High side current sense high voltage op amp #### **Datasheet - production data** #### **Features** - Independent supply and input common-mode voltages - Wide common-mode operating range: 2.9 V to 70 V in single-supply configuration, -2.1 V to 65 V in dual-supply configuration - Wide common-mode surviving range: -16 V to 75 V (reversed battery and load-dump conditions) - Supply voltage range: 2.7 to 5.5 V in singlesupply configuration - Low current consumption: I_{CC} max = 360 μA - Pin selectable gain: 20 V/V, 25 V/V, 50 V/V or 100 V/V - Buffered output ### **Applications** - · Wireless battery chargers - · Chargers for portable equipment - · Precision current sources - Wearable ### **Description** The CS70 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage. The gain is adjustable to four different values from 20 V/V up to 100 V/V by two selection pins. Wide input common-mode voltage range, low quiescent current, and tiny TSSOP8 packaging enable use in a wide variety of applications. The input common-mode and power-supply voltages are independent. The common-mode voltage can range from 2.9 V to 70 V in the single-supply configuration or be offset by an adjustable voltage supplied on the Vcc- pin in the dual-supply configuration. With a current consumption lower than 360 μA and a virtually null input leakage current in standby mode, the power consumption in the applications is minimized. **Table 1. Device summary** | Part number | Temperature range | Package | Packaging | Marking | |-------------|--------------------|---------|---------------|---------| | CS70P | - 40° C to +125 °C | TSSOP8 | Tape and reel | 1031 | Contents CS70 # **Contents** | 1 | App | lication schematic and pin description | | | | | | | |---|------|---|--|--|--|--|--|--| | 2 | Abso | olute maximum ratings and operating conditions 6 | | | | | | | | 3 | Elec | Electrical characteristics7 | | | | | | | | 4 | Elec | trical characteristics curves: current sense amplifier 10 | | | | | | | | 5 | Para | meter definitions | | | | | | | | | 5.1 | Common-mode rejection ratio (CMR) | | | | | | | | | 5.2 | Supply voltage rejection ratio (SVR) | | | | | | | | | 5.3 | Gain (Av) and input offset voltage (Vos) | | | | | | | | | 5.4 | Output voltage drift versus temperature | | | | | | | | | 5.5 | Input offset drift versus temperature | | | | | | | | | 5.6 | Output voltage accuracy | | | | | | | | 6 | Maxi | imum permissible voltages on pins18 | | | | | | | | 7 | App | lication information | | | | | | | | 8 | Pack | kage information | | | | | | | | | 8.1 | TSSOP8 package information | | | | | | | | 9 | Revi | sion history | | | | | | | # 1 Application schematic and pin description The CS70 high-side current sense amplifier can be used in either single- or dual-supply mode. In the single-supply configuration, the CS70 features a wide 2.9 V to 70 V input common-mode range totally independent of the supply voltage. In the dual-supply range, the common-mode range is shifted by the value of the negative voltage applied on the Vcc-pin. For instance, with Vcc+ = 5 V and Vcc- = -5 V, then the input common-mode range is -2.1 V to 65 V. Figure 1. Single-supply configuration schematic Figure 2. Dual-supply configuration schematic *Table 2* describes the function of each pin. Their position is shown in the illustration on the cover page and in *Figure 1 on page 3*. Table 2. Pin description | Symbol | Туре | Function | |--------|---------------|---| | Out | Analog output | The Out voltage is proportional to the magnitude of the sense voltage $\overline{V_p}$ - $\overline{V_m}$. | | Gnd | | Ground line | | Vcc+ | Power supply | Positive power supply line. | | Vcc- | | Negative power supply line. | | Vp | Analog input | Connection for the external sense resistor. The measured current enters the shunt on the \overline{V}_p side. | | Vm | Analog input | Connection for the external sense resistor. The measured current exits the shunt on the \overline{V}_{m} side. | | SEL1 | Digital input | Gain-select pin | | SEL2 | Digital input | Gaiii-Seieot piii | # 2 Absolute maximum ratings and operating conditions Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------------------------|---|-------------------------------|-------| | V _{id} | Input pins differential voltage (V _p -V _m) | ±20 | | | V _{in_sense} | Sensing pins input voltages (V _p , V _m) ⁽¹⁾ | -16 to 75 | | | V _{in_sel} | Gain selection pins input voltages (SEL1, SEL2) ⁽²⁾ | -0.3 to V _{cc+} +0.3 | V | | V _{cc+} | Positive supply voltage ⁽²⁾ | -0.3 to 7 | V | | V _{cc+} -V _{cc-} | DC supply voltage | 0 to 15 | | | V _{out} | DC output pin voltage ⁽²⁾ | -0.3 to V _{cc+} +0.3 | | | T _{stg} | Storage temperature | -55 to 150 | °C | | T _j | Maximum junction temperature | 150 | C | | D | TSSOP8 thermal resistance junction to ambient | 120 | °Χ/Ω | | R _{thja} | SO8 thermal resistance junction to ambient | 125 | A/\$2 | | | HBM: human body model ⁽³⁾ | 2.5 | kV | | ESD | MM: machine model ⁽⁴⁾ | 150 | V | | | CDM: charged device model ⁽⁵⁾ | 1.5 | kV | - 1. These voltage values are measured with respect to the Vcc. pin. - 2. These voltage values are measured with respect to the Gnd pin. - 3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. - 4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. - Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. **Table 4. Operating conditions** | Symbol | Parameter | Value | Unit | |-------------------|--|------------|------| | V _{cc+} | Supply voltage in single-supply configuration from T_{min} to T_{max} (V_{cc} - connected to Gnd = 0 V) | 2.7 to 5.5 | V | | | Negative supply voltage in dual-supply configuration from T _{min} to T _{max} | - | | | V _{cc-} | V _{cc+} = 5.5 V max | -8 to 0 | V | | | V _{cc+} = 3 V max | -11 to 0 | | | V _{icm} | Common-mode voltage range referred to pin Vcc - $(T_{min} \text{ to } T_{max})$ | 2.9 to 70 | V | | T _{oper} | Operational temperature range (T _{min} to T _{max}) | -40 to 125 | °C | 6/24 DocID026041 Rev 1 ### 3 Electrical characteristics The electrical characteristics given in the following tables are measured under the following test conditions unless otherwise specified. - $T_{amb} = 25$ °C, $V_{cc+} = 5$ V, V_{cc-} connected to Gnd (single-supply configuration). - $V_{sense} = V_p V_m = 50 \text{ mV}$, $V_m = 12 \text{ V}$, no load on Out, all gain configurations. #### Table 5. Supply | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------|----------------------|--|------|------|------|------| | I _{CC} | Total supply current | $V_{sense} = 0 V, T_{min} < T_{amb} < T_{max}$ | | 200 | 360 | | | I _{CC1} | Total supply current | $V_{sense} = 50 \text{ mV Av} = 50 \text{ V/V}$
$T_{min} < T_{amb} < T_{max}$ | - | 300 | 480 | μΑ | #### Table 6. Input | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|--|---|------|------|-----------------|-------| | DC CMR | DC common-mode rejection
Variation of V _{out} versus V _{icm}
referred to input ⁽¹⁾ | $2.9 \text{ V} < \text{V}_{\text{m}} < 70 \text{ V}$ $T_{\text{min}} < T_{\text{amb}} < T_{\text{max}}$ | 90 | 105 | | | | AC CMR | AC common-mode rejection
Variation of V _{out} versus V _{icm}
referred to input (peak-to-peak
voltage variation) | Av = 50 V/V or 100 V/V
2.9 V< V _m < 30 V
1 kHz sine wave | | 95 | | dB | | SVR | Supply voltage rejection Variation of V_{out} versus $V_{CC}^{(2)}$ SEL1 = Gnd, SEL2 = Gnd | | 85 | 95 | | | | V _{os} | Input offset voltage ⁽³⁾ | $T_{amb} = 25 \text{ °C}$
$T_{min} < T_{amb} < T_{max}$ | | | ±500
±1100 | μV | | dV _{os} /dT | Input offset drift vs. T | $AV = 50 \text{ V/V}$ $T_{min} < T_{amb} < T_{max}$ | -20 | | +5 | μV/°C | | I _{lk} | Input leakage current | $V_{CC} = 0 V$
$T_{min} < T_{amb} < T_{max}$ | | | 1 | μΑ | | l _{ib} | Input bias current | $V_{\text{sense}} = 0 \text{ V}$ $T_{\text{min}} < T_{\text{amb}} < T_{\text{max}}$ | | 10 | 15 | μΛ | | V _{IL} | Logic low voltage threshold (SEL1 and SEL2) | $V_{CCmin} < V_{CC} < V_{CCmax}$
$T_{min} < T_{amb} < T_{max}$ | -0.3 | | 0.5 | V | | V _{IH} | Logic high voltage threshold (SEL1 and SEL2) | $V_{CCmin} < V_{CC} < V_{CCmax}$
$T_{min} < T_{amb} < T_{max}$ | 1.2 | | V _{CC} | V | | I _{sel} | Gain-select pins (SEL1 and SEL2) input bias current | SEL pin connected to GND or $V_{CC} T_{min} < T_{amb} < T_{max}$ | | 400 | | nA | - 1. See Section 5: Parameter definitions for the definition of CMR. - 2. See Section 5 for the definition of SVR. - 3. See Section 5 for the definition of V_{os} . Electrical characteristics CS70 Table 7. Output | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------------------|--|--|------|-----------------------|------------|--------| | Av | Gain | SEL1 = Gnd, SEL2 = Gnd
SEL1 = Gnd, SEL2 = Vcc+
SEL1 = Vcc+, SEL2 = Gnd
SEL1 = Vcc+, SEL2 = Vcc+ | | 20
25
50
100 | | V/V | | $\Delta V_{out}/\Delta T$ | Output voltage drift vs. T ⁽¹⁾ | $Av = 50 \text{ V/V}$ $T_{min} < T_{amb} < T_{max}$ | | | ±240 | ppm/°C | | $\Delta V_{out}/\Delta I_{out}$ | Output stage load regulation | -10 mA < I _{out} <10 mA
I _{out} sink or source current
Av = 50 V/V | | 0.3 | ±1.5 | mV/mA | | ΔV_{out} | Total output voltage accuracy ⁽²⁾ | $V_{sense} = 50 \text{ mV}^{(3)} T_{amb} = 25 \text{ °C}$
$T_{min} < T_{amb} < T_{max}$ | | | ±2.5
±4 | | | ΔV_{out} | Total output voltage accuracy | $V_{sense} = 90 \text{ mV}^{(3)} T_{amb} = 25 \text{ °C}$
$T_{min} < T_{amb} < T_{max}$ | | | ±3.5
±5 | | | ΔV_{out} | Total output voltage accuracy | V_{sense} = 20 mV T_{amb} = 25 °C T_{min} < T_{amb} < T_{max} | | | ±3.5
±5 | % | | ΔV_{out} | Total output voltage accuracy | V_{sense} = 10 mV T_{amb} = 25 °C T_{min} < T_{amb} < T_{max} | | | ±5.5
±8 | | | ΔV_{out} | Total output voltage accuracy | $V_{sense} = 5 \text{ mV } T_{amb} = 25 \text{ °C}$
$T_{min} < T_{amb} < T_{max}$ | | | ±10
±22 | | | I _{sc} | Short-circuit current | OUT connected to V _{CC} or GND | 15 | 26 | | mA | | V _{OH} | Output stage high-state saturation voltage $V_{OH} = V_{CC} - V_{out}$ | V _{sense} = 1 V
I _{out} = 1 mA | | 85 | 135 | mV | | V_{OL} | Output stage low-state saturation voltage | V _{sense} =-1 V
I _{out} = 1 mA | | 80 | 125 | | ^{1.} See Section 5: Parameter definitions for the definition of output voltage drift versus temperature. ^{2.} Output voltage accuracy is the difference with the expected theoretical output voltage V_{out-th}=Av*V_{sense}. See Section 5 for a more detailed definition. ^{3.} Except for Av = 100 V/V. ### Table 8. Frequency response | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------|--|--|------|------|------|------| | | Response to input differential | V _{sense} square pulse applied to generate a variation of Vout from 500 mV to 3 V C _{load} = 47 pF | | - | - | μѕ | | ts | voltage change. | Av = 20 V/V, | - | 3 | | | | | Output settling to 1% of final value | Av = 25 V/V | | 4 | | | | | | Av = 50 V/V | | 6 | | | | | | Av = 100 V/V | • | 10 | | | | t _{SEL} | Response to a gain change. Output settling to 1% of final value | Any change of state of SEL1 or SEL2 pin | | 1 | | | | t _{rec} | Response to common-mode voltage change. Output settling to 1% of final value | V _{cc+= 5 V, Vcc-= -5 V}
V _m step change from -2 V to
30 V or 30 V to -2 V | - | 20 | - | μs | | SR | Slew rate | V _{sense} = 10 mV to 100 mV | 0.4 | 0.6 | - | V/µs | | BW | 3 dB bandwidth | C_{load} = 47 pF V_m = 12 V
V_{sense} = 50 mV
Av = 50 V/V | - | 700 | - | kHz | #### Table 9. Noise | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------|--------------------------------|-----------------|------|------|------|---------| | e _N | Equivalent input noise voltage | f = 1 kHz | - | 40 | - | nV/√ Hz | #### Electrical characteristics curves: current sense 4 amplifier Unless otherwise specified, the test conditions for the following curves are: - T_{amb} = 25 °C, V_{CC} = 5 V, V_{sense} = V_p V_m = 50 mV, V_m = 12 V - No load on Out pin Figure 4. Output voltage vs. Vsense Figure 5. Output voltage accuracy vs. Vsense Figure 6. Supply current vs. supply voltage 350 300 250 200 T = 125 °C Icc (µA) 150 100 50 0 2.5 3.5 4.5 5 5.5 Vcc (V) Figure 7. Supply current vs. Vsense 80 100 10/24 DocID026041 Rev 1 Figure 8. Vp pin input current vs. Vsense Figure 9. Vn pin input current vs. Vsense Figure 10. Output stage low-state saturation voltage vs. output current (V_{sense} = -1 V) Figure 11. Output stage high-state saturation voltage vs. output current ($V_{sense} = +1 V$) Figure 12. Output stage load regulation Figure 13. Step response Figure 14. Bode diagram 30 20 10 10 -20 -30 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Frequency (Hz) Figure 15. Power supply rejection ratio Figure 16. Noise level 57 CS70 Parameter definitions ## 5 Parameter definitions ### 5.1 Common-mode rejection ratio (CMR) The common-mode rejection ratio (CMR) measures the ability of the current-sensing amplifier to reject any DC voltage applied on both inputs Vp and Vm. The CMR is referred back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula: $$CMR = -20 \cdot log \frac{\Delta V_{out}}{\Delta V_{icm} \cdot Av}$$ ## 5.2 Supply voltage rejection ratio (SVR) The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing amplifier to reject any variation of the supply voltage V_{CC} . The SVR is referred back to the input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula: $$SVR = -20 \cdot log \frac{\Delta V_{out}}{\Delta V_{CC} \cdot AV}$$ ## 5.3 Gain (Av) and input offset voltage (Vos) The input offset voltage is defined as the intersection between the linear regression of the V_{out} vs. V_{sense} curve with the X-axis (see *Figure 17*). If V_{out1} is the output voltage with $V_{sense} = V_{sense2}$, then V_{os} can be calculated with the following formula. $$V_{os} = V_{sense1} - \left(\frac{V_{sense1} - V_{sense2}}{V_{out1} - V_{out2}} \cdot V_{out1} \right)$$ Parameter definitions CS70 Vout_1 Vout_2 Vout_2 Vout_2 Vsense Vsense1 Figure 17. V_{out} versus V_{sense} characteristics: detail for low V_{sense} values The values of V_{sense1} and V_{sense2} used for the input offset calculations are detailed in *Table 10*. Table 10. Test conditions for V_{os} voltage calculation | Av (V/V) | V _{sense1} (mV) | V _{sense2} (mV) | |----------|--------------------------|--------------------------| | 20 | 50 | 5 | | 25 | 50 | 5 | | 50 | 50 | 5 | | 100 | 40 | 5 | CS70 Parameter definitions ### 5.4 Output voltage drift versus temperature The output voltage drift versus temperature is defined as the maximum variation of V_{out} with respect to its value at 25 °C over the temperature range. It is calculated as follows: $$\frac{\Delta V_{out}}{\Delta T} = max \frac{V_{out}(T_{amb}) - V_{out}(25^{\circ}C)}{T_{amb} - 25^{\circ}C}$$ with $T_{min} < T_{amb} < T_{max}$. -60 -60 -40 -20 0 20 40 T (°C) 60 80 100 120 140 Figure 18 provides a graphical definition of the output voltage drift versus temperature. On this chart, V_{out} is always within the area defined by the maximum and minimum variation of V_{out} versus T, and T = 25 °C is considered to be the reference. Parameter definitions CS70 ### 5.5 Input offset drift versus temperature The input voltage drift versus temperature is defined as the maximum variation of V_{os} with respect to its value at 25 °C over the temperature range. It is calculated as follows: $$\frac{\Delta V_{os}}{\Delta T} = max \frac{V_{os}(T_{amb}) - V_{os}(25^{\circ}C)}{T_{amb} - 25^{\circ}C}$$ with $T_{min} < T_{amb} < T_{max}$. *Figure 19* provides a graphical definition of the input offset drift versus temperature. On this chart, V_{os} is always within the area defined by the maximum and minimum variation of V_{os} versus T, and T = 25 °C is considered to be the reference. Figure 19. Input offset drift versus temperature (Av = 50 V/V) ## 5.6 Output voltage accuracy The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula. $$V_{out-th} = Av.V_{sense}$$ The actual value is very slightly different, mainly due to the effects of: - the input offset voltage V_{os} - the non-linearity 577 CS70 Parameter definitions Figure 20. V_{out} vs. V_{sense} theoretical and actual characteristics The output voltage accuracy, expressed as a percentage, can be calculated with the following formula, $$\Delta V_{out} = \frac{abs(V_{out} - (Av \cdot V_{sense}))}{Av \cdot V_{sense}}$$ with 20 V/V, 25 V/V, 50 V/V or 100 V/V depending on the configuration of the SEL1 and SEL2 pins. # 6 Maximum permissible voltages on pins The CS70 can be used in either a single or dual supply configuration. The dual-supply configuration is achieved by disconnecting Vcc- and Gnd, and connecting Vcc- to a negative supply. *Figure 21* illustrates how the absolute maximum voltages on input pins Vp and Vm are referred to the V_{CC} - potential, while the maximum voltages on the positive supply pin, gain selection pins, and output pins are referred to the Gnd pin. It should also be noted that the maximum voltage between Vcc- and Vcc+ is limited to 15 V. Figure 21. Maximum voltages on pins 4 ## 7 Application information The CS70 can be used to measure current and to feed back the information to a microcontroller. Figure 22. Single-supply configuration schematic The current from the supply flows to the load through the R_{sense} resistor, causing a voltage drop equal to V_{sense} across R_{sense} . The amplifier's input currents are negligible, therefore its inverting input voltage is equal to Vm. The amplifier's open-loop gain forces its non-inverting input to the same voltage as the inverting input. Consequently, the amplifier adjusts the current flowing through R_{q1} so that the voltage drop across R_{q1} matches V_{sense} exactly. Therefore, the drop across R_{a1} is: $$V_{Rg1} = V_{sense} = R_{sense} I_{load}$$ If I_{Ra1} is the current flowing through R_{a1} , then I_{Ra1} is given by the formula: $$I_{Rg1} = V_{sense}/R_{g1}$$ The I_{Rg1} current flows entirely into resistor R_{g3} (the input bias current of the buffer is negligible). Therefore, the voltage drop on the R_{g3} resistor can be calculated as follows. $$V_{Rg3} = R_{g3}.I_{Rg1} = (R_{g3}/R_{g1}).V_{sense = K1}.V_{sense}$$ with K1=R_{g3}/R_{g1}. The voltage across the R_{g3} resistor is buffered to the Out pin by the voltage buffer, featuring a gain equal to K2. Therefore V_{out} can be expressed as: The resistor ratio, K1 = R_{g3}/R_{g1} , is internally set to 20 V/V, and the voltage buffer gain, K2, can be set to 1, 1.25, 2.5, or 5 depending on the voltage applied on the SEL1 and SEL2 pins. Since they define the full-scale output range of the application, the R_{sense} resistor and the amplification gain Av are important parameters and must therefore be selected carefully. CS70 Package information # 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. Package information CS70 # 8.1 TSSOP8 package information O.25 mm GAGE PLANE O.25 mm GAGE PLANE O.25 mm m Figure 23. TSSOP8 package mechanical drawing Table 11. TSSOP8 package mechanical data | | Dimensions | | | | | | |------|------------|-------------|------|--------|--------|-------| | Ref. | | Millimeters | | Inches | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | | | 1.20 | | | 0.047 | | A1 | 0.05 | | 0.15 | 0.002 | | 0.006 | | A2 | 0.80 | 1.00 | 1.05 | 0.031 | 0.039 | 0.041 | | b | 0.19 | | 0.30 | 0.007 | | 0.012 | | С | 0.09 | | 0.20 | 0.004 | | 0.008 | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | Е | 6.20 | 6.40 | 6.60 | 0.244 | 0.252 | 0.260 | | E1 | 4.30 | 4.40 | 4.50 | 0.169 | 0.173 | 0.177 | | е | | 0.65 | | | 0.0256 | | | k | 0° | | 8° | 0° | | 8° | | L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 | | L1 | | 1 | | | 0.039 | | | aaa | | | 0.10 | | | 0.004 | CS70 Revision history # 9 Revision history Table 12. Document revision history | Date | Revision | Changes | |-------------|----------|------------------| | 06-Mar-2014 | 1 | Initial release. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com