

Title	Reference Design Report for a 36 W Continuous, 72 W Peak Power Supply Using PKS606YN			
Specification	90 – 265 VAC Input, 12 V, 36 W Continuous (72 W Peak) Output			
Application	Variable Speed Motor Drive			
Author	Power Integrations Applications Department			
Document Number	RDR-128			
Date	August 16, 2007			
Revision	1.0			

Summary and Features

- Replaces a two-stage linear power supply and chopper circuit with a simple single-stage design
- Eliminates the chopper circuits normally used to achieve variable-speed control of DC motors
- Motor speed is controllable by a small potentiometer or a 3.6 V to 10 V variable DC voltage
- Easily meets CISPR-22 / EN55022B limits with E-Shields and Frequency jittering feature.

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents	
1 Introduction	
2 Power Supply Specification	5
3 Schematic	3
4 Circuit Description	7
4.1 Input EMI Filtering	7
4.2 PeakSwitch Primary	7
4.3 Under-voltage Protection and Fast AC Reset circuit	7
4.4 Output Rectification and Filtering	3
4.5 Output Feedback	
5 PCB Layout	9
6 Bill of Materials10)
7 Transformer Specification12	2
7.1 Electrical Diagram	2
7.2 Electrical Specifications	2
7.3 Materials	2
7.4 Transformer Build Diagram13	3
7.5 Transformer Construction	4
8 Transformer Spreadsheet15	5
9 Performance Data	7
9.1 Efficiency	7
9.2 No-load Input Power	9
9.3 Regulation	9
9.3.1 Load	9
9.3.2 Line)
9.4 Adjustable Output Voltage Characteristics)
9.4.1 Resistor Control	C
9.4.2 External Voltage Control21	1
9.5 Thermal Performance	1
10 Waveforms23	3
10.1 Drain Voltage and Current, Normal Operation	3
10.2 Output Voltage and Current Start-up Profile	
10.3 Drain Voltage and Current Start-up Profile	1
10.4 Transient Response	
10.5 Output Voltage and DC Bus Voltage Ripple	5
10.6 Latching Shutdown Operation	3
10.7 Output Ripple Measurements27	7
10.7.1 Ripple Measurement Technique27	
10.7.2 Measurement Results	
11 Conducted EMI	9
12 Revision History)

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a motor drive power supply capable of delivering up to 36 W of continuous power and up to 72 W of peak power, utilizing a PKS606YN device. This power supply is intended as a demonstration platform for the *PeakSwitch* family of devices and their application in motor drives. The *PeakSwitch* family of devices is ideally suited to this role due to their ability to provide very high peak power for short periods of time, as is often encountered in motor drive applications.

This document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit board layout and performance data.

Figure 1 – Populated Circuit Board Photograph.

2 Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency No-load Input Power (230 VAC)	V _{IN} f _{LINE}	90 47	50/60	265 64 0.3	VAC Hz W	2 Wire – no P.E.
Output Output Voltage 1 Output Ripple Voltage 1 Continuous Output Current 1 Peak Output Current 1 Total Output Power Continuous Output Power Peak Output Power	V _{OUT1} V _{RIPPLE1} I _{OUT1} I _{OUTPK} P _{OUT} P _{OUT_PEAK}	11.5	12 800 3 6.0 36 72	12.5	V mV A A W W	± 5% 20 MHz bandwidth
Efficiency Full Load	η	80			%	Measured at P _{OUT} 25 °C
Environmental Conducted EMI Safety Surge			ts CISPR2 led to mee Cla			1.2/50 μs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω
Ambient Temperature	Т _{АМВ}	0		40	°C	Free convection, sea level

16-Aug-07

3 Schematic

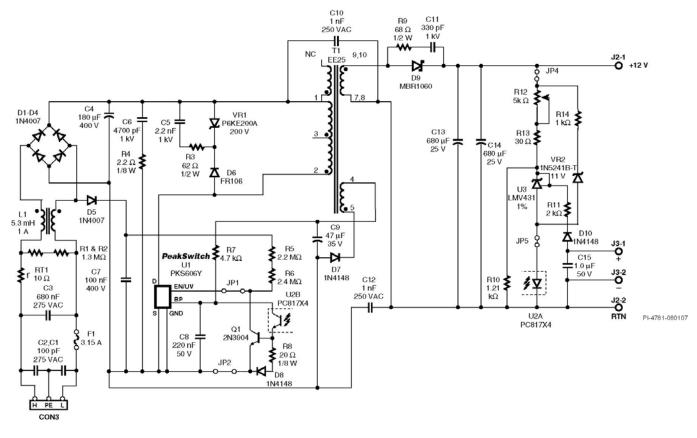


Figure 2 – Schematic.

4 Circuit Description

The motor drive power supply shown in Figure 1 is a switch mode power supply design utilizing the flyback topology.

4.1 Input EMI Filtering

Differential mode EMI filtering is provided by X-capacitor C3. Y-capacitors C1, C2, C10 and C12, together with the common-mode choke L1, provide common-mode EMI filtering. Additionally the transformer *E-Shields*TM, together with the frequency jittering features, provide adequate EMI margins.

4.2 PeakSwitch Primary

Fuse F1 protects the power supply from a catastrophic failure due to a short circuit fault. A high voltage DC bus is created from the AC line voltage by the full-wave rectifier formed by diodes D1-D4. Capacitor C4 smoothes and filters the rectified AC voltage.

The PKS606YN (U1) integrates a high voltage MOSFET, along with startup and all necessary control circuitry.

During the MOSFET's on-time, current flows through the primary of transformer T1, storing energy in the transformer core.

During the turn off event, the voltage across the primary winding reverses. A voltage equal to the sum of DC bus voltage and the reflected output voltage (VOR) appears across the DRAIN and SOURCE of the PeakSwitch, with an additional spike generated by the leakage inductance. A primary clamp circuit formed by D6, VR1, R3 and C5 limits this voltage and resets the leakage energy prior to the next switching cycle.

Diode D7 rectifies the supply's bias winding while capacitor C9 provides DC filtering. This bias supply is connected to the *PeakSwitch*'s BP pin via R7, which powers the device during normal operation.

4.3 Under-voltage Protection and Fast AC Reset circuit

Under-voltage shutdown is implemented by a separate line rectifying diode, D5, which charges capacitor C7. Resistors R5 and R6 program the UV start-up voltage to approximately 104 VDC, which is the DC voltage across C7, at which a current equal to $25 \,\mu$ A flows into the EN/UV pin.

This separate AC line sense network (formed by D5, C7) allows the *PeakSwitch* to identify the cause of a fault condition. If the input voltage is above the under-voltage threshold and the EN/UV pin has not been pulled low for 30 ms, a fault condition is assumed, and the *PeakSwitch* latches off. Once the supply is latched off, the AC line voltage must be removed to allow capacitor C7 to discharge and allow the current into the EN/UV pin to fall below 25 μ A.

If the EN/UV pin has not been pulled low for 30 ms and the input voltage is below the under-voltage threshold, then the loss of regulation is assumed to be due to a low line condition, and the *PeakSwitch* will stop switching until the under-voltage threshold is exceeded again.

4.4 Output Rectification and Filtering

Diode D9 rectifies the output voltage while capacitors C13 and C14 provide output filtering. The output capacitor current ripple rating is chosen to be sufficient for the maximum rated *continuous/average* load. Resistor R9 and capacitor C11 form a snubber network across diode D9, which reduces high frequency ringing that occurs during the diode turn off event.

4.5 Output Feedback

The *PeakSwitch* family of devices uses a simple on/off control scheme. When a current greater than 240 μ A is drawn from the EN/UV pin of U1, the subsequent switching cycle is disabled. The EN/UV pin is pulled low whenever phototransistor U2B of the optocoupler conducts enough current through R8, thus forward biasing D8 and turning on transistor Q1. Transistor Q1 then pulls current out of the EN/UV pin. Having the phototransistor's collector connected to the bypass pin of the *PeakSwitch* gives a collector to emitter voltage (*V*_{CE}) of approximately 5.8 V, which allows the phototransistor Q1 to draw the current from the EN/UV pin. Optocoupler U2's high CTR (300% – 600%) ensures a fast control loop response. Diode D8 is placed close to Q1 and thus provides thermal compensation against Q1's V_{BE} drop.

The output voltage is variable to allow for speed control of the DC motor. An adjustable shunt regulator, U3, has its cathode tied to its reference, making it behave as a voltage reference at approximately 1.24 V above the 1.1 V optocoupler's LED (U2A) drop.

When no external control voltage is applied at terminals J3, diode D10 remains reverse biased and potentiometer R12 controls the voltage of the divider network formed by itself, R13 and R10. Decreasing the value of R12 programs a new voltage set-point (and also a new speed), and the feedback loop now regulates to a lower output voltage. Setting potentiometer R12 to its minimum value regulates the output down to 2.35 V. An 11 V zener diode (VR2) is in place to ensure the output voltage does not regulate too far above 12 V, as may occur due to the large tolerances of most potentiometers (which may be as high as $\pm 20\%$).

The supply's output voltage may also be controlled by an external DC control voltage applied at J3, with amplitude between 0 V and 10 V. Applying an external voltage above 3.5 V at J3 will forward bias diode D10 and will set the reference and cathode pin of the shunt regulator to the external control voltage. Applying a higher external control voltage allows more current to flow through the LED of the optocoupler and thus reduces the supply's output voltage. If 10 V is applied at J3, the supply shuts down completely. Reducing the external control voltage after a shut down will start the power supply again.

5 PCB Layout

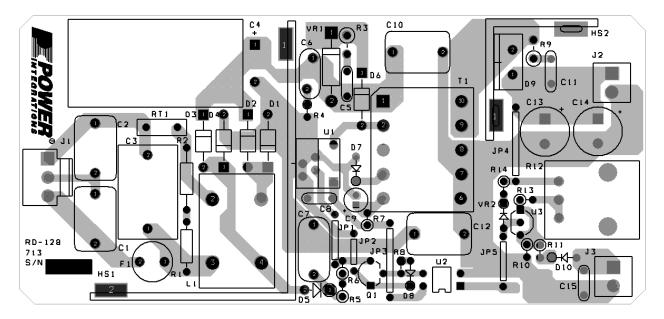


Figure 3 – Printed Circuit Layout.

6 Bill of Materials

ltem	Qty	Ref	Description	Mfg	Mfg Part Number		
1	2	C1 C2	100 pF, Ceramic, Y1	Panasonic	ECK- ANA101MB		
2	1	C3	680 nF, 275 VAC, Film,MPX Series, X2	Carli	PX684K3ID6		
3	1	C4	180 uF, 400 V, Electrolytic, Low ESR, (18 x 40)	Nippon Chemi-Con	EPAG401ELL18 1MM40S		
4	1	C5	2.2 nF, 1 kV, Disc Ceramic	NIC Components Corp	NCD222K1KVY 5FF		
5	1	C6	4700pF, 1 kV, Thru Hole, Disc Ceramic	Vishay/Sprague	562R5GAD47		
6	1	C7	100 nF, 400 V, Film	Panasonic	ECQ-E4104KF		
7	1	C8	220 nF, 50 V, Ceramic, Z5U, 0.2" L.S.	Kemet	C322C224M5U5 CA		
8	1	C9	47 uF, 35 V, Electrolytic, Gen. Purpose, (5 x 11)	Panasonic	ECA-1VHG470		
9	2	C10 C12	1 nF, Ceramic, Y1	Panasonic	ECK- ANA102MB		
10	1	C11	330 pF, 1 kV, Disc Ceramic	Vishay	562R5GAT33		
11	2	C13 C14	680 uF, 25 V, Electrolytic, Very Low ESR, 23 mOhm, (10 x 20)	Nippon Chemi-Con	EKZE250ELL68 1MJ20S		
12	1	C15	1.0 uF, 50 V, Ceramic, X7R	Epcos	B37984M5105K 000		
13	5	D1 D2 D3 D4 D5	1000 V, 1 A, Rectifier, DO-41	Vishay	1N4007		
14	1	D6	800 V, 1 A, Fast Recovery Diode, 500 ns, DO-41	Diodes Inc.	FR106		
15	3	D7 D8 D10	75 V, 300 mA, Fast Switching, DO-35	Vishay	1N4148		
16	1	D9	60 V, 10 A, Schottky, TO-220AC	Vishay	MBR1060		
17	1	F1	3.15 A, 250V, Slow, TR5	Wickman	3721315041		
18	1	HS PAD1	HEATSINK PAD, TO-220, Sil-Pad 1000	Bergpuist	1009-58		
19	1	HS1	HEATSINK/Alum, TO220 1 hole, 2 mtg pins	Clark Precision Sheetmetal	60-00012-00		
20	1	HS2	HEATSINK/Alum, TO220 1 hole, 2 mtg pins	Clark Precision Sheetmetal	60-00020-00		
21	1	J1	3 Position (1 x 3) header, 0.156 pitch, Vertical	Molex	26-48-1031		
22	2	J2 J3	2 Position (1 x 2) header, 0.156 pitch, Vertical	Molex	26-48-1021		
23	2	JP1 JP5	Wire Jumper, Non insulated, 22 AWG, 0.4 in	Alpha	298		
24	1	JP2	Wire Jumper, Non insulated, 22 AWG, 0.3 in	Alpha	298		
25	2	JP3 JP4	Wire Jumper, Non insulated, 22 AWG, 0.6 in	Alpha	298		

_					
26	1	L1	5.3 mH, 1 A, Common Mode Choke	Panasonic	ELF15N010A
27	2	NUT1 NUT2	Nut, Hex, Kep 4-40, S ZN Cr3 plateing RoHS		
28	1	Q1	NPN, Small Signal BJT, 40 V, 0.2 A, TO-92	On Semiconductor	2N3904RLRAG
29	2	R1 R2	1.3 M, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-1M3
30	1	R3	62 R, 5%, 1/2 W, Carbon Film	Yageo	CFR-50JB-62R
31	1	R4	2.2 R, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-2R2
32	1	R5	2.2 M, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-2M2
33	1	R6	2.4 M, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-2M4
34	1	R7	4.7 k, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-4K7
35	1	R8	20 R, 5%, 1/8 W, Carbon Film	Yageo	CFR-12JB-20R
36	1	R9	68 R, 5%, 1/2 W, Carbon Film	Yageo	CFR-50JB-68R
37	1	R10	1.21 k, 1%, 1/4 W, Metal Film	Yageo	MFR-25FBF- 1K21
38	1	R11	2 k, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-2K0
39	1	R12	5 k,Pot, 20%, 1/8 W, Vertical	CTS Corp.	296UD502B1N
40	1	R13	30 R, 5%, 1/4 W, Carbon Film	Yageo	CFR-25JB-30R
41	1	R14	1 k, 1%, 1/4 W, Metal Film	Yageo	MFR-25FBF- 1K00
42	1	RT1	NTC Thermistor, 0.34 Ohms, 1.7 A	Thermometrics	CL-120
43	2	SCREW1 SCREW2	SCREW MACHINE PHIL 4- 40X5/16 SS	Building Fasteners	PMSSS 440 0031 PH
44	1	T1	Transformer, 10 Pins, Vertical	Yih-Hwa Enterprises Santronics	YW-360-02B SNX R1365
45	1	U1	PeakSwitch, PKS606YN, TO-220- 7C	Power Integrations	PKS606YN
46	1	U2	Opto coupler, 35 V, CTR 300- 600%, 4-DIP	Sharp	PC817XJ0000F
47	1	U3	1.24V Shunt Reg IC	National Semiconductor	LMV431ACZ
48	1	VR1	200 V, 600 W, 5%, TVS, DO204AC (DO-15)	OnSemi	P6KE200ARLG
49	1	VR2	11 V, 500 mW, 5%, DO-35	Diodes Inc	1N5241B-T
50	2	WASHER1 WASHER2	WASHER FLAT #4 SS	Building Fasteners	FWSS 004
51	1	WASHER3	Washer Nylon Shoulder #4	Keystone	3049

Note - Parts listed above are all RoHS compliant

7 Transformer Specification

7.1 Electrical Diagram

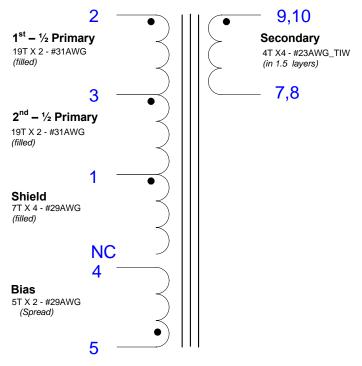
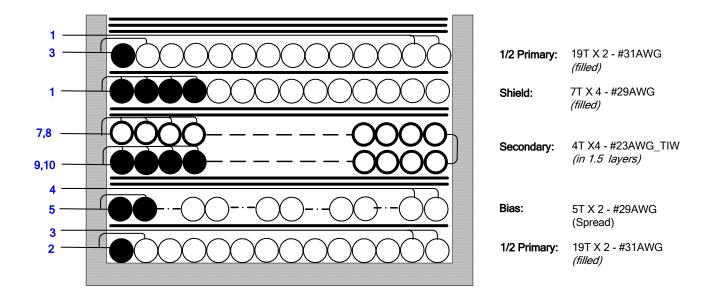


Figure 4 – Transformer Electrical Diagram.


7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from Pins 1-5 to Pins 7 and 10	3000 VAC
Primary Inductance	Pins 1-2, all other windings open, measured at 100 kHz, 0.4 VRMS	148 μH, ± 12%
Resonant Frequency	Pins 1-2, all other windings open	3 MHz (Min) 4 MHz (Max)
Primary Leakage Inductance	Pins 3-4, with Pins 8-9 shorted, measured at 100 kHz, 0.4 VRMS	6 μΗ (Max.)

7.3 Materials

ltem	Description
[1]	Core: PC40EE25-Z, TDK or equivalent gapped for AL of 104 nH/T ² . Gap approx. 0.47 mm.
[2]	Bobbin: EE25 Vertical 10 pin
[3]	Magnet Wire: #31 AWG
[4]	Magnet Wire: #29 AWG
[5]	Triple Insulated Wire: #23 AWG
[6]	Tape, 3M 1298 Polyester Film, 2.0 mil thick, 10.7 mm wide
[7]	Varnish

7.4 Transformer Build Diagram

Bobbin: EE25 Vertical Lp = 148 uH

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

	Dis side of the healthin is eviented to the left hand side. Minding direction is			
Bobbin Preparation	Pin side of the bobbin is oriented to the left hand side. Winding direction is			
	clockwise when viewed from the non-pin side.			
1 st Half Primary	Start on pin 2, wind 19 bi-filar turns of item [3], Magnet Wire: #31 AWG, from left to			
	right with tight tension and bring the wire back across the bobbin and terminate the			
Winding	winding on pin 3.			
Insulation	Apply 1 layer of item [6], 3M 1298 Polyester Film tape, for insulation.			
	Start on pin 5, wind 5 bi-filar turns of item [4], Magnet Wire: #29 AWG, from left to			
Bias Winding	right, spreading the windings evenly across the bobbin. Bring the wire back across			
g	the bobbin and terminate the winding on pin 4.			
Insulation	Apply 2 layers of item [6], 3M 1298 Polyester Film tape, for insulation.			
Insulation				
	Start on pin 9 and 10 using 2 wires for each pin. Wind 4 quad-filar turns of item [5],			
Secondary Winding	#23 AWG Triple Insulated Wire, from right to left. Continue winding the second			
	layer from right to left, spreading the turns evenly across the bobbin. Terminate the			
	winding on pins 7 and 8 using two wires for each pin.			
Insulation	Apply 2 layers of item [6], 3M 1298 Polyester Film tape, for insulation.			
	Start on pin 1 and wind 7 quad-filar turns of item [4], Magnet Wire: #29 AWG from			
Shield Winding	left to right with tight tension across the bobbin. Cut and finish the end.			
Start on pin 2, wind 10 bi filer turns of itom [2] Magnet Wire: #21 AWC from U				
2 nd Half Primary	right with tight tension and bring the wire back across the bobbin and terminate the			
Winding	winding on pin 1.			
Insulation	Apply 3 layers of item [6], 3M 1298 Polyester Film tape, for insulation			
Core Assembly	Assemble and secure core halves.			
Varnish	Dip varnish assembled transformer with item [7], varnish.			

8 Transformer Spreadsheet

ACDC_PeakSwitch_020107; Rev.1.13; Copyright Power Integrations 2007	INPUT	INFO	OUTPUT	UNIT	ACDC_PeakSwitch_020107_Rev1-13.xls; PeakSwitch Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIA	BLES				Customer
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
Nominal Output Voltage (VO)	12.00			Volts	Nominal Output Voltage (at continuous power)
Maximum Output Current (IO)	6.00			Amps	Power Supply Output Current (corresponding to peak power)
Minimum Output Voltage at P	eak Load		12.00	Volts	Minimum Output Voltage at Peak Power (Assuming output droop during peak load)
Continuous Power	35.00		35.00	Watts	Continuous Output Power
Peak Power			72.00	Watts	Peak Output Power
	0.68		72.00	vvalls	Efficiency Estimate at output terminals and at peak
n 	0.08				load. Enter 0.7 if no better data available
Z			0.60		Loss Allocation Factor (Z = Secondary side losses / Total losses)
tC Estimate	3.00			mSec onds	Bridge Rectifier Conduction Time Estimate
CIN	180.00		180	uFar ads	Input Capacitance
ENTER PeakSwitch VARIABL	ES				
PeakSwitch	PKS606Y		PKS606Y		PeakSwitch device
Chosen Device	PRODUT	PKS6 06Y	PRODUT		
ILIMITMIN		001	2.600	Amps	Minimum Current Limit
ILIMITMAX			3.000	Amps	Maximum Current Limit
fSmin			250000	Hertz	Minimum Device Switching Frequency
I^2fmin			1955	A^2k	I^2f (product of current limit squared and frequency is
F 211111			1900	Hz	trimmed for tighter tolerance)
VOR	120.00		120	Volts	Reflected Output Voltage (VOR <= 135 V Recommended)
VDS			10	Volts	PeakSwitch on-state Drain to Source Voltage
VD			0.7	Volts	Output Winding Diode Forward Voltage Drop
VDB			0.7	Volts	Bias Winding Diode Forward Voltage Drop
VCLO			200	Volts	Nominal Clamp Voltage
KP (STEADY STATE)			0.47	VOILS	Ripple to Peak Current Ratio (KP < 6)
KP (TRANSIENT)			0.29		Ripple to Peak Current Ratio ($RP < 6$) Ripple to Peak Current Ratio under worst case at peak load (0.25 < $KP < 6$)
ENTER UVLO VARIABLES					
V_UV_TARGET			96	Volts	Target DC under-voltage threshold, above which the
/			00	VOIG	power supply with start
V_UV_ACTUAL			100	Volts	Typical DC start-up voltage based on standard value of RUV_ACTUAL
RUV_IDEAL			3.75	Moh ms	Calculated value for UV Lockout resistor
RUV_ACTUAL			3.90	Moh ms	Closest standard value of resistor to RUV_IDEAL
BIAS WINDING VARIABLES					
VB			15.00	Volts	Bias winding Voltage
NB			5		Number of Bias Winding Turns
PIVB			65	Volts	Bias rectifier Maximum Peak Inverse Voltage
ENTER TRANSFORMER COR	ECONSTRU				
Core Type	EE25		EE25		User Selected Core Size(Verify acceptable thermal
0010 1360	2225		2225		rise under continuous load conditions)
				1	
Core		EE25		P/N:	PC40EE25-Z

٨E		0.404	00000	Caro Effective Cross Sectional Area
AE		0.404	cm^2 cm	Core Effective Cross Sectional Area Core Effective Path Length
AL		1420	nH/T^2	
BW		1420		
			mm	Bobbin Physical Winding Width
Μ		0.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L	2.00	2		Number of Primary Layers
NS	4	4		Number of Secondary Turns
NO				Number of Secondary Turns
DC INPUT VOLTAGE PARAMI	TERS			
VMIN		87	Volts	Minimum DC Input Voltage
VMAX		375	Volts	Maximum DC Input Voltage
		0.0	, ene	
CURRENT WAVEFORM SHAP	E PARAMETERS			
DMAX		0.61		Duty Ratio at full load, minimum primary
				inductance and minimum input voltage
IAVG		1.37	Amps	Average Primary Current
-				
IP		2.60	Amps	Minimum Peak Primary Current
IR		1.21	Amps	Primary Ripple Current
IRMS		1.82	Amps	Primary RMS Current
TRANSFORMER PRIMARY DE	SIGN PARAMETER			
LP		148	uHenrie	,
			S	minimum primary inductance of 132 uH
LP_TOLERANCE		12	%	Primary inductance tolerance
NP		38		Primary Winding Number of Turns
ALG		104	nH/T^2	Gapped Core Effective Inductance
Target BM		3000	Gauss	Target Peak Flux Density at Maximum Current Limit
BM		2910	Gauss	Calculated Maximum Operating Flux Density, BM <
				3000 is recommended
BAC		677	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
ur		2053		Relative Permeability of Ungapped Core
LG		0.45	mm	Gap Length (Lg > 0.1 mm)
BWE		20.4	mm	Effective Bobbin Width
OD		0.54	mm	Maximum Primary Wire Diameter including insulation
INS		0.07	mm	Estimated Total Insulation Thickness (= 2 * film
1113		0.07	mm	thickness)
DIA		0.47	mm	Bare conductor diameter
AWG		25	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ		323	Cmils	Bare conductor effective area in circular mils
CMA		177	Cmils/A	
CMA		177	mp	500)
				/
TRANSFORMER SECONDAR	Y DESIGN PARAME	TERS		
Lumped parameters				
ISP		24.57	Amps	Peak Secondary Current
ISRMS		13.82	Amps	Secondary RMS Current
IRIPPLE		12.45	Amps	Output Capacitor RMS Ripple Current
CMS		2763	Cmils	Secondary Bare Conductor minimum circular mils
AWGS		15	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)
VOLTAGE STRESS PARAMET	EKO	CCE.	Valta	Movimum Droin Voltago Estimata (Assumas 200)
VDRAIN		665	Volts	Maximum Drain Voltage Estimate (Assumes 20%
				zener clamp tolerance and an additional 10%
DIV/S		50		temperature tolerance)
PIVS		52	Volts	Output Rectifier Maximum Peak Inverse Voltage

9 Performance Data

The measurements were made at room temperature using open frame convectional cooling and a line frequency of 60 Hz.

9.1 Efficiency

The efficiency data were obtained at an output power up to 36 W, with the output voltage set to 12 V and thus a load current of 3 A.

Percent of	Efficie	ncy (%)
Full Load	115 VAC	230 VAC
25	80.2	80.2
50	81.2	79.8
75	81.3	80.7
100	78.2	80.7

Table 1 – Efficiency Data.

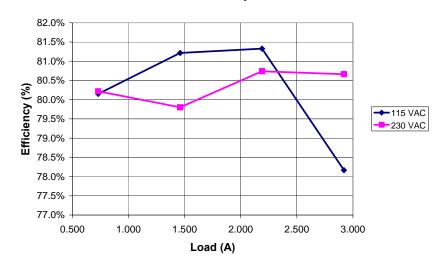


Figure 6 – Efficiency vs. Load, Room Temperature, 60 Hz.

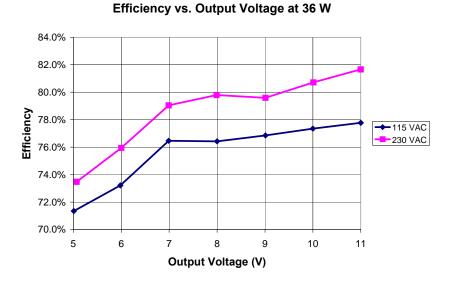


Figure 7 – Efficiency vs. Output Voltage with Full Load.

9.2 No-load Input Power

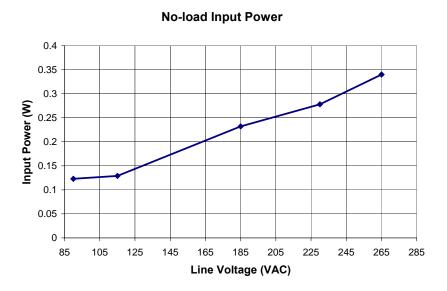


Figure 8 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.

9.3 Regulation

9.3.1 Load



Figure 9 – Load Regulation, Room Temperature.

9.3.2 Line

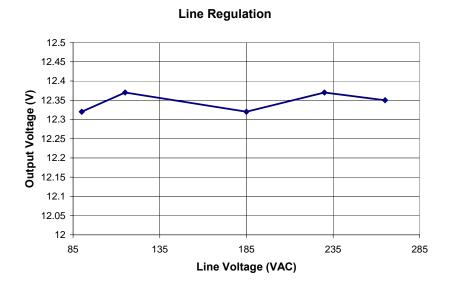


Figure 10 – Line Regulation, Room Temperature, Full Load.

9.4 Adjustable Output Voltage Characteristics

9.4.1 Resistor Control

Resistor Control Characteristic

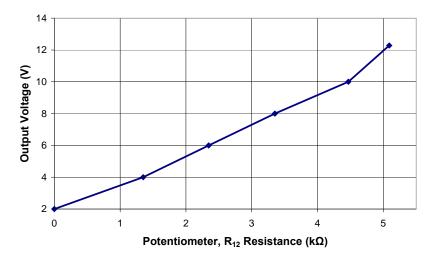
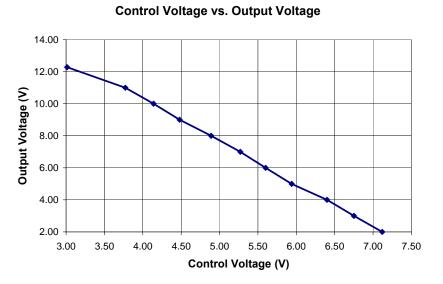
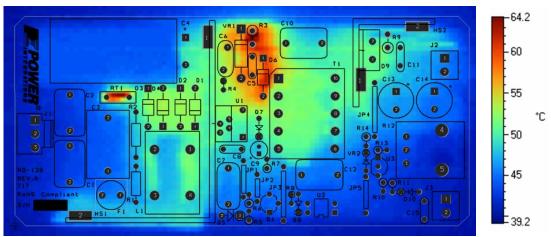


Figure 11 – Output Voltage vs. Potentiometer Resistance.

9.4.2 External Voltage Control

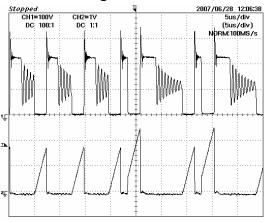



Figure 12 – Output Voltage vs. External Control Voltage.

9.5 Thermal Performance

Thermal testing of the unit was conducted in a thermal chamber under convectional cooling. The unit was placed horizontally. The volume of convectional cooling was limited by a cardboard box with dimensions $12^{\circ} \times 10^{\circ} \times 9^{\circ}$ (Height x Width x Depth). This box was used to prevent forced air-cooling of the unit by the thermal chamber's fan. The temperature of the *PeakSwitch* was measured by attaching a thermocouple to the device's tab. The output diode's temperature was monitored in an identical manner. The unit's output voltage was approximately 12.5 V during testing with a load of 3 A.

ltem	Temperature (°C)		
nem	90 VAC	230 VAC	
Ambient	40	40	
PeakSwitch, (U1)	106	100	
Output Diode, (D9)	91	100	
Transformer (T1)	93	94	
Clamp (VR1)	115	113	
Input Bridge (D1 – D4)	86	81	



90 VAC, 36 W load, 21°C Ambient Figure 13 – Infrared Thermograph of Open Frame Operation at Room Temperature.

10 Waveforms

10.1 Drain Voltage and Current, Normal Operation

Figure 14 – 90 VAC, V_{out}= 12 V, I_o= 3 A Upper: V_{DRAIN}, 100 V

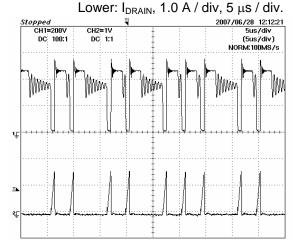


Figure 16 – 230 VAC, V_{out}= 12 V, I_o= 3 A Upper: V_{DRAIN}, 100 V Lower: I_{DRAIN}, 1.0 A / div, 5 μs / div.

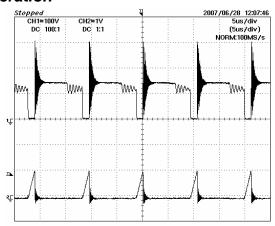


Figure 15 – 90 VAC, V_{out}= 2.3 V, I_o= 3 A Upper: V_{DRAIN}, 100 V

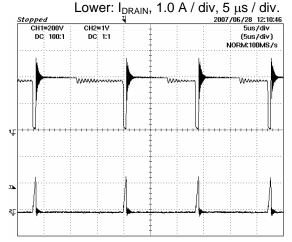
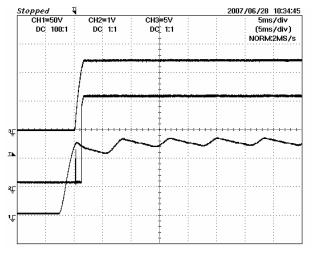
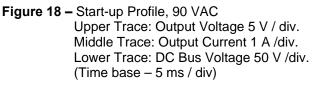




Figure 17 – 230 VAC, V_{out} = 2.3 V, I_o = 3 A Upper: V_{DRAIN} , 100 V Lower: I_{DRAIN} , 1.0 A / div, 5 μ s / div.

10.2 Output Voltage and Current Start-up Profile

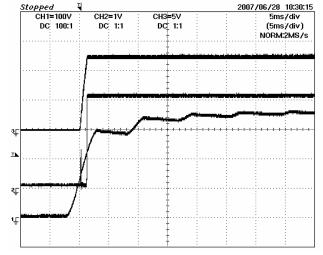


Figure 19 – Start-up Profile, 230 VAC Upper Trace: Output Voltage 5 V / div. Middle Trace: Output Current 1 A /div. Lower Trace: DC Bus Voltage 100 V /div. (Time base – 5 ms / div)

10.3 Drain Voltage and Current Start-up Profile

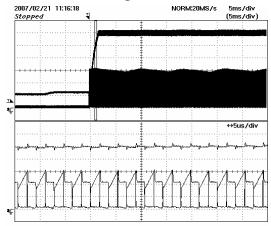


Figure 20 – 110 VAC Input Upper: V_{out}, 2 V / div. Middle: I_{DRAIN}, 1 A / div. Lower: V_{DRAIN}, 100 V (5 ms / div)

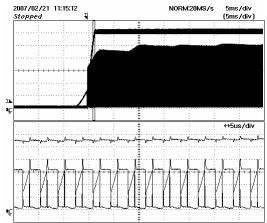
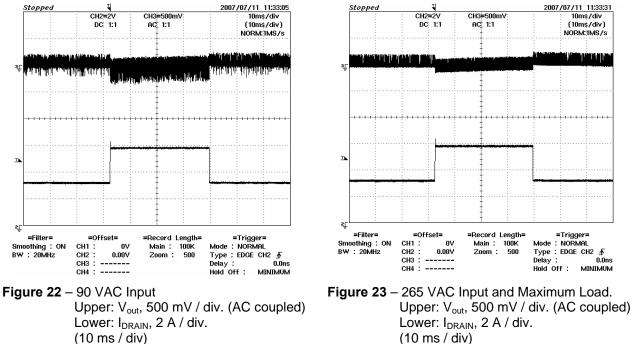



Figure 21 – 265 VAC Input and Maximum Load. Upper: V_{out}, 2 V / div. Middle: I_{DRAIN}, 1 A / div. Lower: V_{DRAIN}, 100 V (5 ms / div)

10.5 Output Voltage and DC Bus Voltage Ripple

For this measurement the supply's full peak power was pulsed for approximately 50 ms and the DC bus voltage was measured in addition to the output voltage's ripple.

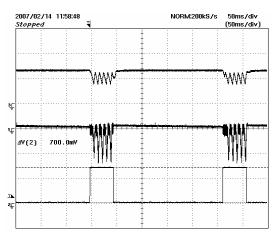


Figure 24 – 90 VAC Input, V_{out}=11 V Upper Trace: DC Bus Voltage 100 V / div. Middle Trace: V_{out} Ripple, 1 V / div. Lower Trace: I_{out}=7 A 50 ms / div.

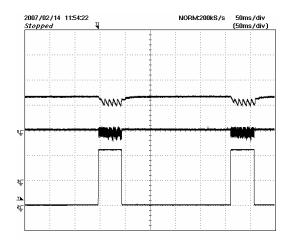


Figure 25 – 230 VAC Input, V_{out}=11 V Upper Trace: DC Bus Voltage 100 V / div. Middle Trace: V_{out} Ripple, 1 V / div. Lower Trace: I_{out}=12 A 50 ms / div.

10.6 Latching Shutdown Operation

The waveform shown below illustrates the power supply's latching shutdown feature. This feature is invaluable in a motor application due to the short circuit condition that can occur if the motor were to become jammed.

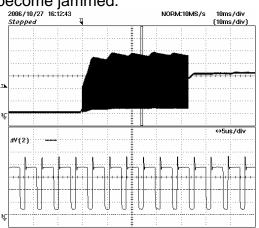


Figure 26 – Latching Shutdown Operation.

10.7 Output Ripple Measurements

10.7.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

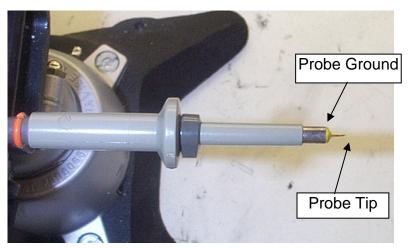


Figure 27 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 28 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement and two parallel decoupling capacitors added)

10.7.2 Measurement Results

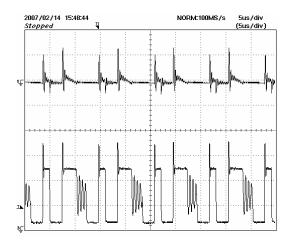


Figure 29 – 90 VAC Input, V_{out} =12 V, I_o = 3 A Upper Trace: V_{out} Ripple, 500 mV / div. Lower Trace: V_{Drain} , 100 V /div. (5 µs / div)

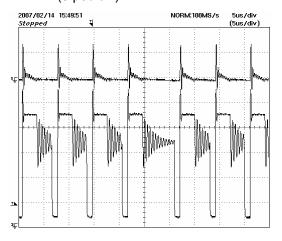


Figure 31 – 230 VAC Input, V_{out} =12 V, I_o = 3 A Upper Trace: V_{out} Ripple, 500 mV / div. Lower Trace: V_{Drain} , 100 V /div. (5 µs / div)

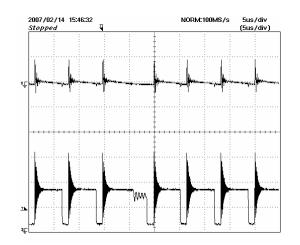


Figure 30 – 90 VAC Input, V_{out} =2.3 V, I_o = 3 A Upper Trace: V_{out} Ripple, 500 mV / div. Lower Trace: V_{Drain} , 100 V /div. (5 µs / div)



Figure 32 – 230 VAC Input, V_{out} =12 V, I_o = 3 A Upper Trace: V_{out} Ripple, 500 mV / div. Lower Trace: V_{Drain} , 100 V /div. (5 µs / div)

11 Conducted EMI

The following worst case conducted EMI measurements were made with a load of 3 A with the output grounded.

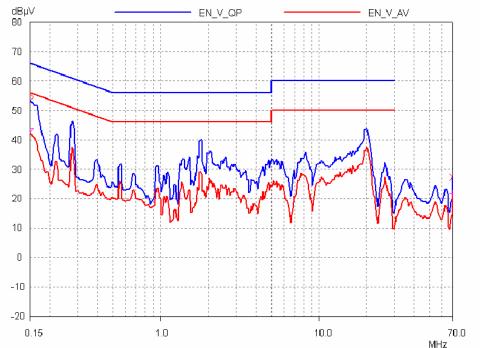


Figure 33 - Conducted EMI, Maximum Steady State Load, 90 VAC, 60 Hz, and EN55022 B Limits.

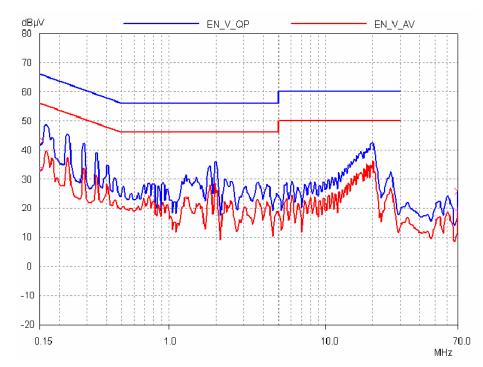


Figure 34 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.

12 Revision History

Date	Author	Revision	Description & changes	Reviewed
16-Aug-07	SK	1.0	Initial Publication	

Notes

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at <u>www.powerint.com</u>. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, *TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart*, Clampless, E-Shield, Filterfuse, *PI Expert* and *PI FACTS* are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2006 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail_chinasales@powerint.com*

CHINA (SHENZHEN)

Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com* GERMANY Rueckertstrasse 3 D-80336, Munich Germany

Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

INDIA

261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 *e-mail: indiasales@powerint.com*

ITALY

Via Vittorio Veneto 12 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Keihin Tatemono 1st Bldg 2-12-20 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken, Japan 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales@powerint.com

EUROPE HQ

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com*

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760