General Description

The AOZ6184 is a low-voltage high-speed Double-Pole, Double-Throw (DPDT) switch for switching between two USB 2.0 (480 Mbps) sources. The device features very low on capacitance (3.6 pF typ.) and is designed to operate from a single 1.65 V to 4.5 V supply. The AOZ6184 features an ultra-low on resistance (8Ω typ.), and low power consumption. The device also features fast switching and guaranteed Break-BeforeMake (BBM) switching, assuring the switches never short the driver.

Features

- Low On Resistance (Ron) for 3.6 V supply (8Ω)
- Low On Capacitance (C_{ON}) for 3.6 V supply (3.6 pF)
- Over-voltage tolerance (OVT) on all data ports up to 5.5 V
- QFN-10: $1.8 \mathrm{~mm} \times 1.4 \mathrm{~mm} \times 0.55 \mathrm{~mm}$
- Broad 1.65 V to $4.50 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operating range
- Wide -3 dB bandwidth: 1.1 GHz typ.

Applications

- Cell phone
- PDA
- Portable media player

Typical Application

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ6184QT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QFN-10	Green Product

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.
Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Pin Description

Pin Name	Function
S	Control Input
$\overline{\mathrm{OE}}$	Output Enable
HSD1+, HSD1-, HSD2+, HSD2-, D+, D-	Data Ports

Truth Table

$\overline{\mathbf{O E}}$	\mathbf{S}	HSD1+, HSD1-	HSD2+, HSD2-
1	X	Off	Off
0	0	On	Off
0	1	Off	On

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +5.5 V
$\mathrm{~V}_{\mathrm{S}}$	Switch Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	-0.5 V to +4.6 V
I_{IK}	Minimum Input Diode Current	-50 mA
I_{SW}	Switch Current	100 mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
ESD	Human Body Model	3000 V
		All Pins
		I/O to GND
	Power to GND	5000 V

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Recommended Operating Conditions.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	1.65 V to 4.5 V
$\mathrm{~V}_{\mathrm{IN}}$	Control Input Voltage ${ }^{(1)}$	0 V to V_{CC}
V_{SW}	Switch Input Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min.	Typ.	Max.	Units
V_{CL}	Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	3.0			-1.2	V
V_{IH}	Input Voltage HIGH		4.3	1.4			V
			2.7 to 3.6	1.3			
			2.3 to 2.7	1.1			
			1.65 to 1.95	0.9			
V_{IL}	Input Voltage LOW		4.3			0.7	V
			2.7 to 3.6			0.5	
			2.3 to 2.7			0.4	
			1.65 to 1.95			0.4	
I_{IN}	Control Input Leakage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	1.65 to 4.5	-1.0		1.0	$\mu \mathrm{A}$
I_{OZ}	Off State Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	1.65 to 4.5	-1.0		1.0	$\mu \mathrm{A}$
IOFF	Power OFF Leakage Current (I/O ports)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	0	-1.0		1.0	$\mu \mathrm{A}$
R_{ON}	On-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	4.3		7	10	Ω
			2.7 to 3.6		10	13	
			2.3 to 2.7		13	16	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance Matching	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	4.3		0.6		Ω
			2.7 to 3.6		0.6		
			2.3 to 2.7		0.6		
$\mathrm{R}_{\text {FLAT (}}$ (ON)	On-Resistance Flatness	$\begin{aligned} & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } 0.4 \mathrm{~V} \end{aligned}$	4.3		0.4		Ω
			2.7 to 3.6		1.5		
			2.3 to 2.7		1.8		
I_{CC}	Quiescent Supply Current	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	4.3			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Increase in I_{CC} per Input Control Voltage	$\mathrm{V}_{\text {Control }}=2.6 \mathrm{~V}$	4.3		3.0	7.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {Control }}=1.8 \mathrm{~V}$			7.0	15.0	

AC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {Cc }}(\mathrm{V})$	Min.	Typ.	Max.	Units
t_{ON}	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.6 to 4.3		18	28	ns
			2.7 to 3.6		21	31	
			2.3 to 2.7		36	46	
			1.65 to 1.95		80	90	
$t_{\text {OFF }}$	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	3.6 to 4.3		11	21	ns
			2.7 to 3.6		11	21	
			2.3 to 2.7		14	25	
			1.65 to 1.95		59	70	
$t_{\text {PD }}$	Propagation Delay	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65 to 4.5		0.25		ns
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65 to 4.5		6.2		ns
$\mathrm{O}_{\text {IRR }}$	Off Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$	1.65 to 4.5		-36		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$	1.65 to 4.5		-40		dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	1.65 to 4.5		1.1		GHz

USB Hi-Speed AC Electrical Characteristics

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathbf{V}_{\mathbf{C c}}(\mathbf{V})$	Min.	Typ.	Max.
t_{SK}	Skew of Opposite Transitions of the Same Output	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65 to 4.5		20	
t_{J}	Total Jitter	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=500 \mathrm{ps}(10 \%$ to $90 \%)$, $\mathrm{f}=480 \mathrm{MHz}$, PRBS $=2^{15}-1$	1.65 to 4.5		200	ps

Capacitance

Unless otherwise indicated, specifications indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	1 MHz	3.3		1.7		pF
		10 MHz			1.7		
C_{ON}	D+/D- On Capacitance	$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.3		3.6		
		$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$			3.8		
$\mathrm{C}_{\text {OFF }}$	HSD1n/HSD2n Off Capacitance	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC},} \mathrm{f}=1 \mathrm{MHz}$	3.3		1.7		
		$\overline{\mathrm{OE}}=0 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}$			1.8		

Eye Patterns

480-Mbps USB Signal With AOZ6184QT

Typical Performance Characteristics

AC Loading and Waveforms

Figure 1. Turn-On/Turn-Off Timing

C_{L} Includes Fixture and Stray Capacitance
Figure 2. Break-Before-Make Timing

Figure 3. Off Isolation

Figure 5. Bandwidth

Figure 4. Crosstalk

Figure 6. ON/Off Capacitance Measurement

Package Dimensions, QFN 1.8x1.4, 10L

RECOMMENDED LAND PATTERN

Dimensions in millimeters

| Symbols | Min. | Nom. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0.50 | 0.55 | 0.60 |
| A1 | 0.00 | - | 0.05 |
| b | 0.15 | 0.20 | 0.25 |
| c | 0.152 REF. | | |
| D | 1.35 | 1.40 | 1.45 |
| E | 1.75 | 1.80 | 1.85 |
| S | 0.40 BSC | | |
| Symbols | Min. | Nom. | Max. |
| A | 0.020 | 0.022 | 0.024 |
| A1 | 0.000 | - | 0.002 |
| b | 0.35 | 0.40 | 0.45 |
| L1 | 0.475 | 0.525 | 0.575 |
| c | 0.006 REF. | | |
| D | 0.053 | 0.055 | 0.057 |
| E | 0.069 | 0.071 | 0.073 |
| e | 0.016 BSC | | |
| L | 0.014 | 0.016 | 0.018 |
| L1 | 0.019 | 0.021 | 0.023 |

Notes:

1. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.

Tape and Reel Dimensions, QFN 1.8x1.4, 10L

Carrier Tape

UNIT: mm

Package	A0	B0	K0	D0	D1	E	E1	E2	P0	P1	P2	T
QFN 1.8×1.4	1.90	1.70	1.00	1.50	0.50	8.00	1.75	3.50	4.00	4.00	2.00	0.254
	± 0.05	± 0.05	± 0.05	$+0.10 /-0$	± 0.05	$+0.20 /-0.10$	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.02

Reel

UNIT: mm

Tape Size	Reel Size	\mathbf{M}	\mathbf{N}	\mathbf{W}	$\mathbf{W} 1$	\mathbf{H}	\mathbf{K}	\mathbf{S}	\mathbf{G}	\mathbf{R}	\mathbf{V}
8 mm	$ø 178$	$\varnothing 178.0$	$\varnothing 70.5$	9.0	11.8	$\varnothing 13.0$	10.25	2.4	$\varnothing 9.8$	$\mathrm{~N} / \mathrm{A}$	N / A
		± 1.0	± 1.0	± 0.5	± 1.1	$+0.5 /-0.2$	± 0.1	± 0.1			

Leader/Trailer and Orientation

Part Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha \& Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA \& OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
