVD system contains a Low-Voltage Warning Flag (LVWF) in the Low Voltage Detect Status and Control 2 Register to indicate that the supply voltage is approaching, but is above, the LVD voltage. The LVW also has an interrupt, which is enabled by

setting LVDSC2[LVWIE]. If enabled, an LVW interrupt request occurs when LVDSC2[LVWF] is set. LVDSC2[LVWF] is cleared by writing 1 to LVDSC2[LVWACK].

LVDSC2[LVWV] selects one of the four trip voltages:

• Highest: V<sub>LVW4</sub>

• Two mid-levels: V<sub>LVW3</sub> and V<sub>LVW2</sub>

• Lowest: V<sub>LVW1</sub>

# 37.4 High-voltage detect (HVD) system

This device includes a system to guard against high-voltage conditions.

The system is comprised of a HVD circuit with a user-selectable trip voltage: high  $(V_{HVDH})$  or low  $(V_{HVDL})$ . The trip voltage is selected by HVDSC1[HVDV]. The HVD is disabled upon entering VLPx, LLS, and VLLSx modes.

A flag is available to indicate the status of the high-voltage detect system:

• The High Voltage Detect Flag in the High Voltage Status and Control 1 Register (HVDSC1[HVDF]) operates in a level sensitive manner. HVDSC1[HVDF] is set when the supply voltage rises above the selected trip point (VHVD). HVDSC1[HVDF] is cleared by writing 1 to HVDSC1[HVDACK], but only if the internal supply has returned below the trip point; otherwise, HVDSC1[LVDF] remains set.

# 37.4.1 HVD reset operation

By setting HVDSC1[HVDRE], the HVD generates a reset upon detection of a high-voltage condition. The high-voltage detection threshold is determined by HVDSC1[HVDV]. After an HVD reset occurs, the HVD system holds the MCU in reset until the supply voltage falls below this threshold. The LVD field in the SRS register of the RCM module (RCM\_SRS[LVD]) is set following an HVD reset.

# 37.4.2 HVD interrupt operation

By configuring the HVD circuit for interrupt operation (HVDSC1[HVDIE] set and HVDSC1[HVDRE] clear), HVDSC1[HVDF] is set and an HVD interrupt request occurs upon detection of a high voltage condition. HVDSC1[HVDF] is cleared by writing 1 to HVDSC1[HVDACK].

#### 37.5 I/O retention

When in LLS mode, the I/O pins are held in their input or output state.

Upon wakeup, the PMC is re-enabled, goes through a power up sequence to full regulation, and releases the logic from state retention mode. The I/O are released immediately after a wake-up or reset event. In the case of LLS exit via a RESET pin, the I/O default to their reset state.

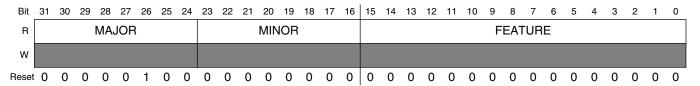
When in VLLS modes, the I/O states are held on a wake-up event (with the exception of wake-up by reset event) until the wake-up has been acknowledged via a write to REGSC[ACKISO]. In the case of VLLS exit via a RESET pin, the I/O are released and default to their reset state. In this case, no write to REGSC[ACKISO] is needed.

# 37.6 Memory map and register descriptions

Details about the PMC registers can be found here.

#### NOTE

Different portions of PMC registers are reset only by particular reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

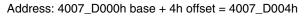

The PMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

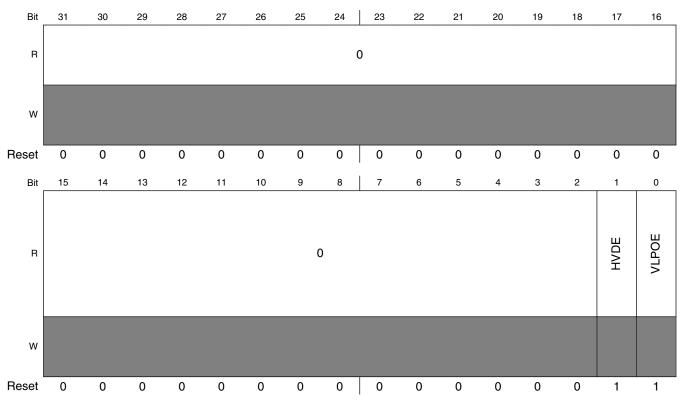
#### **PMC** memory map

| Absolute address (hex) | Register name                                                  | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|----------------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_D000              | Version ID register (PMC_VERID)                                | 32                 | R      | 0400_0000h  | 37.6.1/971       |
| 4007_D004              | Parameter register (PMC_PARAM)                                 | 32                 | R      | See section | 37.6.2/972       |
| 4007_D008              | Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)  | 32                 | R/W    | 0000_0010h  | 37.6.3/972       |
| 4007_D00C              | Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)  | 32                 | R/W    | 0000_0000h  | 37.6.4/974       |
| 4007_D010              | Regulator Status And Control register (PMC_REGSC)              | 32                 | R/W    | 0000_0024h  | 37.6.5/976       |
| 4007_D034              | High Voltage Detect Status And Control 1 register (PMC_HVDSC1) | 32                 | R/W    | 0000_0001h  | 37.6.6/978       |

#### 37.6.1 Version ID register (PMC\_VERID)

Address: 4007\_D000h base + 0h offset = 4007\_D000h





#### PMC\_VERID field descriptions

| Field   | Description                                                                         |  |  |
|---------|-------------------------------------------------------------------------------------|--|--|
| 31–24   | Major Version Number                                                                |  |  |
| MAJOR   | This read only field returns the major version number for the module specification. |  |  |
| 23–16   | Minor Version Number                                                                |  |  |
| MINOR   | This read only field returns the minor version number for the module specification. |  |  |
| FEATURE | Feature Specification Number                                                        |  |  |
|         | This read only field returns the feature set number.                                |  |  |
|         | 0x0000 Standard features implemented                                                |  |  |

KL28Z Reference Manual, Rev. 4, 06/2016

# 37.6.2 Parameter register (PMC\_PARAM)



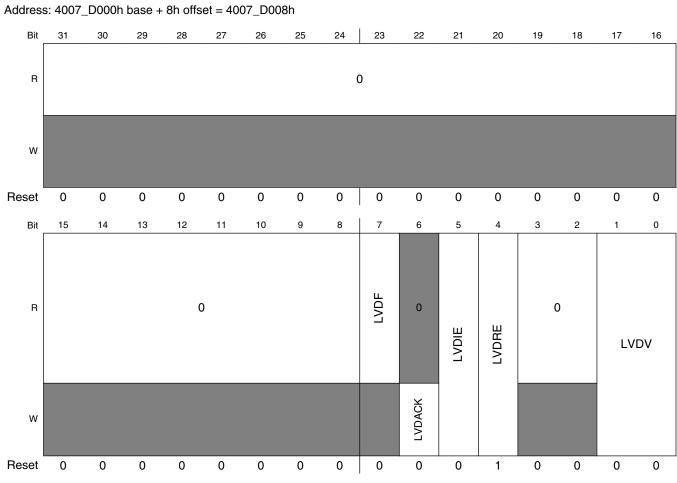


#### PMC\_PARAM field descriptions

| Field            | Description                                                                               |
|------------------|-------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.      |
| 1<br>HVDE        | HVD Enabled  If set, indicates support for High Voltage Detect is enabled.                |
| 0<br>VLPOE       | VLPO Enable  If set, indicates support for VLPO bit is enabled in the PMC_REGSC register. |

# 37.6.3 Low Voltage Detect Status And Control 1 register (PMC\_LVDSC1)

This register contains status and control bits to support the low voltage detect function. This register should be written during the reset initialization program to set the desired controls even if the desired settings are the same as the reset settings.


973

While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC1 settings. To protect systems that must have LVD always on, configure the Power Mode Protection (PMPROT) register of the SMC module (SMC\_PMPROT) to disallow any very low power or low leakage modes from being enabled.

See the device's data sheet for the exact LVD trip voltages.

#### **NOTE**

The LVDV bits are reset solely on a POR Only event. The register's other bits are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.



## PMC\_LVDSC1 field descriptions

| Field    | Description                                                  |  |
|----------|--------------------------------------------------------------|--|
|          | This field is reserved.                                      |  |
| Reserved | This read-only field is reserved and always has the value 0. |  |

Table continues on the next page...

#### Memory map and register descriptions

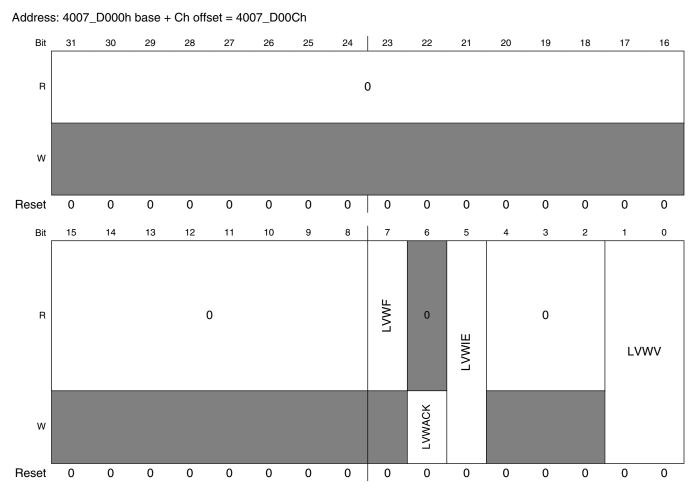
#### PMC\_LVDSC1 field descriptions (continued)

| Field       | Description                                                                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------|
| 7           | Low-Voltage Detect Flag                                                                                                  |
| LVDF        | This read-only status field indicates a low-voltage detect event.                                                        |
|             | 0 Low-voltage event not detected                                                                                         |
|             | 1 Low-voltage event detected                                                                                             |
| 6<br>LVDACK | Low-Voltage Detect Acknowledge                                                                                           |
|             | This write-only field is used to acknowledge low voltage detection errors. Write 1 to clear LVDF. Reads always return 0. |
| 5<br>LVDIE  | Low-Voltage Detect Interrupt Enable                                                                                      |
|             | Enables hardware interrupt requests for LVDF.                                                                            |
|             | 0 Hardware interrupt disabled (use polling)                                                                              |
|             | 1 Request a hardware interrupt when LVDF = 1                                                                             |
| 4<br>LVDRE  | Low-Voltage Detect Reset Enable                                                                                          |
|             | This write-once bit enables LVDF events to generate a hardware reset. Additional writes are ignored.                     |
|             | 0 LVDF does not generate hardware resets                                                                                 |
|             | 1 Force an MCU reset when LVDF = 1                                                                                       |
| 3–2         | This field is reserved.                                                                                                  |
| Reserved    | This read-only field is reserved and always has the value 0.                                                             |
| LVDV        | Low-Voltage Detect Voltage Select                                                                                        |
|             | Selects the LVD trip point voltage (V <sub>LVD</sub> ).                                                                  |
|             | 00 Low trip point selected (V <sub>LVD</sub> = V <sub>LVDL</sub> )                                                       |
|             | 01 High trip point selected (V <sub>LVD</sub> = V <sub>LVDH</sub> )                                                      |
|             | 10 Reserved                                                                                                              |
|             | 11 Reserved                                                                                                              |

## 37.6.4 Low Voltage Detect Status And Control 2 register (PMC\_LVDSC2)

This register contains status and control bits to support the low voltage warning function.

While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC2 settings.


See the device's data sheet for the exact LVD trip voltages.

#### NOTE

The LVW trip voltages depend on LVWV and LVDV.

#### **NOTE**

LVWV is reset solely on a POR Only event. The other fields of the register are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.



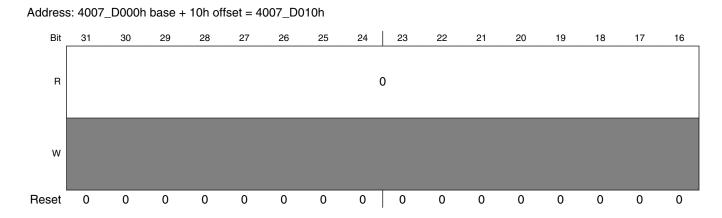
PMC\_LVDSC2 field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                             |
| 7<br>LVWF        | Low-Voltage Warning Flag  This read-only status field indicates a low-voltage warning event. LVWF is set when V <sub>Supply</sub> transitions below the trip point, or after reset and V <sub>Supply</sub> is already below V <sub>LVW</sub> . LVWF may be 1 after power-on reset, therefore, to use LVW interrupt function, before enabling LVWIE, LVWF must be cleared by writing LVWACK first.  0 Low-voltage warning event not detected 1 Low-voltage warning event detected |
| 6<br>LVWACK      | Low-Voltage Warning Acknowledge                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

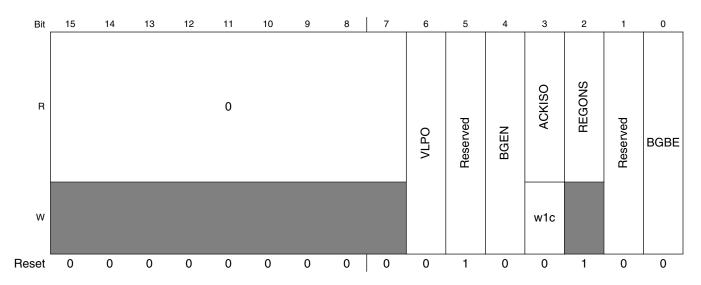
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### PMC\_LVDSC2 field descriptions (continued)


| Field      | Description                                                                                                            |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | This write-only field is used to acknowledge low voltage warning errors. Write 1 to clear LVWF. Reads always return 0. |  |  |  |
| 5<br>LVWIE | Low-Voltage Warning Interrupt Enable                                                                                   |  |  |  |
|            | Enables hardware interrupt requests for LVWF.                                                                          |  |  |  |
|            | 0 Hardware interrupt disabled (use polling)                                                                            |  |  |  |
|            | 1 Request a hardware interrupt when LVWF = 1                                                                           |  |  |  |
| 4–2        | This field is reserved.                                                                                                |  |  |  |
| Reserved   | This read-only field is reserved and always has the value 0.                                                           |  |  |  |
| LVWV       | Low-Voltage Warning Voltage Select                                                                                     |  |  |  |
|            | Selects the LVW trip point voltage (V <sub>LVW</sub> ). The actual voltage for the warning depends on LVDSC1[LVDV].    |  |  |  |
|            | 00 Low trip point selected (V <sub>LVW</sub> = V <sub>LVW1</sub> )                                                     |  |  |  |
|            | 01 Mid 1 trip point selected (V <sub>LVW</sub> = V <sub>LVW2</sub> )                                                   |  |  |  |
|            | 10 Mid 2 trip point selected (V <sub>LVW</sub> = V <sub>LVW3</sub> )                                                   |  |  |  |
|            | 11 High trip point selected (V <sub>LVW</sub> = V <sub>LVW4</sub> )                                                    |  |  |  |

#### 37.6.5 Regulator Status And Control register (PMC REGSC)


The PMC contains an internal voltage regulator. The voltage regulator design uses a bandgap reference that is also available through a buffer as input to certain internal peripherals, such as the CMP and ADC. The internal regulator provides a status bit (REGONS) indicating the regulator is in run regulation.

#### NOTE

This register is reset on Chip Reset Not VLLS and by reset types that trigger Chip Reset not VLLS. See the Reset section details for more information.



KL28Z Reference Manual, Rev. 4, 06/2016 976 **NXP Semiconductors** 



## PMC\_REGSC field descriptions

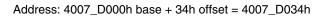
| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31–7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 6<br>VLPO        | <ul> <li>VLPx Option</li> <li>When used in conjunction with BGEN, this bit allows additional clock sources and higher frequency operation (at the cost of higher power) to be selected during VLPx modes.</li> <li>Operating frequencies and SCG clocking modes are restricted during VLPx modes as listed in the Power Management chapter.</li> <li>If BGEN is also set, operating frequencies and SCG clocking modes are unrestricted during VLPx modes. Note that flash access frequency is still restricted however.</li> </ul>                                     |  |  |  |  |  |
| 5<br>Reserved    | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 4<br>BGEN        | Bandgap Enable In VLPx Operation  BGEN controls whether the bandgap is enabled in lower power modes of operation (VLPx, LLS, and VLLSx). When on-chip peripherals require the bandgap voltage reference in low power modes of operation, set BGEN to continue to enable the bandgap operation.  NOTE: When the bandgap voltage reference is not needed in low power modes, clear BGEN to avoid excess power consumption.  0 Bandgap voltage reference is disabled in VLPx, LLS, and VLLSx modes.  1 Bandgap voltage reference is enabled in VLPx, LLS, and VLLSx modes. |  |  |  |  |  |
| 3<br>ACKISO      | Acknowledge Isolation  Reading this field indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in a VLLS mode. Writing 1 to this field when it is set releases the I/O pads and certain peripherals to their normal run mode state.  NOTE: After recovering from a VLLS mode, user should restore chip configuration before clearing ACKISO. In particular, pin configuration for enabled LLWU wakeup pins should be restored to avoid any LLWU flag from being falsely set when ACKISO is cleared.                 |  |  |  |  |  |

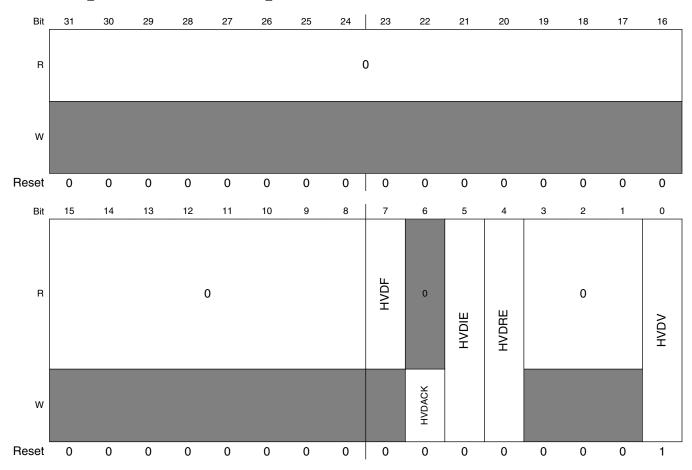
Table continues on the next page...

#### PMC\_REGSC field descriptions (continued)

| Field       | Description                                                                         |
|-------------|-------------------------------------------------------------------------------------|
|             | 0 Peripherals and I/O pads are in normal run state.                                 |
|             | 1 Certain peripherals and I/O pads are in an isolated and latched state.            |
| 2<br>REGONS | Regulator In Run Regulation Status                                                  |
|             | This read-only field provides the current status of the internal voltage regulator. |
|             | 0 Regulator is in stop regulation or in transition to/from it                       |
|             | 1 Regulator is in run regulation                                                    |
| 1           | This field is reserved.                                                             |
| Reserved    | NOTE: This reserved bit must remain cleared (set to 0).                             |
| 0<br>BGBE   | Bandgap Buffer Enable                                                               |
|             | Enables the bandgap buffer.                                                         |
|             | 0 Bandgap buffer not enabled                                                        |
|             | 1 Bandgap buffer enabled                                                            |

## 37.6.6 High Voltage Detect Status And Control 1 register (PMC\_HVDSC1)


This register contains status and control bits to support the high voltage detect function. This register should be written during the reset initialization program to set the desired controls even if the desired settings are the same as the reset settings.


While the device is in the very low power or low leakage modes, the HVD system is disabled regardless of HVDSC1 settings. To protect systems that must have HVD always on, configure the Power Mode Protection (PMPROT) register of the SMC module (SMC\_PMPROT) to disallow any very low power or low leakage modes from being enabled.

See the device's data sheet for the exact HVD trip voltages.

#### NOTE

This register is reset solely on a POR Only event. For more information about these reset types, refer to the Reset section details.





## PMC\_HVDSC1 field descriptions

| Field       | Description                                                                                                               |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31–8        | This field is reserved.                                                                                                   |  |  |  |  |  |
| Reserved    | This read-only field is reserved and always has the value 0.                                                              |  |  |  |  |  |
| 7<br>HVDF   | High-Voltage Detect Flag                                                                                                  |  |  |  |  |  |
|             | This read-only status field indicates a high-voltage detect event.                                                        |  |  |  |  |  |
|             | 0 High-voltage event not detected                                                                                         |  |  |  |  |  |
|             | 1 High-voltage event detected                                                                                             |  |  |  |  |  |
| 6<br>HVDACK | High-Voltage Detect Acknowledge                                                                                           |  |  |  |  |  |
|             | This write-only field is used to acknowledge high voltage detection errors. Write 1 to clear HVDF. Reads always return 0. |  |  |  |  |  |
| 5<br>HVDIE  | High-Voltage Detect Interrupt Enable                                                                                      |  |  |  |  |  |
|             | Enables hardware interrupt requests for HVDF.                                                                             |  |  |  |  |  |
|             | 0 Hardware interrupt disabled (use polling)                                                                               |  |  |  |  |  |
|             | 1 Request a hardware interrupt when HVDF = 1                                                                              |  |  |  |  |  |
| 4<br>HVDRE  | High-Voltage Detect Reset Enable                                                                                          |  |  |  |  |  |

Table continues on the next page...

#### Memory map and register descriptions

## PMC\_HVDSC1 field descriptions (continued)

| Field           | Description                                                                                                                    |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                 | This write-once bit enables HVDF events to generate a hardware reset. Additional writes are ignored until the next chip reset. |  |  |  |  |  |
|                 | 0 HVDF does not generate hardware resets                                                                                       |  |  |  |  |  |
|                 | 1 Force an MCU reset when HVDF = 1                                                                                             |  |  |  |  |  |
| 3–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                           |  |  |  |  |  |
| 0<br>HVDV       | High-Voltage Detect Voltage Select                                                                                             |  |  |  |  |  |
|                 | Selects the HVD trip point voltage (V <sub>HVD</sub> ).                                                                        |  |  |  |  |  |
|                 | 0 Low trip point selected (V <sub>HVD</sub> = V <sub>HVDL</sub> )                                                              |  |  |  |  |  |
|                 | 1 High trip point selected (V <sub>HVD</sub> = V <sub>HVDH</sub> )                                                             |  |  |  |  |  |

# **Chapter 38 Port Control and Interrupts (PORT)**

#### 38.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

#### 38.2 Overview

The Port Control and Interrupt (PORT) module provides support for port control, digital filtering, and external interrupt functions.

Most functions can be configured independently for each pin in the 32-bit port and affect the pin regardless of its pin muxing state.

There is one instance of the PORT module for each port. Not all pins within each port are implemented on a specific device.

## **38.2.1** Features

The PORT module has the following features:

- Pin interrupt
  - Interrupt flag and enable registers for each pin
  - Support for edge sensitive (rising, falling, both) or level sensitive (low, high) configured per pin
  - Support for interrupt or DMA request configured per pin
  - Asynchronous wake-up in low-power modes
  - Pin interrupt is functional in all digital pin muxing modes
  - Peripheral trigger output (active high, low) configured per pin
- Digital input filter on selected pins

#### Overview

- Digital input filter for each pin, usable by any digital peripheral muxed onto the pin
- Individual enable or bypass control field per pin
- Selectable clock source for digital input filter with a five bit resolution on filter size
- Functional in all digital pin multiplexing modes
- Port control
  - Individual pull control fields with pullup, pulldown, and pull-disable support on selected pins
  - Individual drive strength field supporting high and low drive strength on selected pins
  - Individual slew rate field supporting fast and slow slew rates on selected pins
  - Individual input passive filter field supporting enable and disable of the individual input passive filter on selected pins
  - Individual open drain field supporting enable and disable of the individual open drain output on selected pins
  - Individual mux control field supporting analog or pin disabled, GPIO, and up to six chip-specific digital functions
  - Pad configuration fields are functional in all digital pin muxing modes.

## 38.2.2 Modes of operation

#### 38.2.2.1 Run mode

In Run mode, the PORT operates normally.

#### 38.2.2.2 Wait mode

In Wait mode, PORT continues to operate normally and may be configured to exit the Low-Power mode if an enabled interrupt is detected. DMA requests are still generated during the Wait mode, but do not cause an exit from the Low-Power mode.

## 38.2.2.3 Stop mode

In Stop mode, the PORT can be configured to exit the Low-Power mode via an asynchronous wake-up signal if an enabled interrupt is detected.

983

In Stop mode, the digital input filters are bypassed unless they are configured to run from the LPO clock source.

## **38.2.2.4** Debug mode

In Debug mode, PORT operates normally.

## 38.3 External signal description

The table found here describes the PORT external signal.

Table 38-1. Signal properties

| Name        | Name Function      |     | Reset | Pull |
|-------------|--------------------|-----|-------|------|
| PORTx[31:0] | External interrupt | I/O | 0     | -    |

#### NOTE

Not all pins within each port are implemented on each device.

## 38.4 Detailed signal description

The table found here contains the detailed signal description for the PORT interface.

Table 38-2. PORT interface—detailed signal description

| Signal      | I/O |                     | Description                                                                        |  |  |  |
|-------------|-----|---------------------|------------------------------------------------------------------------------------|--|--|--|
| PORTx[31:0] | I/O | External interrupt. |                                                                                    |  |  |  |
|             |     | State meaning       | Asserted—pin is logic 1.                                                           |  |  |  |
|             |     |                     | Negated—pin is logic 0.                                                            |  |  |  |
|             |     | Timing              | Assertion—may occur at any time and can assert asynchronously to the system clock. |  |  |  |
|             |     |                     | Negation—may occur at any time and can assert asynchronously to the system clock.  |  |  |  |

## 38.5 Memory map and register definition

Any read or write access to the PORT memory space that is outside the valid memory map results in a bus error. All register accesses complete with zero wait states.

#### Memory map and register definition

## **PORT** memory map

| Absolute<br>address<br>(hex) | Register name                                  | Width (in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------|-----------------|--------------------------|-------------|------------------|
| 4005_A000                    | Pin Control Register n (PORTA_PCR0)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A004                    | Pin Control Register n (PORTA_PCR1)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A008                    | Pin Control Register n (PORTA_PCR2)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A00C                    | Pin Control Register n (PORTA_PCR3)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A010                    | Pin Control Register n (PORTA_PCR4)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A014                    | Pin Control Register n (PORTA_PCR5)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A018                    | Pin Control Register n (PORTA_PCR6)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A01C                    | Pin Control Register n (PORTA_PCR7)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A020                    | Pin Control Register n (PORTA_PCR8)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A024                    | Pin Control Register n (PORTA_PCR9)            | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A028                    | Pin Control Register n (PORTA_PCR10)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A02C                    | Pin Control Register n (PORTA_PCR11)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A030                    | Pin Control Register n (PORTA_PCR12)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A034                    | Pin Control Register n (PORTA_PCR13)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A038                    | Pin Control Register n (PORTA_PCR14)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A03C                    | Pin Control Register n (PORTA_PCR15)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A040                    | Pin Control Register n (PORTA_PCR16)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A044                    | Pin Control Register n (PORTA_PCR17)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A048                    | Pin Control Register n (PORTA_PCR18)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A04C                    | Pin Control Register n (PORTA_PCR19)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A050                    | Pin Control Register n (PORTA_PCR20)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A054                    | Pin Control Register n (PORTA_PCR21)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A058                    | Pin Control Register n (PORTA_PCR22)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A05C                    | Pin Control Register n (PORTA_PCR23)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A060                    | Pin Control Register n (PORTA_PCR24)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A064                    | Pin Control Register n (PORTA_PCR25)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A068                    | Pin Control Register n (PORTA_PCR26)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A06C                    | Pin Control Register n (PORTA_PCR27)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A070                    | Pin Control Register n (PORTA_PCR28)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A074                    | Pin Control Register n (PORTA_PCR29)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A078                    | Pin Control Register n (PORTA_PCR30)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A07C                    | Pin Control Register n (PORTA_PCR31)           | 32              | R/W                      | See section | 38.5.1/990       |
| 4005_A080                    | Global Pin Control Low Register (PORTA_GPCLR)  | 32              | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.2/993       |
| 4005_A084                    | Global Pin Control High Register (PORTA_GPCHR) | 32              | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.3/993       |

Table continues on the next page...

## PORT memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4005_A088                    | Global Interrupt Control Low Register (PORTA_GICLR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.4/994       |
| 4005_A08C                    | Global Interrupt Control High Register (PORTA_GICHR) |                    | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.5/994       |
| 4005_A0A0                    | Interrupt Status Flag Register (PORTA_ISFR)          | 32                 | w1c                      | 0000_0000h  | 38.5.6/995       |
| 4005_A0C0                    | Digital Filter Enable Register (PORTA_DFER)          | 32                 | R/W                      | 0000_0000h  | 38.5.7/995       |
| 4005_A0C4                    | Digital Filter Clock Register (PORTA_DFCR)           | 32                 | R/W                      | 0000_0000h  | 38.5.8/996       |
| 4005_A0C8                    | Digital Filter Width Register (PORTA_DFWR)           | 32                 | R/W                      | 0000_0000h  | 38.5.9/997       |
| 4005_B000                    | Pin Control Register n (PORTB_PCR0)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B004                    | Pin Control Register n (PORTB_PCR1)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B008                    | Pin Control Register n (PORTB_PCR2)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B00C                    | Pin Control Register n (PORTB_PCR3)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B010                    | Pin Control Register n (PORTB_PCR4)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B014                    | Pin Control Register n (PORTB_PCR5)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B018                    | Pin Control Register n (PORTB_PCR6)                  |                    | R/W                      | See section | 38.5.1/990       |
| 4005_B01C                    | Pin Control Register n (PORTB_PCR7)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B020                    | Pin Control Register n (PORTB_PCR8)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B024                    | Pin Control Register n (PORTB_PCR9)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B028                    | Pin Control Register n (PORTB_PCR10)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B02C                    | Pin Control Register n (PORTB_PCR11)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B030                    | Pin Control Register n (PORTB_PCR12)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B034                    | Pin Control Register n (PORTB_PCR13)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B038                    | Pin Control Register n (PORTB_PCR14)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B03C                    | Pin Control Register n (PORTB_PCR15)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B040                    | Pin Control Register n (PORTB_PCR16)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B044                    | Pin Control Register n (PORTB_PCR17)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B048                    | Pin Control Register n (PORTB_PCR18)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B04C                    | Pin Control Register n (PORTB_PCR19)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B050                    | Pin Control Register n (PORTB_PCR20)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B054                    | Pin Control Register n (PORTB_PCR21)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B058                    | Pin Control Register n (PORTB_PCR22)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B05C                    | Pin Control Register n (PORTB_PCR23)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B060                    | Pin Control Register n (PORTB_PCR24)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B064                    | Pin Control Register n (PORTB_PCR25)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B068                    | Pin Control Register n (PORTB_PCR26)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B06C                    | Pin Control Register n (PORTB_PCR27)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B070                    | Pin Control Register n (PORTB_PCR28)                 | 32                 | R/W                      | See section | 38.5.1/990       |

Table continues on the next page...

#### Memory map and register definition

## PORT memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4005_B074                    | Pin Control Register n (PORTB_PCR29)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B078                    | Pin Control Register n (PORTB_PCR30)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B07C                    | Pin Control Register n (PORTB_PCR31)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_B080                    | Global Pin Control Low Register (PORTB_GPCLR)        | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.2/993       |
| 4005_B084                    | Global Pin Control High Register (PORTB_GPCHR)       | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.3/993       |
| 4005_B088                    | Global Interrupt Control Low Register (PORTB_GICLR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.4/994       |
| 4005_B08C                    | Global Interrupt Control High Register (PORTB_GICHR) | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.5/994       |
| 4005_B0A0                    | Interrupt Status Flag Register (PORTB_ISFR)          | 32                 | w1c                      | 0000_0000h  | 38.5.6/995       |
| 4005_B0C0                    | Digital Filter Enable Register (PORTB_DFER)          | 32                 | R/W                      | 0000_0000h  | 38.5.7/995       |
| 4005_B0C4                    | Digital Filter Clock Register (PORTB_DFCR)           | 32                 | R/W                      | 0000_0000h  | 38.5.8/996       |
| 4005_B0C8                    | Digital Filter Width Register (PORTB_DFWR)           | 32                 | R/W                      | 0000_0000h  | 38.5.9/997       |
| 4005_C000                    | Pin Control Register n (PORTC_PCR0)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C004                    | Pin Control Register n (PORTC_PCR1)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C008                    | Pin Control Register n (PORTC_PCR2)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C00C                    | Pin Control Register n (PORTC_PCR3)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C010                    | Pin Control Register n (PORTC_PCR4)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C014                    | Pin Control Register n (PORTC_PCR5)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C018                    | Pin Control Register n (PORTC_PCR6)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C01C                    | Pin Control Register n (PORTC_PCR7)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C020                    | Pin Control Register n (PORTC_PCR8)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C024                    | Pin Control Register n (PORTC_PCR9)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C028                    | Pin Control Register n (PORTC_PCR10)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C02C                    | Pin Control Register n (PORTC_PCR11)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C030                    | Pin Control Register n (PORTC_PCR12)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C034                    | Pin Control Register n (PORTC_PCR13)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C038                    | Pin Control Register n (PORTC_PCR14)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C03C                    | Pin Control Register n (PORTC_PCR15)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C040                    | Pin Control Register n (PORTC_PCR16)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C044                    | Pin Control Register n (PORTC_PCR17)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C048                    | Pin Control Register n (PORTC_PCR18)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C04C                    | Pin Control Register n (PORTC_PCR19)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C050                    | Pin Control Register n (PORTC_PCR20)                 | 32                 | R/W                      | See section | 38.5.1/990       |

Table continues on the next page...

## PORT memory map (continued)

| Absolute address (hex) | Register name                                        | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------|------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4005_C054              | Pin Control Register n (PORTC_PCR21)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C058              | Pin Control Register n (PORTC_PCR22)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C05C              | Pin Control Register n (PORTC_PCR23)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C060              | Pin Control Register n (PORTC_PCR24)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C064              | Pin Control Register n (PORTC_PCR25)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C068              | Pin Control Register n (PORTC_PCR26)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C06C              | Pin Control Register n (PORTC_PCR27)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C070              | Pin Control Register n (PORTC_PCR28)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C074              | Pin Control Register n (PORTC_PCR29)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C078              | Pin Control Register n (PORTC_PCR30)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C07C              | Pin Control Register n (PORTC_PCR31)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_C080              | Global Pin Control Low Register (PORTC_GPCLR)        | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.2/993       |
| 4005_C084              | Global Pin Control High Register (PORTC_GPCHR)       | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.3/993       |
| 4005_C088              | Global Interrupt Control Low Register (PORTC_GICLR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.4/994       |
| 4005_C08C              | Global Interrupt Control High Register (PORTC_GICHR) | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.5/994       |
| 4005_C0A0              | Interrupt Status Flag Register (PORTC_ISFR)          | 32                 | w1c                      | 0000_0000h  | 38.5.6/995       |
| 4005_C0C0              | Digital Filter Enable Register (PORTC_DFER)          | 32                 | R/W                      | 0000_0000h  | 38.5.7/995       |
| 4005_C0C4              | Digital Filter Clock Register (PORTC_DFCR)           | 32                 | R/W                      | 0000_0000h  | 38.5.8/996       |
| 4005_C0C8              | Digital Filter Width Register (PORTC_DFWR)           | 32                 | R/W                      | 0000_0000h  | 38.5.9/997       |
| 4005_D000              | Pin Control Register n (PORTD_PCR0)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D004              | Pin Control Register n (PORTD_PCR1)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D008              | Pin Control Register n (PORTD_PCR2)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D00C              | Pin Control Register n (PORTD_PCR3)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D010              | Pin Control Register n (PORTD_PCR4)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D014              | Pin Control Register n (PORTD_PCR5)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D018              | Pin Control Register n (PORTD_PCR6)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D01C              | Pin Control Register n (PORTD_PCR7)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D020              | Pin Control Register n (PORTD_PCR8)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D024              | Pin Control Register n (PORTD_PCR9)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D028              | Pin Control Register n (PORTD_PCR10)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D02C              | Pin Control Register n (PORTD_PCR11)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D030              | Pin Control Register n (PORTD_PCR12)                 | 32                 | R/W                      | See section | 38.5.1/990       |

Table continues on the next page...

#### Memory map and register definition

## PORT memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4005_D034                    | Pin Control Register n (PORTD_PCR13)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D038                    | Pin Control Register n (PORTD_PCR14)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D03C                    | Pin Control Register n (PORTD_PCR15)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D040                    | Pin Control Register n (PORTD_PCR16)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D044                    | Pin Control Register n (PORTD_PCR17)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D048                    | Pin Control Register n (PORTD_PCR18)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D04C                    | Pin Control Register n (PORTD_PCR19)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D050                    | Pin Control Register n (PORTD_PCR20)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D054                    | Pin Control Register n (PORTD_PCR21)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D058                    | Pin Control Register n (PORTD_PCR22)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D05C                    | Pin Control Register n (PORTD_PCR23)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D060                    | Pin Control Register n (PORTD_PCR24)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D064                    | Pin Control Register n (PORTD_PCR25)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D068                    | Pin Control Register n (PORTD_PCR26)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D06C                    | Pin Control Register n (PORTD_PCR27)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D070                    | Pin Control Register n (PORTD_PCR28)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D074                    | Pin Control Register n (PORTD_PCR29)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D078                    | Pin Control Register n (PORTD_PCR30)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D07C                    | Pin Control Register n (PORTD_PCR31)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_D080                    | Global Pin Control Low Register (PORTD_GPCLR)        | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.2/993       |
| 4005_D084                    | Global Pin Control High Register (PORTD_GPCHR)       | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.3/993       |
| 4005_D088                    | Global Interrupt Control Low Register (PORTD_GICLR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.4/994       |
| 4005_D08C                    | Global Interrupt Control High Register (PORTD_GICHR) | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.5/994       |
| 4005_D0A0                    | Interrupt Status Flag Register (PORTD_ISFR)          | 32                 | w1c                      | 0000_0000h  | 38.5.6/995       |
| 4005_D0C0                    | Digital Filter Enable Register (PORTD_DFER)          | 32                 | R/W                      | 0000_0000h  | 38.5.7/995       |
| 4005_D0C4                    | Digital Filter Clock Register (PORTD_DFCR)           | 32                 | R/W                      | 0000_0000h  | 38.5.8/996       |
| 4005_D0C8                    | Digital Filter Width Register (PORTD_DFWR)           | 32                 | R/W                      | 0000_0000h  | 38.5.9/997       |
| 4005_E000                    | Pin Control Register n (PORTE_PCR0)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E004                    | Pin Control Register n (PORTE_PCR1)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E008                    | Pin Control Register n (PORTE_PCR2)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E00C                    | Pin Control Register n (PORTE_PCR3)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E010                    | Pin Control Register n (PORTE_PCR4)                  | 32                 | R/W                      | See section | 38.5.1/990       |

Table continues on the next page...

## PORT memory map (continued)

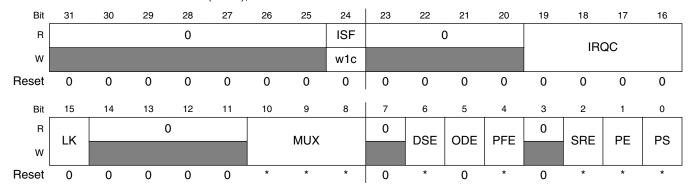
| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4005_E014                    | Pin Control Register n (PORTE_PCR5)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E018                    | Pin Control Register n (PORTE_PCR6)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E01C                    | Pin Control Register n (PORTE_PCR7)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E020                    | Pin Control Register n (PORTE_PCR8)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E024                    | Pin Control Register n (PORTE_PCR9)                  | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E028                    | Pin Control Register n (PORTE_PCR10)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E02C                    | Pin Control Register n (PORTE_PCR11)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E030                    | Pin Control Register n (PORTE_PCR12)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E034                    | Pin Control Register n (PORTE_PCR13)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E038                    | Pin Control Register n (PORTE_PCR14)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E03C                    | Pin Control Register n (PORTE_PCR15)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E040                    | Pin Control Register n (PORTE_PCR16)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E044                    | Pin Control Register n (PORTE_PCR17)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E048                    | Pin Control Register n (PORTE_PCR18)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E04C                    | Pin Control Register n (PORTE_PCR19)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E050                    | Pin Control Register n (PORTE_PCR20)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E054                    | Pin Control Register n (PORTE_PCR21)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E058                    | Pin Control Register n (PORTE_PCR22)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E05C                    | Pin Control Register n (PORTE_PCR23)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E060                    | Pin Control Register n (PORTE_PCR24)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E064                    | Pin Control Register n (PORTE_PCR25)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E068                    | Pin Control Register n (PORTE_PCR26)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E06C                    | Pin Control Register n (PORTE_PCR27)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E070                    | Pin Control Register n (PORTE_PCR28)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E074                    | Pin Control Register n (PORTE_PCR29)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E078                    | Pin Control Register n (PORTE_PCR30)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E07C                    | Pin Control Register n (PORTE_PCR31)                 | 32                 | R/W                      | See section | 38.5.1/990       |
| 4005_E080                    | Global Pin Control Low Register (PORTE_GPCLR)        | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.2/993       |
| 4005_E084                    | Global Pin Control High Register (PORTE_GPCHR)       | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.3/993       |
| 4005_E088                    | Global Interrupt Control Low Register (PORTE_GICLR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.4/994       |
| 4005_E08C                    | Global Interrupt Control High Register (PORTE_GICHR) | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 38.5.5/994       |
| 4005_E0A0                    | Interrupt Status Flag Register (PORTE_ISFR)          | 32                 | w1c                      | 0000_0000h  | 38.5.6/995       |

Table continues on the next page...

#### **PORT memory map (continued)**

| Absolute<br>address<br>(hex) | Register name                               | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------|--------------------|--------|-------------|------------------|
| 4005_E0C0                    | Digital Filter Enable Register (PORTE_DFER) | 32                 | R/W    | 0000_0000h  | 38.5.7/995       |
| 4005_E0C4                    | Digital Filter Clock Register (PORTE_DFCR)  | 32                 | R/W    | 0000_0000h  | 38.5.8/996       |
| 4005_E0C8                    | Digital Filter Width Register (PORTE_DFWR)  | 32                 | R/W    | 0000_0000h  | 38.5.9/997       |

## 38.5.1 Pin Control Register n (PORTx\_PCRn)


#### NOTE

See the Signal Multiplexing and Pin Assignment chapter for the reset value of this device.

See the GPIO Configuration section for details on the available functions for each pin.

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

Address: Base address + 0h offset +  $(4d \times i)$ , where i=0d to 31d



<sup>\*</sup> Notes:

- MUX field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · DSE field: Varies by port. See the Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- PFE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- SRE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · PE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- · PS field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.

## PORTx\_PCRn field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–25<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                        |
| 24                | Interrupt Status Flag                                                                                                                                                                                                                                                                                                                                                                                                       |
| ISF               | The pin interrupt configuration is valid in all digital pin muxing modes.                                                                                                                                                                                                                                                                                                                                                   |
|                   | 0 Configured interrupt is not detected.                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared. |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                        |
| 19–16             | Interrupt Configuration                                                                                                                                                                                                                                                                                                                                                                                                     |
| IRQC              | The pin interrupt configuration is valid in all digital pin muxing modes. The corresponding pin is configured to generate interrupt/DMA request as follows:                                                                                                                                                                                                                                                                 |
|                   | 0000 Interrupt Status Flag (ISF) is disabled.                                                                                                                                                                                                                                                                                                                                                                               |
|                   | 0001 ISF flag and DMA request on rising edge.                                                                                                                                                                                                                                                                                                                                                                               |
|                   | 0010 ISF flag and DMA request on falling edge.                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0011 ISF flag and DMA request on either edge.                                                                                                                                                                                                                                                                                                                                                                               |
|                   | 0100 Reserved.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0101 Flag sets on rising edge.                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 0110 Flag sets on falling edge.                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 0111 Flag sets on either edge.                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | <ul><li>1000 ISF flag and Interrupt when logic 0.</li><li>1001 ISF flag and Interrupt on rising-edge.</li></ul>                                                                                                                                                                                                                                                                                                             |
|                   | 1010 ISF flag and Interrupt on hising-edge.                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 1011 ISF flag and Interrupt on railing-edge.                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 1100 ISF flag and Interrupt when logic 1.                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Enable active high trigger output, flag is disabled. [The trigger output goes to the trigger mux, which allows pins to trigger other peripherals (configurable polarity; 1 pin per port; if multiple pins                                                                                                                                                                                                                   |
|                   | are configured, then they are ORed together to create the trigger)]                                                                                                                                                                                                                                                                                                                                                         |
|                   | 1110 Enable active low trigger output, flag is disabled.                                                                                                                                                                                                                                                                                                                                                                    |
|                   | 1111 Reserved.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15<br>LK          | Lock Register                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | O Pin Control Register fields [15:0] are not locked.  Pin Control Register fields [15:0] are locked and cannot be updated until the next system reset.                                                                                                                                                                                                                                                                      |
| 14–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                        |
| 10–8              | Pin Mux Control                                                                                                                                                                                                                                                                                                                                                                                                             |
| MUX               | Not all pins support all pin muxing slots. Unimplemented pin muxing slots are reserved and may result in configuring the pin for a different pin muxing slot.                                                                                                                                                                                                                                                               |
|                   | The corresponding pin is configured in the following pin muxing slot as follows:                                                                                                                                                                                                                                                                                                                                            |
|                   | 000 Pin disabled (Alternative 0) (analog).                                                                                                                                                                                                                                                                                                                                                                                  |

Table continues on the next page...

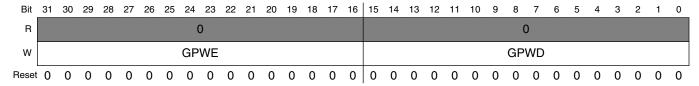
KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definition

## PORTx\_PCRn field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 001 Alternative 1 (GPIO).                                                                                                                                                                                                                                 |
|               | 010 Alternative 2 (chip-specific).                                                                                                                                                                                                                        |
|               | 011 Alternative 3 (chip-specific).                                                                                                                                                                                                                        |
|               | <ul><li>100 Alternative 4 (chip-specific).</li><li>101 Alternative 5 (chip-specific).</li></ul>                                                                                                                                                           |
|               | 110 Alternative 6 (chip-specific).                                                                                                                                                                                                                        |
|               | 111 Alternative 7 (chip-specific).                                                                                                                                                                                                                        |
| 7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                      |
| 6             | Drive Strength Enable                                                                                                                                                                                                                                     |
| DSE           | This field is read-only for pins that do not support a configurable drive strength.                                                                                                                                                                       |
|               | Drive strength configuration is valid in all digital pin muxing modes.                                                                                                                                                                                    |
|               | <ul> <li>Low drive strength is configured on the corresponding pin, if pin is configured as a digital output.</li> <li>High drive strength is configured on the corresponding pin, if pin is configured as a digital output.</li> </ul>                   |
| 5             | Open Drain Enable                                                                                                                                                                                                                                         |
| ODE           | This field is read-only for pins that do not support a configurable open drain output.                                                                                                                                                                    |
|               | Open drain configuration is valid in all digital pin muxing modes.                                                                                                                                                                                        |
|               | <ul> <li>Open drain output is disabled on the corresponding pin.</li> <li>Open drain output is enabled on the corresponding pin, if the pin is configured as a digital output.</li> </ul>                                                                 |
| 4             | Passive Filter Enable                                                                                                                                                                                                                                     |
| PFE           | This field is read-only for pins that do not support a configurable passive input filter.                                                                                                                                                                 |
|               | Passive filter configuration is valid in all digital pin muxing modes.                                                                                                                                                                                    |
|               | <ul> <li>Passive input filter is disabled on the corresponding pin.</li> <li>Passive input filter is enabled on the corresponding pin, if the pin is configured as a digital input. Refer to the device data sheet for filter characteristics.</li> </ul> |
| 3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                      |
| 2             | Slew Rate Enable                                                                                                                                                                                                                                          |
| SRE           | This field is read-only for pins that do not support a configurable slew rate.                                                                                                                                                                            |
|               | Slew rate configuration is valid in all digital pin muxing modes.                                                                                                                                                                                         |
|               | <ul> <li>Fast slew rate is configured on the corresponding pin, if the pin is configured as a digital output.</li> <li>Slow slew rate is configured on the corresponding pin, if the pin is configured as a digital output.</li> </ul>                    |
| 1             | Pull Enable                                                                                                                                                                                                                                               |
| PE            | This field is read-only for pins that do not support a configurable pull resistor. Refer to the Chapter of Signal Multiplexing and Signal Descriptions for the pins that support a configurable pull resistor.                                            |
|               | Pull configuration is valid in all digital pin muxing modes.                                                                                                                                                                                              |
|               | 0 Internal pullup or pulldown resistor is not enabled on the corresponding pin.                                                                                                                                                                           |
|               | 1 Internal pullup or pulldown resistor is enabled on the corresponding pin, if the pin is configured as a digital input.                                                                                                                                  |

Table continues on the next page...


#### PORTx\_PCRn field descriptions (continued)

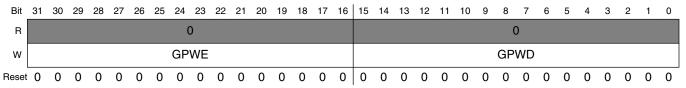
| Field   | Description                                                                                                                                                                                                                            |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>PS | Pull Select                                                                                                                                                                                                                            |
|         | This bit is read only for pins that do not support a configurable pull resistor direction.  Pull configuration is valid in all digital pin muxing modes.                                                                               |
|         | <ul> <li>Internal pulldown resistor is enabled on the corresponding pin, if the corresponding PE field is set.</li> <li>Internal pullup resistor is enabled on the corresponding pin, if the corresponding PE field is set.</li> </ul> |

## 38.5.2 Global Pin Control Low Register (PORTx\_GPCLR)

Only 32-bit writes are supported to this register.

Address: Base address + 80h offset




#### PORTx\_GPCLR field descriptions

| Field         | Description                                                                                                                                                                            |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>GPWE | Global Pin Write Enable                                                                                                                                                                |
|               | Selects which Pin Control Registers (15 through 0) bits [15:0] update with the value in GPWD. If a selected Pin Control Register is locked then the write to that register is ignored. |
|               | 0 Corresponding Pin Control Register is not updated with the value in GPWD.                                                                                                            |
|               | 1 Corresponding Pin Control Register is updated with the value in GPWD.                                                                                                                |
| GPWD          | Global Pin Write Data                                                                                                                                                                  |
|               | Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.                                                                                        |

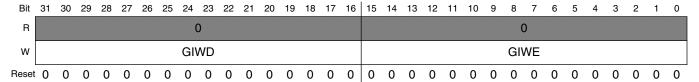
## 38.5.3 Global Pin Control High Register (PORTx\_GPCHR)

Only 32-bit writes are supported to this register.

Address: Base address + 84h offset



KL28Z Reference Manual, Rev. 4, 06/2016


## PORTx\_GPCHR field descriptions

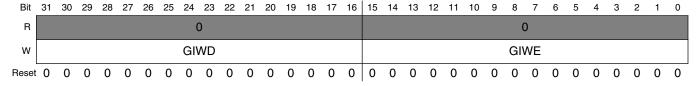
| Field         | Description                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>GPWE | Global Pin Write Enable                                                                                                                                                                 |
|               | Selects which Pin Control Registers (31 through 16) bits [15:0] update with the value in GPWD. If a selected Pin Control Register is locked then the write to that register is ignored. |
|               | 0 Corresponding Pin Control Register is not updated with the value in GPWD.                                                                                                             |
|               | 1 Corresponding Pin Control Register is updated with the value in GPWD.                                                                                                                 |
| GPWD          | Global Pin Write Data                                                                                                                                                                   |
|               | Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.                                                                                         |

## 38.5.4 Global Interrupt Control Low Register (PORTx\_GICLR)

Only 32-bit writes are supported to this register.

Address: Base address + 88h offset




#### PORTx\_GICLR field descriptions

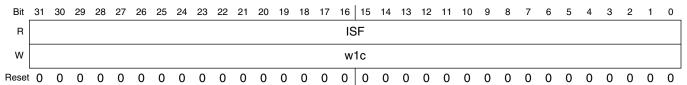
| Field         | Description                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------|
| 31–16<br>GIWD | Global Interrupt Write Data                                                                      |
|               | Write value that is written to all Pin Control Registers bits [31:16] that are selected by GIWE. |
| GIWE          | Global Interrupt Write Enable                                                                    |
|               | Selects which Pin Control Registers (15 through 0) bits [31:16] update with the value in GIWD.   |
|               | 0 Corresponding Pin Control Register is not updated with the value in GPWD.                      |
|               | 1 Corresponding Pin Control Register is updated with the value in GPWD.                          |

## 38.5.5 Global Interrupt Control High Register (PORTx\_GICHR)

Only 32-bit writes are supported to this register.

Address: Base address + 8Ch offset





#### PORTx\_GICHR field descriptions

| Field         | Description                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------|
| 31–16<br>GIWD | Global Interrupt Write Data                                                                      |
|               | Write value that is written to all Pin Control Registers bits [31:16] that are selected by GIWE. |
| GIWE          | Global Interrupt Write Enable                                                                    |
|               | Selects which Pin Control Registers (31 through 16) bits [31:16] update with the value in GIWD.  |
|               | 0 Corresponding Pin Control Register is not updated with the value in GPWD.                      |
|               | 1 Corresponding Pin Control Register is updated with the value in GPWD.                          |

#### Interrupt Status Flag Register (PORTx\_ISFR) 38.5.6

The pin interrupt configuration is valid in all digital pin muxing modes. The Interrupt Status Flag for each pin is also visible in the corresponding Pin Control Register, and each flag can be cleared in either location.

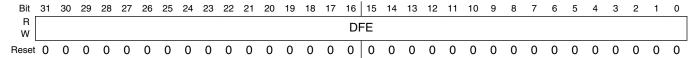




#### **PORTX ISFR field descriptions**

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISF   | Interrupt Status Flag                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Each bit in the field indicates the detection of the configured interrupt of the same number as the field.                                                                                                                                                                                                                                                                                                                    |
|       | 0 Configured interrupt is not detected.                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 1 Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared. |

#### Digital Filter Enable Register (PORTx DFER) 38.5.7


The corresponding bit is read only for pins that do not support a digital filter. Refer to the Chapter of Signal Multiplexing and Signal Descriptions for the pins that support digital filter.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 995

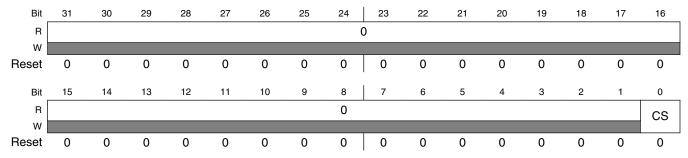
#### Memory map and register definition

The digital filter configuration is valid in all digital pin muxing modes.

Address: Base address + C0h offset



#### PORTx\_DFER field descriptions


| Field | Description                                                                                                                                                                                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DFE   | Digital Filter Enable                                                                                                                                                                                                                                                        |
|       | The digital filter configuration is valid in all digital pin muxing modes. The output of each digital filter is reset to zero at system reset and whenever the digital filter is disabled. Each bit in the field enables the digital filter of the same number as the field. |
|       | <ul> <li>Digital filter is disabled on the corresponding pin and output of the digital filter is reset to zero.</li> <li>Digital filter is enabled on the corresponding pin, if the pin is configured as a digital input.</li> </ul>                                         |

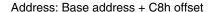
## 38.5.8 Digital Filter Clock Register (PORTx\_DFCR)

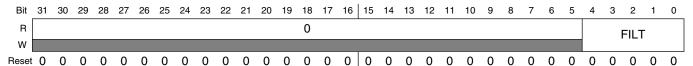
This register is read only for ports that do not support a digital filter.

The digital filter configuration is valid in all digital pin muxing modes.

Address: Base address + C4h offset




#### PORTx\_DFCR field descriptions


| Field            | Description                                                                                                                                                                                                                                                                                                                                 |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                        |
| 0<br>CS          | Clock Source  The digital filter configuration is valid in all digital pin muxing modes. Configures the clock source for the digital input filters. Changing the filter clock source must be done only when all digital filters are disabled.  Digital filters are clocked by the bus clock.  Digital filters are clocked by the LPO clock. |

## 38.5.9 Digital Filter Width Register (PORTx\_DFWR)

This register is read only for ports that do not support a digital filter.

The digital filter configuration is valid in all digital pin muxing modes.





#### PORTx\_DFWR field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–5<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                            |
| FILT             | Filter Length  The digital filter configuration is valid in all digital pin muxing modes. Configures the maximum size of the glitches, in clock cycles, that the digital filter absorbs for the enabled digital filters. Glitches that are longer than this register setting will pass through the digital filter, and glitches that are equal to or less than this register setting are filtered. Changing the filter length must be done only after all filters are disabled. |

## 38.6 Functional description

## 38.6.1 Pin control

Each port pin has a corresponding Pin Control register, PORT\_PCRn, associated with it.

The upper half of the Pin Control register configures the pin's capability to either interrupt the CPU or request a DMA transfer, on a rising/falling edge or both edges as well as a logic level occurring on the port pin. It also includes a flag to indicate that an interrupt has occurred.

The lower half of the Pin Control register configures the following functions for each pin within the 32-bit port.

- Pullup or pulldown enable on selected pins
- Drive strength and slew rate configuration on selected pins
- Open drain enable on selected pins
- Passive input filter enable on selected pins
- Pin Muxing mode

#### **Functional description**

The functions apply across all digital pin muxing modes and individual peripherals do not override the configuration in the Pin Control register. For example, if an I<sup>2</sup>C function is enabled on a pin, that does not override the pullup or open drain configuration for that pin.

When the Pin Muxing mode is configured for analog or is disabled, all the digital functions on that pin are disabled. This includes the pullup and pulldown enables, output buffer enable, input buffer enable, and passive filter enable.

The LK bit (bit 15 of Pin Control Register PCRn) allows the configuration for each pin to be locked until the next system reset. When locked, writes to the lower half of that pin control register are ignored, although a bus error is not generated on an attempted write to a locked register.

The configuration of each Pin Control register is retained when the PORT module is disabled.

Whenever a pin is configured in any digital pin muxing mode, the input buffer for that pin is enabled allowing the pin state to be read via the corresponding GPIO Port Data Input Register (GPIO\_PDIR) or allowing a pin interrupt or DMA request to be generated. If a pin is ever floating when its input buffer is enabled, then this can cause an increase in power consumption and must be avoided. A pin can be floating due to an input pin that is not connected or an output pin that has tri-stated (output buffer is disabled).

Enabling the internal pull resistor (or implementing an external pull resistor) will ensure a pin does not float when its input buffer is enabled; note that the internal pull resistor is automatically disabled whenever the output buffer is enabled allowing the Pull Enable bit to remain set. Configuring the Pin Muxing mode to disabled or analog will disable the pin's input buffer and results in the lowest power consumption.

## 38.6.2 Global pin control

The two global pin control registers allow a single register write to update the lower half of the pin control register on up to 16 pins, all with the same value. Registers that are locked cannot be written using the global pin control registers.

The global pin control registers are designed to enable software to quickly configure multiple pins within the one port for the same peripheral function. However, the interrupt functions cannot be configured using the global pin control registers.

The global pin control registers are write-only registers, that always read as 0.

## 38.6.3 Global interrupt control

The two global interrupt control registers allow a single register write to update the upper half of the pin control register on up to 16 pins, all with the same value.

The global interrupt control registers are designed to enable software to quickly configure multiple pins within the one port for the same interrupt configuration. However, the pin control functions cannot be configured using the global interrupt control registers.

The global interrupt control registers are write-only registers and always read as 0.

## 38.6.4 External interrupts

The external interrupt capability of the PORT module is available in all digital pin muxing modes provided the PORT module is enabled.

Each pin can be individually configured for any of the following external interrupt modes:

- Interrupt disabled, default out of reset
- Rising edge flag (for software polling)
- Falling edge flag (for software polling)
- Rising and falling edge flag (for software polling)
- Active high level peripheral trigger (status flag disabled)
- Active low level peripheral trigger (status flag disabled)
- Active high level sensitive interrupt
- Active low level sensitive interrupt
- Rising edge sensitive interrupt
- Falling edge sensitive interrupt
- Rising and falling edge sensitive interrupt
- Rising edge sensitive DMA request
- Falling edge sensitive DMA request
- Rising and falling edge sensitive DMA request

The interrupt status flag is set when the configured edge or level is detected on the pin or at the output of the digital input filter, if the digital input digital filter is enabled. When not in Stop mode, the input is first synchronized to the bus clock to detect the configured level or edge transition.

The PORT module generates a single interrupt that asserts when the interrupt status flag is set for any enabled interrupt for that port. The interrupt negates after the interrupt status flags for all enabled interrupts have been cleared by writing a logic 1 to the ISF flag in either the PORT\_ISFR or PORT\_PCRn registers.

#### **Functional description**

The PORT module generates a single DMA request that asserts when the interrupt status flag is set for any enabled DMA request in that port. The DMA request negates after the DMA transfer is completed, because that clears the interrupt status flags for all enabled DMA requests.

During Stop mode, the interrupt status flag for any enabled interrupt is asynchronously set if the required level or edge is detected. This also generates an asynchronous wake-up signal to exit the Low-Power mode.

The PORT module generates a single peripheral trigger output that asserts if any pin configured for active high trigger is logic one, or any pin triggered for active low trigger is logic zero. The peripheral trigger output asynchronously updates from the value on the configured pins or at the output of the digital input filter, if the digital input digital filter is enabled.

## 38.6.5 Digital filter

The digital filter capabilities of the PORT module are available in all digital Pin Muxing modes if the PORT module is enabled.

The clock used for all digital filters within one port can be configured between the bus clock or the LPO clock. This selection must be changed only when all digital filters for that port are disabled. If the digital filters for a port are configured to use the bus clock, then the digital filters are bypassed for the duration of Stop mode. While the digital filters are bypassed, the output of each digital filter always equals the input pin, but the internal state of the digital filters remains static and does not update due to any change on the input pin.

The filter width in clock size is the same for all enabled digital filters within one port and must be changed only when all digital filters for that port are disabled.

The output of each digital filter is logic zero after system reset and whenever a digital filter is disabled. After a digital filter is enabled, the input is synchronized to the filter clock, either the bus clock or the LPO clock. If the synchronized input and the output of the digital filter remain different for a number of filter clock cycles equal to the filter width register configuration, then the output of the digital filter updates to equal the synchronized filter input.

The maximum latency through a digital filter equals three filter clock cycles plus the filter width configuration register.

# **Chapter 39 Reset Control Module (RCM)**

#### 39.1 Introduction

Information found here describes the registers of the Reset Control Module (RCM). The RCM implements many of the reset functions for the chip. See the chip's reset chapter for more information.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the RCM.

## 39.2 Reset memory map and register descriptions

The RCM Memory Map/Register Definition can be found here.

The Reset Control Module (RCM) registers provide reset status information and reset filter control.

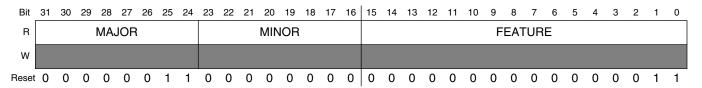
#### **NOTE**

The RCM registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

#### **RCM** memory map

| Absolute<br>address<br>(hex) | Register name                          | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------|--------------------|--------|-------------|------------------|
| 4007_F000                    | Version ID Register (RCM_VERID)        | 32                 | R      | 0300_0003h  | 39.2.1/1002      |
| 4007_F004                    | Parameter Register (RCM_PARAM)         | 32                 | R      | See section | 39.2.2/1003      |
| 4007_F008                    | System Reset Status Register (RCM_SRS) | 32                 | R      | 0000_0082h  | 39.2.3/1005      |
| 4007_F00C                    | Reset Pin Control register (RCM_RPC)   | 32                 | R/W    | 0000_0000h  | 39.2.4/1008      |

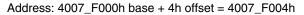
Table continues on the next page...

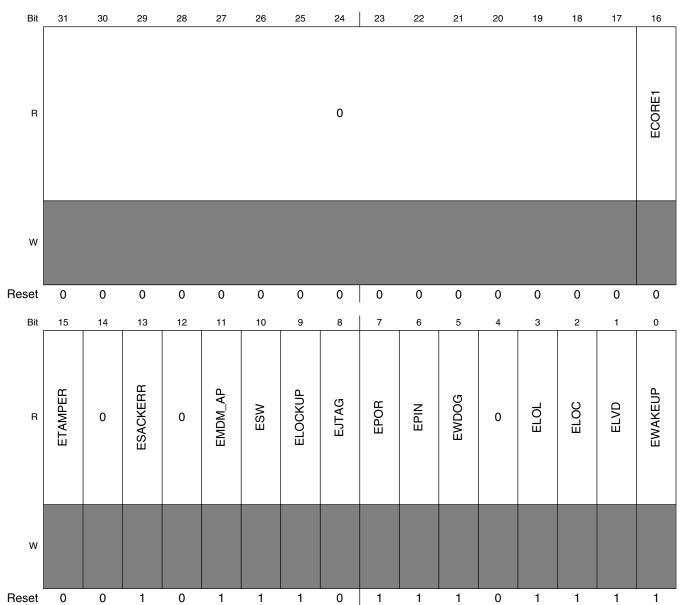

#### Reset memory map and register descriptions

## **RCM** memory map (continued)

| Absolute address (hex) | Register name                                     | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|---------------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_F010              | Mode Register (RCM_MR)                            | 32                 | R/W    | See section | 39.2.5/1010      |
| 4007_F014              | Force Mode Register (RCM_FM)                      | 32                 | R/W    | 0000_0000h  | 39.2.6/1011      |
| 4007_F018              | Sticky System Reset Status Register (RCM_SSRS)    | 32                 | R/W    | 0000_0082h  | 39.2.7/1012      |
| 4007_F01C              | System Reset Interrupt Enable Register (RCM_SRIE) | 32                 | R/W    | 0000_0000h  | 39.2.8/1015      |

## 39.2.1 Version ID Register (RCM\_VERID)


Address: 4007\_F000h base + 0h offset = 4007\_F000h




## **RCM\_VERID** field descriptions

| Field          | Description                                                                  |
|----------------|------------------------------------------------------------------------------|
| 31–24<br>MAJOR | Major Version Number                                                         |
|                | This read only field returns the major version number for the specification. |
| 23–16<br>MINOR | Minor Version Number                                                         |
|                | This read only field returns the minor version number for the specification. |
| FEATURE        | Feature Specification Number                                                 |
|                | This read only field returns the feature set number.                         |
|                | 0x0003 Standard feature set.                                                 |

## 39.2.2 Parameter Register (RCM\_PARAM)





#### **RCM\_PARAM** field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 16<br>ECORE1      | Existence of SRS[CORE1] status indication feature                                    |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### Reset memory map and register descriptions

## **RCM\_PARAM** field descriptions (continued)

| Field         | Description                                                                   |
|---------------|-------------------------------------------------------------------------------|
|               | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 15            | Existence of SRS[TAMPER] status indication feature                            |
| ETAMPER       | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 14            | This field is reserved.                                                       |
| Reserved      | This read-only field is reserved and always has the value 0.                  |
| 13            | Existence of SRS[SACKERR] status indication feature                           |
| ESACKERR      | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 12            | This field is reserved.                                                       |
| Reserved      | This read-only field is reserved and always has the value 0.                  |
| 11<br>EMDM_AP | Existence of SRS[MDM_AP] status indication feature                            |
|               | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 10<br>ESW     | Existence of SRS[SW] status indication feature                                |
|               | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 9             | Existence of SRS[LOCKUP] status indication feature                            |
| ELOCKUP       | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 8             | Existence of SRS[JTAG] status indication feature                              |
| EJTAG         | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| 7             | Existence of SRS[POR] status indication feature                               |
| EPOR          | This static bit states whether or not the feature is available on the device. |
|               | 0 The feature is not available.                                               |
|               | 1 The feature is available.                                                   |
| -             | •                                                                             |

Table continues on the next page...

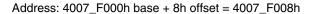
1005

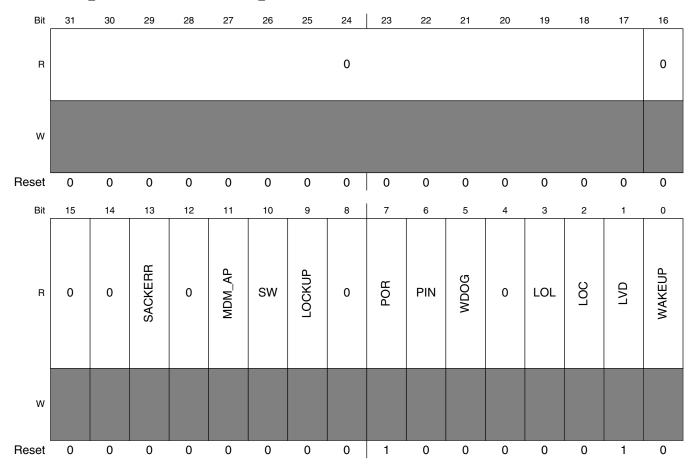
#### **RCM\_PARAM** field descriptions (continued)

| Field        | Description                                                                   |
|--------------|-------------------------------------------------------------------------------|
| 6<br>EPIN    | Existence of SRS[PIN] status indication feature                               |
|              | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |
| 5<br>EWDOG   | Existence of SRS[WDOG] status indication feature                              |
|              | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |
| 4            | This field is reserved.                                                       |
| Reserved     | This read-only field is reserved and always has the value 0.                  |
| 3<br>ELOL    | Existence of SRS[LOL] status indication feature                               |
|              | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |
| 2<br>ELOC    | Existence of SRS[LOC] status indication feature                               |
| ELOC         | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |
| 1            | Existence of SRS[LVD] status indication feature                               |
| ELVD         | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |
| 0<br>EWAKEUP | Existence of SRS[WAKEUP] status indication feature                            |
|              | This static bit states whether or not the feature is available on the device. |
|              | 0 The feature is not available.                                               |
|              | 1 The feature is available.                                                   |

## 39.2.3 System Reset Status Register (RCM\_SRS)

This register includes read-only status flags to indicate the source of the most recent reset. The reset state of these bits depends on what caused the MCU to reset.


#### **NOTE**


The reset value of this register depends on the reset source:

- POR (including LVD) 0x82
- LVD (without POR) 0x02

#### Reset memory map and register descriptions

- VLLS mode wakeup due to RESET pin assertion 0x41
- VLLS mode wakeup due to other wakeup sources 0x01
- Other reset a bit is set if its corresponding reset source caused the reset





#### **RCM\_SRS** field descriptions

| Field             | Description                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| 16<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| 15<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| 14<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                           |
| 13<br>SACKERR     | Stop Acknowledge Error  Indicates that after an attempt to enter Stop mode, a reset has been caused by a failure of one or more peripherals to acknowledge within approximately one second to enter stop mode. |

Table continues on the next page...

## RCM\_SRS field descriptions (continued)

| Field          | Description                                                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Reset not caused by peripheral failure to acknowledge attempt to enter stop mode                                                                                                                                                                                                                                                                 |
|                | 1 Reset caused by peripheral failure to acknowledge attempt to enter stop mode                                                                                                                                                                                                                                                                   |
| 12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                             |
| 11<br>MDM_AP   | MDM-AP System Reset Request  Indicates a reset has been caused by the host debugger system setting of the System Reset Request bit in the MDM-AP Control Register.                                                                                                                                                                               |
|                | <ul> <li>Reset was not caused by host debugger system setting of the System Reset Request bit</li> <li>Reset was caused by host debugger system setting of the System Reset Request bit</li> </ul>                                                                                                                                               |
| 10<br>SW       | Software  Indicates a reset has been caused by software setting of SYSRESETREQ bit in Application Interrupt and Reset Control Register in the ARM core.  O Reset not caused by software setting of SYSRESETREQ bit  Reset caused by software setting of SYSRESETREQ bit                                                                          |
| 9<br>LOCKUP    | Core Lockup  Indicates a reset has been caused by the ARM core indication of a LOCKUP event.  0 Reset not caused by core LOCKUP event  1 Reset caused by core LOCKUP event                                                                                                                                                                       |
| 8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                             |
| 7<br>POR       | Power-On Reset  Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold.  O Reset not caused by POR  Reset caused by POR |
| 6<br>PIN       | External Reset Pin  Indicates a reset has been caused by an active-low level on the external RESET (RESET_b) pin.  0 Reset not caused by external reset pin  1 Reset caused by external reset pin                                                                                                                                                |
| 5<br>WDOG      | Watchdog Indicates a reset has been caused by the watchdog timer timing out. This reset source can be blocked by disabling the watchdog.  O Reset not caused by watchdog timeout  Reset caused by watchdog timeout                                                                                                                               |
| 4<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                             |
| 3<br>LOL       | Loss-of-Lock Reset                                                                                                                                                                                                                                                                                                                               |

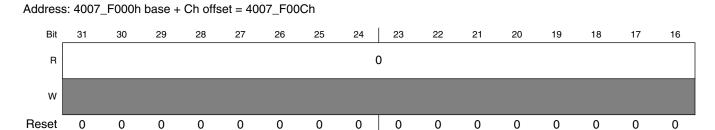
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

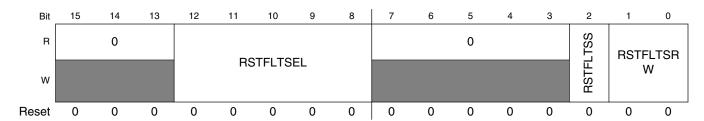
#### Reset memory map and register descriptions

#### RCM\_SRS field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Indicates a reset has been caused by a loss of lock in the SCG PLL/FLL.                                                                                                                                                            |
|             | O Reset not caused by a loss of lock in the PLL/FLL  Reset caused by a loss of lock in the PLL/FLL                                                                                                                                 |
| 2           | Loss-of-Clock Reset                                                                                                                                                                                                                |
| LOC         | Indicates a reset has been caused by a loss of external clock. The SCG SOSC clock monitor must be enabled for a loss of clock to be detected. Refer to the detailed SCG description for information on enabling the clock monitor. |
|             | 0 Reset not caused by a loss of external clock.                                                                                                                                                                                    |
|             | 1 Reset caused by a loss of external clock.                                                                                                                                                                                        |
| 1           | Low-Voltage Detect Reset or High-Voltage Detect Reset                                                                                                                                                                              |
| LVD         | If PMC_LVDSC1[LVDRE] is set and the supply drops below the LVD trip voltage, an LVD reset occurs. If PMC_HVDSC1[HVDRE] is set and the supply rises above the HVD trip voltage, an HVD reset occurs. This field is also set by POR. |
|             | 0 Reset not caused by LVD trip, HVD trip or POR                                                                                                                                                                                    |
|             | 1 Reset caused by LVD trip, HVD trip or POR                                                                                                                                                                                        |
| 0<br>WAKEUP | VLLS Wakeup Reset                                                                                                                                                                                                                  |
|             | Indicates a reset has been caused by a wakeup from VLLS mode.                                                                                                                                                                      |
|             | 0 Reset not caused by wakeup from VLLS mode.                                                                                                                                                                                       |
|             | 1 Reset caused by wakeup from VLLS mode.                                                                                                                                                                                           |


## 39.2.4 Reset Pin Control register (RCM\_RPC)

#### **NOTE**


This register is reset on Chip POR only, it is unaffected by other reset types.

#### **NOTE**

The bus clock filter is reset when disabled or when entering stop mode. The LPO filter is reset when disabled.



KL28Z Reference Manual, Rev. 4, 06/2016



## **RCM\_RPC** field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 31–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 12–8<br>RSTFLTSEL | Reset Pin Filter Bus Clock Select  Selects the reset pin bus clock filter width:  • Transition lengths less than RSTFLTSEL cycles are filtered.  • Transition lengths between RSTFLTSEL and (RSTFLTSEL+1) cycles (inclusive) may be filtered.  • Transition lengths greater than (RSTFLTSEL+1) cycles are not filtered. |  |  |  |  |  |  |
| 7–3<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 2<br>RSTFLTSS     | Reset Pin Filter Select in Stop Mode  Selects how the reset pin filter is enabled in any stop mode. On exit from VLLS mode, this bit should be reconfigured before clearing PMC_REGSC[ACKISO].  O All filtering disabled  1 LPO clock filter enabled                                                                    |  |  |  |  |  |  |
| RSTFLTSRW         | Reset Pin Filter Select in Run and Wait Modes  Selects how the reset pin filter is enabled in run and wait modes.  O All filtering disabled  Bus clock filter enabled for normal operation  LPO clock filter enabled for normal operation  Reserved                                                                     |  |  |  |  |  |  |

#### **Mode Register (RCM\_MR)** 39.2.5

This register includes status flags to indicate the state of the mode pins during the last Chip Reset.

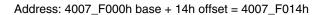
Address: 4007\_F000h base + 10h offset = 4007\_F010h

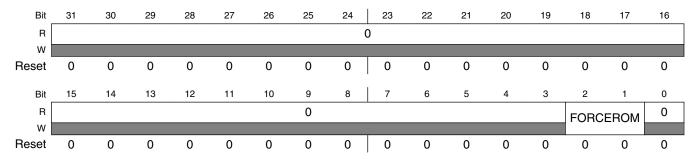
| Bit   | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17  | 16 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|------|-----|----|
| R     |    |    |    |    |    |    |    | (  | )  |    |    |    |    |      |     |    |
| w     |    |    |    |    |    |    |    |    |    |    |    |    |    |      |     |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0   | 0  |
| Bit   | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1   | 0  |
| R     |    |    |    |    |    |    | 0  |    |    |    |    |    |    | B001 | ROM | 0  |
| w     |    |    |    |    |    |    |    |    |    |    |    |    |    | w.   | 1c  |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | *    | *   | 0  |

<sup>\*</sup> Notes:

## **RCM\_MR** field descriptions

| Field            | Description                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 31–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                       |  |  |  |  |  |  |
| 2-1<br>BOOTROM   | Boot ROM Configuration Indicates the boot source, the boot source remains set until the next System Reset or software car logic one to clear the corresponding mode bit.                                                                                   |  |  |  |  |  |  |
|                  | While either bit is set, the NMI input is disabled and the vector table is relocated to the ROM base address at \$1C00_0000. These bits should be cleared by writing logic one before executing any code from either Flash or SRAM.                        |  |  |  |  |  |  |
|                  | <ul> <li>Boot from Flash</li> <li>Boot from ROM due to BOOTCFG0 pin assertion / Reserved if no Boot pin</li> <li>Boot form ROM due to FOPT[7] configuration</li> <li>Boot from ROM due to both BOOTCFG0 pin assertion and FOPT[7] configuration</li> </ul> |  |  |  |  |  |  |
| 0<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                       |  |  |  |  |  |  |


KL28Z Reference Manual, Rev. 4, 06/2016

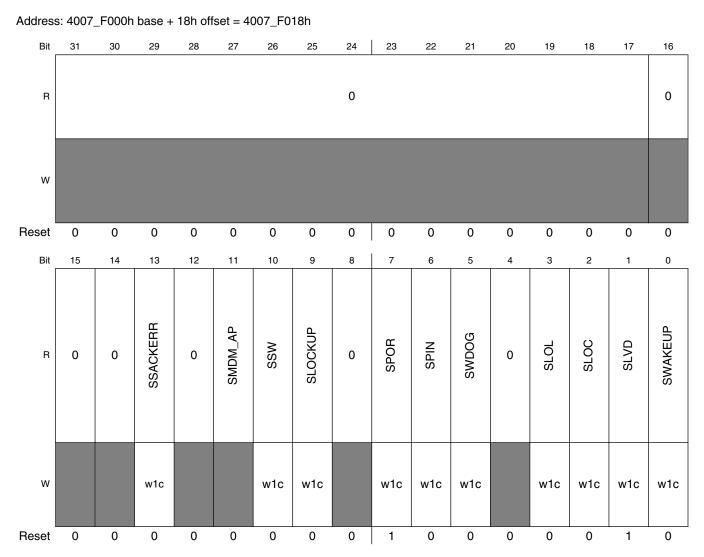

<sup>•</sup> BOOTROM field: The reset state of this register depends on the boot mode.

# 39.2.6 Force Mode Register (RCM\_FM)

## **NOTE**

The reset values of the bits in the FORCEROM field are for Chip POR only. They are unaffected by other reset types.






## **RCM\_FM** field descriptions

| Field           | Description                                                                           |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| 31–3            | This field is reserved.                                                               |  |  |  |  |  |
| Reserved        | This read-only field is reserved and always has the value 0.                          |  |  |  |  |  |
| 2–1<br>FORCEROM | Force ROM Boot                                                                        |  |  |  |  |  |
|                 | When either bit is set, will force boot from ROM during all subsequent system resets. |  |  |  |  |  |
|                 | 00 No effect                                                                          |  |  |  |  |  |
|                 | 01 Force boot from ROM with RCM_MR[1] set.                                            |  |  |  |  |  |
|                 | 10 Force boot from ROM with RCM_MR[2] set.                                            |  |  |  |  |  |
|                 | 11 Force boot from ROM with RCM_MR[2:1] set.                                          |  |  |  |  |  |
| 0               | This field is reserved.                                                               |  |  |  |  |  |
| Reserved        | This read-only field is reserved and always has the value 0.                          |  |  |  |  |  |

#### Sticky System Reset Status Register (RCM\_SSRS) 39.2.7

This register includes status flags to indicate all reset sources since the last POR or LVD, or VLLS Wakeup that have not been cleared by software. Software can clear the status flags by writing a logic one to a flag.



RCM\_SSRS field descriptions

| Field          | Description                                                                          |
|----------------|--------------------------------------------------------------------------------------|
|                | This field is reserved. This read-only field is reserved and always has the value 0. |
| 16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |

Table continues on the next page...

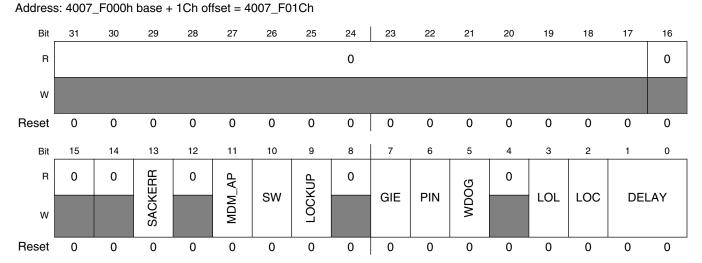
# **RCM\_SSRS** field descriptions (continued)

| Field          | Description                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15             | This field is reserved.                                                                                                                                                                                                                                                          |
| Reserved       | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                     |
| 14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                             |
| 13             | Sticky Stop Acknowledge Error                                                                                                                                                                                                                                                    |
| SSACKERR       | Indicates that after an attempt to enter Stop mode, a reset has been caused by a failure of one or more peripherals to acknowledge within approximately one second to enter stop mode.                                                                                           |
|                | Reset not caused by peripheral failure to acknowledge attempt to enter stop mode     Reset caused by peripheral failure to acknowledge attempt to enter stop mode                                                                                                                |
| 12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                             |
| 11             | Sticky MDM-AP System Reset Request                                                                                                                                                                                                                                               |
| SMDM_AP        | Indicates a reset has been caused by the host debugger system setting of the System Reset Request bit in the MDM-AP Control Register.                                                                                                                                            |
|                | <ul> <li>Reset was not caused by host debugger system setting of the System Reset Request bit</li> <li>Reset was caused by host debugger system setting of the System Reset Request bit</li> </ul>                                                                               |
| 10             | Sticky Software                                                                                                                                                                                                                                                                  |
| SSW            | Indicates a reset has been caused by software setting of SYSRESETREQ bit in Application Interrupt and Reset Control Register in the ARM core.                                                                                                                                    |
|                | <ul> <li>Reset not caused by software setting of SYSRESETREQ bit</li> <li>Reset caused by software setting of SYSRESETREQ bit</li> </ul>                                                                                                                                         |
| 9<br>SLOCKUP   | Sticky Core Lockup                                                                                                                                                                                                                                                               |
|                | Indicates a reset has been caused by the ARM core indication of a LOCKUP event.                                                                                                                                                                                                  |
|                | 0 Reset not caused by core LOCKUP event                                                                                                                                                                                                                                          |
|                | 1 Reset caused by core LOCKUP event                                                                                                                                                                                                                                              |
| 8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                             |
| 7<br>SPOR      | Sticky Power-On Reset                                                                                                                                                                                                                                                            |
| SPON           | Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold. |
|                | 0 Reset not caused by POR 1 Reset caused by POR                                                                                                                                                                                                                                  |
| 6<br>SPIN      | Sticky External Reset Pin                                                                                                                                                                                                                                                        |
|                | Indicates a reset has been caused by an active-low level on the external RESET (RESET_b) pin.                                                                                                                                                                                    |
|                | 0 Reset not caused by external reset pin                                                                                                                                                                                                                                         |
|                | 1 Reset caused by external reset pin                                                                                                                                                                                                                                             |
| 5<br>SWDOG     | Sticky Watchdog                                                                                                                                                                                                                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Reset memory map and register descriptions


# **RCM\_SSRS** field descriptions (continued)

| Field        | Description                                                                                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Indicates a reset has been caused by the watchdog timer timing out. This reset source can be blocked by disabling the watchdog.                                                                                                    |
|              | 0 Reset not caused by watchdog timeout                                                                                                                                                                                             |
|              | 1 Reset caused by watchdog timeout                                                                                                                                                                                                 |
| 4            | This field is reserved.                                                                                                                                                                                                            |
| Reserved     | This read-only field is reserved and always has the value 0.                                                                                                                                                                       |
| 3<br>SLOL    | Sticky Loss-of-Lock Reset                                                                                                                                                                                                          |
|              | Indicates a reset has been caused by a loss of lock in the SCG PLL/FLL. See the SCG description for information on the loss-of-lock event.                                                                                         |
|              | 0 Reset not caused by a loss of lock in the PLL/FLL                                                                                                                                                                                |
|              | 1 Reset caused by a loss of lock in the PLL/FLL                                                                                                                                                                                    |
| 2<br>SLOC    | Sticky Loss-of-Clock Reset                                                                                                                                                                                                         |
|              | Indicates a reset has been caused by a loss of external clock. The SCG SOSC clock monitor must be enabled for a loss of clock to be detected. Refer to the detailed SCG description for information on enabling the clock monitor. |
|              | 0 Reset not caused by a loss of external clock.                                                                                                                                                                                    |
|              | 1 Reset caused by a loss of external clock.                                                                                                                                                                                        |
| 1            | Sticky Low-Voltage Detect Reset                                                                                                                                                                                                    |
| SLVD         | If PMC_LVDSC1[LVDRE] is set and the supply drops below the LVD trip voltage, an LVD reset occurs. This field is also set by POR.                                                                                                   |
|              | 0 Reset not caused by LVD trip or POR                                                                                                                                                                                              |
|              | 1 Reset caused by LVD trip or POR                                                                                                                                                                                                  |
| 0<br>SWAKEUP | Sticky VLLS Wakeup Reset                                                                                                                                                                                                           |
| 377,11201    | Indicates a reset has been caused by a wakeup from VLLS mode.                                                                                                                                                                      |
|              | 0 Reset not caused by wakeup from VLLS mode.                                                                                                                                                                                       |
|              | 1 Reset caused by wakeup from VLLS mode.                                                                                                                                                                                           |

1015

# 39.2.8 System Reset Interrupt Enable Register (RCM\_SRIE)

This register provides the option to delay the assertion of a system reset for a period of time (DELAY field) while an interrupt is generated. When an interrupt for a reset source is enabled, software has time to perform a graceful shutdown. A Chip POR source cannot be delayed by this feature, and entering LLS/VLLS mode terminates the delay. The SRS updates only after the system reset occurs.



#### **RCM SRIE field descriptions**

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 16<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 14<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 13<br>SACKERR     | Stop Acknowledge Error Interrupt  0 Interrupt disabled.  1 Interrupt enabled.        |
| 12<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 11<br>MDM_AP      | MDM-AP System Reset Request  0 Interrupt disabled.  1 Interrupt enabled.             |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

## Reset memory map and register descriptions

# **RCM\_SRIE** field descriptions (continued)

| Field         | Description                                                                                                                |
|---------------|----------------------------------------------------------------------------------------------------------------------------|
| 10<br>SW      | Software Interrupt  0 Interrupt disabled.  1 Interrupt enabled.                                                            |
| 9<br>LOCKUP   | Core Lockup Interrupt  0 Interrupt disabled.  1 Interrupt enabled.                                                         |
| 8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                       |
| 7<br>GIE      | Global Interrupt Enable  O All interrupt sources disabled.  1 All interrupt sources enabled.                               |
| 6<br>PIN      | External Reset Pin Interrupt  O Reset not caused by external reset pin  Reset caused by external reset pin                 |
| 5<br>WDOG     | Watchdog Interrupt  O Interrupt disabled.  Interrupt enabled.                                                              |
| 4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                       |
| 3<br>LOL      | Loss-of-Lock Interrupt  0 Interrupt disabled.  1 Interrupt enabled.                                                        |
| 2<br>LOC      | Loss-of-Clock Interrupt  O Interrupt disabled.  Interrupt enabled.                                                         |
| DELAY         | Reset Delay Time  Configures the maximum reset delay time from when the interrupt is asserted and the system reset occurs. |
|               | 00 10 LPO cycles<br>01 34 LPO cycles<br>10 130 LPO cycles<br>11 514 LPO cycles                                             |

# **Chapter 40 General-Purpose Input/Output (GPIO)**

## 40.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The general-purpose input and output (GPIO) module is accessible via the peripheral bus and also communicates to the processor core via a zero wait state interface (IOPORT) for maximum pin performance. The GPIO registers support 8-bit, 16-bit or 32-bit accesses.

The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled.

Efficient bit manipulation of the general-purpose outputs is supported through the addition of set, clear, and toggle write-only registers for each port output data register.

## 40.1.1 Features

Features of the GPIO module include:

- Port Data Input register visible in all digital pin-multiplexing modes
- Port Data Output register with corresponding set/clear/toggle registers
- Port Data Direction register
- Zero wait state access to GPIO registers through IOPORT

#### NOTE

The GPIO module is clocked by system clock.

# 40.1.2 Modes of operation

The following table depicts different modes of operation and the behavior of the GPIO module in these modes.

Table 40-1. Modes of operation

| Modes of operation | Description                        |
|--------------------|------------------------------------|
| Run                | The GPIO module operates normally. |
| Wait               | The GPIO module operates normally. |
| Stop               | The GPIO module is disabled.       |
| Debug              | The GPIO module operates normally. |

# 40.1.3 GPIO signal descriptions

Table 40-2. GPIO signal descriptions

| GPIO signal descriptions | Description                  | I/O |
|--------------------------|------------------------------|-----|
| PORTA31-PORTA0           | General-purpose input/output | I/O |
| PORTB31-PORTB0           | General-purpose input/output | I/O |
| PORTC31-PORTC0           | General-purpose input/output | I/O |
| PORTD31-PORTD0           | General-purpose input/output | I/O |
| PORTE31-PORTE0           | General-purpose input/output | I/O |

#### **NOTE**

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

# 40.1.3.1 Detailed signal description

Table 40-3. GPIO interface-detailed signal descriptions

| Signal         | I/O | De            | escription                                                    |
|----------------|-----|---------------|---------------------------------------------------------------|
| PORTA31-PORTA0 | I/O | General-pu    | rpose input/output                                            |
| PORTB31-PORTB0 |     | State meaning | Asserted: The pin is logic 1.                                 |
| PORTC31-PORTC0 |     |               | Deasserted: The pin is logic 0.                               |
| PORTD31-PORTD0 |     | Timing        | Assertion: When output, this                                  |
| PORTE31-PORTE0 |     |               | signal occurs on the rising-<br>edge of the system clock. For |
|                |     |               | input, it may occur at any time                               |

1019

Table 40-3. GPIO interface-detailed signal descriptions

| Signal | I/O | Description                                                                                                                                                                                                                                           |
|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |     | and input may be asserted asynchronously to the system clock.  Deassertion: When output, this signal occurs on the rising-edge of the system clock. For input, it may occur at any time and input may be asserted asynchronously to the system clock. |

#### NOTE

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

# 40.2 Memory map and register definition

Any read or write access to the GPIO memory space that is outside the valid memory map results in a bus error.

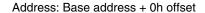
### **GPIO** memory map

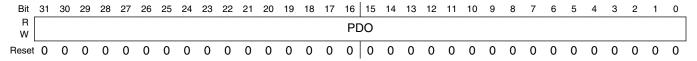
| Absolute<br>address<br>(hex) | Register name                             | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4000_F000                    | Port Data Output Register (GPIOA_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.2.1/1021      |
| 4000_F004                    | Port Set Output Register (GPIOA_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.2/1021      |
| 4000_F008                    | Port Clear Output Register (GPIOA_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.3/1022      |
| 4000_F00C                    | Port Toggle Output Register (GPIOA_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.4/1022      |
| 4000_F010                    | Port Data Input Register (GPIOA_PDIR)     | 32                 | R                        | 0000_0000h  | 40.2.5/1023      |
| 4000_F014                    | Port Data Direction Register (GPIOA_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.2.6/1023      |
| 4000_F040                    | Port Data Output Register (GPIOB_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.2.1/1021      |
| 4000_F044                    | Port Set Output Register (GPIOB_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.2/1021      |

Table continues on the next page...

## Memory map and register definition

# **GPIO** memory map (continued)


| Absolute<br>address<br>(hex) | Register name                             | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4000_F048                    | Port Clear Output Register (GPIOB_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.3/1022      |
| 4000_F04C                    | Port Toggle Output Register (GPIOB_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.4/1022      |
| 4000_F050                    | Port Data Input Register (GPIOB_PDIR)     | 32                 | R                        | 0000_0000h  | 40.2.5/1023      |
| 4000_F054                    | Port Data Direction Register (GPIOB_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.2.6/1023      |
| 4000_F080                    | Port Data Output Register (GPIOC_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.2.1/1021      |
| 4000_F084                    | Port Set Output Register (GPIOC_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.2/1021      |
| 4000_F088                    | Port Clear Output Register (GPIOC_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.3/1022      |
| 4000_F08C                    | Port Toggle Output Register (GPIOC_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.4/1022      |
| 4000_F090                    | Port Data Input Register (GPIOC_PDIR)     | 32                 | R                        | 0000_0000h  | 40.2.5/1023      |
| 4000_F094                    | Port Data Direction Register (GPIOC_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.2.6/1023      |
| 4000_F0C0                    | Port Data Output Register (GPIOD_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.2.1/1021      |
| 4000_F0C4                    | Port Set Output Register (GPIOD_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.2/1021      |
| 4000_F0C8                    | Port Clear Output Register (GPIOD_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.3/1022      |
| 4000_F0CC                    | Port Toggle Output Register (GPIOD_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.4/1022      |
| 4000_F0D0                    | Port Data Input Register (GPIOD_PDIR)     | 32                 | R                        | 0000_0000h  | 40.2.5/1023      |
| 4000_F0D4                    | Port Data Direction Register (GPIOD_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.2.6/1023      |
| 4000_F100                    | Port Data Output Register (GPIOE_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.2.1/1021      |
| 4000_F104                    | Port Set Output Register (GPIOE_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.2/1021      |
| 4000_F108                    | Port Clear Output Register (GPIOE_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.3/1022      |
| 4000_F10C                    | Port Toggle Output Register (GPIOE_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.2.4/1022      |
| 4000_F110                    | Port Data Input Register (GPIOE_PDIR)     | 32                 | R                        | 0000_0000h  | 40.2.5/1023      |
| 4000_F114                    | Port Data Direction Register (GPIOE_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.2.6/1023      |


# 40.2.1 Port Data Output Register (GPIOx\_PDOR)

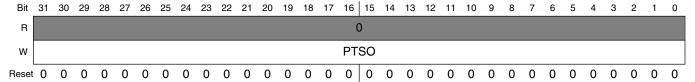
This register configures the logic levels that are driven on each general-purpose output pins.

#### NOTE

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.






#### **GPIOx\_PDOR** field descriptions

| Field | Description                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDO   | Port Data Output                                                                                                                                                                                           |
|       | Register bits for unbonded pins return a undefined value when read.                                                                                                                                        |
|       | <ul> <li>Logic level 0 is driven on pin, provided pin is configured for general-purpose output.</li> <li>Logic level 1 is driven on pin, provided pin is configured for general-purpose output.</li> </ul> |

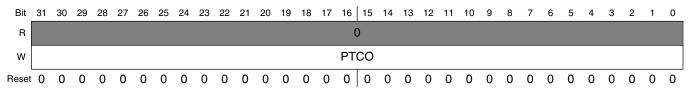
# 40.2.2 Port Set Output Register (GPIOx\_PSOR)

This register configures whether to set the fields of the PDOR.

#### Address: Base address + 4h offset



## **GPIOx\_PSOR** field descriptions

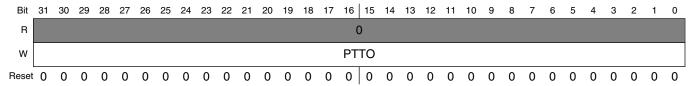

| Field | Description                                                                                        |
|-------|----------------------------------------------------------------------------------------------------|
| PTSO  | Port Set Output                                                                                    |
|       | Writing to this register will update the contents of the corresponding bit in the PDOR as follows: |
|       | 0 Corresponding bit in PDORn does not change.                                                      |
|       | 1 Corresponding bit in PDORn is set to logic 1.                                                    |

KL28Z Reference Manual, Rev. 4, 06/2016

# 40.2.3 Port Clear Output Register (GPIOx\_PCOR)

This register configures whether to clear the fields of PDOR.

Address: Base address + 8h offset




#### **GPIOx\_PCOR** field descriptions

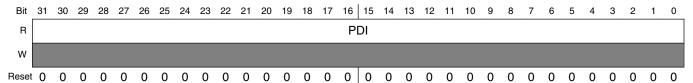
| Field | Description                                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------------------|
| PTCO  | Port Clear Output                                                                                                              |
|       | Writing to this register will update the contents of the corresponding bit in the Port Data Output Register (PDOR) as follows: |
|       | 0 Corresponding bit in PDORn does not change.                                                                                  |
|       | 1 Corresponding bit in PDORn is cleared to logic 0.                                                                            |

# 40.2.4 Port Toggle Output Register (GPIOx\_PTOR)

Address: Base address + Ch offset



#### **GPIOx\_PTOR** field descriptions


| Field | Description                                                                                        |
|-------|----------------------------------------------------------------------------------------------------|
| PTTO  | Port Toggle Output                                                                                 |
|       | Writing to this register will update the contents of the corresponding bit in the PDOR as follows: |
|       | 0 Corresponding bit in PDORn does not change.                                                      |
|       | 1 Corresponding bit in PDORn is set to the inverse of its existing logic state.                    |

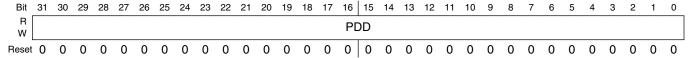
# 40.2.5 Port Data Input Register (GPIOx\_PDIR)

#### **NOTE**

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

#### Address: Base address + 10h offset




#### **GPIOx\_PDIR** field descriptions

| Field | Description                                                                                                                                                                                                                      |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PDI   | Port Data Input                                                                                                                                                                                                                  |  |
|       | Reads 0 at the unimplemented pins for a particular device. Pins that are not configured for a digital function read 0. If the Port Control and Interrupt module is disabled, then the corresponding bit in PDIR does not update. |  |
|       | <ul> <li>0 Pin logic level is logic 0, or is not configured for use by digital function.</li> <li>1 Pin logic level is logic 1.</li> </ul>                                                                                       |  |

# 40.2.6 Port Data Direction Register (GPIOx\_PDDR)

The PDDR configures the individual port pins for input or output.

#### Address: Base address + 14h offset



#### **GPIOx\_PDDR** field descriptions

| Field | Description                                                           |
|-------|-----------------------------------------------------------------------|
| PDD   | Port Data Direction                                                   |
|       | Configures individual port pins for input or output.                  |
|       | 0 Pin is configured as general-purpose input, for the GPIO function.  |
|       | 1 Pin is configured as general-purpose output, for the GPIO function. |

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### **GPIOx\_PDDR** field descriptions (continued)

| Field Description |
|-------------------|
|-------------------|

# 40.3 FGPIO memory map and register definition

The GPIO registers are also aliased to the IOPORT interface on the Cortex-M0+ from address 0xF800\_0000.

Accesses via the IOPORT interface occur in parallel with any instruction fetches and will therefore complete in a single cycle. This aliased Fast GPIO memory map is called FGPIO.

Any read or write access to the FGPIO memory space that is outside the valid memory map results in a bus error. All register accesses complete with zero wait states, except error accesses which complete with one wait state.


#### **FGPIO** memory map

| Absolute address (hex) | Register name                              | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------|--------------------------------------------|--------------------|--------------------------|-------------|------------------|
| F800_0000              | Port Data Output Register (FGPIOA_PDOR)    | 32                 | R/W                      | 0000_0000h  | 40.3.1/1024      |
| F800_0004              | Port Set Output Register (FGPIOA_PSOR)     | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.3.2/1025      |
| F800_0008              | Port Clear Output Register (FGPIOA_PCOR)   | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.3.3/1025      |
| F800_000C              | Port Toggle Output Register (FGPIOA_PTOR)  | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 40.3.4/1026      |
| F800_0010              | Port Data Input Register (FGPIOA_PDIR)     | 32                 | R                        | 0000_0000h  | 40.3.5/1026      |
| F800_0014              | Port Data Direction Register (FGPIOA_PDDR) | 32                 | R/W                      | 0000_0000h  | 40.3.6/1027      |

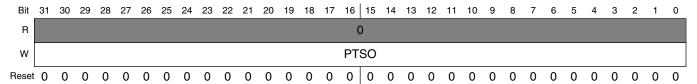
# 40.3.1 Port Data Output Register (FGPIOx\_PDOR)

This register configures the logic levels that are driven on each general-purpose output pins.

Address: F800\_0000h base + 0h offset = F800\_0000h



KL28Z Reference Manual, Rev. 4, 06/2016


## FGPIOx\_PDOR field descriptions

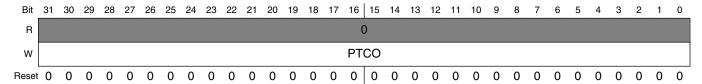
| Field | Description                                                                                                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDO   | Port Data Output                                                                                                                                                                                           |
|       | Unimplemented pins for a particular device read as zero.                                                                                                                                                   |
|       | <ul> <li>Logic level 0 is driven on pin, provided pin is configured for general-purpose output.</li> <li>Logic level 1 is driven on pin, provided pin is configured for general-purpose output.</li> </ul> |

# 40.3.2 Port Set Output Register (FGPIOx\_PSOR)

This register configures whether to set the fields of the PDOR.

Address: F800\_0000h base + 4h offset = F800\_0004h




#### FGPIOx\_PSOR field descriptions

| Field | Description                                                                                        |
|-------|----------------------------------------------------------------------------------------------------|
| PTSO  | Port Set Output                                                                                    |
|       | Writing to this register will update the contents of the corresponding bit in the PDOR as follows: |
|       | 0 Corresponding bit in PDORn does not change.                                                      |
|       | 1 Corresponding bit in PDORn is set to logic 1.                                                    |

# 40.3.3 Port Clear Output Register (FGPIOx\_PCOR)

This register configures whether to clear the fields of PDOR.

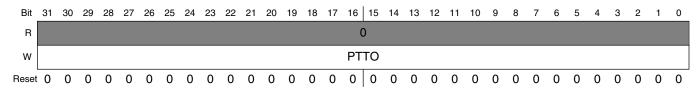
Address: F800\_0000h base + 8h offset = F800\_0008h



## FGPIOx\_PCOR field descriptions

| Field | Description       |
|-------|-------------------|
| PTCO  | Port Clear Output |

KL28Z Reference Manual, Rev. 4, 06/2016

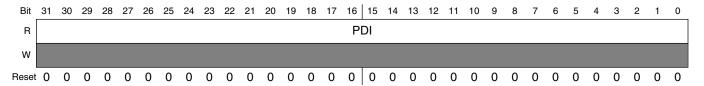

#### FGPIO memory map and register definition

## FGPIOx\_PCOR field descriptions (continued)

| Field | Description                                                                                                                    |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Writing to this register will update the contents of the corresponding bit in the Port Data Output Register (PDOR) as follows: |  |  |  |
|       | 0 Corresponding bit in PDORn does not change.                                                                                  |  |  |  |
|       | 1 Corresponding bit in PDORn is cleared to logic 0.                                                                            |  |  |  |

# 40.3.4 Port Toggle Output Register (FGPIOx\_PTOR)

Address: F800\_0000h base + Ch offset = F800\_000Ch




## FGPIOx\_PTOR field descriptions

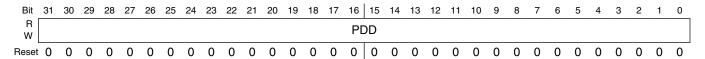
| Field | Description                                                                                        |
|-------|----------------------------------------------------------------------------------------------------|
| PTTO  | Port Toggle Output                                                                                 |
|       | Writing to this register will update the contents of the corresponding bit in the PDOR as follows: |
|       | 0 Corresponding bit in PDORn does not change.                                                      |
|       | 1 Corresponding bit in PDORn is set to the inverse of its existing logic state.                    |

# 40.3.5 Port Data Input Register (FGPIOx\_PDIR)

Address: F800\_0000h base + 10h offset = F800\_0010h



## FGPIOx\_PDIR field descriptions


| Field | Description                                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDI   | Port Data Input                                                                                                                                                                                                                  |
|       | Reads 0 at the unimplemented pins for a particular device. Pins that are not configured for a digital function read 0. If the Port Control and Interrupt module is disabled, then the corresponding bit in PDIR does not update. |
|       | <ul><li>0 Pin logic level is logic 0, or is not configured for use by digital function.</li><li>1 Pin logic level is logic 1.</li></ul>                                                                                          |

KL28Z Reference Manual, Rev. 4, 06/2016

# 40.3.6 Port Data Direction Register (FGPIOx\_PDDR)

The PDDR configures the individual port pins for input or output.

Address: F800\_0000h base + 14h offset = F800\_0014h



#### FGPIOx\_PDDR field descriptions

| Field | Description                                                                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PDD   | Port Data Direction                                                                                                                                              |
|       | Configures individual port pins for input or output.                                                                                                             |
|       | <ul><li>Pin is configured as general-purpose input, for the GPIO function.</li><li>Pin is configured as general-purpose output, for the GPIO function.</li></ul> |

# 40.4 Functional description

# 40.4.1 General-purpose input

The logic state of each pin is available via the Port Data Input registers, provided the pin is configured for a digital function and the corresponding Port Control and Interrupt module is enabled.

# 40.4.2 General-purpose output

The logic state of each pin can be controlled via the port data output registers and port data direction registers, provided the pin is configured for the GPIO function. The following table depicts the conditions for a pin to be configured as input/output.

| If                                                                                                         | Then                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| A pin is configured for the GPIO function and the corresponding port data direction register bit is clear. | The pin is configured as an input.                                                                                             |  |
| A pin is configured for the GPIO function and the corresponding port data direction register bit is set.   | The pin is configured as an output and and the logic state of the pin is equal to the corresponding port data output register. |  |

#### **Functional description**

To facilitate efficient bit manipulation on the general-purpose outputs, pin data set, pin data clear, and pin data toggle registers exist to allow one or more outputs within one port to be set, cleared, or toggled from a single register write.

The corresponding Port Control and Interrupt module does not need to be enabled to update the state of the port data direction registers and port data output registers including the set/clear/toggle registers.

## **40.4.3 IOPORT**

The GPIO registers are also aliased to the IOPORT interface on the Cortex-M0+ from address 0xF800\_0000. Accesses via the IOPORT interface occur in parallel with any instruction fetches and will therefore complete in a single cycle. If the DMA attempts to access the GPIO registers on the same cycle as an IOPORT access, then the DMA access will stall until any IOPORT accesses have completed.

During Compute Operation, the GPIO registers remain accessible via the IOPORT interface only. Since the clocks to the Port Control and Interrupt modules are disabled during Compute Operation, the Pin Data Input Registers do not update with the current state of the pins.

# **Chapter 41 Real Time Clock (RTC)**

## 41.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

#### **41.1.1 Features**

The RTC module features include:

- 32-bit seconds counter with roll-over protection and 32-bit alarm
- 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm
- Option to increment prescaler using the LPO (prescaler increments by 32 every clock edge)
- Register write protection
  - Lock register requires POR or software reset to enable write access
- Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional interrupt

# 41.1.2 Modes of operation

The RTC remains functional in all low power modes and can generate an interrupt to exit any low power mode.

# 41.1.3 RTC signal descriptions

Table 41-1. RTC signal descriptions

| Signal | Description                                         | I/O |
|--------|-----------------------------------------------------|-----|
|        | Prescaler square-wave output or 32kHz crystal clock | 0   |

# 41.1.3.1 RTC clock output

The RTC\_CLKOUT signal can output either a square wave prescaler output (configurable to 1, 2, 4, 8, 16, 32, 64 or 128 Hz) or the 32 kHz crystal clock.

# 41.2 Register definition

All registers must be accessed using 32-bit writes and all register accesses incur three wait states.

Write accesses to any register by non-supervisor mode software, when the supervisor access bit in the control register is clear, will terminate with a bus error.

Read accesses by non-supervisor mode software complete as normal.

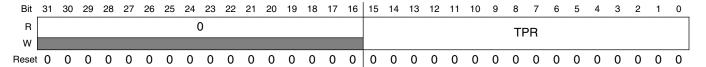
Writing to a register protected by the lock register does not generate a bus error, but the write will not complete.

## RTC memory map

| Absolute<br>address<br>(hex) | Register name                            | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------|--------------------|--------|-------------|------------------|
| 4003_8000                    | RTC Time Seconds Register (RTC_TSR)      | 32                 | R/W    | 0000_0000h  | 41.2.1/1031      |
| 4003_8004                    | RTC Time Prescaler Register (RTC_TPR)    | 32                 | R/W    | 0000_0000h  | 41.2.2/1031      |
| 4003_8008                    | RTC Time Alarm Register (RTC_TAR)        | 32                 | R/W    | 0000_0000h  | 41.2.3/1032      |
| 4003_800C                    | RTC Time Compensation Register (RTC_TCR) | 32                 | R/W    | 0000_0000h  | 41.2.4/1032      |
| 4003_8010                    | RTC Control Register (RTC_CR)            | 32                 | R/W    | 0000_0000h  | 41.2.5/1033      |
| 4003_8014                    | RTC Status Register (RTC_SR)             | 32                 | R/W    | 0000_0001h  | 41.2.6/1035      |
| 4003_8018                    | RTC Lock Register (RTC_LR)               | 32                 | R/W    | 0000_00FFh  | 41.2.7/1036      |
| 4003_801C                    | RTC Interrupt Enable Register (RTC_IER)  | 32                 | R/W    | 0000_0007h  | 41.2.8/1037      |

# 41.2.1 RTC Time Seconds Register (RTC\_TSR)

Address: 4003\_8000h base + 0h offset = 4003\_8000h

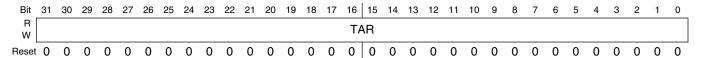



#### RTC\_TSR field descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TSR   | Time Seconds Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|       | When the time counter is enabled, the TSR is read only and increments once a second provided SR[TOF] or SR[TIF] are not set. The time counter will read as zero when SR[TOF] or SR[TIF] are set. When the time counter is disabled, the TSR can be read or written. Writing to the TSR when the time counter is disabled will clear the SR[TOF] and/or the SR[TIF]. Writing to TSR with zero is supported, but not recommended because TSR will read as zero when SR[TIF] or SR[TOF] are set (indicating the time is invalid). |  |  |

# 41.2.2 RTC Time Prescaler Register (RTC\_TPR)

Address: 4003\_8000h base + 4h offset = 4003\_8004h

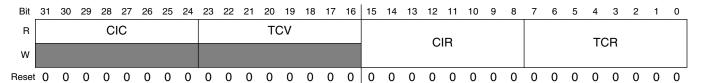



#### RTC\_TPR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                             |  |
| TPR               | Time Prescaler Register  When the time counter is enabled, the TPR is read only and increments every 32.768 kHz clock cycle. The time counter will read as zero when SR[TOF] or SR[TIF] are set. When the time counter is disabled, the TPR can be read or written. The TSR[TSR] increments when bit 14 of the TPR transitions from a logic one to a logic zero. |  |

## 41.2.3 RTC Time Alarm Register (RTC\_TAR)

Address: 4003\_8000h base + 8h offset = 4003\_8008h




#### RTC\_TAR field descriptions

|   | Field | Description                                                                                                                                                        |   |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Γ | TAR   | Time Alarm Register                                                                                                                                                | 1 |
|   |       | When the time counter is enabled, the SR[TAF] is set whenever the TAR[TAR] equals the TSR[TSR] and the TSR[TSR] increments. Writing to the TAR clears the SR[TAF]. |   |

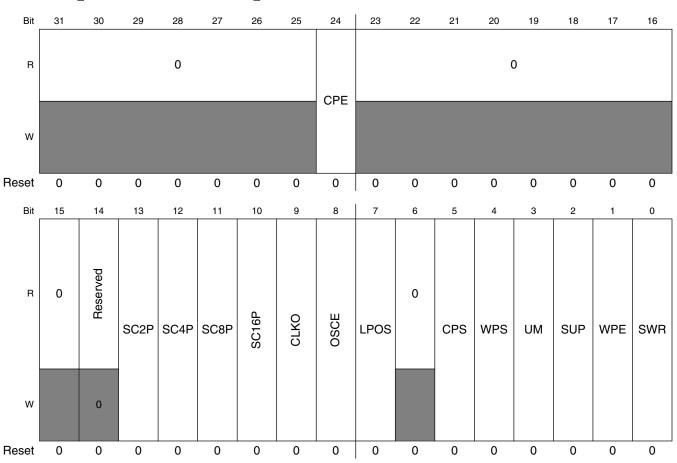
# 41.2.4 RTC Time Compensation Register (RTC\_TCR)

Address: 4003\_8000h base + Ch offset = 4003\_800Ch



#### RTC\_TCR field descriptions

| Field        | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>CIC | Compensation Interval Counter                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Current value of the compensation interval counter. If the compensation interval counter equals zero then it is loaded with the contents of the CIR. If the CIC does not equal zero then it is decremented once a second.                                                                                                                                                                                                         |
| 23–16<br>TCV | Time Compensation Value                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100          | Current value used by the compensation logic for the present second interval. Updated once a second if the CIC equals 0 with the contents of the TCR field. If the CIC does not equal zero then it is loaded with zero (compensation is not enabled for that second increment).                                                                                                                                                   |
| 15–8<br>CIR  | Compensation Interval Register                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ont          | Configures the compensation interval in seconds from 1 to 256 to control how frequently the TCR should adjust the number of 32.768 kHz cycles in each second. The value written should be one less than the number of seconds. For example, write zero to configure for a compensation interval of one second. This register is double buffered and writes do not take affect until the end of the current compensation interval. |
| TCR          | Time Compensation Register                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | Configures the number of 32.768 kHz clock cycles in each second. This register is double buffered and writes do not take affect until the end of the current compensation interval.                                                                                                                                                                                                                                               |


Table continues on the next page...

## RTC\_TCR field descriptions (continued)

| Field | Description                                                     |
|-------|-----------------------------------------------------------------|
|       | 80h Time Prescaler Register overflows every 32896 clock cycles. |
|       |                                                                 |
|       | FFh Time Prescaler Register overflows every 32769 clock cycles. |
|       | 00h Time Prescaler Register overflows every 32768 clock cycles. |
|       | 01h Time Prescaler Register overflows every 32767 clock cycles. |
|       | ···· ···                                                        |
|       | 7Fh Time Prescaler Register overflows every 32641 clock cycles. |

# 41.2.5 RTC Control Register (RTC\_CR)

Address: 4003\_8000h base + 10h offset = 4003\_8010h



# RTC\_CR field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–25<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |

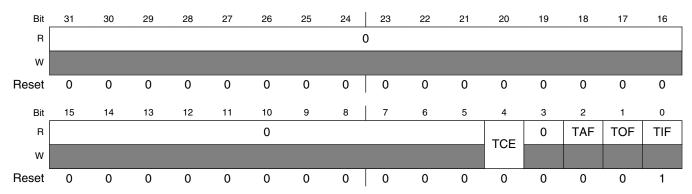
Table continues on the next page...

## Register definition

# RTC\_CR field descriptions (continued)

| Field          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24<br>CPE      | Clock Pin Enable  0 RTC_CLKOUT is disabled.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23–15          | 01 RTC_CLKOUT is enabled. This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reserved       | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                              |
| 14<br>Reserved | This field is reserved.  It must always be written to 0.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13<br>SC2P     | Oscillator 2pF Load Configure  0 Disable the load.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | 1 Enable the additional load.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12<br>SC4P     | Oscillator 4pF Load Configure                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | <ul><li>Disable the load.</li><li>Enable the additional load.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                   |
| 11<br>SC8P     | Oscillator 8pF Load Configure                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | <ul><li>0 Disable the load.</li><li>1 Enable the additional load.</li></ul>                                                                                                                                                                                                                                                                                                                                                                               |
| 10<br>SC16P    | Oscillator 16pF Load Configure                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | <ul><li>0 Disable the load.</li><li>1 Enable the additional load.</li></ul>                                                                                                                                                                                                                                                                                                                                                                               |
| 9<br>CLKO      | Clock Output                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | <ul> <li>The 32 kHz clock is output to other peripherals.</li> <li>The 32 kHz clock is not output to other peripherals.</li> </ul>                                                                                                                                                                                                                                                                                                                        |
| 8<br>OSCE      | Oscillator Enable                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| USCE           | 0 32.768 kHz oscillator is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 1 32.768 kHz oscillator is enabled. After setting this bit, wait the oscillator startup time before enabling the time counter to allow the 32.768 kHz clock time to stabilize.                                                                                                                                                                                                                                                                            |
| 7<br>LPOS      | LPO Select                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | When set, the RTC prescaler increments using the LPO 1kHz clock and not the RTC 32kHz crystal clock. The LPO increments the prescaler from bit TPR[5] (TPR[4:0] are ignored), supporting close to 1 second increment of the seconds register. Although compensation is supported when clocked from the LPO, TCR[4:0] of the compensation register are also ignored and only TCR[7:5] set the compensation value (can overflow after 1020 to 1027 cycles). |
|                | <ul> <li>RTC prescaler increments using 32kHz crystal.</li> <li>RTC prescaler increments using 1kHz LPO, bits [4:0] of the prescaler are bypassed.</li> </ul>                                                                                                                                                                                                                                                                                             |
| 6<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                      |
| 5              | Clock Pin Select                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CPS            | The prescaler output clock (as configured by TSIC) is output on RTC_CLKOUT.  The RTC 32kHz crystal clock is output on RTC_CLKOUT.                                                                                                                                                                                                                                                                                                                         |
|                | · -                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table continues on the next page...

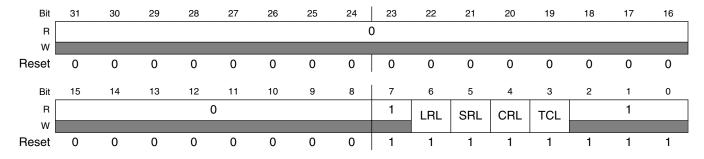

KL28Z Reference Manual, Rev. 4, 06/2016

# RTC\_CR field descriptions (continued)

| Field    | Description                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>WPS | Wakeup Pin Select                                                                                                                                                               |
|          | The wakeup pin is optional and not available on all devices.                                                                                                                    |
|          | 0 Wakeup pin asserts (active low, open drain) if the RTC interrupt asserts or the wakeup pin is turned on.                                                                      |
|          | Wakeup pin instead outputs the RTC 32kHz clock, provided the wakeup pin is turned on and the 32kHz clock is output to other peripherals.                                        |
| 3        | Update Mode                                                                                                                                                                     |
| UM       | Allows SR[TCE] to be written even when the Status Register is locked. When set, the SR[TCE] can always be written if the SR[TIF] or SR[TOF] are set or if the SR[TCE] is clear. |
|          | Registers cannot be written when locked.                                                                                                                                        |
|          | 1 Registers can be written when locked under limited conditions.                                                                                                                |
| 2<br>SUP | Supervisor Access                                                                                                                                                               |
|          | 0 Non-supervisor mode write accesses are not supported and generate a bus error.                                                                                                |
|          | Non-supervisor mode write accesses are supported.                                                                                                                               |
| 1<br>WPE | Wakeup Pin Enable                                                                                                                                                               |
| VVI L    | The wakeup pin is optional and not available on all devices.                                                                                                                    |
|          | 0 Wakeup pin is disabled.                                                                                                                                                       |
|          | 1 Wakeup pin is enabled and wakeup pin asserts if the RTC interrupt asserts or the wakeup pin is turned on.                                                                     |
| 0<br>SWR | Software Reset                                                                                                                                                                  |
|          | 0 No effect.                                                                                                                                                                    |
|          | Resets all RTC registers except for the SWR bit . The SWR bit is cleared by POR and by software explicitly clearing it.                                                         |

# 41.2.6 RTC Status Register (RTC\_SR)

Address: 4003\_8000h base + 14h offset = 4003\_8014h

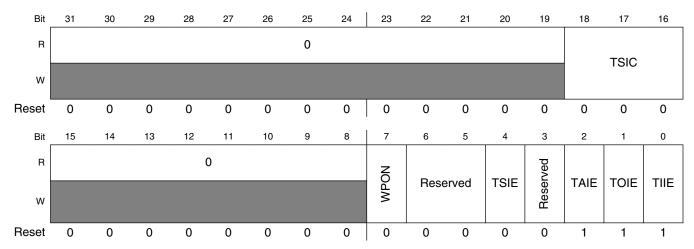



# RTC\_SR field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–5<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                      |
| 4<br>TCE         | Time Counter Enable  When time counter is disabled the TSR register and TPR register are writeable, but do not increment.  When time counter is enabled the TSR register and TPR register are not writeable, but increment.  O Time counter is disabled.                                                                                                  |
|                  | 1 Time counter is enabled.                                                                                                                                                                                                                                                                                                                                |
| 3<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                      |
| 2<br>TAF         | Time Alarm Flag  Time alarm flag is set when the TAR[TAR] equals the TSR[TSR] and the TSR[TSR] increments. This bit is cleared by writing the TAR register.                                                                                                                                                                                               |
|                  | <ul><li>0 Time alarm has not occurred.</li><li>1 Time alarm has occurred.</li></ul>                                                                                                                                                                                                                                                                       |
| 1<br>TOF         | Time Overflow Flag  Time overflow flag is set when the time counter is enabled and overflows. The TSR and TPR do not increment and read as zero when this bit is set. This bit is cleared by writing the TSR register when the time counter is disabled.  O Time overflow has not occurred.  Time overflow has occurred and time counter is read as zero. |
| 0<br>TIF         | Time Invalid Flag  The time invalid flag is set on POR or software reset. The TSR and TPR do not increment and read as zero when this bit is set. This bit is cleared by writing the TSR register when the time counter is disabled.  O Time is valid.  Time is invalid and time counter is read as zero.                                                 |

# 41.2.7 RTC Lock Register (RTC\_LR)

Address: 4003\_8000h base + 18h offset = 4003\_8018h




# RTC\_LR field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6<br>LRL         | Lock Register Lock  After being cleared, this bit can be set only by POR or software reset.  Under the control of the control |
|                  | 1 Lock Register is not locked and writes complete as normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5<br>SRL         | Status Register Lock  After being cleared, this bit can be set only by POR or software reset.  O Status Register is locked and writes are ignored.  Status Register is not locked and writes complete as normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4<br>CRL         | Control Register Lock  After being cleared, this bit can only be set by POR.  Control Register is locked and writes are ignored.  Control Register is not locked and writes complete as normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3<br>TCL         | Time Compensation Lock  After being cleared, this bit can be set only by POR or software reset.  0 Time Compensation Register is locked and writes are ignored.  1 Time Compensation Register is not locked and writes complete as normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reserved         | This field is reserved. This read-only field is reserved and always has the value 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 41.2.8 RTC Interrupt Enable Register (RTC\_IER)

Address: 4003\_8000h base + 1Ch offset = 4003\_801Ch



KL28Z Reference Manual, Rev. 4, 06/2016

## Register definition

# RTC\_IER field descriptions

| Field             | Description                                                                                                                                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                             |
| 18–16             | Timer Seconds Interrupt Configuration                                                                                                                                                                                                                                            |
| TSIC              | Configures the frequency of the RTC Seconds interrupt and the RTC_CLKOUT prescaler output. This field should only be altered when TSIE is clear.                                                                                                                                 |
|                   | 000 1 Hz.                                                                                                                                                                                                                                                                        |
|                   | 001 2 Hz.                                                                                                                                                                                                                                                                        |
|                   | 010 4 Hz.                                                                                                                                                                                                                                                                        |
|                   | 011 8 Hz.                                                                                                                                                                                                                                                                        |
|                   | 100 16 Hz.                                                                                                                                                                                                                                                                       |
|                   | 101 32 Hz.                                                                                                                                                                                                                                                                       |
|                   | 110 64 Hz.                                                                                                                                                                                                                                                                       |
|                   | 111 128 Hz.                                                                                                                                                                                                                                                                      |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                             |
| 7                 | Wakeup Pin On                                                                                                                                                                                                                                                                    |
| WPON              | The wakeup pin is optional and not available on all devices. Whenever the wakeup pin is enabled and this bit is set, the wakeup pin will assert.                                                                                                                                 |
|                   | 0 No effect.                                                                                                                                                                                                                                                                     |
|                   | 1 If the wakeup pin is enabled, then the wakeup pin will assert.                                                                                                                                                                                                                 |
| 6–5<br>Reserved   | This field is reserved.                                                                                                                                                                                                                                                          |
| 4                 | Time Seconds Interrupt Enable                                                                                                                                                                                                                                                    |
| TSIE              | The seconds interrupt is an edge-sensitive interrupt with a dedicated interrupt vector. It is generated at least once a second and requires no software overhead (there is no corresponding status flag to clear). The frequency of the seconds interrupt is configured by TSIC. |
|                   | 0 Seconds interrupt is disabled.                                                                                                                                                                                                                                                 |
|                   | 1 Seconds interrupt is enabled.                                                                                                                                                                                                                                                  |
| 3<br>Reserved     | This field is reserved.                                                                                                                                                                                                                                                          |
| 2                 | Time Alarm Interrupt Enable                                                                                                                                                                                                                                                      |
| TAIE              | 0 Time alarm flag does not generate an interrupt.                                                                                                                                                                                                                                |
|                   | Time alarm flag does generate an interrupt.                                                                                                                                                                                                                                      |
| 1                 | Time Overflow Interrupt Enable                                                                                                                                                                                                                                                   |
| TOIE              | O Time overflow flag does not generate an interrupt.                                                                                                                                                                                                                             |
|                   | 1 Time overflow flag does generate an interrupt.                                                                                                                                                                                                                                 |
| 0                 | Time Invalid Interrupt Enable                                                                                                                                                                                                                                                    |
| TIIE              |                                                                                                                                                                                                                                                                                  |
|                   | 0 Time invalid flag does not generate an interrupt.                                                                                                                                                                                                                              |
|                   | 1 Time invalid flag does generate an interrupt.                                                                                                                                                                                                                                  |

KL28Z Reference Manual, Rev. 4, 06/2016

# 41.3 Functional description

# 41.3.1 Power, clocking, and reset

The RTC is an always powered block that remains active in all low power modes.

The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator. Alternatively, the time counter can be clocked by the LPO and the prescaler will increment by 32 for each LPO clock.

The power-on-reset signal initializes all RTC registers to their default state. A software reset bit can also initialize all RTC registers.

#### 41.3.1.1 Oscillator control

The 32.768 kHz crystal oscillator is disabled at POR and must be enabled by software. After enabling the cystal oscillator, wait the oscillator startup time before setting SR[TCE] or using the oscillator clock external to the RTC.

The crystal oscillator includes tunable capacitors that can be configured by software. Do not change the capacitance unless the oscillator is disabled.

# 41.3.1.2 Software reset

Writing 1 to CR[SWR] forces the equivalent of a POR to the rest of the RTC module. CR[SWR] is not affected by the software reset and must be cleared by software.

# 41.3.1.3 Supervisor access

When the supervisor access control bit is clear, only supervisor mode software can write to the RTC registers, non-supervisor mode software will generate a bus error. Both supervisor and non-supervisor mode software can always read the RTC registers.

## 41.3.2 Time counter

The time counter consists of a 32-bit seconds counter that increments once every second and a 16-bit prescaler register that increments once every 32.768 kHz clock cycle. There is also the option to clock the prescaler using a 1 kHz LPO that increments the prescaler by 32 on every clock cycle.

Reading the time counter (either seconds or prescaler) while it is incrementing may return invalid data due to synchronization of the read data bus. If it is necessary for software to read the prescaler or seconds counter when they could be incrementing, it is recommended that two read accesses are performed and that software verifies that the same data was returned for both reads.

The time seconds register and time prescaler register can be written only when SR[TCE] is clear. Always write to the prescaler register before writing to the seconds register, because the seconds register increments on the falling edge of bit 14 of the prescaler register.

The time prescaler register increments provided SR[TCE] is set, SR[TIF] is clear, SR[TOF] is clear, and the 32.768 kHz (or 1 kHz) clock source is present. After enabling the oscillator, wait the oscillator startup time before setting SR[TCE] to allow time for the oscillator clock output to stabilize.

If the time seconds register overflows then the SR[TOF] will set and the time prescaler register will stop incrementing. Clear SR[TOF] by initializing the time seconds register. The time seconds register and time prescaler register read as zero whenever SR[TOF] is set.

SR[TIF] is set on POR and software reset and is cleared by initializing the time seconds register. The time seconds register and time prescaler register read as zero whenever SR[TIF] is set.

# 41.3.3 Compensation

The compensation logic provides an accurate and wide compensation range and can correct errors as high as 3906 ppm and as low as 0.12 ppm. The compensation factor must be calculated externally to the RTC and supplied by software to the compensation register. The RTC itself does not calculate the amount of compensation that is required, although the 1 Hz clock is output to an external pin in support of external calibration logic.

Crystal compensation can be supported by using firmware and crystal characteristics to determine the compensation amount. Temperature compensation can be supported by firmware that periodically measures the external temperature via ADC and updates the compensation register based on a look-up table that specifies the change in crystal frequency over temperature.

The compensation logic alters the number of 32.768 kHz clock cycles it takes for the prescaler register to overflow and increment the time seconds counter. The time compensation value is used to adjust the number of clock cycles between -127 and +128. Cycles are added or subtracted from the prescaler register when the prescaler register equals 0x3FFF and then increments. The compensation interval is used to adjust the frequency at which the time compensation value is used, that is, from once a second to once every 256 seconds.

Updates to the time compensation register will not take effect until the next time the time seconds register increments and provided the previous compensation interval has expired. When the compensation interval is set to other than once a second then the compensation is applied in the first second interval and the remaining second intervals receive no compensation.

Compensation is disabled by configuring the time compensation register to zero.

When the prescaler is configured to increment using the 1 kHz LPO, the effective compensation value is divided by 32 and can only adjust the number of clock cycles between -4 and +3.

## 41.3.4 Time alarm

The Time Alarm register (TAR), SR[TAF], and IER[TAIE] allow the RTC to generate an interrupt at a predefined time. The 32-bit TAR is compared with the 32-bit Time Seconds register (TSR) each time it increments. SR[TAF] will set when TAR equals TSR and TSR increments.

SR[TAF] is cleared by writing TAR. This will usually be the next alarm value, although writing a value that is less than TSR, such as 0, will prevent SR[TAF] from setting again. SR[TAF] cannot otherwise be disabled, although the interrupt it generates is enabled or disabled by IER[TAIE].

# 41.3.5 Update mode

The Update Mode field in the Control register (CR[UM]) configures software write access to the Time Counter Enable (SR[TCE]) field. When CR[UM] is clear, SR[TCE] can be written only when LR[SRL] is set. When CR[UM] is set, SR[TCE] can also be written when SR[TCE] is clear or when SR[TIF] or SR[TOF] are set. This allows the time seconds and prescaler registers to be initialized whenever time is invalidated, while preventing the time seconds and prescaler registers from being changed on the fly. When LR[SRL] is set, CR[UM] has no effect on SR[TCE].

# 41.3.6 Register lock

The Lock register (LR) can be used to block write accesses to certain registers until the next POR or software reset. Locking the Control register (CR) will disable the software reset. Locking LR will block future updates to LR.

Write accesses to a locked register are ignored and do not generate a bus error.

# 41.3.7 Interrupt

The RTC interrupt is asserted whenever a status flag and the corresponding interrupt enable bit are both set. It is always asserted on POR, and software reset. The RTC interrupt is enabled at the chip level by enabling the chip-specific RTC clock gate control bit. The RTC interrupt can be used to wakeup the chip from any low-power mode.

The optional RTC seconds interrupt is an edge-sensitive interrupt with a dedicated interrupt vector that is generated once a second and requires no software overhead (there is no corresponding status flag to clear). It is enabled in the RTC by the time seconds interrupt enable bit and enabled at the chip level by setting the chip-specific RTC clock gate control bit. The frequency of the seconds interrupt defaults to 1 Hz, but can instead be configured to trigger every 2, 4, 8, 16, 32, 64 or 128 Hz. This interrupt is optional and may not be implemented on all devices.

# Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

## 42.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The I<sup>2</sup>S (or I2S) module provides a synchronous audio interface (SAI) that supports full-duplex serial interfaces with frame synchronization such as I<sup>2</sup>S, AC97, TDM, and codec/DSP interfaces.

## 42.1.1 Features

Note that some of the features are not supported across all SAI instances; see the chip-specific information in the first section of this chapter.

- Transmitter with independent bit clock and frame sync supporting 1 data line
- Receiver with independent bit clock and frame sync supporting 1 data line
- Maximum Frame Size of 16 words
- Word size of between 8-bits and 32-bits
- Word size configured separately for first word and remaining words in frame
- Supports graceful restart after FIFO error
- Supports automatic restart after FIFO error without software intervention
- Supports packing of 8-bit and 16-bit data into each 32-bit FIFO word

# 42.1.2 Block diagram

The following block diagram also shows the module clocks.

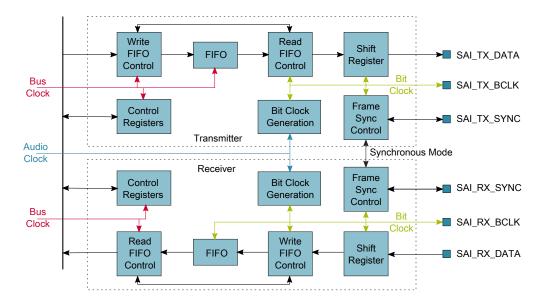



Figure 42-1. I<sup>2</sup>S/SAI block diagram

# 42.1.3 Modes of operation

The module operates in these power modes: Run mode, stop modes, low-leakage modes, and Debug mode.

## 42.1.3.1 Run mode

In Run mode, the SAI transmitter and receiver operate normally.

# 42.1.3.2 Stop modes

In Stop mode, the SAI transmitter and/or receiver can continue operating provided the appropriate Stop Enable bit is set (TCSR[STOPE] and/or RCSR[STOPE], respectively), and provided the transmitter and/or receiver is/are using an externally generated bit clock or an Audio Master Clock that remains operating in Stop mode. The SAI transmitter and/or receiver can generate an asynchronous interrupt to wake the CPU from Stop mode.

In Stop mode, if the Transmitter Stop Enable (TCSR[STOPE]) bit is clear, the transmitter is disabled after completing the current transmit frame, and, if the Receiver Stop Enable (RCSR[STOPE]) bit is clear, the receiver is disabled after completing the current receive frame. Entry into Stop mode is prevented—not acknowledged—while waiting for the transmitter and receiver to be disabled at the end of the current frame.

## 42.1.3.3 Low-leakage modes

When entering low-leakage modes, the Stop Enable (TCSR[STOPE] and RCSR[STOPE]) bits are ignored and the SAI is disabled after completing the current transmit and receive Frames. Entry into stop mode is prevented (not acknowledged) while waiting for the transmitter and receiver to be disabled at the end of the current frame.

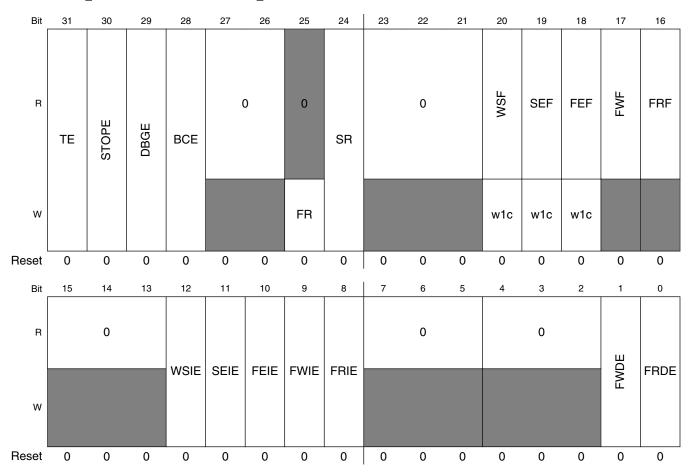
# 42.1.3.4 Debug mode

In Debug mode, the SAI transmitter and/or receiver can continue operating provided the Debug Enable bit is set. When TCSR[DBGE] or RCSR[DBGE] bit is clear and Debug mode is entered, the SAI is disabled after completing the current transmit or receive frame. The transmitter and receiver bit clocks are not affected by Debug mode.

# 42.2 External signals

| Name        | Function                                                                                                                                                                                           | I/O |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SAI_TX_BCLK | Transmit Bit Clock. The bit clock is an input when externally generated and an output when internally generated.                                                                                   | I/O |
| SAI_TX_SYNC | Transmit Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated. | I/O |
| SAI_TX_DATA | Transmit Data. The transmit data is generated synchronously by the bit clock and is tristated whenever not transmitting a word.                                                                    | 0   |
| SAI_RX_BCLK | Receive Bit Clock. The bit clock is an input when externally generated and an output when internally generated.                                                                                    | I/O |
| SAI_RX_SYNC | Receive Frame Sync. The frame sync is an input sampled synchronously by the bit clock when externally generated and an output generated synchronously by the bit clock when internally generated.  | I/O |
| SAI_RX_DATA | Receive Data. The receive data is sampled synchronously by the bit clock.                                                                                                                          | I   |
| SAI_MCLK    | Audio Master Clock.                                                                                                                                                                                | I   |

# 42.3 Memory map and register definition


A read or write access to an address from offset 0x100 and above will result in a bus error.

## **I2S** memory map

| Absolute address (hex) | Register name                                     | Width<br>(in bits) | Access                   | Reset value | Section/<br>page |
|------------------------|---------------------------------------------------|--------------------|--------------------------|-------------|------------------|
| 4004_C000              | SAI Transmit Control Register (I2S0_TCSR)         | 32                 | R/W                      | 0000_0000h  | 42.3.1/1047      |
| 4004_C004              | SAI Transmit Configuration 1 Register (I2S0_TCR1) | 32                 | R/W                      | 0000_0000h  | 42.3.2/1050      |
| 4004_C008              | SAI Transmit Configuration 2 Register (I2S0_TCR2) | 32                 | R/W                      | 0000_0000h  | 42.3.3/1050      |
| 4004_C00C              | SAI Transmit Configuration 3 Register (I2S0_TCR3) | 32                 | R/W                      | 0000_0000h  | 42.3.4/1052      |
| 4004_C010              | SAI Transmit Configuration 4 Register (I2S0_TCR4) | 32                 | R/W                      | 0000_0000h  | 42.3.5/1053      |
| 4004_C014              | SAI Transmit Configuration 5 Register (I2S0_TCR5) | 32                 | R/W                      | 0000_0000h  | 42.3.6/1055      |
| 4004_C020              | SAI Transmit Data Register (I2S0_TDR0)            | 32                 | W<br>(always<br>reads 0) | 0000_0000h  | 42.3.7/1055      |
| 4004_C040              | SAI Transmit FIFO Register (I2S0_TFR0)            | 32                 | R                        | 0000_0000h  | 42.3.8/1056      |
| 4004_C060              | SAI Transmit Mask Register (I2S0_TMR)             | 32                 | R/W                      | 0000_0000h  | 42.3.9/1056      |
| 4004_C080              | SAI Receive Control Register (I2S0_RCSR)          | 32                 | R/W                      | 0000_0000h  | 42.3.10/<br>1058 |
| 4004_C084              | SAI Receive Configuration 1 Register (I2S0_RCR1)  | 32                 | R/W                      | 0000_0000h  | 42.3.11/<br>1061 |
| 4004_C088              | SAI Receive Configuration 2 Register (I2S0_RCR2)  | 32                 | R/W                      | 0000_0000h  | 42.3.12/<br>1061 |
| 4004_C08C              | SAI Receive Configuration 3 Register (I2S0_RCR3)  | 32                 | R/W                      | 0000_0000h  | 42.3.13/<br>1063 |
| 4004_C090              | SAI Receive Configuration 4 Register (I2S0_RCR4)  | 32                 | R/W                      | 0000_0000h  | 42.3.14/<br>1064 |
| 4004_C094              | SAI Receive Configuration 5 Register (I2S0_RCR5)  | 32                 | R/W                      | 0000_0000h  | 42.3.15/<br>1066 |
| 4004_C0A0              | SAI Receive Data Register (I2S0_RDR0)             | 32                 | R                        | 0000_0000h  | 42.3.16/<br>1066 |
| 4004_C0C0              | SAI Receive FIFO Register (I2S0_RFR0)             | 32                 | R                        | 0000_0000h  | 42.3.17/<br>1067 |
| 4004_C0E0              | SAI Receive Mask Register (I2S0_RMR)              | 32                 | R/W                      | 0000_0000h  | 42.3.18/<br>1067 |

# 42.3.1 SAI Transmit Control Register (I2Sx\_TCSR)

Address: 4004\_C000h base + 0h offset = 4004\_C000h



#### I2Sx\_TCSR field descriptions

| Field       | Description                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31          | Transmitter Enable                                                                                                                                                |
| TE          | Enables/disables the transmitter. When software clears this field, the transmitter remains enabled, and this bit remains set, until the end of the current frame. |
|             | 0 Transmitter is disabled.                                                                                                                                        |
|             | 1 Transmitter is enabled, or transmitter has been disabled and has not yet reached end of frame.                                                                  |
| 30<br>STOPE | Stop Enable  Configures transmitter operation in Stop mode. This field is ignored and the transmitter is disabled in all low-leakage stop modes.                  |
|             | 0 Transmitter disabled in Stop mode.                                                                                                                              |
|             | 1 Transmitter enabled in Stop mode.                                                                                                                               |
| 29<br>DBGE  | Debug Enable                                                                                                                                                      |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

## Memory map and register definition

# I2Sx\_TCSR field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Enables/disables transmitter operation in Debug mode. The transmit bit clock is not affected by debug mode.                                                                                                                                 |
|                   | <ul> <li>Transmitter is disabled in Debug mode, after completing the current frame.</li> <li>Transmitter is enabled in Debug mode.</li> </ul>                                                                                               |
| 28<br>BCE         | Bit Clock Enable  Enables the transmit bit clock, separately from the TE. This field is automatically set whenever TE is set.  When software clears this field, the transmit bit clock remains enabled, and this bit remains set, until the |
|                   | end of the current frame.  0 Transmit bit clock is disabled.                                                                                                                                                                                |
|                   | 1 Transmit bit clock is enabled.                                                                                                                                                                                                            |
| 27–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                        |
| 25<br>FR          | FIFO Reset                                                                                                                                                                                                                                  |
|                   | Resets the FIFO pointers. Reading this field will always return zero. FIFO pointers should only be reset when the transmitter is disabled or the FIFO error flag is set.                                                                    |
|                   | 0 No effect. 1 FIFO reset.                                                                                                                                                                                                                  |
| 24<br>SR          | Software Reset                                                                                                                                                                                                                              |
|                   | When set, resets the internal transmitter logic including the FIFO pointers. Software-visible registers are not affected, except for the status registers.                                                                                  |
|                   | 0 No effect.                                                                                                                                                                                                                                |
|                   | 1 Software reset.                                                                                                                                                                                                                           |
| 23–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                        |
| 20<br>WSF         | Word Start Flag                                                                                                                                                                                                                             |
|                   | Indicates that the start of the configured word has been detected. Write a logic 1 to this field to clear this flag.                                                                                                                        |
|                   | <ul><li>0 Start of word not detected.</li><li>1 Start of word detected.</li></ul>                                                                                                                                                           |
| 19                | Sync Error Flag                                                                                                                                                                                                                             |
| SEF               | Indicates that an error in the externally-generated frame sync has been detected. Write a logic 1 to this field to clear this flag.                                                                                                         |
|                   | 0 Sync error not detected.                                                                                                                                                                                                                  |
|                   | 1 Frame sync error detected.                                                                                                                                                                                                                |
| 18<br>FEF         | FIFO Error Flag Indicates that an enabled transmit FIFO has underrun. Write a logic 1 to this field to clear this flag.                                                                                                                     |
|                   | O Transmit underrun not detected.                                                                                                                                                                                                           |
|                   | 1 Transmit underrun detected.                                                                                                                                                                                                               |

Table continues on the next page...

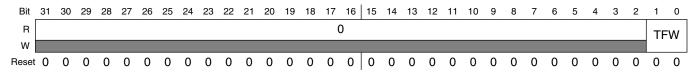
## Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

## I2Sx\_TCSR field descriptions (continued)

| Field             | Description                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------|
| 17                | FIFO Warning Flag                                                                                   |
| FWF               | Indicates that an enabled transmit FIFO is empty.                                                   |
|                   |                                                                                                     |
|                   | <ul><li>No enabled transmit FIFO is empty.</li><li>Enabled transmit FIFO is empty.</li></ul>        |
| 16                | FIFO Request Flag                                                                                   |
| FRF               | Indicates that the number of words in an enabled transmit channel FIFO is less than or equal to the |
|                   | transmit FIFO watermark.                                                                            |
|                   | Transmit FIFO watermark has not been reached.                                                       |
|                   | 1 Transmit FIFO watermark has been reached.                                                         |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                |
| 12                | Word Start Interrupt Enable                                                                         |
| WSIE              | Enables/disables word start interrupts.                                                             |
|                   |                                                                                                     |
|                   | <ul><li>0 Disables interrupt.</li><li>1 Enables interrupt.</li></ul>                                |
| 11                | Sync Error Interrupt Enable                                                                         |
| SEIE              | Enables/disables sync error interrupts.                                                             |
|                   |                                                                                                     |
|                   | <ul><li>0 Disables interrupt.</li><li>1 Enables interrupt.</li></ul>                                |
| 10                | FIFO Error Interrupt Enable                                                                         |
| FEIE              | Enables/disables FIFO error interrupts.                                                             |
|                   |                                                                                                     |
|                   | <ul><li>0 Disables the interrupt.</li><li>1 Enables the interrupt.</li></ul>                        |
| 9                 | FIFO Warning Interrupt Enable                                                                       |
| FWIE              | Enables/disables FIFO warning interrupts.                                                           |
|                   |                                                                                                     |
|                   | <ul><li>0 Disables the interrupt.</li><li>1 Enables the interrupt.</li></ul>                        |
| 8                 | FIFO Request Interrupt Enable                                                                       |
| FRIE              | Enables/disables FIFO request interrupts.                                                           |
|                   |                                                                                                     |
|                   | <ul><li>0 Disables the interrupt.</li><li>1 Enables the interrupt.</li></ul>                        |
| 7–5               | This field is reserved.                                                                             |
| Reserved          | This read-only field is reserved and always has the value 0.                                        |
| 4–2<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                |
| 1                 | FIFO Warning DMA Enable                                                                             |
| FWDE              |                                                                                                     |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### Memory map and register definition

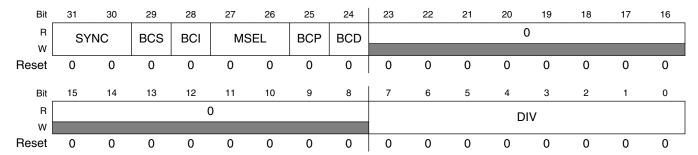
## I2Sx\_TCSR field descriptions (continued)

| Field     | Description                                                                      |
|-----------|----------------------------------------------------------------------------------|
|           | Enables/disables DMA requests.                                                   |
|           | <ul><li>0 Disables the DMA request.</li><li>1 Enables the DMA request.</li></ul> |
| 0<br>FRDE | FIFO Request DMA Enable  Enables/disables DMA requests.                          |
|           | Disables the DMA request.     Enables the DMA request.                           |

# 42.3.2 SAI Transmit Configuration 1 Register (I2Sx\_TCR1)

Address: 4004\_C000h base + 4h offset = 4004\_C004h




#### I2Sx\_TCR1 field descriptions

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| TFW              | Transmit FIFO Watermark                                                              |
|                  | Configures the watermark level for all enabled transmit channels.                    |

## 42.3.3 SAI Transmit Configuration 2 Register (I2Sx\_TCR2)

This register must not be altered when TCSR[TE] is set.

Address: 4004\_C000h base + 8h offset = 4004\_C008h



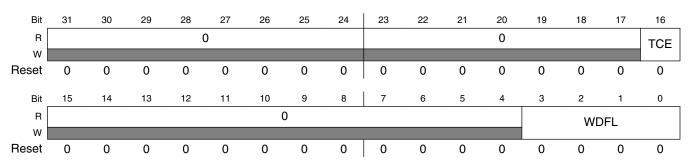
## Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

## I2Sx\_TCR2 field descriptions

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30     | Synchronous Mode                                                                                                                                                                                                                                                                                                                                                                                 |
| SYNC      | Configures between asynchronous and synchronous modes of operation. When configured for a synchronous mode of operation, the receiver must be configured for asynchronous operation.                                                                                                                                                                                                             |
|           | 00 Asynchronous mode.                                                                                                                                                                                                                                                                                                                                                                            |
|           | 01 Synchronous with receiver.                                                                                                                                                                                                                                                                                                                                                                    |
| 29        | Bit Clock Swap                                                                                                                                                                                                                                                                                                                                                                                   |
| BCS       | This field swaps the bit clock used by the transmitter. When the transmitter is configured in asynchronous mode and this bit is set, the transmitter is clocked by the receiver bit clock (SAI_RX_BCLK). This allows the transmitter and receiver to share the same bit clock, but the transmitter continues to use the transmit frame sync (SAI_TX_SYNC).                                       |
|           | When the transmitter is configured in synchronous mode, the transmitter BCS field and receiver BCS field must be set to the same value. When both are set, the transmitter and receiver are both clocked by the transmitter bit clock (SAI_TX_BCLK) but use the receiver frame sync (SAI_RX_SYNC).                                                                                               |
|           | 0 Use the normal bit clock source.                                                                                                                                                                                                                                                                                                                                                               |
|           | 1 Swap the bit clock source.                                                                                                                                                                                                                                                                                                                                                                     |
| 28<br>BCI | Bit Clock Input                                                                                                                                                                                                                                                                                                                                                                                  |
| Boi       | When this field is set and using an internally generated bit clock in either synchronous or asynchronous mode, the bit clock actually used by the transmitter is delayed by the pad output delay (the transmitter is clocked by the pad input as if the clock was externally generated). This has the effect of decreasing the data input setup time, but increasing the data output valid time. |
|           | The slave mode timing from the datasheet should be used for the transmitter when this bit is set. In synchronous mode, this bit allows the transmitter to use the slave mode timing from the datasheet, while the receiver uses the master mode timing. This field has no effect when configured for an externally generated bit clock.                                                          |
|           | 0 No effect.                                                                                                                                                                                                                                                                                                                                                                                     |
|           | 1 Internal logic is clocked as if bit clock was externally generated.                                                                                                                                                                                                                                                                                                                            |
| 27–26     | MCLK Select                                                                                                                                                                                                                                                                                                                                                                                      |
| MSEL      | Selects the audio Master Clock option used to generate an internally generated bit clock. This field has no effect when configured for an externally generated bit clock.                                                                                                                                                                                                                        |
|           | <b>NOTE:</b> Depending on the device, some Master Clock options might not be available. See the chip-specific information for the meaning of each option.                                                                                                                                                                                                                                        |
|           | 01 Master Clock (MCLK) 1 option selected.                                                                                                                                                                                                                                                                                                                                                        |
|           | 10 Master Clock (MCLK) 2 option selected.                                                                                                                                                                                                                                                                                                                                                        |
|           | 11 Master Clock (MCLK) 3 option selected.                                                                                                                                                                                                                                                                                                                                                        |
| 25<br>BCP | Bit Clock Polarity                                                                                                                                                                                                                                                                                                                                                                               |
|           | Configures the polarity of the bit clock.                                                                                                                                                                                                                                                                                                                                                        |
|           | Bit clock is active high with drive outputs on rising edge and sample inputs on falling edge.                                                                                                                                                                                                                                                                                                    |
|           | 1 Bit clock is active low with drive outputs on falling edge and sample inputs on rising edge.                                                                                                                                                                                                                                                                                                   |
| 24        | Bit Clock Direction                                                                                                                                                                                                                                                                                                                                                                              |
| BCD       | Configures the direction of the bit clock.                                                                                                                                                                                                                                                                                                                                                       |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### Memory map and register definition

## I2Sx\_TCR2 field descriptions (continued)

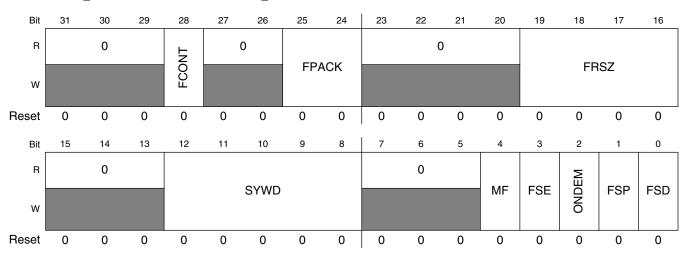
| Field            | Description                                                                                                                                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Bit clock is generated externally in Slave mode.                                                                                              |
|                  | 1 Bit clock is generated internally in Master mode.                                                                                           |
| 23–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                          |
| DIV              | Bit Clock Divide                                                                                                                              |
|                  | Divides down the audio master clock to generate the bit clock when configured for an internal bit clock. The division value is (DIV + 1) * 2. |

# SAI Transmit Configuration 3 Register (I2Sx\_TCR3)

Address: 4004\_C000h base + Ch offset = 4004\_C00Ch



## I2Sx\_TCR3 field descriptions


| Field             | Description                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                 |
| 23–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                 |
| 16<br>TCE         | Transmit Channel Enable  Enables the corresponding data channel for transmit operation. A channel must be enabled before its FIFO is accessed. Changing this field will take effect immediately for generating the FIFO request and warning flags, but at the end of each frame for transmit operation.  O Transmit data channel N is disabled.  Transmit data channel N is enabled. |
| 15–4<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                 |
| WDFL              | Word Flag Configuration  Configures which word sets the start of word flag. The value written must be one less than the word number. For example, writing 0 configures the first word in the frame. When configured to a value greater than TCR4[FRSZ], then the start of word flag is never set.                                                                                    |

KL28Z Reference Manual, Rev. 4, 06/2016 1052 **NXP Semiconductors** 

# 42.3.5 SAI Transmit Configuration 4 Register (I2Sx\_TCR4)

This register must not be altered when TCSR[TE] is set.

Address: 4004\_C000h base + 10h offset = 4004\_C010h



## I2Sx\_TCR4 field descriptions

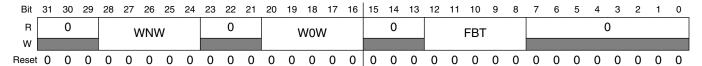
| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–29<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28<br>FCONT       | FIFO Continue on Error  Configures when the SAI will continue transmitting after a FIFO error has been detected.                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | On FIFO error, the SAI will continue from the start of the next frame after the FIFO error flag has been cleared.                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 1 On FIFO error, the SAI will continue from the same word that caused the FIFO error to set after the FIFO warning flag has been cleared.                                                                                                                                                                                                                                                                                                                                                           |
| 27–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25–24<br>FPACK    | FIFO Packing Mode  Enables packing of 8-bit data or 16-bit data into each 32-bit FIFO word. If the word size is greater than 8-bit or 16-bit then only the first 8-bit or 16-bits are loaded from the FIFO. The first word in each frame always starts with a new 32-bit FIFO word and the first bit shifted must be configured within the first packed word. When FIFO packing is enabled, the FIFO write pointer will only increment when the full 32-bit FIFO word has been written by software. |
|                   | 00 FIFO packing is disabled 01 Reserved 10 8-bit FIFO packing is enabled 11 16-bit FIFO packing is enabled                                                                                                                                                                                                                                                                                                                                                                                          |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                |

Table continues on the next page...

NXP Semiconductors

1053

## Memory map and register definition

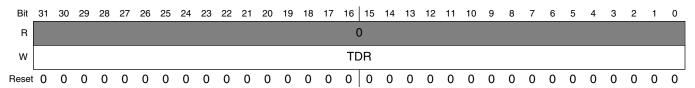

# I2Sx\_TCR4 field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19–16<br>FRSZ     | Frame size  Configures the number of words in each frame. The value written must be one less than the number of words in the frame. For example, write 0 for one word per frame. The maximum supported frame size is 16 words.                                                                        |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                  |
| 12–8<br>SYWD      | Sync Width  Configures the length of the frame sync in number of bit clocks. The value written must be one less than the number of bit clocks. For example, write 0 for the frame sync to assert for one bit clock only. The sync width cannot be configured longer than the first word of the frame. |
| 7–5<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                  |
| 4<br>MF           | MSB First  Configures whether the LSB or the MSB is transmitted first.  USB is transmitted first.  MSB is transmitted first.                                                                                                                                                                          |
| 3<br>FSE          | Frame Sync Early  0 Frame sync asserts with the first bit of the frame.  1 Frame sync asserts one bit before the first bit of the frame.                                                                                                                                                              |
| 2<br>ONDEM        | On Demand Mode  When set, and the frame sync is generated internally, a frame sync is only generated when the FIFO warning flag is clear.  O Internal frame sync is generated continuously.  Internal frame sync is generated when the FIFO warning flag is clear.                                    |
| 1<br>FSP          | Frame Sync Polarity  Configures the polarity of the frame sync.  0 Frame sync is active high.  1 Frame sync is active low.                                                                                                                                                                            |
| 0<br>FSD          | Frame Sync Direction  Configures the direction of the frame sync.  0 Frame sync is generated externally in Slave mode.  1 Frame sync is generated internally in Master mode.                                                                                                                          |

# 42.3.6 SAI Transmit Configuration 5 Register (I2Sx\_TCR5)

This register must not be altered when TCSR[TE] is set.

Address: 4004\_C000h base + 14h offset = 4004\_C014h



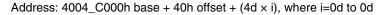

#### I2Sx\_TCR5 field descriptions

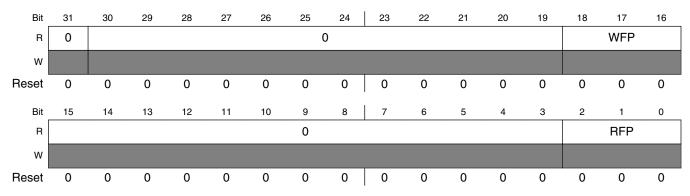
| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–29<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28–24<br>WNW      | Word N Width  Configures the number of bits in each word, for each word except the first in the frame. The value written must be one less than the number of bits per word. Word width of less than 8 bits is not supported.                                                                                                                                                                                                                                                                                                          |
| 23–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20–16<br>W0W      | Word 0 Width  Configures the number of bits in the first word in each frame. The value written must be one less than the number of bits in the first word. Word width of less than 8 bits is not supported if there is only one word per frame.                                                                                                                                                                                                                                                                                       |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12–8<br>FBT       | First Bit Shifted  Configures the bit index for the first bit transmitted for each word in the frame. If configured for MSB First, the index of the next bit transmitted is one less than the current bit transmitted. If configured for LSB First, the index of the next bit transmitted is one more than the current bit transmitted. The value written must be greater than or equal to the word width when configured for MSB First. The value written must be less than or equal to 31-word width when configured for LSB First. |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 42.3.7 SAI Transmit Data Register (I2Sx\_TDRn)

Address: 4004\_C000h base + 20h offset +  $(4d \times i)$ , where i=0d to 0d




KL28Z Reference Manual, Rev. 4, 06/2016


#### I2Sx\_TDRn field descriptions

| Field | Description                                                                                                                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TDR   | Transmit Data Register                                                                                                                                                                                                                                                                    |
|       | The corresponding TCR3[TCE] bit must be set before accessing the channel's transmit data register. Writes to this register when the transmit FIFO is not full will push the data written into the transmit data FIFO. Writes to this register when the transmit FIFO is full are ignored. |

## 42.3.8 SAI Transmit FIFO Register (I2Sx\_TFRn)

The MSB of the read and write pointers is used to distinguish between FIFO full and empty conditions. If the read and write pointers are identical, then the FIFO is empty. If the read and write pointers are identical except for the MSB, then the FIFO is full.

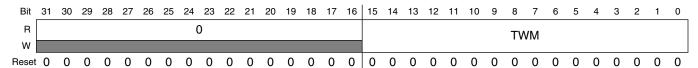




#### I2Sx\_TFRn field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 30–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 18–16<br>WFP      | Write FIFO Pointer FIFO write pointer for transmit data channel.                     |
| 15–3<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| RFP               | Read FIFO Pointer  FIFO read pointer for transmit data channel.                      |

## 42.3.9 SAI Transmit Mask Register (I2Sx\_TMR)

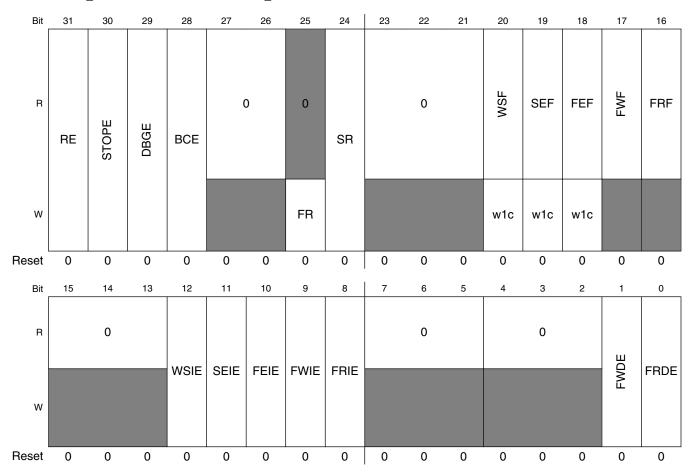

This register is double-buffered and updates:

#### Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

- 1. When TCSR[TE] is first set
- 2. At the end of each frame.

This allows the masked words in each frame to change from frame to frame.

Address: 4004\_C000h base + 60h offset = 4004\_C060h




## I2Sx\_TMR field descriptions

| Field             | Description                                                                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                           |
| TWM               | Transmit Word Mask  Configures whether the transmit word is masked (transmit data pin tristated and transmit data not read from FIFO) for the corresponding word in the frame. |
|                   | O Word N is enabled.  Word N is masked. The transmit data pins are tri-stated when masked.                                                                                     |

# 42.3.10 SAI Receive Control Register (I2Sx\_RCSR)

Address: 4004\_C000h base + 80h offset = 4004\_C080h



#### I2Sx\_RCSR field descriptions

| Field       | Description                                                                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>RE    | Receiver Enable                                                                                                                                             |
|             | Enables/disables the receiver. When software clears this field, the receiver remains enabled, and this bit remains set, until the end of the current frame. |
|             | 0 Receiver is disabled.                                                                                                                                     |
|             | 1 Receiver is enabled, or receiver has been disabled and has not yet reached end of frame.                                                                  |
| 30<br>STOPE | Stop Enable                                                                                                                                                 |
|             | Configures receiver operation in Stop mode. This bit is ignored and the receiver is disabled in all low-leakage stop modes.                                 |
|             | 0 Receiver disabled in Stop mode.                                                                                                                           |
|             | 1 Receiver enabled in Stop mode.                                                                                                                            |
| 29          | Debug Enable                                                                                                                                                |
| DBGE        |                                                                                                                                                             |

Table continues on the next page...

## Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

## I2Sx\_RCSR field descriptions (continued)

|                   | Enables/disables receiver operation in Debug mode. The receive bit clock is not affected by Debug mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | The state of the s |
|                   | 0 Receiver is disabled in Debug mode, after completing the current frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 1 Receiver is enabled in Debug mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28<br>BCE         | Bit Clock Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BCE               | Enables the receive bit clock, separately from RE. This field is automatically set whenever RE is set. When software clears this field, the receive bit clock remains enabled, and this field remains set, until the end of the current frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 0 Receive bit clock is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | 1 Receive bit clock is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25<br>FR          | FIFO Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| rn<br>            | Resets the FIFO pointers. Reading this field will always return zero. FIFO pointers should only be reset when the receiver is disabled or the FIFO error flag is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 0 No effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 1 FIFO reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24<br>SR          | Software Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | Resets the internal receiver logic including the FIFO pointers. Software-visible registers are not affected, except for the status registers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 0 No effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 1 Software reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20<br>WSF         | Word Start Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WOI               | Indicates that the start of the configured word has been detected. Write a logic 1 to this field to clear this flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 0 Start of word not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 1 Start of word detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19<br>SEF         | Sync Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEF               | Indicates that an error in the externally-generated frame sync has been detected. Write a logic 1 to this field to clear this flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 0 Sync error not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 1 Frame sync error detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18<br>FEF         | FIFO Error Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rer               | Indicates that an enabled receive FIFO has overflowed. Write a logic 1 to this field to clear this flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 0 Receive overflow not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b></b>           | 1 Receive overflow detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17<br>FWF         | FIFO Warning Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

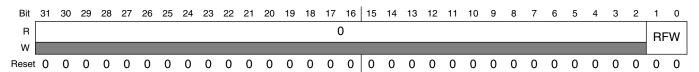
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definition

# I2Sx\_RCSR field descriptions (continued)

| Field             | Description                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------|
|                   | Indicates that an enabled receive FIFO is full.                                                                   |
|                   | 0 No enabled receive FIFO is full.                                                                                |
|                   | 1 Enabled receive FIFO is full.                                                                                   |
| 16<br>FRF         | FIFO Request Flag                                                                                                 |
| FNF               | Indicates that the number of words in an enabled receive channel FIFO is greater than the receive FIFO watermark. |
|                   | 0 Receive FIFO watermark not reached.                                                                             |
|                   | 1 Receive FIFO watermark has been reached.                                                                        |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                              |
| 12                | Word Start Interrupt Enable                                                                                       |
| WSIE              | Enables/disables word start interrupts.                                                                           |
|                   |                                                                                                                   |
|                   | <ul><li>0 Disables interrupt.</li><li>1 Enables interrupt.</li></ul>                                              |
| 11                | Sync Error Interrupt Enable                                                                                       |
| SEIE              |                                                                                                                   |
|                   | Enables/disables sync error interrupts.                                                                           |
|                   | O Disables interrupt.                                                                                             |
| 10                | Enables interrupt.  FIFO Error Interrupt Enable                                                                   |
| FEIE              |                                                                                                                   |
|                   | Enables/disables FIFO error interrupts.                                                                           |
|                   | 0 Disables the interrupt.                                                                                         |
|                   | 1 Enables the interrupt.                                                                                          |
| 9<br>FWIE         | FIFO Warning Interrupt Enable                                                                                     |
|                   | Enables/disables FIFO warning interrupts.                                                                         |
|                   | 0 Disables the interrupt.                                                                                         |
|                   | 1 Enables the interrupt.                                                                                          |
| 8<br>FRIE         | FIFO Request Interrupt Enable                                                                                     |
| FRIE              | Enables/disables FIFO request interrupts.                                                                         |
|                   | 0 Disables the interrupt.                                                                                         |
|                   | 1 Enables the interrupt.                                                                                          |
| 7–5<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                              |
| 4–2               | This field is reserved.                                                                                           |
| Reserved          | This read-only field is reserved and always has the value 0.                                                      |
| 1<br>FWDE         | FIFO Warning DMA Enable                                                                                           |
| FVVDE             | Enables/disables DMA requests.                                                                                    |


Table continues on the next page...

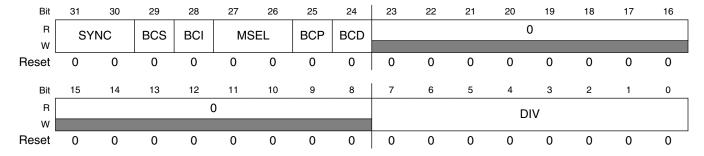
#### I2Sx\_RCSR field descriptions (continued)

| Field     | Description                    |
|-----------|--------------------------------|
|           | 0 Disables the DMA request.    |
|           | 1 Enables the DMA request.     |
| 0<br>FRDE | FIFO Request DMA Enable        |
| 11.52     | Enables/disables DMA requests. |
|           | 0 Disables the DMA request.    |
|           | 1 Enables the DMA request.     |

## 42.3.11 SAI Receive Configuration 1 Register (I2Sx\_RCR1)

Address: 4004\_C000h base + 84h offset = 4004\_C084h




#### I2Sx\_RCR1 field descriptions

| Field    | Description                                                       |
|----------|-------------------------------------------------------------------|
| 31–2     | This field is reserved.                                           |
| Reserved | This read-only field is reserved and always has the value 0.      |
| RFW      | Receive FIFO Watermark                                            |
|          | Configures the watermark level for all enabled receiver channels. |

# 42.3.12 SAI Receive Configuration 2 Register (I2Sx\_RCR2)

This register must not be altered when RCSR[RE] is set.

Address: 4004\_C000h base + 88h offset = 4004\_C088h



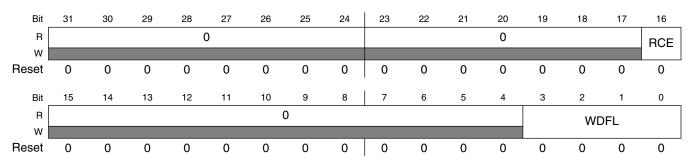
## Memory map and register definition

# I2Sx\_RCR2 field descriptions

| Field     | Description                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–30     | Synchronous Mode                                                                                                                                                                                                                                                                                                                                                                           |
| SYNC      | Configures between asynchronous and synchronous modes of operation. When configured for a synchronous mode of operation, the transmitter must be configured for asynchronous operation.                                                                                                                                                                                                    |
|           | 00 Asynchronous mode.                                                                                                                                                                                                                                                                                                                                                                      |
|           | 01 Synchronous with transmitter.                                                                                                                                                                                                                                                                                                                                                           |
| 29        | Bit Clock Swap                                                                                                                                                                                                                                                                                                                                                                             |
| BCS       | This field swaps the bit clock used by the receiver. When the receiver is configured in asynchronous mode and this bit is set, the receiver is clocked by the transmitter bit clock (SAI_TX_BCLK). This allows the transmitter and receiver to share the same bit clock, but the receiver continues to use the receiver frame sync (SAI_RX_SYNC).                                          |
|           | When the receiver is configured in synchronous mode, the transmitter BCS field and receiver BCS field must be set to the same value. When both are set, the transmitter and receiver are both clocked by the receiver bit clock (SAI_RX_BCLK) but use the transmitter frame sync (SAI_TX_SYNC).                                                                                            |
|           | 0 Use the normal bit clock source.                                                                                                                                                                                                                                                                                                                                                         |
|           | 1 Swap the bit clock source.                                                                                                                                                                                                                                                                                                                                                               |
| 28        | Bit Clock Input                                                                                                                                                                                                                                                                                                                                                                            |
| BCI       | When this field is set and using an internally generated bit clock in either synchronous or asynchronous mode, the bit clock actually used by the receiver is delayed by the pad output delay (the receiver is clocked by the pad input as if the clock was externally generated). This has the effect of decreasing the data input setup time, but increasing the data output valid time. |
|           | The slave mode timing from the datasheet should be used for the receiver when this bit is set. In synchronous mode, this bit allows the receiver to use the slave mode timing from the datasheet, while the transmitter uses the master mode timing. This field has no effect when configured for an externally generated bit clock.                                                       |
|           | 0 No effect.                                                                                                                                                                                                                                                                                                                                                                               |
|           | 1 Internal logic is clocked as if bit clock was externally generated.                                                                                                                                                                                                                                                                                                                      |
| 27–26     | MCLK Select                                                                                                                                                                                                                                                                                                                                                                                |
| MSEL      | Selects the audio Master Clock option used to generate an internally generated bit clock. This field has no effect when configured for an externally generated bit clock.                                                                                                                                                                                                                  |
|           | NOTE: Depending on the device, some Master Clock options might not be available. See the chip-specific information for the availability and chip-specific meaning of each option.                                                                                                                                                                                                          |
|           | 00 Bus Clock selected.                                                                                                                                                                                                                                                                                                                                                                     |
|           | 01 Master Clock (MCLK) 1 option selected.                                                                                                                                                                                                                                                                                                                                                  |
|           | 10 Master Clock (MCLK) 2 option selected.                                                                                                                                                                                                                                                                                                                                                  |
|           | 11 Master Clock (MCLK) 3 option selected.                                                                                                                                                                                                                                                                                                                                                  |
| 25<br>BCP | Bit Clock Polarity                                                                                                                                                                                                                                                                                                                                                                         |
|           | Configures the polarity of the bit clock.                                                                                                                                                                                                                                                                                                                                                  |
|           | <ul> <li>Bit Clock is active high with drive outputs on rising edge and sample inputs on falling edge.</li> <li>Bit Clock is active low with drive outputs on falling edge and sample inputs on rising edge.</li> </ul>                                                                                                                                                                    |
| 24<br>BCD | Bit Clock Direction                                                                                                                                                                                                                                                                                                                                                                        |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)

## I2Sx\_RCR2 field descriptions (continued)

| Field            | Description                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Configures the direction of the bit clock.                                                                                                       |
|                  | 0 Bit clock is generated externally in Slave mode.                                                                                               |
|                  | 1 Bit clock is generated internally in Master mode.                                                                                              |
| 23–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                             |
| DIV              | Bit Clock Divide                                                                                                                                 |
|                  | Divides down the audio master clock to generate the bit clock when configured for an internal bit clock. The division value is $(DIV + 1) * 2$ . |

# 42.3.13 SAI Receive Configuration 3 Register (I2Sx\_RCR3)

Address: 4004\_C000h base + 8Ch offset = 4004\_C08Ch



#### I2Sx\_RCR3 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                            |
| 23–17<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                            |
| 16<br>RCE         | Receive Channel Enable  Enables the corresponding data channel for receive operation. A channel must be enabled before its FIFO is accessed. Changing this field will take effect immediately for generating the FIFO request and warning flags, but at the end of each frame for receive operation.  O Receive data channel N is disabled.  Receive data channel N is enabled. |
| 15–4<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                            |
| WDFL              | Word Flag Configuration  Configures which word the start of word flag is set. The value written should be one less than the word number (for example, write zero to configure for the first word in the frame). When configured to a value greater than the Frame Size field, then the start of word flag is never set.                                                         |

# 42.3.14 SAI Receive Configuration 4 Register (I2Sx\_RCR4)

This register must not be altered when RCSR[RE] is set.

Address: 4004\_C000h base + 90h offset = 4004\_C090h

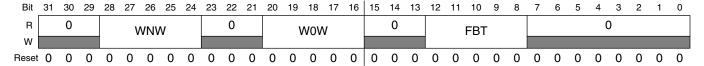


## I2Sx\_RCR4 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–29<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                       |
| 28<br>FCONT       | FIFO Continue on Error  Configures when the SAI will continue receiving after a FIFO error has been detected.                                                                                                                                                                                                                                                                                                                                                              |
|                   | <ul> <li>On FIFO error, the SAI will continue from the start of the next frame after the FIFO error flag has been cleared.</li> <li>On FIFO error, the SAI will continue from the same word that caused the FIFO error to set after the</li> </ul>                                                                                                                                                                                                                         |
|                   | FIFO warning flag has been cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                       |
| 25–24<br>FPACK    | Enables packing of 8-bit data or 16-bit data into each 32-bit FIFO word. If the word size is greater than 8-bit or 16-bit then only the first 8-bit or 16-bits are stored to the FIFO. The first word in each frame always starts with a new 32-bit FIFO word and the first bit shifted must be configured within the first packed word. When FIFO packing is enabled, the FIFO read pointer will only increment when the full 32-bit FIFO word has been read by software. |
|                   | <ul> <li>FIFO packing is disabled</li> <li>Reserved.</li> <li>8-bit FIFO packing is enabled</li> <li>16-bit FIFO packing is enabled</li> </ul>                                                                                                                                                                                                                                                                                                                             |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                       |

Table continues on the next page...

## Chapter 42 Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)


## I2Sx\_RCR4 field descriptions (continued)

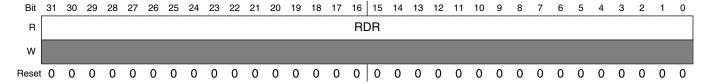
| Field             | Description                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 19–16<br>FRSZ     | Frame Size  Configures the number of words in each frame. The value written must be one less than the number of words in the frame. For example, write 0 for one word per frame. The maximum supported frame size is                                                                                  |  |  |  |  |  |
|                   | 16 words.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                  |  |  |  |  |  |
| 12–8<br>SYWD      | Sync Width  Configures the length of the frame sync in number of bit clocks. The value written must be one less than the number of bit clocks. For example, write 0 for the frame sync to assert for one bit clock only. The sync width cannot be configured longer than the first word of the frame. |  |  |  |  |  |
| 7–5<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                  |  |  |  |  |  |
| 4<br>MF           | MSB First  Configures whether the LSB or the MSB is received first.                                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | <ul><li>0 LSB is received first.</li><li>1 MSB is received first.</li></ul>                                                                                                                                                                                                                           |  |  |  |  |  |
| 3<br>FSE          | Frame Sync Early  O Frame sync asserts with the first bit of the frame.  Trame sync asserts one bit before the first bit of the frame.                                                                                                                                                                |  |  |  |  |  |
| 2<br>ONDEM        | On Demand Mode  When set, and the frame sync is generated internally, a frame sync is only generated when the FIFO warning flag is clear.  O Internal frame sync is generated continuously.  Internal frame sync is generated when the FIFO warning flag is clear.                                    |  |  |  |  |  |
| 1<br>FSP          | Frame Sync Polarity  Configures the polarity of the frame sync.                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | <ul><li>Frame sync is active high.</li><li>Frame sync is active low.</li></ul>                                                                                                                                                                                                                        |  |  |  |  |  |
| 0<br>FSD          | Frame Sync Direction  Configures the direction of the frame sync.                                                                                                                                                                                                                                     |  |  |  |  |  |
|                   | <ul><li>Frame Sync is generated externally in Slave mode.</li><li>Frame Sync is generated internally in Master mode.</li></ul>                                                                                                                                                                        |  |  |  |  |  |

## 42.3.15 SAI Receive Configuration 5 Register (I2Sx\_RCR5)

This register must not be altered when RCSR[RE] is set.

Address: 4004\_C000h base + 94h offset = 4004\_C094h




#### I2Sx\_RCR5 field descriptions

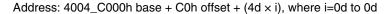
| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31–29<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 28–24<br>WNW      | Word N Width  Configures the number of bits in each word, for each word except the first in the frame. The value written must be one less than the number of bits per word. Word width of less than 8 bits is not supported.                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 23–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 20–16<br>W0W      | Word 0 Width  Configures the number of bits in the first word in each frame. The value written must be one less than the number of bits in the first word. Word width of less than 8 bits is not supported if there is only one word per frame.                                                                                                                                                                                                                                                                        |  |  |  |  |
| 15–13<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 12–8<br>FBT       | First Bit Shifted  Configures the bit index for the first bit received for each word in the frame. If configured for MSB First, the index of the next bit received is one less than the current bit received. If configured for LSB First, the index of the next bit received is one more than the current bit received. The value written must be greater than or equal to the word width when configured for MSB First. The value written must be less than or equal to 31-word width when configured for LSB First. |  |  |  |  |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

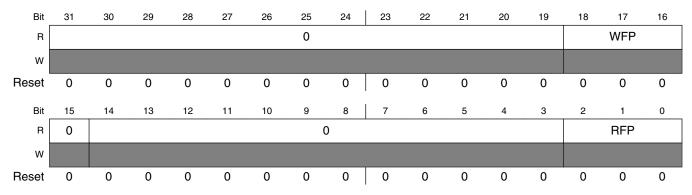
# 42.3.16 SAI Receive Data Register (I2Sx\_RDRn)

Reading this register introduces one additional peripheral clock wait state on each read.

Address: 4004\_C000h base + A0h offset + (4d × i), where i=0d to 0d




KL28Z Reference Manual, Rev. 4, 06/2016


#### I2Sx\_RDRn field descriptions

| Field | Description                                                                                                                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDR   | Receive Data Register                                                                                                                                                                                                                                                                     |
|       | The corresponding RCR3[RCE] bit must be set before accessing the channel's receive data register. Reads from this register when the receive FIFO is not empty will return the data from the top of the receive FIFO. Reads from this register when the receive FIFO is empty are ignored. |

## 42.3.17 SAI Receive FIFO Register (I2Sx\_RFRn)

The MSB of the read and write pointers is used to distinguish between FIFO full and empty conditions. If the read and write pointers are identical, then the FIFO is empty. If the read and write pointers are identical except for the MSB, then the FIFO is full.

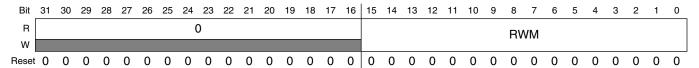




#### I2Sx\_RFRn field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 18–16<br>WFP      | Write FIFO Pointer  FIFO write pointer for receive data channel.                     |
| 15<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0. |
| 14–3<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| RFP               | Read FIFO Pointer                                                                    |
|                   | FIFO read pointer for receive data channel.                                          |

## 42.3.18 SAI Receive Mask Register (I2Sx\_RMR)


This register is double-buffered and updates:

#### **Functional description**

- 1. When RCSR[RE] is first set
- 2. At the end of each frame

This allows the masked words in each frame to change from frame to frame.

Address: 4004\_C000h base + E0h offset = 4004\_C0E0h



#### I2Sx\_RMR field descriptions

| Field             | Description                                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                         |
| RWM               | Receive Word Mask  Configures whether the receive word is masked (received data ignored and not written to receive FIFO) for the corresponding word in the frame.  0 Word N is enabled.  1 Word N is masked. |

# 42.4 Functional description

This section provides a complete functional description of the block.

# 42.4.1 SAI clocking

The SAI clocks include:

- The audio master clock
- The bit clock
- The bus clock

#### 42.4.1.1 Audio master clock

The audio master clock is used to generate the bit clock when the receiver or transmitter is configured for an internally generated bit clock. The transmitter and receiver can independently select between the bus clock and up to three audio master clocks to generate the bit clock.

The audio master clock generation and selection is chip-specific. Refer to chip-specific clocking information about how the audio master clocks are generated.

#### 42.4.1.2 Bit clock

The SAI transmitter and receiver support asynchronous free-running bit clocks that can be generated internally from an audio master clock or supplied externally. There is also the option for synchronous bit clock and frame sync operation between the receiver and transmitter.

Externally generated bit clocks must be:

- Enabled before the SAI transmitter or receiver is enabled
- Disabled after the SAI transmitter or receiver is disabled and completes its current frames

If the SAI transmitter or receiver is using an externally generated bit clock in asynchronous mode and that bit clock is generated by an SAI that is disabled in stop mode, then the transmitter or receiver should be disabled by software before entering stop mode. This issue does not apply when the transmitter or receiver is in a synchronous mode because all synchronous SAIs are enabled and disabled simultaneously.

#### 42.4.1.3 Bus clock

The bus clock is used by the control and configuration registers and to generate synchronous interrupts and DMA requests.

#### NOTE

Although there is no specific minimum bus clock frequency specified, the bus clock frequency must be fast enough (relative to the bit clock frequency) to ensure that the FIFOs can be serviced, without generating either a transmitter FIFO underrun or receiver FIFO overflow condition.

**Functional description** 

#### 42.4.2 SAI resets

The SAI is asynchronously reset on system reset. The SAI has a software reset and a FIFO reset.

#### 42.4.2.1 Software reset

The SAI transmitter includes a software reset that resets all transmitter internal logic, including the bit clock generation, status flags, and FIFO pointers. It does not reset the configuration registers. The software reset remains asserted until cleared by software.

The SAI receiver includes a software reset that resets all receiver internal logic, including the bit clock generation, status flags and FIFO pointers. It does not reset the configuration registers. The software reset remains asserted until cleared by software.

#### 42.4.2.2 FIFO reset

The SAI transmitter includes a FIFO reset that synchronizes the FIFO write pointer to the same value as the FIFO read pointer. This empties the FIFO contents and is to be used after TCSR[FEF] is set, and before the FIFO is re-initialized and TCSR[FEF] is cleared. The FIFO reset is asserted for one cycle only.

The SAI receiver includes a FIFO reset that synchronizes the FIFO read pointer to the same value as the FIFO write pointer. This empties the FIFO contents and is to be used after the RCSR[FEF] is set and any remaining data has been read from the FIFO, and before the RCSR[FEF] is cleared. The FIFO reset is asserted for one cycle only.

## 42.4.3 Synchronous modes

The SAI transmitter and receiver can operate synchronously to each other.

# 42.4.3.1 Synchronous mode

The SAI transmitter and receiver can be configured to operate with synchronous bit clock and frame sync.

If the transmitter bit clock and frame sync are to be used by both the transmitter and receiver:

- The transmitter must be configured for asynchronous operation and the receiver for synchronous operation.
- In synchronous mode, the receiver is enabled only when both the transmitter and receiver are enabled.
- It is recommended that the transmitter is the last enabled and the first disabled.

If the receiver bit clock and frame sync are to be used by both the transmitter and receiver:

- The receiver must be configured for asynchronous operation and the transmitter for synchronous operation.
- In synchronous mode, the transmitter is enabled only when both the receiver and transmitter are both enabled.
- It is recommended that the receiver is the last enabled and the first disabled.

When operating in synchronous mode, only the bit clock, frame sync, and transmitter/receiver enable are shared. The transmitter and receiver otherwise operate independently, although configuration registers must be configured consistently across both the transmitter and receiver.

## 42.4.4 Frame sync configuration

When enabled, the SAI continuously transmits and/or receives frames of data. Each frame consists of a fixed number of words and each word consists of a fixed number of bits. Within each frame, any given word can be masked causing the receiver to ignore that word and the transmitter to tri-state for the duration of that word.

The frame sync signal is used to indicate the start of each frame. A valid frame sync requires a rising edge (if active high) or falling edge (if active low) to be detected and the transmitter or receiver cannot be busy with a previous frame. A valid frame sync is also ignored (slave mode) or not generated (master mode) for the first four bit clock cycles after enabling the transmitter or receiver.

The transmitter and receiver frame sync can be configured independently with any of the following options:

- Externally generated or internally generated
- Active high or active low
- Assert with the first bit in frame or asserts one bit early
- Assert for a duration between 1 bit clock and the first word length
- Frame length from 1 to 16 words per frame
- Word length to support 8 to 32 bits per word

#### **Functional description**

- First word length and remaining word lengths can be configured separately
- Words can be configured to transmit/receive MSB first or LSB first

These configuration options cannot be changed after the SAI transmitter or receiver is enabled.

#### 42.4.5 Data FIFO

Each transmit and receive channel includes a FIFO of size  $4 \times 32$ -bit. The FIFO data is accessed using the SAI Transmit/Receive Data Registers.

## 42.4.5.1 Data alignment

Data in the FIFO can be aligned anywhere within the 32-bit wide register through the use of the First Bit Shifted configuration field, which selects the bit index (between 31 and 0) of the first bit shifted.

Examples of supported data alignment and the required First Bit Shifted configuration are illustrated in Figure 42-2 for LSB First configurations and Figure 42-3 for MSB First configurations.

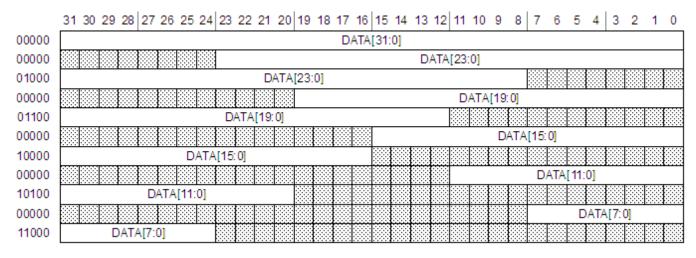



Figure 42-2. SAI first bit shifted, LSB first

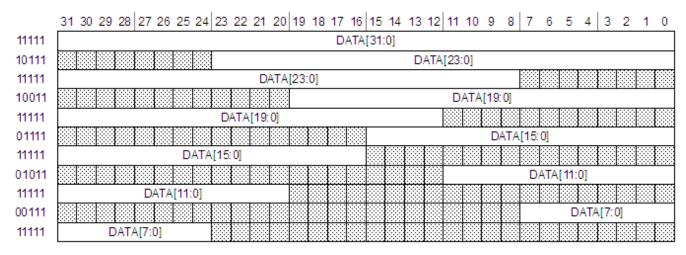



Figure 42-3. SAI first bit shifted, MSB first

## 42.4.5.2 FIFO pointers

When writing to a TDR, the WFP of the corresponding TFR increments after each valid write. The SAI supports 8-bit, 16-bit and 32-bit writes to the TDR and the FIFO pointer will increment after each individual write. Note that 8-bit writes should only be used when transmitting up to 8-bit data and 16-bit writes should only be used when transmitting up to 16-bit data.

Writes to a TDR are ignored if the corresponding bit of TCR3[TCE] is clear or if the FIFO is full. If the Transmit FIFO is empty, the TDR must be written at least three bit clocks before the start of the next unmasked word to avoid a FIFO underrun.

When reading an RDR, the RFP of the corresponding RFR increments after each valid read. The SAI supports 8-bit, 16-bit and 32-bit reads from the RDR and the FIFO pointer will increment after each individual read. Note that 8-bit reads should only be used when receiving up to 8-bit data and 16-bit reads should only be used when receiving up to 16-bit data.

Reads from an RDR are ignored if the corresponding bit of RCR3[RCE] is clear or if the FIFO is empty. If the Receive FIFO is full, the RDR must be read at least three bit clocks before the end of an unmasked word to avoid a FIFO overrun.

## 42.4.5.3 FIFO packing

FIFO packing supports storing multiple 8-bit or 16-bit data words in one 32-bit FIFO word for the transmitter and/or receiver. While this can be emulated by adjusting the number of bits per word and number of words per frame (for example, one 32-bit word

#### **Functional description**

per frame versus two 16-bit words per frame), FIFO packing does not require even multiples of words per frame and fully supports word masking. When FIFO packing is enabled, the FIFO pointers only increment when the full 32-bit FIFO word has been written (transmit) or read (receive) by software, supporting scenarios where different words within each frame are loaded/stored in different areas of memory.

When 16-bit FIFO packing is enabled for transmit, the transmit shift register is loaded at the start of each frame and after every second unmasked transmit word. The first word transmitted is taken from 16-bit word at byte offset \$0 (first bit is selected by TCFG5[FBT] must be configured within this 16-bit word) and the second word transmitted is taken from the 16-bit word at byte offset \$2 (first bit is selected by TCSR5[FBT][3:0]). The transmitter will transmit logic zero until the start of the next word once the 16-bit word has been transmitted.

When 16-bit FIFO packing is enabled for receive, the receive shift register is stored after every second unmasked received word, and at the end of each frame if there is an odd number of unmasked received words in each frame. The first word received is stored in the 16-bit word at byte offset \$0 (first bit is selected by RCFG5[FBT] and must be configured within this 16-bit word) and the second word received is stored in the 16-bit word at byte offset \$2 (first bit is selected by RCSR5[FBT][3:0]). The receiver will ignore received data until the start of the next word once the 16-bit word has been received.

The 8-bit FIFO packing is similar to 16-bit packing except four words are loaded or stored into each 32-bit FIFO word. The first word is loaded/stored in byte offset \$0, second word in byte offset \$1, third word in byte offset \$2 and fourth word in byte offset \$3. The TCFG5[FBT] and/or RCFG5[FBT] must be configured within byte offset \$0.

## 42.4.6 Word mask register

The SAI transmitter and receiver each contain a word mask register, namely TMR and RMR, that can be used to mask any word in the frame. Because the word mask register is double buffered, software can update it before the end of each frame to mask a particular word in the next frame.

The TMR causes the Transmit Data pin to be tri-stated for the length of each selected word and the transmit FIFO is not read for masked words.

The RMR causes the received data for each selected word to be discarded and not written to the receive FIFO.

## 42.4.7 Interrupts and DMA requests

The SAI transmitter and receiver generate separate interrupts and separate DMA requests, but support the same status flags. Asynchronous versions of the transmitter and receiver interrupts are generated to wake up the CPU from stop mode.

## 42.4.7.1 FIFO request flag

The FIFO request flag is set based on the number of entries in the FIFO and the FIFO watermark configuration.

The transmit FIFO request flag is set when the number of entries in any of the enabled transmit FIFOs is less than or equal to the transmit FIFO watermark configuration and is cleared when the number of entries in each enabled transmit FIFO is greater than the transmit FIFO watermark configuration.

The receive FIFO request flag is set when the number of entries in any of the enabled receive FIFOs is greater than the receive FIFO watermark configuration and is cleared when the number of entries in each enabled receive FIFO is less than or equal to the receive FIFO watermark configuration.

The FIFO request flag can generate an interrupt or a DMA request.

# 42.4.7.2 FIFO warning flag

The FIFO warning flag is set based on the number of entries in the FIFO.

The transmit warning flag is set when the number of entries in any of the enabled transmit FIFOs is empty and is cleared when the number of entries in each enabled transmit FIFO is not empty.

The receive warning flag is set when the number of entries in any of the enabled receive FIFOs is full and is cleared when the number of entries in each enabled receive FIFO is not full.

The FIFO warning flag can generate an Interrupt or a DMA request.

## 42.4.7.3 FIFO error flag

The transmit FIFO error flag is set when the any of the enabled transmit FIFOs underflow. After it is set, all enabled transmit channels will transmit zero until TCSR[FEF] is cleared and the next transmit frame starts. All enabled transmit FIFOs must be reset and initialized with new data before TCSR[FEF] is cleared.

When TCR4[FCONT] is set, the FIFO will continue transmitting data following an underflow without software intervention. To ensure that data is transmitted in the correct order, the transmitter will continue from the same word number in the frame that caused the FIFO to underflow, but only after new data has been written to the transmit FIFO. Software should still clear the TCSR[FEF] flag, but without reinitializing the transmit FIFOs.

RCSR[FEF] is set when the any of the enabled receive FIFOs overflow. After it is set, all enabled receive channels discard received data until RCSR[FEF] is cleared and the next next receive frame starts. All enabled receive FIFOs should be emptied before RCSR[FEF] is cleared.

When RCR4[FCONT] is set, the FIFO will continue receiving data following an overflow without software intervention. To ensure that data is received in the correct order, the receiver will continue from the same word number in the frame that caused the FIFO to overflow, but only after data has been read from the receive FIFO. Software should still clear the RCSR[FEF] flag, but without emptying the receive FIFOs.

The FIFO error flag can generate only an interrupt.

## 42.4.7.4 Sync error flag

The sync error flag, TCSR[SEF] or RCSR[SEF], is set when configured for an externally generated frame sync and the external frame sync asserts when the transmitter or receiver is busy with the previous frame. The external frame sync assertion is ignored and the sync error flag is set. When the sync error flag is set, the transmitter or receiver continues checking for frame sync assertion when idle or at the end of each frame.

The sync error flag can generate an interrupt only.

## 42.4.7.5 Word start flag

The word start flag is set at the start of the second bit clock for the selected word, as configured by the Word Flag register field.

The word start flag can generate an interrupt only.

# **Chapter 43 System Clock Generator (SCG)**

#### 43.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The system clock generator (SCG) module provides the system clocks of the MCU. The SCG contains a system phase-locked loop (SPLL), a slow internal reference clock (SIRC), a fast internal reference clock (FIRC), and the system oscillator clock (SOSC). The PLLs are sourced by either the SOSC reference clock or the FIRC reference clock. The SCG can select either the output clock of the SPLL or a SCG reference clock (SIRC, FIRC, and SOSC) as the source for the MCU system clocks. The SCG also supports operation with crystal oscillators, which allows an external crystal, ceramic resonator, or another external clock source to produce the external reference clock (which are also available as clock sources for the MCU systems clocks).

## 43.1.1 Features

Key features of the SCG module are:

- System Phase-locked loop (SPLL):
  - Voltage-controlled oscillator (VCO)
  - Selectable Internal or External reference clock is used as the PLL source
  - Modulo VCO frequency divider
  - Phase/Frequency detector
  - Integrated loop filter

#### Introduction

- Can be selected as the clock source for the MCU system clocks
- 3 programmable post-dividers clock outputs, which can be used as clock sources for other on-chip peripherals
- 2 Internal reference clock (IRC) generators:
  - Slow IRC clock with programmable High and Low frequency range, with each range having a set of 8 trim bits for accuracy
  - Fast IRC clock with programmable High and Low frequency range, with 3 sets of trim bits for accuracy
  - Fast clock can be used as a source for System PLL
  - Either the slow or the fast clock can be selected as the clock source for the MCU system clocks
  - 3 programmable post-divider clock outputs for each IRC, which can be used as clock sources for other on-chip peripherals
- System Crystal Oscillator:
  - Can be used as a source for the System PLL
  - Can be selected as the clock source for the MCU system clocks
- Clock monitor with reset and interrupt request capability for SPLL, SOSC, clocks
- Each of the clock sources have reference dividers for clocking on-chip modules and peripherals, namely:
  - SPLLDIV1\_CLK / SPLLDIV2\_CLK / SPLLDIV3\_CLK
  - FIRCDIV1\_CLK / SCG\_FIRCDIV2\_CLK / SCG\_FIRCDIV3\_CLK
  - SIRCDIV1\_CLK / SIRCDIV2\_CLK / SIRCDIV3\_CLK
  - SOSCDIV1\_CLK / SOSCDIV2\_CLK / SOSCDIV3\_CLK

The next figure shows the SCG module block diagram.

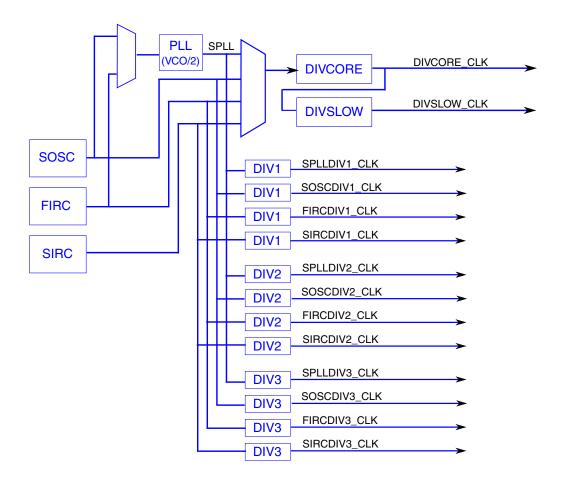



Figure 43-1. System Clock Generator (SCG) block diagram

#### NOTE

To identify the oscillator used in your specific MCU device, see the chip configuration chapter.

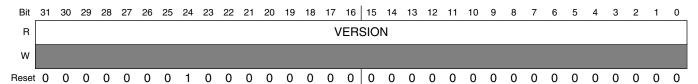
# 43.2 Memory Map/Register Definition

This section includes the memory map and register definition.

The SCG registers can only be written when in supervisor mode. Write accesses when in user mode will result in a bus transfer error. Read accesses may be performed in both supervisor and user mode.

## Memory Map/Register Definition

# SCG memory map


| Absolute address (hex) | Register name                                          | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|--------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_B000              | Version ID Register (SCG_VERID)                        | 32                 | R      | 0100_0000h  | 43.2.1/1081      |
| 4007_B004              | Parameter Register (SCG_PARAM)                         | 32                 | R      | See section | 43.2.2/1081      |
| 4007_B010              | Clock Status Register (SCG_CSR)                        | 32                 | R      | See section | 43.2.3/1082      |
| 4007_B014              | Run Clock Control Register (SCG_RCCR)                  | 32                 | R/W    | See section | 43.2.4/1084      |
| 4007_B018              | VLPR Clock Control Register (SCG_VCCR)                 | 32                 | R/W    | See section | 43.2.5/1086      |
| 4007_B01C              | HSRUN Clock Control Register (SCG_HCCR)                | 32                 | R/W    | See section | 43.2.6/1088      |
| 4007_B020              | SCG CLKOUT Configuration Register (SCG_CLKOUTCNFG)     | 32                 | R/W    | 0200_0000h  | 43.2.7/1089      |
| 4007_B100              | System OSC Control Status Register (SCG_SOSCCSR)       | 32                 | R/W    | See section | 43.2.8/1091      |
| 4007_B104              | System OSC Divide Register (SCG_SOSCDIV)               | 32                 | R/W    | 0000_0000h  | 43.2.9/1093      |
| 4007_B108              | System Oscillator Configuration Register (SCG_SOSCCFG) | 32                 | R/W    | 0000_0010h  | 43.2.10/<br>1094 |
| 4007_B200              | Slow IRC Control Status Register (SCG_SIRCCSR)         | 32                 | R/W    | 0300_0005h  | 43.2.11/<br>1096 |
| 4007_B204              | Slow IRC Divide Register (SCG_SIRCDIV)                 | 32                 | R/W    | 0000_0000h  | 43.2.12/<br>1097 |
| 4007_B208              | Slow IRC Configuration Register (SCG_SIRCCFG)          | 32                 | R/W    | 0000_0001h  | 43.2.13/<br>1099 |
| 4007_B300              | Fast IRC Control Status Register (SCG_FIRCCSR)         | 32                 | R/W    | See section | 43.2.14/<br>1100 |
| 4007_B304              | Fast IRC Divide Register (SCG_FIRCDIV)                 | 32                 | R/W    | 0000_0000h  | 43.2.15/<br>1102 |
| 4007_B308              | Fast IRC Configuration Register (SCG_FIRCCFG)          | 32                 | R/W    | 0000_0000h  | 43.2.16/<br>1103 |
| 4007_B30C              | Fast IRC Trim Configuration Register (SCG_FIRCTCFG)    | 32                 | R/W    | 0000_0000h  | 43.2.17/<br>1104 |
| 4007_B318              | Fast IRC Status Register (SCG_FIRCSTAT)                | 32                 | R      | See section | 43.2.18/<br>1105 |
| 4007_B600              | System PLL Control Status Register (SCG_SPLLCSR)       | 32                 | R/W    | 0000_0000h  | 43.2.19/<br>1106 |
| 4007_B604              | System PLL Divide Register (SCG_SPLLDIV)               | 32                 | R/W    | 0000_0000h  | 43.2.20/<br>1108 |
| 4007_B608              | System PLL Configuration Register (SCG_SPLLCFG)        | 32                 | R/W    | 0000_0000h  | 43.2.21/<br>1109 |

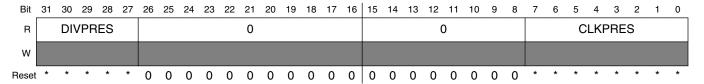
KL28Z Reference Manual, Rev. 4, 06/2016 1080 **NXP Semiconductors** 

### 43.2.1 Version ID Register (SCG\_VERID)

Note: Writing to this register will result in a transfer error.

Address: 4007\_B000h base + 0h offset = 4007\_B000h




#### SCG\_VERID field descriptions

| Field   | Description        |
|---------|--------------------|
| VERSION | SCG Version Number |

### 43.2.2 Parameter Register (SCG\_PARAM)

Note: Writing to this register will result in a transfer error.

Address: 4007\_B000h base + 4h offset = 4007\_B004h



- \* Notes:
- DIVPRES field: The reset value is controlled by which SCG System Dividers are used by Soc.
- CLKPRES field: The reset value is controlled by which SCG Clock Sources are used by Soc. Please reference the Reference manual clocking chapter.

#### SCG\_PARAM field descriptions

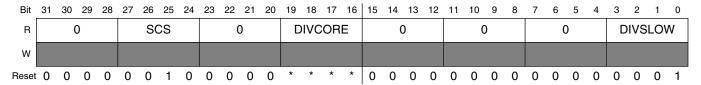
| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–27<br>DIVPRES  | Divider Present                                                                      |
| BIVITIES          | Indicates which system clock dividers are present in this instance of SCG.           |
|                   | DIVPRES[27]=1 System DIVSLOW is present.                                             |
|                   | DIVPRES[31]=1 System DIVCORE is present                                              |
| 26–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| CLKPRES           | Clock Present                                                                        |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Memory Map/Register Definition**

### SCG\_PARAM field descriptions (continued)


| Field | Description                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Indicates which clock sources are present in this instance of SCG. Any bits not defined in this bit field are Reserved and always has the value 0 when read. |
|       | CLKPRES[0] Reserved CLKPRES[1]=1System OSC (SOSC) is present                                                                                                 |
|       | CLKPRES[1]=1System OSC (SOSC) is present  CLKPRES[2]=1Slow IRC (SIRC) is present                                                                             |
|       | CLKPRES[3]=1Fast IRC (FIRC) is present CLKPRES[6]=1System PLL (SPLL) is present                                                                              |

### 43.2.3 Clock Status Register (SCG\_CSR)

This register returns the currently configured system clock source and the system clock dividers for the core (DIVCORE) and peripheral interface clock (DIVSLOW). The SCG\_CSR reflects the configuration set by one of three clock control registers SCG\_RCCR, SCG\_VCCR, SCG\_HCCR.

Note: Writing to this register will result in a transfer error.

Address: 4007\_B000h base + 10h offset = 4007\_B010h



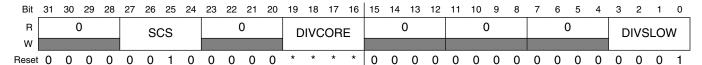
<sup>\*</sup> Notes:

### SCG\_CSR field descriptions

| Field             | Description                                                                                                            |  |  |  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 31–28<br>Reserved | his field is reserved. his read-only field is reserved and always has the value 0.                                     |  |  |  |  |  |  |  |  |  |
| 27–24<br>SCS      | System Clock Source  Returns the currently configured clock source generating the system clock.                        |  |  |  |  |  |  |  |  |  |
|                   | 0000 Reserved 0001 System OSC (SOSC_CLK) 0010 Slow IRC (SIRC_CLK) 0011 Fast IRC (FIRC_CLK) 0100 Reserved 0101 Reserved |  |  |  |  |  |  |  |  |  |

Table continues on the next page...

DIVCORE field: The reset value is controlled by user FOPT bits that get uploaded during reset. The two option reset values
are div-by-1 or div-by-2 when resetting into RUN mode or div-by-4 or div-by-8 when resetting into VLPR
mode


# SCG\_CSR field descriptions (continued)

| Field             | Description                                                                          |  |  |  |  |  |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                   | 0110 System PLL (SPLL_CLK)                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0111 Reserved                                                                        |  |  |  |  |  |  |  |  |  |  |  |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |  |  |  |  |  |  |  |  |  |  |  |
| 19–16<br>DIVCORE  | Core Clock Divide Ratio                                                              |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0000 Divide-by-1                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0001 Divide-by-2<br>0010 Divide-by-3                                                 |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0011 Divide-by-4                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0100 Divide-by-5                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0101 Divide-by-6                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0110 Divide-by-7                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0111 Divide-by-8                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1000 Divide-by-9                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1001 Divide-by-10                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1010 Divide-by-11                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1011 Divide-by-12<br>1100 Divide-by-13                                               |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1101 Divide-by-14                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1110 Divide-by-15                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1111 Divide-by-16                                                                    |  |  |  |  |  |  |  |  |  |  |  |
| 15–12             | This field is reserved.                                                              |  |  |  |  |  |  |  |  |  |  |  |
| Reserved          | This read-only field is reserved and always has the value 0.                         |  |  |  |  |  |  |  |  |  |  |  |
| 11–8<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |  |  |  |  |  |  |  |  |  |  |  |
| 7–4               | This field is reserved.                                                              |  |  |  |  |  |  |  |  |  |  |  |
| Reserved          | This read-only field is reserved and always has the value 0.                         |  |  |  |  |  |  |  |  |  |  |  |
| DIVSLOW           | Slow Clock Divide Ratio                                                              |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0000 Divide-by-1                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0001 Divide-by-2<br>0010 Divide-by-3                                                 |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0010 Divide-by-3<br>0011 Divide-by-4                                                 |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0100 Divide-by-5                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0101 Divide-by-6                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0110 Divide-by-7                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 0111 Divide-by-8                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1000 Divide-by-9                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1001 Divide-by-10                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1010 Divide-by-11                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1011 Divide-by-12<br>1100 Divide-by-13                                               |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1100 Divide-by-13   1101 Divide-by-14                                                |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1110 Divide-by-15                                                                    |  |  |  |  |  |  |  |  |  |  |  |
|                   | 1111 Divide-by-16                                                                    |  |  |  |  |  |  |  |  |  |  |  |
| L                 |                                                                                      |  |  |  |  |  |  |  |  |  |  |  |

### 43.2.4 Run Clock Control Register (SCG\_RCCR)

This register controls the system clock source and the system clock dividers for the core, platform, external and bus clock domains when in Run mode only. This register can only be written using a 32-bit write. Selecting a different clock source when in RUN requires that clock source to be enabled first and be valid before system clocks switch to that clock source. If system clock divide ratios also change when selecting a different clock mode when in RUN, new system clock divide ratios will not take affect until new clock source is valid.

Address: 4007\_B000h base + 14h offset = 4007\_B014h



<sup>\*</sup> Notes:

#### SCG RCCR field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 31–28            | This field is reserved.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| Reserved         | his read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 27–24<br>SCS     | System Clock Source                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|                  | Selects the clock source generating the system clock in Run mode. Attempting to select a clock that is not valid will be ignored. Selecting a different clock source when in Run mode requires that clock source to be enabled first and be valid before system clocks are allowed to switch to that clock source. |  |  |  |  |  |  |  |  |  |  |
|                  | 0000 Reserved                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                  | 0001 System OSC (SOSC_CLK)                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|                  | 0010 Slow IRC (SIRC_CLK)                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                  | 0011 Fast IRC (FIRC_CLK)                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|                  | 0100 Reserved                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                  | 0101 Reserved                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                  | 0110 System PLL (SPLL_CLK)                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|                  | 0111 Reserved                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| 23–20            | This field is reserved.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| 19-16<br>DIVCORE | Core Clock Divide Ratio                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                  | 0000 Divide-by-1                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                  | 0001 Divide-by-2                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                  | 0010 Divide-by-3                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|                  | 0011 Divide-by-4                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |

Table continues on the next page...

<sup>•</sup> DIVCORE field: The reset value is controlled by user FOPT bits that get uploaded during reset. The two option reset values are div-by-1 and div-by-2

# SCG\_RCCR field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | 0100 Divide-by-5                                             |
|          | 0101 Divide-by-6                                             |
|          | 0110 Divide-by-7                                             |
|          | 0111 Divide-by-8                                             |
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |
| 15–12    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 11–8     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 7–4      | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| DIVSLOW  | Slow Clock Divide Ratio                                      |
|          | 0000 Divide-by-1                                             |
|          | 0001 Divide-by-2                                             |
|          | 0010 Divide-by-3                                             |
|          | 0011 Divide-by-4                                             |
|          | 0100 Divide-by-5                                             |
|          | 0101 Divide-by-6                                             |
|          | 0110 Divide-by-7                                             |
|          | 0111 Divide-by-8                                             |
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |

### 43.2.5 VLPR Clock Control Register (SCG\_VCCR)

This register controls the system clock source and the system clock dividers for the core, platform, external and bus clock domains when in VLPR mode only. This register can only be written using a 32-bit write. Selecting a different clock source when in VLPR requires that clock source to be enabled first and be valid before system clocks switch to that clock source. If system clock divide ratios also change when selecting a different clock mode when in VLPR, new system clock divide ratios will not take affect until new clock source is valid.

Address: 4007\_B000h base + 18h offset = 4007\_B018h

| Bit   | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2   | 1   | 0 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|-----|-----|---|
| R     |    | (  | )  |    |    | SC | cs |    |    | (  | )  |    | D  | IVC | OR | E  |    | C  | )  |    |    | (  | ) |   |   | ( | ) |   | D | IVS | LOV | v |
| W     |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    |   |   |   |   |   |   |   |     |     |   |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | *  | *   | *  | *  | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0   | 0   | 1 |

<sup>\*</sup> Notes:

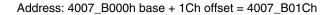
#### SCG\_VCCR field descriptions

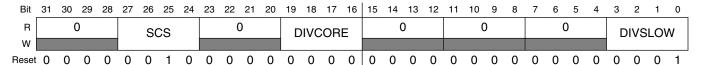
| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 27–24<br>SCS      | System Clock Source  Selects the clock source generating the system clock in VLPR mode. Attempting to select a clock that is not valid will be ignored. Selects the clock source generating the system clock. Selecting a different clock source when in VLPR mode requires that clock source to be enabled first and be valid before system clocks switch to that clock source.  0000 Reserved 0001 System OSC (SOSC_CLK) 0010 Slow IRC (SIRC_CLK) 0011 Reserved 0100 Reserved 0110 Reserved 0110 Reserved |  |  |  |  |  |  |  |  |  |  |
| 23–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 19–16<br>DIVCORE  | Core Clock Divide Ratio  0000 Divide-by-1  0001 Divide-by-2  0010 Divide-by-3                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |

Table continues on the next page...

1086

#### KL28Z Reference Manual, Rev. 4, 06/2016


<sup>•</sup> DIVCORE field: The reset value is controlled by user FOPT bits that get uploaded during reset. The two option reset values are div-by-4 and div-by-8.


# SCG\_VCCR field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | 0011 Divide-by-4                                             |
|          | 0100 Divide-by-5                                             |
|          | 0101 Divide-by-6                                             |
|          | 0110 Divide-by-7                                             |
|          | 0111 Divide-by-8                                             |
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |
| 15–12    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 11–8     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 7–4      | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| DIVSLOW  | Slow Clock Divide Ratio                                      |
|          | 0000 Divide-by-1                                             |
|          | 0001 Divide-by-2                                             |
|          | 0010 Divide-by-3                                             |
|          | 0011 Divide-by-4                                             |
|          | 0100 Divide-by-5                                             |
|          | 0101 Divide-by-6                                             |
|          | 0110 Divide-by-7                                             |
|          | 0111 Divide-by-8                                             |
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |

#### **HSRUN Clock Control Register (SCG HCCR)** 43.2.6

This register controls the system clock source and the system clock dividers for the core, platform, external and bus clock domains when in HSRUN mode only. This register can only be written using a 32-bit write. Selecting a different clock source when in HSRUN requires that clock source to be enabled first and be valid before system clocks switch to that clock source. If system clock divide ratios also change when selecting a different clock mode when in HSRUN, new system clock divide ratios will not take affect until new clock source is valid.



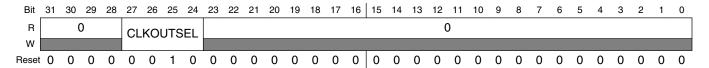


#### SCG HCCR field descriptions

| Field            | Description                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 31–28            | This field is reserved.                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| 27–24<br>SCS     | System Clock Source                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|                  | Selects the clock source generating the system clock in HSRUN mode. Attempting to select a clock that is not valid will be ignored. Selecting a different clock source when in HSRUN mode will enable that clock source and switch to that clock mode when it is valid. |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0000 Reserved                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0001 System OSC (SOSC_CLK)                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0010 Slow IRC (SIRC_CLK)                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0011 Fast IRC (FIRC_CLK)                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0100 Reserved                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0101 Reserved                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0110 System PLL (SPLL_CLK)                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0111 Reserved                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |
| 23–20            | This field is reserved.                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |
| 19-16<br>DIVCORE | Core Clock Divide Ratio                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0000 Divide-by-1                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0001 Divide-by-2                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0010 Divide-by-3                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0011 Divide-by-4                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0100 Divide-by-5                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0101 Divide-by-6                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0110 Divide-by-7                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |
|                  | 0111 Divide-by-8                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 1088 NXP Semiconductors


### **SCG\_HCCR** field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |
| 15–12    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 11–8     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 7–4      | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| DIVSLOW  | Slow Clock Divide Ratio                                      |
|          | 0000 Divide-by-1                                             |
|          | 0001 Divide-by-2                                             |
|          | 0010 Divide-by-3                                             |
|          | 0011 Divide-by-4                                             |
|          | 0100 Divide-by-5                                             |
|          | 0101 Divide-by-6                                             |
|          | 0110 Divide-by-7                                             |
|          | 0111 Divide-by-8                                             |
|          | 1000 Divide-by-9                                             |
|          | 1001 Divide-by-10                                            |
|          | 1010 Divide-by-11                                            |
|          | 1011 Divide-by-12                                            |
|          | 1100 Divide-by-13                                            |
|          | 1101 Divide-by-14                                            |
|          | 1110 Divide-by-15                                            |
|          | 1111 Divide-by-16                                            |

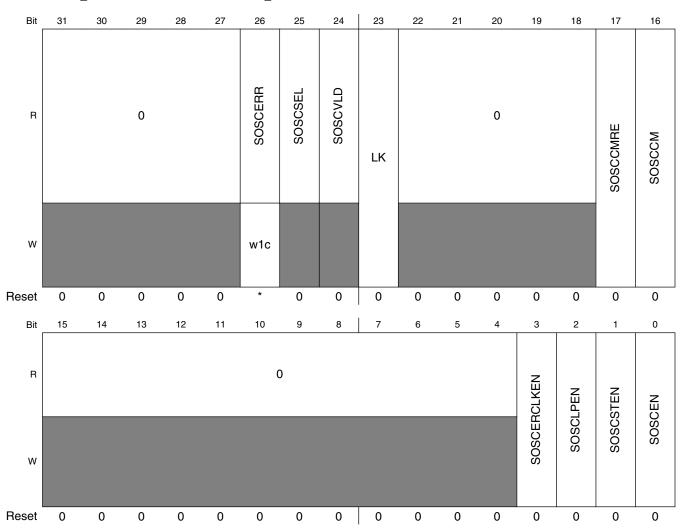
# 43.2.7 SCG CLKOUT Configuration Register (SCG\_CLKOUTCNFG)

This register controls which SCG clock source is selected to be ported out to the CLKOUT pin.

Address: 4007\_B000h base + 20h offset = 4007\_B020h



KL28Z Reference Manual, Rev. 4, 06/2016


### Memory Map/Register Definition

# SCG\_CLKOUTCNFG field descriptions

| Field              | Description                                                                          |
|--------------------|--------------------------------------------------------------------------------------|
| 31–28<br>Reserved  | This field is reserved.                                                              |
| neserveu           | This read-only field is reserved and always has the value 0.                         |
| 27–24<br>CLKOUTSEL | SCG Clkout Select                                                                    |
|                    | Selects the SCG system clock.                                                        |
|                    | 0000 SCG SLOW Clock                                                                  |
|                    | 0001 System OSC (SOSC_CLK)                                                           |
|                    | 0010 Slow IRC (SIRC_CLK)                                                             |
|                    | 0011 Fast IRC (FIRC_CLK)                                                             |
|                    | 0100 Reserved                                                                        |
|                    | 0101 Reserved                                                                        |
|                    | 0110 System PLL (SPLL_CLK)                                                           |
|                    | 0111 Reserved                                                                        |
|                    | 1111 Reserved                                                                        |
| Reserved           | This field is reserved. This read-only field is reserved and always has the value 0. |

# 43.2.8 System OSC Control Status Register (SCG\_SOSCCSR)

Address: 4007\_B000h base + 100h offset = 4007\_B100h



<sup>\*</sup> Notes:

### SCG\_SOSCCSR field descriptions

| Field             | Description                                                                                                                                              |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                     |
| 26<br>SOSCERR     | System OSC Clock Error  This flag is reset on Chip POR only, software can also clear this flag by writing a logic one.                                   |
|                   | <ul> <li>System OSC Clock Monitor is disabled or has not detected an error</li> <li>System OSC Clock Monitor is enabled and detected an error</li> </ul> |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

<sup>·</sup> SOSCERR field: This flag is reset on Chip POR only

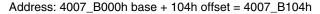
### Memory Map/Register Definition

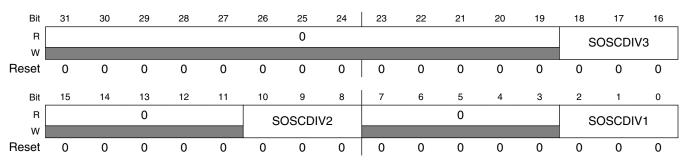
# SCG\_SOSCCSR field descriptions (continued)

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25               | System OSC Selected                                                                                                                                                                                                                                                                                                                                                             |
| SOSCSEL          | System OSC is not the system clock source                                                                                                                                                                                                                                                                                                                                       |
|                  | System OSC is the system clock source                                                                                                                                                                                                                                                                                                                                           |
| 24               | System OSC Valid                                                                                                                                                                                                                                                                                                                                                                |
| SOSCVLD          | The SOSC is considered valid after 4096 xtal counts.                                                                                                                                                                                                                                                                                                                            |
|                  | System OSC is not enabled or clock is not valid                                                                                                                                                                                                                                                                                                                                 |
|                  | System OSC is not enabled or clock is not valid     System OSC is enabled and output clock is valid                                                                                                                                                                                                                                                                             |
| 23               | Lock Register                                                                                                                                                                                                                                                                                                                                                                   |
| LK               | This bit field can be cleared/set at any time.                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | <ul><li>This Control Status Register can be written.</li><li>This Control Status Register cannot be written.</li></ul>                                                                                                                                                                                                                                                          |
| 22–18            | This field is reserved.                                                                                                                                                                                                                                                                                                                                                         |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                    |
| 17               | System OSC Clock Monitor Reset Enable                                                                                                                                                                                                                                                                                                                                           |
| SOSCCMRE         | Clock Monitor generates interrupt when error detected                                                                                                                                                                                                                                                                                                                           |
|                  | Clock Monitor generates reset when error detected                                                                                                                                                                                                                                                                                                                               |
| 16               | System OSC Clock Monitor                                                                                                                                                                                                                                                                                                                                                        |
| SOSCCM           | Enables the clock monitor when SOSCVLD is set. If the clock source is disabled in a low power mode then the clock monitor is also disabled in the low power mode. The clock monitor is always disabled in LLS/VLLS modes. When the clock monitor is disabled in a low power mode, it remains disabled until the clock valid flag is set following exit from the low power mode. |
|                  | System OSC Clock Monitor is disabled     System OSC Clock Monitor is enabled                                                                                                                                                                                                                                                                                                    |
| 15–4             | This field is reserved.                                                                                                                                                                                                                                                                                                                                                         |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                    |
| 3<br>SOSCERCLKEN | System OSC 3V ERCLK Enable                                                                                                                                                                                                                                                                                                                                                      |
| SUSCENCIALIN     | SOSCERCLKEN is required for stop modes.                                                                                                                                                                                                                                                                                                                                         |
|                  | 0 System OSC 3V ERCLK output clock is disabled.                                                                                                                                                                                                                                                                                                                                 |
|                  | 1 System OSC 3V ERCLK output clock is enabled when SYSOSC is enabled.                                                                                                                                                                                                                                                                                                           |
| 2                | System OSC Low Power Enable                                                                                                                                                                                                                                                                                                                                                     |
| SOSCLPEN         | SOSCLPEN is required for low power modes. In VLPS mode (low power stop mode), if you want the clock to remain ON, then both SOSCLPEN and SOSCSTEN bits must be enabled.                                                                                                                                                                                                         |
|                  | 0 System OSC is disabled in VLP modes                                                                                                                                                                                                                                                                                                                                           |
|                  | 1 System OSC is enabled in VLP modes                                                                                                                                                                                                                                                                                                                                            |
| 1<br>SOSCSTEN    | System OSC Stop Enable                                                                                                                                                                                                                                                                                                                                                          |
| 000001211        | 0 System OSC is disabled in Stop modes                                                                                                                                                                                                                                                                                                                                          |
|                  | 1 System OSC is enabled in Stop modes if SOSCEN=1. In VLLS0, system oscillator is disabled even if SOSCSTEN=1 and SOSCEN=1.                                                                                                                                                                                                                                                     |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


1093


### SCG\_SOSCCSR field descriptions (continued)

| Field       | Description                                 |
|-------------|---------------------------------------------|
| 0<br>SOSCEN | System OSC Enable  0 System OSC is disabled |
|             | 1 System OSC is enabled                     |

### 43.2.9 System OSC Divide Register (SCG\_SOSCDIV)

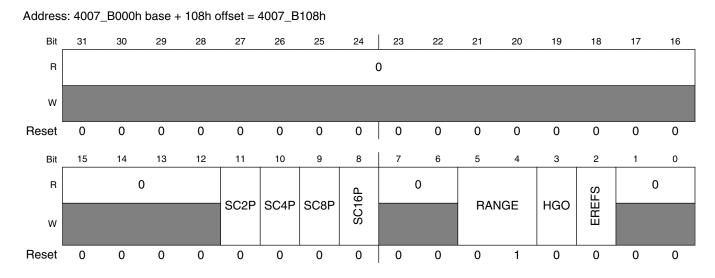
The SCG\_SOSCDIV register provides the control of 3 clock trees which can be used to provide optional peripheral functional clocks, or alternative module clocks. Each clock tree has optional dividers of the input SOSC clock. Changes to SOSCDIV should be done when System OSC is disabled to prevent glitches to output divided clock.





#### SCG\_SOSCDIV field descriptions

| Field             | Description                                                  |
|-------------------|--------------------------------------------------------------|
| 31–19             | This field is reserved.                                      |
| Reserved          | This read-only field is reserved and always has the value 0. |
| 18–16<br>SOSCDIV3 | System OSC Clock Divide 3                                    |
|                   | Clock divider 3 for System OSC.                              |
|                   | 000 Output disabled                                          |
|                   | 001 Divide by 1                                              |
|                   | 010 Divide by 2                                              |
|                   | 011 Divide by 4                                              |
|                   | 100 Divide by 8                                              |
|                   | 101 Divide by 16                                             |
|                   | 110 Divide by 32                                             |
|                   | 111 Divide by 64                                             |
| 15–11             | This field is reserved.                                      |
| Reserved          | This read-only field is reserved and always has the value 0. |
| 10–8<br>SOSCDIV2  | System OSC Clock Divide 2                                    |
|                   | Clock divider 2 for System OSC.                              |


Table continues on the next page...

### SCG\_SOSCDIV field descriptions (continued)

| Field    | Description                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------|
|          | 000 Output disabled                                                                                    |
|          | 001 Divide by 1                                                                                        |
|          | 010 Divide by 2                                                                                        |
|          | 011 Divide by 4                                                                                        |
|          | 100 Divide by 8                                                                                        |
|          | 101 Divide by 16                                                                                       |
|          | 110 Divide by 32                                                                                       |
|          | 111 Divide by 64                                                                                       |
| 7–3      | This field is reserved.                                                                                |
| Reserved | This read-only field is reserved and always has the value 0.                                           |
| SOSCDIV1 | System OSC Clock Divide 1                                                                              |
|          | Clock divider 1 for System OSC. Used to generate the system clock source and by platform clock modules |
|          | that need an asynchronous clock source.                                                                |
|          |                                                                                                        |
|          | 000 Output disabled                                                                                    |
|          | 001 Divide by 1                                                                                        |
|          | 010 Divide by 2                                                                                        |
|          | 011 Divide by 4                                                                                        |
|          | 100 Divide by 8                                                                                        |
|          | 101 Divide by 16                                                                                       |
|          | 110 Divide by 32                                                                                       |
|          | 111 Divide by 64                                                                                       |

# 43.2.10 System Oscillator Configuration Register (SCG\_SOSCCFG)

The SOSCCFG register cannot be changed when the System OSC is enabled. When the System OSC is enabled, writes to this register are ignored, and there is no transfer error.



1095

# SCG\_SOSCCFG field descriptions

| Field             | Description                                                                                                                                                                                             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–12<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                    |
| 11<br>SC2P        | Oscillator 2 pF Capacitor Load                                                                                                                                                                          |
| 10<br>SC4P        | Oscillator 4 pF Capacitor Load                                                                                                                                                                          |
| 9<br>SC8P         | Oscillator 8 pF Capacitor Load Configure                                                                                                                                                                |
| 8<br>SC16P        | Oscillator 16 pF Capacitor Load                                                                                                                                                                         |
| 7–6<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                    |
| 5–4<br>RANGE      | System OSC Range Select Selects the frequency range for the system crystal oscillator (OSC)                                                                                                             |
|                   | 00 Reserved                                                                                                                                                                                             |
|                   | 01 Low frequency range selected for the crystal oscillator of 32 kHz to 40 kHz.                                                                                                                         |
|                   | 10 Medium frequency range selected for the crytstal oscillator of 1 Mhz to 8 Mhz.                                                                                                                       |
|                   | 11 High frequency range selected for the crystal oscillator of 8 Mhz to 32 Mhz.                                                                                                                         |
| 3                 | High Gain Oscillator Select                                                                                                                                                                             |
| HGO               | Controls the crystal oscillator power mode of operations.                                                                                                                                               |
|                   | 0 Configure crystal oscillator for low-power operation                                                                                                                                                  |
|                   | 1 Configure crystal oscillator for high-gain operation                                                                                                                                                  |
| 2<br>EREFS        | External Reference Select                                                                                                                                                                               |
|                   | Selects the source for the external reference clock. This bit selects which clock is output from the System OSC (SOSC) into the SCG, thus either the crystal oscillator or from an external clock input |
|                   | 0 External reference clock selected                                                                                                                                                                     |
|                   | 1 Internal crystal oscillator of OSC requested. In VLLS0, the internal oscillator of OSC is disabled even if SOSCEN=1 and SOSCSTEN=1.                                                                   |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                    |

# 43.2.11 Slow IRC Control Status Register (SCG\_SIRCCSR)

Address: 4007\_B000h base + 200h offset = 4007\_B200h

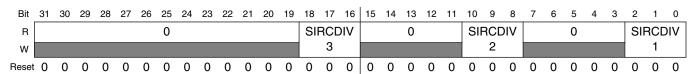


### SCG\_SIRCCSR field descriptions

| Field             | Description                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------|
| 31–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                           |
| 25<br>SIRCSEL     | Slow IRC Selected  O Slow IRC is not the system clock source  Slow IRC is the system clock source              |
| 24<br>SIRCVLD     | Slow IRC Valid  O Slow IRC is not enabled or clock is not valid  Slow IRC is enabled and output clock is valid |
| 23<br>LK          | Lock Register  This bit field can be cleared/set at any time.                                                  |

Table continues on the next page...

1097


### SCG\_SIRCCSR field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | 0 Control Status Register can be written.                    |
|          | 1 Control Status Register cannot be written.                 |
| 22–4     | This field is reserved and is always has the value 0         |
| Reserved |                                                              |
|          | This field is reserved.                                      |
| 3        | This field is reserved and is always has the value 0         |
| Reserved |                                                              |
|          | This field is reserved.                                      |
|          | This read-only field is reserved and always has the value 0. |
| 2        | Slow IRC Low Power Enable                                    |
| SIRCLPEN | 0 Slow IRC is disabled in VLP modes                          |
|          | 1 Slow IRC is enabled in VLP modes                           |
|          |                                                              |
| 1        | Slow IRC Stop Enable                                         |
| SIRCSTEN | 0 Slow IRC is disabled in Stop modes                         |
|          |                                                              |
|          | 1 Slow IRC is enabled in Stop modes                          |
| 0        | Slow IRC Enable                                              |
| SIRCEN   | 0 Slow IRC is disabled                                       |
|          | 1 Slow IRC is enabled                                        |
|          | . 5.55555                                                    |

### 43.2.12 Slow IRC Divide Register (SCG\_SIRCDIV)

To prevent glitches to the output divided clock, change SIRDIV when the Slow IRC is disabled.

Address: 4007\_B000h base + 204h offset = 4007\_B204h

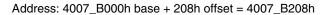


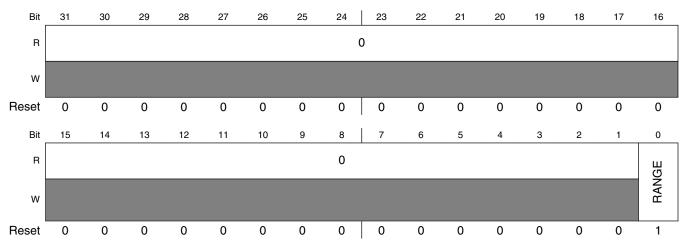
### SCG\_SIRCDIV field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 18–16<br>SIRCDIV3 | Slow IRC Clock Divider 3  Clock divider 3 for Slow IRC.  000 Output disabled         |
|                   | 000 Output disabled 001 Divide by 1 010 Divide by 2 011 Divide by 4                  |

Table continues on the next page...

### Memory Map/Register Definition


# SCG\_SIRCDIV field descriptions (continued)

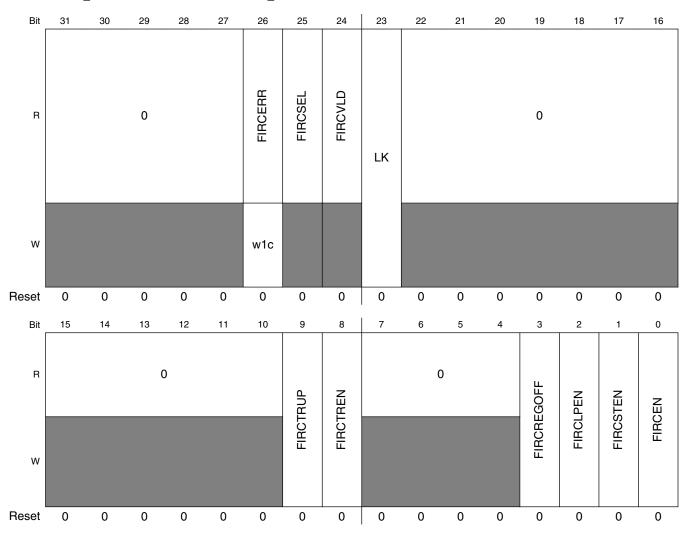

| Field           | Description                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 100 Divide by 8                                                                                                                              |
|                 | 101 Divide by 16                                                                                                                             |
|                 | 110 Divide by 32                                                                                                                             |
|                 | 111 Divide by 64                                                                                                                             |
| 15–11           | This field is reserved.                                                                                                                      |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                 |
| 10–8            | Slow IRC Clock Divide 2                                                                                                                      |
| SIRCDIV2        | Clock divider 2 for Slow IRC.                                                                                                                |
|                 | 000 Output disabled                                                                                                                          |
|                 | 001 Divide by 1                                                                                                                              |
|                 | 010 Divide by 2                                                                                                                              |
|                 | 011 Divide by 4                                                                                                                              |
|                 | 100 Divide by 8                                                                                                                              |
|                 | 101 Divide by 16                                                                                                                             |
|                 | 110 Divide by 32                                                                                                                             |
|                 | 111 Divide by 64                                                                                                                             |
| 7–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                         |
| SIRCDIV1        | Slow IRC Clock Divide 1                                                                                                                      |
|                 | Clock divider 1 for Slow IRC. Used to generate the system clock source and by platform clock modules that need an asynchronous clock source. |
|                 | 000 Output disabled                                                                                                                          |
|                 | 001 Divide by 1                                                                                                                              |
|                 | 010 Divide by 2                                                                                                                              |
|                 | 011 Divide by 4                                                                                                                              |
|                 | 100 Divide by 8                                                                                                                              |
|                 | 101 Divide by 16                                                                                                                             |
|                 | 110 Divide by 32                                                                                                                             |
|                 | 111 Divide by 64                                                                                                                             |

KL28Z Reference Manual, Rev. 4, 06/2016

# 43.2.13 Slow IRC Configuration Register (SCG\_SIRCCFG)

The SIRCCFG register cannot be changed when the slow IRC clock is enabled. When the slow IRC clock is enabled, writes to this register are ignored, and there is no transfer error.






#### **SCG\_SIRCCFG** field descriptions

| Field            | Description                                                                            |
|------------------|----------------------------------------------------------------------------------------|
| 31–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.   |
| 0<br>RANGE       | Frequency Range  O Slow IRC low range clock (2 MHz)  Slow IRC high range clock (8 MHz) |

# 43.2.14 Fast IRC Control Status Register (SCG\_FIRCCSR)

Address: 4007\_B000h base + 300h offset = 4007\_B300h

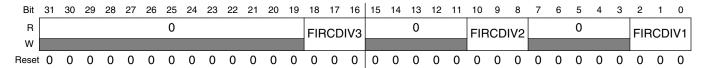


### SCG\_FIRCCSR field descriptions

| Field             | Description                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                    |
| 26<br>FIRCERR     | Fast IRC Clock Error  This flag is reset on Chip POR only, software can also clear this flag by writing a logic one     |
|                   | <ul><li>0 Error not detected with the Fast IRC trimming.</li><li>1 Error detected with the Fast IRC trimming.</li></ul> |
| 25<br>FIRCSEL     | Fast IRC Selected status                                                                                                |
|                   | <ul><li>Fast IRC is not the system clock source</li><li>Fast IRC is the system clock source</li></ul>                   |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016


# SCG\_FIRCCSR field descriptions (continued)

| Field           | Description                                                                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24<br>FIRCVLD   | Fast IRC Valid status                                                                                                                                                                        |
|                 | 0 Fast IRC is not enabled or clock is not valid.                                                                                                                                             |
|                 | 1 Fast IRC is enabled and output clock is valid. The clock is valid once there is an output clock from the FIRC analog.                                                                      |
| 23              | Lock Register                                                                                                                                                                                |
| LK              | This bit field can be cleared/set at any time.                                                                                                                                               |
|                 | 0 Control Status Register can be written.                                                                                                                                                    |
|                 | 1 Control Status Register cannot be written.                                                                                                                                                 |
| 22–10           | This field is reserved.                                                                                                                                                                      |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                                                                 |
| 9<br>FIRCTRUP   | Fast IRC Trim Update                                                                                                                                                                         |
| 1               | 0 Disable Fast IRC trimming updates                                                                                                                                                          |
|                 | 1 Enable Fast IRC trimming updates                                                                                                                                                           |
| 8<br>FIRCTREN   | Fast IRC Trim Enable                                                                                                                                                                         |
| FIRCTREN        | 0 Disable trimming Fast IRC to an external clock source                                                                                                                                      |
|                 | 1 Enable trimming Fast IRC to an external clock source                                                                                                                                       |
| 7–4             | This field is reserved.                                                                                                                                                                      |
| Reserved        | This read-only field is reserved and always has the value 0.                                                                                                                                 |
| 3<br>FIRCREGOFF | Fast IRC Regulator Enable                                                                                                                                                                    |
| TITIOTILGOTT    | 0 Fast IRC Regulator is enabled.                                                                                                                                                             |
|                 | 1 Fast IRC Regulator is disabled.                                                                                                                                                            |
| 2<br>FIRCLPEN   | Fast IRC Low Power Enable                                                                                                                                                                    |
|                 | 0 Fast IRC is disabled in VLP modes                                                                                                                                                          |
|                 | 1 Fast IRC is enabled in VLP modes                                                                                                                                                           |
| 1<br>FIRCSTEN   | Fast IRC Stop Enable                                                                                                                                                                         |
|                 | Fast IRC is disabled in Stop modes. When selected as the reference clock to the System PLL and if the System PLL is enabled in STOP mode, the Fast IRC will stay enabled even if FIRCSTEN=0. |
|                 | 1 Fast IRC is enabled in Stop modes                                                                                                                                                          |
| 0<br>FIRCEN     | Fast IRC Enable                                                                                                                                                                              |
|                 | 0 Fast IRC is disabled                                                                                                                                                                       |
|                 | 1 Fast IRC is enabled                                                                                                                                                                        |

### 43.2.15 Fast IRC Divide Register (SCG\_FIRCDIV)

Changes to FIRCDIV should be done when FAST IRC is disabled to prevent glitches to output divided clock.

Address: 4007\_B000h base + 304h offset = 4007\_B304h

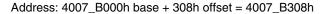


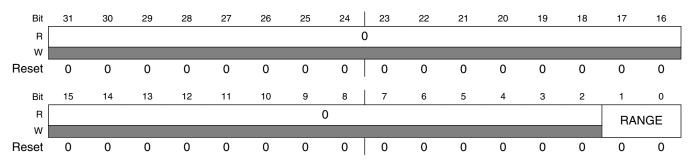
### SCG\_FIRCDIV field descriptions

| Field             | Description                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 31–19<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                         |
| 18–16<br>FIRCDIV3 | Fast IRC Clock Divider 3 Clock divider 3 for the Fast IRC.                                                                                   |
|                   | 000 Clock disabled 001 Divide by 1 010 Divide by 2 011 Divide by 4 100 Divide by 8 101 Divide by 16 110 Divide by 32                         |
|                   | 111 Divide by 64                                                                                                                             |
| 15–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                         |
| 10–8<br>FIRCDIV2  | Fast IRC Clock Divide 2 Clock divider 2 for the Fast IRC.                                                                                    |
|                   | 000 Output disabled 001 Divide by 1 010 Divide by 2 011 Divide by 4 100 Divide by 8 101 Divide by 16 110 Divide by 32 111 Divide by 64       |
| 7–3<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                         |
| FIRCDIV1          | Fast IRC Clock Divide 1                                                                                                                      |
|                   | Clock divider 1 for Fast IRC. Used to generate the system clock source and by platform clock modules that need an asynchronous clock source. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


1102

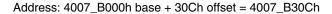

### **SCG\_FIRCDIV** field descriptions (continued)

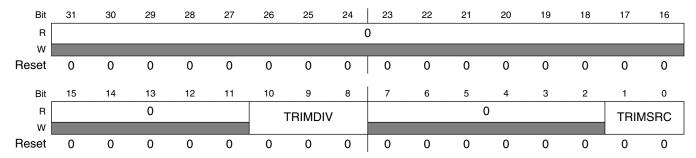
| Field | Description         |
|-------|---------------------|
|       | 000 Output disabled |
|       | 001 Divide by 1     |
|       | 010 Divide by 2     |
|       | 011 Divide by 4     |
|       | 100 Divide by 8     |
|       | 101 Divide by 16    |
|       | 110 Divide by 32    |
|       | 111 Divide by 64    |

### 43.2.16 Fast IRC Configuration Register (SCG\_FIRCCFG)

The FIRCCFG register cannot be changed when the Fast IRC is enabled. When the Fast IRC is enabled, writes to this register are ignored, and there is no transfer error.





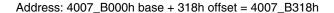


### SCG\_FIRCCFG field descriptions

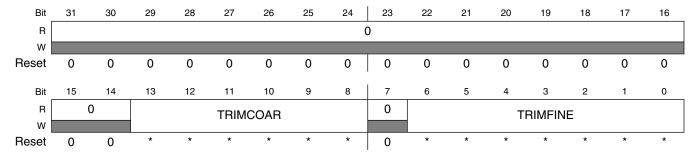
| Field            | Description                                                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 31–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                |
| RANGE            | Frequency Range                                                                                                                     |
|                  | 00 Fast IRC is trimmed to 48 MHz 01 Fast IRC is trimmed to 52 MHz 10 Fast IRC is trimmed to 56 MHz 11 Fast IRC is trimmed to 60 MHz |

# 43.2.17 Fast IRC Trim Configuration Register (SCG\_FIRCTCFG)

The FIRCTCFG register cannot be changed when Fast IRC tuning is enabled. When the Fast IRC tuning is enabled, writes to this register are ignored, and there is no transfer error.







#### SCG\_FIRCTCFG field descriptions

| Field             | Description                                                                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                         |
| 15–11<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                         |
| 10–8<br>TRIMDIV   | Fast IRC Trim Predivide  Divide the System OSC down for Fast IRC trimming.                                                                                                                                                   |
|                   | 000 Divide by 1 001 Divide by 128 010 Divide by 256 011 Divide by 512 100 Divide by 1024 101 Divide by 2048                                                                                                                  |
|                   | 110 Reserved. Writing this value will result in Divide by 1.  111 Reserved. Writing this value will result in a Divide by 1.                                                                                                 |
| 7–2<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                         |
| TRIMSRC           | Trim Source  Configures the external clock source to tune the Fast IRC. TRMSRC must be configured before programming FIRCSTAT register for trim update  00 USB0 Start of Frame (1 kHz) 01 Reserved 10 System OSC 11 Reserved |

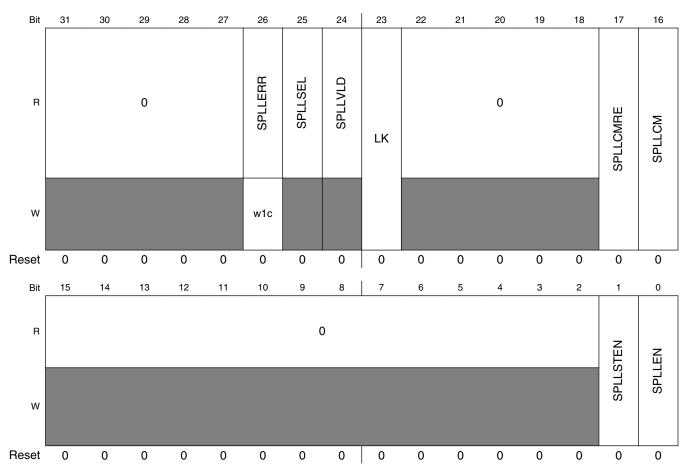
### 43.2.18 Fast IRC Status Register (SCG\_FIRCSTAT)

This register is loaded from IFR during reset. These register gets uploaded with the trim values generated by FIRC auto trimming which is enabled when FIRC is enabled and FIRCTREN=1 and FIRCTRUP=1. When FIRC auto trimming is enabled and FIRCTRUP is off (Note: TRIMSRC needs to be programmed to TRIMSRC=10 or TRIMSRC=11), writes to this register is allowed and values written to this register are used to trim FIRC clock.





- \* Notes:
- TRIMCOAR field: Reset values are loaded out of IFR.
- TRIMFINE field: Reset values are loaded out of IFR.


#### SCG\_FIRCSTAT field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                          |
| 15–14<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                          |
| 13–8<br>TRIMCOAR  | Trim Coarse  TRIMCOAR bits are used to coursely trim the Fast IRC Clock to within approximately ±0.7% of the target frequency. When FIRC is enabled and auto trimming is enabled (FIRCTREN=1 and FIRCTRUP=1), then TRIMCOAR register gets uploaded with the trimmed coarse value. When FIRCTRUP=0, TRIMCOAR register is writable, to allow user programming of coarse trim values.                                                                            |
| 7<br>Reserved     | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                          |
| TRIMFINE          | Trim Fine Status  Once the Fast IRC Clock is trimmed to ±0.7% of the target frequency using the TRIMCOAR bits, the TRIMFINE bits can be used to trim the Fast IRC Clock to within ±0.04% of the target frequency. When FIRC is enabled and auto trimming is enabled (FIRCTREN=1 and FIRCTRUP=1), TRIMFINE register gets uploaded with the trimmed fine value. When FIRCTRUP=0, TRIMFINE register is writeable, to allow user programming of fine trim values. |

KL28Z Reference Manual, Rev. 4, 06/2016

# 43.2.19 System PLL Control Status Register (SCG\_SPLLCSR)

Address: 4007\_B000h base + 600h offset = 4007\_B600h

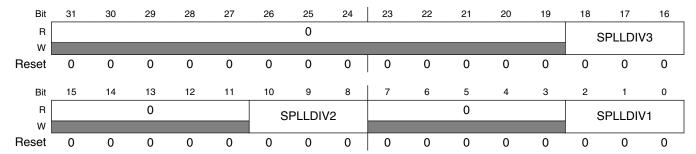


#### SCG\_SPLLCSR field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                             |
| 26<br>SPLLERR     | System PLL Clock Error  This flag is reset on Chip POR only, software can also clear this flag by writing a logic one  0 System PLL Clock Monitor is disabled or has not detected an error  1 System PLL Clock Monitor is enabled and detected an error. System PLL Clock Error flag will not set when System OSC is selected as its source and SOSCERR has set. |
| 25<br>SPLLSEL     | System PLL Selected  O System PLL is not the system clock source  System PLL is the system clock source                                                                                                                                                                                                                                                          |
| 24<br>SPLLVLD     | System PLL Valid                                                                                                                                                                                                                                                                                                                                                 |

Table continues on the next page...

# SCG\_SPLLCSR field descriptions (continued)


| Field            | Description                                                                                                                                                                                                                                                                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Indicates when the SPLL clock is valid. Disabling the SPLL or a SOSC error when selected as the reference clock to the SPLL will cause the SPLLVLD to clear without setting SPLLERROR.                                                                                                                                                                      |
|                  | Lock detect is determined by a lock detect circuit. Three samples of lock detect determines whether or not the clock is valid.                                                                                                                                                                                                                              |
|                  | 0 System PLL is not enabled or clock is not valid                                                                                                                                                                                                                                                                                                           |
|                  | 1 System PLL is enabled and output clock is valid                                                                                                                                                                                                                                                                                                           |
| 23<br>LK         | Lock Register                                                                                                                                                                                                                                                                                                                                               |
|                  | This bit field can be cleared/set at any time.                                                                                                                                                                                                                                                                                                              |
|                  | 0 Control Status Register can be written.                                                                                                                                                                                                                                                                                                                   |
|                  | 1 Control Status Register cannot be written.                                                                                                                                                                                                                                                                                                                |
| 22–18            | This field is reserved.                                                                                                                                                                                                                                                                                                                                     |
| Reserved         | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                |
| 17<br>SPLLCMRE   | System PLL Clock Monitor Reset Enable                                                                                                                                                                                                                                                                                                                       |
|                  | 0 Clock Monitor generates interrupt when error detected                                                                                                                                                                                                                                                                                                     |
|                  | 1 Clock Monitor generates reset when error detected                                                                                                                                                                                                                                                                                                         |
| 16<br>SPLLCM     | System PLL Clock Monitor                                                                                                                                                                                                                                                                                                                                    |
| OI LLOW          | Enables the clock monitor, if the clock source is disabled in a low power mode then the clock monitor is also disabled in the low power mode. The clock monitor is always disabled in LLS/VLLS modes. When the clock monitor is disabled in a low power mode, it remains disabled until the clock valid flag is set following exit from the low power mode. |
|                  | 0 System PLL Clock Monitor is disabled                                                                                                                                                                                                                                                                                                                      |
|                  | 1 System PLL Clock Monitor is enabled                                                                                                                                                                                                                                                                                                                       |
| 15–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                        |
| 1<br>SPLLSTEN    | System PLL Stop Enable                                                                                                                                                                                                                                                                                                                                      |
|                  | 0 System PLL is disabled in Stop modes                                                                                                                                                                                                                                                                                                                      |
|                  | 1 System PLL is enabled in Stop modes                                                                                                                                                                                                                                                                                                                       |
| 0<br>SPLLEN      | System PLL Enable                                                                                                                                                                                                                                                                                                                                           |
|                  | 0 System PLL is disabled                                                                                                                                                                                                                                                                                                                                    |
|                  | 1 System PLL is enabled                                                                                                                                                                                                                                                                                                                                     |

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 1107

# 43.2.20 System PLL Divide Register (SCG\_SPLLDIV)

Changes to SPLLDIV should be done when System PLL is disabled to prevent glitches to output divided clock.

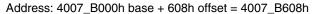
Address: 4007\_B000h base + 604h offset = 4007\_B604h

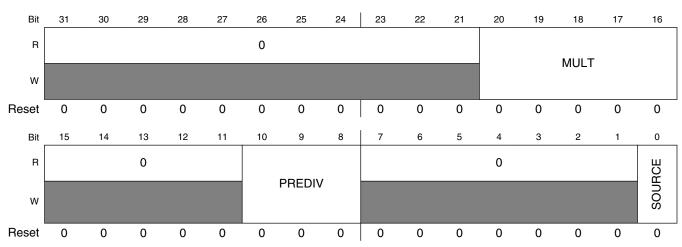


### SCG\_SPLLDIV field descriptions

| Field             | Description                                                  |
|-------------------|--------------------------------------------------------------|
| 31–19             | This field is reserved.                                      |
| Reserved          | This read-only field is reserved and always has the value 0. |
| 18–16<br>SPLLDIV3 | System PLL Clock Divide 3                                    |
|                   | Clock divider 3 for System PLL.                              |
|                   | 000 Clock disabled                                           |
|                   | 001 Divide by 1                                              |
|                   | 010 Divide by 2                                              |
|                   | 011 Divide by 4                                              |
|                   | 100 Divide by 8                                              |
|                   | 101 Divide by 16                                             |
|                   | 110 Divide by 32                                             |
|                   | 111 Divide by 64                                             |
| 15–11             | This field is reserved.                                      |
| Reserved          | This read-only field is reserved and always has the value 0. |
| 10–8              | System PLL Clock Divide 2                                    |
| SPLLDIV2          | Cleak divider 2 for System DLL                               |
|                   | Clock divider 2 for System PLL.                              |
|                   | 000 Clock disabled                                           |
|                   | 001 Divide by 1                                              |
|                   | 010 Divide by 2                                              |
|                   | 011 Divide by 4                                              |
|                   | 100 Divide by 8                                              |
|                   | 101 Divide by 16                                             |
|                   | 110 Divide by 32                                             |
|                   | 111 Divide by 64                                             |
| 7–3               | This field is reserved.                                      |
| Reserved          | This read-only field is reserved and always has the value 0. |
|                   |                                                              |

Table continues on the next page...


1109


### SCG\_SPLLDIV field descriptions (continued)

| Field    | Description                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| SPLLDIV1 | System PLL Clock Divide 1                                                                                                                       |
|          | Clock divider 1 for System PLL. Used to generate the system clock source used by platform clock modules that need an asynchronous clock source. |
|          | 000 Clock disabled                                                                                                                              |
|          | 001 Divide by 1                                                                                                                                 |
|          | 010 Divide by 2                                                                                                                                 |
|          | 011 Divide by 4                                                                                                                                 |
|          | 100 Divide by 8                                                                                                                                 |
|          | 101 Divide by 16                                                                                                                                |
|          | 110 Divide by 32                                                                                                                                |
|          | 111 Divide by 64                                                                                                                                |

### 43.2.21 System PLL Configuration Register (SCG\_SPLLCFG)

The SPLLCFG register cannot be changed when the System PLL is enabled. When the System PLL is enabled, writes to this register are ignored, and there is no transfer error. The below information applies to  $VCO\_CLK\_2x$ . The  $SPLL\_CLK = (VCO\_CLK\_2x)/2$ . The  $VCO\_CLK\_2x = SOSC\_CLK/(PREDIV + 1) X (MULT + 16)$ 





SCG\_SPLLCFG field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–21<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 20–16<br>MULT     | System PLL Multiplier                                                                |

Table continues on the next page...

# SCG\_SPLLCFG field descriptions (continued)

| Field Description |                                                                                                                                                                     |                              |                                                      |                    |                                      |                    |       |                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|--------------------|--------------------------------------|--------------------|-------|--------------------|
|                   | Multiplier for the System PLL. The MULT bits establish the multiplication factor applied to the PLL reference clock frequency.  Table 43-1. PLL VCO Multiply Factor |                              |                                                      |                    |                                      |                    |       |                    |
|                   |                                                                                                                                                                     |                              |                                                      |                    |                                      |                    |       |                    |
|                   | MULT                                                                                                                                                                | Multiply<br>Factor           | MULT                                                 | Multiply<br>Factor | MULT                                 | Multiply<br>Factor | MULT  | Multiply<br>Factor |
|                   | 00000                                                                                                                                                               | 16                           | 01000                                                | 24                 | 10000                                | 32                 | 11000 | 40                 |
|                   | 00001                                                                                                                                                               | 17                           | 01001                                                | 25                 | 10001                                | 33                 | 11001 | 41                 |
|                   | 00010                                                                                                                                                               | 18                           | 01010                                                | 26                 | 10010                                | 34                 | 11010 | 42                 |
|                   | 00011                                                                                                                                                               | 19                           | 01011                                                | 27                 | 10011                                | 35                 | 11011 | 43                 |
|                   | 00100                                                                                                                                                               | 20                           | 01100                                                | 28                 | 10100                                | 36                 | 11100 | 44                 |
|                   | 00101                                                                                                                                                               | 21                           | 01101                                                | 29                 | 10101                                | 37                 | 11101 | 45                 |
|                   | 00110                                                                                                                                                               | 22                           | 01110                                                | 30                 | 10110                                | 38                 | 11110 | 46                 |
|                   | 00111                                                                                                                                                               | 23                           | 01111                                                | 31                 | 10111                                | 39                 | 11111 | 47                 |
|                   |                                                                                                                                                                     |                              |                                                      |                    |                                      |                    |       |                    |
| 15–11<br>Reserved |                                                                                                                                                                     | d is reserve<br>d-only field | d.<br>is reserved and a                              | always has the     | value 0.                             |                    |       |                    |
| 10–8<br>PREDIV    | PLL Reference Clock Divider                                                                                                                                         |                              |                                                      |                    |                                      |                    |       |                    |
|                   |                                                                                                                                                                     |                              |                                                      |                    |                                      |                    |       |                    |
|                   |                                                                                                                                                                     |                              | to divide down the MHz to 32 MHz. <b>Table 43-2.</b> |                    | •                                    |                    |       | ncy must           |
|                   |                                                                                                                                                                     | range of 8                   | MHz to 32 MHz.                                       |                    | •                                    | nce Divide         |       | ncy must           |
|                   | be in the                                                                                                                                                           | range of 8                   | MHz to 32 MHz.                                       |                    | LL Referer                           | nce Divide         |       | ncy must           |
|                   | be in the                                                                                                                                                           | range of 8                   | MHz to 32 MHz.                                       |                    | PLL Referer Divide Facto             | nce Divide         |       | ncy must           |
|                   | PREDIV                                                                                                                                                              | range of 8                   | MHz to 32 MHz.                                       |                    | PLL Referer Divide Facto             | nce Divide         |       | ncy must           |
|                   | PREDIV                                                                                                                                                              | range of 8                   | MHz to 32 MHz.                                       |                    | PLL Referer Divide Facto             | nce Divide         |       | ncy must           |
|                   | PREDIV<br>000<br>001<br>010<br>011<br>100                                                                                                                           | range of 8                   | MHz to 32 MHz.                                       |                    | Divide Facto  1 2 3                  | nce Divide         |       | ncy must           |
|                   | PREDIV<br>000<br>001<br>010<br>011<br>100                                                                                                                           | range of 8                   | MHz to 32 MHz.                                       |                    | PLL Referen Divide Facto 1 2 3 4 5 6 | nce Divide         |       | ncy must           |
|                   | PREDIV<br>000<br>001<br>010<br>011<br>100<br>101<br>110                                                                                                             | range of 8                   | MHz to 32 MHz.                                       |                    | Divide Factor  1 2 3 4 5 6 7         | nce Divide         |       | ncy must           |
|                   | PREDIV<br>000<br>001<br>010<br>011<br>100                                                                                                                           | range of 8                   | MHz to 32 MHz.                                       |                    | PLL Referen Divide Facto 1 2 3 4 5 6 | nce Divide         |       | ncy mus            |
| 7–1<br>Reserved   | PREDIV<br>000<br>001<br>010<br>011<br>100<br>101<br>110<br>111                                                                                                      | range of 8                   | MHz to 32 MHz.  Table 43-2.                          | System P           | Divide Factor  1 2 3 4 5 6 7 8       | nce Divide         |       | ncy must           |
|                   | PREDIVE 000 001 010 011 100 111 This field This read Clock Sci                                                                                                      | d is reserved-only field     | MHz to 32 MHz.  Table 43-2.                          | System P           | Divide Facto  1 2 3 4 5 6 7 8        | nce Divide         |       | ncy mus            |

KL28Z Reference Manual, Rev. 4, 06/2016

# 43.3 Functional description

### 43.3.1 SCG Clock Mode Transitions

The following figure shows the valid clock mode transitions supported by SCG.

Fast IRC (FIRC) boot mode is not supported on this device.

#### SCG Valid Mode Transitions

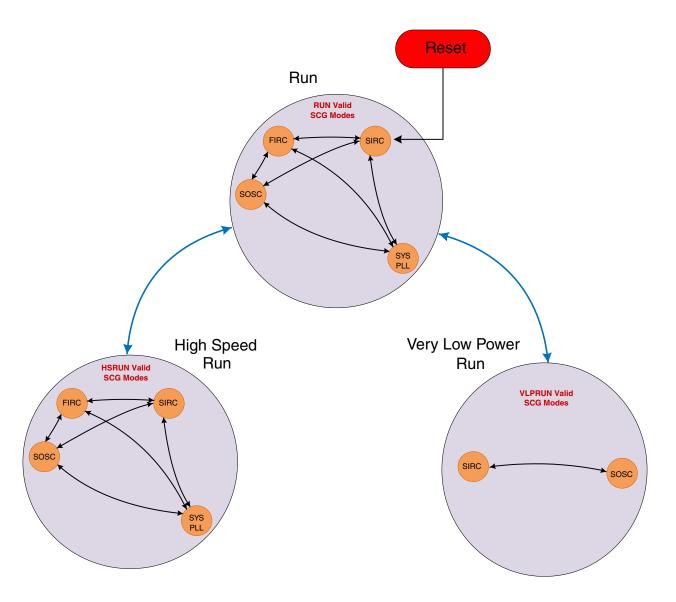



Figure 43-2. SCG Valid Mode Transition Diagram

The SCG will restrict programming into invalid clock modes and writes to SCS bits will be ignored. When a transition between run modes or a transition into wait mode occurs, the SCG completes the switch to the clock mode as defined in the SCG clock control register. When completed, the system switches to the selected run/wait mode.

The modes of operation listed in the following table are the valid modes for this implementation of the SCG.

KL28Z Reference Manual, Rev. 4, 06/2016

# Table 43-3. SCG modes of operation

| Mode                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                         | System Oscillator Clock (SOSC) mode is entered when all the following conditions occur:                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| (SOSC)                  | RUN MODE: 0001 is written to RCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | VLRUN MODE: 0001 is written to VCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | HSRUN MODE: 0001 is written to HCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | • SOSCEN = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                         | • SOSCVLD = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                         | In SOSC mode, SCSCLKOUT and system clocks are derived from the external System Oscillator Clock (SOSC).                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Slow Internal Reference | Slow Internal Reference Clock (SIRC) mode is entered when all the following conditions occur:                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Clock (SIRC)            | RUN MODE: 0010 is written to RCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | VLRUN MODE: 0010 is written to VCCR[SCS] and 1 is written to SIRCCSR[SIRCLPEN].                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                         | HSRUN MODE: 0010 is written to HCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | • SIRCEN = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                         | • SIRCVLD = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                         | In SIRC mode, SCSCLKOUT and system clocks are derived from the slow internal reference clock. Two frequency ranges are available for SIRC clock as described in the SIRCCFG[RANGE] register definition. Changes to SIRC range settings will be ignored when SIRC clock is enabled.                                                                                                                                                                                                                                                   |  |  |
| Fast Internal Reference | Fast Internal Reference Clock (FIRC) mode is entered when all the following conditions occur:                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Clock (FIRC)            | RUN MODE: 0011 is written to RCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | VLRUN MODE: Invalid mode. Programming SCG into FIRC mode will be ingored.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | HSRUN MODE: 0011 is written to HCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | • FIRCEN = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                         | • FIRCVLD = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                         | In FIRC mode, SCSCLKOUT and system clocks are derived from the fast internal reference clock.  Two frequency range settings are available for FIRC clock as described in the FIRC[RANGE] register definition. Changes to FIRC range settings will be ignored when FIRC clock is enabled.                                                                                                                                                                                                                                             |  |  |
| Sys PLL (SPLL)          | Sys PLL (SPLL) mode is entered when all the following conditions occur:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | RUN MODE: 0110 is written to RCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | VLRUN MODE: Invalid mode. Programming SCG into SPLL mode will be ingored.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | HSRUN MODE: 0110 is written to HCCR[SCS].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         | • SPLLEN = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                         | • SPLLVLD = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                         | In SPLL mode, the SCSCLKOUT and system clocks are derived from the output of PLL which is controlled by either the System Oscillator (SOSC) clock or the Fast internal reference clock (FIRC). The selected PLL clock frequency locks to a multiplication factor, as specified by its corresponding SCG_SPLLCFG[MULT], times the selected PLL reference frequency. The PLL's programmable reference divider must be configured to produce a valid PLL reference clock. This divide value is defined by the SCG_SPLLCFG[PREDIV] bits. |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

# Table 43-3. SCG modes of operation (continued)

| Mode | Description                                                                                                                                                                                                                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stop | Entered whenever the MCU enters a Stop state. The power modes are chip specific. For power mode assignments, see the chapter that describes how modules are configured and SCG behavious during Stop recovery. Entering Stop mode, all SCG clock signals are static except the following clocks which can continue to run and stayed enabled in the following cases: |
|      | SIRCCLK is available in Normal Stop and VLPS mode when all the following conditions become true:                                                                                                                                                                                                                                                                     |
|      | • SIRCCSR[SIRCEN] = 1                                                                                                                                                                                                                                                                                                                                                |
|      | SIRCCSR[SIRCSTEN] = 1                                                                                                                                                                                                                                                                                                                                                |
|      | SIRCCSR[SIRCLPEN] = 1 in VLPS                                                                                                                                                                                                                                                                                                                                        |
|      | FIRCCLK is available only in Normal Stop mode when all the following conditions become true:                                                                                                                                                                                                                                                                         |
|      | • FIRCCSR[FIRCEN] = 1                                                                                                                                                                                                                                                                                                                                                |
|      | • FIRCCSR[FIRCSTEN] = 1                                                                                                                                                                                                                                                                                                                                              |
|      | SOSCLK is available in following low power stop modes (Normal Stop, VLPS, LLS) when all the below conditions are true. In VLLS stop mode, SOSCLK is disabled.                                                                                                                                                                                                        |
|      | SOSCCSR[SOSCEN] = 1                                                                                                                                                                                                                                                                                                                                                  |
|      | SOSCCSR[SOSCSTEN] = 1                                                                                                                                                                                                                                                                                                                                                |
|      | SOSCCSR[SOSCLPEN] = 1 (required only for Low Power Stop modes (VLPS and LLS))                                                                                                                                                                                                                                                                                        |
|      | SPLLCLK is available in Normal Stop mode when all the following conditions are true:                                                                                                                                                                                                                                                                                 |
|      | SPLLCSR[SPLLEN] = 1                                                                                                                                                                                                                                                                                                                                                  |
|      | SPLLCSR[SPLLSTEN] = 1                                                                                                                                                                                                                                                                                                                                                |
|      | SPLLSTEN control bit has no affect in LLS or VLPS Power mode.                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                      |

# **Chapter 44 System Integration Module (SIM)**

### 44.1 Introduction

The system integration module (SIM) provides system control and chip configuration registers.

### 44.1.1 Features

- Flash and System RAM size configuration
- USB regulator configuration

# 44.2 Memory map and register definition

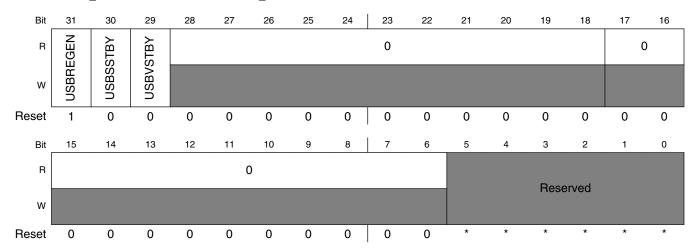
The SIM module contains many bit fields for miscellaneous configuration of the device.

#### **NOTE**

The SIM registers can be written only in supervisor mode. In user mode, write accesses are blocked and will result in a bus error.

#### **NOTE**

The SIM\_SOPT1 and SIM\_SOPT1CFG registers are located at a different base address than the other SIM registers.


### SIM memory map

| Absolute<br>address<br>(hex) | Register name                                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-----------------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_4000                    | System Options Register 1 (SIM_SOPT1)               | 32                 | R/W    | See section | 44.2.1/1116      |
| 4007_4004                    | SOPT1 Configuration Register (SIM_SOPT1CFG)         | 32                 | R/W    | 0000_0000h  | 44.2.2/1117      |
| 4007_5024                    | System Device Identification Register (SIM_SDID)    | 32                 | R      | See section | 44.2.3/1118      |
| 4007_504C                    | Flash Configuration Register 1 (SIM_FCFG1)          | 32                 | R/W    | See section | 44.2.4/1121      |
| 4007_5050                    | Flash Configuration Register 2 (SIM_FCFG2)          | 32                 | R      | See section | 44.2.5/1123      |
| 4007_5058                    | Unique Identification Register Mid-High (SIM_UIDMH) | 32                 | R      | See section | 44.2.6/1124      |
| 4007_505C                    | Unique Identification Register Mid Low (SIM_UIDML)  | 32                 | R      | See section | 44.2.7/1125      |
| 4007_5060                    | Unique Identification Register Low (SIM_UIDL)       | 32                 | R      | See section | 44.2.8/1125      |
| 4007_50EC                    | Peripheral Clock Status Register (SIM_PCSR)         | 32                 | R      | 0000_0000h  | 44.2.9/1126      |

# 44.2.1 System Options Register 1 (SIM\_SOPT1)

NOTE
The SOPT1 register is only reset on POR or LVD.

Address: 4007\_4000h base + 0h offset = 4007\_4000h



<sup>\*</sup> Notes:

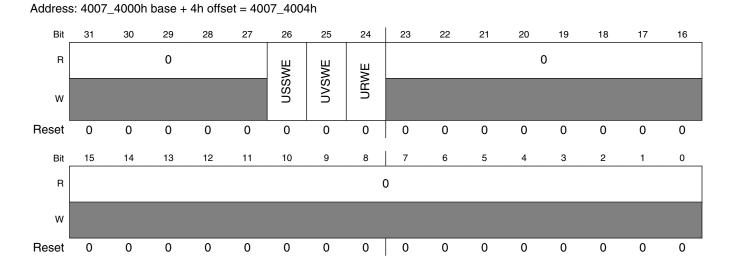
### SIM\_SOPT1 field descriptions

| Field          | Description                                            |
|----------------|--------------------------------------------------------|
| 31<br>USBREGEN | USB voltage regulator enable                           |
| OSBITEGEN      | Controls whether the USB voltage regulator is enabled. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> Reserved field: Device specific value.


1117

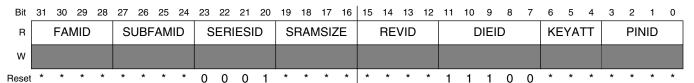
## SIM\_SOPT1 field descriptions (continued)

| Field          | Description                                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
|                | 0 USB voltage regulator is disabled.                                                                        |
|                | 1 USB voltage regulator is enabled.                                                                         |
| 30<br>USBSSTBY | USB voltage regulator in standby mode during Stop, VLPS, LLS and VLLS modes.                                |
|                | Controls whether the USB voltage regulator is placed in standby mode during Stop, VLPS, LLS and VLLS modes. |
|                | 0 USB voltage regulator not in standby during Stop, VLPS, LLS and VLLS modes.                               |
|                | 1 USB voltage regulator in standby during Stop, VLPS, LLS and VLLS modes.                                   |
| 29<br>USBVSTBY | USB voltage regulator in standby mode during VLPR and VLPW modes                                            |
|                | Controls whether the USB voltage regulator is placed in standby mode during VLPR and VLPW modes.            |
|                | 0 USB voltage regulator not in standby during VLPR and VLPW modes.                                          |
|                | 1 USB voltage regulator in standby during VLPR and VLPW modes.                                              |
| 28–18          | This field is reserved.                                                                                     |
| Reserved       | This read-only field is reserved and always has the value 0.                                                |
| 17–16          | This field is reserved.                                                                                     |
| Reserved       | This read-only field is reserved and always has the value 0.                                                |
| 15–6           | This field is reserved.                                                                                     |
| Reserved       | This read-only field is reserved and always has the value 0.                                                |
| Reserved       | This field is reserved.                                                                                     |

# 44.2.2 SOPT1 Configuration Register (SIM\_SOPT1CFG)

**NOTE**The SOPT1CFG register is reset on System Reset not VLLS.




#### Memory map and register definition

## SIM\_SOPT1CFG field descriptions

| Field             | Description                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–27<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                               |
| 26<br>USSWE       | USB voltage regulator stop standby write enable  Writing one to the USSWE bit allows the SOPT1 USBSSTBY bit to be written. This register bit clears after a write to USBSSTBY.  0 SOPT1 USBSSTB cannot be written. |
|                   | 1 SOPT1 USBSSTB can be written.                                                                                                                                                                                    |
| 25<br>UVSWE       | USB voltage regulator VLP standby write enable  Writing one to the UVSWE bit allows the SOPT1 USBVSTBY bit to be written. This register bit clears after a write to USBVSTBY.                                      |
|                   | 0 SOPT1 USBVSTB cannot be written.                                                                                                                                                                                 |
|                   | 1 SOPT1 USBVSTB can be written.                                                                                                                                                                                    |
| 24<br>URWE        | USB voltage regulator enable write enable  Writing one to the URWE bit allows the SOPT1 USBREGEN bit to be written. This register bit clears after                                                                 |
|                   | a write to USBREGEN.  O SOPT1 USBREGEN cannot be written.  SOPT1 USBREGEN can be written.                                                                                                                          |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                               |

# 44.2.3 System Device Identification Register (SIM\_SDID)

Address: 4007\_4000h base + 1024h offset = 4007\_5024h



#### \* Notes:

• FAMID field: Device specific value.

• SUBFAMID field: Device specific value.

• SRAMSIZE field: Device specific value.

• REVID field: Device specific value.

· KEYATT field: Device specific value.

• PINID field: Device specific value.

## SIM\_SDID field descriptions

|   | Field | Description       |
|---|-------|-------------------|
| Γ | 31–28 | Kinetis family ID |
|   | FAMID |                   |

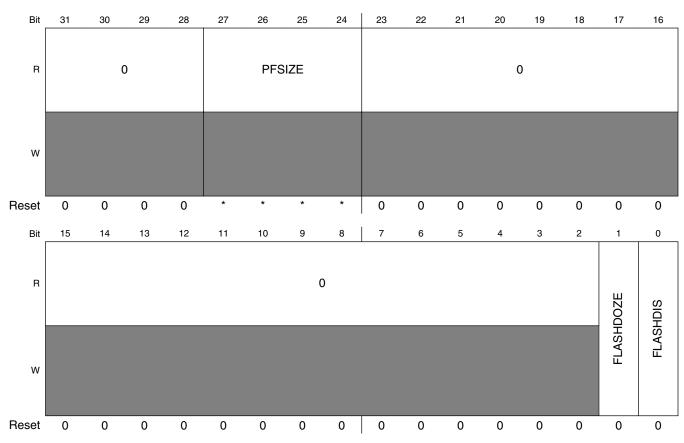
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

# SIM\_SDID field descriptions (continued)

| Field             | Description                                                 |
|-------------------|-------------------------------------------------------------|
|                   | Specifies the Kinetis family of the device.                 |
|                   | 0010 KL2x Family (USB)                                      |
| 27–24             | Kinetis Sub-Family ID                                       |
| SUBFAMID          | Specifies the Kinetis sub-family of the device.             |
|                   | 0010 KLx2 Subfamily                                         |
|                   | 0011 KLx3 Subfamily                                         |
|                   | 0100 KLx4 Subfamily                                         |
|                   | 0101 KLx5 Subfamily 0110 KLx6 Subfamily                     |
|                   | 0111 KLx7 Subfamily                                         |
|                   | 1000 KLx8 Subfamily                                         |
|                   | 1001 KLx9 Subfamily                                         |
| 23–20             | Kinetis Series ID                                           |
| SERIESID          | Specifies the Kinetis family of the device.                 |
|                   | 0001 KL family                                              |
| 19–16<br>SRAMSIZE | System SRAM Size                                            |
| OT IT WOIZE       | Specifies the size of the System SRAM                       |
|                   | 1000 96 KB                                                  |
|                   | 1001 128 KB                                                 |
| 15–12<br>REVID    | Device Revision Number                                      |
| TIEVID            | Specifies the silicon implementation number for the device. |
|                   | 0001 Revision 1.1                                           |
| 11–7              | Device Die Number                                           |
| DIEID             | Specifies the silicon implementation number for the device. |
|                   | This field always reads as 11100.                           |
| 6–4<br>KEYATT     | Core configuration of the device.                           |
| KLIAII            | Specifies the core configuration of the device.             |
|                   | 000 Cortex CM0+ Core                                        |
|                   | 001 Reserved                                                |
|                   | 010 Reserved<br>011 Reserved                                |
|                   | 011 Reserved<br>100 Reserved                                |
|                   | 101 Reserved                                                |
|                   | 110 Reserved                                                |
|                   | 111 Reserved                                                |
| PINID             | Pin count identification                                    |
|                   | Specifies the pin count of the device.                      |

Table continues on the next page...


## Memory map and register definition

# SIM\_SDID field descriptions (continued)

| Field |      | Description |  |
|-------|------|-------------|--|
|       | 0000 | Reserved    |  |
|       | 0001 | Reserved    |  |
|       | 0010 | Reserved    |  |
|       | 0011 | Reserved    |  |
|       | 0100 | Reserved    |  |
|       | 0101 | Reserved    |  |
|       | 0110 | Reserved    |  |
|       | 0111 | Reserved    |  |
|       | 1000 | 100-pin     |  |
|       | 1001 | 121-pin     |  |
|       | 1010 | Reserved    |  |
|       | 1011 | Reserved    |  |
|       | 1100 | Reserved    |  |
|       | 1101 | Reserved    |  |
|       | 1110 | Reserved    |  |
|       | 1111 | Reserved    |  |

# 44.2.4 Flash Configuration Register 1 (SIM\_FCFG1)

Address: 4007\_4000h base + 104Ch offset = 4007\_504Ch



<sup>\*</sup> Notes:

## SIM\_FCFG1 field descriptions

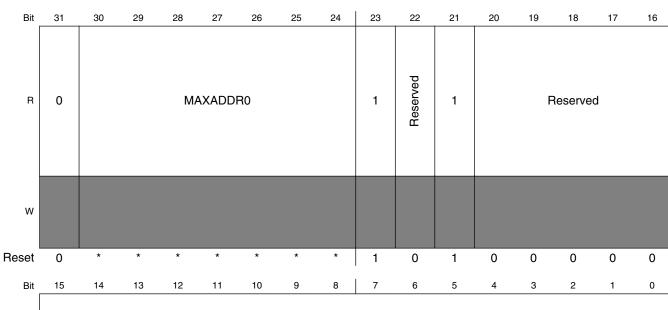
| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 31–28<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 27–24<br>PFSIZE   | Program Flash Size  Specifies the amount of program flash memory available on the device . Undefined values are reserved.  NOTE: Your device may not support all of these possible values for Program Flash Size. To determine which program flash sizes are supported by your device, check the data sheet.  0101 64 KB of program flash memory, 2 KB protection region 0111 128 KB of program flash memory, 4 KB protection region 1001 256 KB of program flash memory, 8 KB protection region 1011 512 KB of program flash memory, 16 KB protection region |  |

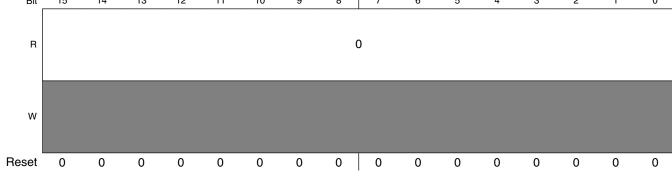
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> PFSIZE field: Device specific value.

## Memory map and register definition


# SIM\_FCFG1 field descriptions (continued)


| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>FLASHDOZE   | Flash Doze  When set, flash memory is disabled for the duration of Doze mode. This field must be clear during VLP modes. The flash will be automatically enabled again at the end of Doze mode so interrupt vectors do not need to be relocated out of flash memory. The wake-up time from Doze mode is extended when this field is set. An attempt by the DMA or other bus master to access the flash memory when the flash is disabled will result in a bus error. |
|                  | 0 Flash remains enabled during Doze mode.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | 1 Flash is disabled for the duration of Doze mode.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0<br>FLASHDIS    | Flash Disable  Flash accesses are disabled (and generate a bus error) and the flash memory is placed in a low-power state. This field should not be changed during VLP modes. Relocate the interrupt vectors out of Flash memory before disabling the Flash.                                                                                                                                                                                                         |
|                  | <ul><li>0 Flash is enabled.</li><li>1 Flash is disabled.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                   |

# 44.2.5 Flash Configuration Register 2 (SIM\_FCFG2)

Address: 4007\_4000h base + 1050h offset = 4007\_5050h

This is read only register, any write to this register will cause transfer error.





<sup>\*</sup> Notes:

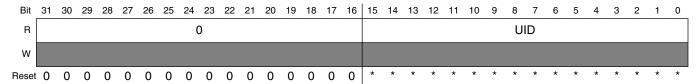
# SIM\_FCFG2 field descriptions

| Field             | Description                                                                                                                                                                                                                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                      |
| 30–24<br>MAXADDR0 | <ul> <li>Max Address lock</li> <li>MAXADDR0 field concatenated with 13 trailing zeroes indicates the first invalid address of program flash block 0.</li> <li>MAXADDR0 field concatenated with 13 trailing zeroes, then doubled, indicates the first invalid address of program flash block 1.</li> </ul> |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> MAXADDR0 field: Device specific value indicating amount of implemented flash.


#### Memory map and register definition

## SIM\_FCFG2 field descriptions (continued)

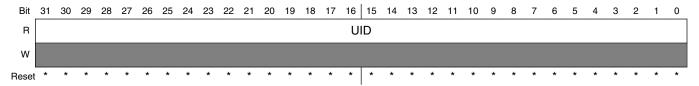
| Field             | Description                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | For example, if MAXADDR0 = 0x10, then the first invalid address of program flash block 0 is 0x0002_0000, and the first invalid address of program flash block 1 is 0x0004_0000. |
| 23<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 1.                                                                                            |
| 22<br>Reserved    | This field is reserved.                                                                                                                                                         |
| 21<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 1.                                                                                            |
| 20–16<br>Reserved | This field is reserved.                                                                                                                                                         |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                            |

# 44.2.6 Unique Identification Register Mid-High (SIM\_UIDMH)

Address: 4007\_4000h base + 1058h offset = 4007\_5058h



<sup>\*</sup> Notes:


## SIM\_UIDMH field descriptions

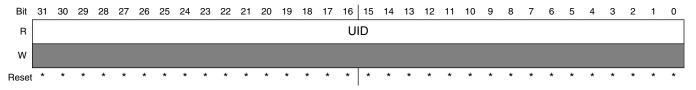
| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–16    | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| UID      | Unique Identification                                        |
|          | Unique identification for the device.                        |

<sup>•</sup> UID field: Device specific value.

# 44.2.7 Unique Identification Register Mid Low (SIM\_UIDML)

Address: 4007\_4000h base + 105Ch offset = 4007\_505Ch




- \* Notes:
- UID field: Device specific value.

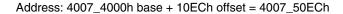
#### SIM\_UIDML field descriptions

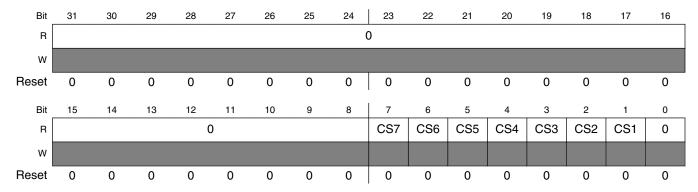
| Field | Description                           |
|-------|---------------------------------------|
| UID   | Unique Identification                 |
|       | Unique identification for the device. |

# 44.2.8 Unique Identification Register Low (SIM\_UIDL)

Address: 4007\_4000h base + 1060h offset = 4007\_5060h




- \* Notes:
- UID field: Device specific value.


#### SIM\_UIDL field descriptions

| Field | Description                           |
|-------|---------------------------------------|
| UID   | Unique Identification                 |
|       | Unique identification for the device. |

# 44.2.9 Peripheral Clock Status Register (SIM\_PCSR)

The System Clock Generator will provide a 'ready' status for all peripheral clock sources. The 'ready' status bits of the respective peripheral clock source can be polled by software prior to choosing a clock as the source clock for a peripheral.





## SIM\_PCSR field descriptions

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| 31–8     | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |
| 7<br>CS7 | Clock Source 7                                               |
|          | Clock Source 7 (Peripheral PLL) Status                       |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 6<br>CS6 | Clock Source 6                                               |
|          | Clock Source 6 (System PLL) Status                           |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 5<br>CS5 | Clock Source 5                                               |
|          | Clock Source 5 (System FLL) Status                           |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 4<br>CS4 | Clock Source 4                                               |
|          | Clock Source 4 (RTC Oscillator) Status                       |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 3<br>CS3 | Clock Source 3                                               |

Table continues on the next page...

# SIM\_PCSR field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | Clock Source 3 (Fast IRC Clock) Status                       |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 2<br>CS2 | Clock Source 2                                               |
|          | Clock Source 2 (Slow IRC Clock) Status                       |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 1<br>CS1 | Clock Source 1                                               |
|          | Clock Source 1 (System Oscillator) Status                    |
|          | 0 Clock not ready.                                           |
|          | 1 Clock ready.                                               |
| 0        | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |

# 44.3 Functional description

See Introduction section.

Functional description

# **Chapter 45 System Mode Controller (SMC)**

## 45.1 Introduction

#### **NOTE**

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The System Mode Controller (SMC) is responsible for sequencing the system into and out of all low-power Stop and Run modes.

Specifically, it monitors events to trigger transitions between power modes while controlling the power, clocks, and memories of the system to achieve the power consumption and functionality of that mode.

This chapter describes all the available low-power modes, the sequence followed to enter/exit each mode, and the functionality available while in each of the modes.

The SMC is able to function during even the deepest low power modes.

See AN4503: Power Management for Kinetis MCUs for further details on using the SMC.

# 45.2 Modes of operation

The ARM CPU has three primary modes of operation:

- Run
- Sleep
- Deep Sleep

The WFI or WFE instruction is used to invoke Sleep and Deep Sleep modes. Run, Wait, and Stop are the common terms used for the primary operating modes of Kinetis microcontrollers.

#### Modes of operation

The following table shows the translation between the ARM CPU modes and the Kinetis MCU power modes.

| ARM CPU mode | MCU mode |
|--------------|----------|
| Sleep        | Wait     |
| Deep Sleep   | Stop     |

Accordingly, the ARM CPU documentation refers to sleep and deep sleep, while the Kinetis MCU documentation normally uses wait and stop.

In addition, Kinetis MCUs also augment Stop, Wait, and Run modes in a number of ways. The power management controller (PMC) contains a run and a stop mode regulator. Run regulation is used in normal run, wait and stop modes. Stop mode regulation is used during all very low power and low leakage modes. During stop mode regulation, the bus frequencies are limited in the very low power modes.

The SMC provides the user with multiple power options. The Very Low Power Run (VLPR) mode can drastically reduce run time power when maximum bus frequency is not required to handle the application needs. From Normal Run mode, the Run Mode (RUNM) field can be modified to change the MCU into VLPR mode when limited frequency is sufficient for the application. From VLPR mode, a corresponding wait (VLPW) and stop (VLPS) mode can be entered.

Depending on the needs of the user application, a variety of stop modes are available that allow the state retention, partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. Several registers are used to configure the various modes of operation for the device.

The following table describes the power modes available for the device.

Table 45-1. Power modes

| Mode  | Description                                                                                                                                                                                       |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RUN   | The MCU can be run at full speed and the internal supply is fully regulated, that is, in run regulation. This mode is also referred to as Normal Run mode.                                        |  |
| HSRUN | The MCU can be run at a faster frequency compared with RUN mode and the internal supply is fully regulated. See the Power Management chapter for details about the maximum allowable frequencies. |  |
| WAIT  | The core clock is gated off. The system clock continues to operate. Bus clocks, if enabled, continue to operate. Run regulation is maintained.                                                    |  |
| STOP  | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.                                |  |
| VLPR  | The core, system, bus, and flash clock maximum frequencies are restricted in this mode. See the Power Management chapter for details about the maximum allowable frequencies.                     |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

1131

Table 45-1. Power modes (continued)

| Mode  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| VLPW  | The core clock is gated off. The system, bus, and flash clocks continue to operate, although their maximum frequency is restricted. See the Power Management chapter for details on the maximum allowable frequencies.                                                                                                                                                                                                                               |  |  |
| VLPS  | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.                                                                                                                                                                                                                                                                                   |  |  |
| LLS3  | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by reducing the voltage to internal logic. All system RAM contents, internal logic and I/O states are retained.                                                                                                                           |  |  |
| LLS2  | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by reducing voltage to internal logicand powering down the system RAM2 partition. The system RAM1 partition, internal logic and I/O states are retained. <sup>1</sup>                                                                     |  |  |
| VLLS3 | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic. All system RAM contents are retained and I/O states are held. Internal logic states are not retained.                                                                                                |  |  |
| VLLS2 | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and the system RAM2 partition. The system RAM1 partition contents are retained in this mode. Internal logic states are not retained. 1                                                                |  |  |
| VLLS1 | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained.                                                                                                                      |  |  |
| VLLS0 | The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained. The 1kHz LPO clock is disabled and the power on reset (POR) circuit can be optionally enabled using STOPCTRL[PORPO]. |  |  |

<sup>1.</sup> See the devices' chip configuration details for the size and location of the system RAM partitions.

#### 45.3 Memory map and register descriptions

Information about the registers related to the system mode controller can be found here.

Different SMC registers reset on different reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

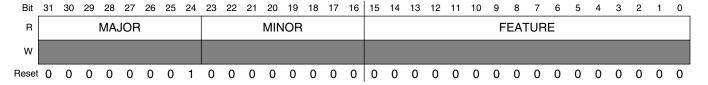
#### NOTE

The SMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register descriptions

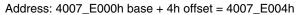
#### **NOTE**

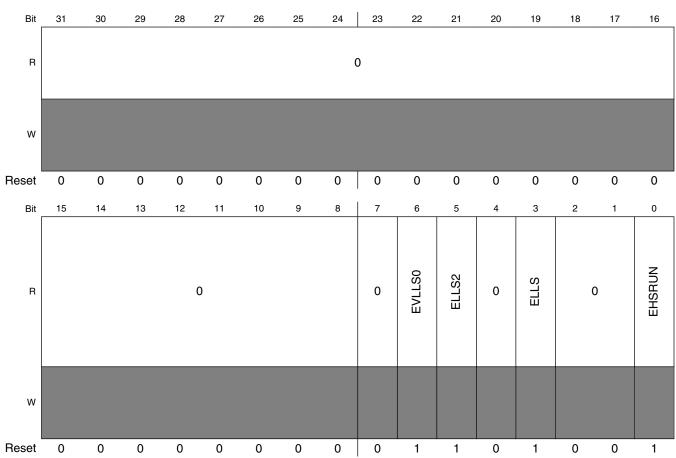

Before executing the WFI instruction, the last register written to must be read back. This ensures that all register writes associated with setting up the low power mode being entered have completed before the MCU enters the low power mode. Failure to do this may result in the low power mode not being entered correctly.

#### **SMC** memory map

| Absolute<br>address<br>(hex) | Register name                               | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|---------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_E000                    | SMC Version ID Register (SMC_VERID)         | 32                 | R      | 0100_0000h  | 45.3.1/1132      |
| 4007_E004                    | SMC Parameter Register (SMC_PARAM)          | 32                 | R      | See section | 45.3.2/1133      |
| 4007_E008                    | Power Mode Protection register (SMC_PMPROT) | 32                 | R/W    |             | 45.3.3/1134      |
| 4007_E00C                    | Power Mode Control register (SMC_PMCTRL)    | 32                 | R/W    |             | 45.3.4/1136      |
| 4007_E010                    | Stop Control Register (SMC_STOPCTRL)        | 32                 | R/W    | 0000_0003h  | 45.3.5/1138      |
| 4007_E014                    | Power Mode Status register (SMC_PMSTAT)     | 32                 | R      |             | 45.3.6/1139      |

# 45.3.1 SMC Version ID Register (SMC\_VERID)


Address: 4007\_E000h base + 0h offset = 4007\_E000h




#### SMC\_VERID field descriptions

| Field          | Description                                                                         |
|----------------|-------------------------------------------------------------------------------------|
| 31–24<br>MAJOR | Major Version Number                                                                |
|                | This read only field returns the major version number for the module specification. |
| 23–16<br>MINOR | Minor Version Number                                                                |
|                | This read only field returns the minor version number for the module specification. |
| FEATURE        | Feature Specification Number                                                        |
|                | This read only field returns the feature set number.                                |
|                | 0x0000 Standard features implemented                                                |

# 45.3.2 SMC Parameter Register (SMC\_PARAM)





## **SMC\_PARAM** field descriptions

| Field            | Description                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                      |
| 7<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                      |
| 6<br>EVLLS0      | Existence of VLLS0 feature  This static bit states whether or not the feature is available on the device. |
|                  | <ul><li>The feature is not available.</li><li>The feature is available.</li></ul>                         |
| 5<br>ELLS2       | Existence of LLS2 feature  This static bit states whether or not the feature is available on the device.  |
|                  | <ul><li>The feature is not available.</li><li>The feature is available.</li></ul>                         |

Table continues on the next page...

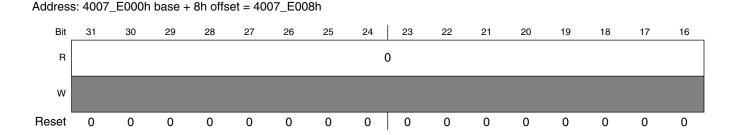
#### KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register descriptions

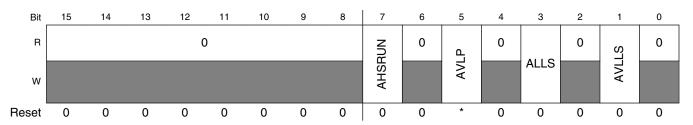
#### SMC\_PARAM field descriptions (continued)

| Field           | Description                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>Reserved   | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                |
| 3<br>ELLS       | Existence of LLS feature  This static bit states whether or not the feature is available on the device.  The feature is not available.  The feature is available.   |
| 2–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                |
| 0<br>EHSRUN     | Existence of HSRUN feature  This static bit states whether or not the feature is available on the device.  The feature is not available.  The feature is available. |

# 45.3.3 Power Mode Protection register (SMC\_PMPROT)


This register provides protection for entry into any low-power run or stop mode. The enabling of the low-power run or stop mode occurs by configuring the Power Mode Control register (PMCTRL).

The PMPROT register can be written only once after any system reset.


If the MCU is configured for a disallowed or reserved power mode, the MCU remains in its current power mode. For example, if the MCU is in normal RUN mode and AVLP is 0, an attempt to enter VLPR mode using PMCTRL[RUNM] is blocked and PMCTRL[RUNM] remains 00b, indicating the MCU is still in Normal Run mode.

#### NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Reset section details for more information.



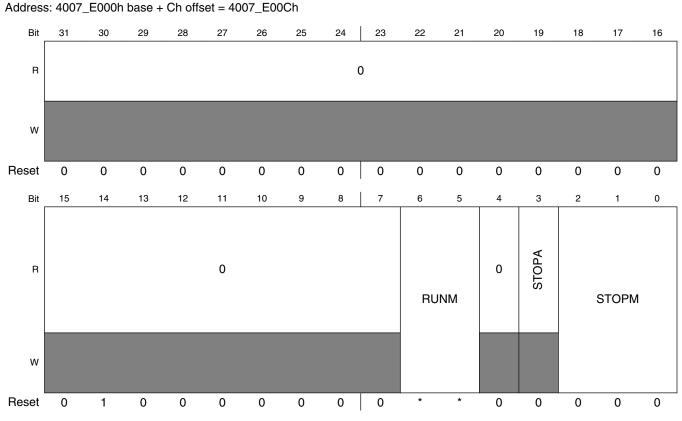
KL28Z Reference Manual, Rev. 4, 06/2016



<sup>\*</sup> Notes:

## **SMC\_PMPROT** field descriptions

| Field            | Description                                                                                                                                                                                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                |
| 7<br>AHSRUN      | Allow High Speed Run mode  Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter High Speed Run mode (HSRUN).  0 HSRUN is not allowed  1 HSRUN is allowed                                                       |
| 6<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                |
| 5<br>AVLP        | Allow Very-Low-Power Modes  Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter any very-low-power mode (VLPR, VLPW, and VLPS).  0 VLPR, VLPW, and VLPS are not allowed.  1 VLPR, VLPW, and VLPS are allowed. |
| 4<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                |
| 3<br>ALLS        | Allow Low-Leakage Stop Mode  Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter any low-leakage stop mode (LLS).  O Any LLSx mode is not allowed  1 Any LLSx mode is allowed                                 |
| 2<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                |
| 1<br>AVLLS       | Allow Very-Low-Leakage Stop Mode  Provided the appropriate control bits are set up in PMCTRL, this write once bit allows the MCU to enter any very-low-leakage stop mode (VLLSx).  O Any VLLSx mode is not allowed  Any VLLSx mode is allowed                       |
| 0<br>Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                |


<sup>•</sup> AVLP field: When booting in run mode, the reset value is 0. When booting in VLPR mode, the reset value is 1.

# 45.3.4 Power Mode Control register (SMC\_PMCTRL)

The PMCTRL register controls entry into low-power Run and Stop modes, provided that the selected power mode is allowed via an appropriate setting of the protection (PMPROT) register.

#### **NOTE**

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.



<sup>\*</sup> Notes:

## SMC\_PMCTRL field descriptions

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–7<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 6–5<br>RUNM      | Run Mode Control                                                                     |

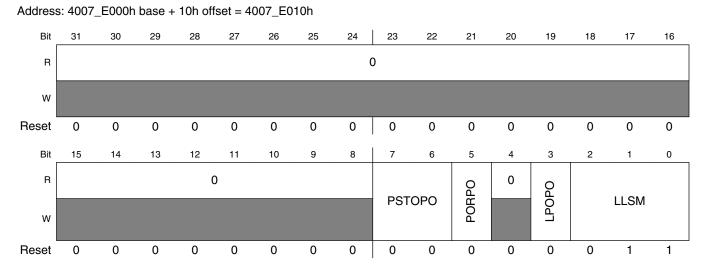
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

RUNM field: When booting in run mode, the reset value is 00. When booting in VLPR mode, the reset value is 10.

# SMC\_PMCTRL field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | When written, causes entry into the selected run mode. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register.                                                                                                                                                                               |
|               | <b>NOTE:</b> RUNM may be set to VLPR only when PMSTAT=RUN. After being written to VLPR, RUNM should not be written back to RUN until PMSTAT=VLPR.                                                                                                                                                                                             |
|               | <b>NOTE:</b> RUNM may be set to HSRUN only when PMSTAT=RUN. After being programmed to HSRUN, RUNM should not be programmed back to RUN until PMSTAT=HSRUN. Also, stop mode entry should not be attempted while RUNM=HSRUN or PMSTAT=HSRUN.                                                                                                    |
|               | When in HSRUN mode, any reset clears RUNM and causes the system to exit to normal RUN mode after the MCU exits its reset flow.                                                                                                                                                                                                                |
|               | 00 Normal Run mode (RUN)                                                                                                                                                                                                                                                                                                                      |
|               | 01 Reserved                                                                                                                                                                                                                                                                                                                                   |
|               | 10 Very-Low-Power Run mode (VLPR)                                                                                                                                                                                                                                                                                                             |
|               | 11 High Speed Run mode (HSRUN)                                                                                                                                                                                                                                                                                                                |
| 4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                          |
| 3             | Stop Aborted                                                                                                                                                                                                                                                                                                                                  |
| STOPA         | When set, this read-only status bit indicates an interrupt occured during the previous stop mode entry sequence, preventing the system from entering that mode. This field is cleared by reset or by hardware at the beginning of any stop mode entry sequence and is set if the sequence was aborted.                                        |
|               | 0 The previous stop mode entry was successful.                                                                                                                                                                                                                                                                                                |
|               | 1 The previous stop mode entry was aborted.                                                                                                                                                                                                                                                                                                   |
| STOPM         | Stop Mode Control                                                                                                                                                                                                                                                                                                                             |
|               | When written, controls entry into the selected stop mode when Sleep-Now or Sleep-On-Exit mode is entered with SLEEPDEEP=1. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register. After any system reset, this field is cleared by hardware on any successful write to the PMPROT register. |
|               | NOTE: When set to VLLSxor LLSx, the LLSM in the STOPCTRL register is used to further select the particular VLLSor LLS submode which will be entered.                                                                                                                                                                                          |
|               | <b>NOTE:</b> When set to STOP, the PSTOPO bits in the STOPCTRL register can be used to select a Partial Stop mode if desired.                                                                                                                                                                                                                 |
|               | 000 Normal Stop (STOP)                                                                                                                                                                                                                                                                                                                        |
|               | 001 Reserved                                                                                                                                                                                                                                                                                                                                  |
|               | 010 Very-Low-Power Stop (VLPS)                                                                                                                                                                                                                                                                                                                |
|               | 011 Low-Leakage Stop (LLSx)                                                                                                                                                                                                                                                                                                                   |
|               | 100 Very-Low-Leakage Stop (VLLSx)                                                                                                                                                                                                                                                                                                             |
|               | 101 Reserved                                                                                                                                                                                                                                                                                                                                  |
|               | 110 Reseved                                                                                                                                                                                                                                                                                                                                   |
|               | 111 Reserved                                                                                                                                                                                                                                                                                                                                  |


KL28Z Reference Manual, Rev. 4, 06/2016

# 45.3.5 Stop Control Register (SMC\_STOPCTRL)

The STOPCTRL register provides various control bits allowing the user to fine tune power consumption during the stop mode selected by the STOPM field.

#### **NOTE**

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.



## SMC\_STOPCTRL field descriptions

| Field            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–8<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7–6<br>PSTOPO    | Partial Stop Option  These bits control whether a Partial Stop mode is entered when STOPM=STOP. When entering a Partial Stop mode from RUN mode, the PMC, SCG and flash remain fully powered, allowing the device to wakeup almost instantaneously at the expense of higher power consumption. In PSTOP2, only system clocks are gated allowing peripherals running on bus clock to remain fully functional. In PSTOP1, both system and bus clocks are gated.  O STOP - Normal Stop mode PSTOP1 - Partial Stop with both system and bus clocks disabled PSTOP2 - Partial Stop with system clock disabled and bus clock enabled Reserved |
| 5<br>PORPO       | POR Power Option This bit controls whether the POR detect circuit is enabled in VLLS0 mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table continues on the next page...

1138 NXP Semiconductors

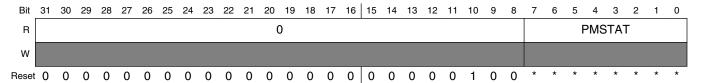
#### KL28Z Reference Manual, Rev. 4, 06/2016

## SMC\_STOPCTRL field descriptions (continued)

| Field    | Description                                                                                |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------|--|--|--|--|
|          | 0 POR detect circuit is enabled in VLLS0                                                   |  |  |  |  |
|          | 1 POR detect circuit is disabled in VLLS0                                                  |  |  |  |  |
| 4        | This field is reserved.                                                                    |  |  |  |  |
| Reserved | This read-only field is reserved and always has the value 0.                               |  |  |  |  |
| 3        | LPO Power Option                                                                           |  |  |  |  |
| LPOPO    | Controls whether the 1 kHz LPO clock is enabled in LLS/VLLSx modes.                        |  |  |  |  |
|          | NOTE: During VLLS0 mode, the LPO clock is disabled by hardware and this bit has no effect. |  |  |  |  |
|          | 0 LPO clock is enabled in LLS/VLLSx                                                        |  |  |  |  |
|          | 1 LPO clock is disabled in LLS/VLLSx                                                       |  |  |  |  |
| LLSM     | LLS or VLLS Mode Control                                                                   |  |  |  |  |
|          | This field controls whichLLS or VLLS sub-mode to enter if STOPM=LLSx or VLLSx.             |  |  |  |  |
|          | 000 VLLS0 if PMCTRL[STOPM]=VLLSx, reserved if PMCTRL[STOPM]=LLSx                           |  |  |  |  |
|          | VLLS1 if PMCTRL[STOPM]=VLLSx, reserved if PMCTRL[STOPM]=LLSx                               |  |  |  |  |
|          | VLLS2 if PMCTRL[STOPM]=VLLSx, LLS2 if PMCTRL[STOPM]=LLSx                                   |  |  |  |  |
|          | VLLS3 if PMCTRL[STOPM]=VLLSx, LLS3 if PMCTRL[STOPM]=LLSx                                   |  |  |  |  |
|          | 100 Reserved                                                                               |  |  |  |  |
|          | 101 Reserved                                                                               |  |  |  |  |
|          | 110 Reserved                                                                               |  |  |  |  |
|          | 111 Reserved                                                                               |  |  |  |  |

# 45.3.6 Power Mode Status register (SMC\_PMSTAT)

PMSTAT is a read-only, one-hot register which indicates the current power mode of the system.


#### NOTE

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.

When in HSRUN mode, any reset causes the system to exit to normal RUN mode after the MCU exits its reset flow. The PMSTAT field is then automatically updated to show RUN as the current power mode.

#### **Functional description**

Address: 4007\_E000h base + 14h offset = 4007\_E014h



<sup>\*</sup> Notes:

#### **SMC\_PMSTAT** field descriptions

| Field    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 31–8     | This field is reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Reserved | This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| PMSTAT   | Power Mode Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|          | NOTE: When debug is enabled, the PMSTAT will not update to STOP or VLPS NOTE: When a PSTOP mode is enabled, the PMSTAT will not update to STOP or VLPS NOTE: Since the RUNM bits in the PMCTRL register are reset to VLPR on any Chip Reset not VLLS, the PMSTAT will update to VLPR shortly after the reset sequence is complete.  0000_0001 Current power mode is RUN. 0000_0010 Current power mode is STOP. 0000_0100 Current power mode is VLPR. 0000_1000 Current power mode is VLPW. 0001_0000 Current power mode is VLPS. 0010_0000 Current power mode is VLLS. 1000_0000 Current power mode is VLLS. |  |  |

# 45.4 Functional description

## 45.4.1 Power mode transitions

The following figure shows the power mode state transitions available on the chip. Any reset always brings the MCU back to the normal RUN state.

The following figure shows the power mode state transitions available on the chip. Any reset will initially bring the MCU back to the normal RUN state. However, in order to minimize peak power consumption, the RUNM bits in the PMCTRL register can be reset to VLPR via Flash IFR settings, causing the SMC to begin transitioning the MCU into VLPR mode during the reset recovery sequence.

<sup>•</sup> PMSTAT field: When booting in run mode, the reset value is 0x01. When booting in VLPR mode, the reset value is 0x04.

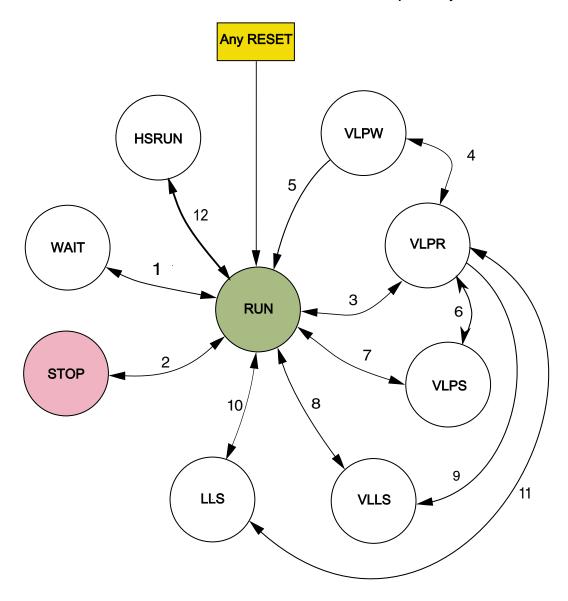



Figure 45-1. Power mode state diagram

The following table defines triggers for the various state transitions shown in the previous figure.

Table 45-2. Power mode transition triggers

| Transition # | From | То   | Trigger conditions                                                                                                                        |
|--------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | RUN  | WAIT | Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, controlled in System Control Register in ARM core.  See note. <sup>1</sup> |
|              | WAIT | RUN  | Interrupt or Reset                                                                                                                        |
| 2            | RUN  | STOP | PMCTRL[RUNM]=00, PMCTRL[STOPM]=000 <sup>2</sup>                                                                                           |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

Table 45-2. Power mode transition triggers (continued)

| Transition # | From  | То    | Trigger conditions                                                                                                                                                                                                                                      |
|--------------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |       |       | Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.                                                                                                                                |
|              |       |       | See note. <sup>1</sup>                                                                                                                                                                                                                                  |
|              | STOP  | RUN   | Interrupt or Reset                                                                                                                                                                                                                                      |
| 3            | RUN   | VLPR  | The core, system, bus and flash clock frequencies and SCG clocking mode are restricted in this mode. See the Power Management chapter for the maximum allowable frequencies and SCG modes supported.                                                    |
|              |       |       | Set PMPROT[AVLP]=1, PMCTRL[RUNM]=10.  NOTE: In order to limit peak current, PMPROT[AVLP] and PMCTRL[RUNM] bits can be set on any Reset via Flash IFR settings, causing the SMC to transition the MCU from RUN->VLPR during the reset recovery sequence. |
|              | VLPR  | RUN   | Set PMCTRL[RUNM]=00 or                                                                                                                                                                                                                                  |
|              |       |       | Reset.                                                                                                                                                                                                                                                  |
| 4            | VLPR  | VLPW  | Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, which is controlled in System Control Register in ARM core.                                                                                                                              |
|              |       |       | See note. <sup>1</sup>                                                                                                                                                                                                                                  |
|              | VLPW  | VLPR  | Interrupt                                                                                                                                                                                                                                               |
| 5            | VLPW  | RUN   | Reset                                                                                                                                                                                                                                                   |
| 6            | VLPR  | VLPS  | PMCTRL[STOPM]=000 <sup>3</sup> or 010,                                                                                                                                                                                                                  |
|              |       |       | Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.                                                                                                                                |
|              |       |       | See note. <sup>1</sup>                                                                                                                                                                                                                                  |
|              | VLPS  | VLPR  | Interrupt                                                                                                                                                                                                                                               |
|              |       |       | NOTE: If VLPS was entered directly from RUN (transition #7), hardware forces exit back to RUN and does not allow a transition to VLPR.                                                                                                                  |
| 7            | RUN   | VLPS  | PMPROT[AVLP]=1, PMCTRL[STOPM]=010,                                                                                                                                                                                                                      |
|              |       |       | Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.                                                                                                                                |
|              |       |       | See note. <sup>1</sup>                                                                                                                                                                                                                                  |
|              | VLPS  | RUN   | Interrupt and VLPS mode was entered directly from RUN or                                                                                                                                                                                                |
|              |       |       | Reset                                                                                                                                                                                                                                                   |
| 8            | RUN   | VLLSx | PMPROT[AVLLS]=1, PMCTRL[STOPM]=100,<br>STOPCTRL[LLSM]=x (VLLSx), Sleep-now or sleep-on-exit<br>modes entered with SLEEPDEEP set, which is controlled in<br>System Control Register in ARM core.                                                         |
|              | VLLSx | RUN   | Wakeup from enabled LLWU input source or RESET pin                                                                                                                                                                                                      |

Table continues on the next page...

Table 45-2. Power mode transition triggers (continued)

| Transition # | From  | То    | Trigger conditions                                                                                                                                                                              |
|--------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9            | VLPR  | VLLSx | PMPROT[AVLLS]=1, PMCTRL[STOPM]=100,<br>STOPCTRL[LLSM]=x (VLLSx), Sleep-now or sleep-on-exit<br>modes entered with SLEEPDEEP set, which is controlled in<br>System Control Register in ARM core. |
| 10           | RUN   | LLSx  | PMPROT[ALLS]=1, PMCTRL[STOPM]=011,<br>STOPCTRL[LLSM]=x (LLSx), Sleep-now or sleep-on-exit<br>modes entered with SLEEPDEEP set, which is controlled in<br>System Control Register in ARM core.   |
|              | LLSx  | RUN   | Wakeup from enabled LLWU input source and LLSx mode was entered directly from RUN or                                                                                                            |
|              |       |       | RESET pin.                                                                                                                                                                                      |
| 11           | VLPR  | LLSx  | PMPROT[ALLS]=1, PMCTRL[STOPM]=011, Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.                                     |
|              | LLSx  | VLPR  | Wakeup from enabled LLWU input source and LLSx mode was entered directly from VLPR                                                                                                              |
|              |       |       | NOTE: If LLSx was entered directly from RUN, hardware will not allow this transition and will force exit back to RUN                                                                            |
| 12           | RUN   | HSRUN | Set PMPROT[AHSRUN]=1, PMCTRL[RUNM]=11.                                                                                                                                                          |
|              | HSRUN | RUN   | Set PMCTRL[RUNM]=00 or                                                                                                                                                                          |
|              |       |       | Reset                                                                                                                                                                                           |

<sup>1.</sup> If debug is enabled, the core clock remains to support debug.

# 45.4.2 Power mode entry/exit sequencing

When entering or exiting low-power modes, the system must conform to an orderly sequence to manage transitions safely.

The SMC manages the system's entry into and exit from all power modes. This diagram illustrates the connections of the SMC with other system components in the chip that are necessary to sequence the system through all power modes.

<sup>2.</sup> If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of STOP

<sup>3.</sup> If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=00, then VLPS mode is entered instead of STOP. If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of VLPS

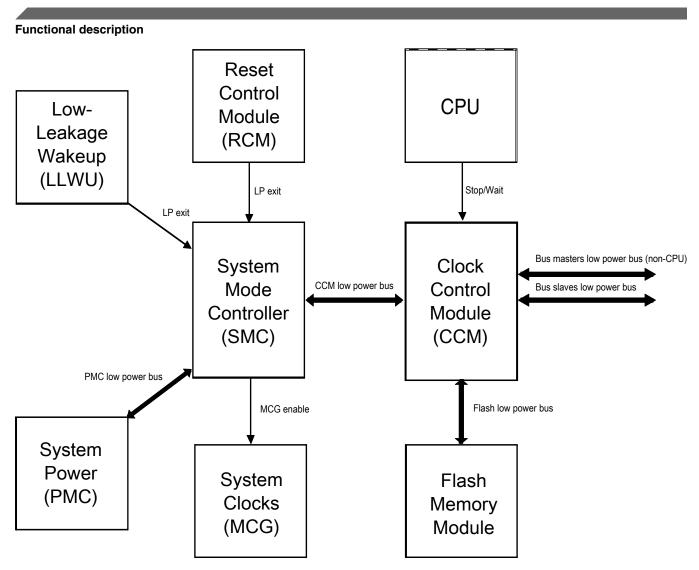



Figure 45-2. Low-power system components and connections

# 45.4.2.1 Stop mode entry sequence

Entry into a low-power stop mode (Stop, VLPS, LLS, VLLSx) is initiated by a CPU executing the WFI instruction. After the instruction is executed, the following sequence occurs:

- 1. The CPU clock is gated off immediately.
- 2. Requests are made to all non-CPU bus masters to enter Stop mode.
- 3. After all masters have acknowledged they are ready to enter Stop mode, requests are made to all bus slaves to enter Stop mode.
- 4. After all slaves have acknowledged they are ready to enter Stop mode, all system and bus clocks are gated off.
- 5. Clock generators are disabled in the SCG unless configured to be enabled in Stop mode. See the SCG module information for the programming options.

6. The on-chip regulator in the PMC and internal power switches are configured to meet the power consumption goals for the targeted low-power mode.

## 45.4.2.2 Stop mode exit sequence

Exit from a low-power stop mode is initiated either by a reset or an interrupt event. The following sequence then executes to restore the system to a run mode (RUN or VLPR):

- 1. The on-chip regulator in the PMC and internal power switches are restored.
- 2. Clock generators are enabled in the SCG.
- 3. System and bus clocks are enabled to all masters and slaves.
- 4. The CPU clock is enabled and the CPU begins servicing the reset or interrupt that initiated the exit from the low-power stop mode.

# 45.4.2.3 Aborted stop mode entry

If an interrupt occurs during a stop entry sequence, the SMC can abort the transition early and return to RUN mode without completely entering the stop mode. An aborted entry is possible only if the interrupt occurs before the PMC begins the transition to stop mode regulation. After this point, the interrupt is ignored until the PMC has completed its transition to stop mode regulation. When an aborted stop mode entry sequence occurs, SMC\_PMCTRL[STOPA] is set to 1.

## 45.4.2.4 Transition to wait modes

For wait modes (WAIT and VLPW), the CPU clock is gated off while all other clocking continues, as in RUN and VLPR mode operation. Some modules that support stop-in-wait functionality have their clocks disabled in these configurations.

# 45.4.2.5 Transition from stop modes to Debug mode

The debugger module supports a transition from STOP, WAIT, VLPS, and VLPW back to a Halted state when the debugger has been enabled. As part of this transition, system clocking is re-established and is equivalent to the normal RUN and VLPR mode clocking configuration.

## **45.4.3** Run modes

The run modes supported by this device can be found here.

- Run (RUN)
- Very Low-Power Run (VLPR)
- High Speed Run (HSRUN)

## 45.4.3.1 RUN mode

This is the normal operating mode for the device.

This mode is selected after any reset. In order to reduce peak power consumption, however, the SMC begins transitioning the device into VLPR mode during the reset recovery sequence. When the ARM processor exits reset, it sets up the stack, program counter (PC), and link register (LR):

- The processor reads the start SP (SP\_main) from vector-table offset 0x000
- The processor reads the start PC from vector-table offset 0x004
- LR is set to 0xFFFF\_FFFF.

To reduce power in this mode, disable the clocks to unused modules.

# 45.4.3.2 Very-Low Power Run (VLPR) mode

In VLPR mode, the on-chip voltage regulator is put into a stop mode regulation state. In this state, the regulator is designed to supply enough current to the MCU over a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules using their corresponding clock gating control bits in the PCC's registers.

Before entering this mode, the following conditions must be met:

- All clock monitors in the SCG must be disabled.
- The maximum frequencies of the system, bus, flash, and core are restricted. See the Power Management details about which frequencies are supported.
- Mode protection must be set to allow VLP modes, that is, PMPROT[AVLP] is 1.
- PMCTRL[RUNM] must be set to 10b to enter VLPR.
- Flash programming/erasing is not allowed.

#### NOTE

Do not increase the clock frequency while in VLPR mode, because the regulator is slow in responding and cannot manage fast load transitions. In addition, do not modify the clock source

KL28Z Reference Manual, Rev. 4, 06/2016

in the SCG module or any clock divider registers. Module clock enables in the PCC can be set, but not cleared.however should only be cleared one at a time to limit load transitions.

To reenter Normal Run mode, clear PMCTRL[RUNM]. PMSTAT is a read-only status register that can be used to determine when the system has completed an exit to RUN mode. When PMSTAT=RUN, the system is in run regulation and the MCU can run at full speed in any clock mode. If a higher execution frequency is desired, poll PMSTAT until it is set to RUN when returning from VLPR mode.

Any reset always causes an exit from VLPR and returns the device to RUN mode after the MCU exits its reset flow.

Any reset will initially cause the device to exit to RUN mode, however Flash IFR settings can be used to return the part to VLPR during the MCU reset flow.

# 45.4.3.3 High Speed Run (HSRUN) mode

In HSRUN mode, the on-chip voltage regulator remains in a run regulation state, but with a slightly elevated voltage output. In this state, the MCU is able to operate at a faster frequency compared to normal RUN mode. For the maximum allowable frequencies, see the Power Management chapter.

While in this mode, the following restrictions must be adhered to:

- The maximum allowable change in frequency of the system, bus, flash or core clocks is restricted to 2x (double the frequency).
- Stop mode entry is not supported from HSRUN.
- Modifications to clock gating control bits are prohibited.
- Flash programming/erasing is not allowed.

To enter HSRUN mode, set PMPROT[AHSRUN] to allow HSRUN and then set PMCTRL[RUNM]=HSRUN. Before increasing clock frequencies, the PMSTAT register should be polled to determine when the system has completed entry into HSRUN mode. To reenter normal RUN mode, clear PMCTRL[RUNM]. Any reset also clears PMCTRL[RUNM] and causes the system to exit to normal RUN mode after the MCU exits its reset flow.

## 45.4.4 Wait modes

This device contains two different wait modes which are listed here.

#### **Functional description**

- Wait
- Very-Low Power Wait (VLPW)

## 45.4.4.1 WAIT mode

WAIT mode is entered when the ARM core enters the Sleep-Now or Sleep-On-Exit modes while SLEEPDEEP is cleared. The ARM CPU enters a low-power state in which it is not clocked, but peripherals continue to be clocked provided they are enabled.

When an interrupt request occurs, the CPU exits WAIT mode and resumes processing in RUN mode, beginning with the stacking operations leading to the interrupt service routine.

A system reset causes an exit from WAIT mode, returning the device to normal RUN mode.

A system reset causes an exit from WAIT mode, temporarily returning the device to RUN mode before transitioning into VLPR during the device reset flow.

# 45.4.4.2 Very-Low-Power Wait (VLPW) mode

VLPW mode is entered by entering the Sleep-Now or Sleep-On-Exit mode while SLEEPDEEP is cleared and the device is in VLPR mode.

In VLPW, the on-chip voltage regulator remains in its stop regulation state. In this state, the regulator is designed to supply enough current to the device at a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules.

VLPR mode restrictions also apply to VLPW.

When an interrupt from VLPW occurs, the device returns to VLPR mode to execute the interrupt service routine.

A system reset causes an exit from VLPW mode, returning the device to normal RUN mode.

A system reset causes an exit from VLPW mode, temporarily returning the device to RUN mode before transitioning into VLPR during the device reset flow.

# 45.4.5 Stop modes

This device contains a variety of stop modes to meet your application needs.

The stop modes range from:

• a stopped CPU, with all I/O, logic, and memory states retained, and certain asynchronous mode peripherals operating

to:

• a powered down CPU, with only I/O and a small register file retained, very few asynchronous mode peripherals operating, while the remainder of the MCU is powered down.

The choice of stop mode depends upon the user's application, and how power usage and state retention versus functional needs and recovery time may be traded off.

The various stop modes are selected by setting the appropriate fields in PMPROT and PMCTRL. The selected stop mode is entered during the sleep-now or sleep-on-exit entry with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The available stop modes are:

- Normal Stop (STOP)
- Very-Low Power Stop (VLPS)
- Low-Leakage Stop (LLS)
- Very-Low-Leakage Stop (VLLSx)

## 45.4.5.1 STOP mode

STOP mode is entered via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The SCG module can be configured to leave the reference clocks running.

A module capable of providing an asynchronous interrupt to the device takes the device out of STOP mode and returns the device to normal RUN mode. Refer to the device's Power Management chapter for peripheral, I/O, and memory operation in STOP mode. When an interrupt request occurs, the CPU exits STOP mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

A system reset will cause an exit from STOP mode, returning the device to normal RUN mode via an MCU reset.

A system reset will cause an exit from STOP mode, temporarily returning the device to RUN mode before transitioning into VLPR during the MCU reset flow.

# 45.4.5.2 Very-Low-Power Stop (VLPS) mode

The two ways in which VLPS mode can be entered are listed here.

- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in VLPR mode and PMCTRL[STOPM] = 010 or 000.
- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in normal RUN mode and PMCTRL[STOPM] = 010. When VLPS is entered directly from RUN mode, exit to VLPR is disabled by hardware and the system will always exit back to RUN.

In VLPS, the on-chip voltage regulator remains in its stop regulation state as in VLPR.

A module capable of providing an asynchronous interrupt to the device takes the device out of VLPS and returns the device to VLPR mode.

A system reset will also cause a VLPS exit, returning the device to normal RUN mode.

A system reset will cause an exit from VLPS mode, temporarily returning the device to RUN mode before transitioning into VLPR during the MCU reset flow.

## 45.4.5.3 Low-Leakage Stop (LLSx) modes

This device contains two Low-Leakage Stop modes: LLS3 and LLS2. LLS or LLSx is often used in this document to refer to both modes. All LLS modes can be entered from normal RUN or VLPR modes.

The MCU enters LLS mode if:

- In Sleep-Now or Sleep-On-Exit mode, SLEEPDEEP is set in the System Control Register in the ARM core, and
- The device is configured as shown in Table 45-2.

In LLS, the on-chip voltage regulator is in stop regulation. Most of the peripherals are put in a state-retention mode that does not allow them to operate while in LLS.

Before entering LLS mode, the user should configure the Low-Leakage Wake-up (LLWU) module to enable the desired wake-up sources. The available wake-up sources in LLS are detailed in the chip configuration details for this device.

After wakeup from LLS, the device returns to the run mode from which LLS was entered (either normal RUN or VLPR) with a pending LLWU module interrupt. If LLS was entered from VLPR mode, then the MCU will begin VLPR entry shortly after wake-up. In the LLWU interrupt service routine (ISR), the user can poll the LLWU module wake-up flags to determine the source of the wakeup.

#### **NOTE**

The LLWU interrupt must not be masked by the interrupt controller to avoid a scenario where the system does not fully exit Stop mode on an LLS recovery.

An asserted RESET pin will cause an exit from LLS mode, returning the device to normal RUN mode. When LLS is exiting via the RESET pin, RCM\_SRS[PIN] and RCM\_SRS[WAKEUP] are set.

An asserted RESET pin will cause an exit from LLS mode, temporarily returning the device to normal RUN mode before transitioning into VLPR during the MCU reset flow. When LLS is exiting via the RESET pin, RCM\_SRS[PIN] and RCM\_SRS[WAKEUP] are set.

## 45.4.5.4 Very-Low-Leakage Stop (VLLSx) modes

This device contains these very low leakage modes:

- VLLS3
- VLLS2
- VLLS1
- VLLS0

VLLSx is often used in this document to refer to all of these modes.

All VLLSx modes can be entered from normal RUN or VLPR modes.

The MCU enters the configured VLLS mode if:

- In Sleep-Now or Sleep-On-Exit mode, the SLEEPDEEP bit is set in the System Control Register in the ARM core, and
- The device is configured as shown in Table 45-2.

In VLLS, the on-chip voltage regulator is in its stop-regulation state while most digital logic is powered off.

Before entering VLLS mode, the user should configure the Low-Leakage Wake-up (LLWU) module to enable the desired wakeup sources. The available wake-up sources in VLLS are detailed in the chip configuration details for this device.

After wakeup from VLLS, the device returns to normal RUN mode with a pending LLWU interrupt. If VLLS was entered from VLPR mode, then the MCU will begin VLPR entry shortly after wakeup. In the LLWU interrupt service routine (ISR), the user can poll the LLWU module wake-up flags to determine the source of the wake-up.

#### **Functional description**

When entering VLLS, each I/O pin is latched as configured before executing VLLS. Because all digital logic in the MCU is powered off, all port and peripheral data is lost during VLLS. This information must be restored before PMC\_REGSC[ACKISO] is set.

An asserted RESET pin will cause an exit from any VLLS mode, returning the device to normal RUN mode. When exiting VLLS via the RESET pin, RCM\_SRS[PIN] and RCM\_SRS[WAKEUP] are set.

An asserted RESET pin will cause an exit from any VLLS mode, temporarily returning the device to normal RUN mode before transitioning into VLPR during the MCU reset flow. When exiting VLLS via the RESET pin, RCM\_SRS[PIN] and RCM\_SRS[WAKEUP] are set.

# 45.4.6 Debug in low power modes

When the MCU is secure, the device disables/limits debugger operation. When the MCU is unsecure, the ARM debugger can assert two power-up request signals:

- System power up, via SYSPWR in the Debug Port Control/Stat register
- Debug power up, via CDBGPWRUPREQ in the Debug Port Control/Stat register

When asserted while in RUN, WAIT, VLPR, or VLPR the mode controller drives a corresponding acknowledge for each signal, that is, both CDBGPWRUPACK and CSYSPWRUPACK. When both requests are asserted, the mode controller handles attempts to enter STOP and VLPS by entering an emulated stop state. In this emulated stop state:

- the regulator is in run regulation,
- the SCG-generated clock source is enabled,
- all system clocks, except the core clock, are disabled,
- the debug module has access to core registers, and
- access to the on-chip peripherals is blocked.

No debug is available while the MCU is in LLS or VLLS modes. LLS is a state-retention mode and all debug operation can continue after waking from LLS, even in cases where system wakeup is due to a system reset event.

Entering into a VLLS mode causes all of the debug controls and settings to be powered off. To give time to the debugger to sync with the MCU, the MDM AP Control Register includes a Very-Low-Leakage Debug Request (VLLDBGREQ) bit that is set to configure the Reset Controller logic to hold the system in reset after the next recovery from a VLLS mode. This bit allows the debugger time to reinitialize the debug module before the debug session continues.

The MDM AP Control Register also includes a Very Low Leakage Debug Acknowledge (VLLDBGACK) bit that is set to release the ARM core being held in reset following a VLLS recovery. The debugger reinitializes all debug IP, and then asserts the VLLDBGACK control bit to allow the RCM to release the ARM core from reset and allow CPU operation to begin.

The VLLDBGACK bit is cleared by the debugger (or can be left set as is) or clears automatically due to the reset generated as part of the next VLLS recovery.

KL28Z Reference Manual, Rev. 4, 06/2016

Functional description

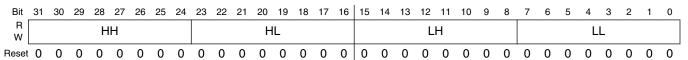
KL28Z Reference Manual, Rev. 4, 06/2016

# **Chapter 46 System Register File**

# 46.1 System Register file

This device includes a 32-byte register file that is powered in all power modes. This register file retains its contents during low-voltage detect (LVD) events and is only reset during a power-on reset.

# 46.2 Memory Map and Registers


#### **RFSYS** memory map

| Absolute<br>address<br>(hex) | Register name                       | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------|--------------------|--------|-------------|------------------|
| 4007_C000                    | Register file register (RFSYS_REG0) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C004                    | Register file register (RFSYS_REG1) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C008                    | Register file register (RFSYS_REG2) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C00C                    | Register file register (RFSYS_REG3) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C010                    | Register file register (RFSYS_REG4) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C014                    | Register file register (RFSYS_REG5) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C018                    | Register file register (RFSYS_REG6) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |
| 4007_C01C                    | Register file register (RFSYS_REG7) | 32                 | R/W    | 0000_0000h  | 46.2.1/1155      |

# 46.2.1 Register file register (RFSYS\_REGn)

Each register can be accessed as 8-, 16-, or 32-bits.

Address: 4007\_C000h base + 0h offset + (4d × i), where i=0d to 7d



#### **Memory Map and Registers**

# RFSYS\_REGn field descriptions

| Field       | Description      |
|-------------|------------------|
| 31–24<br>HH | High higher byte |
| 23–16<br>HL | High lower byte  |
| 15–8<br>LH  | Low higher byte  |
| LL          | Low lower byte   |

# Chapter 47 Timer/PWM Module (TPM)

#### 47.1 Introduction

The TPM (Timer/PWM Module) is a 2- to 8-channel timer which supports input capture, output compare, and the generation of PWM signals to control electric motor and power management applications.

The counter, compare and capture registers are clocked by an asynchronous clock that can remain enabled in low power modes. An example of using the TPM with the asynchronous DMA is described in AN4631:Using the Asynchronous DMA features of the Kinetis L Series .

# 47.1.1 TPM Philosophy

The TPM is built upon a very simple timer (HCS08 Timer PWM Module – TPM) used for many years on NXP's 8-bit microcontrollers. The TPM extends the functionality to support operation in low power modes by clocking the counter, compare and capture registers from an asynchronous clock that can remain functional in low power modes.

# 47.1.2 Features

The TPM features include:

- TPM clock mode is selectable
  - Can increment on every edge of the asynchronous counter clock
  - Can increment on rising edge of an external clock input synchronized to the asynchronous counter clock
- Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128

#### Introduction

- TPM includes a 16-bit counter
  - It can be a free-running counter or modulo counter
  - The counting can be up or up-down
- Includes 6 channels that can be configured for input capture, output compare, edgealigned PWM mode, or center-aligned PWM mode
  - In input capture mode the capture can occur on rising edges, falling edges or both edges
  - In output compare mode the output signal can be set, cleared, pulsed, or toggled on match
  - All channels can be configured for edge-aligned PWM mode or center-aligned PWM mode
- Support the generation of an interrupt and/or DMA request per channel
- Support the generation of an interrupt and/or DMA request when the counter overflows
- Support selectable trigger input to optionally reset or cause the counter to start incrementing.
  - The counter can also optionally stop incrementing on counter overflow
- Support the generation of hardware triggers when the counter overflows and per channel

# 47.1.3 Modes of operation

During debug mode, the TPM can can be configured to temporarily pause all counting until the core returns to normal user operating mode or to operate normally. When the counter is paused, trigger inputs and input capture events are ignored.

During doze mode, the TPM can be configured to operate normally or to pause all counting for the duration of doze mode. When the counter is paused, trigger inputs and input capture events are ignored.

During stop mode, the TPM counter clock can remain functional and the TPM can generate an asynchronous interrupt to exit the MCU from stop mode.

# 47.1.4 Block diagram

The TPM uses one input/output (I/O) pin per channel, CHn (TPM channel (n)) where n is the channel number.

The following figure shows the TPM structure. The central component of the TPM is the 16-bit counter with programmable final value and its counting can be up or up-down.

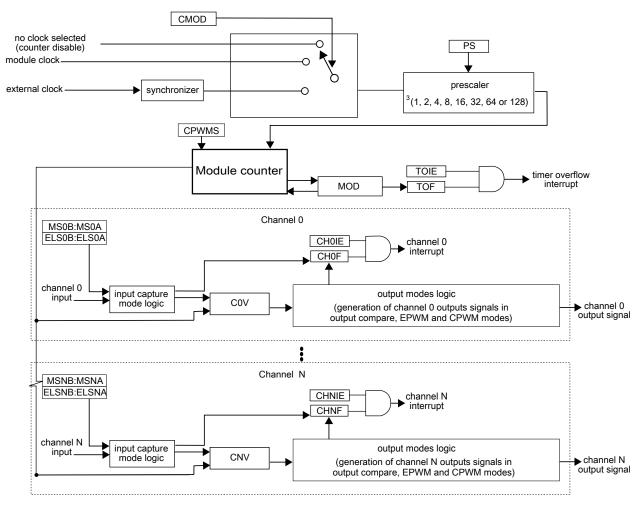



Figure 47-1. TPM block diagram

# 47.2 TPM Signal Descriptions

Table 47-1. TPM signal descriptions

| Signal     | Description                                                                                                                                                                                     | 1/0 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| TPM_EXTCLK | External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock.                                                         | I   |
| TPM_CHn    | TPM channel (n = 5 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. | I/O |

KL28Z Reference Manual, Rev. 4, 06/2016

# 47.2.1 TPM\_EXTCLK — TPM External Clock

The rising edge of the external input signal is used to increment the TPM counter if selected by CMOD[1:0] bits in the SC register. This input signal must be less than half of the TPM counter clock frequency. The TPM counter prescaler selection and settings are also used when an external input is selected.

# 47.2.2 TPM\_CHn — TPM Channel (n) I/O Pin

Each TPM channel can be configured to operate either as input or output. The direction associated with each channel, input or output, is selected according to the mode assigned for that channel.

# 47.3 Memory Map and Register Definition

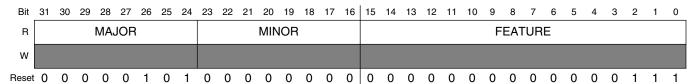
This section provides a detailed description of all TPM registers.

Attempting to access a reserved register location in the TPM memory map will generate a bus error.

#### **TPM** memory map

| Absolute address (hex) | Register name                             | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|-------------------------------------------|--------------------|--------|-------------|------------------|
| 0                      | Version ID Register (TPM_VERID)           | 32                 | R      | 0500_0007h  | 47.3.1/1161      |
| 4                      | Parameter Register (TPM_PARAM)            | 32                 | R      | See section | 47.3.2/1162      |
| 8                      | TPM Global Register (TPM_GLOBAL)          | 32                 | R/W    | 0000_0000h  | 47.3.3/1162      |
| 10                     | Status and Control (TPM_SC)               | 32                 | R/W    | 0000_0000h  | 47.3.4/1163      |
| 14                     | Counter (TPM_CNT)                         | 32                 | R/W    | 0000_0000h  | 47.3.5/1165      |
| 18                     | Modulo (TPM_MOD)                          | 32                 | R/W    | 0000_FFFFh  | 47.3.6/1165      |
| 1C                     | Capture and Compare Status (TPM_STATUS)   | 32                 | R/W    | 0000_0000h  | 47.3.7/1166      |
| 20                     | Channel (n) Status and Control (TPM_C0SC) | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |
| 24                     | Channel (n) Value (TPM_C0V)               | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 28                     | Channel (n) Status and Control (TPM_C1SC) | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |
| 2C                     | Channel (n) Value (TPM_C1V)               | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 30                     | Channel (n) Status and Control (TPM_C2SC) | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |
| 34                     | Channel (n) Value (TPM_C2V)               | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 38                     | Channel (n) Status and Control (TPM_C3SC) | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |

Table continues on the next page...

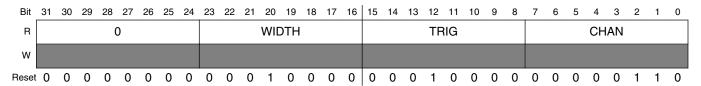

1161

# **TPM memory map (continued)**

| Absolute<br>address<br>(hex) | Register name                                      | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|----------------------------------------------------|--------------------|--------|-------------|------------------|
| 3C                           | Channel (n) Value (TPM_C3V)                        | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 40                           | Channel (n) Status and Control (TPM_C4SC)          | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |
| 44                           | Channel (n) Value (TPM_C4V)                        | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 48                           | Channel (n) Status and Control (TPM_C5SC)          | 32                 | R/W    | 0000_0000h  | 47.3.8/1168      |
| 4C                           | Channel (n) Value (TPM_C5V)                        | 32                 | R/W    | 0000_0000h  | 47.3.9/1170      |
| 64                           | Combine Channel Register (TPM_COMBINE)             | 32                 | R/W    | 0000_0000h  | 47.3.10/<br>1171 |
| 6C                           | Channel Trigger (TPM_TRIG)                         | 32                 | R/W    | 0000_0000h  | 47.3.11/<br>1173 |
| 70                           | Channel Polarity (TPM_POL)                         | 32                 | R/W    | 0000_0000h  | 47.3.12/<br>1174 |
| 78                           | Filter Control (TPM_FILTER)                        | 32                 | R/W    | 0000_0000h  | 47.3.13/<br>1175 |
| 80                           | Quadrature Decoder Control and Status (TPM_QDCTRL) | 32                 | R/W    | 0000_0000h  | 47.3.14/<br>1176 |
| 84                           | Configuration (TPM_CONF)                           | 32                 | R/W    | 0000_0000h  | 47.3.15/<br>1177 |

# 47.3.1 Version ID Register (TPM\_VERID)

Address: 0h base + 0h offset = 0h

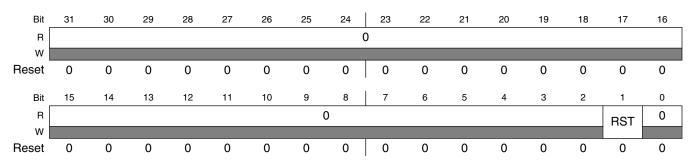



#### **TPM\_VERID** field descriptions

| Field          | Description                                                                            |  |  |
|----------------|----------------------------------------------------------------------------------------|--|--|
| 31–24          | Major Version Number                                                                   |  |  |
| MAJOR          | This read only field returns the major version number for the module specification.    |  |  |
| 23–16<br>MINOR | Minor Version Number                                                                   |  |  |
| MINOR          | This read only field returns the minor version number for the module specification.    |  |  |
| FEATURE        | Feature Identification Number                                                          |  |  |
|                | 0x0001 Standard feature set.                                                           |  |  |
|                | 0x0003 Standard feature set with Filter and Combine registers implemented.             |  |  |
|                | 0x0007 Standard feature set with Filter, Combine and Quadrature registers implemented. |  |  |

# 47.3.2 Parameter Register (TPM\_PARAM)

Address: 0h base + 4h offset = 4h




#### **TPM\_PARAM** field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 23–16<br>WIDTH    | Counter Width Width of the counter and timer channels.                               |
| 15–8<br>TRIG      | Trigger Count  Number of trigger inputs implemented.                                 |
| CHAN              | Channel Count                                                                        |
|                   | Number of timer channels implemented.                                                |

# 47.3.3 TPM Global Register (TPM\_GLOBAL)

Address: 0h base + 8h offset = 8h

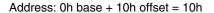


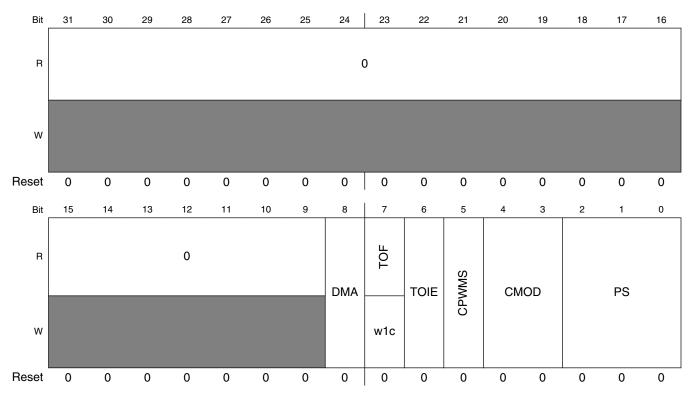
#### **TPM\_GLOBAL** field descriptions

| Field    | Description                                                                                                |
|----------|------------------------------------------------------------------------------------------------------------|
| 31–2     | This field is reserved.                                                                                    |
| Reserved | This read-only field is reserved and always has the value 0.                                               |
| 1        | Software Reset                                                                                             |
| RST      |                                                                                                            |
|          | Reset all internal logic and registers, except the Global Register. Remains set until cleared by software. |

Table continues on the next page...

1162 NXP Semiconductors


1163


# **TPM\_GLOBAL** field descriptions (continued)

| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
|          | 0 Module is not reset.                                       |
|          | 1 Module is reset.                                           |
| 0        | This field is reserved.                                      |
| Reserved | This read-only field is reserved and always has the value 0. |

# 47.3.4 Status and Control (TPM\_SC)

SC contains the overflow status flag and control bits used to configure the interrupt enable, module configuration and prescaler factor. These controls relate to all channels within this module.





**TPM\_SC field descriptions** 

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–9<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 8<br>DMA         | DMA Enable  Enables DMA transfers for the overflow flag.                             |

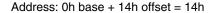
Table continues on the next page...

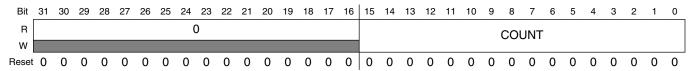
#### **Memory Map and Register Definition**

# **TPM\_SC** field descriptions (continued)

| Field     | Description                                                                                                                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 0 Disables DMA transfers.                                                                                                                                                                                                                                                            |
|           | 1 Enables DMA transfers.                                                                                                                                                                                                                                                             |
| 7<br>TOF  | Timer Overflow Flag                                                                                                                                                                                                                                                                  |
|           | Set by hardware when the TPM counter equals the value in the MOD register and increments. Writing a 1 to TOF clears it. Writing a 0 to TOF has no effect.                                                                                                                            |
|           | If another TPM overflow occurs between the flag setting and the flag clearing, the write operation has no effect; therefore, TOF remains set indicating another overflow has occurred. In this case a TOF interrupt request is not lost due to a delay in clearing the previous TOF. |
|           | 0 TPM counter has not overflowed.                                                                                                                                                                                                                                                    |
|           | 1 TPM counter has overflowed.                                                                                                                                                                                                                                                        |
| 6<br>TOIE | Timer Overflow Interrupt Enable                                                                                                                                                                                                                                                      |
|           | Enables TPM overflow interrupts.                                                                                                                                                                                                                                                     |
|           | 0 Disable TOF interrupts. Use software polling or DMA request.                                                                                                                                                                                                                       |
|           | 1 Enable TOF interrupts. An interrupt is generated when TOF equals one.                                                                                                                                                                                                              |
| 5         | Center-Aligned PWM Select                                                                                                                                                                                                                                                            |
| CPWMS     | Selects CPWM mode. This mode configures the TPM to operate in up-down counting mode.                                                                                                                                                                                                 |
|           | This field is write protected. It can be written only when the counter is disabled.                                                                                                                                                                                                  |
|           | 0 TPM counter operates in up counting mode.                                                                                                                                                                                                                                          |
|           | 1 TPM counter operates in up-down counting mode.                                                                                                                                                                                                                                     |
| 4–3       | Clock Mode Selection                                                                                                                                                                                                                                                                 |
| CMOD      | Selects the TPM counter clock modes. When disabling the counter, this field remain set until acknolwedged in the TPM clock domain.                                                                                                                                                   |
|           | 00 TPM counter is disabled                                                                                                                                                                                                                                                           |
|           | 01 TPM counter increments on every TPM counter clock                                                                                                                                                                                                                                 |
|           | 10 TPM counter increments on rising edge of TPM_EXTCLK synchronized to the TPM counter clock                                                                                                                                                                                         |
|           | 11 TPM counter increments on rising edge of the selected external input trigger.                                                                                                                                                                                                     |
| PS        | Prescale Factor Selection                                                                                                                                                                                                                                                            |
|           | Selects one of 8 division factors for the clock mode selected by CMOD.                                                                                                                                                                                                               |
|           | This field is write protected. It can be written only when the counter is disabled.                                                                                                                                                                                                  |
|           | 000 Divide by 1                                                                                                                                                                                                                                                                      |
|           | 001 Divide by 2                                                                                                                                                                                                                                                                      |
|           | 010 Divide by 4                                                                                                                                                                                                                                                                      |
|           | 011 Divide by 8                                                                                                                                                                                                                                                                      |
|           | 100 Divide by 16                                                                                                                                                                                                                                                                     |
|           | 101 Divide by 32                                                                                                                                                                                                                                                                     |
|           | 110 Divide by 64                                                                                                                                                                                                                                                                     |
|           | 111 Divide by 128                                                                                                                                                                                                                                                                    |

1165


# 47.3.5 Counter (TPM\_CNT)


The CNT register contains the TPM counter value.

Reset clears the CNT register. Writing any value to COUNT also clears the counter.

When debug is active, the TPM counter does not increment unless configured otherwise.

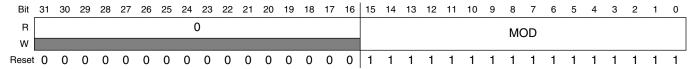
Reading the CNT register adds two wait states to the register access due to synchronization delays.





#### TPM\_CNT field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| COUNT             | Counter value                                                                        |


# 47.3.6 Modulo (TPM MOD)

The Modulo register contains the modulo value for the TPM counter. When the TPM counter reaches the modulo value and increments, the overflow flag (TOF) is set and the next value of TPM counter depends on the selected counting method (see Counter).

Writing to the MOD register latches the value into a buffer. The MOD register is updated with the value of its write buffer according to MOD Register Update. Additional writes to the MOD write buffer are ignored until the register has been updated.

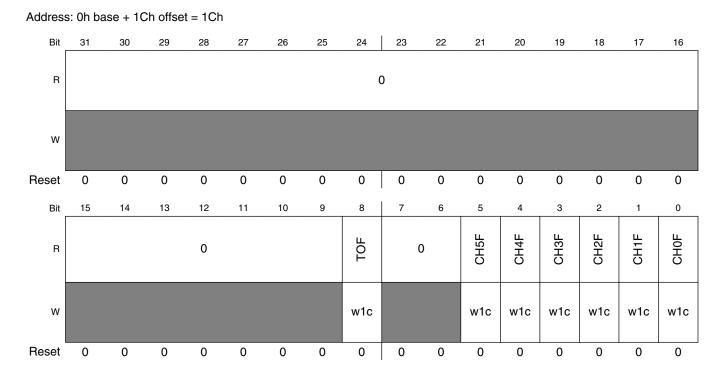
It is recommended to initialize the TPM counter (write to CNT) before writing to the MOD register to avoid confusion about when the first counter overflow will occur.

Address: 0h base + 18h offset = 18h



#### **TPM\_MOD field descriptions**

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| MOD               | Modulo value                                                                         |
|                   | This field must be written with single 16-bit or 32-bit access.                      |


# 47.3.7 Capture and Compare Status (TPM\_STATUS)

The STATUS register contains a copy of the status flag, CnSC[CHnF] for each TPM channel, as well as SC[TOF], for software convenience.

Each CHnF bit in STATUS is a mirror of CHnF bit in CnSC. All CHnF bits can be checked using only one read of STATUS. All CHnF bits can be cleared by writing all ones to STATUS.

Hardware sets the individual channel flags when an event occurs on the channel. Writing a 1 to CHF clears it. Writing a 0 to CHF has no effect.

If another event occurs between the flag setting and the write operation, the write operation has no effect; therefore, CHF remains set indicating another event has occurred. In this case a CHF interrupt request is not lost due to the clearing sequence for a previous CHF.



# **TPM\_STATUS** field descriptions

| Field            | Description                                                                          |
|------------------|--------------------------------------------------------------------------------------|
| 31–9<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 8<br>TOF         | Timer Overflow Flag                                                                  |
| TOP              | See register description                                                             |
|                  | 0 TPM counter has not overflowed.                                                    |
|                  | 1 TPM counter has overflowed.                                                        |
| 7–6<br>Reserved  | This field is reserved. This read-only field is reserved and always has the value 0. |
| 5<br>CH5F        | Channel 5 Flag                                                                       |
| 01101            | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |
| 4<br>CH4F        | Channel 4 Flag                                                                       |
| <b>3.1</b>       | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |
| 3<br>CH3F        | Channel 3 Flag                                                                       |
|                  | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |
| 2<br>CH2F        | Channel 2 Flag                                                                       |
| 0                | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |
| 1<br>CH1F        | Channel 1 Flag                                                                       |
| Orm              | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |
| 0<br>CH0F        | Channel 0 Flag                                                                       |
| CHUF             | See the register description.                                                        |
|                  | 0 No channel event has occurred.                                                     |
|                  | 1 A channel event has occurred.                                                      |

Reset

# 47.3.8 Channel (n) Status and Control (TPM\_CnSC)

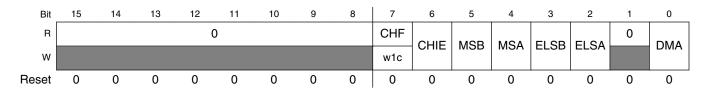

CnSC contains the channel-interrupt-status flag and control bits used to configure the interrupt enable, channel configuration, and pin function. When switching from one channel mode to a different channel mode, the channel must first be disabled and this must be acknowledged in the TPM counter clock domain.

Table 47-2. Mode, Edge, and Level Selection

| CPWMS | MSnB:MSnA | ELSnB:ELSnA | Mode               | Configuration                                                                   |
|-------|-----------|-------------|--------------------|---------------------------------------------------------------------------------|
| Х     | 00        | 00          | None               | Channel disabled                                                                |
| X     | 01        | 00          | Software compare   | Pin not used for TPM                                                            |
| 0     | 00        | 01          | Input capture      | Capture on Rising Edge<br>Only                                                  |
|       |           | 10          |                    | Capture on Falling<br>Edge Only                                                 |
|       |           | 11          |                    | Capture on Rising or Falling Edge                                               |
|       | 01        | 01          | Output compare     | Toggle Output on match                                                          |
|       |           | 10          |                    | Clear Output on match                                                           |
|       |           | 11          |                    | Set Output on match                                                             |
|       | 10        | 10          | Edge-aligned PWM   | High-true pulses (clear<br>Output on match, set<br>Output on reload)            |
|       |           | X1          |                    | Low-true pulses (set<br>Output on match, clear<br>Output on reload)             |
|       | 11        | 10          | Output compare     | Pulse Output low on match                                                       |
|       |           | 01          |                    | Pulse Output high on match                                                      |
| 1     | 10        | 10          | Center-aligned PWM | High-true pulses (clear<br>Output on match-up,<br>set Output on match-<br>down) |
|       |           | 01          |                    | Low-true pulses (set<br>Output on match-up,<br>clear Output on match-<br>down)  |

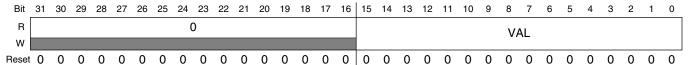


KL28Z Reference Manual, Rev. 4, 06/2016



# TPM\_CnSC field descriptions

| Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  ELSA  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field | Description                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Set by hardware when an event occurs on the channel. CHF is cleared by writing a 1 to the CHF bit.  Writing a 0 to CHF has no effect.  If another event occurs between the CHF sets and the write operation, the write operation has no effect; therefore, CHF remains set indicating another event has occurred. In this case a CHF interrupt request is not lost due to the delay in clearing the previous CHF.  0 No channel event has occurred.  1 A channel event has occurred.  6 CHIE  Enables channel interrupt Enable  Enables channel interrupts.  0 Disable channel interrupts.  1 Enable channel interrupts.  5 MSB  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  4 Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  3 ELSB  ELSB  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  1 This field is reserved.  This field is reserved.  This field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel. |       |                                                                                                                                                                                                                        |  |
| Set by hardware when an event occurs on the channel. CHF is cleared by writing a 1 to the CHF bit. Writing a 0 to CHF has no effect.  If another event occurs between the CHF sets and the write operation, the write operation has no effect; therefore, CHF remains set indicating another event has occurred. In this case a CHF interrupt request is not lost due to the delay in clearing the previous CHF.  O No channel event has occurred.  1 A channel event has occurred.  Channel Interrupt Enable  Enables channel interrupts.  O Disable channel interrupts.  I Enable channel interrupts.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  3 ELSB  ELSB  ELSB  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  1 This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                    |       | Channel Flag                                                                                                                                                                                                           |  |
| therefore, CHF remains set indicating another event has occurred. In this case a CHF interrupt request is not lost due to the delay in clearing the previous CHF.  0 No channel event has occurred. 1 A channel event has occurred. 6 CHIE  6 CHIE  6 CHIE  Channel Interrupt Enable  Enables channel interrupts. 0 Disable channel interrupts. 1 Enable channel interrupts. 1 Enable channel interrupts. 1 Enable channel interrupts. 2 Channel Mode Select  MSA  WSA  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  3 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  1 This field is reserved.  Reserved  O DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                              | CHF   |                                                                                                                                                                                                                        |  |
| 1 A channel event has occurred.  6 CHIE  Channel Interrupt Enable  Enables channel interrupts.  0 Disable channel interrupts.  1 Enable channel interrupts.  5 MSB  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  3 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2 Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  1 This field is reserved.  This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | therefore, CHF remains set indicating another event has occurred. In this case a CHF interrupt request is                                                                                                              |  |
| CHIE  Enables channel interrupts.  Disable channel interrupts.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved.  This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                                                                                                                                                                        |  |
| Enables channel interrupts.  0 Disable channel interrupts. 1 Enable channel interrupts. 1 Enable channel interrupts.  Channel Mode Select Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -     | Channel Interrupt Enable                                                                                                                                                                                               |  |
| 1 Enable channel interrupts.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHIE  | Enables channel interrupts.                                                                                                                                                                                            |  |
| Channel Mode Select Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 0 Disable channel interrupts.                                                                                                                                                                                          |  |
| Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | · ·                                                                                                                                                                                                                    |  |
| Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Channel Mode Select  Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved.  This field is reserved.  This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Channel Mode Select                                                                                                                                                                                                    |  |
| Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WOD   | Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain. |  |
| Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  Edge or Level Select  The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable  Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Channel Mode Select                                                                                                                                                                                                    |  |
| The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WSA   | Used for further selections in the channel logic. Its functionality is dependent on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain. |  |
| The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Edge or Level Select                                                                                                                                                                                                   |  |
| The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  This field is reserved. This read-only field is reserved and always has the value 0.  DMA Enable Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ELSB  | The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.                                       |  |
| The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.  1 This field is reserved. This read-only field is reserved and always has the value 0.  0 DMA Enable Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Edge or Level Select                                                                                                                                                                                                   |  |
| Reserved This read-only field is reserved and always has the value 0.  O DMA Enable DMA Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELSA  | The functionality of ELSB and ELSA depends on the channel mode. When a channel is disabled, this field will not change state until acknowledged in the TPM counter clock domain.                                       |  |
| 0 DMA Enable DMA Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                        |  |
| Enables DMA transfers for the channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     |                                                                                                                                                                                                                        |  |
| O Disable DMA transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DMA   | Enables DMA transfers for the channel.                                                                                                                                                                                 |  |
| I U DISADIE DIMA TRANSTERS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 0 Disable DMA transfers.                                                                                                                                                                                               |  |
| 1 Enable DMA transfers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                        |  |

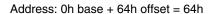

#### Channel (n) Value (TPM CnV) 47.3.9

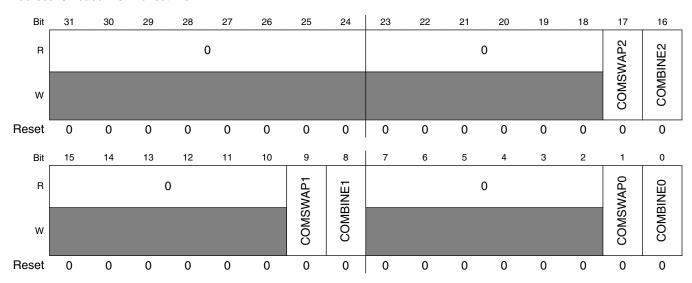
These registers contain the captured TPM counter value for the input modes or the match value for the output modes.

In input capture mode, any write to a CnV register is ignored.

In compare modes, writing to a CnV register latches the value into a buffer. A CnV register is updated with the value of its write buffer according to CnV Register Update. Additional writes to the CnV write buffer are ignored until the register has been updated.







#### TPM\_CnV field descriptions

| Field             | Description                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                  |
|                   | Channel Value  Captured TPM counter value of the input modes or the match value for the output modes. This field must be written with single 16-bit or 32-bit access. |

# 47.3.10 Combine Channel Register (TPM\_COMBINE)

This register contains the control bits used to configure the combine channel modes for each pair of channels (n) and (n+1), where n is all the even numbered channels.



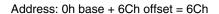


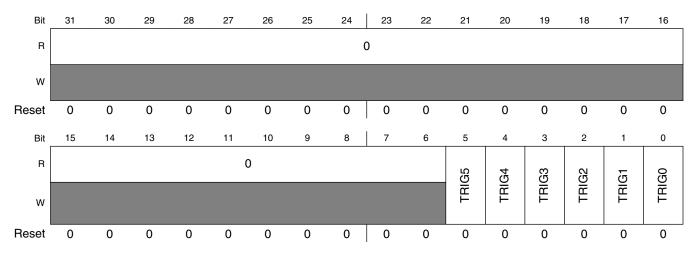
#### **TPM\_COMBINE field descriptions**

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                     |
| 23–18<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                     |
| 17<br>COMSWAP2    | Combine Channels 4 and 5 Swap  When set in combine mode, the even channel is used for the input capture and 1st compare, the odd channel is used for the 2nd compare.  O Even channel is used for input capture and 1st compare.  Odd channel is used for input capture and 1st compare.                                                                                                                                                                                 |
| 16<br>COMBINE2    | Combine Channels 4 and 5  Enables the combine feature for channels 2 and 3. In input capture mode, the combined channels use the even channel input. In software compare modes, the even channel match asserts the output trigger and the odd channel match negates the output trigger. In PWM modes, the even channel match is used for the 1st compare and odd channel match for the 2nd compare.  O Channels 4 and 5 are independent.  Channels 4 and 5 are combined. |
| 15–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                     |
| 9<br>COMSWAP1     | Combine Channels 2 and 3 Swap                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### **Memory Map and Register Definition**


# **TPM\_COMBINE** field descriptions (continued)

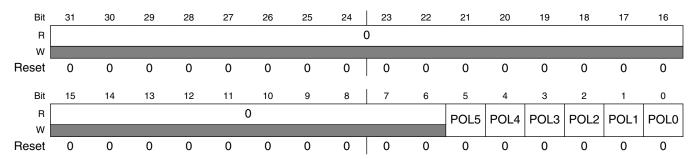
| Field           | Description                                                                                                                                                                                                                                                                                                                                                               |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                 | When set in combine mode, the odd channel is used for the input capture and 1st compare, the even channel is used for the 2nd compare.                                                                                                                                                                                                                                    |  |
|                 | 0 Even channel is used for input capture and 1st compare.                                                                                                                                                                                                                                                                                                                 |  |
|                 | 1 Odd channel is used for input capture and 1st compare.                                                                                                                                                                                                                                                                                                                  |  |
| 8<br>COMBINE1   | Combine Channels 2 and 3                                                                                                                                                                                                                                                                                                                                                  |  |
|                 | Enables the combine feature for channels 2 and 3. In input capture mode, the combined channels use the even channel input. In software compare modes, the even channel match asserts the output trigger and the odd channel match negates the output trigger. In PWM modes, the even channel match is used for the 1st compare and odd channel match for the 2nd compare. |  |
|                 | 0 Channels 2 and 3 are independent.                                                                                                                                                                                                                                                                                                                                       |  |
|                 | 1 Channels 2 and 3 are combined.                                                                                                                                                                                                                                                                                                                                          |  |
| 7–2<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                      |  |
| 1               | Combine Channel 0 and 1 Swap                                                                                                                                                                                                                                                                                                                                              |  |
| COMSWAP0        | When set in combine mode, the even channel is used for the input capture and 1st compare, the odd channel is used for the 2nd compare.                                                                                                                                                                                                                                    |  |
|                 | 0 Even channel is used for input capture and 1st compare.                                                                                                                                                                                                                                                                                                                 |  |
|                 | 1 Odd channel is used for input capture and 1st compare.                                                                                                                                                                                                                                                                                                                  |  |
| 0<br>COMBINE0   | Combine Channels 0 and 1                                                                                                                                                                                                                                                                                                                                                  |  |
|                 | Enables the combine feature for channels 0 and 1. In input capture mode, the combined channels use the even channel input. In software compare modes, the even channel match asserts the output trigger and the odd channel match negates the output trigger. In PWM modes, the even channel match is used for the 1st compare and odd channel match for the 2nd compare. |  |
|                 | 0 Channels 0 and 1 are independent.                                                                                                                                                                                                                                                                                                                                       |  |
|                 | 1 Channels 0 and 1 are combined.                                                                                                                                                                                                                                                                                                                                          |  |

# 47.3.11 Channel Trigger (TPM\_TRIG)

This register configures the trigger input for each channel.






# **TPM\_TRIG** field descriptions

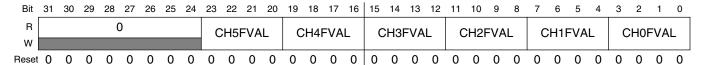
| Field      | Description                                                                                      |
|------------|--------------------------------------------------------------------------------------------------|
| 31–6       | This field is reserved.                                                                          |
| Reserved   | This read-only field is reserved and always has the value 0.                                     |
| 5<br>TRIG5 | Channel 5 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |
| 4<br>TRIG4 | Channel 4 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |
| 3<br>TRIG3 | Channel 3 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |
| 2<br>TRIG2 | Channel 2 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |
| 1<br>TRIG1 | Channel 1 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |
| 0<br>TRIG0 | Channel 0 Trigger                                                                                |
|            | 0 No effect.                                                                                     |
|            | 1 The input trigger is used for input capture and modulates output (for output compare and PWM). |

#### 47.3.12 **Channel Polarity (TPM\_POL)**

This register defines the input and output polarity of each of the channels.

Address: 0h base + 70h offset = 70h




**TPM\_POL** field descriptions

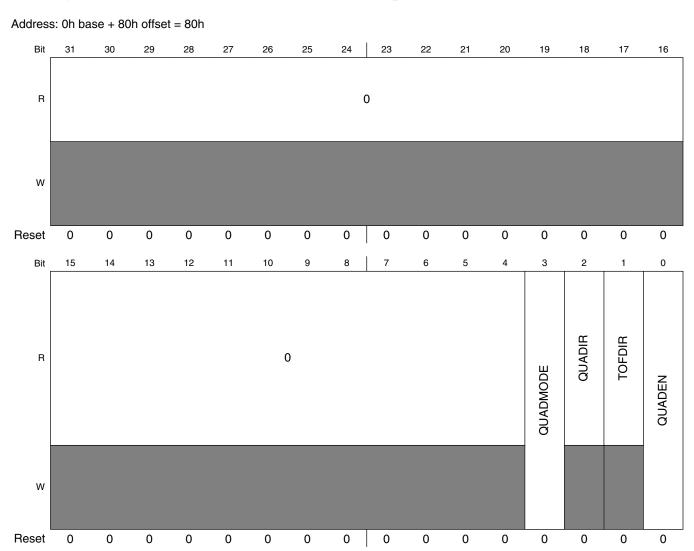
| Field            | Description                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------|
| 31–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.               |
| 5<br>POL5        | Channel 5 Polarity                                                                                 |
|                  | <ul><li>The channel polarity is active high.</li><li>The channel polarity is active low.</li></ul> |
| 4<br>POL4        | Channel 4 Polarity                                                                                 |
|                  | 0 The channel polarity is active high                                                              |
|                  | 1 The channel polarity is active low.                                                              |
| 3<br>POL3        | Channel 3 Polarity                                                                                 |
|                  | 0 The channel polarity is active high.                                                             |
|                  | 1 The channel polarity is active low.                                                              |
| 2<br>POL2        | Channel 2 Polarity                                                                                 |
| . 0              | 0 The channel polarity is active high.                                                             |
|                  | 1 The channel polarity is active low.                                                              |
| 1<br>POL1        | Channel 1 Polarity                                                                                 |
|                  | 0 The channel polarity is active high.                                                             |
|                  | 1 The channel polarity is active low.                                                              |
| 0<br>POL0        | Channel 0 Polarity                                                                                 |
|                  | 0 The channel polarity is active high.                                                             |
|                  | 1 The channel polarity is active low.                                                              |

#### Filter Control (TPM\_FILTER) 47.3.13

This register selects the filter value of the channel inputs, and an additional output delay value for the channel outputs. In PWM combine modes, the filter can effectively implements deadtime insertion.

Address: 0h base + 78h offset = 78h




# **TPM\_FILTER** field descriptions

| Field             | Description                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                            |
| 23–20<br>CH5FVAL  | Channel 5 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH5FVAL * 4) clock cycles. |
| 19–16<br>CH4FVAL  | Channel 4 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH4FVAL * 4) clock cycles. |
| 15–12<br>CH3FVAL  | Channel 3 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH3FVAL * 4) clock cycles. |
| 11–8<br>CH2FVAL   | Channel 2 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH2FVAL * 4) clock cycles. |
| 7–4<br>CH1FVAL    | Channel 1 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH1FVAL * 4) clock cycles. |
| CH0FVAL           | Channel 0 Filter Value  Selects the filter value for the channel input and the delay value for the channel output. The filter/delay is disabled when the value is zero, otherwise the filter/delay is configured as (CH0FVAL * 4) clock cycles. |

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 1175

# 47.3.14 Quadrature Decoder Control and Status (TPM\_QDCTRL)

This register has the control and status bits for the quadrature decoder mode.

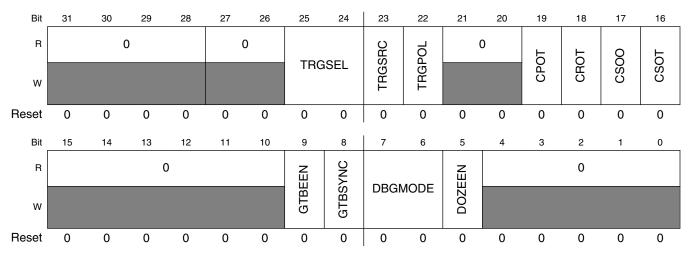


# **TPM\_QDCTRL** field descriptions

| Field            | Description                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–4<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                |
| 3<br>QUADMODE    | Quadrature Decoder Mode  Selects the encoding mode used in the quadrature decoder mode.  O Phase encoding mode.  Count and direction encoding mode. |
| 2<br>QUADIR      | Counter Direction in Quadrature Decode Mode                                                                                                         |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


# **TPM\_QDCTRL** field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                         |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Indicates the counting direction.                                                                                                                                                                                                   |
|             | 0 Counter direction is decreasing (counter decrement).                                                                                                                                                                              |
|             | 1 Counter direction is increasing (counter increment).                                                                                                                                                                              |
| 1<br>TOFDIR | Indicates if the TOF bit was set on the top or the bottom of counting.                                                                                                                                                              |
|             | O TOF bit was set on the bottom of counting. There was an FTM counter decrement and FTM counter changes from its minimum value (zero) to its maximum value (MOD register).                                                          |
|             | 1 TOF bit was set on the top of counting. There was an FTM counter increment and FTM counter changes from its maximum value (MOD register) to its minimum value (zero).                                                             |
| 0<br>QUADEN | Enables the quadrature decoder mode. In this mode, the channel 0 and channel 1 inputs control the TPM counter direction and can only be used for software compare. The quadrature decoder mode has precedence over the other modes. |
|             | 0 Quadrature decoder mode is disabled.                                                                                                                                                                                              |
|             | 1 Quadrature decoder mode is enabled.                                                                                                                                                                                               |

# 47.3.15 Configuration (TPM\_CONF)

This register selects the behavior in debug and wait modes and the use of an external global time base.

Address: 0h base + 84h offset = 84h



#### **TPM\_CONF** field descriptions

| Field | Description                                                                          |
|-------|--------------------------------------------------------------------------------------|
|       | This field is reserved. This read-only field is reserved and always has the value 0. |

Table continues on the next page...

#### **Memory Map and Register Definition**

# **TPM\_CONF** field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27–26<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25–24<br>TRGSEL   | Trigger Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Selects the input trigger to use for starting, reloading and/or pausing the counter. The source of the trigger (external or internal to the TPM) is configured by the TRGSRC field. This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                   |
|                   | See the chip-specific TPM information for available options.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23<br>TRGSRC      | Trigger Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Selects between internal (channel pin input capture) or external trigger sources.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | When selecting an internal trigger, the channel selected should be configured for input capture. Only a rising edge input capture can be used to initially start the counter using the CSOT configuration; either rising edge or falling edge input capture can be used to reload the counter using the CROT configuration; and the state of the channel input pin is used to pause the counter using the CPOT configuration. The channel polarity register can be used to invert the polarity of the channel input pins. |
|                   | This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 0 Trigger source selected by TRGSEL is external.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 1 Trigger source selected by TRGSEL is internal (channel pin input capture).                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 22                | Trigger Polarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TRGPOL            | Selects the polarity of the external trigger source. This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | <ul><li>0 Trigger is active high.</li><li>1 Trigger is active low.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21–20<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19                | Counter Pause On Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CPOT              | When enabled, the counter will pause incrementing while the trigger remains asserted (level sensitive). This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                                                                                               |
| 18                | Counter Reload On Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CROT              | When set, the TPM counter will reload with 0 (and initialize PWM outputs to their default value) when a rising edge is detected on the selected trigger input.                                                                                                                                                                                                                                                                                                                                                            |
|                   | The trigger input is ignored if the TPM counter is paused during debug mode or doze mode. This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                                                                                                             |
|                   | <ul> <li>Counter is not reloaded due to a rising edge on the selected input trigger</li> <li>Counter is reloaded when a rising edge is detected on the selected input trigger</li> </ul>                                                                                                                                                                                                                                                                                                                                  |
| 17                | Counter Stop On Overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CSOO              | When set, the TPM counter will stop incrementing once the counter equals the MOD value and incremented (this also sets the TOF). Reloading the counter with 0 due to writing to the counter register or due to a trigger input does not cause the counter to stop incrementing. Once the counter has stopped incrementing, the counter will not start incrementing unless it is disabled and then enabled again, or a rising edge on the selected trigger input is detected when CSOT set.                                |
|                   | This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table continues on the next page...

1179

# **TPM\_CONF** field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 0 TPM counter continues incrementing or decrementing after overflow                                                                                                                                                                                                                                                                                                                                         |
|                   | 1 TPM counter stops incrementing or decrementing after overflow.                                                                                                                                                                                                                                                                                                                                            |
| 16<br>CSOT        | Counter Start on Trigger                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | When set, the TPM counter will not start incrementing after it is enabled until a rising edge on the selected trigger input is detected. If the TPM counter is stopped due to an overflow, a rising edge on the selected trigger input will also cause the TPM counter to start incrementing again.                                                                                                         |
|                   | The trigger input is ignored if the TPM counter is paused during debug mode or doze mode. This field should only be changed when the TPM counter is disabled.                                                                                                                                                                                                                                               |
|                   | 0 TPM counter starts to increment immediately, once it is enabled.                                                                                                                                                                                                                                                                                                                                          |
|                   | 1 TPM counter only starts to increment when it a rising edge on the selected input trigger is detected, after it has been enabled or after it has stopped due to overflow.                                                                                                                                                                                                                                  |
| 15–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                        |
| 9<br>GTBEEN       | Global time base enable                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Configures the TPM to use an externally generated global time base counter. When an externally generated timebase is used, the internal TPM counter is not used by the channels but can be used to generate a periodic interruptor DMA request using the Modulo register and timer overflow flag.                                                                                                           |
|                   | 0 All channels use the internally generated TPM counter as their timebase                                                                                                                                                                                                                                                                                                                                   |
|                   | 1 All channels use an externally generated global timebase as their timebase                                                                                                                                                                                                                                                                                                                                |
| 8<br>GTBSYNC      | Global Time Base Synchronization                                                                                                                                                                                                                                                                                                                                                                            |
|                   | When enabled, the TPM counter is synchronized to the global time base. It uses the global timebase enable, trigger and overflow to ensure the TPM counter starts incrementing at the same time as the global timebase, stops incrementing at the same time as the global timebase and is reset at the same time as the global timebase. This field should only be changed when the TPM counter is disabled. |
|                   | 0 Global timebase synchronization disabled.                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 1 Global timebase synchronization enabled.                                                                                                                                                                                                                                                                                                                                                                  |
| 7–6<br>DBGMODE    | Debug Mode                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | Configures the TPM behavior in debug mode. All other configurations are reserved.                                                                                                                                                                                                                                                                                                                           |
|                   | TPM counter is paused and does not increment during debug mode. Trigger inputs and input capture events are also ignored.                                                                                                                                                                                                                                                                                   |
|                   | 11 TPM counter continues in debug mode.                                                                                                                                                                                                                                                                                                                                                                     |
| 5<br>DOZEEN       | Doze Enable                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | Configures the TPM behavior in wait mode.                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 0 Internal TPM counter continues in Doze mode.                                                                                                                                                                                                                                                                                                                                                              |
|                   | 1 Internal TPM counter is paused and does not increment during Doze mode. Trigger inputs and input capture events are also ignored.                                                                                                                                                                                                                                                                         |
| Reserved          | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                        |

# 47.4 Functional description

The following sections describe the TPM features.

### 47.4.1 Clock domains

The TPM module supports two clock domains.

The bus clock domain is used by the register interface and for synchronizing interrupts and DMA requests.

The TPM counter clock domain is used to clock the counter and prescaler along with the output compare and input capture logic. The TPM counter clock is considered asynchronous to the bus clock, can be a higher or lower frequency than the bus clock and can remain operational in Stop mode. Multiple TPM instances are all clocked by the same TPM counter clock in support of the external timebase feature.

#### 47.4.1.1 Counter Clock Mode

The CMOD[1:0] bits in the SC register either disable the TPM counter or select one of two possible clock modes for the TPM counter. After any reset, CMOD[1:0] = 0:0 so the TPM counter is disabled.

The CMOD[1:0] bits may be read or written at any time. Disabling the TPM counter by writing zero to the CMOD[1:0] bits does not affect the TPM counter value or other registers, but must be acknowledged by the TPM counter clock domain before they read as zero.

The external clock input passes through a synchronizer clocked by the TPM counter clock to assure that counter transitions are properly aligned to counter clock transitions. Therefore, to meet Nyquist criteria considering also jitter, the frequency of the external clock source must be less than half of the counter clock frequency.

# 47.4.2 Prescaler

The selected counter clock source passes through a prescaler that is a 7-bit counter.

The value of the prescaler is selected by the PS[2:0] bits. The following figure shows an example of the prescaler counter and TPM counter.

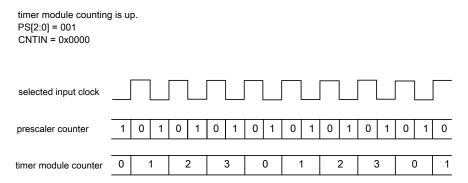



Figure 47-2. Example of the Prescaler Counter

#### **47.4.3** Counter

The TPM has a 16-bit counter that is used by the channels either for input or output modes.

The counter updates from the selected clock divided by the prescaler.

The TPM counter has these modes of operation:

- up counting (see Up counting)
- up-down counting (see Up-down counting)

# 47.4.3.1 **Up counting**

Up counting is selected when SC[CPWMS] = 0.

The value of zero is loaded into the TPM counter, and the counter increments until the value of MOD is reached, at which point the counter is reloaded with zero.

The TPM period when using up counting is  $(MOD + 0x0001) \times period$  of the TPM counter clock.

The TOF bit is set when the TPM counter changes from MOD to zero.

# MOD = 0x0004 timer module counter 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 TOF bit set TOF bit set TOF bit

period of counting = (MOD + 0x0001) x period of timer module counter clock

period of timer module counter clock

Figure 47-3. Example of TPM Up Counting

#### **Note**

• MOD = 0000 is a redundant condition. In this case, the TPM counter is always equal to MOD and the TOF bit is set in each rising edge of the TPM counter clock.

# 47.4.3.2 Up-down counting

Up-down counting is selected when SC[CPWMS] = 1. When configured for up-down counting, configuring CONF[MOD] to less than 2 is not supported.

The value of 0 is loaded into the TPM counter, and the counter increments until the value of MOD is reached, at which point the counter is decremented until it returns to zero and the up-down counting restarts.

The TPM period when using up-down counting is  $2 \times MOD \times period$  of the TPM counter clock.

The TOF bit is set when the TPM counter changes from MOD to (MOD - 1).

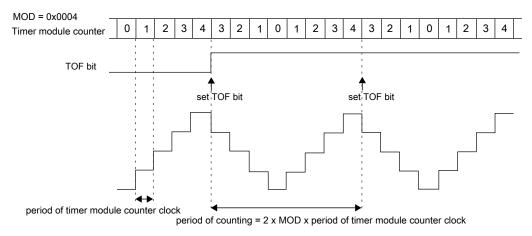



Figure 47-4. Example of up-down counting

#### 47.4.3.3 Counter Reset

Any write to CNT resets the TPM counter and the channel outputs to their initial values (except for channels in output compare mode).

# 47.4.3.4 Global time base (GTB)

The global time base (GTB) is a TPM function that allows multiple TPM modules to share the same timebase. When the global time base is enabled (CONF[GTBEEN] = 1), the local TPM channels use the counter value, counter enable and overflow indication from the TPM generating the global time base. If the local TPM counter is not generating the global time base, then it can be used as an independent counter or pulse accumulator.

The local TPM counter can also be configured to synchronize to the global time base, by configuring (GTBSYNC = 1). When synchronized to the global time base, the local counter will use the counter enable and counter overflow indication from the TPM generating the global time base. This enables multiple TPM to be configured with the same phase, but with different periods (although the global time base must be configured with the longest period).

# 47.4.3.5 Counter trigger

The TPM counter can be configured to start, stop or reset in response to a hardware trigger input. The trigger input is synchronized to the asynchronous counter clock, so there is a 3 counter clock delay between the trigger assertion and the counter responding.

#### **Functional description**

- When (CSOT = 1), the counter will not start incrementing until a rising edge is detected on the trigger input.
- When (CSOO= 1), the counter will stop incrementing whenever the TOF flag is set. The counter does not increment again unless it is disabled, or if CSOT = 1 and a rising edge is detected on the trigger input.
- When (CROT= 1), the counter will reset to zero as if an overflow occurred whenever a rising edge is detected on the trigger input.
- When (CPOT = 1), the counter will pause incrementing whenever the trigger input is asserted. The counter will continue incrementing when the trigger input negates.

The polarity of the external input trigger can be configured by the TRGPOL register bit.

When an internal trigger source is selected, the trigger input is selected from one or more channel input capture events. The input capture filters are used with the internal trigger sources and the POLn bits can be used to invert the polarity of the input channels. Note that following restrictions apply with input capture channel sources.

- When (CSOT = 1), the counter will only start incrementing on a rising edge on the channel input, provided ELSnA = 1.
- When (CROT= 1), the counter will reset to zero on either edge of the channel input, as configured by ELSnB:ELSnA.
- When (CPOT = 1), the counter will pause incrementing whenever the channel input is asserted.

#### 47.4.4 **Input Capture Mode**

The input capture mode is selected when (CPWMS = 0), (MSnB:MSnA = 0:0), and (ELSnB:ELSnA  $\neq$  0:0).

When a selected edge occurs on the channel input, the current value of the TPM counter is captured into the CnV register, at the same time the CHnF bit is set and the channel interrupt is generated if enabled by CHnIE = 1 (see the following figure).

When a channel is configured for input capture, the TPM\_CHn pin is an edge-sensitive input. ELSnB:ELSnA control bits determine which edge, falling or rising, triggers inputcapture event. Note that the maximum frequency for the channel input signal to be detected correctly is counter clock divided by 4, which is required to meet Nyquist criteria for signal sampling.

Writes to the CnV register are ignored in input capture mode.

KL28Z Reference Manual, Rev. 4, 06/2016 1184 **NXP Semiconductors** 

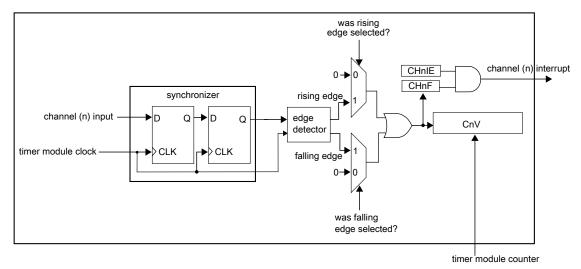



Figure 47-5. Input capture mode

The CHnF bit is set on the third rising edge of the counter clock after a valid edge occurs on the channel input.

# 47.4.5 Output Compare Mode

The output compare mode is selected when (CPWMS = 0), and (MSnB:MSnA = X:1).

In output compare mode, the TPM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter matches the value in the CnV register of an output compare channel, the channel (n) output can be set, cleared or toggled if MSnB is clear. If MSnB is set then the channel (n) output is pulsed high or low for as long as the counter matches the value in the CnV register.

When a channel is initially configured to output compare mode, the channel output updates with its negated value (logic 0 for set/toggle/pulse high and logic one for clear/pulse low).

The CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (TPM counter = CnV).

#### **Functional description**

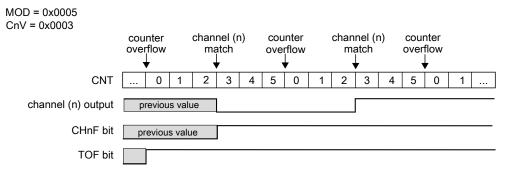



Figure 47-6. Example of the output compare mode when the match toggles the channel output

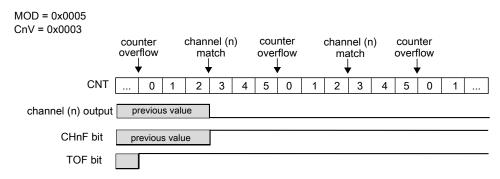



Figure 47-7. Example of the output compare mode when the match clears the channel output

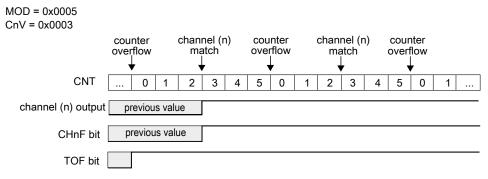



Figure 47-8. Example of the output compare mode when the match sets the channel output

It is possible to use the output compare mode with (ELSnB:ELSnA = 0:0). In this case, when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1), however the channel (n) output is not modified and controlled by TPM.

# 47.4.6 Edge-Aligned PWM (EPWM) Mode

The edge-aligned mode is selected when (CPWMS = 0), and (MSnB:MSnA = 1:0).

The EPWM period is determined by (MOD + 0x0001) and the pulse width (duty cycle) is determined by CnV.

The CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (TPM counter = CnV), that is, at the end of the pulse width.

This type of PWM signal is called edge-aligned because the leading edges of all PWM signals are aligned with the beginning of the period, which is the same for all channels within an TPM.

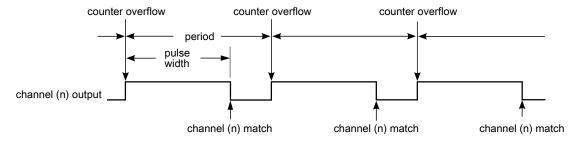



Figure 47-9. EPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1), however the channel (n) output is not controlled by TPM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the counter overflow (when the zero is loaded into the TPM counter), and it is forced low at the channel (n) match (TPM counter = CnV) (see the following figure).




Figure 47-10. EPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the counter overflow (when zero is loaded into the TPM counter), and it is forced high at the channel (n) match (TPM counter = CnV) (see the following figure).

#### **Functional description**

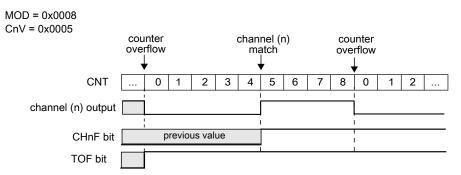



Figure 47-11. EPWM signal with ELSnB:ELSnA = X:1

If (CnV = 0x0000), then the channel (n) output is a 0% duty cycle EPWM signal. If (CnV > MOD), then the channel (n) output is a 100% duty cycle EPWM signal and CHnF bit is not set since there is never a channel (n) match. Therefore, MOD must be less than 0xFFFF in order to get a 100% duty cycle EPWM signal.

# 47.4.7 Center-Aligned PWM (CPWM) Mode

The center-aligned mode is selected when (CPWMS = 1) and (MSnB:MSnA = 1:0).

The CPWM pulse width (duty cycle) is determined by  $2 \times \text{CnV}$  and the period is determined by  $2 \times \text{MOD}$  (see the following figure). MOD must be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous results.

In the CPWM mode, the TPM counter counts up until it reaches MOD and then counts down until it reaches zero.

The CHnF bit is set and channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (TPM counter = CnV) when the TPM counting is down (at the begin of the pulse width) and when the TPM counting is up (at the end of the pulse width).

This type of PWM signal is called center-aligned because the pulse width centers for all channels are when the TPM counter is zero.

The other channel modes are not designed to be used with the up-down counter (CPWMS = 1). Therefore, all TPM channels should be used in CPWM mode when (CPWMS = 1).

1189

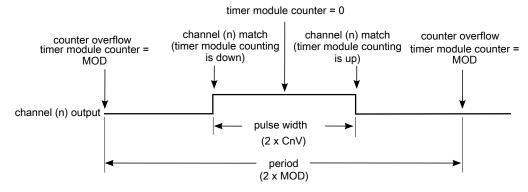



Figure 47-12. CPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the TPM counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1), however the channel (n) output is not controlled by TPM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the channel (n) match (TPM counter = CnV) when counting down, and it is forced low at the channel (n) match when counting up (see the following figure).

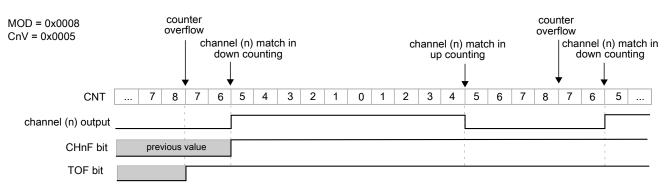



Figure 47-13. CPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the channel (n) match (TPM counter = CnV) when counting down, and it is forced high at the channel (n) match when counting up (see the following figure).

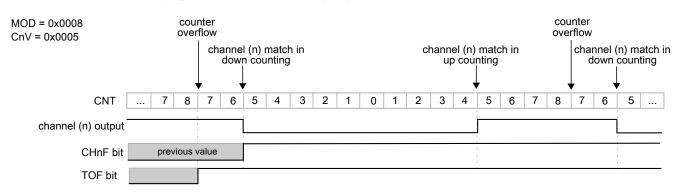



Figure 47-14. CPWM signal with ELSnB:ELSnA = X:1

#### **Functional description**

If (CnV = 0x0000) then the channel (n) output is a 0% duty cycle CPWM signal.

If (CnV > MOD), then the channel (n) output is a 100% duty cycle CPWM signal, although the CHnF bit is set when the counter changes from incrementing to decrementing. Therefore, MOD must be less than 0xFFFF in order to get a 100% duty cycle CPWM signal.

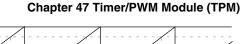
### 47.4.8 Combine PWM mode

The Combine PWM mode is selected when:

- MSnB:MSnA = 10
- COMBINEn = 1
- QUADEN = 0, and
- CPWMS = 0

In Combine PWM mode, an even channel (n) and adjacent odd channel (n+1) are combined to generate a PWM signal in the channel (n) output.

In the Combine mode, the PWM period is determined by (MOD + 0x0001) and the PWM pulse width (duty cycle) is determined by (|C(n+1)V - C(n)V|).


The CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (TPM counter = C(n)V). The CH(n+1)F bit is set and the channel (n +1) interrupt is generated, if CH(n+1)IE = 1, at the channel (n+1) match (TPM counter = C(n+1)V).

If channel (n) (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the beginning of the period (TPM counter is zero) and at the channel (n+1) match (TPM counter = C(n+1)V). It is forced high at the channel (n) match (TPM counter = C(n)V).

If channel (n) (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the beginning of the period (TPM counter is zero) and at the channel (n+1) match (TPM counter = C(n+1)V). It is forced low at the channel (n) match (TPM counter = C(n)V).

When (COMSWAPn = 1), then the channel (n) output is forced low or high at the beginning of the period (TPM counter is zero) and at the channel (n) match (TPM counter = C(n)V). It is forced high or low at the channel (n+1) match (TPM counter = C(n+1)V).

The channel (n+1) output is generated the same as the channel (n) output, but the output polarity is controlled by the channel (n+1) ELSnB:ELSnA configuration.



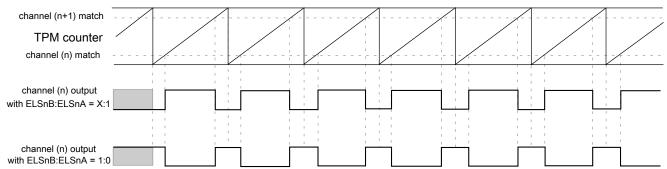



Figure 47-15. Combine mode

The following figures illustrate the PWM signals generation using Combine mode.

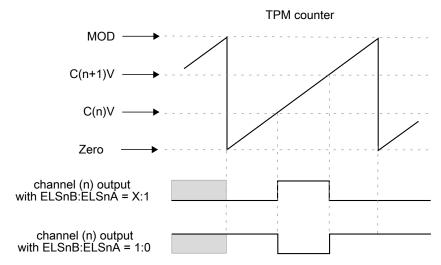



Figure 47-16. Channel (n) output if (C(n)V < MOD) and (C(n+1)V < MOD) and (C(n)V < C(n+1)V < MOD)+1)V)

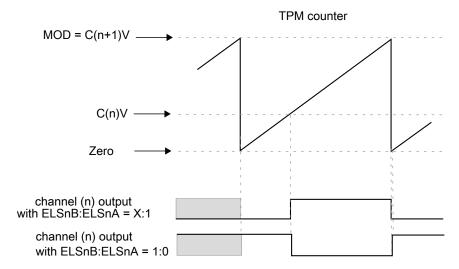



Figure 47-17. Channel (n) output if (C(n)V < MOD) and (C(n+1)V = MOD)

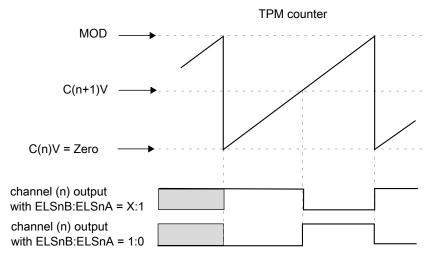



Figure 47-18. Channel (n) output if (C(n)V = zero) and (C(n+1)V < MOD)

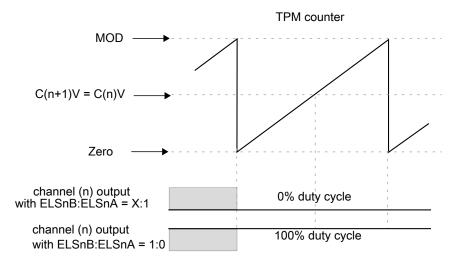



Figure 47-19. Channel (n) output if (C(n)V < MOD) and (C(n+1)V < MOD) and (C(n)V = C(n+1)V)

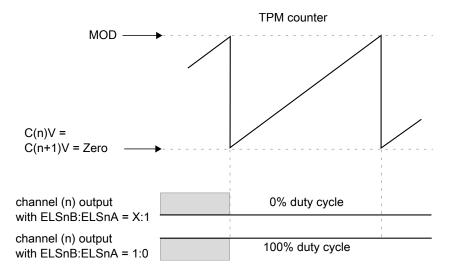



Figure 47-20. Channel (n) output if (C(n)V = C(n+1)V = zero)

**NXP Semiconductors** 

KL28Z Reference Manual, Rev. 4, 06/2016

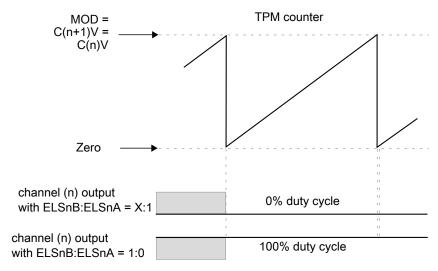



Figure 47-21. Channel (n) output if (C(n)V = C(n+1)V = MOD)

# 47.4.9 Combine Input Capture mode

The Combine Input Capture mode is selected if COMBINEn= 1 and MSnB:MSnA = 00 and ELSnB:ELSnA != 00. This mode allows to measure a pulse width of the signal on the input of channel (n) of a channel pair. The channel (n) filter can be active in this mode.

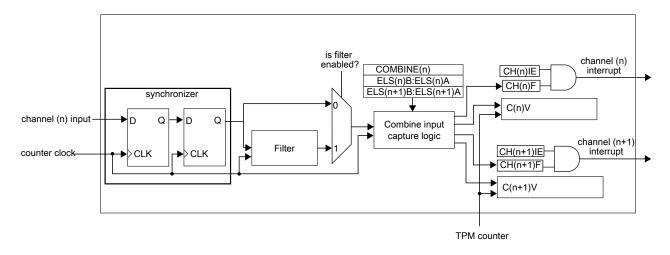



Figure 47-22. Combine Input Capture mode block diagram

The ELS(n)B:ELS(n)A bits select the edge that is captured by channel (n), and ELS(n+1)B:ELS(n+1)A bits select the edge that is captured by channel (n+1).

In the Combine Input Capture mode, only channel (n) input is used and channel (n+1) input is ignored, when COMSWAPn=1 then only channel (n+1) input is used and channel (n) input is ignored.

#### **Functional description**

If the selected edge by channel (n) bits is detected at channel (n) input, then CH(n)F bit is set and the channel (n) interrupt is generated (if CH(n)IE = 1). If the selected edge by channel (n+1) bits is detected at channel (n) input, then CH(n+1)F bit is set and the channel (n+1) interrupt is generated (if CH(n+1)IE = 1).

The C(n)V register stores the value of TPM counter when the selected edge by channel (n) is detected at channel (n) input. The C(n+1)V register stores the value of TPM counter when the selected edge by channel (n+1) is detected at channel (n) input.

#### **Note**

- The CH(n)F, CH(n)IE, MS(n)A, ELS(n)B, and ELS(n)A bits are channel (n) bits.
- The CH(n+1)F, CH(n+1)IE, MS(n+1)A, ELS(n+1)B, and ELS(n+1)A bits are channel (n+1) bits.
- The Combine Input Capture mode must be used with ELS(n)B:ELS(n)A = 0:1 or 1:0, ELS(n+1)B:ELS(n+1)A = 0:1 or 1:0.

# 47.4.10 Input Capture Filter

The input capture filter function is only in input capture mode, or in software compare mode when quadrature decoder mode is enabled.

First, the input signal is synchronized by the counter clock. Following synchronization, the input signal enters the filter block. See the following figure.

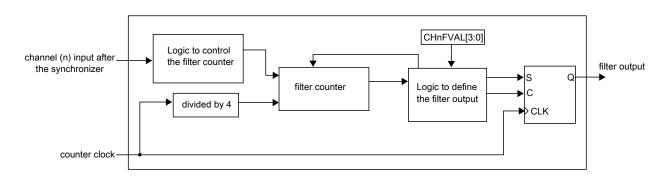



Figure 47-23. Channel input filter

When there is a state change in the input signal, the counter is reset and starts counting up. As long as the new state is stable on the input, the counter continues to increment. When the counter is equal to  $(CHnFVAL[3:0] \times 4)$ , the state change of the input signal is validated.

If the opposite edge appears on the input signal before it can be validated, the counter is reset. At the next input transition, the counter starts counting again. Any pulse that is shorter than the minimum value selected by (CHnFVAL[3:0] × 4 counter clocks) is regarded as a glitch and is not passed through the filter. A timing diagram of the input filter is shown in the following figure.

The filter function is disabled when CHnFVAL[3:0] bits are zero. In this case, the input signal is delayed by 2 rising edges of the counter clock. If (CHnFVAL[3:0]  $\neq$  0000), then the input signal is delayed by the minimum pulse width (CHnFVAL[3:0]  $\times$  4 system clocks) plus a further 3 rising edges of the system clock: two rising edges to the synchronizer, plus one more to the edge detector. In other words, CHnF is set (3 + 4  $\times$  CHnFVAL[3:0]) counter clock periods after a valid edge occurs on the channel input.

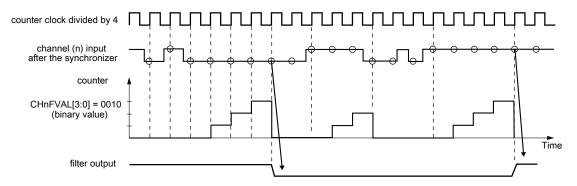



Figure 47-24. Channel input filter example

# 47.4.11 Deadtime insertion

The deadtime insertion is enabled in PWM combine modes when CHnFVAL is non-zero. The deadtime delay that is used for each TPM channel is defined as (CHnFVAL[3:0] x 4).

The deadtime delay insertion ensures that no two complementary signals (channels (n) and (n+1)) drive the active state at the same time.

If POL(n) = 0, POL(n+1) = 1, and the deadtime is enabled, then when the channel (n) match (TPM counter = C(n)V) occurs, the channel (n) output remains at the low value until the end of the deadtime delay when the channel (n) output is set. Similarly, when the channel (n+1) match (TPM counter = C(n+1)V) occurs, the channel (n+1) output remains at the low value until the end of the deadtime delay when the channel (n+1) output is set. See the following figures.

If POL(n) = 1, POL(n+1) = 0, and the deadtime is enabled, then when the channel (n) match (TPM counter = C(n)V) occurs, the channel (n) output remains at the high value until the end of the deadtime delay when the channel (n) output is cleared. Similarly,

#### **Functional description**

when the channel (n+1) match (TPM counter = C(n+1)V) occurs, the channel (n+1) output remains at the high value until the end of the deadtime delay when the channel (n+1) output is cleared.

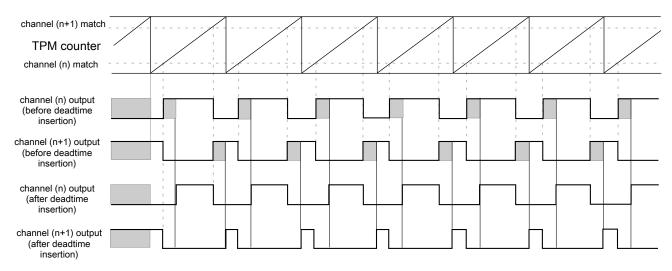



Figure 47-25. Deadtime insertion with ELSnB:ELSnA = X:1, POL(n) = 0, and POL(n+1) = 1

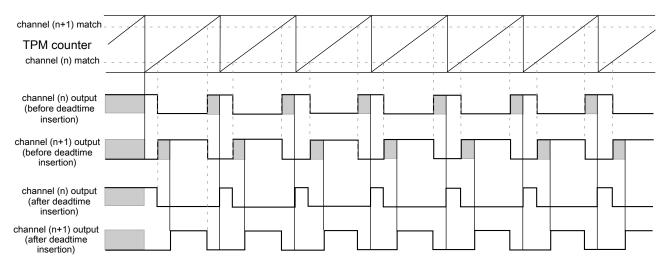



Figure 47-26. Deadtime insertion with ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 1

## 47.4.12 Quadrature Decoder mode

The Quadrature Decoder mode is selected if (QUADEN = 1). The Quadrature Decoder mode uses the channel 0 (phase A) and channel 1 (phase B) input signals to control the TPM counter increment and decrement. The following figure shows the quadrature decoder block diagram.

1197

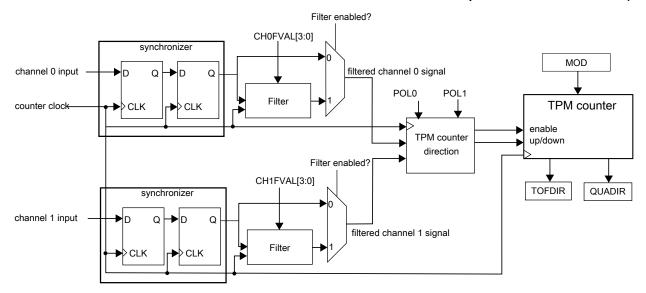



Figure 47-27. Quadrature Decoder block diagram

The input capture filter and channel polarity registers are used to configure the input filter and polarity for the channel 0 and channel 1 inputs in quadrature decode mode.

#### **Note**

Notice that the TPM counter is clocked by the channel 0 and channel 1 input signals when quadrature decoder mode is selected. Therefore In quadrature decoder mode, channel 0 and channel 1 can only be used in software compare mode and other TPM channels can only be used in input capture or output compare modes.

The QUADMODE selects the encoding mode used in the Quadrature Decoder mode. If QUADMODE = 1, then the count and direction encoding mode is enabled; see the following figure. In this mode, the channel 1 input value indicates the counting direction, and the channel 0 input defines the counting rate. The TPM counter is updated when there is a rising edge at channel 0 input signal.

#### **Functional description**

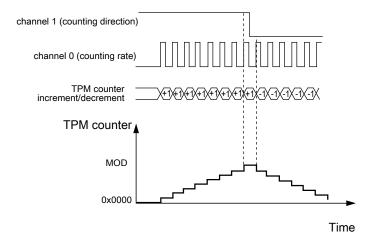



Figure 47-28. Quadrature Decoder – Count and Direction Encoding mode

If QUADMODE = 0, then the Phase Encoding mode is enabled; see the following figure. In this mode, the relationship between channel 0 and channel 1 signals indicates the counting direction, and channel 0 and channel 1 signals define the counting rate. The TPM counter is updated when there is an edge either at the channel 0 or channel 1 signals.

If CH0POL= 0 and CH1POL = 0, then the TPM counter increment happens when:

- there is a rising edge at channel 0 signal and channel 1 signal is at logic zero;
- there is a rising edge at channel 1 signal and channel 0 signal is at logic one;
- there is a falling edge at channel 1 signal and channel 0 signal is at logic zero;
- there is a falling edge at channel 0 signal and channel 1 signal is at logic one;

and the TPM counter decrement happens when:

- there is a falling edge at channel 0 signal and channel 1 signal is at logic zero;
- there is a falling edge at channel 1 signal and channel 0 signal is at logic one;
- there is a rising edge at channel 1 signal and channel 0 signal is at logic zero;
- there is a rising edge at channel 0 signal and channel 1 signal is at logic one.

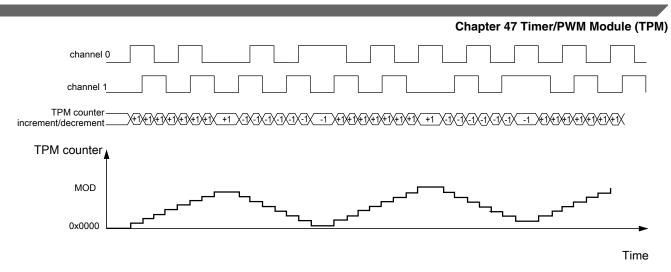



Figure 47-29. Quadrature Decoder – Phase Encoding mode

The following figure shows the TPM counter overflow in up counting. In this case, when the TPM counter changes from MOD to zero, TOF and TOFDIR bits are set. TOF bit indicates the TPM counter overflow occurred. TOFDIR indicates the counting was up when the TPM counter overflow occurred.

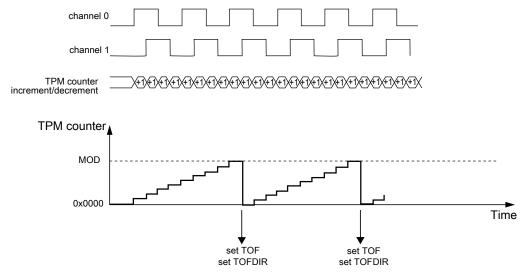



Figure 47-30. TPM Counter overflow in up counting for Quadrature Decoder mode

The following figure shows the TPM counter overflow in down counting. In this case, when the TPM counter changes from zero to MOD, TOF bit is set and TOFDIR bit is cleared. TOF bit indicates the TPM counter overflow occurred. TOFDIR indicates the counting was down when the TPM counter overflow occurred.

#### **Functional description**

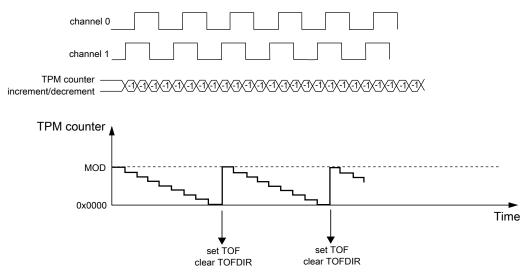



Figure 47-31. TPM counter overflow in down counting for Quadrature Decoder mode

# 47.4.13 Registers Updated from Write Buffers

# 47.4.13.1 MOD Register Update

If (CMOD[1:0] = 0:0) then MOD register is updated when MOD register is written.

If  $(CMOD[1:0] \neq 0:0)$ , then MOD register is updated according to the CPWMS bit, that is:

- If the selected mode is not CPWM then MOD register is updated after MOD register was written and the TPM counter changes from MOD to zero.
- If the selected mode is CPWM then MOD register is updated after MOD register was written and the TPM counter changes from MOD to (MOD 1).

## 47.4.13.2 CnV Register Update

If (CMOD[1:0] = 0:0) then CnV register is updated when CnV register is written.

If  $(CMOD[1:0] \neq 0:0)$ , then CnV register is updated according to the selected mode, that is:

• If the selected mode is output compare then CnV register is updated on the next TPM counter increment (end of the prescaler counting) after CnV register was written.

1201

- If the selected mode is EPWM then CnV register is updated after CnV register was written and the TPM counter changes from MOD to zero.
- If the selected mode is CPWM then CnV register is updated after CnV register was written and the TPM counter changes from MOD to (MOD 1).

### 47.4.14 DMA

The channel and overflow flags generate a DMA transfer request according to DMA and CHnIE/TOIE bits.

See the following table for more information.

CHnIE/ **DMA Channel/Overflow DMA Transfer Request Channel/Overflow Interrupt** TOIE 0 0 The channel/overflow DMA transfer request is The channel/overflow interrupt is not generated. not generated. 0 1 The channel/overflow DMA transfer request is The channel/overflow interrupt is generated if not generated. (CHnF/TOF = 1).0 The channel/overflow DMA transfer request is The channel/overflow interrupt is not generated. generated if (CHnF/TOF = 1). 1 1 The channel/overflow DMA transfer request is The channel/overflow interrupt is generated if generated if (CHnF/TOF = 1). (CHnF/TOF = 1).

**Table 47-3. DMA Transfer Request** 

If DMA = 1, the CHnF/TOF bit can be cleared either by DMA transfer done or writing a one to CHnF/TOF bit (see the following table).

Table 47-4. Clear CHnF/TOF Bit

| DMA | How CHnF/TOF Bit Can Be Cleared                                                                 |  |
|-----|-------------------------------------------------------------------------------------------------|--|
| 0   | CHnF/TOF bit is cleared by writing a 1 to CHnF/TOF bit.                                         |  |
| 1   | CHnF/TOF bit is cleared either when the DMA transfer is done or by writing a 1 to CHnF/TOF bit. |  |

# 47.4.15 Output triggers

The TPM generates output triggers for the counter and each channel that can be used to trigger events in other peripherals.

The counter trigger asserts whenever the TOF is set and remains asserted until the next increment.

#### **Functional description**

Each TPM channel generates both a pre-trigger output and a trigger output. The pre-trigger output asserts whenever the CHnF is set, the trigger output asserts on the first counter increment after the pre-trigger asserts, and then both the trigger and pre-trigger negate on the first counter increment after the trigger asserts.

When (COMBINEn = 1) in output compare modes, the pre-trigger output for both channel (n) and channel (n+1) will assert when CH(n)F is set and will negate when CH(n+1)F is set. The trigger continues to assert on the first counter increment after the pre-trigger asserts and negates at the same time as the pre-trigger negation.

### 47.4.16 Reset Overview

The TPM is reset whenever any chip reset occurs.

When the TPM exits from reset:

- the TPM counter and the prescaler counter are zero and are stopped (CMOD[1:0] = 0:0);
- the timer overflow interrupt is zero;
- the channels interrupts are zero;
- the channels are in input capture mode;
- the channels outputs are zero;
- the channels pins are not controlled by TPM (ELS(n)B:ELS(n)A = 0:0).

# 47.4.17 TPM Interrupts

This section describes TPM interrupts.

## 47.4.17.1 Timer Overflow Interrupt

The timer overflow interrupt is generated when (TOIE = 1) and (TOF = 1).

# 47.4.17.2 Channel (n) Interrupt

The channel (n) interrupt is generated when (CHnIE = 1) and (CHnF = 1).

# **Chapter 48 Trigger MUX Control (TRGMUX)**

# 48.1 Introduction

The Trigger MUX module (TRGMUX) allows software to configure the trigger inputs for various peripherals.

# 48.1.1 Features

The Trigger MUX module allows software to configure the trigger inputs for various peripherals.

• Trigger MUX select

# 48.1.1.1 Select Bit Fields

| Field | Function                                                                                         |
|-------|--------------------------------------------------------------------------------------------------|
| 5-0   | This read/write bit field is used to configure the MUX select for the peripheral trigger inputs. |
| SEL   | 000000 - (0x00) Trigger function is disabled.                                                    |
|       | 000001 - (0x01) Port pin trigger input is selected.                                              |
|       | 000010 - (0x02) FlexIO Timer 0 input is selected.                                                |
|       | 000011 - (0x03) FlexIO Timer 1 input is selected.                                                |
|       | 000100 - (0x04) FlexIO Timer 2 input is selected.                                                |
|       | 000101 - (0x05) FlexIO Timer 3 input is selected.                                                |
|       | 000110 - (0x06) FlexIO Timer 4 input is selected.                                                |
|       | 000111 - (0x07) FlexIO Timer 5 input is selected.                                                |
|       | 001000 - (0x08) FlexIO Timer 6 input is selected.                                                |
|       | 001001 - (0x09) FlexIO Timer 7 input is selected.                                                |
|       | 001010 - (0x0A) TPM0 Overflow is selected.                                                       |
|       | 001011 - (0x0B) TPM0 Channel 0 is selected.                                                      |

### Introduction

| Field | Function                                                |
|-------|---------------------------------------------------------|
|       | 001100 - (0x0C) TPM0 Channel 1 is selected.             |
|       | 001101 - (0x0D) TPM1 Overflow is selected.              |
|       | 001110 - (0x0E) TPM1 Channel 0 is selected.             |
|       | 001111 - (0x0F) TPM1 Channel 1 is selected.             |
|       | 010000 - (0x10) Reserved                                |
|       | 010001 - (0x11) Reserved                                |
|       | 010010 - (0x12) Reserved                                |
|       | 010011 - (0x13) Reserved                                |
|       | 010100 - (0x14) LPUART0 RX Data is selected.            |
|       | 010101 - (0x15) LPUART0 TX Data is selected.            |
|       | 010110 - (0x16) LPUART0 RX Idle is selected.            |
|       | 010111 - (0x17) LPUART1 RX Data is selected.            |
|       | 011000 - (0x18) LPUART1 TX Data is selected.            |
|       | 011001 - (0x19) LPUART1 RX Idle is selected.            |
|       | 011010 - (0x1A) LPI2C0 Master STOP is selected.         |
|       | 011011 - (0x1B) LPI2C0 Slave STOP is selected.          |
|       | 011100 - (0x1C) LPI2C1 Master STOP is selected.         |
|       | 011101 - (0x1D) LPI2C1 Slave STOP is selected.          |
|       | 011110 - (0x1E) LPSPI0 Frame is selected.               |
|       | 011111 - (0x1F) LPSPI0 RX data is selected.             |
|       | 100000 - (0x20) LPSPI1 Frame is selected.               |
|       | 100001 - (0x21) LPSPI1 RX data is selected.             |
|       | 100010 - (0x22) RTC Seconds Counter is selected.        |
|       | 100011 - (0x23) RTC Alarm is selected.                  |
|       | 100100 - (0x24) LPTMR0 Trigger is selected.             |
|       | 100101 - (0x25) LPTMR1 Trigger is selected.             |
|       | 100110 - (0x26) CMP0 Output is selected.                |
|       | 100111 - (0x27) CMP1 Output is selected.                |
|       | 101000 - (0x28) ADC0 Conversion A Complete is selected. |
|       | 101001 - (0x29) ADC0 Conversion B Complete is selected. |
|       | 101010 - (0x2A) Port A Pin Trigger is selected.         |
|       | 101011 - (0x2B) Port B Pin Trigger is selected.         |
|       | 101100 - (0x2C) Port C Pin Trigger is selected.         |
|       | 101101 - (0x2D) Port D Pin Trigger is selected.         |
|       | 101110 - (0x2E) Port E Pin Trigger is selected.         |
|       | 101111 - (0x2F) TPM2 Overflow is selected.              |
|       | 110000 - (0x30) TPM2 Channel 0 is selected.             |
|       | 110001 - (0x31) TPM2 Channel 1 is selected.             |
|       | 110010 - (0x32) LPIT0 Channel 0 is selected.            |

KL28Z Reference Manual, Rev. 4, 06/2016

1205

| Field | Function                                        |
|-------|-------------------------------------------------|
|       | 110011 - (0x33) LPIT0 Channel 1 is selected.    |
|       | 110100 - (0x34) LPIT0 Channel 2 is selected.    |
|       | 110101 - (0x35) LPIT0 Channel 3 is selected.    |
|       | 110110 - (0x36) USB Start-of-Frame is selected. |
|       | 110111 - (0x37) LPUART2 RX Data is selected.    |
|       | 111000 - (0x38) LPUART2 TX Data is selected.    |
|       | 111001 - (0x39) LPUART2 RX Idle is selected.    |
|       | 111010 - (0x3A) LPI2C2 Master STOP is selected. |
|       | 111011 - (0x3B) LPI2C2 Slave STOP is selected.  |
|       | 111100 - (0x3C) LPSPI2 Frame is selected.       |
|       | 111101 - (0x3D) LPSPI2 RX Data is selected.     |
|       | 111110 - (0x3E) SAI TX Frame Sync is selected.  |
|       | 1111111 - (0x3F) SAI RX Frame Sync is selected. |

# 48.2 Memory map and register definition

The TRGMUX module contains register fields for selecting the trigger input for peripheral modules.

# **48.2.1 TRGMUX Register Descriptions**

These register may not be applicable to all instances of TRGMUX. For more details on the registers supported on each module instance, please refer to "The TRGMUX as implemented on the chip."

Table 48-1. TRGMUX Memory Map

| Offset    | Register                        | Width     | Access | Reset value |
|-----------|---------------------------------|-----------|--------|-------------|
|           |                                 | (In bits) |        |             |
| 40027000h | TRGMUX DMAMUX0 (TRGMUX_DMAMUX0) | 32        | RW     | 00000000h   |
| 40027004h | TRGMUX LPIT0 (TRGMUX_LPIT0)     | 32        | RW     | 00000000h   |
| 40027008h | TRGMUX TPM2 (TRGMUX_TPM2)       | 32        | RW     | 00000000h   |
| 40027010h | TRGMUX ADC0 (TRGMUX_ADC0)       | 32        | RW     | 00000000h   |
| 40027014h | TRGMUX LPUART2 (TRGMUX_LPUART2) | 32        | RW     | 00000000h   |
| 4002701Ch | TRGMUX LPI2C2 (TRGMUX_LPI2C2)   | 32        | RW     | 00000000h   |
| 40027024h | TRGMUX LPSPI2 (TRGMUX_LPSPI2)   | 32        | RW     | 00000000h   |
| 4002702Ch | TRGMUX CMP0 (TRGMUX_CMP0)       | 32        | RW     | 00000000h   |

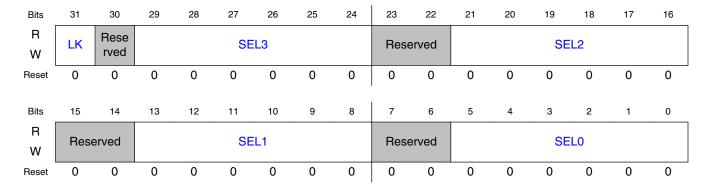
Table continues on the next page...

Table 48-1. TRGMUX Memory Map (continued)

| Offset    | Register                  | Width     | Access | Reset value |
|-----------|---------------------------|-----------|--------|-------------|
|           |                           | (In bits) |        |             |
| 40027030h | TRGMUX CMP1 (TRGMUX_CMP1) | 32        | RW     | 00000000h   |
| 40027034h | TRGMUX DAC0 (TRGMUX_DAC0) | 32        | RW     | 00000000h   |

# 48.2.1.1 TRGMUX Register Descriptions

# 48.2.1.2 TRGMUX DMAMUX0 (TRGMUX\_DMAMUX0)


### 48.2.1.2.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRGMUX_DMAMUX0 | 40027000h |

### 48.2.1.2.2 Function

**TRGMUX** Register

# 48.2.1.2.3 Diagram



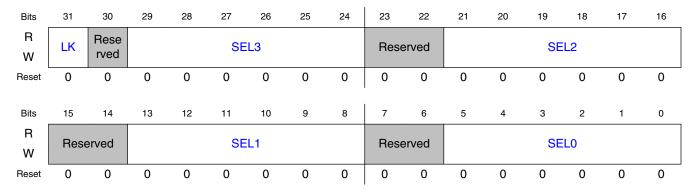
### 48.2.1.2.4 Fields

| Field | Function                                                   |
|-------|------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not. |
| LK    | 0 - Register can be written.                               |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                   |  |
|-------|------------------------------------------------------------------------------------------------------------|--|
|       | 1 - Register cannot be written until the next system Reset.                                                |  |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 29-24 | This read/write bit field is used to configure the MUX select for peripheral trigger input 3. Refer to the |  |
| SEL3  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |  |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |  |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |  |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |  |


# 48.2.1.3 TRGMUX LPIT0 (TRGMUX\_LPIT0)

### 48.2.1.3.1 Address

| Register     | Offset    |
|--------------|-----------|
| TRGMUX_LPIT0 | 40027004h |

# TRGMUX Register

# 48.2.1.3.2 Diagram



KL28Z Reference Manual, Rev. 4, 06/2016

### 48.2.1.3.3 Fields

| Field | Function                                                                                                   |  |
|-------|------------------------------------------------------------------------------------------------------------|--|
| 31    | This bit shows whether the register can be written or not.                                                 |  |
| LK    | 0 - Register can be written.                                                                               |  |
|       | 1 - Register cannot be written until the next system Reset.                                                |  |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 29-24 | This read/write bit field is used to configure the MUX select for peripheral trigger input 3. Refer to the |  |
| SEL3  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |  |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |  |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |  |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |  |
| _     |                                                                                                            |  |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |  |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |  |

# 48.2.1.4 TRGMUX TPM2 (TRGMUX\_TPM2)

### 48.2.1.4.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_TPM2 | 40027008h |

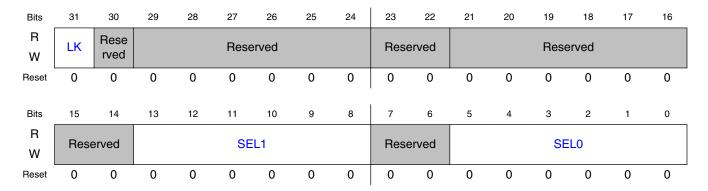
# TRGMUX Register

# 48.2.1.4.2 Diagram

| Bits   | 31  | 30           | 29 | 28 | 27   | 26    | 25 | 24 | 23   | 22    | 21 | 20 | 19 | 18  | 17 | 16 |
|--------|-----|--------------|----|----|------|-------|----|----|------|-------|----|----|----|-----|----|----|
| R<br>W | LK  | Rese<br>rved |    |    | Rese | erved |    |    | Rese | erved |    |    | SE | L2  |    |    |
| Reset  | 0   | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0   | 0  | 0  |
| Bits   | 15  | 14           | 13 | 12 | 11   | 10    | 9  | 8  | 7    | 6     | 5  | 4  | 3  | 2   | 1  | 0  |
| R<br>W | Res | erved        |    |    | SE   | L1    |    |    | Rese | erved |    |    | SE | ELO |    |    |
| Reset  | 0   | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0   | 0  | 0  |

### 48.2.1.4.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.1.5 TRGMUX ADC0 (TRGMUX\_ADC0)

### 48.2.1.5.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_ADC0 | 40027010h |

# TRGMUX Register

#### 48.2.1.5.2 Diagram



### 48.2.1.5.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016 1210 **NXP Semiconductors** 

1211

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.1.6 TRGMUX LPUART2 (TRGMUX\_LPUART2)

### 48.2.1.6.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRGMUX_LPUART2 | 40027014h |

# TRGMUX Register

# 48.2.1.6.2 Diagram

| Bits   | 31   | 30             | 29 | 28 | 27   | 26    | 25   | 24    | 23   | 22    | 21 | 20 | 19   | 18    | 17 | 16 |
|--------|------|----------------|----|----|------|-------|------|-------|------|-------|----|----|------|-------|----|----|
| R<br>W | LK   | Rese<br>rved   |    |    | Rese | erved |      |       | Rese | erved |    |    | Rese | erved |    |    |
| Reset  | 0    | 0              | 0  | 0  | 0    | 0     | 0    | 0     | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  |
| Bits   | 15   | 14             | 13 | 12 | 11   | 10    | 9    | 8     | 7    | 6     | 5  | 4  | 3    | 2     | 1  | 0  |
| R<br>W | Rese | erved Reserved |    |    |      |       | Rese | erved |      |       | SE | LO |      |       |    |    |
| Reset  | 0    | 0              | 0  | 0  | 0    | 0     | 0    | 0     | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  |

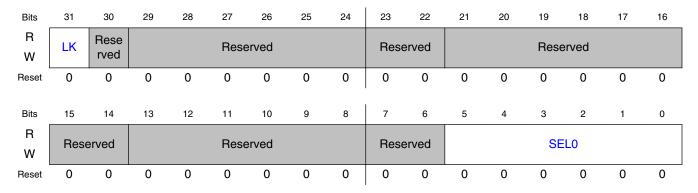
### 48.2.1.6.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.1.7 TRGMUX LPI2C2 (TRGMUX\_LPI2C2)

### 48.2.1.7.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPI2C2 | 4002701Ch |

# TRGMUX Register

# 48.2.1.7.2 Diagram



# 48.2.1.7.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.1.8 TRGMUX LPSPI2 (TRGMUX\_LPSPI2)

### 48.2.1.8.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPSPI2 | 40027024h |

TRGMUX Register

# 48.2.1.8.2 Diagram

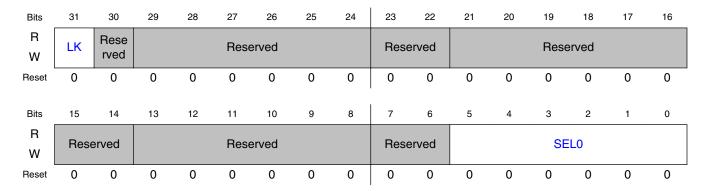
| Bits   | 31       | 30           | 29 | 28 | 27   | 26    | 25 | 24 | 23   | 22    | 21 | 20 | 19   | 18    | 17 | 16 |
|--------|----------|--------------|----|----|------|-------|----|----|------|-------|----|----|------|-------|----|----|
| R<br>W | LK       | Rese<br>rved |    |    | Rese | erved |    |    | Rese | erved |    |    | Rese | erved |    |    |
| Reset  | 0        | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  |
| Bits   | 15       | 14           | 13 | 12 | 11   | 10    | 9  | 8  | 7    | 6     | 5  | 4  | 3    | 2     | 1  | 0  |
| R<br>W | Reserved |              |    |    | Rese | erved |    |    | Rese | erved |    |    | SE   | ELO   |    |    |
| Reset  | 0        | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  |

### 48.2.1.8.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.1.9 TRGMUX CMP0 (TRGMUX\_CMP0)

KL28Z Reference Manual, Rev. 4, 06/2016 1214 **NXP Semiconductors** 


1215

# 48.2.1.9.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_CMP0 | 4002702Ch |

# TRGMUX Register

# 48.2.1.9.2 Diagram



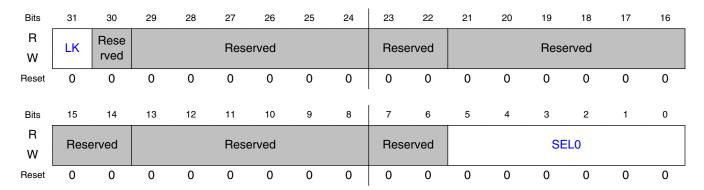
### 48.2.1.9.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 21-16 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 15-14 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 13-8  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 7-6   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.1.10 TRGMUX CMP1 (TRGMUX\_CMP1)

### 48.2.1.10.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_CMP1 | 40027030h |

# TRGMUX Register

# 48.2.1.10.2 Diagram



### 48.2.1.10.3 Fields

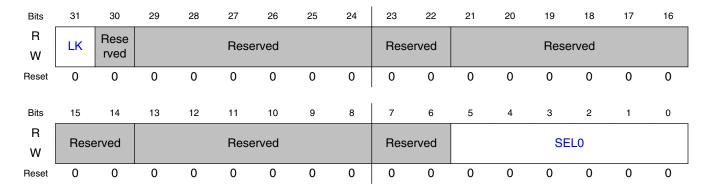
| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |

Table continues on the next page...

### **Chapter 48 Trigger MUX Control (TRGMUX)**

1217

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.1.11 TRGMUX DAC0 (TRGMUX\_DAC0)

### 48.2.1.11.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_DAC0 | 40027034h |

# TRGMUX Register

# 48.2.1.11.2 Diagram



### 48.2.1.11.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
|       |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# **48.2.2 TRGMUX Register Descriptions**

These register may not be applicable to all instances of TRGMUX. For more details on the registers supported on each module instance, please refer to "The TRGMUX as implemented on the chip."

**Table 48-2. TRGMUX Memory Map** 

| Offset    | Register                        | Width     | Access | Reset value |
|-----------|---------------------------------|-----------|--------|-------------|
|           |                                 | (In bits) |        |             |
| 400A7008h | TRGMUX TPM0 (TRGMUX_TPM0)       | 32        | RW     | 00000000h   |
| 400A700Ch | TRGMUX TPM1 (TRGMUX_TPM1)       | 32        | RW     | 00000000h   |
| 400A7010h | TRGMUX FLEXIO0 (TRGMUX_FLEXIO0) | 32        | RW     | 00000000h   |
| 400A7014h | TRGMUX LPUART0 (TRGMUX_LPUART0) | 32        | RW     | 00000000h   |
| 400A7018h | TRGMUX LPUART1 (TRGMUX_LPUART1) | 32        | RW     | 00000000h   |
| 400A701Ch | TRGMUX LPI2C0 (TRGMUX_LPI2C0)   | 32        | RW     | 00000000h   |
| 400A7020h | TRGMUX LPI2C1 (TRGMUX_LPI2C1)   | 32        | RW     | 00000000h   |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 48-2. TRGMUX Memory Map (continued)

| Offset    | Register                      | Width     | Access | Reset value |
|-----------|-------------------------------|-----------|--------|-------------|
|           |                               | (In bits) |        |             |
| 400A7024h | TRGMUX LPSPI0 (TRGMUX_LPSPI0) | 32        | RW     | 00000000h   |
| 400A7028h | TRGMUX LPSPI1 (TRGMUX_LPSPI1) | 32        | RW     | 00000000h   |

# 48.2.2.1 TRGMUX Register Descriptions

# 48.2.2.2 TRGMUX TPM0 (TRGMUX\_TPM0)

### 48.2.2.2.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_TPM0 | 400A7008h |

### 48.2.2.2. Function

TRGMUX Register

# 48.2.2.2.3 Diagram

| Bits   | 31   | 30           | 29 | 28 | 27   | 26    | 25 | 24 | 23   | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|------|--------------|----|----|------|-------|----|----|------|-------|----|----|----|----|----|----|
| R<br>W | LK   | Rese<br>rved |    |    | Rese | erved |    |    | Rese | erved |    |    | SE | L2 |    |    |
| Reset  | 0    | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  |
| Bits   | 15   | 14           | 13 | 12 | 11   | 10    | 9  | 8  | 7    | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
| R<br>W | Rese | erved        |    |    | SE   | iL1   |    |    | Rese | erved |    |    | SE | L0 |    |    |
| Reset  | 0    | 0            | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  |

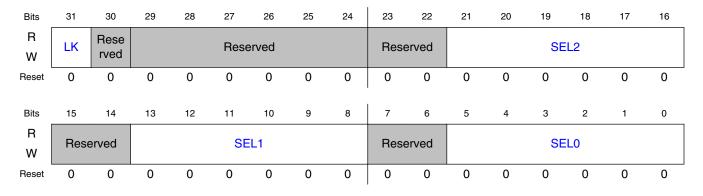
### 48.2.2.2.4 Fields

| Field | Function                                                   |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------|--|--|--|--|--|--|--|
| 31    | This bit shows whether the register can be written or not. |  |  |  |  |  |  |  |
| LK    | 0 - Register can be written.                               |  |  |  |  |  |  |  |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.2.3 TRGMUX TPM1 (TRGMUX\_TPM1)

### 48.2.2.3.1 Address

| Register    | Offset    |
|-------------|-----------|
| TRGMUX_TPM1 | 400A700Ch |

# TRGMUX Register

# 48.2.2.3.2 Diagram



KL28Z Reference Manual, Rev. 4, 06/2016

### 48.2.2.3.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.2.4 TRGMUX FLEXIO0 (TRGMUX\_FLEXIO0)

### 48.2.2.4.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRGMUX_FLEXIO0 | 400A7010h |

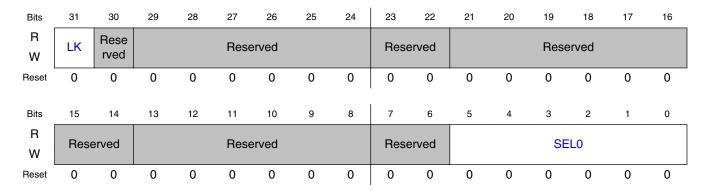
# TRGMUX Register

# 48.2.2.4.2 Diagram

| Bits   | 31   | 30           | 29 | 28 | 27 | 26  | 25 | 24 | 23   | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|------|--------------|----|----|----|-----|----|----|------|-------|----|----|----|----|----|----|
| R<br>W | LK   | Rese<br>rved |    |    | SE | L3  |    |    | Rese | erved |    |    | SE | L2 |    |    |
| Reset  | 0    | 0            | 0  | 0  | 0  | 0   | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  |
| Bits   | 15   | 14           | 13 | 12 | 11 | 10  | 9  | 8  | 7    | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
| R<br>W | Rese | erved        |    |    | SE | EL1 |    |    | Rese | erved |    |    | SE | LO |    |    |
| Reset  | 0    | 0            | 0  | 0  | 0  | 0   | 0  | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  |

### 48.2.2.4.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read/write bit field is used to configure the MUX select for peripheral trigger input 3. Refer to the |
| SEL3  | Select Bit Fields table in the Features section for bit field information.                                 |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read/write bit field is used to configure the MUX select for peripheral trigger input 2. Refer to the |
| SEL2  | Select Bit Fields table in the Features section for bit field information.                                 |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read/write bit field is used to configure the MUX select for peripheral trigger input 1. Refer to the |
| SEL1  | Select Bit Fields table in the Features section for bit field information.                                 |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.2.5 TRGMUX LPUART0 (TRGMUX\_LPUART0)

# 48.2.2.5.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRGMUX_LPUART0 | 400A7014h |

# TRGMUX Register

# 48.2.2.5.2 Diagram



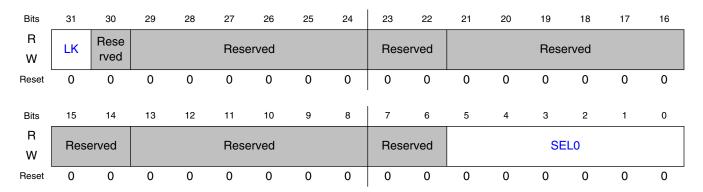
### 48.2.2.5.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 21-16 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 15-14 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 13-8  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 7-6   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.2.6 TRGMUX LPUART1 (TRGMUX\_LPUART1)

### 48.2.2.6.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRGMUX_LPUART1 | 400A7018h |

# TRGMUX Register

# 48.2.2.6.2 Diagram



### 48.2.2.6.3 Fields

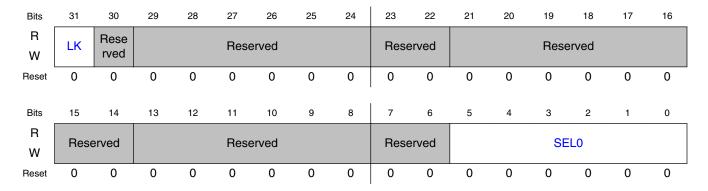
| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |

Table continues on the next page...

### **Chapter 48 Trigger MUX Control (TRGMUX)**

1225

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.2.7 TRGMUX LPI2C0 (TRGMUX\_LPI2C0)

### 48.2.2.7.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPI2C0 | 400A701Ch |

# **TRGMUX** Register

# 48.2.2.7.2 Diagram



# Memory map and register definition

# 48.2.2.7.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
|       |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.2.8 TRGMUX LPI2C1 (TRGMUX\_LPI2C1)

# 48.2.2.8.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPI2C1 | 400A7020h |

# TRGMUX Register

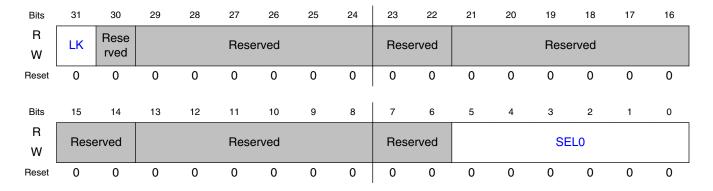
# 48.2.2.8.2 Diagram

| Bits   | 31   | 30           | 29 | 28       | 27   | 26    | 25    | 24 | 23   | 22    | 21  | 20 | 19   | 18    | 17 | 16 |
|--------|------|--------------|----|----------|------|-------|-------|----|------|-------|-----|----|------|-------|----|----|
| R<br>W | LK   | Rese<br>rved |    |          | Rese | erved |       |    | Rese | erved |     |    | Rese | erved |    |    |
| Reset  | 0    | 0            | 0  | 0        | 0    | 0     | 0     | 0  | 0    | 0     | 0   | 0  | 0    | 0     | 0  | 0  |
| Bits   | 15   | 14           | 13 | 12       | 11   | 10    | 9     | 8  | 7    | 6     | 5   | 4  | 3    | 2     | 1  | 0  |
| R<br>W | Rese | erved        |    | Reserved |      | Rese  | erved |    |      | SE    | ELO |    |      |       |    |    |
| Reset  | 0    | 0            | 0  | 0        | 0    | 0     | 0     | 0  | 0    | 0     | 0   | 0  | 0    | 0     | 0  | 0  |

# 48.2.2.8.3 Fields

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.                                                 |
| LK    | 0 - Register can be written.                                                                               |
|       | 1 - Register cannot be written until the next system Reset.                                                |
| 30    | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 29-24 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 23-22 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
|       |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# 48.2.2.9 TRGMUX LPSPI0 (TRGMUX\_LPSPI0)


### Memory map and register definition

# 48.2.2.9.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPSPI0 | 400A7024h |

# TRGMUX Register

# 48.2.2.9.2 Diagram

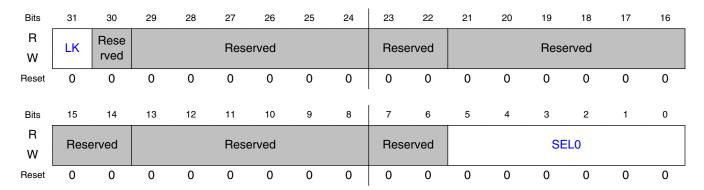


# 48.2.2.9.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 21-16 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 15-14 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 13-8  | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 7-6   | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |

Table continues on the next page...

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |


# 48.2.2.10 TRGMUX LPSPI1 (TRGMUX\_LPSPI1)

### 48.2.2.10.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRGMUX_LPSPI1 | 400A7028h |

# TRGMUX Register

# 48.2.2.10.2 Diagram



# 48.2.2.10.3 Fields

| Field | Function                                                         |
|-------|------------------------------------------------------------------|
| 31    | This bit shows whether the register can be written or not.       |
| LK    | 0 - Register can be written.                                     |
|       | 1 - Register cannot be written until the next system Reset.      |
| 30    | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 29-24 | This read-only bit field is reserved and always has the value 0. |
| _     |                                                                  |
| 23-22 | This read-only bit field is reserved and always has the value 0. |

Table continues on the next page...

# KL28Z Reference Manual, Rev. 4, 06/2016

# Memory map and register definition

| Field | Function                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------|
| _     |                                                                                                            |
| 21-16 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 15-14 | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 13-8  | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 7-6   | This read-only bit field is reserved and always has the value 0.                                           |
| _     |                                                                                                            |
| 5-0   | This read/write bit field is used to configure the MUX select for peripheral trigger input 0. Refer to the |
| SEL0  | Select Bit Fields table in the Features section for bit field information.                                 |

# Chapter 49 SA-TRNG Standalone

# 49.1 Standalone True Random Number Generator (SA-TRNG).

The Standalone True Random Number Generator (SA-TRNG) is a hardware accelerator module that generates a 512-bit entropy as needed by an entropy-consuming module or by other post-processing functions. A typical entropy consumer is a pseudo random-number generator (PRNG) that can be implemented to achieve both true randomness and cryptographic-strength random numbers using the TRNG output as its entropy seed. The PRNG is not part of this module.

The entropy generated by a TRNG is intended for direct use by functions that generate secret keys, per-message secrets, random challenges, and other similar quantities used in cryptographic algorithms. In each of these cases, it is important that a random number be difficult to guess or predict. It is important that a random number is at least as difficult to predict as it is difficult to break the cryptographic algorithm with which it is being used. This stringent requirement is particularly difficult to fulfill if the entropy source from a TRNG contains bias and/or correlation. To increase the trustworthiness/quality of the generated random data, PRNGs are often used to post process the output of a TRNG.

This document describes only the TRNG design functionality and usage.

Note that before entropy can be obtained from the TRNG, it must be initialized and instantiated in a particular mode by setting the appropriate TRNG registers.

The TRNG contains the following sub modules: IP Slave bus (SkyBlue bus) interface, the TRNG Core and the free running oscillator (OSC).

# 49.1.1 Standalone True Random Number Generator Block Diagram

The following figure is a top-level diagram of the True Random Number Generator.

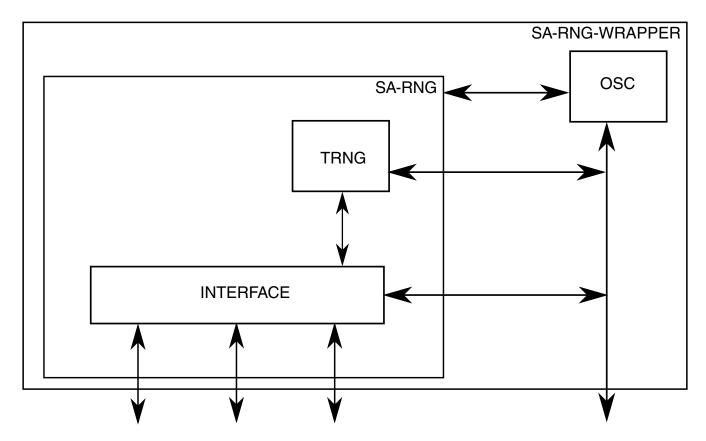



Figure 49-1. SA TRNG Block Diagram

# 49.1.2 TRNG Functional Description.

The TRNG consists of several functional sub-modules. Its overall functionality can be easily described from the top level in terms of generating entropy for seed generation. The functionality of each sub-module is briefly described in the following subsections.

TRNG is based on collecting bits from a random noise source. This random noise source is a ring oscillator that is sensitive to random noise (temperature variations, voltage variations, cross-talk and other random noise) within the device in which the TRNG is used. This noise causes various small changes in the period of the oscillator. Therefore, if the count of the ring oscillator clock cycles is sampled after a known period of time, this count will vary each time the sample is taken. By using the variance in this count over a large number of samples, random bits can be derived.

The TRNG comprises two entropy sources, each of which provides a single bit of output. Concatenated together, these 2 output bits are expected to provide 1 bit of entropy every 100 clock cycles. In addition to generating entropy, the TRNG also performs several statistical tests on its output.

# 49.1.3 SA-TRNG hardware functional description.

SA-TRNG functionality consists of several major subcomponents. This table describes these subcomponents.

Table 49-1. SA-TRNG subcomponents.

| Description                                                               | Cross-reference(s)                                 |  |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|
| Inter                                                                     | faces                                              |  |  |  |  |  |  |
| Register interface                                                        | Register interface (IP Slave bus)                  |  |  |  |  |  |  |
| Used for access to configuration, control, status and debugging registers |                                                    |  |  |  |  |  |  |
| True Random Number Generator (TRNG)                                       | Standalone True Random Number Generator (SA-TRNG). |  |  |  |  |  |  |

### 49.1.3.1 Software Use Cases for the Stand Alone TRNG.

There are four things that a user (programmer/integrator) will want to do with a TRNG.

- Initialization.
  - Set up the parameters to proper values, and start generation of the first block of entropy. This is done once.
- Read entropy from the TRNG, and start generation of the next block of entropy.
   This is done many times and is the normal flow of operation.
- Run a self-test on the TRNG, to assure proper continued operation.
  - This involves taking TRNG off-line, setting some self-test parameters, running TRNG, and then reading the statistical test registers, to see that they are within proper operation values. This may not be needed, as TRNG has built-in self-test.
- Off-line determination and checking of TRNG parameter values.
  - This is done in development in order to determine the proper initialization and self-test parameters. The TRNG is taken off-line. Test parameter values are written and entropy generation is started. If the statistical tests indicate poor operation (i.e., failing statistical tests), the entropy\_delay value should be increased and entropy generation should be re-started. Every case is a variation of setting TRNG parameter values, starting or re-starting entropy generation and reading out the entropy. This process requires pausing or stopping and re-starting the TRNG.

The TRNG is designed to operate as a slave module on the standard IP Slave Bus. By understanding the TRNG register descriptions in "TRNG Register Descriptions" section below, the TRNG module can be controlled via the IP slave bus. In order to write to most TRNG registers, the MCTL register must be initialized in programming mode as described in the "TRNG Register Descriptions" section. At Power On Reset (POR), the TRNG resets to programming mode. And the it will not generate entropy until it is out of programming mode (in run mode) and access to Entropy Registers have been enabled.

Here is an example program flow of using the TRNG.

- After POR the TRNG will be reset into programming mode with the OK to stop bit set(MCTL[TSTOP\_OK]=1). The TRNG must be put into Run Mode for Entropy Generation to begin (MCTL[PRGM]=0). Additionally, in order to have access to the Entropy registers and other critical TRNG registers, the TRNG access bit must be set (MCTL[TRNG\_ACC]=1). Using the default self test limits that exist after bootup, the entropy valid bit can be polled until asserted (MCTL[ENT\_VAL]=1). Alternatively, if using the interrupt, and the interrupts are enabled via the INT\_MASK register and the ipi\_rng\_int\_b is asserted when MCTL[ENT\_VAL]=1.
- After the polling completes, the 512-bit entropy generated by the TRNG can be read. The values can be read in any order from entropy register 0 to register 15 (ENT0 to ENT 15). After reading ENT 15, the old entropy value is reset and a new entropy value is generated.

### **NOTE**

Reading ENT 15always resets the entropy, so should always be read last.

- You can poll again for the new entropy value or you can use the Interrupt Status Register to handle reading the entropy values when the entropy valid interrupt is triggered.
- The interrupt can be masked or cleared as needed. See the Interrupt Status Register description.
- To change the self-test limits, the seed counters, how fast the entropy is generated, and how entropy is sampled, see the register description section. In particular, see the TRNG Frequency Count Minimum Limit Register (FRQMIN), the seed control register(SCML), the statistical run length registers, and other parameter registers.
- Once in Run Mode, the entropy is re-generated automatically after ENT 15 is read. To stop the TRNG or access to TRNG registers at any point while in running mode, you can always set MCTL[TRNG\_ACC]=0. Setting the TRNG back to programming mode (MCTL[PRGM]=1) also achieves the purpose of stopping entropy generation.

KL28Z Reference Manual, Rev. 4, 06/2016

# 49.1.3.2 Register interface (IP Slave bus)

The TRNG's register interface (32-bit IP bus) is used to read and write registers within TRNG for the following purposes:

Table 49-2. Summary of register interface uses

| Purpose                                                                              | For more information, see |
|--------------------------------------------------------------------------------------|---------------------------|
| During chip in                                                                       | itialization time         |
| To configure TRNG including initialization of the  Registers TRNG Register Interface |                           |
| During hardware and                                                                  | software debugging        |
| Read status registers                                                                | RNG TRNG Status Register  |

### NOTE

Accesses to registers must use full-word (32-bit) reads or writes.

# 49.1.3.3 TRNG0 Register Descriptions

All accesses of undefined addresses always return zero and assert IPS transfer error. Writes to undefined and read-only addresses are ignored. Undefined addresses are those undocumented, protected or reserved addresses within and outside the range of the addresses defined in the memory map below. Although many of the TRNG0 registers hold more than 32 bits, the register addresses shown in the Memory Map below represent how these registers are accessed over the register bus as 32-bit words.

The format and fields in each TRNG0 register are defined below. Some of the register format figures apply to several different registers. In such cases a different register name will be associated with each of the register offset addresses that appear at the top of the register format figure. Although these registers share the same format, they are independent registers. In addition, many registers can be accessed at multiple addresses. In these cases there will be a single register name and the list of addresses at which that register is accessible will be indicated as aliases. Unless noted in the individual register descriptions, registers are reset only at Power-On Reset (POR).

# 49.1.3.3.1 TRNG0 Memory Map

| Offset                   | Register                                                      | Width     | Access | Reset value            |  |
|--------------------------|---------------------------------------------------------------|-----------|--------|------------------------|--|
|                          |                                                               | (In bits) |        |                        |  |
| 400A5000h                | TRNG0 Miscellaneous Control (TRNG0_MCTL)                      | 32        | RW     | 00012001h              |  |
| 400A5004h                | TRNG0 Statistical Check Miscellaneous (TRNG0_SCMISC)          | 32        | RW     | 00010022h <sup>1</sup> |  |
| 400A5008h                | TRNG0 Poker Range (TRNG0_PKRRNG)                              | 32        | RW     | 000009A3h              |  |
| 400A500Ch                | TRNG0 Poker Maximum Limit (TRNG0_PKRMAX)                      | 32        | RW     | 00006920h              |  |
| 400A500Ch                | TRNG0 Poker Square Calculation Result (TRNG0_PKRSQ)           | 32        | RO     | 00000000h              |  |
| 400A5010h                | TRNG0 Seed Control (TRNG0_SDCTL)                              | 32        | RW     | 0C8009C4h              |  |
| 400A5014h                | TRNG0 Sparse Bit Limit (TRNG0_SBLIM)                          | 32        | RW     | 0000003Fh              |  |
| 400A5014h                | TRNG0 Total Samples (TRNG0_TOTSAM)                            | 32        | RO     | 00000000h              |  |
| 400A5018h                | TRNG0 Frequency Count Minimum Limit (TRNG0_FRQMIN)            | 32        | RW     | 00000640h              |  |
| 400A501Ch                | TRNG0 Frequency Count Maximum Limit (TRNG0_FRQMAX)            | 32        | RW     | 00006400h              |  |
| 400A501Ch                | TRNG0 Frequency Count (TRNG0_FRQCNT)                          | 32        | RO     | 00000000h              |  |
| 400A5020h                | TRNG0 Statistical Check Monobit Count (TRNG0_SCMC)            | 32        | RO     | 00000000h              |  |
| 400A5020h                | TRNG0 Statistical Check Monobit Limit (TRNG0_SCML)            | 32        | RW     | 010C0568h              |  |
| 400A5024h                | TRNG0 Statistical Check Run Length 1 Limit (TRNG0_SCR1L)      | 32        | RW     | 00B20195h              |  |
| 400A5024h                | TRNG0 Statistical Check Run Length 1 Count (TRNG0_SCR1C)      | 32        | RO     | 00000000h              |  |
| 400A5028h                | TRNG0 Statistical Check Run Length 2 Limit (TRNG0_SCR2L)      | 32        | RW     | 007A00DCh              |  |
| 400A5028h                | TRNG0 Statistical Check Run Length 2 Count (TRNG0_SCR2C)      | 32        | RO     | 00000000h              |  |
| 400A502Ch                | TRNG0 Statistical Check Run Length 3 Count (TRNG0_SCR3C)      | 32        | RO     | 00000000h              |  |
| 400A502Ch                | TRNG0 Statistical Check Run Length 3 Limit (TRNG0_SCR3L)      | 32        | RW     | 0058007Dh              |  |
| 400A5030h                | TRNG0 Statistical Check Run Length 4 Count (TRNG0_SCR4C)      | 32        | RO     | 00000000h              |  |
| 400A5030h                | TRNG0 Statistical Check Run Length 4 Limit (TRNG0_SCR4L)      | 32        | RW     | 0040004Bh              |  |
| 400A5034h                | TRNG0 Statistical Check Run Length 5 Limit (TRNG0_SCR5L)      | 32        | RW     | 002E002Fh              |  |
| 400A5034h                | TRNG0 Statistical Check Run Length 5 Count (TRNG0_SCR5C)      | 32        | RO     | 00000000h              |  |
| 400A5038h                | TRNG0 Statistical Check Run Length 6+ Limit (TRNG0_SCR6PL)    | 32        | RW     | 002E002Fh              |  |
| 400A5038h                | TRNG0 Statistical Check Run Length 6+ Count (TRNG0_SCR6PC)    | 32        | RO     | 00000000h              |  |
| 400A503Ch                | TRNG0 Status (TRNG0_STATUS)                                   | 32        | RO     | 00000000h              |  |
| 400A5040h -<br>400A507Ch | TRNG0 Entropy Read (TRNG0_ENT0 - TRNG0_ENT15)                 | 32        | RO     | 00000000h              |  |
| 400A5080h                | TRNG0 Statistical Check Poker Count 1 and 0 (TRNG0_PKRCNT10)  | 32        | RO     | 00000000h              |  |
| 400A5084h                | TRNG0 Statistical Check Poker Count 3 and 2 (TRNG0_PKRCNT32)  | 32        | RO     | 00000000h              |  |
| 400A5088h                | TRNG0 Statistical Check Poker Count 5 and 4 (TRNG0_PKRCNT54)  | 32        | RO     | 00000000h              |  |
| 400A508Ch                | TRNG0 Statistical Check Poker Count 7 and 6 (TRNG0_PKRCNT76)  | 32        | RO     | 00000000h              |  |
| 400A5090h                | TRNG0 Statistical Check Poker Count 9 and 8 (TRNG0_PKRCNT98)  | 32        | RO     | 00000000h              |  |
| 400A5094h                | TRNG0 Statistical Check Poker Count B and A (TRNG0_PKRCNT BA) | 32        | RO     | 00000000h              |  |
| 400A5098h                | TRNG0 Statistical Check Poker Count D and C (TRNG0_PKRCNT DC) | 32        | RO     | 00000000h              |  |
| 400A509Ch                | TRNG0 Statistical Check Poker Count F and E (TRNG0_PKRCNT FE) | 32        | RO     | 00000000h              |  |

Table continues on the next page...

1237

| Offset    | Register                                     | Width     | Access | Reset value |
|-----------|----------------------------------------------|-----------|--------|-------------|
|           |                                              | (In bits) |        |             |
| 400A50A0h | TRNG0 Security Configuration (TRNG0_SEC_CFG) | 32        | RW     | 00000000h   |
| 400A50A4h | TRNG0 Interrupt Control (TRNG0_INT_CTRL)     | 32        | RW     | FFFFFFFh    |
| 400A50A8h | TRNG0 Mask (TRNG0_INT_MASK)                  | 32        | RW     | 00000000h   |
| 400A50ACh | TRNG0 Interrupt Status (TRNG0_INT_STATUS)    | 32        | RW     | 00000000h   |
| 400A50F0h | TRNG0 Version ID (MS) (TRNG0_VID1)           | 32        | RO     | 00300100h   |
| 400A50F4h | TRNG0 Version ID (LS) (TRNG0_VID2)           | 32        | RO     | 00000000h   |

<sup>1.</sup> Reset occurs at POR, and when TRNG0\_MCTL[RST\_DEF] is written to 1.

# 49.1.3.3.2 TRNG0 Miscellaneous Control (TRNG0\_MCTL)

### 49.1.3.3.2.1 Address

| Register   | Offset    |
|------------|-----------|
| TRNG0_MCTL | 400A5000h |

### 49.1.3.3.2.2 Function

This register is intended to be used for programming, configuring and testing the RNG. It is the main register to read/write, in order to enable Entropy generation, to stop entropy generation and to block access to entropy registers. This is done via the special TRNG\_ACC and PRGM bits below.

The TRNG0 Miscellaneous Control Register is a read/write register used to control the RNG's True Random Number Generator (TRNG) access, operation and test.

### **NOTE**

Note that in many cases two RNG registers share the same address, and a particular register at the shared address is selected based upon the value in the PRGM field of the TRNG0\_MCTL register.

# 49.1.3.3.2.3 Diagram

| Bits  | 31    | 30              | 29   | 28  | 27   | 26   | 25   | 24      | 23   | 22   | 21  | 20  | 19  | 18  | 17 | 16   |
|-------|-------|-----------------|------|-----|------|------|------|---------|------|------|-----|-----|-----|-----|----|------|
| R     |       |                 |      |     |      |      |      | Reserve | d    |      |     |     |     |     |    | PRG  |
| W     |       |                 |      |     |      |      |      | reserve | u    |      |     |     |     |     |    | M    |
| Reset | 0     | 0               | 0    | 0   | 0    | 0    | 0    | 0       | 0    | 0    | 0   | 0   | 0   | 0   | 0  | 1    |
|       |       |                 |      |     |      |      |      |         |      |      |     |     |     |     |    |      |
| Bits  | 15    | 14              | 13   | 12  | 11   | 10   | 9    | 8       | 7    | 6    | 5   | 4   | 3   | 2   | 1  | 0    |
| R     |       |                 | TSTO | ERR | TST_ | ENT_ | FCT_ | FCT_    |      |      | TRN |     |     |     |    |      |
|       | Rese  | erved           | P_OK |     | OUT  | VAL  | VAL  | FAIL    | FOR_ |      | G_  | UNU | OSC | DIV |    | _MOD |
| W     | 11000 | ,, <b>,</b> , , |      | w1c |      |      |      |         | SCLK | RST_ | ACC | SED |     |     |    | ■    |
|       |       |                 |      |     |      |      |      |         |      | DEF  |     |     |     |     |    |      |
| Reset | 0     | 0               | 1    | 0   | 0    | 0    | 0    | 0       | 0    | 0    | 0   | 0   | 0   | 0   | 0  | 1    |

# 49.1.3.3.2.4 Fields

| Field    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-17    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16       | Programming Mode Select. When this bit is 1, the TRNG is in Program Mode, otherwise it is in Run                                                                                                                                                                                                                                                                                                                                                                               |
| PRGM     | Mode. No Entropy value will be generated while the TRNG is in Program Mode. Note that different RNG registers are accessible at the same address depending on whether PRGM is set to 1 or 0. This is noted in the RNG register descriptions.                                                                                                                                                                                                                                   |
| 15-14    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13       | TRNG_OK_TO_STOP. Software should check that this bit is a 1 before transitioning TRNG0 to low                                                                                                                                                                                                                                                                                                                                                                                  |
| TSTOP_OK | power mode (TRNG0 clock stopped). TRNG0 turns on the TRNG free-running ring oscillator whenever new entropy is being generated and turns off the ring oscillator when entropy generation is complete. If the TRNG0 clock is stopped while the TRNG ring oscillator is running, the oscillator will continue running even though the TRNG0 clock is stopped. TSTOP_OK is asserted when the TRNG ring oscillator is not running. and therefore it is ok to stop the TRNG0 clock. |
| 12       | Read: Error status. 1 = error detected. 0 = no error.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ERR      | Write: Write 1 to clear errors. Writing 0 has no effect.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11       | Read only: Test point inside ring oscillator.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TST_OUT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10       | Read only: Entropy Valid. Will assert only if TRNG ACC bit is set, and then after an entropy value is                                                                                                                                                                                                                                                                                                                                                                          |
| ENT_VAL  | generated. Will be cleared at most one (1) bus clock cycle after reading the TRNG0_ENT15 register. (TRNG0_ENT0 through TRNG0_ENT14 should be read before reading TRNG0_ENT15).                                                                                                                                                                                                                                                                                                 |
| 9        | Read only: Frequency Count Valid. Indicates that a valid frequency count may be read from                                                                                                                                                                                                                                                                                                                                                                                      |
| FCT_VAL  | TRNG0_FRQCNT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8        | Read only: Frequency Count Fail. The frequency counter has detected a failure. This may be due to                                                                                                                                                                                                                                                                                                                                                                              |
| FCT_FAIL | improper programming of the TRNG0_FRQMAX and/or TRNG0_FRQMIN registers, or a hardware failure in the ring oscillator. This error may be cleared by writing a 1 to the ERR bit.                                                                                                                                                                                                                                                                                                 |

Table continues on the next page...

1239

| Field          | Function                                                                                                                                                                                                                                                                                                                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>FOR_SCLK  | Force System Clock. If set, the system clock is used to operate the TRNG, instead of the ring oscillator. This is for test use only, and indeterminate results may occur. This bit is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to writing this bit. This bit is cleared by writing the RST_DEF bit to 1. |
| 6<br>RST_DEF   | Reset Defaults. Writing a 1 to this bit clears various TRNG registers, and bits within registers, to their default state. This bit is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to writing this bit. Reading this bit always produces a 0.                                                                |
| 5<br>TRNG_ACC  | TRNG Access Mode. If this bit is set to 1, the TRNG will generate an Entropy value that can be read via the TRNG0_ENT0-TRNG0_ENT15 registers. The Entropy value may be read once the ENT VAL bit is asserted. Also see TRNG0_ENTa register descriptions (For a = 0 to 15).                                                                       |
| 4              | This bit is unused but write-able. Must be left as zero.                                                                                                                                                                                                                                                                                         |
| UNUSED         |                                                                                                                                                                                                                                                                                                                                                  |
| 3-2<br>OSC_DIV | Oscillator Divide. Determines the amount of dividing done to the ring oscillator before it is used by the TRNG.                                                                                                                                                                                                                                  |
|                | This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously to writing this field. This field is cleared to the default POR value by writing the RST_DEF bit to 1.                                                                                                                                            |
|                | 00 - use ring oscillator with no divide 01 - use ring oscillator divided-by-2 10 - use ring oscillator divided-by-4 11 - use ring oscillator divided-by-8                                                                                                                                                                                        |
| 1-0            | Sample Mode. Determines the method of sampling the ring oscillator while generating the Entropy value:                                                                                                                                                                                                                                           |
| SAMP_MODE      | This field is writable only if PRGM bit is 1, or PRGM bit is being written to 1 simultaneously with writing this field. This field is cleared to the POR default value by writing the RST_DEF bit to 1.                                                                                                                                          |
|                | 00 - use Von Neumann data into both Entropy shifter and Statistical Checker 01 - use raw data into both Entropy shifter and Statistical Checker 10 - use Von Neumann data into Entropy shifter. Use raw data into Statistical Checker 11 - undefined/reserved.                                                                                   |

# 49.1.3.3.3 TRNG0 Statistical Check Miscellaneous (TRNG0\_SCMISC)

### 49.1.3.3.3.1 Address

| Register     | Offset    |
|--------------|-----------|
| TRNG0_SCMISC | 400A5004h |

### 49.1.3.3.3.2 Function

The TRNG0 Statistical Check Miscellaneous Register contains the Long Run Maximum Limit value and the Retry Count value. This register is accessible only when the TRNG0\_MCTL[PRGM] bit is 1, otherwise this register will read zeroes, and cannot be written.

# 49.1.3.3.3.3 Diagram

| Bits  | 31             | 30 | 29 | 28   | 27    | 26   | 25    | 24 | 23 | 22 | 21 | 20   | 19             | 18  | 17  | 16 |
|-------|----------------|----|----|------|-------|------|-------|----|----|----|----|------|----------------|-----|-----|----|
| R     |                |    |    |      |       | Dage | erved |    | •  |    |    |      |                | RTY | СТ  |    |
| W     |                |    |    |      |       | nese | erveu |    |    |    |    |      |                | nii | _01 |    |
| Reset | 0 <sup>1</sup> | 0  | 0  | 0    | 0     | 0    | 0     | 0  | 0  | 0  | 0  | 0    | 0 <sup>1</sup> | 0   | 0   | 1  |
|       |                |    |    |      |       |      |       |    |    |    |    |      |                |     |     |    |
| Bits  | 15             | 14 | 13 | 12   | 11    | 10   | 9     | 8  | 7  | 6  | 5  | 4    | 3              | 2   | 1   | 0  |
| R     |                |    |    | Door | n rod |      |       |    |    |    |    | LDUN | MAY            |     |     |    |
| W     |                |    |    | Rese | ervea |      |       |    |    |    |    | LHUN | _MAX           |     |     |    |
| Reset | 01             | 0  | 0  | 0    | 0     | 0    | 0     | 0  | 01 | 0  | 1  | 0    | 0              | 0   | 1   | 0  |

<sup>1.</sup> Reset occurs at POR, and when TRNG0\_MCTL[RST\_DEF] is written to 1.

### 49.1.3.3.3.4 Fields

| Field    | Function                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-20    | Reserved.                                                                                                                                                                                                                                                                                 |
| _        |                                                                                                                                                                                                                                                                                           |
| 19-16    | RETRY COUNT. If a statistical check fails during the TRNG Entropy Generation, the RTY_CT value                                                                                                                                                                                            |
| RTY_CT   | indicates the number of times a retry should occur before generating an error. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |
| 15-8     | Reserved.                                                                                                                                                                                                                                                                                 |
| _        |                                                                                                                                                                                                                                                                                           |
| 7-0      | LONG RUN MAX LIMIT. This value is the largest allowable number of consecutive samples of all 1, or all                                                                                                                                                                                    |
| LRUN_MAX | 0, that is allowed during the Entropy generation. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is cleared to the POR reset value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                |

# 49.1.3.3.4 TRNG0 Poker Range (TRNG0\_PKRRNG)

### 49.1.3.3.4.1 Address

| Register     | Offset    |
|--------------|-----------|
| TRNG0_PKRRNG | 400A5008h |

KL28Z Reference Manual, Rev. 4, 06/2016 1240 **NXP Semiconductors** 

# 49.1.3.3.4.2 Function

The TRNGO Poker Range Register defines the difference between the TRNG Poker Maximum Limit and the minimum limit. These limits are used during the TRNG Statistical Check Poker Test.

# 49.1.3.3.4.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24    | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----|
| R     |    |    |    |    |    |    |    | Pose  | erved |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | 11030 | riveu |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |       |       |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8     | 7     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |    |    |    |    |    | DVD   | RNG   |    |    |    |    |    |    |    |
| W     |    |    |    |    |    |    |    | FKN_  | _niva |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1     | 1     | 0  | 1  | 0  | 0  | 0  | 1  | 1  |

### 49.1.3.3.4.4 Fields

| Field   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-16   | Reserved. Always 0.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15-0    | Poker Range. During the TRNG Statistical Checks, a "Poker Test" is run which requires a maximum and                                                                                                                                                                                                                                                                                                                                                        |
| PKR_RNG | minimum limit. The maximum is programmed in the PKRMAX[PKR_MAX] register, and the minimum is derived by subtracting the PKR_RNG value from the programmed maximum value. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. Note that the minimum allowable Poker result is PKR_MAX - PKR_RNG + 1. |

# 49.1.3.3.5 TRNG0 Poker Maximum Limit (TRNG0\_PKRMAX)

### 49.1.3.3.5.1 Address

| Register     | Offset    | Description                                              |
|--------------|-----------|----------------------------------------------------------|
| TRNG0_PKRMAX | 400A500Ch | Accessible at this address when<br>TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.5.2 Function

The TRNG0 Poker Maximum Limit Register defines Maximum Limit allowable during the TRNG Statistical Check Poker Test. Note that this offset (0x0C) is used as TRNG0\_PKRMAX only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as the TRNG0\_PKRSQ readback register.

#### 49.1.3.3.5.3 **Diagram**

| Bits  | 31 | 30       | 29 | 28   | 27 | 26 | 25 | 24   | 23     | 22 | 21      | 20  | 19   | 18 | 17 | 16 |  |  |
|-------|----|----------|----|------|----|----|----|------|--------|----|---------|-----|------|----|----|----|--|--|
| R     |    |          |    | Dage |    |    |    |      |        |    |         | DVD | NANZ |    |    |    |  |  |
| W     |    | Reserved |    |      |    |    |    |      |        |    | PKR_MAX |     |      |    |    |    |  |  |
| Reset | 0  | 0        | 0  | 0    | 0  | 0  | 0  | 0    | 0      | 0  | 0       | 0   | 0    | 0  | 0  | 0  |  |  |
|       |    |          |    |      |    |    |    |      |        |    |         |     |      |    |    |    |  |  |
| Bits  | 15 | 14       | 13 | 12   | 11 | 10 | 9  | 8    | 7      | 6  | 5       | 4   | 3    | 2  | 1  | 0  |  |  |
| R     |    |          |    |      |    |    |    | DVD  | MAX    |    |         |     |      |    |    |    |  |  |
| W     |    |          |    |      |    |    |    | PKH_ | _IVIAX |    |         |     |      |    |    |    |  |  |
| Reset | 0  | 1        | 1  | 0    | 1  | 0  | 0  | 1    | 0      | 0  | 1       | 0   | 0    | 0  | 0  | 0  |  |  |

### 49.1.3.3.5.4 Fields

| Field   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-24   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 23-0    | Poker Maximum Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PKR_MAX | During the TRNG Statistical Checks, a "Poker Test" is run which requires a maximum and minimum limit. The maximum allowable result is programmed in the TRNG0_PKRMAX[PKR_MAX] register. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. Note that the TRNG0_PKRMAX and TRNG0_PKRRNG registers combined are used to define the minimum allowable Poker result, which is PKR_MAX - PKR_RNG + 1. Note that if TRNG0_MCTL[PRGM] bit is 0, this register address is used to read the Poker Test Square Calculation result in register TRNG0_PKRSQ, as defined in the following section. |

#### TRNG0 Poker Square Calculation Result (TRNG0\_PKRSQ) 49.1.3.3.6

### 49.1.3.3.6.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_PKRSQ | 400A500Ch | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

KL28Z Reference Manual, Rev. 4, 06/2016 1242 **NXP Semiconductors** 

### 49.1.3.3.6.2 Function

The TRNG0 Poker Square Calculation Result Register is a read-only register used to read the result of the TRNG Statistical Check Poker Test's Square Calculation. This test starts with the TRNG0\_PKRMAX value and decreases towards a final result, which is read here. For the Poker Test to pass, this final result must be less than the programmed TRNG0\_PKRRNG value. Note that this offset (0x0C) is used as TRNG0\_PKRMAX if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_PKRSQ readback register, as described here.

### 49.1.3.3.6.3 Diagram

| Bits  | 31 | 30 | 29 | 28   | 27    | 26 | 25 | 24  | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|-------|----|----|----|------|-------|----|----|-----|--------|----|----|----|----|----|----|----|--|--|
| R     |    |    |    | Poor | erved |    |    |     | PKR_SQ |    |    |    |    |    |    |    |  |  |
| W     |    |    |    | nese | erveu |    |    |     |        |    |    |    |    |    |    |    |  |  |
| Reset | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |  |
|       |    |    |    |      |       |    |    |     | '<br>' |    |    |    |    |    |    |    |  |  |
| Bits  | 15 | 14 | 13 | 12   | 11    | 10 | 9  | 8   | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |  |
| R     |    |    |    |      |       |    |    | PKR | _SQ    |    |    |    |    |    |    |    |  |  |
| W     |    |    |    |      |       |    |    |     |        |    |    |    |    |    |    |    |  |  |
| Reset | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0   | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |  |

### 49.1.3.3.6.4 Fields

| Field  | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-24  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23-0   | Poker Square Calculation Result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PKR_SQ | During the TRNG Statistical Checks, a "Poker Test" is run which starts with the value TRNG0_PKRMAX[PKR_MAX]. This value decreases according to a "sum of squares" algorithm, and must remain greater than zero, but less than the TRNG0_PKRRNG[PKR_RNG] limit. The resulting value may be read through this register, if TRNG0_MCTL[PRGM] bit is 0. Note that if TRNG0_MCTL[PRGM] bit is 1, this register address is used to access the Poker Test Maximum Limit in register TRNG0_PKRMAX, as defined in the previous section. |

# 49.1.3.3.7 TRNG0 Seed Control (TRNG0\_SDCTL)


#### 49.1.3.3.7.1 Address

| Register    | Offset    |  |  |  |  |  |  |  |
|-------------|-----------|--|--|--|--|--|--|--|
| TRNG0_SDCTL | 400A5010h |  |  |  |  |  |  |  |

### 49.1.3.3.7.2 Function

The TRNG0 Seed Control Register contains two fields. One field defines the length (in system clocks) of each Entropy sample (ENT\_DLY), and the other field indicates the number of samples that will taken during each TRNG Entropy generation (SAMP\_SIZE).

#### 49.1.3.3.7.3 **Diagram**



### 49.1.3.3.7.4 Fields

| Field            | Function                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 31-16<br>ENT DLY | Entropy Delay. Defines the length (in system clocks) of each Entropy sample taken. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is |  |  |  |  |  |  |  |  |  |
| ENI_DL1          | eared to its reset value at POR.                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 15-0             | Sample Size. Defines the total number of Entropy samples that will be taken during Entropy generation.                                                                                                          |  |  |  |  |  |  |  |  |  |
| SAMP_SIZE        | This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is cleared to the default POR value by writing the                                    |  |  |  |  |  |  |  |  |  |
|                  | TRNG0_MCTL[RST_DEF] bit to 1.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |

#### TRNG0 Sparse Bit Limit (TRNG0\_SBLIM) 49.1.3.3.8

KL28Z Reference Manual, Rev. 4, 06/2016

### 49.1.3.3.8.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SBLIM | 400A5014h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.8.2 Function

The TRNG0 Sparse Bit Limit Register is used when Von Neumann sampling is selected during Entropy Generation. It defines the maximum number of consecutive Von Neumann samples which may be discarded before an error is generated. Note that this address (0x14) is used as TRNG0\_SBLIM only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_TOTSAM readback register.

### 49.1.3.3.8.3 Diagram

| Bits  | 31       | 30       | 29   | 28   | 27 | 26 | 25     | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----------|----------|------|------|----|----|--------|------|----|----|----|----|----|----|----|----|
| R     |          |          |      |      |    |    |        | Door |    |    |    |    |    |    |    |    |
| W     |          | Reserved |      |      |    |    |        |      |    |    |    |    |    |    |    |    |
| Reset | 0        | 0        | 0    | 0    | 0  | 0  | 0      | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |          |          |      |      |    |    |        |      |    |    |    |    |    |    |    |    |
| Bits  | 15       | 14       | 13   | 12   | 11 | 10 | 9      | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |          |          | Poor | nuod |    |    | OD LIM |      |    |    |    |    |    |    |    |    |
| W     | Reserved |          |      |      |    |    | SB_LIM |      |    |    |    |    |    |    |    |    |
| Reset | 0        | 0        | 0    | 0    | 0  | 0  | 0      | 0    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  |

### 49.1.3.3.8.4 Fields

| Field  | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-10  | Reserved. Always 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9-0    | Sparse Bit Limit. During Von Neumann sampling (if enabled by TRNG0_MCTL[SAMP_MODE], samples are discarded if two consecutive raw samples are both 0 or both 1. If this discarding occurs for a long                                                                                                                                                                                                                                                                                                                       |
| SB_LIM | period of time, it indicates that there is insufficient Entropy. The Sparse Bit Limit defines the maximum number of consecutive samples that may be discarded before an error is generated. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. Note that if TRNG0_MCTL[PRGM] bit is 0, this register address is used to read the Total Samples count in register TRNG0_TOTSAM, as defined in the following section. |

# 49.1.3.3.9 TRNG0 Total Samples (TRNG0\_TOTSAM)

### 49.1.3.3.9.1 Address

| Register     | Offset    | Description                                           |
|--------------|-----------|-------------------------------------------------------|
| TRNG0_TOTSAM | 400A5014h | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.9.2 Function

The TRNG0 Total Samples Register is a read-only register used to read the total number of samples taken during Entropy generation. It is used to give an indication of how often a sample is actually used during Von Neumann sampling. Note that this offset (0x14) is used as TRNG0\_SBLIM if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_TOTSAM readback register, as described here.

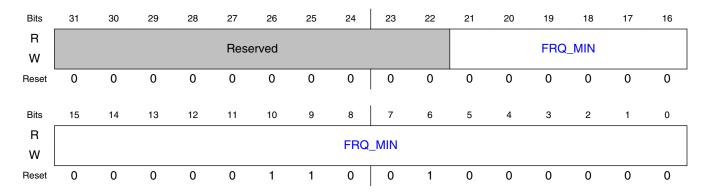
### 49.1.3.3.9.3 Diagram

| Bits  | 31 | 30 | 29 | 28 | 27 | 26   | 25    | 24  | 23  | 22 | 21 | 20 | 19 | 18   | 17  | 16 |
|-------|----|----|----|----|----|------|-------|-----|-----|----|----|----|----|------|-----|----|
| R     |    |    |    |    |    | Door | n rod |     |     |    |    |    |    | TOT_ | SAM |    |
| W     |    |    |    |    |    | nese | erved |     |     |    |    |    |    |      |     |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 0   | 0  | 0  | 0  | 0  | 0    | 0   | 0  |
|       |    |    |    |    |    |      |       |     |     |    |    |    |    |      |     |    |
| Bits  | 15 | 14 | 13 | 12 | 11 | 10   | 9     | 8   | 7   | 6  | 5  | 4  | 3  | 2    | 1   | 0  |
| R     |    |    |    |    |    |      |       | TOT | SAM |    |    |    |    |      |     |    |
| W     |    |    |    |    |    |      |       |     |     |    |    |    |    |      |     |    |
| Reset | 0  | 0  | 0  | 0  | 0  | 0    | 0     | 0   | 0   | 0  | 0  | 0  | 0  | 0    | 0   | 0  |

### 49.1.3.3.9.4 Fields

| Field   | Function                                                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-20   | Reserved. Always 0.                                                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                                                                                                            |
| 19-0    | Total Samples. During Entropy generation, the total number of raw samples is counted. This count is                                                                                                                                                                                                                        |
| TOT_SAM | useful in determining how often a sample is used during Von Neumann sampling. The count may be read through this register, if TRNG0_MCTL[PRGM] bit is 0. Note that if TRNG0_MCTL[PRGM] bit is 1, this register address is used to access the Sparse Bit Limit in register TRNG0_SBLIM, as defined in the previous section. |

#### TRNG0 Frequency Count Minimum Limit (TRNG0\_FRQMIN) 49.1.3.3.10


#### 49.1.3.3.10.1 **Address**

| Register     | Offset    |
|--------------|-----------|
| TRNG0_FRQMIN | 400A5018h |

### 49.1.3.3.10.2 Function

The TRNG0 Frequency Count Minimum Limit Register defines the minimum allowable count taken by the Entropy sample counter during each Entropy sample. During any sample period, if the count is less than this programmed minimum, a Frequency Count Fail is flagged in TRNG0\_MCTL[FCT\_FAIL] and an error is generated.

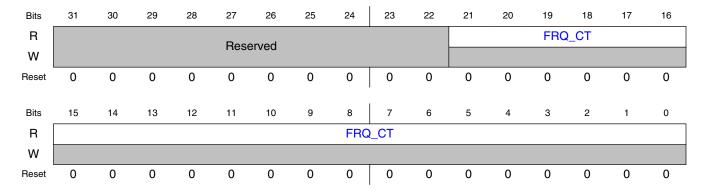
#### 49.1.3.3.10.3 Diagram



#### 49.1.3.3.10.4 Fields

| Field   | Function                                                                                                                                                                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-22   | Reserved. Always 0.                                                                                                                                                     |
| _       |                                                                                                                                                                         |
| 21-0    | Frequency Count Minimum Limit. Defines the minimum allowable count taken during each entropy                                                                            |
| FRQ_MIN | sample. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field will read zeroes if TRNG0_MCTL[PRGM] = 0. This field is cleared to its reset value at POR. |

#### TRNG0 Frequency Count (TRNG0\_FRQCNT) 49.1.3.3.11


#### 49.1.3.3.11.1 **Address**

| Register     | Offset    | Description                                           |
|--------------|-----------|-------------------------------------------------------|
| TRNG0_FRQCNT | 400A501Ch | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.11.2 Function

The TRNG0 Frequency Count Register is a read-only register used to read the frequency counter within the TRNG entropy generator. It will read all zeroes unless TRNG0 MCTL[TRNG ACC] = 1. Note that this offset (0x1C) is used as TRNG0 FRQMAX if TRNG0 MCTL[PRGM] is 1. If TRNG0 MCTL[PRGM] is 0, this offset is used as TRNG0\_FRQCNT readback register, as described here.

#### 49.1.3.3.11.3 Diagram



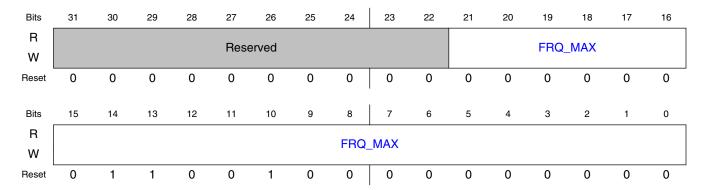
### 49.1.3.3.11.4 Fields

| Field  | Function                                                                                                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-22  | Reserved. Always 0.                                                                                                                                                                                                           |
| _      |                                                                                                                                                                                                                               |
| 21-0   | Frequency Count. If TRNG0_MCTL[TRNG_ACC] = 1, reads a sample frequency count taken during                                                                                                                                     |
| FRQ_CT | entropy generation. Requires TRNG0_MCTL[PRGM] = 0. Note that if TRNG0_MCTL[PRGM] bit is 1, this register address is used to access the Poker Test Maximum Limit in register TRNG0_PKRMAX, as defined in the previous section. |

# 49.1.3.3.12 TRNG0 Frequency Count Maximum Limit (TRNG0\_FRQMAX)

KL28Z Reference Manual, Rev. 4, 06/2016

1248


### 49.1.3.3.12.1 Address

| Register     | Offset    | Description                                           |
|--------------|-----------|-------------------------------------------------------|
| TRNG0_FRQMAX | 400A501Ch | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.12.2 Function

The TRNG0 Frequency Count Maximum Limit Register defines the maximum allowable count taken by the Entropy sample counter during each Entropy sample. During any sample period, if the count is greater than this programmed maximum, a Frequency Count Fail is flagged in TRNG0\_MCTL[FCT\_FAIL] and an error is generated. Note that this address (001C) is used as TRNG0\_FRQMAX only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_FRQCNT readback register.

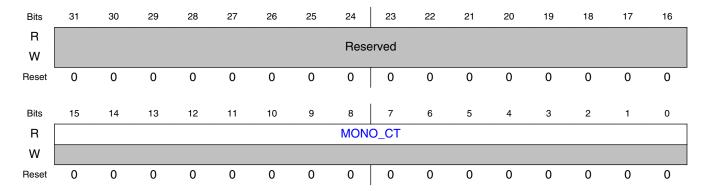
### 49.1.3.3.12.3 Diagram



### 49.1.3.3.12.4 Fields

| Field   | Function                                                                                                                                                                                                                                                                                   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-22   | Reserved. Always 0.                                                                                                                                                                                                                                                                        |
| _       |                                                                                                                                                                                                                                                                                            |
| 21-0    | Frequency Counter Maximum Limit. Defines the maximum allowable count taken during each entropy                                                                                                                                                                                             |
| FRQ_MAX | sample. This field is writable only if TRNG0_MCTL[PRGM] bit is 1. This field is cleared to its reset value at POR. Note that if TRNG0_MCTL[PRGM] bit is 0, this register address is used to read the Frequency Count result in register TRNG0_FRQCNT, as defined in the following section. |

# 49.1.3.3.13 TRNG0 Statistical Check Monobit Count (TRNG0\_SCMC)


### 49.1.3.3.13.1 Address

| Register   | Offset    | Description                                              |
|------------|-----------|----------------------------------------------------------|
| TRNG0_SCMC | 400A5020h | Accessible at this address when<br>TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.13.2 Function

The TRNG0 Statistical Check Monobit Count Register is a read-only register used to read the final monobit count after entropy generation. This counter starts with the value in TRNG0\_SCML[MONO\_MAX], and is decremented each time a one is sampled. Note that this offset (0x20) is used as TRNG0\_SCML if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCMC readback register, as described here.

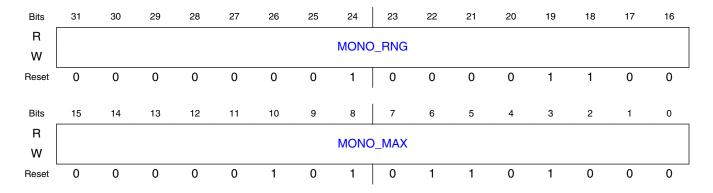
### 49.1.3.3.13.3 Diagram



### 49.1.3.3.13.4 Fields

| Field   | Function                                                                                                                                                                             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-16   | Reserved. Always 0.                                                                                                                                                                  |
| _       |                                                                                                                                                                                      |
| 15-0    | Monobit Count. Reads the final Monobit count after entropy generation. Requires TRNG0_MCTL[PRGM]                                                                                     |
| MONO_CT | = 0. Note that if TRNG0_MCTL[PRGM] bit is 1, this register address is used to access the Statistical Check Monobit Limit in register TRNG0_SCML, as defined in the previous section. |

# 49.1.3.3.14 TRNG0 Statistical Check Monobit Limit (TRNG0\_SCML)


### 49.1.3.3.14.1 Address

| Register   | Offset    | Description                                           |
|------------|-----------|-------------------------------------------------------|
| TRNG0_SCML | 400A5020h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.14.2 Function

The TRNG0 Statistical Check Monobit Limit Register defines the allowable maximum and minimum number of ones/zero detected during entropy generation. To pass the test, the number of ones/zeroes generated must be less than the programmed maximum value, and the number of ones/zeroes generated must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this offset (0x20) is used as TRNG0\_SCML only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCMC readback register.

### 49.1.3.3.14.3 Diagram



### 49.1.3.3.14.4 Fields

| Field    | Function                                                                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-16    | Monobit Range. The number of ones/zeroes detected during entropy generation must be greater than                                                      |
| MONO BNG | MONO_MAX - MONO_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

Table continues on the next page...

| Field    | Function                                                                                                                                                                                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MONO MAX | Monobit Maximum Limit. Defines the maximum allowable count taken during entropy generation. The number of ones/zeroes detected during entropy generation must be less than MONO_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNGO_MCTL[RST_DEF] bit to 1. |

# 49.1.3.3.15 TRNG0 Statistical Check Run Length 1 Count (TRNG0\_SCR1C)

### 49.1.3.3.15.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR1C | 400A5024h | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.15.2 Function

The TRNG0 Statistical Check Run Length 1 Counters Register is a read-only register used to read the final Run Length 1 counts after entropy generation. These counters start with the value in TRNG0\_SCRxC1L[RUN1\_MAX]. The R1\_1\_CT decrements each time a single one is sampled (preceded by a zero and followed by a zero). The R1\_0\_CT decrements each time a single zero is sampled (preceded by a one and followed by a one). Note that this offset (0x24) is used as TRNG0\_SCRxC1L if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC1C readback register, as described here.

# 49.1.3.3.15.3 Diagram

| Bits  | 31   | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|------|---------|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|
| R     | Rese | R1_1_CT |    |    |    |    |    |    |        |    |    |    |    |    |    |    |
| W     | rved |         |    |    |    |    |    |    |        |    |    |    |    |    |    |    |
| Reset | 0    | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |      |         |    |    |    |    |    |    |        |    |    |    |    |    |    |    |
| Bits  | 15   | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     | Rese |         |    |    |    |    |    | F  | R1_0_C | Т  |    |    |    |    |    |    |
| W     | rved |         |    |    |    |    |    |    |        |    |    |    |    |    |    |    |
| Reset | 0    | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

### 49.1.3.3.15.4 Fields

| Field   | Function                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------|
| 31      | Reserved. Always 0.                                                                                    |
| _       |                                                                                                        |
| 30-16   | Runs of One, Length 1 Count. Reads the final Runs of Ones, length 1 count after entropy generation.    |
| R1_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |
| 15      | Reserved. Always 0.                                                                                    |
| _       |                                                                                                        |
| 14-0    | Runs of Zero, Length 1 Count. Reads the final Runs of Zeroes, length 1 count after entropy generation. |
| R1_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |

# 49.1.3.3.16 TRNG0 Statistical Check Run Length 1 Limit (TRNG0\_SCR1L)

### 49.1.3.3.16.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR1L | 400A5024h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.16.2 Function

The TRNG0 Statistical Check Run Length 1 Limit Register defines the allowable maximum and minimum number of runs of length 1 detected during entropy generation. To pass the test, the number of runs of length 1 (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 1 must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this address (0x24) is used as TRNG0\_SCRxC1L only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_SCRxC1C readback register.

### 49.1.3.3.16.3 Diagram

| Bits  | 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23      | 22    | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|------|----|----|----|----|----|----|----|---------|-------|----|----|----|----|----|----|
| R     | Rese |    |    |    |    |    |    | RI | JN1_RI  | NG    |    |    |    |    |    |    |
| W     | ived |    |    |    |    |    |    |    |         |       |    |    |    |    |    |    |
| Reset | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1       | 0     | 1  | 1  | 0  | 0  | 1  | 0  |
|       |      |    |    |    |    |    |    |    | ļ       |       |    |    |    |    |    |    |
| Bits  | 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7       | 6     | 5  | 4  | 3  | 2  | 1  | 0  |
| R     | Rese |    |    |    |    |    |    | Б. | 1814 84 | A > / |    |    |    |    |    |    |
| W     | rved |    |    |    |    |    |    | RU | JN1_M   | ΑХ    |    |    |    |    |    |    |
| Reset | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1       | 0     | 0  | 1  | 0  | 1  | 0  | 1  |

### 49.1.3.3.16.4 Fields

| Field    | Function                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31       | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 30-16    | Run Length 1 Range. The number of runs of length 1 (for both 0 and 1) detected during entropy                                                                                                                                                                      |
| RUN1_RNG | generation must be greater than RUN1_MAX - RUN1_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                                                              |
| 15       | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 14-0     | Run Length 1 Maximum Limit. Defines the maximum allowable runs of length 1 (for both 0 and 1)                                                                                                                                                                      |
| RUN1_MAX | detected during entropy generation. The number of runs of length 1 detected during entropy generation must be less than RUN1_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

# 49.1.3.3.17 TRNG0 Statistical Check Run Length 2 Count (TRNG0\_SCR2C)

### 49.1.3.3.17.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR2C | 400A5028h | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.17.2 Function

The TRNG0 Statistical Check Run Length 2 Counters Register is a read-only register used to read the final Run Length 2 counts after entropy generation. These counters start with the value in TRNG0\_SCRxC2L[RUN2\_MAX]. The R2\_1\_CT decrements each time two consecutive ones are sampled (preceded by a zero and followed by a zero). The

1255

R2\_0\_CT decrements each time two consecutive zeroes are sampled (preceded by a one and followed by a one). Note that this offset (0x28) is used as TRNG0\_SCRxC2L if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC2C readback register, as described here.

# 49.1.3.3.17.3 Diagram

| Bits  | 31       | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----------|-------|----|----|----|----|----|----|------|------|----|----|----|----|----|----|
| R     | Posc     | erved |    |    |    |    |    |    | R2_  | 1_CT |    |    |    |    |    |    |
| W     | nese     | rveu  |    |    |    |    |    |    |      |      |    |    |    |    |    |    |
| Reset | 0        | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  | 0  |
|       |          |       |    |    |    |    |    |    |      |      |    |    |    |    |    |    |
| Bits  | 15       | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
| R     | Poor     | nuod  |    |    |    |    |    |    | R2_0 | CT   |    |    |    |    |    |    |
| W     | Reserved |       |    |    |    |    |    |    |      |      |    |    |    |    |    |    |
| Reset | 0        | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  | 0  |

### 49.1.3.3.17.4 Fields

| Field   | Function                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------|
| 31-30   | Reserved. Always 0.                                                                                    |
| _       |                                                                                                        |
| 29-16   | Runs of One, Length 2 Count. Reads the final Runs of Ones, length 2 count after entropy generation.    |
| R2_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |
| 15-14   | Reserved. Always 0.                                                                                    |
| _       |                                                                                                        |
| 13-0    | Runs of Zero, Length 2 Count. Reads the final Runs of Zeroes, length 2 count after entropy generation. |
| R2_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |

# 49.1.3.3.18 TRNG0 Statistical Check Run Length 2 Limit (TRNG0\_SCR2L)

### 49.1.3.3.18.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR2L | 400A5028h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.18.2 Function

The TRNG0 Statistical Check Run Length 2 Limit Register defines the allowable maximum and minimum number of runs of length 2 detected during entropy generation. To pass the test, the number of runs of length 2 (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 2 must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0 SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this address (0x28) is used as TRNG0 SCRxC2L only if TRNG0 MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_SCRxC2C readback register.

#### 49.1.3.3.18.3 Diagram

| Bits   | 31   | 30    | 29 | 28       | 27 | 26 | 25 | 24 | 23   | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
|--------|------|-------|----|----------|----|----|----|----|------|------|----|----|----|----|----|----|
| R<br>W | Rese | erved |    | RUN2_RNG |    |    |    |    |      |      |    |    |    |    |    |    |
| Reset  | 0    | 0     | 0  | 0        | 0  | 0  | 0  | 0  | 0    | 1    | 1  | 1  | 1  | 0  | 1  | 0  |
| Bits   | 15   | 14    | 13 | 12       | 11 | 10 | 9  | 8  | 7    | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
| R<br>W | Rese | erved |    |          |    |    |    |    | RUN2 | _MAX |    |    |    |    |    |    |
| Reset  | 0    | 0     | 0  | 0        | 0  | 0  | 0  | 0  | 1    | 1    | 0  | 1  | 1  | 1  | 0  | 0  |

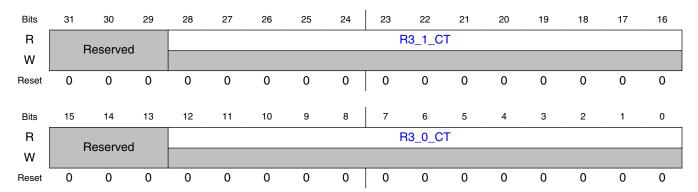
### 49.1.3.3.18.4 Fields

| Field    | Function                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-30    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 29-16    | Run Length 2 Range. The number of runs of length 2 (for both 0 and 1) detected during entropy                                                                                                                                                                      |
| RUN2_RNG | generation must be greater than RUN2_MAX - RUN2_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                                                              |
| 15-14    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 13-0     | Run Length 2 Maximum Limit. Defines the maximum allowable runs of length 2 (for both 0 and 1)                                                                                                                                                                      |
| RUN2_MAX | detected during entropy generation. The number of runs of length 2 detected during entropy generation must be less than RUN2_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

KL28Z Reference Manual, Rev. 4, 06/2016

1257

# 49.1.3.3.19 TRNG0 Statistical Check Run Length 3 Count (TRNG0\_SCR3C)


### 49.1.3.3.19.1 Address

| Register    | Offset    | Description                                              |
|-------------|-----------|----------------------------------------------------------|
| TRNG0_SCR3C | 400A502Ch | Accessible at this address when<br>TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.19.2 Function

The TRNG0 Statistical Check Run Length 3 Counters Register is a read-only register used to read the final Run Length 3 counts after entropy generation. These counters start with the value in TRNG0\_SCRxC3L[RUN3\_MAX]. The R3\_1\_CT decrements each time three consecutive ones are sampled (preceded by a zero and followed by a zero). The R3\_0\_CT decrements each time three consecutive zeroes are sampled (preceded by a one and followed by a one). Note that this offset (0x2C) is used as TRNG0\_SCRxC3L if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC3C readback register, as described here.

### 49.1.3.3.19.3 Diagram



### 49.1.3.3.19.4 Fields

| Field   | Function                                                                                             |
|---------|------------------------------------------------------------------------------------------------------|
| 31-29   | Reserved. Always 0.                                                                                  |
| _       |                                                                                                      |
| 28-16   | Runs of Ones, Length 3 Count. Reads the final Runs of Ones, length 3 count after entropy generation. |
| R3_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                       |
| 15-13   | Reserved. Always 0.                                                                                  |

Table continues on the next page...

NXP Semiconductors

### KL28Z Reference Manual, Rev. 4, 06/2016

| Field   | Function                                                                                                 |
|---------|----------------------------------------------------------------------------------------------------------|
| _       |                                                                                                          |
| 12-0    | Runs of Zeroes, Length 3 Count. Reads the final Runs of Zeroes, length 3 count after entropy generation. |
| R3_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                           |

# 49.1.3.3.20 TRNG0 Statistical Check Run Length 3 Limit (TRNG0\_SCR3L)

### 49.1.3.3.20.1 Address

| Register    | Offset    | Description                                              |
|-------------|-----------|----------------------------------------------------------|
| TRNG0_SCR3L | 400A502Ch | Accessible at this address when<br>TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.20.2 Function

The TRNG0 Statistical Check Run Length 3 Limit Register defines the allowable maximum and minimum number of runs of length 3 detected during entropy generation. To pass the test, the number of runs of length 3 (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 3 must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this address (0x2C) is used as TRNG0\_SCRxC3L only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_SCRxC3C readback register.

### 49.1.3.3.20.3 Diagram

| Bits   | 31                | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22     | 21        | 20 | 19 | 18 | 17 | 16 |
|--------|-------------------|---------|----|----|----|----|----|----|----|--------|-----------|----|----|----|----|----|
| R<br>W | F                 | Reserve | d  |    |    |    |    |    | RU | JN3_RN | <b>IG</b> |    |    |    |    |    |
| Reset  | 0                 | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0         | 1  | 1  | 0  | 0  | 0  |
| Bits   | 15                | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6      | 5         | 4  | 3  | 2  | 1  | 0  |
| R<br>W | Reserved RUN3 MAX |         |    |    |    |    |    |    |    |        |           |    |    |    |    |    |
| Reset  | 0                 | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 1         | 1  | 1  | 1  | 0  | 1  |

### 49.1.3.3.20.4 Fields

| Field    | Function                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-29    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 28-16    | Run Length 3 Range. The number of runs of length 3 (for both 0 and 1) detected during entropy                                                                                                                                                                      |
| RUN3_RNG | generation must be greater than RUN3_MAX - RUN3_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                                                              |
| 15-13    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 12-0     | Run Length 3 Maximum Limit. Defines the maximum allowable runs of length 3 (for both 0 and 1)                                                                                                                                                                      |
| RUN3_MAX | detected during entropy generation. The number of runs of length 3 detected during entropy generation must be less than RUN3_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

# 49.1.3.3.21 TRNG0 Statistical Check Run Length 4 Count (TRNG0\_SCR4C)

### 49.1.3.3.21.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR4C | 400A5030h | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

### 49.1.3.3.21.2 Function

The TRNG0 Statistical Check Run Length 4 Counters Register is a read-only register used to read the final Run Length 4 counts after entropy generation. These counters start with the value in TRNG0\_SCRxC4L[RUN4\_MAX]. The R4\_1\_CT decrements each time four consecutive ones are sampled (preceded by a zero and followed by a zero). The R4\_0\_CT decrements each time four consecutive zeroes are sampled (preceded by a one and followed by a one). Note that this offset (0x30) is used as TRNG0\_SCRxC4L if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC4C readback register, as described here.

### 49.1.3.3.21.3 Diagram

| Bits  | 31 | 30   | 29    | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21   | 20 | 19 | 18 | 17 | 16 |
|-------|----|------|-------|----|----|----|----|----|----|------|------|----|----|----|----|----|
| R     |    | Rese | nuod  |    |    |    |    |    | •  | R4_  | I_CT |    |    |    |    |    |
| W     |    | nese | riveu |    |    |    |    |    |    |      |      |    |    |    |    |    |
| Reset | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  |
|       |    |      |       |    |    |    |    |    |    |      |      |    |    |    |    |    |
| Bits  | 15 | 14   | 13    | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5    | 4  | 3  | 2  | 1  | 0  |
| R     |    | Rese | nuod  |    |    |    |    |    |    | R4_0 | CT   |    |    |    |    |    |
| W     |    | nese | erveu |    |    |    |    |    |    |      |      |    |    |    |    |    |
| Reset | 0  | 0    | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0  | 0  | 0  | 0  | 0  |

### 49.1.3.3.21.4 Fields

| Field   | Function                                                                                             |
|---------|------------------------------------------------------------------------------------------------------|
| 31-28   | Reserved. Always 0.                                                                                  |
| _       |                                                                                                      |
| 27-16   | Runs of One, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation.  |
| R4_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                       |
| 15-12   | Reserved. Always 0.                                                                                  |
| _       |                                                                                                      |
| 11-0    | Runs of Zero, Length 4 Count. Reads the final Runs of Ones, length 4 count after entropy generation. |
| R4_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                       |

# 49.1.3.3.22 TRNG0 Statistical Check Run Length 4 Limit (TRNG0\_SCR4L)

### 49.1.3.3.22.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR4L | 400A5030h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

### 49.1.3.3.22.2 Function

The TRNG0 Statistical Check Run Length 4 Limit Register defines the allowable maximum and minimum number of runs of length 4 detected during entropy generation. To pass the test, the number of runs of length 4 (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 4 must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC

will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this address (0x30) is used as TRNG0\_SCRxC4L only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_SCRxC4C readback register.

#### 49.1.3.3.22.3 Diagram

| Bits   | 31       | 30   | 29    | 28 | 27                | 26 | 25 | 24 | 23 | 22   | 21   | 20 | 19 | 18 | 17 | 16 |
|--------|----------|------|-------|----|-------------------|----|----|----|----|------|------|----|----|----|----|----|
| R<br>W |          | Rese | erved |    |                   |    |    |    |    | RUN4 | _RNG |    |    |    |    |    |
| Reset  | 0        | 0    | 0     | 0  | 0                 | 0  | 0  | 0  | 0  | 1    | 0    | 0  | 0  | 0  | 0  | 0  |
| Bits   | 15       | 14   | 13    | 12 | 11                | 10 | 9  | 8  | 7  | 6    | 5    | 4  | 3  | 2  | 1  | 0  |
| R<br>W | Reserved |      |       |    | Reserved RUN4_MAX |    |    |    |    |      |      |    |    |    |    |    |
| Reset  | 0        | 0    | 0     | 0  | 0                 | 0  | 0  | 0  | 0  | 1    | 0    | 0  | 1  | 0  | 1  | 1  |

#### 49.1.3.3.22.4 Fields

| Field    | Function                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-28    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 27-16    | Run Length 4 Range. The number of runs of length 4 (for both 0 and 1) detected during entropy                                                                                                                                                                      |
| RUN4_RNG | generation must be greater than RUN4_MAX - RUN4_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                                                              |
| 15-12    | Reserved. Always 0.                                                                                                                                                                                                                                                |
| _        |                                                                                                                                                                                                                                                                    |
| 11-0     | Run Length 4 Maximum Limit. Defines the maximum allowable runs of length 4 (for both 0 and 1)                                                                                                                                                                      |
| RUN4_MAX | detected during entropy generation. The number of runs of length 4 detected during entropy generation must be less than RUN4_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

## 49.1.3.3.23 TRNG0 Statistical Check Run Length 5 Count (TRNG0\_SCR5C)

#### 49.1.3.3.23.1 Address

| Register    | Offset    | Description                                              |
|-------------|-----------|----------------------------------------------------------|
| TRNG0_SCR5C | 400A5034h | Accessible at this address when<br>TRNG0_MCTL[PRGM] = 0] |

KL28Z Reference Manual, Rev. 4, 06/2016

#### 49.1.3.3.23.2 Function

The TRNG0 Statistical Check Run Length 5 Counters Register is a read-only register used to read the final Run Length 5 counts after entropy generation. These counters start with the value in TRNG0\_SCRxC5L[RUN5\_MAX]. The R5\_1\_CT decrements each time five consecutive ones are sampled (preceded by a zero and followed by a zero). The R5\_0\_CT decrements each time five consecutive zeroes are sampled (preceded by a one and followed by a one). Note that this offset (0x34) is used as TRNG0\_SCRxC5L if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC5C readback register, as described here.

### 49.1.3.3.23.3 Diagram

| Bits  | 31 | 30       | 29      | 28 | 27 | 26      | 25 | 24 | 23 | 22 | 21     | 20 | 19 | 18 | 17 | 16 |
|-------|----|----------|---------|----|----|---------|----|----|----|----|--------|----|----|----|----|----|
| R     |    |          | Poconyo | 4  |    |         |    |    |    | F  | R5_1_C | Т  |    |    |    |    |
| W     |    | Reserved |         |    |    |         |    |    |    |    |        |    |    |    |    |    |
| Reset | 0  | 0        | 0       | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  |
|       |    |          |         |    |    |         |    |    |    |    |        |    |    |    |    |    |
| Bits  | 15 | 14       | 13      | 12 | 11 | 10      | 9  | 8  | 7  | 6  | 5      | 4  | 3  | 2  | 1  | 0  |
| R     |    |          | Reserve | ٨  |    | R5_0_CT |    |    |    |    |        |    |    |    |    |    |
| W     |    |          | reserve | u  |    |         |    |    |    |    |        |    |    |    |    |    |
| Reset | 0  | 0        | 0       | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  |

#### 49.1.3.3.23.4 Fields

| Field   | Function                                                                                             |
|---------|------------------------------------------------------------------------------------------------------|
| 31-27   | Reserved. Always 0.                                                                                  |
| _       |                                                                                                      |
| 26-16   | Runs of One, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation.  |
| R5_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                       |
| 15-11   | Reserved. Always 0.                                                                                  |
| _       |                                                                                                      |
| 10-0    | Runs of Zero, Length 5 Count. Reads the final Runs of Ones, length 5 count after entropy generation. |
| R5_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                       |

## 49.1.3.3.24 TRNG0 Statistical Check Run Length 5 Limit (TRNG0\_SCR5L)

1263

#### 49.1.3.3.24.1 Address

| Register    | Offset    | Description                                           |
|-------------|-----------|-------------------------------------------------------|
| TRNG0_SCR5L | 400A5034h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

#### 49.1.3.3.24.2 Function

The TRNG0 Statistical Check Run Length 5 Limit Register defines the allowable maximum and minimum number of runs of length 5 detected during entropy generation. To pass the test, the number of runs of length 5 (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 5 must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this address (0x34) is used as TRNG0\_SCRxC5L only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this address is used as TRNG0\_SCRxC5C readback register.

## 49.1.3.3.24.3 Diagram

| Bits  | 31 | 30 | 29      | 28 | 27 | 26 | 25       | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|---------|----|----|----|----------|----|----|----|----|----|----|----|----|----|
| R     |    |    |         | _  |    |    | RUN5_RNG |    |    |    |    |    |    |    |    |    |
| W     |    | r  | Reserve | a  |    |    |          |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0       | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 0  |
|       |    |    |         |    |    |    |          |    | 1  |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13      | 12 | 11 | 10 | 9        | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    |         |    |    |    |          |    |    |    |    |    |    |    |    |    |
| W     |    |    | Reserve | a  |    |    | RUN5_MAX |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0       | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1  |

#### 49.1.3.3.24.4 Fields

| Field    | Function                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-27    | Reserved. Always 0.                                                                                                                                                                   |
| _        |                                                                                                                                                                                       |
| 26-16    | Run Length 5 Range. The number of runs of length 5 (for both 0 and 1) detected during entropy                                                                                         |
| RUN5_RNG | generation must be greater than RUN5_MAX - RUN5_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |
| 15-11    | Reserved. Always 0.                                                                                                                                                                   |

Table continues on the next page...

NXP Semiconductors

#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field | Function                                                                                                                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _     |                                                                                                                                                                                                                                                                    |
| 10-0  | Run Length 5 Maximum Limit. Defines the maximum allowable runs of length 5 (for both 0 and 1)                                                                                                                                                                      |
|       | detected during entropy generation. The number of runs of length 5 detected during entropy generation must be less than RUN5_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

# 49.1.3.3.25 TRNG0 Statistical Check Run Length 6+ Count (TRNG0\_SC R6PC)

#### 49.1.3.3.25.1 Address

| Register     | Offset    | Description                                           |
|--------------|-----------|-------------------------------------------------------|
| TRNG0_SCR6PC | 400A5038h | Accessible at this address when TRNG0_MCTL[PRGM] = 0] |

#### 49.1.3.3.25.2 Function

The TRNG0 Statistical Check Run Length 6+ Counters Register is a read-only register used to read the final Run Length 6+ counts after entropy generation. These counters start with the value in TRNG0\_SCRxC6PL[RUN6P\_MAX]. The R6P\_1\_CT decrements each time six or more consecutive ones are sampled (preceded by a zero and followed by a zero). The R6P\_0\_CT decrements each time six or more consecutive zeroes are sampled (preceded by a one and followed by a one). Note that this offset (0x38) is used as TRNG0\_SCRxC6PL if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC6PC readback register, as described here.

#### 49.1.3.3.25.3 Diagram

| Bits  | 31 | 30 | 29       | 28 | 27 | 26       | 25       | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|----|----|----------|----|----|----------|----------|----|----|----|----|----|----|----|----|----|
| R     |    |    | Reserve  | 4  |    |          | R6P_1_CT |    |    |    |    |    |    |    |    |    |
| W     |    |    | nesei ve | u  |    |          |          |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0        | 0  | 0  | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |          |    |    |          |          |    | ,  |    |    |    |    |    |    |    |
| Bits  | 15 | 14 | 13       | 12 | 11 | 10       | 9        | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| R     |    |    | Reserve  | ٨  |    | R6P_0_CT |          |    |    |    |    |    |    |    |    |    |
| W     |    |    | nesei ve | u  |    |          |          |    |    |    |    |    |    |    |    |    |
| Reset | 0  | 0  | 0        | 0  | 0  | 0        | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### 49.1.3.3.25.4 Fields

| Field    | Function                                                                                               |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31-27    | Reserved. Always 0.                                                                                    |  |  |  |  |  |
| _        |                                                                                                        |  |  |  |  |  |
| 26-16    | Runs of One, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation.  |  |  |  |  |  |
| R6P_1_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |  |  |  |  |  |
| 15-11    | Reserved. Always 0.                                                                                    |  |  |  |  |  |
| _        |                                                                                                        |  |  |  |  |  |
| 10-0     | Runs of Zero, Length 6+ Count. Reads the final Runs of Ones, length 6+ count after entropy generation. |  |  |  |  |  |
| R6P_0_CT | Requires TRNG0_MCTL[PRGM] = 0.                                                                         |  |  |  |  |  |

# 49.1.3.3.26 TRNG0 Statistical Check Run Length 6+ Limit (TRNG0\_SC R6PL)

#### 49.1.3.3.26.1 Address

| Register     | Offset    | Description                                           |
|--------------|-----------|-------------------------------------------------------|
| TRNG0_SCR6PL | 400A5038h | Accessible at this address when TRNG0_MCTL[PRGM] = 1] |

#### 49.1.3.3.26.2 Function

The TRNG0 Statistical Check Run Length 6+ Limit Register defines the allowable maximum and minimum number of runs of length 6 or more detected during entropy generation. To pass the test, the number of runs of length 6 or more (for samples of both 0 and 1) must be less than the programmed maximum value, and the number of runs of length 6 or more must be greater than (maximum - range). If this test fails, the Retry Counter in TRNG0\_SCMISC will be decremented, and a retry will occur if the Retry Count has not reached zero. If the Retry Count has reached zero, an error will be generated. Note that this offset (0x38) is used as TRNG0\_SCRxC6PL only if TRNG0\_MCTL[PRGM] is 1. If TRNG0\_MCTL[PRGM] is 0, this offset is used as TRNG0\_SCRxC6PC readback register.

## 49.1.3.3.26.3 Diagram

| Bits  | 31       | 30 | 29      | 28 | 27 | 26 | 25        | 24 | 23 | 22  | 21    | 20    | 19 | 18 | 17 | 16 |
|-------|----------|----|---------|----|----|----|-----------|----|----|-----|-------|-------|----|----|----|----|
| R     |          |    | Rogania | 4  |    |    |           |    |    | DII | NED D | NC    |    |    |    |    |
| W     | Reserved |    |         |    |    |    | RUN6P_RNG |    |    |     |       |       |    |    |    |    |
| Reset | 0        | 0  | 0       | 0  | 0  | 0  | 0         | 0  | 0  | 0   | 1     | 0     | 1  | 1  | 1  | 0  |
|       |          |    |         |    |    |    |           |    |    |     |       |       |    |    |    |    |
| Bits  | 15       | 14 | 13      | 12 | 11 | 10 | 9         | 8  | 7  | 6   | 5     | 4     | 3  | 2  | 1  | 0  |
| R     |          |    |         | al |    |    |           |    |    | DU  | NCD N | 14.7/ |    |    |    |    |
| W     |          |    | Reserve | a  |    |    |           |    |    | HU  | N6P_N | IAX   |    |    |    |    |
| Reset | 0        | 0  | 0       | 0  | 0  | 0  | 0         | 0  | 0  | 0   | 1     | 0     | 1  | 1  | 1  | 1  |

#### 49.1.3.3.26.4 Fields

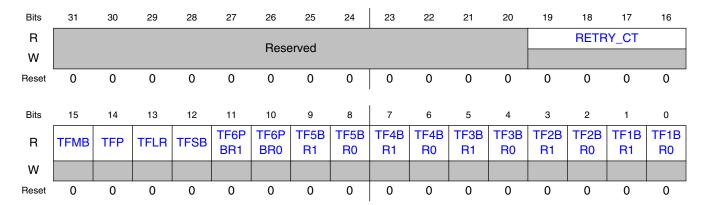
| Field     | Function                                                                                                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-27     | Reserved. Always 0.                                                                                                                                                                                                                                                            |
| _         |                                                                                                                                                                                                                                                                                |
| 26-16     | Run Length 6+ Range. The number of runs of length 6 or more (for both 0 and 1) detected during entropy                                                                                                                                                                         |
| RUN6P_RNG | generation must be greater than RUN6P_MAX - RUN6P_RNG, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1.                                                                                        |
| 15-11     | Reserved. Always 0.                                                                                                                                                                                                                                                            |
| _         |                                                                                                                                                                                                                                                                                |
| 10-0      | Run Length 6+ Maximum Limit. Defines the maximum allowable runs of length 6 or more (for both 0 and                                                                                                                                                                            |
| RUN6P_MAX | 1) detected during entropy generation. The number of runs of length 6 or more detected during entropy generation must be less than RUN6P_MAX, else a retry or error will occur. This register is cleared to the default POR value by writing the TRNG0_MCTL[RST_DEF] bit to 1. |

## 49.1.3.3.27 TRNG0 Status (TRNG0\_STATUS)

#### 49.1.3.3.27.1 Address

| Register     | Offset    |  |
|--------------|-----------|--|
| TRNG0_STATUS | 400A503Ch |  |

1267


#### 49.1.3.3.27.2 Function

Various statistical tests are run as a normal part of the TRNG's entropy generation process. The least-significant 16 bits of the TRNG0\_STATUS register reflect the result of each of these tests. The status of these bits will be valid when the TRNG has finished its entropy generation process. Software can determine when this occurs by polling the ENT\_VAL bit in the TRNG0 Miscellaneous Control Register.

Note that there is a very small probability that a statistical test will fail even though the TRNG is operating properly. If this happens the TRNG will automatically retry the entire entropy generation process, including running all the statistical tests. The value in RETRY\_CT is decremented each time an entropy generation retry occurs. If a statistical check fails when the retry count is nonzero, a retry is initiated. But if a statistical check fails when the retry count is zero, an error is generated by the RNG. By default RETRY\_CT is initialized to 1, but software can increase the retry count by writing to the RTY\_CT field in the TRNGO\_SCMISC register.

All 0s will be returned if this register address is read while the RNG is in Program Mode (see PRGM field in TRNG0\_MCTL register. If this register is read while the RNG is in Run Mode the value returned will be formatted as follows.

### 49.1.3.3.27.3 Diagram



#### 49.1.3.3.27.4 Fields

| Field    | Function                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------|
| 31-20    | Reserved. Always 0.                                                                                     |
| _        |                                                                                                         |
| 19-16    | RETRY COUNT. This represents the current number of entropy generation retries left before a statistical |
| RETRY_CT | text failure will cause the RNG to generate an error condition.                                         |
| 15       | Test Fail, Mono Bit. If TFMB=1, the Mono Bit Test has failed.                                           |

Table continues on the next page...

NXP Semiconductors

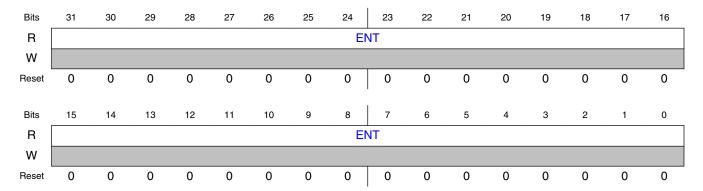
#### KL28Z Reference Manual, Rev. 4, 06/2016

| Field   | Function                                                                                               |
|---------|--------------------------------------------------------------------------------------------------------|
| TFMB    |                                                                                                        |
| 14      | Test Fail, Poker. If TFP=1, the Poker Test has failed.                                                 |
| TFP     |                                                                                                        |
| 13      | Test Fail, Long Run. If TFLR=1, the Long Run Test has failed.                                          |
| TFLR    |                                                                                                        |
| 12      | Test Fail, Sparse Bit. If TFSB=1, the Sparse Bit Test has failed.                                      |
| TFSB    |                                                                                                        |
| 11      | Test Fail, 6 Plus Bit Run, Sampling 1s. If TF6PBR1=1, the 6 Plus Bit Run, Sampling 1s Test has failed. |
| TF6PBR1 |                                                                                                        |
| 10      | Test Fail, 6 Plus Bit Run, Sampling 0s. If TF6PBR0=1, the 6 Plus Bit Run, Sampling 0s Test has failed. |
| TF6PBR0 |                                                                                                        |
| 9       | Test Fail, 5-Bit Run, Sampling 1s. If TF5BR1=1, the 5-Bit Run, Sampling 1s Test has failed.            |
| TF5BR1  |                                                                                                        |
| 8       | Test Fail, 5-Bit Run, Sampling 0s. If TF5BR0=1, the 5-Bit Run, Sampling 0s Test has failed.            |
| TF5BR0  |                                                                                                        |
| 7       | Test Fail, 4-Bit Run, Sampling 1s. If TF4BR1=1, the 4-Bit Run, Sampling 1s Test has failed.            |
| TF4BR1  |                                                                                                        |
| 6       | Test Fail, 4-Bit Run, Sampling 0s. If TF4BR0=1, the 4-Bit Run, Sampling 0s Test has failed.            |
| TF4BR0  |                                                                                                        |
| 5       | Test Fail, 3-Bit Run, Sampling 1s. If TF3BR1=1, the 3-Bit Run, Sampling 1s Test has failed.            |
| TF3BR1  |                                                                                                        |
| 4       | Test Fail, 3-Bit Run, Sampling 0s. If TF3BR0=1, the 3-Bit Run, Sampling 0s Test has failed.            |
| TF3BR0  |                                                                                                        |
| 3       | Test Fail, 2-Bit Run, Sampling 1s. If TF2BR1=1, the 2-Bit Run, Sampling 1s Test has failed.            |
| TF2BR1  |                                                                                                        |
| 2       | Test Fail, 2-Bit Run, Sampling 0s. If TF2BR0=1, the 2-Bit Run, Sampling 0s Test has failed.            |
| TF2BR0  |                                                                                                        |
| 1       | Test Fail, 1-Bit Run, Sampling 1s. If TF1BR1=1, the 1-Bit Run, Sampling 1s Test has failed.            |
| TF1BR1  |                                                                                                        |
| 0       | Test Fail, 1-Bit Run, Sampling 0s. If TF1BR0=1, the 1-Bit Run, Sampling 0s Test has failed.            |
| TF1BR0  |                                                                                                        |

## 49.1.3.3.28 TRNG0 Entropy Read (TRNG0\_ENTa)

#### 49.1.3.3.28.1 Address

For a = 0 to 15:


1269

| Register   | Offset         | Description |
|------------|----------------|-------------|
| TRNG0_ENTa | 40h + (a × 4h) | Word a      |

#### 49.1.3.3.28.2 Function

The RNG TRNG can be programmed to generate an entropy value that is readable via the SkyBlue bus. To do this, set the TRNG0\_MCTL[TRNG\_ACC] bit to 1. Once the entropy value has been generated, the TRNG0\_MCTL[ENT\_VAL] bit will be set to 1. At this point, TRNG0\_ENT0 through TRNG0\_ENT15 may be read to retrieve the 512-bit entropy value. Note that once TRNG0\_ENT15 is read, the entropy value will be cleared and a new value will begin generation, so it is important that TRNG0\_ENT15 be read last. These registers are readable only when TRNG0\_MCTL[PRGM] = 0 (Run Mode), TRNG0\_MCTL[TRNG\_ACC] = 1 (TRNG access mode) and TRNG0\_MCTL[ENT\_VAL] = 1. After at most one (1) bus clock cycle of reading a valid TRNG0\_ENT15 register value, reading any TRNG0\_ENT0 through TRNG0\_ENT15 register would return zeroes.

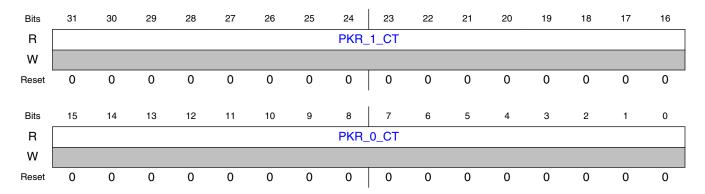
### 49.1.3.3.28.3 Diagram



#### 49.1.3.3.28.4 Fields

| Field | Function                                                                                                                                                                                                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Entropy Value. Will be non-zero only if TRNG0_MCTL[PRGM] = 0 Run Mode) and                                                                                                                                                                                                                          |
|       | TRNG0_MCTL[ENT_VAL] = 1 (Entropy Valid). The most significant bits of the entropy are read from the lowest offset, and the least significant bits are read from the highest offset. Note that reading the highest offset also clears the entire entropy value, and starts a new entropy generation. |

# 49.1.3.3.29 TRNG0 Statistical Check Poker Count 1 and 0 (TRNG0\_PK RCNT10)


#### 49.1.3.3.29.1 Address

| Register       | Offset    |  |  |  |
|----------------|-----------|--|--|--|
| TRNG0_PKRCNT10 | 400A5080h |  |  |  |

#### 49.1.3.3.29.2 Function

The TRNG0 Statistical Check Poker Count 1 and 0 Register is a read-only register used to read the final Poker test counts of 1h and 0h patterns. The Poker 0h Count increments each time a nibble of sample data is found to be 0h. The Poker 1h Count increments each time a nibble of sample data is found to be 1h. Note that this register is readable only if TRNG0\_MCTL[PRGM] is 0, otherwise zeroes will be read.

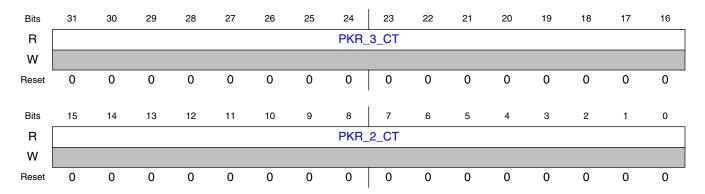
#### 49.1.3.3.29.3 Diagram



#### 49.1.3.3.29.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker 1h Count. Total number of nibbles of sample data which were found to be 1h. Requires |
| PKR_1_CT | $TRNG0\_MCTL[PRGM] = 0.$                                                                   |
| 15-0     | Poker 0h Count. Total number of nibbles of sample data which were found to be 0h. Requires |
| PKR_0_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.30 TRNG0 Statistical Check Poker Count 3 and 2 (TRNG0\_PK RCNT32)


#### 49.1.3.3.30.1 Address

| Register       | Offset    |  |  |  |
|----------------|-----------|--|--|--|
| TRNG0_PKRCNT32 | 400A5084h |  |  |  |

#### 49.1.3.3.30.2 Function

The TRNG0 Statistical Check Poker Count 3 and 2 Register is a read-only register used to read the final Poker test counts of 3h and 2h patterns. The Poker 2h Count increments each time a nibble of sample data is found to be 2h. The Poker 3h Count increments each time a nibble of sample data is found to be 3h. Note that this register is readable only if TRNG0\_MCTL[PRGM] is 0, otherwise zeroes will be read.

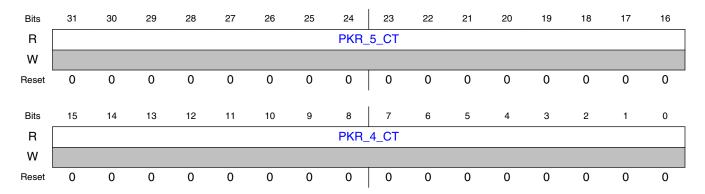
#### 49.1.3.3.30.3 Diagram



#### 49.1.3.3.30.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker 3h Count. Total number of nibbles of sample data which were found to be 3h. Requires |
| PKR_3_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker 2h Count. Total number of nibbles of sample data which were found to be 2h. Requires |
| PKR_2_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.31 TRNG0 Statistical Check Poker Count 5 and 4 (TRNG0\_PK RCNT54)


#### 49.1.3.3.31.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNT54 | 400A5088h |

#### 49.1.3.3.31.2 Function

The TRNG0 Statistical Check Poker Count 5 and 4 Register is a read-only register used to read the final Poker test counts of 5h and 4h patterns. The Poker 4h Count increments each time a nibble of sample data is found to be 4h. The Poker 5h Count increments each time a nibble of sample data is found to be 5h. Note that this register is readable only if TRNG0\_MCTL[PRGM] is 0, otherwise zeroes will be read.

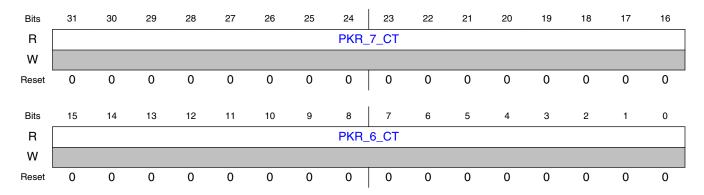
#### 49.1.3.3.31.3 Diagram



#### 49.1.3.3.31.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker 5h Count. Total number of nibbles of sample data which were found to be 5h. Requires |
| PKR_5_CT | $TRNG0\_MCTL[PRGM] = 0.$                                                                   |
| 15-0     | Poker 4h Count. Total number of nibbles of sample data which were found to be 4h. Requires |
| PKR_4_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.32 TRNG0 Statistical Check Poker Count 7 and 6 (TRNG0\_PK RCNT76)


#### 49.1.3.3.32.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNT76 | 400A508Ch |

#### 49.1.3.3.32.2 Function

The TRNG0 Statistical Check Poker Count 7 and 6 Register is a read-only register used to read the final Poker test counts of 7h and 6h patterns. The Poker 6h Count increments each time a nibble of sample data is found to be 6h. The Poker 7h Count increments each time a nibble of sample data is found to be 7h. Note that this register is readable only if TRNG0\_MCTL[PRGM] is 0, otherwise zeroes will be read.

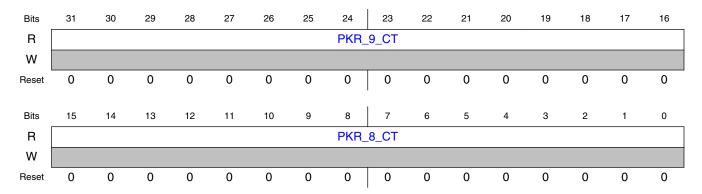
#### 49.1.3.3.32.3 Diagram



#### 49.1.3.3.32.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker 7h Count. Total number of nibbles of sample data which were found to be 7h. Requires |
| PKR_7_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker 6h Count. Total number of nibbles of sample data which were found to be 6h. Requires |
| PKR_6_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.33 TRNG0 Statistical Check Poker Count 9 and 8 (TRNG0\_PK RCNT98)


#### 49.1.3.3.33.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNT98 | 400A5090h |

#### 49.1.3.3.33.2 Function

The TRNG0 Statistical Check Poker Count 9 and 8 Register is a read-only register used to read the final Poker test counts of 9h and 8h patterns. The Poker 8h Count increments each time a nibble of sample data is found to be 8h. The Poker 9h Count increments each time a nibble of sample data is found to be 9h. Note that this register is readable only if TRNG0\_MCTL[PRGM] is 0, otherwise zeroes will be read.

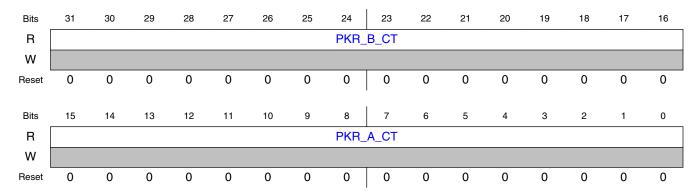
### 49.1.3.3.33.3 Diagram



#### 49.1.3.3.33.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker 9h Count. Total number of nibbles of sample data which were found to be 9h. Requires |
| PKR_9_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker 8h Count. Total number of nibbles of sample data which were found to be 8h. Requires |
| PKR_8_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.34 TRNG0 Statistical Check Poker Count B and A (TRNG0\_PK RCNTBA)


#### 49.1.3.3.34.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNTBA | 400A5094h |

#### 49.1.3.3.34.2 Function

The TRNGO Statistical Check Poker Count B and A Register is a read-only register used to read the final Poker test counts of Bh and Ah patterns. The Poker Ah Count increments each time a nibble of sample data is found to be Ah. The Poker Bh Count increments each time a nibble of sample data is found to be Bh. Note that this register is readable only if TRNGO\_MCTL[PRGM] is 0, otherwise zeroes will be read.

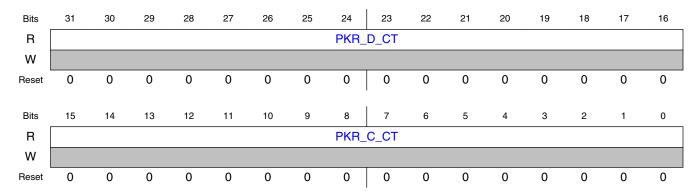
### 49.1.3.3.34.3 Diagram



#### 49.1.3.3.34.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker Bh Count. Total number of nibbles of sample data which were found to be Bh. Requires |
| PKR_B_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker Ah Count. Total number of nibbles of sample data which were found to be Ah. Requires |
| PKR_A_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

# 49.1.3.3.35 TRNG0 Statistical Check Poker Count D and C (TRNG0\_PK RCNTDC)


#### 49.1.3.3.35.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNTDC | 400A5098h |

#### 49.1.3.3.35.2 Function

The TRNGO Statistical Check Poker Count D and C Register is a read-only register used to read the final Poker test counts of Dh and Ch patterns. The Poker Ch Count increments each time a nibble of sample data is found to be Ch. The Poker Dh Count increments each time a nibble of sample data is found to be Dh. Note that this register is readable only if TRNGO\_MCTL[PRGM] is 0, otherwise zeroes will be read.

### 49.1.3.3.35.3 Diagram

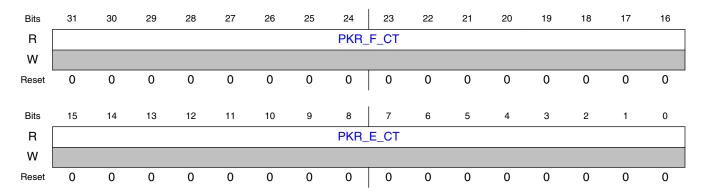


#### 49.1.3.3.35.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker Dh Count. Total number of nibbles of sample data which were found to be Dh. Requires |
| PKR_D_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker Ch Count. Total number of nibbles of sample data which were found to be Ch. Requires |
| PKR_C_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

1277

# 49.1.3.3.36 TRNG0 Statistical Check Poker Count F and E (TRNG0\_PK RCNTFE)


#### 49.1.3.3.36.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_PKRCNTFE | 400A509Ch |

#### 49.1.3.3.36.2 Function

The TRNGO Statistical Check Poker Count F and E Register is a read-only register used to read the final Poker test counts of Fh and Eh patterns. The Poker Eh Count increments each time a nibble of sample data is found to be Eh. The Poker Fh Count increments each time a nibble of sample data is found to be Fh. Note that this register is readable only if TRNGO\_MCTL[PRGM] is 0, otherwise zeroes will be read.

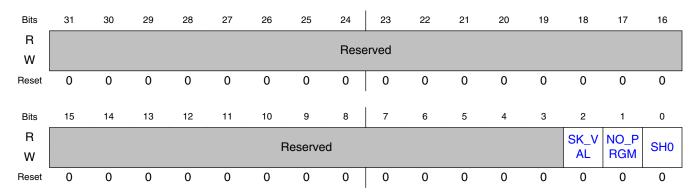
#### 49.1.3.3.36.3 Diagram



#### 49.1.3.3.36.4 Fields

| Field    | Function                                                                                   |
|----------|--------------------------------------------------------------------------------------------|
| 31-16    | Poker Fh Count. Total number of nibbles of sample data which were found to be Fh. Requires |
| PKR_F_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |
| 15-0     | Poker Eh Count. Total number of nibbles of sample data which were found to be Eh. Requires |
| PKR_E_CT | TRNG0_MCTL[PRGM] = 0.                                                                      |

## 49.1.3.3.37 TRNG0 Security Configuration (TRNG0\_SEC\_CFG)


#### 49.1.3.3.37.1 Address

| Register      | Offset    |
|---------------|-----------|
| TRNG0_SEC_CFG | 400A50A0h |

#### 49.1.3.3.37.2 Function

The TRNG0 Security Configuration Register is a read/write register used to control the test mode, programmability and state modes of the TRNG0. Many bits are place holders for this version. More configurability will be added here. Clears on asynchronous reset. For TRNG0 releases before 2014/July/01, offsets 0xA0 to 0xAC used to be 0xB0 to 0xBC respectively. So, update newer tests that use these registers, if hard coded.

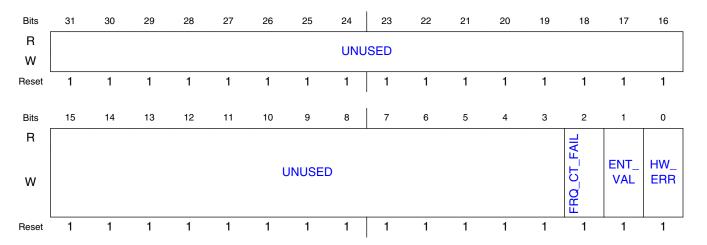
#### 49.1.3.3.37.3 Diagram



#### 49.1.3.3.37.4 Fields

| Field        | Function                                                                                                                                                                                                                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-3         | Reserved.                                                                                                                                                                                                                |
| _            |                                                                                                                                                                                                                          |
| 2            | Reserved. DRNG-specific, not applicable to this version.                                                                                                                                                                 |
| SK_VAL       | 0 - See DRNG version.<br>1 - See DRNG version.                                                                                                                                                                           |
| 1<br>NO_PRGM | If set, the TRNG registers cannot be programmed. That is, regardless of the TRNG access mode in the TRNG0 Miscellaneous Control Register.                                                                                |
| _            | 0 - Programability of registers controlled only by the TRNG0 Miscellaneous Control Register's access mode bit.     1 - Overides TRNG0 Miscellaneous Control Register access mode and prevents TRNG register programming. |
| 0            | Reserved. DRNG specific, not applicable to this version.                                                                                                                                                                 |
| SH0          | 0 - See DRNG version.<br>1 - See DRNG version.                                                                                                                                                                           |

## 49.1.3.3.38 TRNG0 Interrupt Control (TRNG0\_INT\_CTRL)


#### 49.1.3.3.38.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_INT_CTRL | 400A50A4h |

#### 49.1.3.3.38.2 Function

The TRNG0 Interrupt Control Register is a read/write register used to control the status for the (currently) three important interrupts that are generated by the TRNG. See TRNG0\_INT\_STATUS register description above. Each interrupt can be cleared by deasserting the corresponding bit in the TRNG0\_INT\_CTRL register. Only a new interrupt will reassert the corresponding bit in the status register. Even if the interrupt is cleared or masked, interrupt status information can be read from the TRNG0\_MCTL register.

#### 49.1.3.3.38.3 Diagram



#### 49.1.3.3.38.4 Fields

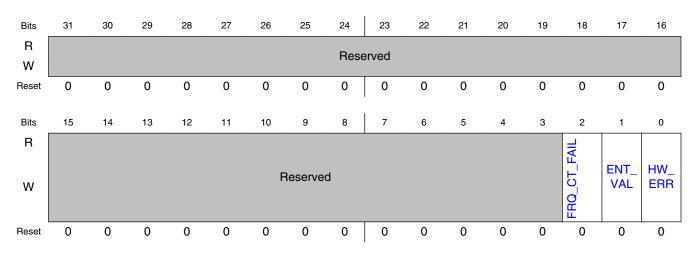
| Field       | Function                          |
|-------------|-----------------------------------|
| 31-3        | Reserved but writeable.           |
| UNUSED      |                                   |
| 2           | Same behavior as bit 0 above.     |
| FRQ_CT_FAIL | 0 - Same behavior as bit 0 above. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

| Field   | Function                                                                                             |
|---------|------------------------------------------------------------------------------------------------------|
|         | 1 - Same behavior as bit 0 above.                                                                    |
| 1       | Same behavior as bit 0 above.                                                                        |
| ENT_VAL | 0 - Same behavior as bit 0 above.<br>1 - Same behavior as bit 0 above.                               |
| 0       | Bit position that can be cleared if corresponding bit of TRNG0_INT_STATUS has been asserted.         |
| HW_ERR  | 0 - Corresponding bit of TRNG0_INT_STATUS cleared. 1 - Corresponding bit of TRNG0_INT_STATUS active. |

## 49.1.3.3.39 TRNG0 Mask (TRNG0\_INT\_MASK)


#### 49.1.3.3.39.1 Address

| Register       | Offset    |
|----------------|-----------|
| TRNG0_INT_MASK | 400A50A8h |

#### 49.1.3.3.39.2 Function

The TRNG0 Interrupt Mask Register is a read/write register used to disable/mask the status reporting of the (currently) three important interrupts that are generated by the TRNG. See TRNG0\_INT\_STATUS register description above. Each interrupt can be masked/disabled by de-asserting the corresponding bit in the TRNG0\_INT\_MASK register. Only setting this bit high will re-enable the interrupt in the status register. Even if the interrupt is cleared or masked, interrupt status information can be read from the TRNG0\_MCTL register.

#### 49.1.3.3.39.3 Diagram



#### 49.1.3.3.39.4 Fields

| Field       | Function                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------|
| 31-3        | Reserved.                                                                                                       |
| _           |                                                                                                                 |
| 2           | Same behavior as bit 0 above.                                                                                   |
| FRQ_CT_FAIL | 0 - Same behavior as bit 0 above.                                                                               |
|             | 1 - Same behavior as bit 0 above.                                                                               |
| 1           | Same behavior as bit 0 above.                                                                                   |
| ENT_VAL     | 0 - Same behavior as bit 0 above.                                                                               |
|             | 1 - Same behavior as bit 0 above.                                                                               |
| 0           | Bit position that can be cleared if corresponding bit of TRNG0_INT_STATUS has been asserted.                    |
| HW_ERR      | 0 - Corresponding interrupt of TRNG0_INT_STATUS is masked. 1 - Corresponding bit of TRNG0_INT_STATUS is active. |

### 49.1.3.3.40 TRNG0 Interrupt Status (TRNG0\_INT\_STATUS)

#### 49.1.3.3.40.1 Address

| Register         | Offset    |
|------------------|-----------|
| TRNG0_INT_STATUS | 400A50ACh |

#### 49.1.3.3.40.2 Function

The TRNG0 Interrupt Status Register is a read register used to control and provide status for the (currently) three important interrupts that are generated by the TRNG. The ipi\_rng\_int\_b interrupt signals that TRNG0 has either generated a Frequency Count Fail, Entropy Valid or Error Interrupt. The cause of the interrupt can be decoded by checking the least significant bits of the TRNG0\_INT\_STATUS register. Each interrupt can be temporarily cleared by de-asserting the corresponding bit in the TRNG0\_INT\_CTRL register. To mask the interrupts, clear the corresponding bits in the TRNG0\_INT\_MASK register. The description of each of the 3 interrupts is defined in the Block Guide under the TRNG0\_MCTL register description. Even if the interrupt is cleared or masked, interrupt status information can be read from the TRNG0\_MCTL register.

## 49.1.3.3.40.3 Diagram

| Bits  | 31       | 30 | 29 | 28 | 27 | 26 | 25      | 24 | 23  | 22 | 21 | 20 | 19 | 18   | 17   | 16  |
|-------|----------|----|----|----|----|----|---------|----|-----|----|----|----|----|------|------|-----|
| R     | Reserved |    |    |    |    |    |         |    |     |    |    |    |    |      |      |     |
| W     | neserved |    |    |    |    |    |         |    |     |    |    |    |    |      |      |     |
| Reset | 0        | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0   | 0  | 0  | 0  | 0  | 0    | 0    | 0   |
|       |          |    |    |    |    |    |         |    |     |    |    |    |    |      |      |     |
| Bits  | 15       | 14 | 13 | 12 | 11 | 10 | 9       | 8  | 7   | 6  | 5  | 4  | 3  | 2    | 1    | 0   |
| R     |          |    |    |    |    |    |         |    |     |    |    |    |    | FAIL | ENT_ | HW_ |
|       |          |    |    |    |    | _  |         |    |     |    |    |    |    |      | VAL  | ERR |
| 147   |          |    |    |    |    | F  | Reserve | d  |     |    |    |    |    |      |      |     |
| W     |          |    |    |    |    |    |         |    |     |    |    |    |    | FRO  |      |     |
|       | _        |    |    |    |    |    |         |    | T - |    |    |    |    |      | _    | _   |
| Reset | 0        | 0  | 0  | 0  | 0  | 0  | 0       | 0  | 0   | 0  | 0  | 0  | 0  | 0    | 0    | 0   |

## 49.1.3.3.40.4 Fields

| Field       | Function                                                                                                                         |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| 31-3        | Reserved.                                                                                                                        |
| _           |                                                                                                                                  |
| 2           | Read only: Frequency Count Fail. The frequency counter has detected a failure. This may be due to                                |
| FRQ_CT_FAIL | improper programming of the TRNG0_FRQMAX and/or TRNG0_FRQMIN registers, or a hardware failure in the ring oscillator.            |
|             | 0 - No hardware nor self test frequency errors. 1 - The frequency counter has detected a failure.                                |
| 1           | Read only: Entropy Valid. Will assert only if TRNG ACC bit is set, and then after an entropy value is                            |
| ENT_VAL     | generated. Will be cleared when TRNG0_ENT15 is read. (TRNG0_ENT0 through TRNG0_ENT14 should be read before reading TRNG0_ENT15). |
|             | 0 - Busy generation entropy. Any value read is invalid. 1 - TRNG can be stopped and entropy is valid if read.                    |
| 0           | Read: Error status. 1 = error detected. 0 = no error. Any HW error in the TRNG will trigger this interrupt.                      |
| HW_ERR      | 0 - no error<br>1 - error detected.                                                                                              |

## 49.1.3.3.41 TRNG0 Version ID (MS) (TRNG0\_VID1)

### 49.1.3.3.41.1 Address

| Register   | Offset    |
|------------|-----------|
| TRNG0_VID1 | 400A50F0h |

1283

### 49.1.3.3.41.2 Function

The TRNG0 Version ID Register is a read only register used to identify the version of the TRNG in use. This register as well as TRNG0\_VID2 should both be read to verify the expected version.

## 49.1.3.3.41.3 Diagram

| Bits  | 31            | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22                        | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|---------------|----|----|----|----|----|----|----|----|---------------------------|----|----|----|----|----|----|
| R     | TRNG0_IP_ID   |    |    |    |    |    |    |    |    |                           |    |    |    |    |    |    |
| W     |               |    |    |    |    |    |    |    |    |                           |    |    |    |    |    |    |
| Reset | 0             | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0                         | 1  | 1  | 0  | 0  | 0  | 0  |
|       |               |    |    |    |    |    |    |    |    |                           |    |    |    |    |    |    |
| Bits  | 15            | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6                         | 5  | 4  | 3  | 2  | 1  | 0  |
| R     | TRNG0_MAJ_REV |    |    |    |    |    |    |    |    | TRNG0_MAJ_REV TRNG0_MIN_R |    |    |    |    |    |    |
| W     |               |    |    |    |    |    |    |    |    |                           |    |    |    |    |    |    |
| Reset | 0             | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0                         | 0  | 0  | 0  | 0  | 0  | 0  |

#### 49.1.3.3.41.4 Fields

| Field             | Function                                   |  |  |  |
|-------------------|--------------------------------------------|--|--|--|
| 31-16             | Shows the IP ID.                           |  |  |  |
| TRNG0_IP_ID       | 000000000110000 - ID for TRNG.             |  |  |  |
| 15-8              | Shows the IP's Major revision of the TRNG. |  |  |  |
| TRNG0_MAJ_<br>REV | 00000001 - Major revision number for TRNG. |  |  |  |
| 7-0               | Shows the IP's Minor revision of the TRNG. |  |  |  |
| TRNG0_MIN_<br>REV | 00000000 - Minor revision number for TRNG. |  |  |  |

## 49.1.3.3.42 TRNG0 Version ID (LS) (TRNG0\_VID2)

#### 49.1.3.3.42.1 Address

| Register   | Offset    |
|------------|-----------|
| TRNG0_VID2 | 400A50F4h |

#### 49.1.3.3.42.2 Function

The TRNG0 Version ID Register LSB is a read only register used to identify the architecture of the TRNG in use. This register as well as TRNG0\_VID1 should both be read to verify the expected version.

#### 49.1.3.3.42.3 Diagram

| Bits  | 31 | 30 | 29 | 28     | 27    | 26 | 25 | 24 | 23 | 22 | 21  | 20     | 19    | 18  | 17 | 16 |
|-------|----|----|----|--------|-------|----|----|----|----|----|-----|--------|-------|-----|----|----|
| R     |    |    |    | TRNG   | 0_ERA |    |    |    |    |    | TF  | NG0_II | VTG_O | PT  |    |    |
| W     |    |    |    |        |       |    |    |    |    |    |     |        |       |     |    |    |
| Reset | 0  | 0  | 0  | 0      | 0     | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0     | 0   | 0  | 0  |
|       |    |    |    |        |       |    |    |    |    |    |     |        |       |     |    |    |
| Bits  | 15 | 14 | 13 | 12     | 11    | 10 | 9  | 8  | 7  | 6  | 5   | 4      | 3     | 2   | 1  | 0  |
| R     |    |    | TF | RNG0_E | CO_R  | EV |    |    |    |    | TRN | IG0_CC | NFIG_ | OPT |    |    |
| W     |    |    |    |        |       |    |    |    |    |    |     |        |       |     |    |    |
| Reset | 0  | 0  | 0  | 0      | 0     | 0  | 0  | 0  | 0  | 0  | 0   | 0      | 0     | 0   | 0  | 0  |

#### 49.1.3.3.42.4 Fields

| Field                | Function                                            |
|----------------------|-----------------------------------------------------|
| 31-24                | Shows the compile options for the TRNG.             |
| TRNG0_ERA            | 00000000 - COMPILE_OPT for TRNG.                    |
| 23-16                | Shows the integration options for the TRNG.         |
| TRNG0_INTG_<br>OPT   | 00000000 - INTG_OPT for TRNG.                       |
| 15-8                 | Shows the IP's ECO revision of the TRNG.            |
| TRNG0_ECO_<br>REV    | 00000000 - TRNG_ECO_REV for TRNG.                   |
| 7-0                  | Shows the IP's Configuaration options for the TRNG. |
| TRNG0_CO<br>NFIG_OPT | 00000000 - TRNG_CONFIG_OPT for TRNG.                |

## 49.1.4 Another TRNG usage example.

The TRNG can be used by a post processing pseudo-random number generator function. For example, TRNG can be used to seed a hardware or software based implementation of a DRBG defined by SP800-90.

# Chapter 50 Touch Sensing Input (TSI)

### 50.1 Introduction

The touch sensing input (TSI) module provides capacitive touch sensing detection with high sensitivity and enhanced robustness.

Each TSI pin implements the capacitive measurement by a current source scan, charging and discharging the electrode, once or several times. A reference oscillator ticks the scan time and stores the result in a 16-bit register when the scan completes. Meanwhile, an interrupt request is submitted to CPU for post-processing if TSI interrupt is enabled and DMA function is not selected. The TSI module can be periodically triggered to work in low power mode with ultra-low current adder and wake CPU at the end of scan or the conversion result is out of the range specified by TSI threshold. It provides a solid capacitive measurement module to the implementation of touch keyboard, rotaries and sliders.

## 50.1.1 Features

TSI features includes:

- Support up to 16 external electrodes
- Automatic detection of electrode capacitance across all operational power modes
- Internal reference oscillator for high-accuracy measurement
- Configurable software or hardware scan trigger
- Fully support NXP touch sensing software (TSS) library, see www.nxp.com/ touchsensing.
- Capability to wake MCU from low power modes
- Compensate for temperature and supply voltage variations
- High sensitivity change with 16-bit resolution register
- Configurable up to 4096 scan times.
- Support DMA data transfer
- The auxiliary noise detection mode supplies improved EMC immunity.

#### Introduction

For electrode design recommendations, refer to AN3863: Designing Touch Sensing Electrodes

## 50.1.2 Modes of operation

This module supports the following operation modes.

Mode **Description** Stop and low power stop TSI module is fully functional in all of the stop modes as long as TSI\_GENCS[STPE] is set. The channel specified by TSI\_DATA[TSICH] will be scanned upon the trigger. After scan finishes, either end-of-scan or out-of-range interrupt can be selected to bring MCU out of low power modes. Wait TSI module is fully functional in this mode. When a scan completes, TSI submits an interrupt request to CPU if the interrupt is enabled. Run TSI module is fully functional in this mode. When a scan completes, TSI submits an interrupt request to CPU if the interrupt is enabled.

Table 50-1. Operating modes

## 50.1.3 Block diagram

The following figure is a block diagram of the TSI module.

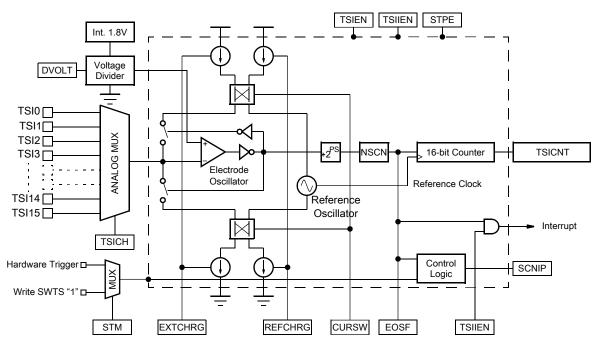



Figure 50-1. TSI module block diagram

KL28Z Reference Manual, Rev. 4, 06/2016

## 50.2 External signal description

The TSI module contains up to 16 external pins for touch sensing. The table found here describes each of the TSI external pins.

Table 50-2. TSI signal description

| Name      | Port | Direction | Function                                                                                                              | Reset state |
|-----------|------|-----------|-----------------------------------------------------------------------------------------------------------------------|-------------|
| TSI[15:0] | TSI  | I/O       | TSI capacitive pins. Switches driver that connects directly to the electrode pins TSI[15:0] can operate as GPIO pins. | I/O         |

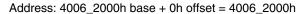
## 50.2.1 TSI[15:0]

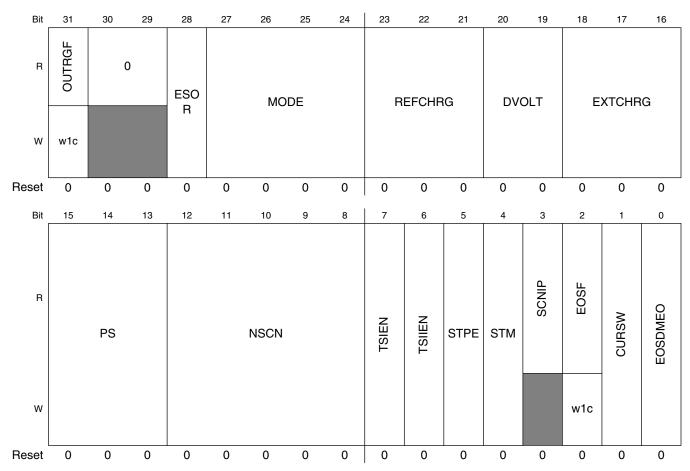
When TSI functionality is enabled, the TSI analog portion uses the corresponding channel to connect external on-board touch capacitors. The PCB connection between the pin and the touch pad must be kept as short as possible to reduce distribution capacity on board.

## 50.3 Register definition

This section describes the memory map and control/status registers for the TSI module.

TSI memory map


| Absolute<br>address<br>(hex) | Register name                                        | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------------|--------------------|--------|-------------|------------------|
| 4006_2000                    | TSI General Control and Status Register (TSI0_GENCS) | 32                 | R/W    | 0000_0000h  | 50.3.1/1287      |
| 4006_2004                    | TSI DATA Register (TSI0_DATA)                        | 32                 | R/W    | 0000_0000h  | 50.3.2/1292      |
| 4006_2008                    | TSI Threshold Register (TSI0_TSHD)                   | 32                 | R/W    | 0000_0000h  | 50.3.3/1293      |


## 50.3.1 TSI General Control and Status Register (TSIx\_GENCS)

This control register provides various control and configuration information for the TSI module.

## **NOTE**

When TSI is working, the configuration bits (GENCS[TSIEN], GENCS[TSIIEN], and GENCS[STM]) must not be changed. The EOSF flag is kept until the software acknowledge it.





## TSIx\_GENCS field descriptions

| Field             | Description                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31<br>OUTRGF      | Out of Range Flag.                                                                                                                                                                                                                                                                      |
|                   | This flag is set if the result register of the enabled electrode is out of the range defined by the TSI_THRESHOLD register. This flag is set only when TSI is configured in non-noise detection mode. It can be read once the CPU wakes. Write "1", when this flag is set, to clear it. |
| 30–29<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                    |
| 28<br>ESOR        | End-of-scan or Out-of-Range Interrupt Selection  This bit is used to select out-of-range or end-of-scan event to generate an interrupt.                                                                                                                                                 |
|                   | <ul><li>Out-of-range interrupt is allowed.</li><li>End-of-scan interrupt is allowed.</li></ul>                                                                                                                                                                                          |

Table continues on the next page...

## TSIx\_GENCS field descriptions (continued)

| Field            | Description                                                                                                                                                                                                                                                                                                                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27–24<br>MODE    | TSI analog modes setup and status bits.                                                                                                                                                                                                                                                                                      |
| MODE             | Set up TSI analog modes, especially, setting MODE[3:2] to not 2'b00 will configure TSI to noise detection modes. MODE[1:0] take no effect on TSI operation mode and should always write to 2'b00 for setting up. When reading this field will return the analog status. Refer to chapter "Noise detection mode" for details. |
|                  | 0000 Set TSI in capacitive sensing(non-noise detection) mode.                                                                                                                                                                                                                                                                |
|                  | O100 Set TSI analog to work in single threshold noise detection mode and the frequency limitation circuit is disabled.                                                                                                                                                                                                       |
|                  | Set TSI analog to work in single threshold noise detection mode and the frequency limitation circuit is enabled to work in higher frequencies operations.                                                                                                                                                                    |
|                  | 1100 Set TSI analog to work in automatic noise detection mode.                                                                                                                                                                                                                                                               |
| 23–21<br>REFCHRG | REFCHRG                                                                                                                                                                                                                                                                                                                      |
|                  | These bits indicate the reference oscillator charge and discharge current value.                                                                                                                                                                                                                                             |
|                  | 000 500 nA.                                                                                                                                                                                                                                                                                                                  |
|                  | 001 1 μA.                                                                                                                                                                                                                                                                                                                    |
|                  | 010 2 μΑ.                                                                                                                                                                                                                                                                                                                    |
|                  | 011 4 μΑ.                                                                                                                                                                                                                                                                                                                    |
|                  | 100 8 μA.<br>101 16 μA.                                                                                                                                                                                                                                                                                                      |
|                  | 110 32 μA.                                                                                                                                                                                                                                                                                                                   |
|                  | 111 64 μA.                                                                                                                                                                                                                                                                                                                   |
| 20–19            | DVOLT                                                                                                                                                                                                                                                                                                                        |
| DVOLT            | These bits indicate the oscillator's voltage rails as below.                                                                                                                                                                                                                                                                 |
|                  | 00 DV = $1.026 \text{ V}$ ; $V_P = 1.328 \text{ V}$ ; $V_m = 0.302 \text{ V}$ .                                                                                                                                                                                                                                              |
|                  | 01 DV = $0.592 \text{ V}$ ; $V_P = 1.111 \text{ V}$ ; $V_m = 0.519 \text{ V}$ .                                                                                                                                                                                                                                              |
|                  | 10 DV = 0.342 V; V <sub>P</sub> = 0.986 V; V <sub>m</sub> = 0.644 V.                                                                                                                                                                                                                                                         |
|                  | 11 DV = 0.197 V; V <sub>P</sub> = 0.914 V; V <sub>m</sub> = 0.716 V.                                                                                                                                                                                                                                                         |
| 18–16            | EXTCHRG                                                                                                                                                                                                                                                                                                                      |
| EXTCHRG          | These bits indicate the electrode oscillator charge and discharge current value.                                                                                                                                                                                                                                             |
|                  | 000 500 nA.                                                                                                                                                                                                                                                                                                                  |
|                  | 001 1 μA.                                                                                                                                                                                                                                                                                                                    |
|                  | 010 2 μA.                                                                                                                                                                                                                                                                                                                    |
|                  | 011 4 μA.                                                                                                                                                                                                                                                                                                                    |
|                  | 100 8 μA.                                                                                                                                                                                                                                                                                                                    |
|                  | 101 16 μA.                                                                                                                                                                                                                                                                                                                   |
|                  | 110 32 μA.                                                                                                                                                                                                                                                                                                                   |
|                  | 111 64 μA.                                                                                                                                                                                                                                                                                                                   |
| 15–13<br>PS      | PS  These bits indicate the prescalar of the output of electrode conillator.                                                                                                                                                                                                                                                 |
|                  | These bits indicate the prescaler of the output of electrode oscillator.                                                                                                                                                                                                                                                     |
|                  | 000 Electrode Oscillator Frequency divided by 1                                                                                                                                                                                                                                                                              |
|                  | 001 Electrode Oscillator Frequency divided by 2                                                                                                                                                                                                                                                                              |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

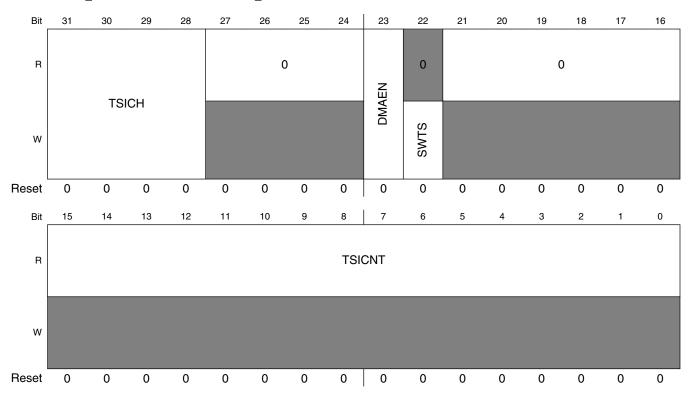
#### Register definition

## TSIx\_GENCS field descriptions (continued)

| Field      | Description                                                                                                                                                                                                                                           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 010 Electrode Oscillator Frequency divided by 4                                                                                                                                                                                                       |
|            | 011 Electrode Oscillator Frequency divided by 8                                                                                                                                                                                                       |
|            | 100 Electrode Oscillator Frequency divided by 16                                                                                                                                                                                                      |
|            | 101 Electrode Oscillator Frequency divided by 32                                                                                                                                                                                                      |
|            | 110 Electrode Oscillator Frequency divided by 64                                                                                                                                                                                                      |
|            | 111 Electrode Oscillator Frequency divided by 128                                                                                                                                                                                                     |
| 12–8       | NSCN                                                                                                                                                                                                                                                  |
| NSCN       | These bits indicate the scan number for each electrode. The scan number is equal to NSCN + 1, which allows the scan time ranges from 1 to 32. By default, NSCN is configured as 0, which asserts the TSI scans once on the selected eletrode channel. |
|            | 00000 Once per electrode                                                                                                                                                                                                                              |
|            | 00001 Twice per electrode                                                                                                                                                                                                                             |
|            | ·                                                                                                                                                                                                                                                     |
|            | 00010 3 times per electrode<br>00011 4 times per electrode                                                                                                                                                                                            |
|            | 00100 5 times per electrode                                                                                                                                                                                                                           |
|            | 00101 6 times per electrode                                                                                                                                                                                                                           |
|            | 00110 7 times per electrode                                                                                                                                                                                                                           |
|            | 00111 8 times per electrode                                                                                                                                                                                                                           |
|            | ·                                                                                                                                                                                                                                                     |
|            | 01000 9 times per electrode<br>01001 10 times per electrode                                                                                                                                                                                           |
|            | ·                                                                                                                                                                                                                                                     |
|            | · ·                                                                                                                                                                                                                                                   |
|            | ·                                                                                                                                                                                                                                                     |
|            | 01100 13 times per electrode                                                                                                                                                                                                                          |
|            | 01101 14 times per electrode                                                                                                                                                                                                                          |
|            | 01110 15 times per electrode                                                                                                                                                                                                                          |
|            | 01111 16 times per electrode                                                                                                                                                                                                                          |
|            | 10000 17 times per electrode                                                                                                                                                                                                                          |
|            | 10001 18 times per electrode                                                                                                                                                                                                                          |
|            | 10010 19 times per electrode                                                                                                                                                                                                                          |
|            | 10011 20 times per electrode                                                                                                                                                                                                                          |
|            | 10100 21 times per electrode                                                                                                                                                                                                                          |
|            | 10101 22 times per electrode                                                                                                                                                                                                                          |
|            | 10110 23 times per electrode                                                                                                                                                                                                                          |
|            | 10111 24 times per electrode                                                                                                                                                                                                                          |
|            | 11000 25 times per electrode                                                                                                                                                                                                                          |
|            | 11001 26 times per electrode                                                                                                                                                                                                                          |
|            | 11010 27 times per electrode                                                                                                                                                                                                                          |
|            | 11011 28 times per electrode                                                                                                                                                                                                                          |
|            | 11100 29 times per electrode                                                                                                                                                                                                                          |
|            | 11101 30 times per electrode                                                                                                                                                                                                                          |
|            | 11110 31 times per electrode                                                                                                                                                                                                                          |
|            | 11111 32 times per electrode                                                                                                                                                                                                                          |
| 7<br>TOITN | Touch Sensing Input Module Enable                                                                                                                                                                                                                     |
| TSIEN      | This bit enables TSI module.                                                                                                                                                                                                                          |

Table continues on the next page...

1291


## TSIx\_GENCS field descriptions (continued)

| Field        | Description                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 0 TSI module disabled.                                                                                                                                                           |
|              | 1 TSI module enabled.                                                                                                                                                            |
| 6<br>TSIIEN  | Touch Sensing Input Interrupt Enable                                                                                                                                             |
| TOTILITY     | This bit enables TSI module interrupt request to CPU when the scan completes. The interrupt will wake MCU from low power mode if this interrupt is enabled.                      |
|              | <ul><li>TSI interrupt is disabled.</li><li>TSI interrupt is enabled.</li></ul>                                                                                                   |
| 5<br>STPE    | TSI STOP Enable                                                                                                                                                                  |
|              | This bit enables TSI module function in low power modes (stop, VLPS, LLS and VLLS{3,2,1}).                                                                                       |
|              | 0 TSI is disabled when MCU goes into low power mode.                                                                                                                             |
|              | 1 Allows TSI to continue running in all low power modes.                                                                                                                         |
| 4<br>STM     | Scan Trigger Mode                                                                                                                                                                |
|              | This bit specifies the trigger mode. User is allowed to change this bit when TSI is not working in progress.                                                                     |
|              | O Software trigger scan.                                                                                                                                                         |
|              | 1 Hardware trigger scan.                                                                                                                                                         |
| 3<br>SCNIP   | Scan In Progress Status                                                                                                                                                          |
|              | This read-only bit indicates if scan is in progress. This bit will get asserted after the analog bias circuit is stable after a trigger and it changes automatically by the TSI. |
|              | 0 No scan in progress.                                                                                                                                                           |
|              | 1 Scan in progress.                                                                                                                                                              |
| 2<br>EOSF    | End of Scan Flag                                                                                                                                                                 |
|              | This flag is set when all active electrodes are finished scanning after a scan trigger. Write "1", when this flag is set, to clear it.                                           |
|              | 0 Scan not complete.                                                                                                                                                             |
|              | 1 Scan complete.                                                                                                                                                                 |
| 1<br>CURSW   | CURSW                                                                                                                                                                            |
|              | This bit specifies if the current sources of electrode oscillator and reference oscillator are swapped.                                                                          |
|              | 0 The current source pair are not swapped.                                                                                                                                       |
|              | 1 The current source pair are swapped.                                                                                                                                           |
| 0<br>EOSDMEO | End-of-Scan DMA Transfer Request Enable Only                                                                                                                                     |
| EOSDIVIEO    | This bit makes simultaneous DMA request at End-of-Scan and Interrupt at Out-of-Range possible.                                                                                   |
|              | EOSDMEO has precedence to ESOR when trying to set this bit and ESOR bit. When EOSDMEO = 1, End-of-Scan will generate DMA request and Out-of-Range will generate interrupt.       |
|              | 0 Do not enable the End-of-Scan DMA transfer request only. Depending on ESOR state, either Out-of-Range or End-of-Scan can trigger a DMA transfer request and interrupt.         |
|              | Only the End-of-Scan event can trigger a DMA transfer request. The Out-of-Range event only and always triggers an interrupt if TSIIE is set.                                     |

KL28Z Reference Manual, Rev. 4, 06/2016

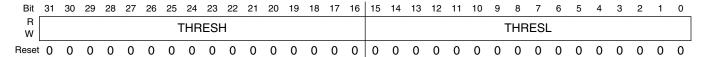
## 50.3.2 TSI DATA Register (TSIx\_DATA)

Address: 4006\_2000h base + 4h offset = 4006\_2004h



TSIx\_DATA field descriptions

| Field          | Description                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–28<br>TSICH | TSICH                                                                                                                                                                                                                                                                            |
|                | These bits specify current channel to be measured. In hardware trigger mode (TSI_GENCS[STM] = 1), the scan will not start until the hardware trigger occurs. In software trigger mode (TSI_GENCS[STM] = 0), the scan starts immediately when TSI_DATA[SWTS] bit is written by 1. |
|                | 0000 Channel 0.                                                                                                                                                                                                                                                                  |
|                | 0001 Channel 1.                                                                                                                                                                                                                                                                  |
|                | 0010 Channel 2.                                                                                                                                                                                                                                                                  |
|                | 0011 Channel 3.                                                                                                                                                                                                                                                                  |
|                | 0100 Channel 4.                                                                                                                                                                                                                                                                  |
|                | 0101 Channel 5.                                                                                                                                                                                                                                                                  |
|                | 0110 Channel 6.                                                                                                                                                                                                                                                                  |
|                | 0111 Channel 7.                                                                                                                                                                                                                                                                  |
|                | 1000 Channel 8.                                                                                                                                                                                                                                                                  |
|                | 1001 Channel 9.                                                                                                                                                                                                                                                                  |
|                | 1010 Channel 10.                                                                                                                                                                                                                                                                 |
|                | 1011 Channel 11.                                                                                                                                                                                                                                                                 |
|                | 1100 Channel 12.                                                                                                                                                                                                                                                                 |
|                | 1101 Channel 13.                                                                                                                                                                                                                                                                 |


Table continues on the next page...

## TSIx\_DATA field descriptions (continued)

| Field             | Description                                                                                                                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 1110 Channel 14.<br>1111 Channel 15.                                                                                                                                                                                                                                                                           |
| 27–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                           |
| 23<br>DMAEN       | DMA Transfer Enabled  This bit is used together with the TSI interrupt enable bits(TSIIE, ESOR) to generate a DMA transfer request instead of an interrupt.                                                                                                                                                    |
|                   | <ul> <li>Interrupt is selected when the interrupt enable bit is set and the corresponding TSI events assert.</li> <li>DMA transfer request is selected when the interrupt enable bit is set and the corresponding TSI events assert.</li> </ul>                                                                |
| 22<br>SWTS        | Software Trigger Start  This write-only bit is a software start trigger. When STM bit is clear, write "1" to this bit will start a scan. The electrode channel to be scanned is determinated by TSI_DATA[TSICH] bits.  0 No effect. 1 Start a scan to determine which channel is specified by TSI_DATA[TSICH]. |
| 21–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                           |
| TSICNT            | TSI Conversion Counter Value  These read-only bits record the accumulated scan counter value ticked by the reference oscillator.                                                                                                                                                                               |

# 50.3.3 TSI Threshold Register (TSIx\_TSHD)

Address: 4006\_2000h base + 8h offset = 4006\_2008h



#### TSIx\_TSHD field descriptions

| Field           | Description                                                        |
|-----------------|--------------------------------------------------------------------|
| 31–16<br>THRESH | TSI Wakeup Channel High-threshold                                  |
|                 | This half-word specifies the high threshold of the wakeup channel. |
| THRESL          | TSI Wakeup Channel Low-threshold                                   |
|                 | This half-word specifies the low threshold of the wakeup channel.  |

# 50.4 Functional description

KL28Z Reference Manual, Rev. 4, 06/2016

## 50.4.1 Capacitance measurement

The electrode pin capacitance measurement uses a dual oscillator approach. The frequency of the TSI electrode oscillator depends on the external electrode capacitance and the TSI module configuration. After going to a configurable prescaler, the TSI electrode oscillator signal goes to the input of the module counter. The time for the module counter to reach its module value is measured using the TSI reference oscillator. The measured electrode capacitance is directly proportional to the time.

#### 50.4.1.1 TSI electrode oscillator

The TSI electrode oscillator circuit is illustrated in the following figure. A configurable constant current source is used to charge and discharge the external electrode capacitance. A buffer hysteresis defines the oscillator delta voltage. The delta voltage defines the margin of high and low voltage which are the reference input of the comparator in different time.

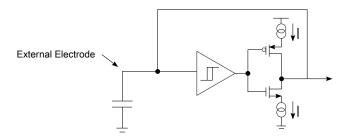



Figure 50-2. TSI electrode oscillator circuit

The current source applied to the pad capacitance is controlled by the GENCS[EXTCHRG]. The hysteresis delta voltage is defined in the module electrical specifications present in the device Data Sheet. The figure below shows the voltage amplitude waveform of the electrode capacitance charging and discharging with a programmable current.

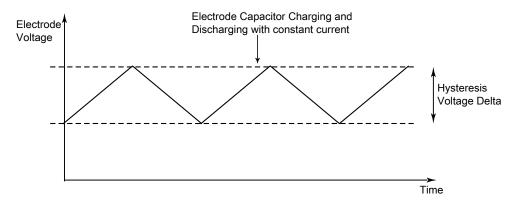



Figure 50-3. TSI electrode oscillator chart

The oscillator frequency is give by the following equation

$$F_{elec} = \frac{I}{2 * C_{elec} * \Delta V}$$

**Equation 4. TSI electrode oscillator frequency** 

Where:

I: constant current

C<sub>elec</sub>: electrode capacitance

ΔV: Hysteresis delta voltage

So by this equation, for example, an electrode with  $C_{\rm elec}$ = 20 pF, with a current source of I = 16  $\mu$ A and  $\Delta$ V = 600 m V have the following oscillation frequency:

$$F_{elec} = \frac{16 \ \mu A}{2 * 20 pF * 600 mV} = 0.67 MHz$$

## Equation 5. TSI electrode oscillator frequency

The current source is used to accommodate the TSI electrode oscillator frequency with different electrode capacitance sizes.

## 50.4.1.2 Electrode oscillator and counter module control

The TSI oscillator frequency signal goes through a prescaler defined by the GENCS[PS] and then enters in a modulus counter. GENCS[NSCN] defines the maximum count value of the modulus counter.

KL28Z Reference Manual, Rev. 4, 06/2016

#### **Functional description**

The pin capacitance sampling time is given by the time the module counter takes to go from 0 to its maximum value, defined by NSCN. The electrode sample time is expressed by the following equation:

$$T_{cap\_samp} = \frac{PS * NSCN}{F_{elec}}$$

Using Equation 1

$$T_{cap\_samp} = \frac{2 * PS * NSCN * C_{elec} * \Delta V}{I}$$

### **Equation 6. Electrode sampling time**

Where:

PS: prescaler value

NSCN: module counter maximum value

I: constant current

C<sub>elec</sub>: electrode capacitance

ΔV: Hysteresis delta voltage

By this equation we have that an electrode with C = 20 pF, with a current source of I = 16  $\mu A$  and  $\Delta V = 600$  mV, PS = 2 and NSCN = 16 have the following sampling time:

$$T_{cap\_samp} = \frac{2*2*16*20pF*600mV}{16\mu A} = 48\mu s$$

### 50.4.1.3 TSI reference oscillator

The TSI reference oscillator has the same topology of the TSI electrode oscillator. The TSI reference oscillator instead of using an external capacitor for the electrode oscillator has an internal reference capacitor.

The TSI reference oscillator has an independent programmable current source controlled by GENCS[REFCHRG].

The reference oscillator frequency is given by the following equation:

$$F_{ref\_osc} = \frac{I_{ref}}{2 \cdot C_{ref} \cdot \Delta V}$$

## Equation 7. TSI reference oscillator frequency

Where:

1297

C<sub>ref</sub>: Internal reference capacitor

I<sub>ref</sub>: Reference oscillator current source

 $\Delta V$ : Hysteresis delta voltage

Considering  $C_{ref} = 1.0 \text{ pF}$ ,  $I_{ref} = 12 \mu A$  and  $\Delta V = 600 \text{ mV}$ , follows

$$F_{ref\_osc} = \frac{12\mu A}{2 * 1.0 pF * 600 mV} = 10.0 MHz$$

#### 50.4.2 TSI measurement result

The capacitance measurement result is defined by the number of TSI reference oscillator periods during the sample time and is stored in the TSICHnCNT register.

$$TSICHnCNT = T_{cap\_samp} * F_{ref\_osc}$$

Using Equation 2 and Equation 1 follows:

TSICHnCNT = 
$$\frac{I_{ref} * PS * NSCN}{C_{ref} * I_{elec}} * C_{elec}$$

#### **Equation 8. Capacitance result value**

In the example where  $F_{ref\_osc} = 10.0$  MHz and  $T_{cap\_samp} = 48$   $\mu s$ , TSICHnCNT = 480

## 50.4.3 Enable TSI module

The TSI module can be fully functional in run, wait and low power modes. The TSI\_GENCS[TSIEN] bit must be set to enable the TSI module in run and wait mode. When TSI\_GENCS[STPE] bit is set, it allows the TSI module to work in low power mode.

## 50.4.4 Software and hardware trigger

The TSI module allows a software or hardware trigger to start a scan. When a software trigger is applied (TSI\_GENCS[STM] bit clear), the TSI\_GENCS[SWTS] bit must be written "1" to start the scan electrode channel that is identified by TSI\_DATA[TSICH]. When a hardware trigger is applied (TSI\_GENCS[STM] bit set), the TSI will not start scanning until the hardware trigger arrives. The hardware trigger is different depending on the MCU configuration. Generally, it could be an event that RTC overflows. See chip configuration section for details.

#### **50.4.5** Scan times

The TSI provides multi-scan function. The number of scans is indicated by TSI\_GENCS[NSCN] that allow the scan number from 1 to 32. When TSI\_GENCS[NSCN] is set to 0 (only once), the single scan is engaged. The 16-bit counter accumulates all scan results until the NSCN time scan completes, and users can read TSI\_DATA[TSICNT] to get this accumulation. When DMA transfer is enabled, the counter values can also be read out by DMA engine.

## 50.4.6 Clock setting

TSI is built with dual oscillator architecture. In normal sensing application, the reference oscillator clock is the only clock source for operations. The reference clock is used to measure the electrode oscillator by ticking a 16-bit counter. The reference oscillator frequency depends on the current source setting. Please refer to the Current source for more details.

The output of electrode oscillator has several prescalers up to 128 indicated by TSI\_GENCS[PS]. This allows a flexible counter configuration for different electrode oscillator frequency.

## 50.4.7 Reference voltage

The TSI module offers a internal reference voltage for both electrode oscillator and reference oscillator. The internal reference voltage can work in low power modes even when the MCU regulator is partially powered down, which is ideally for low-power touch detection.

The charge and discharge difference voltage is configurable upon the setting of TSI\_GENCS[DVOLT]. The following table shows the all the delta voltage configurations.

#### NOTE

This table doesn't apply to noise mode, see noise mode sections for its configuration.

Table 50-3. Delta voltage configuration

| DVOLT | V <sub>p</sub> (V) | V <sub>m</sub> (V) | Δ <b>V</b> ( <b>V</b> ) |
|-------|--------------------|--------------------|-------------------------|
| 00    | 1.328              | 0.302              | 1.026                   |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

Table 50-3. Delta voltage configuration (continued)

| DVOLT | V <sub>p</sub> (V) | V <sub>m</sub> (V) | ∆V (V) |
|-------|--------------------|--------------------|--------|
| 01    | 1.111              | 0.519              | 0.592  |
| 10    | 0.986              | 0.644              | 0.342  |
| 11    | 0.914              | 0.716              | 0.198  |

#### 50.4.8 Current source

The TSI module supports eight different current source power to increment from 500 nA to 64 µA. TSI\_GENCS[EXTCHRG] determines the current of electrode oscillator that charges and discharges external electrodes. The TSI\_GENCS[REFCHRG] determines the current of reference oscillator on which the internal reference clock depends. The lower current source takes more time for charge and discharge, which is useful to detect highaccuracy change. The higher current source takes less time, which can be used to charge a big electrode by less power consumption.

TSI\_GENCS[CURSW] allows the current source to swap, so that the reference oscillator and electrode oscillator use the opposite current sources. When TSI GENCS[CURSW] is set and the current sources are swapped, TSI\_GENCS[EXTCHRG] and TSI\_GENCS[REFCHRG] still control the corresponding current sources, that is, TSI GENCS[EXTCHRG] controls the reference oscillator current and TSI\_GENCS[REFCHRG] controls the electrode oscillator current.

#### 50.4.9 End of scan

As a scan starts, [SCNIP] bit is set to indicate scan is in progress. When the scan completes, the [EOSF] bit is set. Before clearing the [EOSF] bit, the value in TSI\_DATA[TSICNT] must be read. If the TSI\_GENCS[TSIIEN] and TSI GENCS[ESOR] are set and TSI GENCS[DMAEN] is not set, an interrupt is submitted to CPU for post-processing immediately. The interrupt is also optional to wake MCU to execute ISR if it is in low power mode. When DMA function is enabled by setting TSI\_GENCS[TSIIEN] and TSI\_GENCS[ESOR], as soon as scan completes, a DMA transfer request is asserted to DMA controller for data movement, generally, DMA engine will fetch TSI conversion result from TSI\_DATA register, store it to other memory space and then refresh the TSI scan channel index(TSI DATA[TSICH]) for next loop. When DMA transfer is done, TSI\_GENCS[EOSF] is cleared automatically.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 1299

## 50.4.10 Out-of-range interrupt

If enabled, TSI will scan the electrode specified by TSI\_DATA[TSICH] as soon as the trigger arrives. The TSI\_GENCS[OUTRGF] flag generates a TSI interrupt request if the TSI\_GENCS[TSIIE] bit is set and GENCS[ESOR] bit is cleared. With this configuration, after the end-of-electrode scan, the electrode capacitance will be converted and stored to the result register TSI\_DATA[TSICNT], the out-of-range interrupt is only requested if there is a considerable capacitance change defined by the TSI\_TSHD. For instance, if in low power mode the electrode capacitance does not vary, the out-of-range interrupt does not interrupt the CPU. This interrupt will not happen in noise detection mode. It is worthy to note that when the counter value reaches 0xFFFF is treated as an extreme case the out-of-range will not happen. Also in noise detection mode, the out-of-range will not assert either.

## 50.4.11 Wake up MCU from low power modes

In low power modes, once enabled by TSI\_GENCS[STPE] and TSI\_GENCS[TSIIE], TSI can bring MCU out of its low power modes(STOP, VLPS, VLLS,etc) by either end of scan or out of range interrupt, that is, if TSI\_GENCS[ESOR] is set, end of scan interrupt is selected and otherwise, out of range is selected.

## 50.4.12 DMA function support

Transmit by DMA is supported only when TSI\_DATA[DMAEN] is set. A DMA transfer request is asserted when all the flags based on TSI\_GENCS[ESOR] settings and TSI\_GENCS[TSIIE] are set. Then the on-chip DMA controller detects this request and transfers data between memory space and TSI register space. After the data transfer, DMA DONE is asserted to clear TSI\_GENCS[EOSF] automatically. This function is normally used by DMA controller to get the conversion result from TSI\_DATA[TSICNT] upon a end-of-scan event and then refresh the channel index(TSI\_DATA[TSICH]) for next trigger.

#### 50.4.13 Noise detection mode

The noise detection mode change the circuit configuration as shown in the following figure. With this configuration, it is possible to detect touch with high levels of EMC noise present. To enter the test mode, see TSI\_GENCS[MODE] register field.

In noise detection mode the reference oscillator has the same configuration except the output goes to Counter2 and this counter will have its maximum count set by NSCNx2<sup>(PS)</sup>. This means this oscillator will setup the noise detection mode sense duration.

The blocks of external oscillator is changed and instead of an oscillator the circuit implements an RF amplitude detection. The threshold for this amplitude detection is set by DVOLT register bits.

Also the external voltage is biased by vmid voltage with a Rs series resistance.

The vmid voltage is defined as V(vmid) = (V(vp) + V(vm))/2.

The Rs value is defined by TSI\_GENCS[EXTCHRG] register bits.

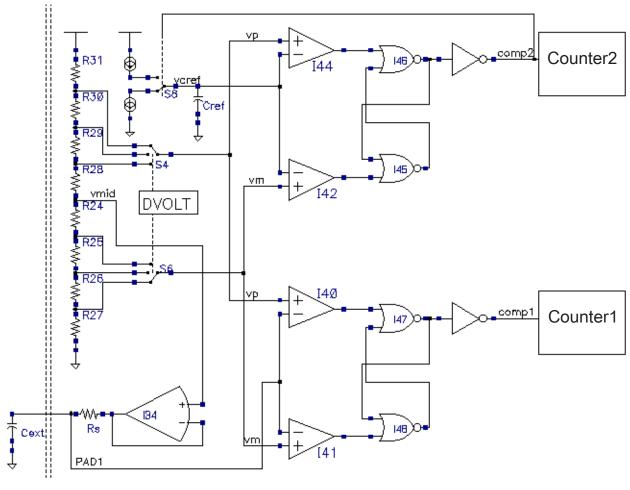



Figure 50-4. TSI circuit in noise detection mode

To determine the noise level the below algorithm can be used:

- 1. Initialize Rs = maxrs; Dvolt = minDv (set other configurations also)
- 2. Perform a noise cycle.

#### **Functional description**

- 3. If TSIcounter < 3, go to step 8
- 4. If Rs = minrs, go to step 6.
- 5. Reduce value of Rs. go to step 2
- 6. If Dvolt = maxDv, go to END
- 7. Increase value of Dvolt. Set Rs = maxrs. go to step 2
- 8. If Rs > minrs, (Reduce value of Rs, go to END)
- 9. Rs = maxrs, reduce value of Dvolt.
- 10. END Get value of Rs and Dvolt.

One example of noise detection mode is shown in the following figure. in this figure the TSI is working in capacitive mode until 28  $\mu$ s (T1) when it is changed to noise detection mode. In noise detection mode the selected pad is biased with 0.815V and all AC waveform in this pad is caused by a noise source external to the MCU.

It is possible to observe in the following figure that, in noise detection mode, the clkref output has the peak detection and the number of detected peaks can be counted or used by digital block. The clkext output has the internal oscillator output and can be used to set the maximum noise detection time window.

The waveform of the following figure shows two operations during noise detection mode:

- The V(vp) and V(vm) thresholds are changed in 34.4  $\mu s$  (T2).
- The Rs series resistance value is changed between 184 k $\Omega$  (TSI\_GENCS[EXTCHRG]=011b), 77 k $\Omega$  (TSI\_GENCS[EXTCHRG]=100) and 32 k $\Omega$ (TSI\_GENCS[EXTCHRG] = 101). Because of this Rs change the amplitude of noise waveform change also.

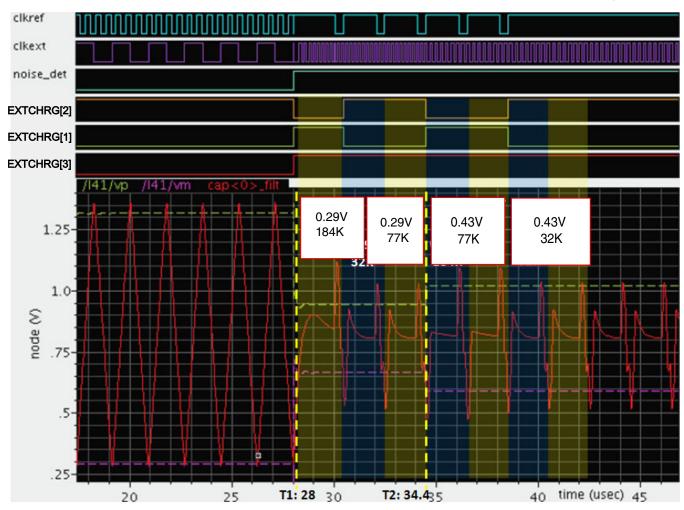



Figure 50-5. TSI noise detection mode waveform

#### 50.4.13.1 **Automatic noise detection modes**

This mode is setup by MODE[3:2] to 2'b11 (noise mode 3). In this mode the thresholds are incremented internally by the module until the point that there is no noise voltage trepassing the threshold.

The following diagram shows how it is done. The threshold comparator output goes to a counter and as the DVOLT control bits are increased the DVOLT thresholds are increased as well. The four bits are counted until 1111 (=15) and the counter is stop with this maximum value.

KL28Z Reference Manual, Rev. 4, 06/2016 **NXP Semiconductors** 1303

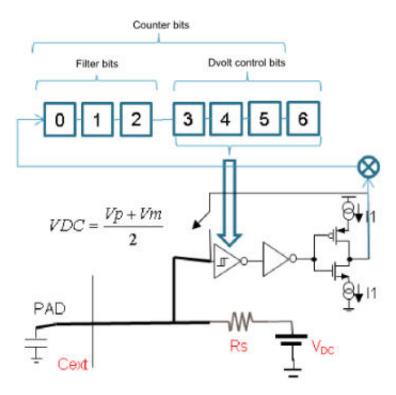



Figure 50-6. Block diagram automatic noise threshold operation

The signals that have different behavior in this noise mode (wrt capacitive mode) are shown in the following table.

Table 50-4. Signal properties in automatic noise operation mode

| Name       | Function                                                                                                                                               | I/O type | Power Up/Reset state |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| EXTCHRG[0] | In this operation mode this bits selects the series resistance.  0 - uses Rs=32 kΩ  1 - uses Rs=187 kΩ Independent of this bit selection the threshold | I        | 0                    |
| DVOLT[1:0] | Select voltage rails of the internal oscillator                                                                                                        | I        | 00                   |
| MODE[3:0]  | DVOLT counter bits output.  This register content is reset always the MODE[3:2] is not 11, and after beginning of automatic noise mode operatio        | 0        | 0000                 |

KL28Z Reference Manual, Rev. 4, 06/2016

## 50.4.13.2 Single threshold noise modes

These modes reset by MODE[3:2]=01 and 10. The difference between these two modes is that in mode 2 (MODE[3:2]=10) there is a frequency limitation circuit that enables the circuit to operate in higher frequencies. In mode 1 (MODE[3:2]=01) this frequency limitation circuit is not enabled.

In this mode the thresholds are set by user via register bits as described in the following table.

During these modes the internal oscillator rails are set to the maximum (equivalent to DVOLT[1:0]=00).

Table 50-5. Signal properties in single noise modes (1,2)

| Name                     | Function                                                                 | I/O type | Power up / reset |
|--------------------------|--------------------------------------------------------------------------|----------|------------------|
| MODE[3:2]                | 01 or 10- Single thrshold noise mode operation.                          | I        | 00               |
| DVOLT[1:0], EXTCHRG[2:1] | In this operation mode these 4 bits are used select the noise threshold. | I        | XXXX             |
|                          | 0000 - DVpm = 0.038 V, Vp = 0.834 V, Vm = 0.796 V                        |          |                  |
|                          | 0001 - DVpm = 0.050 V, Vp = 0.830 V, Vm = 0.790 V                        |          |                  |
|                          | 0010 - DVpm = 0.066 V, Vp = 0.848 V, Vm = 0.782 V                        |          |                  |
|                          | 0011 - DVpm = 0.087 V, Vp = 0.858 V, Vm = 0.772 V                        |          |                  |
|                          | 0100 - DVpm = 0.114 V, Vp = 0.872 V, Vm = 0.758 V                        |          |                  |
|                          | 0101 - DVpm = 0.150 V, Vp = 0.890 V, Vm = 0.740 V                        |          |                  |
|                          | 0110 - DVpm = 0.197 V, Vp = 0.914 V, Vm = 0.716 V                        |          |                  |
|                          | 0111 - DVpm = 0.260 V, Vp = 0.945 V, Vm = 0.685 V                        |          |                  |
|                          | 1000 - DVpm = 0.342 V, Vp = 0.986 V, Vm = 0.644 V                        |          |                  |
|                          | 1001 - DVpm = 0.450 V, Vp = 1.040 V, Vm = 0.590 V                        |          |                  |
|                          | 1010 - DVpm = 0.592 V, Vp = 1.111 V, Vm = 0.519 V                        |          |                  |
|                          | 1011 - DVpm = 0.780 V, Vp = 1.205 V, Vm = 0.425 V                        |          |                  |
|                          | 1100 - DVpm = 1.026 V, Vp = 1.328 V, Vm = 0.302 V                        |          |                  |

Table continues on the next page...

#### **Functional description**

Table 50-5. Signal properties in single noise modes (1,2) (continued)

| Name       | Function                                                                                     | I/O type | Power up / reset |
|------------|----------------------------------------------------------------------------------------------|----------|------------------|
|            | 1101 - DVpm = 1.350 V, Vp = 1.490 V, Vm = 0.140 V                                            |          |                  |
|            | 1110 - DVpm = 1.630 V, Vp = 1.630 V, Vm = 0 V                                                |          |                  |
|            | 1111 - DVpm = 1.630 V, Vp = 1.630 V, Vm = 0 V                                                |          |                  |
| EXTCHRG[0] | In this operation mode this bits selects the series resistance.                              | I        | xx               |
|            | 0 - uses Rs = 32 kΩ.                                                                         |          |                  |
|            | 1- uses Rs = 187 k $\Omega$ .                                                                |          |                  |
|            | Independent of this bit selection the threshold 15 is done with Rs = $5.5 \text{ k}\Omega$ . |          |                  |

## **Chapter 51 Time Stamp Timer Module (TSTMR)**

#### 51.1 Introduction

The Time Stamp Timer (TSTMR) is a 56-bit clock cycle counter, reset by system reset.

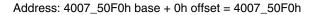
#### 51.1.1 Features

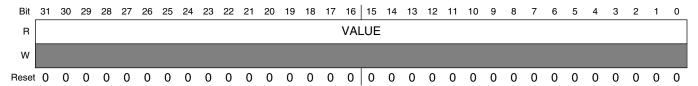
• Free-running Time Stamp Timer

## 51.2 Memory map and register definition

The TSTMR module contains a 56-bit clock cycle counter, which is reset by system reset.

#### **NOTE**


The TSTMR registers can be read with 32-bit accesses only.


## **TSTMR** memory map

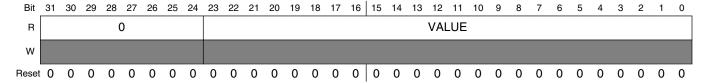
| Absolute<br>address<br>(hex) | Register name                             | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_50F0                    | Time Stamp Timer Register Low (TSTMR0_L)  | 32                 | R      | 0000_0000h  | 51.2.1/1308      |
| 4007_50F4                    | Time Stamp Timer Register High (TSTMR0_H) | 32                 | R      | 0000_0000h  | 51.2.2/1308      |

## 51.2.1 Time Stamp Timer Register Low (TSTMRx\_L)

The Time Stamp Timer is a 56-bit clock cycle counter, reset by system reset. It is readable by way of the TSTMRH and TSTMRL registers. Only 32-bit read accesses are allowed. Any other access will generate a transfer error.






#### TSTMRx\_L field descriptions

| Field | Description                                                                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VALUE | Time Stamp Timer Low                                                                                                                                                                                                                                                       |
|       | Lower 32 bits of the 56-bit time stamp value. The software must read the TSTMR_L first, followed by a read to TSTMR_H to retrieve the complete value. The all-zero reset value may not be readable because the value will increment before it can be read by the software. |

## 51.2.2 Time Stamp Timer Register High (TSTMRx\_H)

The Time Stamp Timer is a 56-bit counters clock cycle counter, reset by system reset. It is readable by way of the TSTMR\_H and TSTMR\_L registers. Only 32-bit read accesses are allowed. Any other access will generate a transfer error.

Address: 4007\_50F0h base + 4h offset = 4007\_50F4h



#### TSTMRx\_H field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–24<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| VALUE             | Time Stamp Timer High                                                                |

Table continues on the next page...

1309

#### TSTMRx\_H field descriptions (continued)

| Field | Description                                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Upper 24 bits of the 56-bit time stamp value The software must read the TSTMR_L first, followed by a read to TSTMR_H to retrieve the complete value. The all-zero reset value may not be readable because the value will increment before it can be read by the software. |

## 51.3 Functional description

The TSTMR module is a free running incrementing counter that starts running after system reset de-assertion and can be read at any time by the software for determining the software ticks. However, the software must follow the read sequence as mentioned in the TSTMR register descriptions for correctly reading the TSTMR value. The TSTMR is a 56-bit counter and hence requires two 32-bit reads to read the full value. The TSTMR runs off the 1 MHz clock and resets on every system reset. The counter only stops when the clock to the TSTMR is disabled.

For the chip-specific implementation details of this module's instances, see the chip configuration chapter.

Functional description

# Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

#### 52.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

This chapter describes the USB full speed OTG controller. The OTG implementation in this module provides limited host functionality and device solutions for implementing a USB 2.0 full-speed/low-speed compliant peripheral. The OTG logic implements features required by the *On-The-Go and Embedded Host Supplement to the USB 2.0 Specification* (usb.org, 2008). The USB full speed controller interfaces to a USBFS/LS transceiver.

#### NOTE

This chapter describes the following registers that have similar names: USB\_OTGCTL, USB\_CTL, USB\_CTRL, and USB\_CONTROL. These are all separate registers.

#### 52.1.1 References

The following publications are referenced in this document. For copies or updates to these specifications, see the USB Implementers Forum, Inc. website at http://www.usb.org.

- Universal Serial Bus Specification, Revision 2.0, 2000, with amendments including those listed below
- Errata for "USB Revision 2.0 April 27, 2000" as of 12/7/2000
- Errata for "USB Revision 2.0 April 27, 2000" as of May 28, 2002

#### Introduction

- Pull-up / Pull-down Resistors (USB Engineering Change Notice)
- Suspend Current Limit Changes (USB Engineering Change Notice)
- Device Capacitance (USB Engineering Change Notice)
- *USB 2.0 Connect Timing Update* (USB Engineering Change Notice as of April 4, 2013)
- USB 2.0 VBUS Max Limit (USB Engineering Change Notice)
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification, Revision 2.0 version 1.1a, July 27, 2012
- Maximum VBUS Voltage (USB OTGEH Engineering Change Notice)
- Universal Serial Bus Micro-USB Cables and Connectors Specification, Revision 1.01, 2007

#### 52.1.2 USB—Overview

The USB is a cable bus that supports data exchange between a host computer and a wide range of simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a host-scheduled, token-based protocol. The bus allows peripherals to be attached, configured, used, and detached while the host and other peripherals are in operation.

USB software provides a uniform view of the system for all application software, hiding implementation details to make application software more portable. It manages the dynamic attach and detach of peripherals.

There is only one host in any USB system. The USB interface to the host computer system is referred to as the Host Controller.

There may be multiple USB devices in any system such as human interface devices, speakers, printers, etc. USB devices present a standard USB interface in terms of comprehension, response, and standard capability.

The host initiates transactions to specific peripherals, whereas the device responds to control transactions. The device sends and receives data to and from the host using a standard USB data format. USB 2.0 full-speed /low-speed peripherals operate at 12Mbit/s or 1.5 Mbit/s.

For additional information, see the USB 2.0 specification.

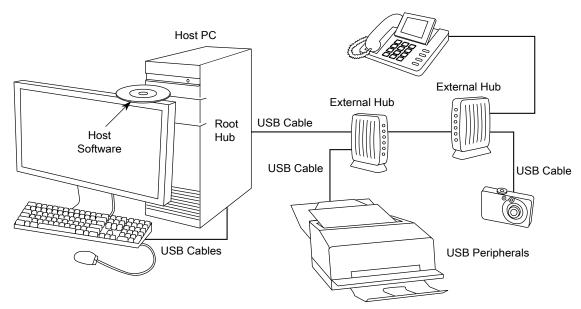



Figure 52-1. Example USB 2.0 system configuration

#### 52.1.3 USB On-The-Go

USB is a popular standard for connecting peripherals and portable consumer electronic devices such as digital cameras and tablets to host PCs. The On-The-Go (OTG) Supplement to the USB Specification extends USB to peer-to-peer application. Using USB OTG technology, consumer electronics, peripherals, and portable devices can connect to each other to exchange data. For example, a digital camera can connect directly to a printer, or a keyboard can connect to a tablet to exchange data.

With the USB On-The-Go product, you can develop a fully USB-compliant peripheral device that can also assume the role of a USB host. Software determines the role of the device based on hardware signals, and then initializes the device in the appropriate mode of operation (host or peripheral) based on how it is connected. After connecting, the devices can negotiate using the OTG protocols to assume the role of host or peripheral based on the task to be accomplished.

For additional information, see the *On-The-Go and Embedded Host Supplement to the USB 2.0 Specification*.

NXP Semiconductors

1313

#### **Functional description**

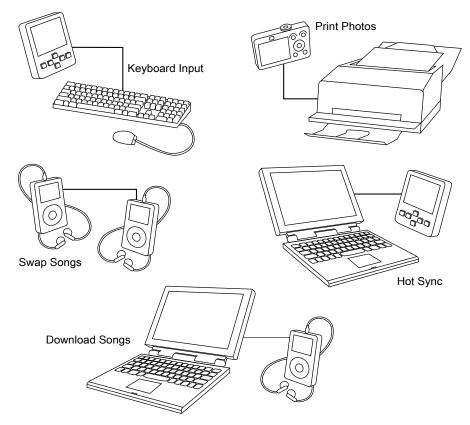



Figure 52-2. Example USB 2.0 On-The-Go configurations

#### 52.1.4 USBFS Features

- USB 1.1 and 2.0 compatible FS device and FS/LS host controller with On-The-Go protocol logic
- 16 bidirectional endpoints
- DMA or FIFO data stream interfaces
- Low-power consumption
- FIRC with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation.

## 52.2 Functional description

USBOTG communicates with the processor core through status registers, control registers, and data structures in memory.

#### 52.2.1 Data Structures

To efficiently manage USB endpoint communications, USBFS implements a Buffer Descriptor Table (BDT) in system memory. See Figure 52-6.

## 52.2.2 On-chip transceiver required external components

USB system operation requires external components to ensure that driver output impedance, eye diagram, and VBUS cable fault tolerance requirements are met. DM and DP I/O pads must connect through series resistors (approximately 33  $\Omega$  each) to the USB connector on the application printed circuit board (PCB). Additionally, signal quality optimizes when these 33  $\Omega$  resistors are mounted closer to the processor than to the USB board-level connector. The USB transceiver includes:

- An internal 1.5 kΩ pullup resistor on the USB\_DP line for full-speed device (controlled by USB\_CONTROL[DPPULLUPNONOTG] or USB\_OTGCTL[DPHIGH])
- Internal 15 k $\Omega$  pulldown resistors on the USB\_DP and USB\_DM signals, which are primarily intended for Host mode operation but are also useful in Device mode as explained below.

#### NOTE

For device operation, the internal 15 k $\Omega$  pulldowns should be enabled to keep the DP and DM ports in a known quiescent state when the VBUS detection software determines that the USB connection is not activated, including the cases when no cable to a host is present or when the USB port is not used. The internal 15 k $\Omega$  pulldowns should be controlled by USB\_CTRL[PDE] in this case.

For host operation, the internal 15 k $\Omega$  pulldowns are enabled automatically, as required by the USB 2.0 specification, when USB\_CTL[HOSTMODEEN] is asserted high.

The following diagrams provide overviews of host-only, device-only, and dual-role connections, respectively. The VDD pin connections in the following figures are shown as examples only. The VDD supply voltage can be chosen from the range shown for that pin in the device datasheet for this SOC, while the USBVDD supply must be 3.3v nominal for USB compliance. For more details, see the *Kinetis Peripheral Module Quick Reference*(KQRUG).

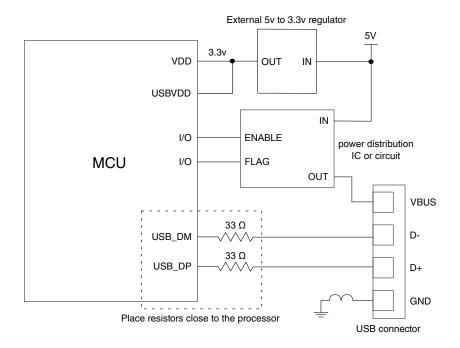



Figure 52-3. Host-only diagram

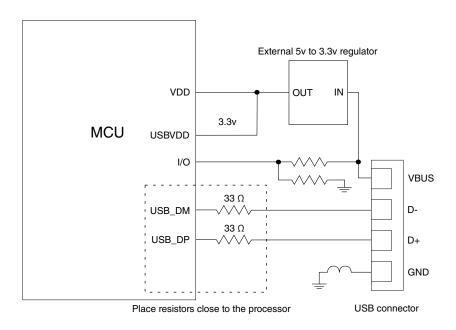



Figure 52-4. Typical Device-only diagram (bus-powered with external regulator)

KL28Z Reference Manual, Rev. 4, 06/2016 1316 **NXP Semiconductors** 

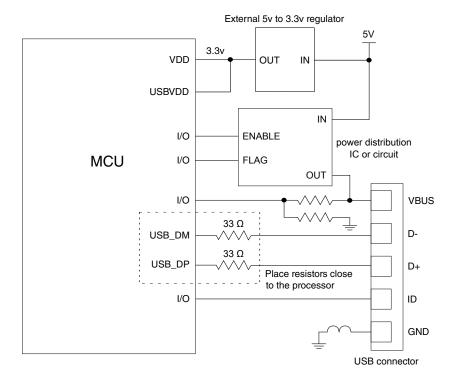



Figure 52-5. Dual-role diagram

## 52.3 Programmers interface

This section discusses the major components of the programming model for the USB module.

## 52.3.1 Buffer Descriptor Table

To efficiently manage USB endpoint communications USBFS implements a Buffer Descriptor Table (BDT) in system memory. The BDT resides on a 512-byte boundary in system memory and is pointed to by the BDT Page Registers. Every endpoint direction requires two 8-byte Buffer Descriptor (BD) entries. Therefore, a system with 16 fully bidirectional endpoints would require 512 bytes of system memory to implement the BDT. The two BD entries allows for an EVEN BD and ODD BD entry for each endpoint direction. This allows the microprocessor to process one BD while USBFS is processing the other BD. Double buffering BDs in this way allows USBFS to transfer data easily at the maximum throughput provided by USB.

Software should manage buffers for USBFS by updating the BDT when needed. This allows USBFS to efficiently manage data transmission and reception, while the microprocessor performs communication overhead processing and other function

NXP Semiconductors

1317

#### **Programmers interface**

dependent applications. Because the buffers are shared between the microprocessor and USBFS, a simple semaphore mechanism is used to distinguish who is allowed to update the BDT and buffers in system memory. A semaphore, the OWN bit, is cleared to 0 when the BD entry is owned by the microprocessor. The microprocessor is allowed read and write access to the BD entry and the buffer in system memory when the OWN bit is 0. When the OWN bit is set to 1, the BD entry and the buffer in system memory are owned by USBFS. USBFS now has full read and write access and the microprocessor must not modify the BD or its corresponding data buffer. The BD also contains indirect address pointers to where the actual buffer resides in system memory. This indirect address mechanism is shown in the following diagram.

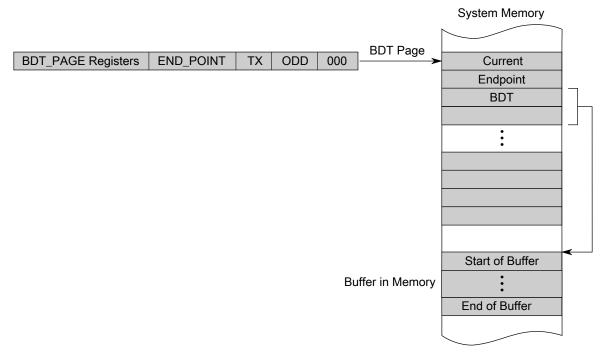



Figure 52-6. Buffer descriptor table

## 52.3.2 RX vs. TX as a USB peripheral device or USB host

The USBFS core uses software control to switch between two modes of operation:

- USB peripheral device
- USB hosts

In either mode, USB host or USB peripheral device, the same data paths and buffer descriptors are used for the transmission and reception of data. For this reason, a USBFS core-centric nomenclature is used to describe the direction of the data transfer between the USBFS core and USB:

- "RX" (or "receive") describes transfers that move data from USB to memory.
- "TX" (or "transmit") describes transfers that move data from memory to USB.

The following table shows how the data direction corresponds to the USB token type in host and peripheral device applications.

Table 52-1. Data direction for USB host or USB peripheral device

|        | RX           | TX           |
|--------|--------------|--------------|
| Device | OUT or SETUP | IN           |
| Host   | IN           | OUT or SETUP |

## **52.3.3 Addressing BDT entries**

An understanding of the addressing mechanism of the Buffer Descriptor Table is useful when accessing endpoint data via USBFS or microprocessor. Some points of interest are:

- The BDT occupies up to 512 bytes of system memory.
- 16 bidirectional endpoints can be supported with a full BDT of 512 bytes.
- 16 bytes are needed for each USB endpoint direction.
- Applications with fewer than 16 endpoints require less RAM to implement the BDT.
- The BDT Page Registers (BDT\_PAGE) point to the starting location of the BDT.
- The BDT must be located on a 512-byte boundary in system memory.
- All enabled TX and RX endpoint BD entries are indexed into the BDT to allow easy access via USBFS or MCU core.

When a USB token on an enabled endpoint is received, USBFS uses its integrated DMA controller to interrogate the BDT. USBFS reads the corresponding endpoint BD entry to determine whether it owns the BD and corresponding buffer in system memory.

To compute the entry point into the BDT, the BDT\_PAGE registers are concatenated with the current endpoint and the TX and ODD fields to form a 32-bit address. This address mechanism is shown in the following tables:

Table 52-2. BDT Address Calculation

| 31:24       | 23:16       | 15:9             | 8:5      | 4  | 3   | 2:0 |
|-------------|-------------|------------------|----------|----|-----|-----|
| BDT_PAGE_03 | BDT_PAGE_02 | BDT_PAGE_01[7:1] | Endpoint | TX | ODD | 000 |

Table 52-3. BDT address calculation fields

| Field    | Description                                      |
|----------|--------------------------------------------------|
| BDT_PAGE | BDT_PAGE registers in the Control Register Block |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

Table 52-3. BDT address calculation fields (continued)

| Field    | Description                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| ENDPOINT | ENDPOINT field from the USB TOKEN                                                                                            |
| TX       | 1 for transmit transfers and 0 for receive transfers                                                                         |
| ODD      | Maintained within the USBFS SIE. It corresponds to the buffer currently in use. The buffers are used in a ping-pong fashion. |

## 52.3.4 Buffer Descriptors (BDs)

A buffer descriptor provides endpoint buffer control information for USBFS and the processor. The Buffer Descriptors have different meaning based on whether it is USBFS or the processor reading the BD in memory.

The USBFS Controller uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- Whether to release ownership upon packet completion
- No address increment (FIFO mode)
- Whether data toggle synchronization is enabled
- How much data is to be transmitted or received
- Where the buffer resides in system memory

While the processor uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- The received TOKEN PID
- How much data was transmitted or received
- Where the buffer resides in system memory

The format for the BD is shown in the following figure.

Table 52-4. Buffer descriptor format

| 31:26 | 25:16 | 15:8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 |
|-------|-------|------|---|---|---|---|---|---|-----|

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

### Table 52-4. Buffer descriptor format (continued)

| DOVE | ВС        | DOVE | OMA | DATAO   | KEEP/           | NINC/      | DTS/       | BDT_STALL/ |   |   |
|------|-----------|------|-----|---------|-----------------|------------|------------|------------|---|---|
| RSVD | (10 bits) | RSVD | OWN | DATA0/1 | TOK_PID[3]      | TOK_PID[2] | TOK_PID[1] | TOK_PID[0] | 0 | 0 |
|      |           | ,    |     | Buffe   | er Address (32- | Bits)      |            |            |   |   |

#### Table 52-5. Buffer descriptor fields

| Field                    | Description                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–26                    | Reserved                                                                                                                                                                                                                                                                                                                                                                |
| RSVD                     |                                                                                                                                                                                                                                                                                                                                                                         |
| 25–16                    | Byte Count                                                                                                                                                                                                                                                                                                                                                              |
| BC                       | Represents the 10-bit byte count. The USBFS SIE changes this field upon the completion of a RX transfer with the byte count of the data received.                                                                                                                                                                                                                       |
| 15–8                     | Reserved                                                                                                                                                                                                                                                                                                                                                                |
| RSVD                     |                                                                                                                                                                                                                                                                                                                                                                         |
| 7<br>OWN                 | Determines whether the processor or USBFS currently owns the buffer. Except when KEEP=1, the SIE hands ownership back to the processor after completing the token by clearing this bit.                                                                                                                                                                                 |
|                          | This must always be the last byte of the BD that the processor updates when it initializes a BD.                                                                                                                                                                                                                                                                        |
|                          | 0 The processor has access to the BD. USBFS ignores all other fields in the BD.                                                                                                                                                                                                                                                                                         |
|                          | 1 USBFS has access to the BD. While USBFS owns the BD, the processor should not modify any other fields in the BD.                                                                                                                                                                                                                                                      |
| 6<br>DATA0/1             | Defines whether a DATA0 field (DATA0/1=0) or a DATA1 (DATA0/1=1) field was transmitted or received. It is unchanged by USBFS.                                                                                                                                                                                                                                           |
| 5<br>KEEP/<br>TOK_PID[3] | This bit has two functions:  • KEEP bit—When written by the processor, it serves as the KEEP bit. Typically, this bit is 1 with ISO endpoints feeding a FIFO. The microprocessor is not informed that a token has been processed, the data is simply transferred to or from the FIFO. When KEEP is set, normally the NINC bit is also set to prevent address increment. |
|                          | 0 Allows USBFS to release the BD when a token has been processed.                                                                                                                                                                                                                                                                                                       |
|                          | 1 This bit is unchanged by USBFS. Bit 3 of the current token PID is written back to the BD by USBFS.                                                                                                                                                                                                                                                                    |
|                          | TOK_PID[3]—If the OWN bit is also set, the BD remains owned by USBFS indefinitely; when written by USB, it serves as the TOK_PID[3] bit.                                                                                                                                                                                                                                |
|                          | 0 or 1 Bit 3 of the current token PID is written back to the BD by USBFS.                                                                                                                                                                                                                                                                                               |
|                          | Typically, this bit is 1 with ISO endpoints feeding a FIFO. The microprocessor is not informed that a token has been processed, the data is simply transferred to or from the FIFO. When KEEP is set, normally the NINC bit is also set to prevent address increment.                                                                                                   |
| 4                        | No Increment (NINC)                                                                                                                                                                                                                                                                                                                                                     |
| NINC/<br>TOK_PID[2]      | Disables the DMA engine address increment. This forces the DMA engine to read or write from the same address. This is useful for endpoints when data needs to be read from or written to a single location such as a FIFO. Typically this bit is set with the KEEP bit for ISO endpoints that are interfacing to a FIFO.                                                |
|                          | 0 USBFS writes bit 2 of the current token PID to the BD.                                                                                                                                                                                                                                                                                                                |
|                          | 1 This bit is unchanged by USBFS.                                                                                                                                                                                                                                                                                                                                       |

Table continues on the next page...

#### **Programmers interface**

Table 52-5. Buffer descriptor fields (continued)

| Field                        | Description                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>DTS/<br>TOK_PID[1]      | Setting this bit enables USBFS to perform Data Toggle Synchronization.  • If KEEP=0, bit 1 of the current token PID is written back to the BD.  • If KEEP=1, this bit is unchanged by USBFS.                                                                                                                                                                                              |
|                              | 0 Data Toggle Synchronization is disabled.                                                                                                                                                                                                                                                                                                                                                |
|                              | 1 Enables USBFS to perform Data Toggle Synchronization.                                                                                                                                                                                                                                                                                                                                   |
| 2<br>BDT_STALL<br>TOK_PID[0] | Setting this bit causes USBFS to issue a STALL handshake if a token is received by the SIE that would use the BDT in this location. The BDT is not consumed by the SIE (the owns bit remains set and the rest of the BDT is unchanged) when a BDT_STALL bit is set.  • If KEEP=0, bit 0 of the current token PID is written back to the BD.  • If KEEP=1, this bit is unchanged by USBFS. |
|                              | 0 No stall issued.                                                                                                                                                                                                                                                                                                                                                                        |
|                              | 1 The BDT is not consumed by the SIE (the OWN bit remains set and the rest of the BDT is unchanged).                                                                                                                                                                                                                                                                                      |
|                              | Setting BDT_STALL also causes the corresponding USB_ENDPTn[EPSTALL] bit to set. This causes USBOTG to issue a STALL handshake for both directions of the associated endpoint. To clear the stall condition:  1. Clear the associated USB_ENDPTn[EPSTALL] bit.  2. Write the BDT to clear OWN and BDT_STALL.                                                                               |
| TOK_PID[n]                   | Bits [5:2] can also represent the current token PID. The current token PID is written back in to the BD by USBFS when a transfer completes. The values written back are the token PID values from the USB specification:  • 0x1h for an OUT token.  • 0x9h for an IN token.  • 0xDh for a SETUP token.                                                                                    |
|                              | In host mode, this field is used to report the last returned PID or a transfer status indication. The possible values returned are:                                                                                                                                                                                                                                                       |
|                              | <ul> <li>0x3h DATA0</li> <li>0x8h DATA1</li> <li>0x2h ACK</li> <li>0xEh STALL</li> <li>0xAh NAK</li> <li>0x0h Bus Timeout</li> <li>0xFh Data Error</li> </ul>                                                                                                                                                                                                                             |
| 1–0                          | Reserved, should read as zeroes.                                                                                                                                                                                                                                                                                                                                                          |
| Reserved                     |                                                                                                                                                                                                                                                                                                                                                                                           |
| ADDR[31:0]                   | Address  Represents the 32-bit buffer address in system memory; this address must also be 32-bit aligned.  These bits are unchanged by USBFS.                                                                                                                                                                                                                                             |

## 52.3.5 USB transaction

When USBFS transmits or receives data, it computes the BDT address using the address generation shown in "Addressing Buffer Descriptor Entries" table.

If OWN =1, the following process occurs:

- 1. USBFS reads the BDT.
- 2. The SIE transfers the data via the DMA to or from the buffer pointed to by the ADDR field of the BD.
- 3. When the TOKEN is complete, USBFS updates the BDT and, if KEEP=0, changes the OWN bit to 0.
- 4. The STAT register is updated and the TOK\_DNE interrupt is set.
- 5. When the processor processes the TOK\_DNE interrupt, it reads from the status register all the information needed to process the endpoint.
- 6. At this point, the processor allocates a new BD so that additional USB data can be transmitted or received for that endpoint, and then processes the last BD.

The following figure shows a timeline of how a typical USB token is processed after the BDT is read and OWN=1.

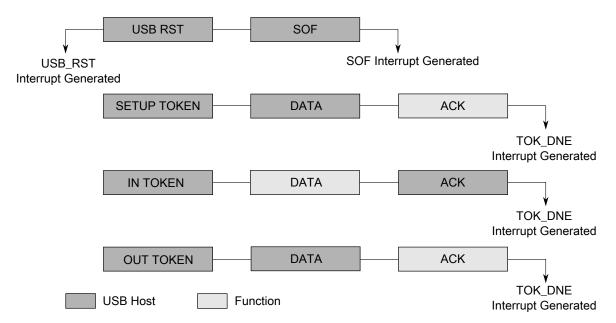



Figure 52-7. USB token transaction

The USB has two sources for the DMA overrun error:

## Memory Latency

The memory latency may be too high and cause the receive FIFO to overflow. This is predominantly a hardware performance issue, usually caused by transient memory access issues.

**Oversized Packets** 

NXP Semiconductors

1323

#### Memory map/Register definitions

The packet received may be larger than the negotiated *MaxPacket* size. Typically, this is caused by a software bug. For DMA overrun errors due to oversized data packets, the USB specification is ambiguous. It assumes correct software drivers on both sides. NAKing the packet can result in retransmission of the already oversized packet data. Therefore, in response to oversized packets, the USB core continues ACKing the packet for non-isochronous transfers.

Table 52-6. USB responses to DMA overrun errors

| Errors due to Memory Latency                                                                                                                                                                                                                                                                                                                                                                             | Errors due to Oversized Packets                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Acknowledgment (NAK) or Bus Timeout (BTO) — See bit 4 in "Error Interrupt Status Register (ERRSTAT)" as appropriate for the class of transaction.                                                                                                                                                                                                                                                    | Continues acknowledging (ACKing) the packet for non-isochronous transfers.                                                                                                   |
| _                                                                                                                                                                                                                                                                                                                                                                                                        | The data written to memory is clipped to the MaxPacket size so as not to corrupt system memory.                                                                              |
| The DMAERR bit is set in the ERRSTAT register for host and device modes of operation. Depending on the values of the INTENB and ERRENB register, the core may assert an interrupt to notify the processor of the DMA error.                                                                                                                                                                              | Asserts ERRSTAT[DMAERR] ,which can trigger an interrupt and TOKDNE interrupt fires. Note: The TOK_PID field of the BDT is not 1111 because the DMAERR is not due to latency. |
| <ul> <li>For host mode, the TOKDNE interrupt is generated and the TOK_PID field of the BDT is 1111 to indicate the DMA latency error. Host mode software can decide to retry or move to next scheduled item.</li> <li>In device mode, the BDT is not written back nor is the TOKDNE interrupt triggered because it is assumed that a second attempt is queued and will succeed in the future.</li> </ul> | The packet length field written back to the BDT is the MaxPacket value that represents the length of the clipped data actually written to memory.                            |

From here, the software can decide an appropriate course of action for future transactions such as stalling the endpoint, canceling the transfer, disabling the endpoint, etc.

## 52.4 Memory map/Register definitions

This section provides the memory map and detailed descriptions of all USB interface registers.

#### **USB** memory map

| Absolute address (hex) | Register name                                      | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|----------------------------------------------------|--------------------|--------|-------------|------------------|
| 4005_5000              | Peripheral ID register (USB0_PERID)                | 8                  | R      | 04h         | 52.4.1/1327      |
| 4005_5004              | Peripheral ID Complement register (USB0_IDCOMP)    | 8                  | R      | FBh         | 52.4.2/1327      |
| 4005_5008              | Peripheral Revision register (USB0_REV)            | 8                  | R      | 33h         | 52.4.3/1328      |
| 4005_500C              | Peripheral Additional Info register (USB0_ADDINFO) | 8                  | R      | 01h         | 52.4.4/1328      |
| 4005_5010              | OTG Interrupt Status register (USB0_OTGISTAT)      | 8                  | R/W    | 00h         | 52.4.5/1329      |
| 4005_5014              | OTG Interrupt Control register (USB0_OTGICR)       | 8                  | R/W    | 00h         | 52.4.6/1330      |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

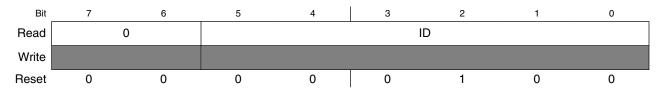
#### **USB** memory map (continued)

| Absolute<br>address<br>(hex) | Register name                                  | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------------|------------------------------------------------|--------------------|--------|-------------|------------------|
| 4005_5018                    | OTG Status register (USB0_OTGSTAT)             | 8                  | R/W    | 00h         | 52.4.7/1331      |
| 4005_501C                    | OTG Control register (USB0_OTGCTL)             | 8                  | R/W    | 00h         | 52.4.8/1332      |
| 4005_5080                    | Interrupt Status register (USB0_ISTAT)         | 8                  | R/W    | 00h         | 52.4.9/1333      |
| 4005_5084                    | Interrupt Enable register (USB0_INTEN)         | 8                  | R/W    | 00h         | 52.4.10/<br>1334 |
| 4005_5088                    | Error Interrupt Status register (USB0_ERRSTAT) | 8                  | R/W    | 00h         | 52.4.11/<br>1335 |
| 4005_508C                    | Error Interrupt Enable register (USB0_ERREN)   | 8                  | R/W    | 00h         | 52.4.12/<br>1336 |
| 4005_5090                    | Status register (USB0_STAT)                    | 8                  | R      | 00h         | 52.4.13/<br>1337 |
| 4005_5094                    | Control register (USB0_CTL)                    | 8                  | R/W    | 00h         | 52.4.14/<br>1338 |
| 4005_5098                    | Address register (USB0_ADDR)                   | 8                  | R/W    | 00h         | 52.4.15/<br>1339 |
| 4005_509C                    | BDT Page register 1 (USB0_BDTPAGE1)            | 8                  | R/W    | 00h         | 52.4.16/<br>1340 |
| 4005_50A0                    | Frame Number register Low (USB0_FRMNUML)       | 8                  | R/W    | 00h         | 52.4.17/<br>1340 |
| 4005_50A4                    | Frame Number register High (USB0_FRMNUMH)      | 8                  | R/W    | 00h         | 52.4.18/<br>1341 |
| 4005_50A8                    | Token register (USB0_TOKEN)                    | 8                  | R/W    | 00h         | 52.4.19/<br>1341 |
| 4005_50AC                    | SOF Threshold register (USB0_SOFTHLD)          | 8                  | R/W    | 00h         | 52.4.20/<br>1342 |
| 4005_50B0                    | BDT Page Register 2 (USB0_BDTPAGE2)            | 8                  | R/W    | 00h         | 52.4.21/<br>1343 |
| 4005_50B4                    | BDT Page Register 3 (USB0_BDTPAGE3)            | 8                  | R/W    | 00h         | 52.4.22/<br>1343 |
| 4005_50C0                    | Endpoint Control register (USB0_ENDPT0)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50C4                    | Endpoint Control register (USB0_ENDPT1)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50C8                    | Endpoint Control register (USB0_ENDPT2)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50CC                    | Endpoint Control register (USB0_ENDPT3)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50D0                    | Endpoint Control register (USB0_ENDPT4)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50D4                    | Endpoint Control register (USB0_ENDPT5)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |
| 4005_50D8                    | Endpoint Control register (USB0_ENDPT6)        | 8                  | R/W    | 00h         | 52.4.23/<br>1344 |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map/Register definitions


## **USB** memory map (continued)

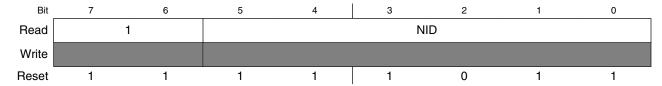
| Absolute<br>address<br>(hex) | Register name                                                           | Width<br>(in bits) | Access         | Reset value | Section/<br>page |
|------------------------------|-------------------------------------------------------------------------|--------------------|----------------|-------------|------------------|
| 4005_50DC                    | Endpoint Control register (USB0_ENDPT7)                                 | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50E0                    | Endpoint Control register (USB0_ENDPT8)                                 | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50E4                    | Endpoint Control register (USB0_ENDPT9)                                 | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50E8                    | Endpoint Control register (USB0_ENDPT10)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50EC                    | Endpoint Control register (USB0_ENDPT11)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50F0                    | Endpoint Control register (USB0_ENDPT12)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50F4                    | Endpoint Control register (USB0_ENDPT13)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50F8                    | Endpoint Control register (USB0_ENDPT14)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_50FC                    | Endpoint Control register (USB0_ENDPT15)                                | 8                  | R/W            | 00h         | 52.4.23/<br>1344 |
| 4005_5100                    | USB Control register (USB0_USBCTRL)                                     | 8                  | R/W            | C0h         | 52.4.24/<br>1345 |
| 4005_5104                    | USB OTG Observe register (USB0_OBSERVE)                                 | 8                  | R              | 50h         | 52.4.25/<br>1346 |
| 4005_5108                    | USB OTG Control register (USB0_CONTROL)                                 | 8                  | R/W            | 00h         | 52.4.26/<br>1347 |
| 4005_510C                    | USB Transceiver Control register 0 (USB0_USBTRC0)                       | 8                  | R/W            | 00h         | 52.4.27/<br>1347 |
| 4005_5114                    | Frame Adjust Register (USB0_USBFRMADJUST)                               | 8                  | R/W            | 00h         | 52.4.28/<br>1349 |
| 4005_512C                    | Miscellaneous Control register (USB0_MISCCTRL)                          | 8                  | R/W            | 00h         | 52.4.29/<br>1349 |
| 4005_5140                    | USB Clock recovery control (USB0_CLK_RECOVER_CTRL)                      | 8                  | R/W            | 00h         | 52.4.30/<br>1350 |
| 4005_5144                    | FIRC oscillator enable register (USB0_CLK_RECOVER_IRC_EN)               | 8                  | R (reads<br>0) | 00h         | 52.4.31/<br>1351 |
| 4005_5154                    | Clock recovery combined interrupt enable (USB0_CLK_RECOVER_INT_EN)      | 8                  | R/W            | 10h         | 52.4.31/<br>1352 |
| 4005_515C                    | Clock recovery separated interrupt status (USB0_CLK_RECOVER_INT_STATUS) | 8                  | w1c            | 00h         | 52.4.32/<br>1352 |

## 52.4.1 Peripheral ID register (USBx\_PERID)

Reads back the value of 0x04. This value is defined for the USB peripheral.

Address: 4005\_5000h base + 0h offset = 4005\_5000h




#### USBx\_PERID field descriptions

| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| 7–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| ID              | Peripheral Identification                                                            |
|                 | This field always reads 0x4h.                                                        |

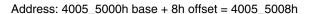
## 52.4.2 Peripheral ID Complement register (USBx\_IDCOMP)

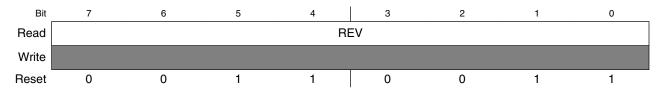
Reads back the complement of the Peripheral ID register. For the USB peripheral, the value is 0xFB.

Address: 4005\_5000h base + 4h offset = 4005\_5004h



#### **USBx\_IDCOMP** field descriptions


| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| 7–6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 1. |
| NID             | Ones' complement of PERID[ID] bits.                                                  |


NXP Semiconductors

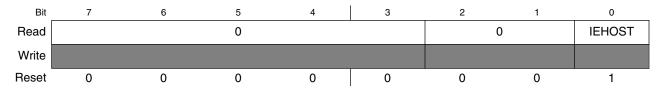
1327

## 52.4.3 Peripheral Revision register (USBx\_REV)

Contains the revision number of the USB module.





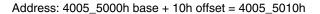

#### **USBx\_REV** field descriptions

| Field | Description                                    |
|-------|------------------------------------------------|
| REV   | Revision                                       |
|       | Indicates the revision number of the USB Core. |

## 52.4.4 Peripheral Additional Info register (USBx\_ADDINFO)

Reads back the value of the Host Enable bit.

Address: 4005\_5000h base + Ch offset = 4005\_500Ch




#### **USBx ADDINFO field descriptions**

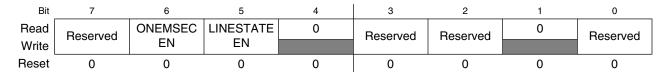
| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| 7–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 2–1<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 0<br>IEHOST     | This bit is set if host mode is enabled.                                             |

## 52.4.5 OTG Interrupt Status register (USBx\_OTGISTAT)

Records changes to the state of the one-millisecond timer and line state stable logic. Software can read this register to determine the event that triggers an interrupt. Only bits that have changed since the last software read are set. Writing a one to a bit clears the associated interrupt.






## **USBx\_OTGISTAT** field descriptions

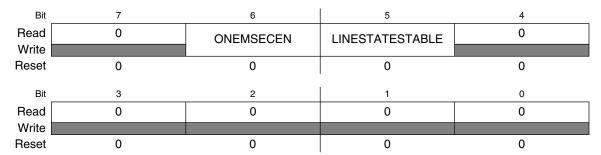
| Field                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>Reserved           | This field is reserved. Software must not change the value of this bitfield.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6<br>ONEMSEC            | This bit is set when the 1 millisecond timer expires. This bit stays asserted until cleared by software. The interrupt must be serviced every millisecond to avoid losing 1msec counts.                                                                                                                                                                                                                                                                                               |
| 5<br>LINE_STATE_<br>CHG | This interrupt is set when the USB line state (CTL[SE0] and CTL[JSTATE] bits) are stable without change for 1 millisecond, and the value of the line state is different from the last time when the line state was stable. It is set on transitions between SE0 and J-state, SE0 and K-state, and J-state and K-state. Changes in J-state while SE0 is true do not cause an interrupt. This interrupt can be used in detecting Reset, Resume, Connect, and Data Line Pulse signaling. |
| 4<br>Reserved           | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3<br>Reserved           | This field is reserved. Software must not change the value of this bitfield.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2<br>Reserved           | This field is reserved. Software must not change the value of this bitfield.                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>Reserved           | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0<br>Reserved           | This field is reserved. Software must not change the value of this bitfield.                                                                                                                                                                                                                                                                                                                                                                                                          |

## 52.4.6 OTG Interrupt Control register (USBx\_OTGICR)

Enables the corresponding interrupt status bits defined in the OTG Interrupt Status Register.

Address: 4005\_5000h base + 14h offset = 4005\_5014h




#### USBx\_OTGICR field descriptions

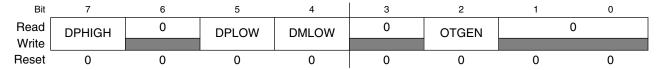
| Field            | Description                                                  |
|------------------|--------------------------------------------------------------|
| 7<br>Reserved    | Software must not change the value of this bitfield.         |
|                  | This field is reserved.                                      |
| 6<br>ONEMSECEN   | One Millisecond Interrupt Enable                             |
|                  | 0 Diables the 1ms timer interrupt.                           |
|                  | 1 Enables the 1ms timer interrupt.                           |
| 5<br>LINESTATEEN | Line State Change Interrupt Enable                           |
|                  | 0 Disables the LINE_STAT_CHG interrupt.                      |
|                  | 1 Enables the LINE_STAT_CHG interrupt.                       |
| 4                | This field is reserved.                                      |
| Reserved         | This read-only field is reserved and always has the value 0. |
| 3<br>Reserved    | Software must not change the value of this bitfield.         |
|                  | This field is reserved.                                      |
| 2<br>Reserved    | Software must not change the value of this bitfield.         |
|                  | This field is reserved.                                      |
| 1                | This field is reserved.                                      |
| Reserved         | This read-only field is reserved and always has the value 0. |
| 0<br>Reserved    | Software must not change the value of this bitfield.         |
|                  | This field is reserved.                                      |

## 52.4.7 OTG Status register (USBx\_OTGSTAT)

Displays the actual value from the one-millisecond timer and line state stable logic.

Address: 4005\_5000h base + 18h offset = 4005\_5018h




#### **USBx\_OTGSTAT** field descriptions

| Field                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6<br>ONEMSECEN       | This bit is reserved for the 1ms count, but it is not useful to software.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5<br>LINESTATESTABLE | Indicates that the internal signals that control the LINE_STATE_CHG field of OTGISTAT are stable for at least 1 ms. This bit is used to provide a hardware debounce of the linestate in detection of Connect, Disconnect and Resume signaling. First read LINE_STATE_CHG field and then read this field. If this field reads as 1, then the value of LINE_STATE_CHG can be considered stable.  O The LINE_STAT_CHG bit is not yet stable.  The LINE_STAT_CHG bit has been debounced and is stable. |
| 4<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0<br>Reserved        | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                                               |

## 52.4.8 OTG Control register (USBx\_OTGCTL)

Controls the operation of VBUS and Data Line termination resistors.

Address: 4005\_5000h base + 1Ch offset = 4005\_501Ch



#### **USBx\_OTGCTL** field descriptions

| Field         | Description                                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>DPHIGH   | D+ Data Line pullup resistor enable                                                                                                                                                                                                                                                         |
|               | 0 D+ pullup resistor is not enabled                                                                                                                                                                                                                                                         |
|               | 1 D+ pullup resistor is enabled                                                                                                                                                                                                                                                             |
| 6<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                        |
| 5<br>DPLOW    | D+ Data Line pull-down resistor enable                                                                                                                                                                                                                                                      |
|               | This bit should always be enabled together with bit 4 (DMLOW)                                                                                                                                                                                                                               |
|               | 0 D+ pulldown resistor is not enabled.                                                                                                                                                                                                                                                      |
|               | 1 D+ pulldown resistor is enabled.                                                                                                                                                                                                                                                          |
| 4<br>DMLOW    | D- Data Line pull-down resistor enable                                                                                                                                                                                                                                                      |
|               | 0 D- pulldown resistor is not enabled.                                                                                                                                                                                                                                                      |
|               | 1 D- pulldown resistor is enabled.                                                                                                                                                                                                                                                          |
| 3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                        |
| 2<br>OTGEN    | On-The-Go pullup/pulldown resistor enable                                                                                                                                                                                                                                                   |
|               | <ul> <li>If USB_EN is 1 and HOST_MODE is 0 in the Control Register (CTL), then the D+ Data Line pull-up resistors are enabled. If HOST_MODE is 1 the D+ and D- Data Line pull-down resistors are engaged.</li> <li>The pull-up and pull-down controls in this register are used.</li> </ul> |
| Reserved      | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                        |

#### Interrupt Status register (USBx ISTAT) 52.4.9

Contains fields for each of the interrupt sources within the USB Module. Each of these fields are qualified with their respective interrupt enable bits. All fields of this register are logically OR'd together along with the OTG Interrupt Status Register (OTGSTAT) to form a single interrupt source for the processor's interrupt controller. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. This register contains the value of 0x00 after a reset.

Address: 4005\_5000h base + 80h offset = 4005\_5080h

| Bit   | 7     | 6      | 5      | 4     | 3      | 2      | 1     | 0      |
|-------|-------|--------|--------|-------|--------|--------|-------|--------|
| Read  | STALL | ATTACH | RESUME | SLEEP | TOKDNE | SOFTOK | ERROR | USBRST |
| Write | w1c   | w1c    | w1c    | w1c   | w1c    | w1c    | w1c   | w1c    |
| Reset | 0     | 0      | 0      | 0     | 0      | 0      | 0     | 0      |

#### **USBx\_ISTAT** field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>STALL  | Stall Interrupt                                                                                                                                                                                                                                                                                                             |
| STALL       | In Device mode this bit is asserted when a STALL handshake is sent by the SIE.                                                                                                                                                                                                                                              |
|             | In Host mode this bit is set when the USB Module detects a STALL acknowledge during the handshake phase of a USB transaction. This interrupt can be used to determine whether the last USB transaction was completed successfully or stalled.                                                                               |
| 6<br>ATTACH | Attach Interrupt                                                                                                                                                                                                                                                                                                            |
| , ATTAON    | This field is set when the USB Module detects an attach of a USB device. This field is only valid if CTL[HOSTMODEEN]=1. This interrupt signifies that a peripheral is now present and must be configured; it is asserted if there have been no transitions on the USB for 2.5 µs and the current bus state is not SE0."     |
|             | 0 No Attach is detected since the last time the ATTACH bit was cleared.                                                                                                                                                                                                                                                     |
|             | 1 A peripheral is now present and must be configured (a stable non-SE0 state is detected for more than 2.5 μs).                                                                                                                                                                                                             |
| 5<br>RESUME | This bit is set when a K-state is observed on the DP/DM signals for 2.5 µs. When not in suspend mode this interrupt must be disabled.                                                                                                                                                                                       |
| 4<br>SLEEP  | This bit is set when the USB Module detects a constant idle on the USB bus for 3 ms. The sleep timer is reset by activity on the USB bus.                                                                                                                                                                                   |
| 3<br>TOKDNE | This bit is set when the current token being processed has completed. The processor must immediately read the STATUS (STAT) register to determine the EndPoint and BD used for this token. Clearing this bit (by writing a one) causes STAT to be cleared or the STAT holding register to be loaded into the STAT register. |
| 2           | This bit is set when the USB Module receives a Start Of Frame (SOF) token.                                                                                                                                                                                                                                                  |
| SOFTOK      | In Host mode this field is set when the SOF threshold is reached (MISCCTRL[SOFBUSSET]=0), or when the SOF counter reaches 0 (MISCCTRL[SOFBUSSET]=1), so that software can prepare for the next SOF.                                                                                                                         |

Table continues on the next page...

#### Memory map/Register definitions

#### **USBx\_ISTAT** field descriptions (continued)

| Field       | Description                                                                                                                                                                                                                                                                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>ERROR  | This bit is set when any of the error conditions within Error Interrupt Status (ERRSTAT) register occur. The processor must then read the ERRSTAT register to determine the source of the error.                                                                                                                                              |
| 0<br>USBRST | This bit is set when the USB Module has decoded a valid USB reset. This informs the processor that it should write 0x00 into the address register and enable endpoint 0. USBRST is set after a USB reset has been detected for 2.5 microseconds. It is not asserted again until the USB reset condition has been removed and then reasserted. |

# 52.4.10 Interrupt Enable register (USBx\_INTEN)

Contains enable fields for each of the interrupt sources within the USB Module. Setting any of these bits enables the respective interrupt source in the ISTAT register. This register contains the value of 0x00 after a reset.

Address: 4005\_5000h base + 84h offset = 4005\_5084h



#### USBx\_INTEN field descriptions

| Field         | Description                      |  |  |
|---------------|----------------------------------|--|--|
| 7<br>STALLEN  | STALL Interrupt Enable           |  |  |
|               | 0 Diasbles the STALL interrupt.  |  |  |
|               | 1 Enables the STALL interrupt.   |  |  |
| 6<br>ATTACHEN | ATTACH Interrupt Enable          |  |  |
|               | 0 Disables the ATTACH interrupt. |  |  |
|               | 1 Enables the ATTACH interrupt.  |  |  |
| 5<br>RESUMEEN | RESUME Interrupt Enable          |  |  |
|               | 0 Disables the RESUME interrupt. |  |  |
|               | 1 Enables the RESUME interrupt.  |  |  |
| 4<br>SLEEPEN  | SLEEP Interrupt Enable           |  |  |
|               | 0 Disables the SLEEP interrupt.  |  |  |
|               | 1 Enables the SLEEP interrupt.   |  |  |
| 3<br>TOKDNEEN | TOKDNE Interrupt Enable          |  |  |
|               | 0 Disables the TOKDNE interrupt. |  |  |
|               | 1 Enables the TOKDNE interrupt.  |  |  |
| 2<br>SOFTOKEN | SOFTOK Interrupt Enable          |  |  |
|               | 0 Disbles the SOFTOK interrupt.  |  |  |
|               | 1 Enables the SOFTOK interrupt.  |  |  |

Table continues on the next page...

#### **USBx\_INTEN** field descriptions (continued)

| Field         | Description                      |  |  |  |
|---------------|----------------------------------|--|--|--|
| 1<br>ERROREN  | ERROR Interrupt Enable           |  |  |  |
| ENNONEN       | 0 Disables the ERROR interrupt.  |  |  |  |
|               | 1 Enables the ERROR interrupt.   |  |  |  |
| 0<br>USBRSTEN | USBRST Interrupt Enable          |  |  |  |
|               | 0 Disables the USBRST interrupt. |  |  |  |
|               | 1 Enables the USBRST interrupt.  |  |  |  |

# 52.4.11 Error Interrupt Status register (USBx\_ERRSTAT)

Contains enable bits for each of the error sources within the USB Module. Each of these bits are qualified with their respective error enable bits. All bits of this register are logically OR'd together and the result placed in the ERROR bit of the ISTAT register. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. Each bit is set as soon as the error condition is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset.

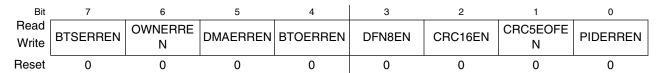
Address: 4005\_5000h base + 88h offset = 4005\_5088h

| Bit   | 7      | 6      | 5      | 4      | 3    | 2     | 1       | 0      |
|-------|--------|--------|--------|--------|------|-------|---------|--------|
| Read  | BTSERR | OWNERR | DMAERR | BTOERR | DFN8 | CRC16 | CRC5EOF | PIDERR |
| Write | w1c    | w1c    | w1c    | w1c    | w1c  | w1c   | w1c     | w1c    |
| Reset | 0      | 0      | 0      | 0      | 0    | 0     | 0       | 0      |

#### **USB***x*\_**ERRSTAT** field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>BTSERR | This bit is set when a bit stuff error is detected. If set, the corresponding packet is rejected due to the error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6<br>OWNERR | This field is valid when the USB Module is operating in peripheral mode (CTL[HOSTMODEEN]=0). It is set if the USB Module requires a new BD for SETUP, ISO IN, or ISO OUT transfer while a new BD is not available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5<br>DMAERR | This bit is set if the USB Module has requested a DMA access to read a new BDT but has not been given the bus before it needs to receive or transmit data. If processing a TX transfer this would cause a transmit data underflow condition. If processing a RX transfer this would cause a receive data overflow condition. This interrupt is useful when developing device arbitration hardware for the microprocessor and the USB module to minimize bus request and bus grant latency. This bit is also set if a data packet to or from the host is larger than the buffer size allocated in the BDT. In this case the data packet is truncated as it is put in buffer memory. |
| 4<br>BTOERR | This bit is set when a bus turnaround timeout error occurs. The USB module contains a bus turnaround timer that keeps track of the amount of time elapsed between the token and data phases of a SETUP or OUT TOKEN or the data and handshake phases of a IN TOKEN. If more than 16 bit times are counted from the previous EOP before a transition from IDLE, a bus turnaround timeout error occurs.                                                                                                                                                                                                                                                                              |

Table continues on the next page...


#### **USBx\_ERRSTAT** field descriptions (continued)

| Field        | Description                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>DFN8    | This bit is set if the data field received was not 8 bits in length. USB Specification 1.0 requires that data fields be an integral number of bytes. If the data field was not an integral number of bytes, this bit is set.                                                                                                                                                     |
| 2<br>CRC16   | This bit is set when a data packet is rejected due to a CRC16 error.                                                                                                                                                                                                                                                                                                             |
| 1<br>CRC5EOF | This error interrupt has two functions. When the USB Module is operating in peripheral mode (CTL[HOSTMODEEN]=0), this interrupt detects CRC5 errors in the token packets generated by the host. If set the token packet was rejected due to a CRC5 error.                                                                                                                        |
|              | When the USB Module is operating in host mode (CTL[HOSTMODEEN]=1), this interrupt detects End Of Frame (EOF) error conditions. This occurs when the USB Module is transmitting or receiving data and the SOF counter reaches zero. This interrupt is useful when developing USB packet scheduling software to ensure that no USB transactions cross the start of the next frame. |
| 0<br>PIDERR  | This bit is set when the PID check field fails.                                                                                                                                                                                                                                                                                                                                  |

# 52.4.12 Error Interrupt Enable register (USBx\_ERREN)

Contains enable bits for each of the error interrupt sources within the USB module. Setting any of these bits enables the respective interrupt source in ERRSTAT. Each bit is set as soon as the error condition is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset.

Address: 4005\_5000h base + 8Ch offset = 4005\_508Ch

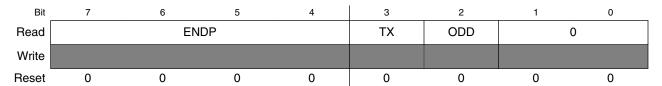


#### **USBx** ERREN field descriptions

| Field         | Description                                                                                  |  |  |
|---------------|----------------------------------------------------------------------------------------------|--|--|
| 7             | BTSERR Interrupt Enable                                                                      |  |  |
| BTSERREN      | a Di II di BTOEDDi i                                                                         |  |  |
|               | 0 Disables the BTSERR interrupt.                                                             |  |  |
|               | 1 Enables the BTSERR interrupt.                                                              |  |  |
| 6<br>OWNERREN | OWNERR Interrupt Enable                                                                      |  |  |
|               | This field is valid when the USB module is operating in peripheral mode (CTL[HOSTMODEEN]=0). |  |  |
|               | 0 Disables the OWNERR interrupt.                                                             |  |  |
|               | 1 Enables the OWNERR interrupt.                                                              |  |  |
| 5             | DMAERR Interrupt Enable                                                                      |  |  |
| DMAERREN      |                                                                                              |  |  |
|               | 0 Disables the DMAERR interrupt.                                                             |  |  |
|               | 1 Enables the DMAERR interrupt.                                                              |  |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### **USBx\_ERREN** field descriptions (continued)

| Field          | Description                        |
|----------------|------------------------------------|
| 4<br>BTOERREN  | BTOERR Interrupt Enable            |
|                | 0 Disables the BTOERR interrupt.   |
|                | 1 Enables the BTOERR interrupt.    |
| 3<br>DFN8EN    | DFN8 Interrupt Enable              |
|                | 0 Disables the DFN8 interrupt.     |
|                | 1 Enables the DFN8 interrupt.      |
| 2<br>CRC16EN   | CRC16 Interrupt Enable             |
|                | 0 Disables the CRC16 interrupt.    |
|                | 1 Enables the CRC16 interrupt.     |
| 1<br>CRC5EOFEN | CRC5/EOF Interrupt Enable          |
|                | 0 Disables the CRC5/EOF interrupt. |
|                | 1 Enables the CRC5/EOF interrupt.  |
| 0<br>PIDERREN  | PIDERR Interrupt Enable            |
|                | 0 Disables the PIDERR interrupt.   |
|                | 1 Enters the PIDERR interrupt.     |

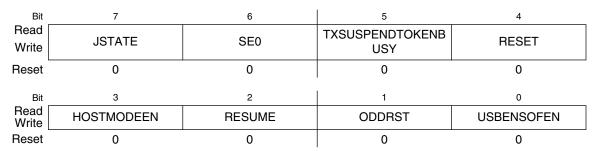
# 52.4.13 Status register (USBx\_STAT)

Reports the transaction status within the USB module. When the processor's interrupt controller has received a TOKDNE, interrupt the Status Register must be read to determine the status of the previous endpoint communication. The data in the status register is valid when TOKDNE interrupt is asserted. The Status register is actually a read window into a status FIFO maintained by the USB module. When the USB module uses a BD, it updates the Status register. If another USB transaction is performed before the TOKDNE interrupt is serviced, the USB module stores the status of the next transaction in the STAT FIFO. Thus STAT is actually a four byte FIFO that allows the processor core to process one transaction while the SIE is processing the next transaction. Clearing the TOKDNE bit in the ISTAT register causes the SIE to update STAT with the contents of the next STAT value. If the data in the STAT holding register is valid, the SIE immediately reasserts to TOKDNE interrupt.

Address: 4005 5000h base + 90h offset = 4005 5090h



KL28Z Reference Manual, Rev. 4, 06/2016


# **USBx\_STAT** field descriptions

| Field       | Description                                                                                                                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–4<br>ENDP | This four-bit field encodes the endpoint address that received or transmitted the previous token. This allows the processor core to determine the BDT entry that was updated by the last USB transaction. |
| 3<br>TX     | Transmit Indicator  The most recent transaction was a receive operation.  The most recent transaction was a transmit operation.                                                                           |
| 2<br>ODD    | This bit is set if the last buffer descriptor updated was in the odd bank of the BDT.                                                                                                                     |
| Reserved    | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                      |

# 52.4.14 Control register (USBx\_CTL)

Provides various control and configuration information for the USB module.

Address: 4005\_5000h base + 94h offset = 4005\_5094h



## USBx\_CTL field descriptions

| Field                   | Description                                                                                                                                                                                                                                                                                                                        |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>JSTATE             | Live USB differential receiver JSTATE signal                                                                                                                                                                                                                                                                                       |
|                         | The polarity of this signal is affected by the current state of LSEN .                                                                                                                                                                                                                                                             |
| 6<br>SE0                | Live USB Single Ended Zero signal                                                                                                                                                                                                                                                                                                  |
| 5<br>TXSUSPENDTOKENBUSY | In Host mode, TOKEN_BUSY is set when the USB module is busy executing a USB token. Software must not write more token commands to the Token Register when TOKEN_BUSY is set. Software should check this field before writing any tokens to the Token Register to ensure that token commands are not lost.                          |
|                         | In Device mode, TXD_SUSPEND is set when the SIE has disabled packet transmission and reception. Clearing this bit allows the SIE to continue token processing. This bit is set by the SIE when a SETUP Token is received allowing software to dequeue any pending packet transactions in the BDT before resuming token processing. |
| 4<br>RESET              | Setting this bit enables the USB Module to generate USB reset signaling. This allows the USB Module to reset USB peripherals. This control signal is only valid in Host mode (CTL[HOSTMODEEN]=1). Software must set RESET to 1 for the required amount of time and then clear it to 0 to end reset signaling.                      |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### **USBx\_CTL** field descriptions (continued)

| Field           | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>HOSTMODEEN | When set to 1, this bit enables the USB Module to operate in Host mode. In host mode, the USB module performs USB transactions under the programmed control of the host processor.                                                                                                                                                                                                 |
| 2<br>RESUME     | When set to 1 this bit enables the USB Module to execute resume signaling. This allows the USB Module to perform remote wake-up. Software must set RESUME to 1 for the required amount of time and then clear it to 0. If HOSTMODEENis set, the USB module appends a Low Speed End of Packet to the Resume signaling when the RESUME bit is cleared.                               |
| 1<br>ODDRST     | Setting this bit to 1 resets all the BDT ODD ping/pong fields to 0, which then specifies the EVEN BDT bank.                                                                                                                                                                                                                                                                        |
| 0<br>USBENSOFEN | USB Enable  Setting this bit enables the USB-FS to operate; clearing it disables the USB-FS. Setting the bit causes the SIE to reset all of its ODD bits to the BDTs. Therefore, setting this bit resets much of the logic in the SIE.  When host mode is enabled, clearing this bit causes the SIE to stop sending SOF tokens.  Disables the USB Module.  Enables the USB Module. |

# 52.4.15 Address register (USBx\_ADDR)

Holds the unique USB address that the USB module decodes when in Peripheral mode (CTL[HOSTMODEEN]=0). When operating in Host mode (CTL[HOSTMODEEN]=1) the USB module transmits this address with a TOKEN packet. This enables the USB module to uniquely address any USB peripheral. In either mode, CTL[USBENSOFEN] must be 1. The Address register is reset to 0x00 after the reset input becomes active or the USB module decodes a USB reset signal. This action initializes the Address register to decode address 0x00 as required by the USB specification.

Address: 4005\_5000h base + 98h offset = 4005\_5098h

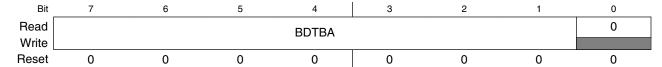


#### **USBx\_ADDR** field descriptions

| Field | Description                                                                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSEN  | Low Speed Enable bit  Informs the USB module that the next token command written to the token register must be performed at low speed. This enables the USB module to perform the necessary preamble required for low-speed data transmissions. |
| ADDR  | USB Address                                                                                                                                                                                                                                     |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016


#### **USBx\_ADDR** field descriptions (continued)

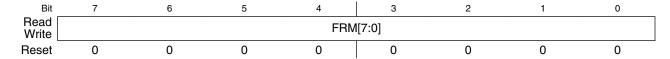
| Field | Description                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------|
|       | Defines the USB address that the USB module decodes in peripheral mode, or transmits when in host mode. |

# 52.4.16 BDT Page register 1 (USBx\_BDTPAGE1)

Provides address bits 15 through 9 of the base address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table. The 32-bit BDT Base Address is always aligned on 512-byte boundaries, so bits 8 through 0 of the base address are always zero.

Address: 4005 5000h base + 9Ch offset = 4005 509Ch




#### **USBx\_BDTPAGE1** field descriptions

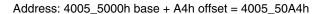
| Field        | Description                                                                          |
|--------------|--------------------------------------------------------------------------------------|
| 7–1<br>BDTBA | Provides address bits 15 through 9 of the BDT base address.                          |
| •            | This field is reserved. This read-only field is reserved and always has the value 0. |

# 52.4.17 Frame Number register Low (USBx\_FRMNUML)

The Frame Number registers (low and high) contain the 11-bit frame number. These registers are updated with the current frame number whenever a SOF TOKEN is received.

Address: 4005\_5000h base + A0h offset = 4005\_50A0h




#### **USBx\_FRMNUML** field descriptions

| Field | Description                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | This 8-bit field and the 3-bit field in the Frame Number Register High are used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. |

#### KL28Z Reference Manual, Rev. 4, 06/2016

# 52.4.18 Frame Number register High (USBx\_FRMNUMH)

The Frame Number registers (low and high) contain the 11-bit frame number. These registers are updated with the current frame number whenever a SOF TOKEN is received.





#### **USBx\_FRMNUMH** field descriptions

| Field           | Description                                                                                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–3<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                            |
|                 | This 3-bit field and the 8-bit field in the Frame Number Register Low are used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. |

# 52.4.19 Token register (USBx\_TOKEN)

Used to initiate USB transactions when in host mode (CTL[HOSTMODEEN]=1). When the software needs to execute a USB transaction to a peripheral, it writes the TOKEN type and endpoint to this register. After this register has been written, the USB module begins the specified USB transaction to the address contained in the address register. The processor core must always check that the TOKEN\_BUSY bit in the control register is not 1 before writing to the Token Register. This ensures that the token commands are not overwritten before they can be executed. The address register and endpoint control register 0 are also used when performing a token command and therefore must also be written before the Token Register. The address register is used to select the USB peripheral address transmitted by the token command. The endpoint control register determines the handshake and retry policies used during the transfer.

Address: 4005\_5000h base + A8h offset = 4005\_50A8h

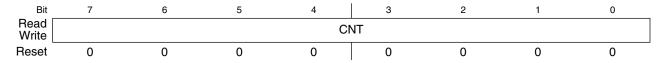


#### **USBx\_TOKEN** field descriptions

| Field           | Description                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------------|
| 7–4<br>TOKENPID | Contains the token type executed by the USB module.                                                    |
|                 | 0001 OUT Token. USB Module performs an OUT (TX) transaction.                                           |
|                 | 1001 IN Token. USB Module performs an In (RX) transaction.                                             |
|                 | 1101 SETUP Token. USB Module performs a SETUP (TX) transaction                                         |
| TOKENENDPT      | Holds the Endpoint address for the token command. The four bit value written must be a valid endpoint. |

# 52.4.20 SOF Threshold register (USBx\_SOFTHLD)

The SOF Threshold Register is used only in Host mode (CTL[HOSTMODEEN]=1). When in Host mode, the 14-bit SOF counter counts the interval between SOF frames. The SOF must be transmitted every 1ms so therefore the SOF counter is loaded with a value of 12000. When the SOF counter reaches zero, a Start Of Frame (SOF) token is transmitted.


The SOF threshold register is used to program the number of USB byte times when SOFDYNTHLD=0, or 8 byte times when SOFDYNTHLD=1, before the SOF stops initiating token packet transactions. This register must be set to a value that ensures that other packets are not actively being transmitted when the SOF time counts to zero. When the SOF counter reaches the threshold value, no more tokens are transmitted until after the SOF has been transmitted.

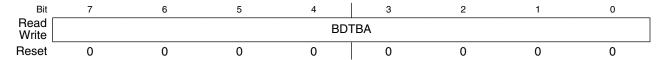
The value programmed into the threshold register must reserve enough time to ensure the worst case transaction completes. In general the worst case transaction is an IN token followed by a data packet from the peripheral device followed by the response from the host. The actual time required is a function of the maximum packet size on the bus.

Typical values for the SOF threshold are:

- 64-byte packets=74;
- 32-byte packets=42;
- 16-byte packets=26;
- 8-byte packets=18.

Address: 4005 5000h base + ACh offset = 4005 50ACh




#### **USBx\_SOFTHLD** field descriptions

| Field | Description                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------|
|       | Represents the SOF count threshold in byte times when SOFDYNTHLD=0 or 8 byte times when SOFDYNTHLD=1. |

# 52.4.21 BDT Page Register 2 (USBx\_BDTPAGE2)

Contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table.

Address: 4005\_5000h base + B0h offset = 4005\_50B0h



#### **USBx\_BDTPAGE2** field descriptions

| Field | Description                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| BDTBA | Provides address bits 23 through 16 of the BDT base address that defines the location of Buffer Descriptor Table resides in system memory. |

# 52.4.22 BDT Page Register 3 (USBx\_BDTPAGE3)

Contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Buffer Descriptor Table.

Address: 4005\_5000h base + B4h offset = 4005\_50B4h

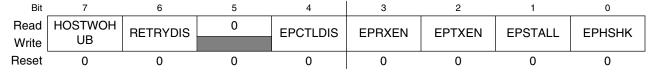


#### **USBx\_BDTPAGE3** field descriptions

| Field | Description                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| BDTBA | Provides address bits 31 through 24 of the BDT base address that defines the location of Buffer Descriptor Table resides in system memory. |

# 52.4.23 Endpoint Control register (USBx\_ENDPTn)

Contains the endpoint control bits for each of the 16 endpoints available within the USB module for a decoded address. The format for these registers is shown in the following figure. Endpoint 0 (ENDPT0) is associated with control pipe 0, which is required for all USB functions. Therefore, after a USBRST interrupt occurs the processor core should set ENDPT0 to contain 0x0D.


In Host mode ENDPT0 is used to determine the handshake, retry and low speed characteristics of the host transfer. For Control, Bulk and Interrupt transfers, the EPHSHK bit should be 1. For Isochronous transfers it should be 0. Common values to use for ENDPT0 in host mode are 0x4D for Control, Bulk, and Interrupt transfers, and 0x4C for Isochronous transfers.

The three bits EPCTLDIS, EPRXEN, and EPTXEN define if an endpoint is enabled and define the direction of the endpoint. The endpoint enable/direction control is defined in the following table.

**EPCTLDIS EPRXEN EPTXEN Endpoint enable/direction** control Χ 0 Disable endpoint Χ 0 Enable endpoint for Tx transfers only Х 1 0 Enable endpoint for Rx transfers only 1 1 1 Enable endpoint for Rx and Tx transfers 0 1 1 Enable Endpoint for RX and TX as well as control (SETUP) transfers.

Table 52-7. Endpoint enable and direction control

Address: 4005\_5000h base + C0h offset + (4d × i), where i=0d to 15d

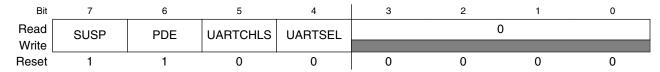


#### USBx ENDPTn field descriptions

| Field     | Description                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------|
| 7         | Host without a hub This is a Host mode only field and is present in the control register for endpoint 0 |
| HOSTWOHUB | (ENDPT0) only.                                                                                          |

Table continues on the next page...

1344 NXP Semiconductors


#### Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

#### **USBx\_ENDPT***n* field descriptions (continued)

| Field         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>Low-speed device connected to Host through a hub. PRE_PID will be generated as required.</li> <li>Low-speed device directly connected. No hub, or no low-speed device attached.</li> </ul>                                                                                                                                                                                                                                                                    |
| 6<br>RETRYDIS | This is a Host mode only bit and is present in the control register for endpoint 0 (ENDPT0) only. When set this bit causes the host to not retry NAK'ed (Negative Acknowledgement) transactions. When a transaction is NAKed, the BDT PID field is updated with the NAK PID, and the TOKEN_DNE interrupt is set. When this bit is cleared, NAKed transactions are retried in hardware. This bit must be set when the host is attempting to poll an interrupt endpoint. |
| 5<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                                                                                                   |
| 4<br>EPCTLDIS | This bit, when set, disables control (SETUP) transfers. When cleared, control transfers are enabled. This applies if and only if the EPRXEN and EPTXEN bits are also set. See Table 52-7                                                                                                                                                                                                                                                                               |
| 3<br>EPRXEN   | This bit, when set, enables the endpoint for RX transfers. See Table 52-7                                                                                                                                                                                                                                                                                                                                                                                              |
| 2<br>EPTXEN   | This bit, when set, enables the endpoint for TX transfers. See Table 52-7                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>EPSTALL  | When set, this bit indicates that the endpoint is stalled. This bit has priority over all other control bits in this register, but it is only valid if EPTXEN=1 or EPRXEN=1. Any access to this endpoint causes the USB Module to return a STALL handshake. After an endpoint is stalled it requires intervention from the Host Controller.                                                                                                                            |
| 0<br>EPHSHK   | When set this bit enables an endpoint to perform handshaking during a transaction to this endpoint. This bit is generally 1 unless the endpoint is Isochronous.                                                                                                                                                                                                                                                                                                        |

# 52.4.24 USB Control register (USBx\_USBCTRL)

Address: 4005\_5000h base + 100h offset = 4005\_5100h



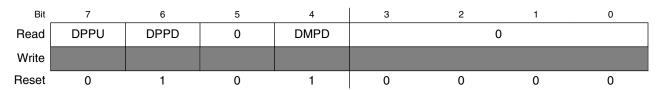
## USBx\_USBCTRL field descriptions

| Field         | Description                                                                        |
|---------------|------------------------------------------------------------------------------------|
| 7<br>SUSP     | Places the USB transceiver into the suspend state.                                 |
|               | 0 USB transceiver is not in suspend state.                                         |
|               | 1 USB transceiver is in suspend state.                                             |
| 6<br>PDE      | Enables the weak pulldowns on the USB transceiver.                                 |
|               | 0 Weak pulldowns are disabled on D+ and D                                          |
|               | 1 Weak pulldowns are enabled on D+ and D                                           |
| 5<br>UARTCHLS | UART Signal Channel Select                                                         |
|               | This field is valid only when USB signals are selected to be used as UART signals. |

Table continues on the next page...

1345

#### Memory map/Register definitions

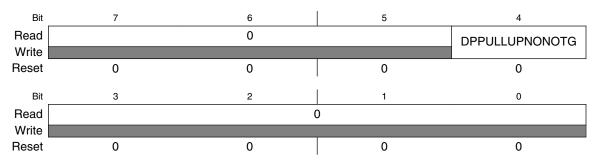

## **USBx\_USBCTRL** field descriptions (continued)

| Field        | Description                                                                          |
|--------------|--------------------------------------------------------------------------------------|
|              | 0 USB DP/DM signals used as UART TX/RX.                                              |
|              | 1 USB DP/DM signals used as UART RX/TX.                                              |
| 4<br>UARTSEL | Selects USB signals to be used as UART signals.                                      |
|              | 0 USB signals not used as UART signals.                                              |
|              | 1 USB signals used as UART signals.                                                  |
| Reserved     | This field is reserved. This read-only field is reserved and always has the value 0. |

# 52.4.25 USB OTG Observe register (USBx\_OBSERVE)

Provides visibility on the state of the pull-ups and pull-downs at the transceiver. Useful when interfacing to an external OTG control module via a serial interface.

Address: 4005\_5000h base + 104h offset = 4005\_5104h



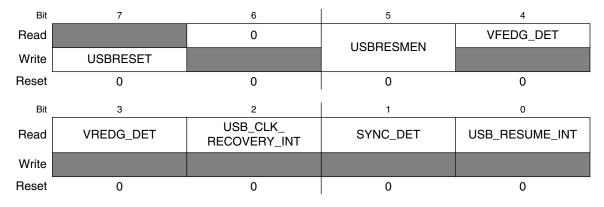

# USBx\_OBSERVE field descriptions

| Description                                                                          |
|--------------------------------------------------------------------------------------|
| Provides observability of the D+ Pullup enable at the USB transceiver.               |
| 0 D+ pullup disabled.                                                                |
| 1 D+ pullup enabled.                                                                 |
| Provides observability of the D+ Pulldown enable at the USB transceiver.             |
| 0 D+ pulldown disabled.                                                              |
| 1 D+ pulldown enabled.                                                               |
| This field is reserved.                                                              |
| This read-only field is reserved and always has the value 0.                         |
| Provides observability of the D- Pulldown enable at the USB transceiver.             |
| 0 D– pulldown disabled.                                                              |
| 1 D- pulldown enabled.                                                               |
| This field is reserved. This read-only field is reserved and always has the value 0. |
|                                                                                      |

# 52.4.26 USB OTG Control register (USBx\_CONTROL)

Address: 4005\_5000h base + 108h offset = 4005\_5108h




**USBx** CONTROL field descriptions

| Field               | Description                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–5<br>Reserved     | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                          |
| 4<br>DPPULLUPNONOTG | Provides control of the DP Pullup in USBOTG, if USB is configured in non-OTG device mode.  0 DP Pullup in non-OTG device mode is not enabled.  1 DP Pullup in non-OTG device mode is enabled. |
| Reserved            | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                          |

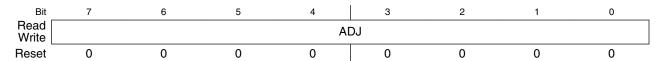
# 52.4.27 USB Transceiver Control register 0 (USBx\_USBTRC0)

Includes signals for basic operation of the on-chip USB Full Speed transceiver and configuration of the USB data connection that are not otherwise included in the USB Full Speed controller registers. VREGIN interrupt detection using the VFEDG\_DET and VREDG\_DET bitfields may be used for VBUS detection in bus-powered device use cases when the USB receptacle VBUS pin is connected to VREGIN.

Address: 4005\_5000h base + 10Ch offset = 4005\_510Ch



KL28Z Reference Manual, Rev. 4, 06/2016

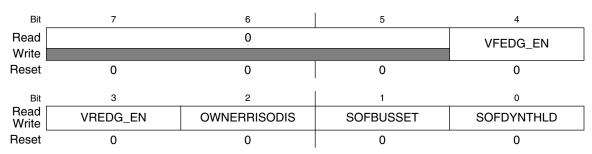

#### Memory map/Register definitions

# USBx\_USBTRC0 field descriptions

| Field                    | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                        | USB Reset                                                                                                                                                                                                                                                                                                                                                                                        |
| USBRESET                 | Generates a hard reset to USBOTG. After this bit is set and the reset occurs, this bit is automatically cleared.                                                                                                                                                                                                                                                                                 |
|                          | NOTE: This bit is always read as zero. Wait two USB clock cycles after setting this bit before accessing other USB register bit fields.                                                                                                                                                                                                                                                          |
|                          | <ul> <li>Normal USB module operation.</li> <li>Returns the USB module to its reset state.</li> </ul>                                                                                                                                                                                                                                                                                             |
| 6<br>Reserved            | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                                                                                                                                                                                             |
| 5<br>USBRESMEN           | Asynchronous Resume Interrupt Enable  This bit, when set, allows the USB module to send an asynchronous wakeup event to the MCU upon detection of resume signaling on the USB bus. The MCU then re-enables clocks to the USB module. It is used for low-power suspend mode when USB module clocks are stopped or the USB transceiver is in Suspend mode. Async wakeup only works in device mode. |
|                          | <ul> <li>USB asynchronous wakeup from suspend mode disabled.</li> <li>USB asynchronous wakeup from suspend mode enabled. The asynchronous resume interrupt differs from the synchronous resume interrupt in that it asynchronously detects K-state using the unfiltered state of the D+ and D- pins. This interrupt should only be enabled when the Transceiver is suspended.</li> </ul>         |
| 4<br>VFEDG_DET           | VREGIN Falling Edge Interrupt Detect  Use USBx_MISCCTRL[VFEDG_EN] to enable this bitfield.  0 VREGIN falling edge interrupt has not been detected.                                                                                                                                                                                                                                               |
|                          | 1 VREGIN falling edge interrupt has been detected.                                                                                                                                                                                                                                                                                                                                               |
| 3<br>VREDG_DET           | VREGIN Rising Edge Interrupt Detect  Use USBx_MISCCTRL[VREDG_EN] to enable this bitfield.                                                                                                                                                                                                                                                                                                        |
|                          | VREGIN rising edge interrupt has not been detected.      VREGIN rising edge interrupt has been detected.                                                                                                                                                                                                                                                                                         |
| 2                        | Combined USB Clock Recovery interrupt status                                                                                                                                                                                                                                                                                                                                                     |
| USB_CLK_<br>RECOVERY_INT | This read-only field will be set to value high at 1'b1 when any of USB clock recovery interrupt conditions are detected and those interrupts are unmasked.                                                                                                                                                                                                                                       |
|                          | For customer use the only unmasked USB clock recovery interrupt condition results from an overflow of the frequency trim setting values indicating that the frequency trim calculated is out of the adjustment range of the FIRC output clock.                                                                                                                                                   |
|                          | To clear this bit after it has been set, Write 0xFF to register USB_CLK_RECOVER_INT_STATUS.                                                                                                                                                                                                                                                                                                      |
| 1<br>SYNC_DET            | Synchronous USB Interrupt Detect  O Synchronous interrupt has not been detected.  Synchronous interrupt has been detected.                                                                                                                                                                                                                                                                       |
| 0<br>USB_RESUME_<br>INT  | USB Asynchronous Interrupt  0 No interrupt was generated.  1 Interrupt was generated because of the USB asynchronous interrupt.                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                  |

# 52.4.28 Frame Adjust Register (USBx\_USBFRMADJUST)

Address: 4005\_5000h base + 114h offset = 4005\_5114h




## USBx\_USBFRMADJUST field descriptions

| Field | Description                                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADJ   | Frame Adjustment                                                                                                                                                                                                                                                                                                                                                                     |
|       | In Host mode, the frame adjustment is a twos complement number that adjusts the period of each USB frame in 12-MHz clock periods. A SOF is normally generated every 12,000 12-MHz clock cycles. The Frame Adjust Register can adjust this by -128 to +127 to compensate for inaccuracies in the USB 48-MHz clock. Changes to the ADJ bit take effect at the start of the next frame. |

# 52.4.29 Miscellaneous Control register (USBx\_MISCCTRL)

Address: 4005\_5000h base + 12Ch offset = 4005\_512Ch



#### USBx\_MISCCTRL field descriptions

| Field         | Description                                                               |
|---------------|---------------------------------------------------------------------------|
| 7–5           | This field is reserved.                                                   |
| Reserved      | This read-only field is reserved and always has the value 0.              |
| 4<br>VFEDG_EN | VREGIN Falling Edge Interrupt Enable                                      |
|               | 0 VREGIN falling edge interrupt disabled.                                 |
|               | 1 VREGIN falling edge interrupt enabled.                                  |
| 3<br>VREDG EN | VREGIN Rising Edge Interrupt Enable                                       |
|               | 0 VREGIN rising edge interrupt disabled.                                  |
|               | 1 VREGIN rising edge interrupt enabled.                                   |
| 2             | OWN Error Detect for ISO IN / ISO OUT Disable                             |
| OWNERRISODIS  |                                                                           |
|               | This field is only valid for Peripheral mode, that is, CTL[HOSTMODEEN]=0. |

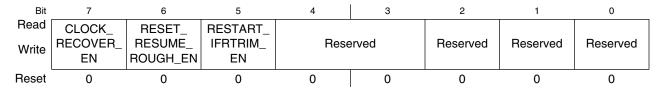
Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

VD 0 . . . . .

#### Memory map/Register definitions

#### **USBx\_MISCCTRL** field descriptions (continued)


| Field           | Description                                                                           |
|-----------------|---------------------------------------------------------------------------------------|
|                 | 0 OWN error detect for ISO IN / ISO OUT is not disabled.                              |
|                 | 1 OWN error detect for ISO IN / ISO OUT is disabled.                                  |
| 1<br>SOFBUSSET  | SOF_TOK Interrupt Generation Mode Select                                              |
|                 | This field is only valid for Host mode, that is, CTL[HOSTMODEEN]=1.                   |
|                 | 0 SOF_TOK interrupt is set according to SOF threshold value.                          |
|                 | 1 SOF_TOK interrupt is set when SOF counter reaches 0.                                |
| 0<br>SOFDYNTHLD | Dynamic SOF Threshold Compare mode                                                    |
|                 | This field is only valid for Host mode, that is, CTL[HOSTMODEEN]=1.                   |
|                 | 0 SOF_TOK interrupt is set when byte times SOF threshold is reached.                  |
|                 | 1 SOF_TOK interrupt is set when 8 byte times SOF threshold is reached or overstepped. |

# 52.4.30 USB Clock recovery control (USBx\_CLK\_RECOVER\_CTRL)

Signals in this register control the crystal-less USB clock mode in which the internal FIRC oscillator is tuned to match the clock extracted from the incoming USB data stream.

#### The FIRC must be enabled in the SCG module.

Address: 4005\_5000h base + 140h offset = 4005\_5140h



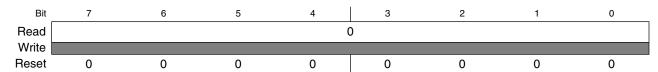
#### USBx\_CLK\_RECOVER\_CTRL field descriptions

| Field                | Description                                                                                                                                                                                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                    | Crystal-less USB enable                                                                                                                                                                                  |
| CLOCK_<br>RECOVER_EN | This bit must be enabled if user wants to use the crystal-less USB mode for the Full Speed USB controller and transceiver.                                                                               |
|                      | NOTE: This bit should not be set for USB host mode or OTG.                                                                                                                                               |
|                      | 0 Disable clock recovery block (default)                                                                                                                                                                 |
|                      | 1 Enable clock recovery block                                                                                                                                                                            |
| 6<br>RESET           | Reset/resume to rough phase enable                                                                                                                                                                       |
| RESUME_<br>ROUGH_EN  | The clock recovery block tracks the FIRC to get an accurate 48Mhz clock. It has two phases after user enables clock_recover_en bit, rough phase and tracking phase. The step to fine tune the FIRC by    |
|                      | adjusting the trim fine value is different during these 2 phases. The step in rough phase is larger than that in tracking phase. Switch back to rough stage whenever USB bus reset or bus resume occurs. |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)


#### USBx\_CLK\_RECOVER\_CTRL field descriptions (continued)

| Field         | Description                                                                                                                                                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Always works in tracking phase after the first time rough to track transition (default)                                                                                                                       |
|               | 1 Go back to rough stage whenever bus reset or bus resume occurs                                                                                                                                              |
| 5<br>RESTART_ | Restart from IFR trim value                                                                                                                                                                                   |
| IFRTRIM_EN    | FIRC has a default trim fine value whose default value is factory trimmed (the IFR trim value). Clock recover block tracks the accuracy of the clock 48Mhz and keeps updating the trim fine value accordingly |
|               | 0 Trim fine adjustment always works based on the previous updated trim fine value (default)                                                                                                                   |
|               | 1 Trim fine restarts from the IFR trim value whenever bus_reset/bus_resume is detected or module enable is desasserted                                                                                        |
| 4–3           | This field is reserved.                                                                                                                                                                                       |
| Reserved      |                                                                                                                                                                                                               |
| 2             | This field is reserved.                                                                                                                                                                                       |
| Reserved      | This bit is for NXP use only. Customers should not change this bit from its default state.                                                                                                                    |
| 1             | This field is reserved.                                                                                                                                                                                       |
| Reserved      | This bit is for NXP use only. Customers should not change this bit from its default state.                                                                                                                    |
| 0             | This field is reserved.                                                                                                                                                                                       |
| Reserved      | Default should not be changed                                                                                                                                                                                 |

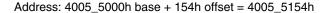
# 52.4.31 FIRC oscillator enable register (USBx\_CLK\_RECOVER\_IRC\_EN)

This register is reserved.

Address: 4005\_5000h base + 144h offset = 4005\_5144h



#### USBx\_CLK\_RECOVER\_IRC\_EN field descriptions


| Field    | Description                                                  |
|----------|--------------------------------------------------------------|
| Reserved | This field is reserved.                                      |
|          | This read-only field is reserved and always has the value 0. |

NXP Semiconductors

1351

# 52.4.31 Clock recovery combined interrupt enable (USBx\_CLK\_RECOVER\_INT\_EN)

Enables or masks the individual interrupt flags which are logically OR'ed together to produce the combined interrupt indication on the USB\_CLK\_RECOVERY\_INT bit in the USB\_USBTRC0 register if the indicated conditions have been detected in the USB clock recovery algorithm operation.





#### USBx\_CLK\_RECOVER\_INT\_EN field descriptions

| Field           | Description                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------|
| 7–5             | This field is reserved.                                                                      |
| Reserved        | Should always be written as 0.                                                               |
| 4<br>OVF_ERROR_ | Determines whether OVF_ERROR condition signal is used in generation of USB_CLK_RECOVERY_INT. |
| EN              | 0 The interrupt will be masked                                                               |
|                 | 1 The interrupt will be enabled (default)                                                    |
| Reserved        | This field is reserved. Should always be written as 0.                                       |

# 52.4.32 Clock recovery separated interrupt status (USBx\_CLK\_RECOVER\_INT\_STATUS)

A Write operation with value high at 1'b1 on any combination of individual bits will clear those bits.

Address: 4005\_5000h base + 15Ch offset = 4005\_515Ch

| Bit   | 7        | 6 | 5 | 4             | 3        | 2  | 1 | 0 |
|-------|----------|---|---|---------------|----------|----|---|---|
| Read  | Reserved |   |   | OVF_<br>ERROR | Reserved |    |   |   |
| Write | w1c      |   |   | w1c           |          | w1 | С |   |
| Reset | 0        | 0 | 0 | 0             | 0        | 0  | 0 | 0 |

#### USBx\_CLK\_RECOVER\_INT\_STATUS field descriptions

| Field           | Description                                                                                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7–5<br>Reserved | This field is reserved. Should always be written as 0.                                                                                                                                                                                |
| 4<br>OVF_ERROR  | Indicates that the USB clock recovery algorithm has detected that the frequency trim adjustment needed for the FIRC output clock is outside the available TRIM_FINE adjustment range for the FIRC module.  O No interrupt is reported |
| Reserved        | Unmasked interrupt has been generated     This field is reserved.     Should always be written as 0.                                                                                                                                  |

# 52.5 OTG and Host mode operation

The Host mode logic allows portable, mobile, and other devices using this SOC to function as a USB Embedded Host (EH) Controller. The OTG logic adds an interface to allow the OTG Host Negotiation and Session Request Protocols (HNP and SRP) to be implemented in software.

Host mode is intended for use in handheld-portable devices to allow easy connection to simple HID class devices such as printers and keyboards. It is not intended to perform the functions of a full OHCI or UHCI compatible host controller found on PC motherboards. Host mode allows bulk, isochronous, interrupt and control transfers. Bulk data transfers are performed at nearly the full USB interface bandwidth. Support is provided for ISO transfers, but the number of ISO streams that can be practically supported is affected by the interrupt latency of the processor servicing the Token Done interrupts from the SIE. Custom drivers must be written to support Host mode operation.

Setting the HOST\_MODE\_EN bit in the CTL register enables Host mode. The USB-FS core can only operate as a peripheral device or in Host mode. It cannot operate in both modes simultaneously. When HOST\_MODE is enabled, only endpoint zero is used. All other endpoints should be disabled by software.

# 52.6 Host Mode Operation Examples

The following sections illustrate the steps required to perform USB host functions using the USB-FS core. For more information about these procedures, see the *Universal Serial Bus Specification, Revision 2.0*, "Chapter 9 USB Device Framework."

To enable host mode and discover a connected device:

#### **Host Mode Operation Examples**

- 1. Enable Host Mode (CTL[HOST\_MODE\_EN]=1). The pull-down resistors are enabled, and pull-up disabled. Start of Frame (SOF) generation begins. SOF counter loaded with 12,000. Disable SOF packet generation to eliminate noise on the USB by writing the USB enable bit to 0 (CTL[USB\_EN]=0).
- 2. Enable the ATTACH interrupt (INTEN[ATTACHEN]=1).
- 3. Wait for ATTACH interrupt (ISTAT[ATTACH]). Signaled by USB peripheral device pull-up resistor changing the state of DPLUS or DMINUS from 0 to 1 (SE0 to J or K state).
- 4. Check the state of the JSTATE and SE0 bits in the control register. If the connecting device is low speed (JSTATE bit is 0), set the low-speed bit in the address registers (ADDR[LS\_EN]=1) and the Host Without Hub bit in endpoint 0 register control (ENDPT0[HOSTWOHUB]=1).
- 5. Enable RESET (CTL[RESET]=1) for 10 ms.
- 6. Enable SOF packet to keep the connected device from going to suspend (CTL[USB\_EN=1]).
- 7. Enumerate the attached device by sending the appropriate commands to the default control pipe of the connected device.

To complete a control transaction to a connected device:

- 1. Complete all the steps to discover a connected device
- 2. Set up the endpoint control register for bidirectional control transfers ENDPT0[4:0] = 0x0d.
- 3. Place a copy of the device framework setup command in a memory buffer.
- 4. Initialize current even or odd TX EP0 BDT to transfer the 8 bytes of command data for a device framework command (for example, a GET DEVICE DESCRIPTOR).
  - Set the BDT command word to 0x00080080 –Byte count to 8, OWN bit to 1.
  - Set the BDT buffer address field to the start address of the 8 byte command buffer.
- 5. Set the USB device address of the peripheral device in the address register (ADDR[6:0]). After the USB bus reset, the device USB address is zero. It is set to some other value usually 1 by the Set Address device framework command.

- 6. Write the TOKEN register with a SETUP to Endpoint 0, the peripheral device default control pipe (TOKEN=0xD0). This initiates a setup token on the bus followed by a data packet. The device handshake is returned in the BDT PID field after the packets complete. When the BDT is written, a Token Done (ISTAT[TOKDNE]) interrupt is asserted. This completes the setup phase of the setup transaction.
- 7. To initiate the data phase of the setup transaction (that is, get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory for the data to be transferred.
- 8. Initialize the current even or odd TX EP0 BDT to transfer the data.
  - Set the BDT command word to 0x004000C0 BC to 64 (the byte count of the data buffer in this case), OWN bit to 1, Data toggle to Data1.
  - Set the BDT buffer address field to the start address of the data buffer
- 9. Write the TOKEN register with an IN or OUT token to Endpoint 0, the peripheral device default control pipe, an IN token for a GET DEVICE DESCRIPTOR command (TOKEN=0x90). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BDT is written and a Token Done (ISTAT[DNE]) interrupt is asserted. For control transfers with a single packet data phase this completes the data phase of the setup transaction.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current even or odd TX EP0 BDT to transfer the status data.
  - Set the BDT command word to 0x00000080 BC to 0 (the byte count of the data buffer in this case), OWN bit to 1, Data toggle to Data1.
  - Set the BDT buffer address field to the start address of the data buffer
- 12. Write the TOKEN register with a IN or OUT token to Endpoint 0, the peripheral device default control pipe, an OUT token for a GET DEVICE DESCRIPTOR command (TOKEN=0x10). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BDT is written with the handshake from the device and a Token Done (ISTAT[TOKDNE]) interrupt is asserted. This completes the data phase of the setup transaction.

To send a full speed bulk data transfer to a peripheral device:

#### **On-The-Go operation**

- 1. Complete all steps to discover a connected device and to configure a connected device. Write the ADDR register with the address of the peripheral device. Typically, there is only one other device on the USB bus in host mode so it is expected that the address is 0x01 and should remain constant.
- 2. Write 0x1D to ENDPT0 register to enable transmit and receive transfers with handshaking enabled.
- 3. Setup the even TX EP0 BDT to transfer up to 64 bytes.
- 4. Set the USB device address of the peripheral device in the address register (ADDR[6:0]).
- 5. Write the TOKEN register with an OUT token to the desired endpoint. The write to this register triggers the USB-FS transmit state machines to begin transmitting the token and the data.
- 6. Setup the odd TX EP0 BDT to transfer up to 64 bytes.
- 7. Write the TOKEN register with an OUT token as in step 4. Two tokens can be queued at a time to allow the packets to be double buffered to achieve maximum throughput.
- 8. Wait for the TOKDNE interrupt. This indicates that one of the BDTs has been released back to the processor and the transfer has completed. If the peripheral device asserts NAKs, the USB-FS continues to retry the transfer indefinitely without processor intervention unless the ENDPT0[RETRYDIS] is 1. If the retry disable field is set, the handshake (ACK, NAK, STALL, or ERROR (0xf)) is returned in the BDT PID field. If a stall interrupt occurs, the pending packet must be dequeued and the error condition in the peripheral device cleared. If a Reset interrupt occurs (SE0 for more than 2.5 μs), the peripheral device has detached.
- 9. After the TOK\_DNE interrupt occurs, the BDTs can be examined and the next data packet queued by returning to step 2.

# 52.7 On-The-Go operation

The USB-OTG core provides sensors and controls to enable On-The-Go (OTG) operation. These sensors are used by the OTG driver software to implement the Host Negotiation Protocol (HNP) and Session Request Protocol (SRP) and give access to the OTG protocol control signals. The following state machines show the OTG operations involved with HNP and SRP protocols from either end of the USB cable.

# 52.7.1 OTG dual role A device operation

A device is considered the A device because of the type of cable attached. If the USB Type Standard-A or Micro-A plug is plugged into the device, it is considered the A device.

A dual role A device operates as the following flow diagram and state description table illustrates.

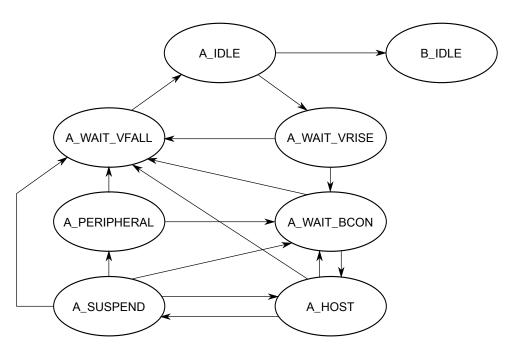



Figure 52-8. Dual role A device flow diagram

Table 52-8. State descriptions for the dual role A device flow

| State        | Action                                                                                                                           | Response           |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| A_IDLE       | If ID Interrupt.                                                                                                                 |                    |  |
|              | The cable has been unplugged or a Type B cable has been attached. The device now acts as a Type B device.                        |                    |  |
|              | If the A application wants to use the bus or if the B device is doing                                                            | Go to A_WAIT_VRISE |  |
|              | an SRP as indicated by an A_SESS_VLD Interrupt or Attach or Port Status Change Interrupt check data line for 5 –10 msec pulsing. | Turn on DRV_VBUS   |  |
| A_WAIT_VRISE | If ID Interrupt or if A_VBUS_VLD is false after 100 msec                                                                         | Go to A_WAIT_VFALL |  |
|              | Turn off DRV_VBUS                                                                                                                |                    |  |
|              | If A_VBUS_VLD interrupt                                                                                                          | Go to A_WAIT_BCON  |  |
| A_WAIT_BCON  | After 200 ms without Attach or ID Interrupt. (This could wait forever                                                            | Go to A_WAIT_FALL  |  |
|              | if desired.)                                                                                                                     | Turn off DRV_VBUS  |  |
|              | Go to A_HOST                                                                                                                     |                    |  |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### On-The-Go operation

Table 52-8. State descriptions for the dual role A device flow (continued)

| State        | Action                                                                                               | Response           |
|--------------|------------------------------------------------------------------------------------------------------|--------------------|
|              |                                                                                                      | Turn on Host mode  |
| A_HOST       | Enumerate Device determine OTG Support.                                                              |                    |
|              | If A_VBUS_VLD/ Interrupt or A device is done and does not think it                                   | Go to A_WAIT_VFALL |
|              | wants to do something soon or the B device disconnects                                               | Turn off Host mode |
|              |                                                                                                      | Turn off DRV_VBUS  |
|              | If the A device is finished with session or if the A device wants to allow the B device to take bus. | Go to A_SUSPEND    |
|              | ID Interrupt or the B device disconnects                                                             | Go to A_WAIT_BCON  |
| A_SUSPEND    | If ID Interrupt, or if 150 ms B disconnect timeout (This timeout value                               | Go to A_WAIT_VFALL |
|              | could be longer) or if A_VBUS_VLD\ Interrupt                                                         | Turn off DRV_VBUS  |
|              | If HNP enabled, and B disconnects in 150 ms then B device is                                         | Go to A_PERIPHERAL |
|              | becoming the host.                                                                                   | Turn off Host mode |
|              | If A wants to start another session                                                                  | Go to A_HOST       |
| A_PERIPHERAL | If ID Interrupt or if A_VBUS_VLD interrupt                                                           | Go to A_WAIT_VFALL |
|              |                                                                                                      | Turn off DRV_VBUS. |
|              | If 3 –200 ms of Bus Idle                                                                             | Go to A_WAIT_BCON  |
|              |                                                                                                      | Turn on Host mode  |
| A_WAIT_VFALL | If ID Interrupt or (A_SESS_VLD/ & b_conn/)                                                           | Go to A_IDLE       |

# 52.7.2 OTG dual role B device operation

A device is considered a B device if it is connected to the bus with a USB Type Standard-B, Mini-B, or Micro-B plug inserted into the local USB receptacle. The Type Mini-B plug and receptacle are now only allowed for dedicated peripheral devices, not dual role/OTG devices.

A dual role B device operates as the following flow diagram and state description table illustrates.

#### Chapter 52 Universal Serial Bus Full Speed OTG Controller (USBFSOTG)

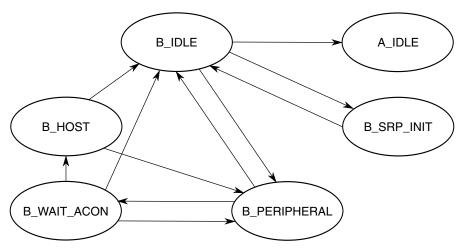



Figure 52-9. Dual role B device flow diagram

Table 52-9. State descriptions for the dual role B device flow

| State        | Action                                                                                   | Response                                    |
|--------------|------------------------------------------------------------------------------------------|---------------------------------------------|
| B_IDLE       | If ID\ Interrupt.                                                                        | Go to A_IDLE                                |
|              | A Type A cable has been plugged in and the device should now respond as a Type A device. |                                             |
|              | If B_SESS_VLD Interrupt.                                                                 | Go to B_PERIPHERAL                          |
|              | The A device has turned on VBUS and begins a session.                                    | Turn on DP_HIGH                             |
|              | If B application wants the bus and Bus is Idle for 2 ms and the                          | Go to B_SRP_INIT                            |
|              | B_SESS_END bit is set, the B device can perform an SRP.                                  | Pulse CHRG_VBUS<br>Pulse DP_HIGH 5-10<br>ms |
| B_SRP_INIT   | If ID\ Interrupt or SRP Done (SRP must be done in less than 100 ms.)                     | Go to B_IDLE                                |
| B_PERIPHERAL | If HNP enabled and the bus is suspended and B wants the bus, the                         | Go to B_WAIT_ACON                           |
|              | B device can become the host.                                                            | Turn off DP_HIGH                            |
| B_WAIT_ACON  | If A connects, an attach interrupt is received                                           | Go to B_HOST                                |
|              |                                                                                          | Turn on Host Mode                           |
|              | If ID\ Interrupt or B_SESS_VLD/ Interrupt                                                | Go to B_IDLE                                |
|              | If the cable changes or if VBUS goes away, the host doesn't support us.                  |                                             |
|              | Go to B_IDLE                                                                             |                                             |
|              | If 3.125 ms expires or if a Resume occurs                                                | Go to B_PERIPHERAL                          |
| B_HOST       | If ID\ Interrupt or B_SESS_VLD\ Interrupt                                                | Go to B_IDLE                                |
|              | If the cable changes or if VBUS goes away, the host doesn't support us.                  |                                             |
|              | If B application is done or A disconnects                                                | Go to B_PERIPHERAL                          |

# 52.8 Device mode FIRC operation

The following are the FIRC initialization code steps:

- 1. Enable the FIRC in the SCG module
- 2. Enable the USB clock recovery tuning: USB\_CLK\_RECOVER\_CTRL[CLOCK\_RECOVER\_EN] = 1b
- 3. Choose the clock source of USB by configuring the muxes.
- 4. The USB clock source must choose the output of the divided clock.

For chip-specific details, see the USB FS OTG controller clocking information in the "Clock Distribution" chapter.

# **Chapter 53 USB Voltage Regulator (VREG)**

# 53.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The USB Voltage Regulator module is a LDO linear voltage regulator to provide 3.3V power from an input power supply varying from 2.7 V to 5.5 V. It consists of one 3.3 V power channel. When the input power supply is below 3.6 V, the regulator goes to pass-through mode. The following figure shows the ideal relation between the regulator output and input power supply.

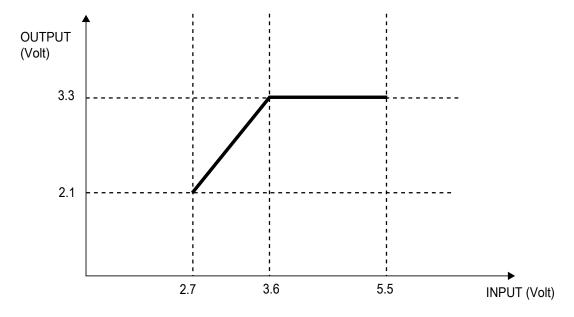



Figure 53-1. Ideal Relation Between the Regulator Output and Input Power Supply

#### 53.1.1 Overview

A simplified block diagram for the USB Voltage Regulator module is shown below.

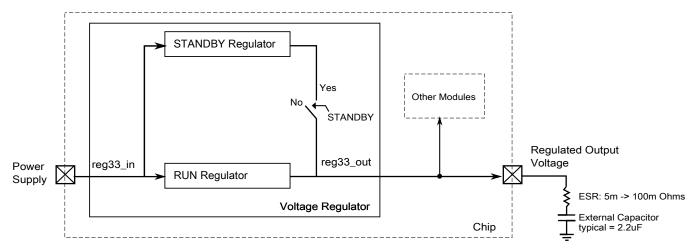



Figure 53-2. USB Voltage Regulator Block Diagram

This module uses 2 regulators in parallel. In run mode, the RUN regulator with the bandgap voltage reference is enabled and can provide up to 120 mA load current. In run mode, the STANDBY regulator and the low power reference are also enabled, but a switch disconnects its output from the external pin. In STANDBY mode, the RUN regulator is disabled and the STANDBY regulator output is connected to the external pin.

Internal power mode signals control whether the module is in RUN or STANDBY mode.

# 53.1.2 Features

- Low drop-out linear voltage regulator with one power channel (3.3 V).
- Low drop-out voltage: 300 mV.
- Output current: 120 mA.
- Three different power modes: RUN, STANDBY and SHUTDOWN.
- Low quiescent current in RUN mode.
  - Typical value is around 120  $\mu A$  (one thousand times smaller than the maximum load current).
- Very low quiescent current in STANDBY mode.
  - Typical value is around 1  $\mu$ A.
- Automatic current limiting if the load current is greater than 290 mA.

- Automatic power-up once some voltage is applied to the regulator input.
- Pass-through mode for regulator input voltages less than 3.6 V
- Small output capacitor: 2.2 μF
- Stable with aluminum, tantalum or ceramic capacitors.

# 53.1.3 Modes of Operation

The regulator has these power modes:

- RUN—The regulating loop of the RUN regulator and the STANDBY regulator are active, but the switch connecting the STANDBY regulator output to the external pin is open.
- STANDBY—The regulating loop of the RUN regulator is disabled and the standby regulator is active. The switch connecting the STANDBY regulator output to the external pin is closed.
- SHUTDOWN—The module is disabled.

The regulator is enabled by default. This means that once the power supply is provided, the module power-up sequence to RUN mode starts.

# 53.2 USB Voltage Regulator Module Signal Descriptions

The following table shows the external signals for the regulator.

Table 53-1. USB Voltage Regulator Module Signal Descriptions

| Signal    | Description                      | I/O |  |  |
|-----------|----------------------------------|-----|--|--|
| reg33_in  | Unregulated power supply         | I   |  |  |
| reg33_out | g33_out Regulator output voltage |     |  |  |

USB Voltage Regulator Module Signal Descriptions

KL28Z Reference Manual, Rev. 4, 06/2016

# **Chapter 54 Voltage Reference (VREF)**

## 54.1 Introduction

#### NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The VREF can be used in applications to provide a reference voltage to external devices, or used internally in the device as a reference to analog peripherals (such as the ADC, DAC, or CMP). The Voltage Reference (VREF) can supply an accurate voltage output that can be trimmed in 0.5 mV steps (for 1.2 V output) or 1.5 mV steps (for 2.1 V output). The voltage reference has 3 operating modes that provide different levels of supply rejection and power consumption.

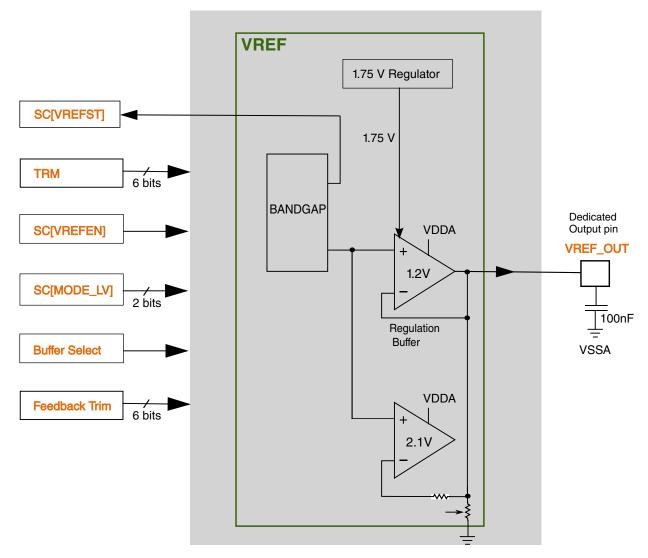



Figure 54-1. Voltage reference block diagram

# 54.1.1 Overview

The Voltage Reference provides a buffered reference voltage for use as an external reference, which can be set to either 1.2V or 2.1V. In addition, the buffered reference is available internally for use with on-chip peripherals (such as ADCs and DACs). Refer to the chip configuration details. When the VREF is enabled, the reference voltage is placed on a dedicated output pin.

- In 1.2V mode, the Voltage Reference output can be trimmed with 0.5mV resolution, using the TRM register TRIM[5:0] bitfield.
- In 2.1V mode, the Voltage Reference output can be trimmed with 1.5mV resolution, using the TRM register VREF\_TRM4 TRIM2V1[5:0] bitfield.

#### 54.1.2 Features

- Programmable trim register with 0.5 mV steps in 1.2V mode and 1.5mV steps in 2.1V mode; upon reset, the trim register is automatically loaded with a factory-trimmed value
- Programmable buffer mode selection:
  - Off
  - Bandgap enabled/standby (output buffer disabled)
  - Low power buffer mode (output buffer enabled)
  - High power buffer mode (output buffer enabled)
- Selectable 1.2V or 2.1V output at room temperature
- Dedicated output pin, VREF\_OUT

# 54.1.3 Modes of Operation

The Voltage Reference continues normal operation in Run, Wait, and Stop modes. The Voltage Reference can also run in Very Low Power Run (VLPR), Very Low Power Wait (VLPW) and Very Low Power Stop (VLPS). If it is desired to use the VREF regulator and/or the chop oscillator in the very low power modes, the system reference voltage (also referred to as the bandgap voltage reference) must be enabled in these modes. Refer to the chip configuration details for information on enabling this mode of operation. Having the VREF regulator enabled does increase current consumption. In very low power modes it may be desirable to disable the VREF regulator to minimize current consumption. Note however that the accuracy of the output voltage will be reduced (by as much as several mVs) when the VREF regulator is not used.

#### NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

# **54.1.4 VREF Signal Descriptions**

The following table shows the Voltage Reference signals properties.

Table 54-1. VREF Signal Descriptions

| Signal   | Description                                   | I/O |
|----------|-----------------------------------------------|-----|
| VREF_OUT | Internally-generated Voltage Reference output | 0   |

#### NOTE

When the VREF output buffer is disabled, the status of the VREF\_OUT signal is high-impedence.

# 54.2 Memory Map and Register Definition

#### **VREF** memory map

| Absolute address (hex) | Register name                              | Width<br>(in bits) | Access | Reset value | Section/<br>page |
|------------------------|--------------------------------------------|--------------------|--------|-------------|------------------|
| 4007_2000              | VREF Trim Register (VREF_TRM)              | 8                  | R/W    | See section | 54.2.1/1368      |
| 4007_2001              | VREF Status and Control Register (VREF_SC) | 8                  | R/W    | 00h         | 54.2.2/1370      |
| 4007_2005              | VREF Trim Register 4 (VREF_TRM4)           | 8                  | R/W    | 00h         | 54.2.3/1371      |

# 54.2.1 VREF Trim Register (VREF\_TRM)

This register contains the trim data for the Voltage Reference.

Address: 4007\_2000h base + 0h offset = 4007\_2000h

| Bit           | 7    | 6      | 5          | 4          | 3  | 2          | 1          | 0          |
|---------------|------|--------|------------|------------|----|------------|------------|------------|
| Read<br>Write | FLIP | CHOPEN |            |            | TF | RIM        |            |            |
| Reset         | 0    | 0      | <b>x</b> * | <b>x</b> * | x* | <b>x</b> * | <b>x</b> * | <b>x</b> * |

<sup>\*</sup> Notes:

#### **VREF\_TRM** field descriptions

| Field | Description                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
|       | Reverses the amplifier polarity. FLIP can be used to test bandgap amplifier offset. The trim value is stored in IFR and loaded out of reset. |

Table continues on the next page...

#### KL28Z Reference Manual, Rev. 4, 06/2016

<sup>•</sup> x = Undefined at reset.

# VREF\_TRM field descriptions (continued)

| minimized.  EN bit is set during factory the the performance stated internal voltage regulator is the control of the control o | being used (REGEN bit is set to 1), the<br>in very low power modes, then the sys<br>hip-specific VREF information (also know                      | EN bit should be written to 1 to nen the chop oscillator must also bettern (bandgap) voltage reference                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| e the performance stated internal voltage regulator is d.  hop oscillatorwill be used also be enabled. See the classification be achieved op oscillator is disabled. op oscillator is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in the data sheet. being used (REGEN bit is set to 1), the specific very low power modes, then the syship-specific VREF information (also known). | nen the chop oscillator must also better the chop oscillator the tem (bandgap) voltage reference                                               |
| d.  hop oscillatorwill be used lso be enabled. See the classification be achieved.  op oscillator is disabled.  op oscillator is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in very low power modes, then the sys<br>hip-specific VREF information (also kn                                                                   | tem (bandgap) voltage reference                                                                                                                |
| lso be enabled. See the cl<br>how this can be achieved.<br>op oscillator is disabled.<br>op oscillator is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hip-specific VREF information (also kn                                                                                                            |                                                                                                                                                |
| op oscillator is enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                |
| rest_mux_en=1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | test muy out nos                                                                                                                                  | test_mux_out_neg                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | test_res                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | vssa                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | vssa                                                                                                                                           |
| 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p7_trim                                                                                                                                           | vssa                                                                                                                                           |
| 1xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v_1p75                                                                                                                                            | vssa                                                                                                                                           |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d loaded out of reset. test_mux_en=1:  TRIM[2:0]  000  001  010  011                                                                              | TRIM[2:0]         test_mux_out_pos           000         vbg           001         vbg           010         vbe           011         p7_trim |

# 54.2.2 VREF Status and Control Register (VREF\_SC)

This register contains the control bits that enable the internal voltage reference and select the buffer mode to be used.

Address: 4007\_2000h base + 1h offset = 4007\_2001h



#### **VREF\_SC** field descriptions

| Field       | Description                                                                                                                                                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7           | Internal Voltage Reference enable                                                                                                                                                                                                                                                                               |
| VREFEN      | Enables the bandgap reference within the Voltage Reference module.                                                                                                                                                                                                                                              |
|             | NOTE: After the VREF is enabled, turning off the clock to the VREF module via the corresponding clock gate register will not disable the VREF. VREF must be disabled using this VREFEN bit.                                                                                                                     |
|             | 0 The module is disabled.                                                                                                                                                                                                                                                                                       |
|             | 1 The module is enabled.                                                                                                                                                                                                                                                                                        |
| 6           | Regulator enable                                                                                                                                                                                                                                                                                                |
| REGEN       | Enables the internal 1.75 V regulator to produce a constant internal voltage supply in order to reduce the sensitivity to external supply noise and variation. If it is desired to keep the regulator enabled in very low power modes, refer to the Chip Configuration details to see how this can be achieved. |
|             | REGEN bit should be written to 1 to achieve the performance stated in the data sheet.                                                                                                                                                                                                                           |
|             | <b>NOTE:</b> See section "Internal voltage regulator" for details on the required sequence to enable the internal regulator.                                                                                                                                                                                    |
|             | 0 Internal 1.75 V regulator is disabled.                                                                                                                                                                                                                                                                        |
|             | 1 Internal 1.75 V regulator is enabled.                                                                                                                                                                                                                                                                         |
| 5           | Second order curvature compensation enable                                                                                                                                                                                                                                                                      |
| ICOMPEN     | ICOMPEN bit should be written to 1 to achieve the performance stated in the data sheet.                                                                                                                                                                                                                         |
|             | 0 Disabled                                                                                                                                                                                                                                                                                                      |
|             | 1 Enabled                                                                                                                                                                                                                                                                                                       |
| 4           | Test second order curvature compensation enable                                                                                                                                                                                                                                                                 |
| TRESEN      | TRESEN bit is accessible only in functional test mode.                                                                                                                                                                                                                                                          |
|             | 0 Disabled                                                                                                                                                                                                                                                                                                      |
|             | 1 Enabled                                                                                                                                                                                                                                                                                                       |
| 3<br>TMUXEN | Test MUX enable                                                                                                                                                                                                                                                                                                 |

Table continues on the next page...

#### **VREF\_SC** field descriptions (continued)

| Field       | Description                                                                                                          |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
|             | TMUXEN bit is accessible only in functional test mode.                                                               |  |  |  |
|             | 0 Disabled                                                                                                           |  |  |  |
|             | 1 Enabled                                                                                                            |  |  |  |
| 2<br>VREFST | Internal Voltage Reference stable                                                                                    |  |  |  |
| VIILIOI     | Indicates that the bandgap reference within the Voltage Reference module has finished its startup and stabilization. |  |  |  |
|             | NOTE: VREFST bit is valid only when the chop oscillator is not being used.                                           |  |  |  |
|             | 0 The module is disabled or not stable.                                                                              |  |  |  |
|             | 1 The module is stable.                                                                                              |  |  |  |
| MODE_LV     | Buffer Mode selection                                                                                                |  |  |  |
|             | Selects the buffer modes for the Voltage Reference module.                                                           |  |  |  |
|             | 00 Bandgap on only, for stabilization and startup                                                                    |  |  |  |
|             | 01 High power buffer mode enabled                                                                                    |  |  |  |
|             | 10 Low-power buffer mode enabled                                                                                     |  |  |  |
|             | 11 Reserved                                                                                                          |  |  |  |

#### 54.2.3 VREF Trim Register 4 (VREF\_TRM4)

This register contains the enable and trim for VREF 2.1V generation.

Address: 4007\_2000h base + 5h offset = 4007\_2005h



#### **VREF\_TRM4** field descriptions

| Field      | Description                                                                                                                                |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7          | Internal Voltage Reference (2.1V) Enable                                                                                                   |  |
| VREF2V1_EN | Enables the bandgap reference within the Voltage Reference module for generating the 2.1V output                                           |  |
|            | 0 VREF 2.1V is enabled                                                                                                                     |  |
|            | 1 VREF 2.1V is disabled                                                                                                                    |  |
| 6          | This field is reserved.                                                                                                                    |  |
| Reserved   | This read-only field is reserved and always has the value 0.                                                                               |  |
| TRIM2V1    | VREF 2.1V Trim Bits                                                                                                                        |  |
|            | These bits change the resulting VREF by approximately $\pm$ 1.5 mV for each step. The trim value is stored in IFR and loaded out of reset. |  |

KL28Z Reference Manual, Rev. 4, 06/2016

## 54.3 Functional Description

The Voltage Reference is a bandgap buffer system. Unity gain amplifiers are used.

The VREF\_OUT signal can be used by both internal and external peripherals in low and high power buffer mode. A 100 nF capacitor must always be connected between VREF\_OUT and VSSA if the VREF is being used.

The following table shows all possible function configurations of the Voltage Reference.

| SC[VREFEN] | SC[MODE_LV] | Configuration                                                | Functionality                                                                   |
|------------|-------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|
| 0          | Х           | Voltage Reference disabled                                   | Off                                                                             |
| 1          | 00          | Voltage Reference enabled, Startup and stand bandgap on only |                                                                                 |
| 1          | 01          | Voltage Reference enabled,<br>high-power buffer on           | VREF_OUT available for internal and external use. 100 nF capacitor is required. |
| 1          | 10          | Voltage Reference enabled,<br>low power buffer on            | VREF_OUT available for internal and external use. 100 nF capacitor is required. |
| 1          | 11          | Reserved                                                     | Reserved                                                                        |

Table 54-2. Voltage Reference function configurations

#### 54.3.1 Voltage Reference Disabled, SC[VREFEN] = 0

When SC[VREFEN] = 0, the Voltage Reference is disabled, the VREF bandgap and the output buffers are disabled. The Voltage Reference is in off mode.

## 54.3.2 Voltage Reference Enabled, SC[VREFEN] = 1

When SC[VREFEN] = 1, the Voltage Reference is enabled, and different modes should be set by the SC[MODE\_LV] bits.

#### 54.3.2.1 SC[MODE LV]=00

The internal VREF bandgap is enabled to generate an accurate 1.2 V output that can be trimmed with the TRM register's TRIM[5:0] bitfield. The bandgap requires some time for startup and stabilization. SC[VREFST] can be monitored to determine if the stabilization and startup is complete when the chop oscillator is not enabled.

If the chop oscillator is being used, the internal bandgap reference voltage settles within the chop oscillator start up time, Tchop\_osc\_stup.

The output buffer is disabled in this mode, and there is no buffered voltage output. The Voltage Reference is in standby mode. If this mode is first selected and the low power or high power buffer mode is subsequently enabled, there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet.

#### 54.3.2.2 SC[MODE\_LV] = 01

The internal VREF bandgap is on. The high power buffer is enabled to generate a buffered 1.2 V voltage to VREF\_OUT. It can also be used as a reference to internal analog peripherals such as an ADC channel or analog comparator input.

If this mode is entered from the standby mode (SC[MODE\_LV] = 00, SC[VREFEN] = 1) there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. If this mode is entered when the VREF module is enabled then you must wait the longer of Tstup or until SC[VREFST] = 1 when the chop oscillator is not enabled. If the chop oscillator is being used, you must wait the time specified by Tchop\_osc\_stup (chop oscillator start up time) to ensure the VREF output has stabilized.

In this mode, a 100 nF capacitor is required to connect between the VREF\_OUT pin and VSSA.

#### 54.3.2.3 SC[MODE\_LV] = 10

The internal VREF bandgap is on. The low power buffer is enabled to generate a buffered 1.2 V voltage to VREF\_OUT. It can also be used as a reference to internal analog peripherals such as an ADC channel or analog comparator input.

If this mode is entered from the standby mode (SC[MODE\_LV] = 00, SC[VREFEN] = 1) there will be a delay before the buffer output is settled at the final value. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. If this mode is entered when the VREF module is enabled then you must wait the longer of Tstup or until SC[VREFST] = 1 when the chop oscillator is not enabled. If the chop oscillator is being used, you must wait the time specified by Tchop\_osc\_stup (chop oscillator start up time) to ensure the VREF output has stabilized.

In this mode, a 100 nF capacitor is required to connect between the VREF\_OUT pin and VSSA.

## 54.3.2.4 SC[MODE\_LV] = 11

Reserved

#### 54.3.3 Internal voltage regulator

The VREF module contains an internal voltage regulator that can be enabled to provide additional supply noise rejection. It is recommended that when possible, this regulator be enabled to provide the optimum VREF performance.

If the internal voltage regulator is being used, the chop oscillator must also be enabled. A specific sequence must be followed when enabling the internal regulator as follows:

- 1. Enable the chop oscillator (VREF\_TRM[CHOPEN] = 1)
- 2. Configure the VREF\_SC register to the desired settings with the internal regulator disabled, VREF\_SC[REGEN] = 0
- 3. Wait > 300 ns
- 4. Enable the internal regulator by setting VREF\_SC[REGEN] to 1

## 54.4 Initialization/Application Information

The Voltage Reference requires some time for startup and stabilization. After SC[VREFEN] = 1, SC[VREFST] can be monitored to determine if the stabilization and startup is completed when the chop oscillator is not enabled. When the chop oscillator is enabled, the settling time of the internal bandgap reference is defined by Tchop\_osc\_stup (chop oscillator start up time). You must wait this time (Tchop\_osc\_stup) after the internal bandgap has been enabled to ensure the VREF internal reference voltage has stabilized.

When the Voltage Reference is already enabled and stabilized, changing SC[MODE\_LV] will not clear SC[VREFST] but there will be some startup time before the output voltage at the VREF\_OUT pin has settled. This is the buffer start up delay (Tstup) and the value is specified in the appropriate device data sheet. Also, there will be some settling time when a step change of the load current is applied to the VREF\_OUT pin. When the 1.75V VREF regulator is disabled, the VREF\_OUT voltage will be more sensitive to supply voltage variation. It is recommended to use this regulator to achieve optimum VREF\_OUT performance.

The TRM[CHOPEN], SC[REGEN] and SC[ICOMPEN] bits must be written to 1 to achieve the performance stated in the device data sheet.

**Chapter 54 Voltage Reference (VREF)** 

# **NOTE**

See section "Internal voltage regulator" for details on the required sequence to enable the internal regulator.

Initialization/Application Information

# **Chapter 55 Watchdog timer (WDOG32)**

#### 55.1 Introduction

The Watchdog Timer (WDOG) module is an independent timer that is available for system use. It provides a safety feature to ensure that software is executing as planned and that the CPU is not stuck in an infinite loop or executing unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU.

#### **55.1.1 Features**

Features of the WDOG32 module include:

- Configurable clock source inputs independent from the bus clock
  - Bus clock (slow clock)
  - LPO (1 kHz clock from PMC)
  - SIRC (8 MHz IRC from SCG)
  - ERCLK (external reference clock from SCG)
- Programmable timeout period
  - Programmable 16-bit timeout value
  - Optional fixed 256 clock prescaler when longer timeout periods are needed
- Robust write sequence for counter refresh
  - Refresh sequence of writing 0x02A6 and then 0x80B4 within 16 bus clocks
- Window mode option for the refresh mechanism
  - Programmable 16-bit window value

#### Introduction

- Provides robust check that program flow is faster than expected
- Early refresh attempts trigger a reset.
- Optional timeout interrupt to allow post-processing diagnostics
  - Interrupt request to CPU with interrupt vector for an interrupt service routine (ISR)
  - Forced reset occurs 128 bus clocks after the interrupt vector fetch.
- Configuration bits are write-once-after-reset to ensure watchdog configuration cannot be mistakenly altered.
- Robust write sequence for unlocking write-once configuration bits
  - Unlock sequence of writing 0x20C5 and then 0x28D9 within 16 bus clocks for allowing updates to write-once configuration bits
  - Software must make updates within 128 bus clocks after unlocking and before WDOG32 closes the unlock window.

#### 55.1.2 Block diagram

The following figure shows a block diagram of the WDOG module.

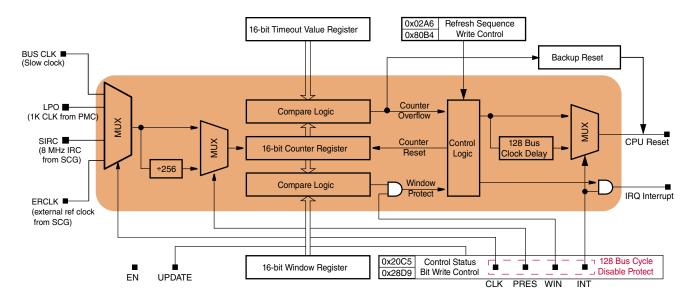
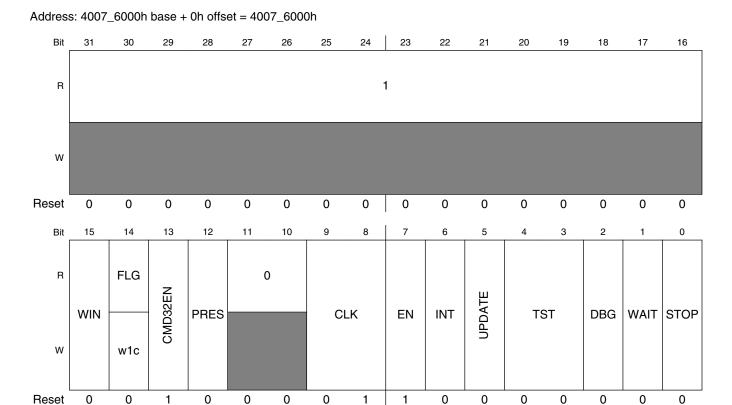



Figure 55-1. WDOG block diagram

1379

# 55.2 Memory map and register definition

#### **WDOG** memory map


| Absolute address (hex) | Register name                                                         |    | Access      | Reset value | Section/<br>page |
|------------------------|-----------------------------------------------------------------------|----|-------------|-------------|------------------|
| 4007_6000              | Watchdog Control and Status Register (WDOG0_CS)  32 R/W See section   |    | 55.2.1/1379 |             |                  |
| 4007_6004              | Watchdog Counter Register (WDOG0_CNT) 32 R/W 0000_0002h 55            |    | 55.2.2/1381 |             |                  |
| 4007_6008              | 08 Watchdog Timeout Value Register (WDOG0_TOVAL) 32 R/W 0000_0400h 55 |    | 55.2.3/1382 |             |                  |
| 4007_600C              | Watchdog Window Register (WDOG0_WIN)                                  | 32 | R/W         | 0000_0000h  | 55.2.4/1383      |

#### Watchdog Control and Status Register (WDOGx\_CS)

This section describes the function of Watchdog Control and Status Register.

#### **NOTE**

TST is cleared (0:0) on POR only. Any other reset does not affect the value of this field.



**NXP Semiconductors** 

KL28Z Reference Manual, Rev. 4, 06/2016

#### Memory map and register definition

## WDOGx\_CS field descriptions

| Field             | Description                                                                                                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 1.                                                                                                                                    |
| 15                | Watchdog Window                                                                                                                                                                                                         |
| WIN               | This write-once bit enables window mode. See the Window mode section.                                                                                                                                                   |
|                   | 0 Window mode disabled.                                                                                                                                                                                                 |
|                   | 1 Window mode enabled.                                                                                                                                                                                                  |
| 14<br>FLG         | Watchdog Interrupt Flag                                                                                                                                                                                                 |
|                   | This bit is an interrupt indicator when INT is set in control and status register 1. Write 1 to clear it.                                                                                                               |
|                   | 0 No interrupt occurred.                                                                                                                                                                                                |
|                   | 1 An interrupt occurred.                                                                                                                                                                                                |
| 13<br>CMD32EN     | Enables or disables WDOG support for 32-bit (or 16-bit or 8-bit) refresh/unlock command write words                                                                                                                     |
| OWIDOZEIN         | 0 Disables support for 32-bit (or 16-bit or 8-bit) refresh/unlock command write words                                                                                                                                   |
|                   | 1 Enables support for 32-bit (or 16-bit or 8-bit) refresh/unlock command write words                                                                                                                                    |
| 12<br>PRES        | Watchdog Prescalar                                                                                                                                                                                                      |
| THES              | This write-once bit enables a fixed 256 pre-scaling of watchdog counter reference clock. (The block diagram shows this clock divider option.)                                                                           |
|                   | 0 256 prescalar disabled.                                                                                                                                                                                               |
|                   | 1 256 prescalar enabled.                                                                                                                                                                                                |
| 11–10<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0.                                                                                                                                    |
| 9–8               | Watchdog Clock                                                                                                                                                                                                          |
| CLK               | This write-once field indicates the clock source that feeds the watchdog counter. See the Clock source section.                                                                                                         |
|                   | 00 Bus clock.                                                                                                                                                                                                           |
|                   | 01 Internal low-power oscillator (LPOCLK).                                                                                                                                                                              |
|                   | 10 8 MHz internal reference clock.                                                                                                                                                                                      |
| 7                 | 11 External clock source.  Watchdog Enable                                                                                                                                                                              |
| EN                |                                                                                                                                                                                                                         |
|                   | This write-once bit enables the watchdog counter to start counting.                                                                                                                                                     |
|                   | 0 Watchdog disabled.                                                                                                                                                                                                    |
| _                 | 1 Watchdog enabled.                                                                                                                                                                                                     |
| 6<br>INT          | Watchdog Interrupt                                                                                                                                                                                                      |
|                   | This write-once bit configures the watchdog to immediately generate an interrupt request upon a reset-                                                                                                                  |
|                   | triggering event (timeout or illegal write to the watchdog), before forcing a reset. After the interrupt vector fetch (which comes after the reset-triggering event), the reset occurs after a delay of 128 bus clocks. |
|                   | 0 Watchdog interrupts are disabled. Watchdog resets are not delayed.                                                                                                                                                    |
|                   | 1 Watchdog interrupts are enabled. Watchdog resets are delayed by 128 bus clocks from the interrupt vector fetch.                                                                                                       |

Table continues on the next page...

KL28Z Reference Manual, Rev. 4, 06/2016

#### WDOGx\_CS field descriptions (continued)

| Field       | Description                                                                                                                                                                                           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>UPDATE | Allow updates                                                                                                                                                                                         |
|             | This write-once bit allows software to reconfigure the watchdog without a reset.                                                                                                                      |
|             | 0 Updates not allowed. After the initial configuration, the watchdog cannot be later modified without<br>forcing a reset.                                                                             |
|             | 1 Updates allowed. Software can modify the watchdog configuration registers within 128 bus clocks<br>after performing the unlock write sequence.                                                      |
| 4–3<br>TST  | Watchdog Test                                                                                                                                                                                         |
| 151         | Enables the fast test mode. The test mode allows software to exercise all bits of the counter to demonstrate that the watchdog is functioning properly. See the Fast testing of the watchdog section. |
|             | This write-once field is cleared (0:0) on POR only. Any other reset does not affect the value of this field.                                                                                          |
|             | 00 Watchdog test mode disabled.                                                                                                                                                                       |
|             | 01 Watchdog user mode enabled. (Watchdog test mode disabled.) After testing the watchdog, software should use this setting to indicate that the watchdog is functioning normally in user mode.        |
|             | Watchdog test mode enabled, only the low byte is used. CNT[CNTLOW] is compared with TOVAL[TOVALLOW].                                                                                                  |
|             | 11 Watchdog test mode enabled, only the high byte is used. CNT[CNTHIGH] is compared with TOVAL[TOVALHIGH].                                                                                            |
| 2<br>DBG    | Debug Enable                                                                                                                                                                                          |
| 550         | This write-once bit enables the watchdog to operate when the chip is in debug mode.                                                                                                                   |
|             | 0 Watchdog disabled in chip debug mode.                                                                                                                                                               |
|             | 1 Watchdog enabled in chip debug mode.                                                                                                                                                                |
| 1<br>WAIT   | Wait Enable                                                                                                                                                                                           |
|             | This write-once bit enables the watchdog to operate when the chip is in wait mode.                                                                                                                    |
|             | 0 Watchdog disabled in chip wait mode.                                                                                                                                                                |
|             | 1 Watchdog enabled in chip wait mode.                                                                                                                                                                 |
| 0<br>STOP   | Stop Enable                                                                                                                                                                                           |
|             | This write-once bit enables the watchdog to operate when the chip is in stop mode.                                                                                                                    |
|             | 0 Watchdog disabled in chip stop mode.                                                                                                                                                                |
|             | 1 Watchdog enabled in chip stop mode.                                                                                                                                                                 |

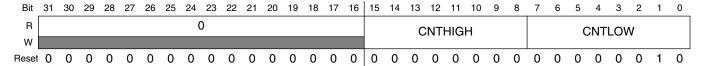
#### 55.2.2 Watchdog Counter Register (WDOGx\_CNT)

This section describes the watchdog counter register.

The watchdog counter register provides access to the value of the free-running watchdog counter. Software can read the counter register at any time.

Software cannot write directly to the watchdog counter; however, two write sequences to these registers have special functions:

KL28Z Reference Manual, Rev. 4, 06/2016


#### Memory map and register definition

- 1. The *refresh sequence* resets the watchdog counter to 0x0000. See the Refreshing the Watchdog section.
- 2. The *unlock sequence* allows the watchdog to be reconfigured without forcing a reset (when CS[UPDATE] = 1). See the Example code: Reconfiguring the Watchdog section.

#### NOTE

All other writes to this register are illegal and force a reset.

Address: 4007\_6000h base + 4h offset = 4007\_6004h



#### WDOGx\_CNT field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>CNTHIGH   | High byte of the Watchdog Counter                                                    |
| CNTLOW            | Low byte of the Watchdog Counter                                                     |

#### 55.2.3 Watchdog Timeout Value Register (WDOGx TOVAL)

This section describes the watchdog timeout value register. TOVAL contains the 16-bit value used to set the timeout period of the watchdog.

The watchdog counter (CNT) is continuously compared with the timeout value (TOVAL). If the counter reaches the timeout value, the watchdog forces a reset.

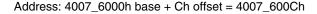
#### NOTE

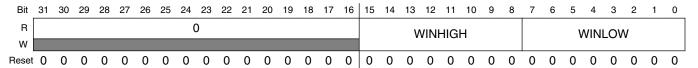
Do not write 0 to the Watchdog Timeout Value Register; otherwise, the watchdog always generates a reset.

Address: 4007\_6000h base + 8h offset = 4007\_6008h



KL28Z Reference Manual, Rev. 4, 06/2016


#### WDOGx\_TOVAL field descriptions


| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>TOVALHIGH | High byte of the timeout value;                                                      |
| TOVALLOW          | Low byte of the timeout value                                                        |

#### 55.2.4 Watchdog Window Register (WDOGx\_WIN)

This section describes the watchdog window register. When window mode is enabled (CS[WIN] is set), The WIN register determines the earliest time that a refresh sequence is considered valid. See the Watchdog refresh mechanism section.

The WIN register value must be less than the TOVAL register value.





#### WDOGx\_WIN field descriptions

| Field             | Description                                                                          |
|-------------------|--------------------------------------------------------------------------------------|
| 31–16<br>Reserved | This field is reserved. This read-only field is reserved and always has the value 0. |
| 15–8<br>WINHIGH   | High byte of Watchdog Window                                                         |
| WINLOW            | Low byte of Watchdog Window                                                          |

## 55.3 Functional description

The WDOG module provides a fail safe mechanism to ensure the system can be reset to a known state of operation in case of system failure, such as the CPU clock stopping or there being a run away condition in the software code. The watchdog counter runs continuously off a selectable clock source and expects to be serviced (refreshed) periodically. If it is not, it generates a reset triggering event.

The timeout period, window mode, and clock source are all programmable but must be configured within 128 bus clocks after a reset.

#### 55.3.1 Watchdog refresh mechanism

The watchdog resets the MCU if the watchdog counter is not refreshed. A robust refresh mechanism makes it very unlikely that the watchdog can be refreshed by runaway code.

To refresh the watchdog counter, software must execute a refresh write sequence before the timeout period expires. In addition, if window mode is used, software must not start the refresh sequence until after the time value set in the WIN register. See the following figure.

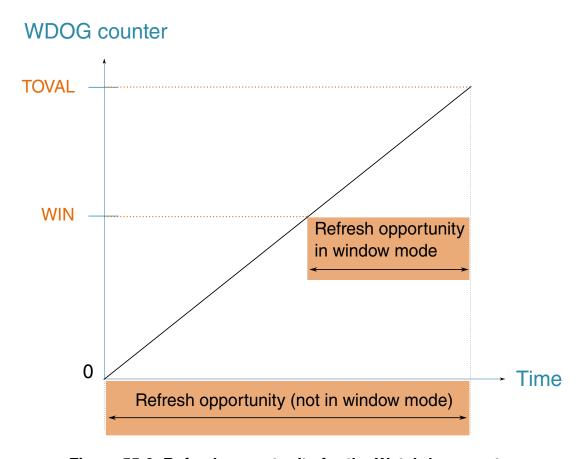



Figure 55-2. Refresh opportunity for the Watchdog counter

#### 55.3.1.1 Window mode

Software finishing its main control loop faster than expected could be an indication of a problem. Depending on the requirements of the application, the WDOG can be programmed to force a reset when refresh attempts are early.

When Window mode is enabled, the watchdog must be refreshed after the counter has reached a minimum expected time value; otherwise, the watchdog resets the MCU. The minimum expected time value is specified in the WIN register. Setting CS[WIN] enables Window mode.

#### 55.3.1.2 Refreshing the Watchdog

The refresh write sequence can be the following:

• One 32-bit write (0xB480\_A602) to the CNT register.

This must occur before the WDOG timeout; otherwise, the watchdog resets the MCU.

#### **Note**

Before starting the refresh sequence, disable the global interrupts. Otherwise, an interrupt could effectively invalidate the refresh sequence, if the interrupt occurs before the refresh writes finish. After the sequence finishes, re-enable the global interrupts.

#### 55.3.1.3 Example code: Refreshing the Watchdog

The following code segment shows the refresh write sequence of the WDOG module. The refresh command access size is 32-bit.

```
/* Refresh watchdog */
for (;;) // main loop
{
    ...
    DisableInterrupts; // disable global interrupt
    WDOG_CNT = 0xB480A602; // write the refresh word
    EnableInterrupts; // enable global interrupt
    ...
}
```

#### 55.3.2 Configuring the Watchdog Once

All watchdog control bits, timeout value, and window value are write-once after reset within 128 bus clocks. This means that after a write has occurred they cannot be changed unless a reset occurs. This is guaranteed by the user configuring the window and timeout value first, followed by the other control bits, and ensuring that CS[UPDATE] is also set to 0.

This provides a robust mechanism to configure the watchdog and ensure that a runaway condition cannot mistakenly disable or modify the watchdog configuration after configured.

The new configuration takes effect only after all registers except CNT are written after reset. Otherwise, the WDOG uses the reset values by default. If window mode is not used (CS[WIN] is 0), writing to WIN is not required to make the new configuration take effect.

#### 55.3.2.1 Reconfiguring the Watchdog

In some cases (like when supporting a bootloader function), you may want to reconfigure or disable the watchdog, *without forcing a reset first*.

- By setting CS[UPDATE] to 1 on the initial configuration of the watchdog after a reset, you can reconfigure the watchdog at any time by executing an unlock sequence.
- Conversely, if CS[UPDATE] remains 0, the only way to reconfigure the watchdog is by initiating a reset.

The unlock sequence is similar to the refresh sequence but uses different values.

#### 55.3.2.2 Unlocking the Watchdog

The unlock sequence can be the following:

• One 32-bit write of 0xD928\_C520 to the CNT register

This should occur within 16 bus clocks at any time after the watchdog has been configured. On completing the unlock sequence, the user must reconfigure the watchdog within 128 bus clocks; otherwise, the watchdog closes the unlock window.

#### NOTE

Due to the 128 bus clocks requirement for reconfiguring the watchdog, some delays must be inserted before executing STOP or WAIT instructions after reconfiguring the watchdog. This ensures that the watchdog's new configuration takes effect

before the MCU enters low power mode. Otherwise, the MCU may not be waken up from low power mode.

#### 55.3.2.3 Example code: Reconfiguring the Watchdog

The following code segment shows an example reconfiguration of the WDOG module. The unlock command access size is 32-bit.

```
/* Initialize watchdog with ~1-kHz clock source, ~1s time-out */
DisableInterrupts; // disable global interrupt

WDOG_CNT = 0xD928C520; // unlock word

WDOG_TOVAL = 1000; // setting timeout value

WDOG_CS = WDOG_CS_CLK_MASK; // setting 1-kHz clock source

WDOG_CS = WDOG_CS_EN_MASK; // enable counter running

EnableInterrupts; // enable global interrupt
```

#### 55.3.3 Clock source

The watchdog counter has the following clock source options selected by programming CS[CLK]:

- bus clock
- internal Low-Power Oscillator clock (LPO\_CLK) (This is the default source.)
- internal 8 MHz clock (SIRC)
- external clock (SOSC)

The options allow software to select a clock source independent of the bus clock for applications that need to meet more robust safety requirements. Using a clock source other than the bus clock ensures that the watchdog counter continues to run if the bus clock is somehow halted; see Backup reset.

An optional fixed prescaler for all clock sources allows for longer timeout periods. When CS[PRES] is set, the clock source is prescaled by 256 before clocking the watchdog counter.

The following table summarizes the different watchdog timeout periods available.

Table 55-1. Watchdog timeout availability

| Reference clock Prescaler         |              | Watchdog time-out availability                                                             |
|-----------------------------------|--------------|--------------------------------------------------------------------------------------------|
| Internal LPO CLK                  | Pass through | ~1 ms-65.5 s (if LPO_CLK = 1 kHz); (~1 ms-65.5 s)/128 (if LPO_CLK = 128 kHz). <sup>1</sup> |
| internal LFO_OLK                  | ÷256         | ~256 ms-16,777.2 s (if LPO_CLK = 1 kHz); ~2 ms-131.1 s (if LPO_CLK = 128 kHz).             |
| Internal 8 MHz (SIRC)             | Pass through | 125 ns-8.1925 ms                                                                           |
| internal 6 Wil 12 (SINC)          | ÷256         | 32 μs-2.09728 s                                                                            |
| 1 MHz (from bus or external)      | Pass through | 1 μs–65.54 ms                                                                              |
| 1 Will 2 (Holli bus of external)  | ÷256         | 256 μs–16.777 s                                                                            |
| 20 MHz (from bus or external)     | Pass through | 50 ns-3.277 ms                                                                             |
| 20 Wil 12 (Holli bus of external) | ÷256         | 12.8 µs-838.8 ms                                                                           |

1. The default timeout value after reset is approximately 4 ms (if LPO\_CLK = 1 kHz), or 4/128 ms (if LPO\_CLK = 128 kHz).

#### NOTE

When the programmer switches clock sources during reconfiguration, the watchdog hardware holds the counter at zero for 2.5 periods of the previous clock source and 2.5 periods of the new clock source after the configuration time period (128 bus clocks) ends. This delay ensures a smooth transition before restarting the counter with the new configuration.

#### 55.3.4 Using interrupts to delay resets

- When interrupts are enabled (CS[INT] = 1): After a reset-triggering event (like a counter timeout or invalid refresh attempt), the watchdog first generates an interrupt request. Next, the watchdog delays 128 bus clocks (from the interrupt vector fetch, not the reset-triggering event) before forcing a reset, to allow the interrupt service routine (ISR) to perform tasks (like analyzing the stack to debug code).
- When interrupts are disabled (CS[INT] = 0): the watchdog does not delay the forcing a reset.

## 55.3.5 Backup reset

#### NOTE

A clock source other than the bus clock must be used as the reference clock for the counter; otherwise, the backup reset function is not available.

KL28Z Reference Manual, Rev. 4, 06/2016

The backup reset function is a safeguard feature that independently generates a reset in case the main WDOG logic loses its clock (the bus clock) and can no longer monitor the counter. If the watchdog counter overflows twice in succession (without an intervening reset), the backup reset function takes effect and generates a reset.

#### 55.3.6 Functionality in debug and low-power modes

By default, the watchdog is not functional in Debug mode, Wait mode, or Stop mode. However, the watchdog can remain functional in these modes as follows:

- For Debug mode, set CS[DBG]. (This way the watchdog is functional in Debug mode even when the CPU is held by the Debug module.)
- For Wait mode, set CS[WAIT].
- For Stop mode, set CS[STOP], CS[WAIT], and ensure the clock source is active in STOP mode.

#### NOTE

The watchdog can not generate interrupt in Stop mode even if CS[STOP] is set and will not wake the MCU from Stop mode. It can generate reset during Stop mode.

For Debug mode and Stop mode, in addition to the above configurations, a clock source other than the bus clock must be used as the reference clock for the counter; otherwise, the watchdog cannot function.

#### 55.3.7 Fast testing of the watchdog

Before executing application code in safety critical applications, users are required to test that the watchdog works as expected and resets the MCU. Testing every bit of a 16-bit counter by letting it run to the overflow value takes a relatively long time (64 kHz clocks).

To help minimize the startup delay for application code after reset, the watchdog has a feature to test the watchdog more quickly by splitting the counter into its constituent byte-wide stages. The low and high bytes are run independently and tested for timeout against the corresponding byte of the timeout value register. (For complete coverage when testing the high byte of the counter, the test feature feeds the input clock via the 8th bit of the low byte, thus ensuring that the overflow connection from the low byte to the high byte is tested.)

#### **Functional description**

Using this test feature reduces the test time to 512 clocks (not including overhead, such as user configuration and reset vector fetches). To further speed testing, use a faster clock (such as the bus clock) for the counter reference.

On a power-on reset, the POR bit in the system reset register is set, indicating the user should perform the WDOG fast test.

#### 55.3.7.1 Testing each byte of the counter

The test procedure follows these steps:

- 1. Program the preferred watchdog timeout value in the TOVAL register during the watchdog configuration time period.
- 2. Select a byte of the counter to test using the CS[TST] = 10b for the low byte; CS[TST] = 11b for the high byte.
- 3. Wait for the watchdog to timeout. Optionally, in the idle loop, increment RAM locations as a parallel software counter for later comparison. Because the RAM is not affected by a watchdog reset, the timeout period of the watchdog counter can be compared with the software counter to verify the timeout period has occurred as expected.
- 4. The watchdog counter times out and forces a reset.
- 5. Confirm the WDOG flag in the system reset register is set, indicating that the watchdog caused the reset. (The POR flag remains clear.)
- 6. Confirm that CS[TST] shows a test (10b or 11b) was performed.

If confirmed, the count and compare functions work for the selected byte. Repeat the procedure, selecting the other byte in step 2.

#### NOTE

CS[TST] is cleared by a POR only and not affected by other resets.

#### 55.3.7.2 Entering user mode

After successfully testing the low and high bytes of the watchdog counter, the user can configure CS[TST] to 01b to indicate the watchdog is ready for use in application user mode. Thus if a reset occurs again, software can recognize the reset trigger as a real watchdog reset caused by runaway or faulty application code.

As an ongoing test when using the default LPO clock source, software can periodically read the CNT register to ensure the counter is being incremented.

# Appendix A Release Notes for Rev. 3, 3.1, and 4

## A.1 General changes throughout document

- · Added LK field to PORTx\_PCRn register, bit 15.
- Removed information on 64-pin package and indicated 121-pin package as Package Your Way.
- Removed references to USB\_CLK\_RECOVER\_IRC\_EN register.
- Removed information about Keep Alive mode
- Updated register addresses in Cryptographic Acceleration Unit (CAU)
- Updated section Noise detection mode in Touch Sensing Input (TSI)

## A.2 About This Document chapter changes

· No substantial content changes

#### A.3 Introduction chapter changes

• In the block diagram, changed "USB RAM" to "USB SRAM"

#### A.4 Chip Configuration chapter changes

- In section Universal Serial Bus (USB) FS Subsystem, added a note stating "For the USB FS OTG controller to operate, the minimum system clock frequency is 20 MHz."
- In AWIC stop wake-up sources, added USB.
- Renamed section "USB SRAM in VLLS Power Modes" to "USB SRAM" and updated the section.
- Added the following note in Universal Serial Bus (USB) FS Subsystem "USB OTG is not functional in VLPx, VLLSx, and any Stop modes."

#### A.5 Memory Map changes

· No substantial content changes

## A.6 Clock Distribution changes

• In table Table 5-1, added the following footnote to USB - "For the USB FS OTG controller to operate, the minimum required DIVCORE\_CLK is 24 MHz (half of USB functional clock).

#### A.7 Reset and Boot chapter changes

No substantial content changes

## A.8 Power Management chapter changes

Added a row for TSTMR in table Module operation in low power modes.

#### A.9 Security chapter changes

No substantial content changes

## A.10 Debug chapter changes

Updated section Debug and security

# A.11 Signal Multiplexing and Signal Descriptions chapter changes

No substantial content changes

# A.12 ADC changes

· No substantial content changes

# A.13 Crossbar switch module changes

- · No substantial content changes
- Fixed-priority operation: Removed the note referring to MGPCR from the "How the Crossbar Switch grants control of a slave port to a master" table.
- Initialization/application information :
  - · Changed wording of sentence about arbitration scheme.

## A.14 BME configuration changes

• In topic Introduction, removed reference to M2B.

# A.15 Kinetis ROM Bootloader changes

· No substantial content changes

## A.16 MMCAU changes

· No substantial content changes

# A.17 CMP changes

No substantial content changes

KL28Z Reference Manual, Rev. 4, 06/2016

# A.18 CRC changes

No substantial content changes

## A.19 DAC changes

No substantial content changes

## A.20 DMAMUX module changes

· No substantial content changes

# A.21 eDMA module changes

- Error Status Register (DMA\_ES): Removed bullet about uncorrectable TCD SRAM errors.
- eDMA initialization: In bullet beginning with "Enable any hardware service requests..." replaced "ERQH and ERQL registers" with "ERQ register."

# A.22 EMVSIM changes

No substantial content changes

# A.23 FMC changes

No substantial content changes

# A.24 FMC changes

· No substantial content changes

#### A.25 FTFA changes

- Add ACCERR check for sector size larger than segment size in Error Handling table for RD1XA and ERSXA commands
- Modify FSEC[MEEN] register field description
- · Modify Flash Commands by Mode table entries for Read 1s All Blocks and Erase All Blocks commands
- Add Read 1s All Execute-only Segments and Erase All Execute-only Segments commands; modify list of Margin Read Commands
- Add reference to AN5112 in Flash Access Protection
- Add ACCERR check for mode/security in Error Handling table for Verify Backdoor Access Key and Read 1s All Blocks commands
- Change column heading from Byte to Offset Address in configuration field description table
- · Add suggestion to bit poll FSTAT[CCIF] for command completion in Generic flash command write sequence flowchart
- Clarify that ACCERR and FPVIOL flags must be clear before ERSSUSP can be set in Suspending an Erase Flash Sector Operation
- Remove erroneous reference to the flash configuration field in Suspending an Erase Flash Sector Operation
- Specify minimum time of 4.3 msec between request to resume and suspend erase in Resuming an Erase Flash Sector Operation
- Correct FPROT register description when supporting 2KB sectors
- · Add list of specific commands impacted by Flash Access Protection
- Clarify writability of ACCERR and FPVIOL while CCIF is set in FSTAT register description
- In FTFA\_FACSN[NUMSG], changed bit field value from 0x40 to 0x4x

## A.26 INTMUX changes

No substantial content changes

# A.27 LLWU changes

No substantial content changes

#### A.28 LPI2C changes

No substantial content changes

## A.29 LPIT changes

 In "Modes of operation" section, removed Low Leakage Stop row from "Chip modes supported by the LPIT module" table, because it is not supported by the device.

KL28Z Reference Manual, Rev. 4, 06/2016

#### LPSPI changes

- In Module Control Register (MCR), in M\_CEN field (Module Clock Enable), in the note, added MSR register to the list of registers that generate transfer errors when M\_CEN is not enabled.
- In "Functional Description / Initialization" section, in the note, added MSR register to the list of registers that generate transfer errors when M\_CEN is not enabled.

# A.30 LPSPI changes

· No substantial content changes

# A.31 LPTMR changes

No substantial content changes

## A.32 LPUART changes

· No substantial content changes

# A.33 MMDVSQ changes

· No substantial content changes

# A.34 MCM changes

No substantial content changes

# A.35 MSCM changes

No substantial content changes

# A.36 MTB configuration changes

· No substantial content changes

# A.37 PCC changes

No substantial content changes

# A.38 PMC changes

· No substantial content changes

# A.39 PORT changes

For the "Digital filter" section, clarified the maximum latency through a digital filter.

• In Pin Control Register (PCRn), added additional details to Interrupt Configuration field (IRQC) description.

# A.40 RCM changes

· No substantial content changes

## A.41 GPIO changes

· No substantial content changes

# A.42 RTC changes

- · No substantial content changes
- Updated field descriptions of the IER[TSIE].
- Updated CR[CPE] field.

KL28Z Reference Manual, Rev. 4, 06/2016

# A.43 I2S/SAI changes

· No substantial content changes

## A.44 SCG changes

· No substantial content changes

## A.45 SIM changes

· No substantial content changes

# A.46 SMC changes

- · Removed RAM2 content.
- For the PARAM register, clarified the bitfield descriptions.
- For PMCTRL[RUNM], clarified that any reset while in HSRUN mode clears RUNM.
- For PMSTAT[PMSTAT], clarified that any reset while in HSRUN mode clears PMSTAT.
- In section "Stop mode entry sequence," added clarification to step 5.
- In section "High Speed Run (HSRUN) mode," added clarifications to the last paragraph.

#### A.47 TPM changes

· No substantial content changes

## A.48 TRGMUX changes

No substantial content changes

# A.49 Touch sense input chapter changes

· No substantial content changes

# A.50 TSTMR changes

No substantial content changes

# A.51 USB full speed OTG controller changes

Changed CLK\_RECOVER\_IRC\_EN to reserved.

# A.52 USB VREG changes

No substantial content changes

# A.53 VREF\_2V1 changes

• Updated the bit field values of VREF\_TRM4[VREF2V1\_EN] to the following:

0 VREF 2.1V is enabled

1 VREF 2.1V is disabled

## A.54 WDOG changes

No substantial content changes

KL28Z Reference Manual, Rev. 4, 06/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2015 - 2016 NXP B.V.

Document Number MKL28ZRM Revision 4, 06/2016



