
Copyright © mikroElektronika, January 2012. All rights reserved.

Page 2 Page 3

I want to express my thanks to you for being interested in our products and for having

confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products

and to constantly improve the performance thereof in order to better suit your needs.

The Microchip name, logo and products names are trademarks of Microchip Technology in the U.S.A and other countries.

TO OUR VALUED CUSTOMERS

Nebojsa Matic

General Manager

Page 2 Page 3

1. Introduction to mikroPascal PRO for PIC® . 04

2. Hardware Connection . 05

3. Creating a New Project . 06

 Step 1 - Project Settings . 07

	 Step	2	-	Add	files	10

 Step 3 - Include Libraries . 11

 Step 4 - Finishing . 12

 Blank new project created . 13

4. Code Example . 14

5. Building the Source . 16

6. Changing Project Settings . 17

7. What’s next . 18

Table of Contents

Page 4 Page 5

mikroPascal PRO for PIC® organizes applica-

tions into projects consisting of a single

project	file	 (file	with	the	 .mpppi extension)

and	one	or	more	source	files	 (files	with	the	

.mpas extension). The mikroPascal PRO for

PIC® compiler allows you to manage several

projects	at	a	time.	Source	files	can	be	compiled	

only if they are part of the project.

In this reference guide, we will create a new

project, write code, compile it and test the

results. The purpose of this project is to make

microcontroller PORTB LEDs blink, which will

be easy to test.

A	project	file	contains:

•	Project name and optional description;

•	Target device in use;

•	Device clock;

•	List	of	the	project	source	files;

•	Binary	files	(*.mcl);	and

•	Other	files.

1. Introduction to mikroPascal PRO for PIC®

05

06

07

01 04 07

02 05 08

03 06

Main Toolbar

Code Explorer

Project Settings

Messages

Code Editor

Image Preview

Project Manger

Library Manager

03

02

04

01

08

Page 4 Page 5

Let’s make a simple “Hello world” example for the

selected microcontroller. First thing embedded

programmers usually write is a simple LED blinking

program. So, let’s do that in a few simple lines of

Pascal code.

LED blinking is just turning ON and OFF LEDs that

are connected to desired PORT pins. In order to see

the example in action, it is necessary to connect

the target microcontroller according to schematics

shown on Figure 2-1. In the project we are about

to write, we will use only PORTB, so you should

connect the LEDs to PORTB only.

Prior	to	creating	a	new	project,	it	is	necessary	to	do	the	following:

Step 1: Install the compiler
Install the mikroPascal PRO for PIC® compiler from the Product DVD

or	download	it	from	the	MikroElektronika	website:	

http://www.mikroe.com/eng/products/view/10/mikropascal-pro-for-pic/

Step 2: Start up the compiler
Double click on the compiler icon in the Start menu, or on your desktop

to Start up the mikroPascal PRO for PIC® compiler. The mikroPascal

PRO	for	PIC®	IDE	(Integrated	Development	Environment)	will	appear	

on the screen. Now you are ready to start creating a new project.

2. Hardware Connection

DIP 40

VCC-MCU

VCC-MCU

RE2

VCC

GND

RE1

RE0

RA5

RA4

RA3

RA2

RA1

RA0

MCLR-RE3

RC0

RC1

RC2

MCU

RD0

RD1

RA7

RA6

RC7

RD4

RD5

RD6

RD7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC6

RC5

RC4

RD3

RD2

VCC

GND

PIC18F45K22

X2
8MHz SEC

C22

22pF

C21

22pF

RB7

RB6

RB5

RB4

RB2

RB1

RB0

RB3

R1
4K7

R5
4K7

R2
4K7

R6
4K7

R3
4K7

R7
4K7

R4
4K7

R8
4K7

LD0
LED

LD4
LED

LD1
LED

LD5
LED

LD2
LED

LD6
LED

LD3
LED

LD7
LED

Figure 2-1:
Hardware connection schematics

Page 6 Page 7

The process of creating a new project is very

simple. Select the New Project option from

the Project menu as shown below. The New
Project Wizard window appears. It can also

be opened by clicking the New Project icon

from the Project toolbar.

The New Project Wizard (Figure 3-1) will

guide you through the process of creating

a new project. The introductory window of

this application contains a list of actions to

be performed when creating a new project.

Click Next.

3. Creating a New Project

Figure 3-1: Introductory window of the New Project Wizard

01

01

Page 6 Page 7

First thing we have to do is to specify the

general project information. This is done

by selecting the target microcontroller, it’s

operating clock frequency, and of course

- naming our project. This is an important

step, because compiler will adjust the

internal settings based on this information.

Default	configuration	is	already	suggested	

to us at the begining. We will not change

the microcontroller, and we will leave the

default PIC18F45K22 as the choice for

this project.

Step 1 - Project Settings

Figure 3-2: You can specify project name, path, device and clock in the first step

Page 8 Page 9

If you do not want to use the suggested path

for storing your new project, you can change
the destination folder. In order to do that,

follow	a	simple	procedure:

Step 1 - Project Settings

Figure 3-3: Change the destination folder using Browse For Folder dialog

01

01

02

03 03

02

Click the Browse button of the Project

Settings window to open the Browse
for Folder dialog.

Select the desired folder to be the

destination path for storing your new

project	files.

Click the OK	 button	 to	 confirm	 your	

selection and apply the new path.

Page 8 Page 9

Once we have selected the destination

project folder, let’s do the rest of the project

settings:

Step 1 - Project Settings

Figure 3-4: Enter project name and change device clock speed if necessary

01

02

03

03

01

02

Enter the name of your project. Since

we are going to blink some LEDs,

it’s appropriate to call the project

“LedBlinking”

Click the OK button to proceed.

For this demonstration, we will use

the default external crystal 8MHz
clock. Clock speed depends on your

target hardware, and whether you

are using PLL or not. But however you

configure	your	hardware,	make	sure	to	

specify	the	exact	clock	(Fosc) that the

microcontroller is operating at.

Page 10 Page 11

This	step	allows	you	to	include	additional	files	

that	you	need	in	your	project:	some	headers	

or	 source	 files	 that	 you	 already	wrote,	 and	

that you might need in further development.

Since we are building a simple application, we

won’t	be	adding	any	files	at	this	moment.

Step 2 - Add files

01

Figure 3-5: Add existing headers, sources or other files if necessary

Click Next.01

Page 10 Page 11

Following step allows you to quickly set

whether you want to include all libraries in

your project, or not. Even if all libraries are

included, they will not consume any memory

unless they are explicitely used from within

your code. The main advantage of including

all libraries is that you will have over 500
functions available for use in your code

right away, and visible from Code Assistant

[CTRL+Space]. We will leave this in default

configuration:

Step 3 - Include Libraries

02

01

Figure 3-6: Include all libraries in the project, which is a default configuration.

01

02

Make sure to leave “Include All”
selected.

Click Next.

Page 12 Page 13

After	 all	 configuration	 is	 done,	 final	 step	

allows you to do just a bit more.

Step 4 - Finishing

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

02

0101 There is a check-box called “Open Edit
Project window to set Configuration
bits”	at	 the	final	step.	Edit Project is

a specialized window which allows you

to do all the necessary oscillator and

PLL settings, as well as to set other

configuration	 bits.	 We	 made	 sure	 that	

everything is described in plain English,

so you will be able to do the settings

without having to open the datasheet.

Anyway, since we are only building a

simple application, we will leave it at

default	configuration	(HS	oscillator	with	

PLL disabled). Therefore, leave the
checkbox unchecked.

Click Finish.02

Page 12 Page 13

New	project	 is	finally	created.	A	new	source	

file	called	“LedBlinking.mpas” is created and

it contains the begin...end. block, which

will hold the program. You may notice that

project	is	configured	according	to	the	settings	

done in the New Project Wizard.

Blank new project created

Figure 3-8: New blank project is created with your configuration

Page 14 Page 15

Time has come to do some coding. First thing

we need to do is to initialize the PORTB to act

as digital output. TRISB register, associated

with PORTB, is used to set whether each pin

acts as input or output.

LATB register is used instead of PORTB for

digital output. We can now initialize it with

logic	zeros	on	every	pin:

Finally, in a while loop we will toggle the

PORTB value, and put a 1000 ms delay, so

the blinking is not too fast.

program LedBlinking;

begin
 // set PORTB to be digital output
 TRISB := 0;

 // Turn OFF LEDs on PORTB
 LATB := 0;

 while TRUE do
 begin
 // Toggle LEDs on PORTB
 LATB := not LATB;

 // Delay 1000 ms
 Delay_ms(1000);
 end;
end.

// set PORTB to be digital output
TRISB := 0;

// Turn OFF LEDs on PORTB
LATB := 0x00;

while TRUE do
begin
 // Toggle LEDs on PORTB
 LATB := not LATB;
 // Delay 1000 ms
 Delay_ms(1000);
end;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

LedBlinking.mpas - source code

4. Code Example

Figure 4-1: Complete source code of the PORTB LED blinking

Page 14 Page 15

Figure 4-2: This is how the code looks
written in compiler code editor window

Page 16 Page 17

When	we	 are	 done	writing	 our	 first	

LedBlinking code, we can now build

the project and create a .HEX file	
which can be loaded into our target

microcontroller, so we can test the

program on real hardware. “Building”

includes compilation, linking and

optimization which are done automatically. Build your code by clicking

on the icon in the main toolbar, or simply go to Build menu and

click Build [CTRL+F9]. Message window will report the details of the

building	process	(Figure 5-2). Compiler automatically creates necessary

output	files.	LedBlinking.hex	(Figure 5-1) is among them.

5. Building the Source

Figure 5-2: After the successful compilation and linking, the message window should look something like this

Figure 5-1: Listing of project files after building is done

Page 16 Page 17

If you need to change the target microcontroller or clock speed, you don’t have to go through the new project wizard all over again. This can be

done quickly in the Edit Project window. You can open it using Project->Edit Project [CTRL+SHIFT+E] menu option.

6. Changing Project Settings

Figure 6-1: Edit Project Window

01

02

02

03

04

01

02

03

04

To change your MCU, just select the

desired microcontroller from the

dropdown list.

To change your settings enter the

oscillator	value	and	adjust	configu-

ration register bits using drop-down

boxes.

Several most commonly used settings

can be loaded using the provided

oscillator “schemes”. Load the desired

scheme by clicking the Load Scheme

button.

Select whether to build a Debug
HEX, which is necessary for hardware

debugging,	or	a	final	Release HEX.

Page 18 Page 19

mikroPascal PRO for PIC® comes with over 150 examples which demonstrate a variety of

features. They represent the best starting point when developing a new project. You will

find	projects	written	for	mikroElektronika	development	boards,	additional	boards,	internal	

MCU modules and other examples. This way you always have a starting point, and don’t

have	 to	 start	 from	 scratch.	 In	most	 cases,	 you	 can	 combine	different	 simple	 projects	 to	

create a more complex one. For example, if you want to build a temperature datalogger, you

can combine temperature sensor example with MMC/SD example and do the job in much

less	time.	All	projects	are	delivered	with	a	working	.HEX	files,	so	you	don’t	have	to	buy	a	

compiler license in order to test them. You can load them into your development board right

away without the need for building them.

Figure 7-1: Project explorer window
enables you to easily access provided
examples and load them quickly

7. What’s next?

If	you	want	to	find	answers	to	your	questions	on	many	interesting	topics	we	invite	you	to	visit	

our forum at http://www.mikroe.com/forum and browse through more than 150 thousand

posts.	You	are	likely	to	find	just	the	right	information	for	you.	

On the other hand, if you want to download more free projects and libraries, or share your own

code, please visit the Libstock website http://www.libstock.com.	With	user	profiles,	you	can	

get	to	know	other	programmers,	and	subscribe	to	receive	notifications	on	their	code.

Community

More examples

Page 18 Page 19

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other
copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or transmit-
ted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for
distribution.	Any	modification	of	this	manual	is	prohibited.

MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions
of	merchantability	or	fitness	for	a	particular	purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika,
its	directors,	officers,	employees	or	distributors	be	liable	for	any	indirect,	specific,	incidental	or	consequential	damages	(including	damages	for	loss	of	business	profits	
and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised
of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroPascal™, mikroPascal™, mikroProg™, EasyPIC™ v7, EasyPIC PRO™ v7, BigPIC6™ and
LV18F™ v6 are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective companies.
All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used
for	identification	or	explanation	and	to	the	owners’	benefit,	with	no	intent	to	infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazardous
environments	requiring	fail	–	safe	performance,	such	as	in	the	operation	of	nuclear	facilities,	aircraft	navigation	or	communication	systems,	air	traffic	control,	di-
rect life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental
damage	(‘High	Risk	Activities’).	MikroElektronika	and	its	suppliers	specifically	disclaim	any	expressed	or	implied	warranty	of	fitness	for	High	Risk	Activities.

If you want to learn more about our products, please

visit our website at www.mikroe.com. If you are

experiencing some problems with any of our products or

just need additional information, please place your ticket

at www.mikroe.com/esupport If you have any questions,

comments or business proposals, do not hesitate to

contact us at office@mikroe.com

Designed by

MikroElektronika,

January 2012.

Creating the first project in
mikroPascal PRO for PIC ver. 1.00

