life.augmented

STW48N60M2-4

N-channel 600 V, 0.06 Ω typ., 42 A MDmesh[™] M2 Power MOSFET in a TO247-4 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax.}	R _{DS(on)} max.	ID
STW48N60M2-4	650 V	0.07 Ω	42 A

- Excellent switching performance thanks to the extra driving source pin
- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

- High efficiency switching applications:
 - Servers
 - PV inverters
 - Telecom infrastructure
 - Multi kW battery chargers

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STW48N60M2-4	48N60M2	TO247-4	Tube

DocID026750 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.2	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO247-4 package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	±25	V
I _D	Drain current (continuous) at $T_c = 25$ °C	42	А
lD	Drain current (continuous) at Tc = 100 °C	26	А
IDM ⁽¹⁾	Drain current (pulsed)	168	А
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	300	W
I _{AR}	Max. current during repetitive or single pulse avalanche (pulse width limited by T_{jmax})	7	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	1	J
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	°C

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}I_{SD} \leq 42$ A, di/dt = 400 A/µs, V_{DS(peak)} < V_{(BR)DSS}, V_DD = 400 V $^{(3)}V_{DS} \leq 480$ V

Table	3:	Thermal	data
-------	----	---------	------

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max.	0.42	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	50	°C/W

2 Electrical characteristics

(Tc = 25 °C unless otherwise specified)

Table 4: On /off-states						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1$ mA, $V_{GS} = 0$	600			V
1	Zero-gate voltage	V _{DS} = 600 V			1	μA
IDSS	I_{DSS} drain current (V _{GS} = 0)	$V_{DS} = 600 \text{ V}, \text{ T}_{C} = 125 \text{ °C}^{(1)}$			100	μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 25 V$			±10	nA
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
RDS(on)	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 21 \text{ A}$		0.06	0.07	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3060	-	pF
Coss	Output capacitance	$V_{DS} = 100 V, f = 1 MHz,$	-	143	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	4.3	-	рF
Coss eq. ⁽¹⁾	Equivalent Output Capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	630	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	4.6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, \text{ I}_{D} = 42 \text{ A},$	-	70	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	10.5	-	nC
Q _{gd}	Gate-drain charge	See Figure 15: "Gate charge test circuit"	-	31	-	nC

Table 5: Dynamic

Notes:

 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 21 \text{ A},$	-	18.5	-	ns
tr	Rise time	R_{G} = 4.7 Ω , V_{GS} = 10 V	-	17	-	ns
td(off)	Turn-off-delay time	See Figure 14: "Switching times test circuit for resistive load" and	-	13	-	ns
t _f	Fall time	Figure 19: "Switching time waveform"	-	119	-	ns

Table 6: Switching times

DocID026750 Rev 3

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		42	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		168	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 21 \text{ A}, V_{GS} = 0$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/µs	-	487		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V See Figure 16: " Test circuit for	-	9.1		μC
Irrm	Reverse recovery current	inductive load switching and diode recovery times"	-	37.5		А
t _{rr}	Reverse recovery time	I _{SD} = 42 A, di/dt = 100 A/μs	-	605		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ See Figure 16: " Test circuit for	-	12.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times"	-	41.5		А

Table 7: Source-drain diode

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 µs, duty cycle 1.5%.

DocID026750 Rev 3

STW48N60M2-4

57

Electrical characteristics

DocID026750 Rev 3

7/12

3 Test circuits

DocID026750 Rev 3

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO247-4 package information

Figure 20: TO247-4 package outline

Package information

STW48N60M2-4

Table 8: TO247-4 mechanical data			
Dim.		mm	
Dini.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.29
b1	1.15	1.20	1.25
b2	0		0.20
С	0.59		0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
D3	24.97	25.12	25.27
E	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	2.44	2.54	2.64
e1	4.98	5.08	5.18
L	19.80	19.92	20.10
Р	3.50	3.60	3.70
P1			7.40
P2	2.40	2.50	2.60
Q	5.60		6.00
S		6.15	
Т	9.80		10.20
U	6.00		6.40

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
25-Jul-2014	1	Initial release.
30-Jan-2015	2	Added section Electrical characteristics (curves).
20-Jan-2017	3	Updated Table 2: "Absolute maximum ratings", Table 4: "On /off-states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source- drain diode". Updated Section 2.2: "Electrical characteristics (curves)".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

