

PI74AVC164245LA

16-Bit 1.5-2.5V to 3.3V Level Shifting Transceiver with 3-State Outputs

Features

- PI74AVC164245LA is designed for low voltage operation: 1.5V-2.5V to 3.3V
- Industrial operation at -40° C to $+85^{\circ}$ C
- Packag (Pb-free & Green available): -48-pin plastic 240-mil TSSOP (A)
 - -48-pin plastic 173-mil TVSOP(K)

Truth Table (each 8-bit section)

Iı	nputs	Operation
ŌĒ	DIR	Operation
L	L H	B data to A bus A data to B bus
H	X	Isolation

Block Diagram

Description

Pericom Semiconductor's PI74AVC164245LA, a 16-bit (dual-octal) noninverting bus transceiver, contains two separate supply rails: B port (V_{CCB}), set at 3.3V, and A port (V_{CCA}), set to operate at 1.5-2.5V. This arrangement permits translation from a 1.5-2.5V to 3.3V environment and vice versa. The control pins, OE and DIR are controlled by V_{CCB} .

The PI74AVC164245LA is designed for asynchronous communication between data buses.

To ensure the high impedance state during power up or power down, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor: the minimum value of the resistor is determined by the current-sinking capability of the driver.

Pin Configuration

Maximum Ratings

(Absolute maximum ratings over operating free-air temperature range from V_{CCB} at 3.3V & V_{CCA} at 1.5 - 2.5V, unless otherwise noted)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Continuous output current, I _O
$\label{eq:Input clamp current, I_{IK}(V_{I}<\!0) \dots -50 mA \\ Output clamp current, I_{OK}(V_{O}<\!0) \dots -50 mA \\ \end{tabular}$	V package

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions for V_{CCB} at 3.3V⁽⁴⁾

		Min.	Max.	Units	
V _{CCB} ⁽¹⁾	Supply voltage	3.0	3.6		
V _{IH}	High-level voltage	2			
V _{IL}	Low-level voltage		0.8	V	
V _{IA}	Input Voltage	0	V _{CCB}		
V _{OB}	Output Voltage	0	V _{CCB}	l	
I _{OH}	High-level output current		-12		
I _{OL}	Low-level output current		12	mA	
$\Delta t/\Delta v$	Input transition rise or fall rate		10	ns/V	
T _A	Operating free-air temperature	-40	85	°C	

Recommended Operating Conditions for V_{CCA} at 2.5 $V^{(4)}$

			Min.	Max.	Units
V _{CCA} ⁽²⁾	Supply voltage		2.3	2.7	
V _{IH}	High-level voltage	$V_{CCA} = 2.3V$ to 2.7V	1.7		
V _{IL}	Low-level voltage	$V_{CCA} = 2.3V$ to 2.7V		0.7	V
V _{IB}	Input voltage		0	V _{CCA}	
V _{OA}	Output voltage		0	V _{CCA}	
I	High lavel output current	$V_{CCA} = 2.3V$		-8	
I _{OH}	High-level output current	$V_{CCA} = 2.7V$		-12	mA
т	Low level extent enment	$V_{CCA} = 2.3V$		8	
I _{OL}	Low-level output current	$V_{CCA} = 2.7V$		12	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

Notes:

1. This value is limited to 4.6V maximum.

2. This value is limited to 3.8V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

4. To ensure proper device operation, all unused device inputs must be held at the associated V_{CC} or GND.

Recommended Operating Conditions for $V_{CCA}\,at\,1.5V^{(2)}$

			Min.	Max.	Units
V _{CCA} (1)	Supply voltage		1.4	1.6	
V _{IH}	High-level voltage	$V_{CCA} = 1.4V$ to 1.6V	0.65 x V _{CCA}		
V _{IL}	Low-level voltage	$V_{CCA} = 1.4V$ to 1.6V		$0.35 \text{ x V}_{\text{CCA}}$	V
V _{IB}	Input voltage		0	V _{CCA}	
V _{OA}	Output voltage		0	V _{CCA}	
I _{OH}	High-level output current	$V_{CCA} = 1.4 V$		-2	
IOH	righ-iever output current	$V_{CCA} = 1.6V$		-6	mA
L	Low level output ourrent	$V_{CCA} = 1.4 V$		2	
I _{OL}	Low-level output current	$V_{CCA} = 1.6V$		6	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
T _A	Operating free-air temperature		-40	85	°C

Electrical Characteristics (V_{CCB}) (Over recommended operating free-air temperature range for V_{CCB} = 3.3V)

Pa	arameters	Test Conditions	V _{CCB}	Min.	Typ ⁽³⁾	Max.	Units
		L 100A	3.0V	2.8			
V 7 (A	ta D)	$I_{OH} = -100 \mu A$	3.6V	3.4			
V _{OH} (A	ю В)	L 12	3.0V	2.2			
		$I_{OH} = -12mA$	3.6V	2.8			v
		I 1000 A	3.0V			0.2	v
		$I_{OL} = 100 \mu A$	3.6V			0.2	
V _{OL} (A	ю Б)	$L_{re} = 10m\Lambda$	3.0V			0.5	
		$I_{OL} = 12mA$	3.6V			0.5	
II	Control Inputs	$V_{I} = V_{CCB}$ or GND	3.6V			±5	
$I_{OZ}^{(4)}$	A or B ports	$V_{O} = V_{CCB}$ or GND	3.6V			±10	
ICC		$V_{I} = V_{CCB}$ or GND, $I_{O} = 0$	3.6V			20	μA
ΔI_{CC} ⁽⁵⁾ One input at V _{CCB} –0.6V, Other inputs at V _{CCB} or GND		3.0V to 3.6V			500		
CI	Control Inputs	$V_{I} = V_{CCB}$ or GND	3.3V		4.5		ъF
C _{IO}	A or B ports	$V_{O} = V_{CCB}$ or GND	3.3V		6.5		pF

Notes:

1. Value limited to 4.6V maximum..

2.To ensure proper device operation, all unused device inputs must be held at the associated V_{CC} or GND.

3. Typical values are measured at V_{CC} = 3.3V, T_{A} = 25 $^{\circ}C$

4. For I/O ports, the parameter $I_{\mbox{\scriptsize OZ}}$ includes the input leakage current.

5. This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than at 0 or the associated V_{CC} .

Pa	arameters	Test Conditions	VCCA	Min.	Typ. ⁽²⁾	Max.	Units
		$I_{OH} = -100 \mu A$	2.3V to 2.7V	V _{CC} -0.1			
	(- A)	Less Pres A	2.3V	1.7			
V _{OH} (B	to A)	$I_{OH} = -8mA$	2.7V	2.0			
		$I_{OH} = -12 \text{mA}$	2.7V	1.8			V
		$I_{OL} = 100 \mu A$	2.3V to 2.7V			0.2	
V _{OL} (B to A)		$I_{OL} = 8mA$	2.3V			0.4	
I		I _{OL} = 12mA 2.7V				0.5	
II	Control Inputs	$V_{I} = V_{CCA}$ or GND	2.7V			±5	
Ioz ⁽³⁾	A or B ports	$V_{O} = V_{CCA}$ or GND	2.7V			±10	
I_{CC} $V_I = V_{CCA}$ or GND, I_C		$V_I = V_{CCA}$ or GND, $I_O = 0$	2.7V			30	μA
$\Delta I_{CC}^{(1)}$ One input at V _{CCA} –0.6V, Other inputs at V _{CCA} or GND		2.3V to 2.7V			500		
CI	Control Inputs	$V_{I} = V_{CCA}$ or GND	2.5V		4.5		тE
C _{IO}	A or B ports	$V_{O} = V_{CCA}$ or GND	2.5V		6.5		pF

Electrical Characteristics (V_{CCA}) (Over recommended operating free-air temperature range for V_{CCA} =2.5V)

Electrical Characteristics (V_{CCA}) (Over recommended operating free-air temperature range for V_{CCA} =1.5V)

Pa	arameters	Test Conditions	VCCA	Min.	Typ. ⁽²⁾	Max.	Units
		$I_{OH} = -100 \mu A$	1.4V to 1.6V	V _{CC} -0.1			
V (D	A >	L 0.4	1.4V	1.1			
V _{OH} (B	to A)	$I_{OH} = -2mA$	1.6V	1.3			
		$I_{OH} = -6mA$	1.6V	1.1			v
V _{OL} (B to A)		$I_{OL} = 100 \mu A$	1.4V			0.2	
		$I_{OL} = 2mA$	1.6V			0.3	
		I _{OL} = 6mA	1.6V			0.4	
Ioz ⁽³⁾	A or B ports	$V_{O} = V_{CCA}$ or GND	1.6V			±5	
I _{CC} V _I =		$V_{I} = V_{CCA}$ or GND, $I_{O} = 0$	1.6V			±20	μA
$\Delta I_{CC}^{(1)}$ One input at V _{CCA} –0.6V, Other inputs at V		One input at V_{CCA} –0.6V, Other inputs at V_{CCA} or GND	1.4V to 1.6V			300	
CI	Control Inputs	$V_{I} = V_{CCA}$ or GND	1.5V		4.5		
C _{IO}	A or B ports	$V_{O} = V_{CCA}$ or GND	1.5V		6.5		pF

Notes:

1. The increase in supply current for each input at one of the specified TTL voltage levels rather than at the associated V_{CC} .

2. Typical values are measured at $V_{CC} = 2.5V$ or 1.5V, $T_A = 25^{\circ}C$

3. For I/O ports, the parameter I_{OZ} includes the input leakage current.

Switching Characteristics

(Over recommended operating free-air temperature range, $C_L = 30 pF$ (unless otherwise noted), see Figures 1, 2, 3

			P	T74AVC	164245L	A	
			V	CCB = 3	3V ±0.3	V	
	From	То		= 1.5V 10V	V _{CCA} ±0.	= 2.5V .2V	
Parameter	(Input)	(Output)	Min.	Max.	Min.	Max.	Units
	А	В	1.0	3.5	1.0	3.0	
t _{PD}	В	А	1.0	3.5	1.0	2.8	
t _{EN}	ŌĒ	В	1.7	4.5	1.2	3.5	
t _{DIS}	ŌĒ	В	1.5	4.5	1.0	3.5	ns
t _{EN}	ŌĒ	А	1.7	4.5	1.2	3.5	115
t _{DIS}	ŌĒ	А	2.0	4.5	1.5	3.5	
$t_{sk(o)}^{(1)}$						0.3	
$t_{sk(b)}^{(1)}$						0.25	

Note:

 This is the skew between any two outputs of the same package, and switching in the same direction. For tsk₍₀₎, Output 1 and Output 2 are any two outputs. For tsk_(b), Output 1 and Output 2 are in the same bank. These parameters are warrented but not production tested.

Operating Characteristics, $T_A = 25^{\circ}C$

Parameter	78	Test Conditions	$V_{CCA} = 2.5V$ $V_{CCB} = 3.3V$ Typical	Units
C Dower Discinction Conscitutes	Outputs Enchlad (A. or D)	$C_{L} = 30 pF,$	56	πE
C _{PD} Power Dissipation Capacitance	Outputs Enabled (A or B)	F = 10 MHz	6	pF

Parameter Measurement Information, $V_{CCA} = 1.5V \pm 0.10V$

Figure 1. Load Circuit and Voltage Waveforms

Notes:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 Mz, Z_O = 50 Ω , t_R ≤ 2.5 ns, t_F ≤ 2.5 ns.
- The outputs are measured one at a time with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- \bullet t_{PZL} and t_{PZH} are the same as $t_{EN}.$
- \bullet t_{PLH} and t_{PHL} are the same as $t_{PD}.$

Parameter Measurement Information, $V_{CCA} = 2.5V \pm 0.2V$

Figure 2. Load Circuit and Voltage Waveforms

Notes:

• C_L includes probe and jig capacitance.

• Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 Mz, Z_O = 50 Ω , t_R ≤ 2.5 ns, t_F ≤ 2.5 ns.
- The outputs are measured one at a time with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- t_{PZL} and t_{PZH} are the same as t_{EN} .
- t_{PLH} and t_{PHL} are the same as t_{PD} .

Parameter Measurement Information, V_{CCB} = 3.3V ±0.3V

Figure 3. Load Circuit and Voltage Waveforms

Notes:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 Mz, Z_Q = 50 Ω , t_R ≤ 2.5 ns, t_F ≤ 2.5 ns.
- The outputs are measured one at a time with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- \bullet t_{PZL} and t_{PZH} are the same as $t_{EN}.$
- t_{PLH} and t_{PHL} are the same as t_{PD} .

Packaging Mechanical: 48-Pin TSSOP(A)

Packaging Mechanical: 48-Pin TVSOP(K)

......

111111111111

Ordering Information

Ordering Code	Package Code	Speed Grade	Package Description
PI74AVC164245LAAE	А	А	Pb-free & Green, 48-pin, 240-mil wide plastic TSSOP
PI74AVC164245LAKE	К	А	Pb-free & Green, 48-pin, 173-mil wide plastic TVSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com