LOW SKEW, 1-TO-10, DIFFERENTIAL-TO-LVPECL/ECL FANOUT BUFFER ICS853111A ## GENERAL DESCRIPTION The ICS853111A is a low skew, high performance 1-to-10 Differential-to-2.5V/3.3V LVPECL/ECL Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from IDT. The ICS853111A is characterized to operate from either a 2.5V, 3.3V or a 5V power supply. Guaranteed output and part-to-part skew characteristics make the ICS853111A ideal for those clock distribution applications demanding well defined performance and repeatability. ## **FEATURES** - Ten differential LVPECL outputs - Two selectable differential LVPECL PCLK/nPCLK clock inputs - PCLK, nPCLK pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL - Maximum output frequency: >3GHz - Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nPCLK input - Additive phase jitter, RMS: <0.3ps (typical) - Output skew: 23ps (typical) - Part-to-part skew: 85ps (typical) - Propagation delay: 705ps (typical) - LVPECL mode operating voltage supply range: $V_{CC} = 2.375V$ to 5.25V, $V_{EE} = 0V$ - ECL mode operating voltage supply range: $V_{CC} = 0V$, $V_{EE} = -5.25V$ to -2.375V - -40°C to 85°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free (RoHS 6) packages ## **BLOCK DIAGRAM** # PIN ASSIGNMENT **32-Lead LQFP**7mm x 7mm x 1.4mm package body **Y Package**Top View 1 TABLE 1. PIN DESCRIPTIONS | Number | Name | | Туре | Description | |---------------|-----------------------------|--------|-----------------|---| | 1 | V _{cc} | Power | | Positive supply pin. | | 2 | CLK_SEL | Input | Pulldown | Clock select input. When HIGH, selects PCLK1, nPCLK1 inputs. When LOW, selects PCLK0, nPCLK0 inputs. LVCMOS / LVTTL interface levels. | | 3 | PCLK0 | Input | Pulldown | Non-inverting differential clock input. | | 4 | nPCLK0 | Input | Pullup/Pulldown | Inverting differential LVPECL clock input. $V_{cc}/2$ default when left floating. | | 5 | $V_{\scriptscriptstyle BB}$ | Output | | Bias voltage. | | 6 | PCLK1 | Input | Pulldown | Non-inverting differential clock input. | | 7 | nPCLK1 | Input | Pullup/Pulldown | Inverting differential LVPECL clock input. $V_{cc}/2$ default when left floating. | | 8 | $V_{\sf EE}$ | Power | | Negative supply pin. | | 9, 16, 25, 32 | V_{cco} | Power | | Output supply pins. | | 10, 11 | nQ9, Q9 | Output | | Differential output pair. LVPECL interface levels. | | 12, 13 | nQ8, Q8 | Output | | Differential output pair. LVPECL interface levels. | | 14, 15 | nQ7, Q7 | Output | | Differential output pair. LVPECL interface levels. | | 17, 18 | nQ6, Q6 | Output | | Differential output pair. LVPECL interface levels. | | 19, 20 | nQ5, Q5 | Output | | Differential output pair. LVPECL interface levels. | | 21, 22 | nQ4, Q4 | Output | | Differential output pair. LVPECL interface levels. | | 23, 24 | nQ3, Q3 | Output | | Differential output pair. LVPECL interface levels. | | 26, 27 | nQ2, Q2 | Output | | Differential output pair. LVPECL interface levels. | | 28, 29 | nQ1, Q1 | Output | | Differential output pair. LVPECL interface levels. | | 30, 31 | nQ0, Q0 | Output | | Differential output pair. LVPECL interface levels. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. Table 2. Pin Characteristics | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|---------------------------|-----------------|---------|---------|---------|-------| | R _{PULLDOWN} | Input Pulldown Resistor | | | 75 | | kΩ | | R _{VCC/2} | Pullup/Pulldown Resistors | | | 50 | | kΩ | TABLE 3A. CLOCK INPUT FUNCTION TABLE | Inp | outs | Out | tputs | Innut to Output Made | Delevity | |-------------------|-------------------|-------|--------|------------------------------|---------------| | PCLKx | nPCLKx | Q0:Q9 | nQ0:Q9 | Input to Output Mode | Polarity | | 0 | 1 | LOW | HIGH | Differential to Differential | Non Inverting | | 1 | 0 | HIGH | LOW | Differential to Differential | Non Inverting | | 0 | Biased;
NOTE 1 | LOW | HIGH | Single Ended to Differential | Non Inverting | | 1 | Biased;
NOTE 1 | HIGH | LOW | Single Ended to Differential | Non Inverting | | Biased;
NOTE 1 | 0 | HIGH | LOW | Single Ended to Differential | Inverting | | Biased;
NOTE 1 | 1 | LOW | HIGH | Single Ended to Differential | Inverting | NOTE 1: Please refer to the Application Information, "Wiring the Differential Input to Accept Single Ended Levels". TABLE 3B. CONTROL INPUT FUNCTION TABLE | Inputs | | | | | | | |---------------------------|---------------|--|--|--|--|--| | CLK_SEL Selected Source | | | | | | | | 0 | PCLK0, nPCLK0 | | | | | | | 1 | PCLK1, nPCLK1 | | | | | | #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{cc} 6V (LVPECL mode, $V_{EE} = 0$) Negative Supply Voltage, V_{EE} -6V (ECL mode, $V_{CC} = 0$) Inputs, V₁ (LVPECL mode) -0.5V to $V_{cc} + 0.5 V$ Inputs, V, (ECL mode) 0.5V to $V_{\rm EE}$ - 0.5V Outputs, I Continuous Current 50mA Surge Current 100mA V_{BB} Sink/Source, I_{BB} ± 0.5mA Operating Temperature Range, T, -40°C to +85°C Storage Temperature, $T_{\rm STG}$ -65°C to 150°C Package Thermal Impedance, θ_{JA} 37.8°C/W (0 Ifpm) (Junction-to-Ambient) NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{CC} = 2.375V$ to 3.8V; $V_{EE} = 0V$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-------------------------|-----------------|---------|---------|---------|-------| | V _{cc} | Positive Supply Voltage | | 2.375 | 3.3 | 5.25 | V | | I _{EE} | Power Supply Current | | | | 85 | mA | Table 4B. LVPECL DC Characteristics, $V_{CC} = 3.3V$; $V_{EE} = 0V$ | Compleal | Dawamatan | | | -40°C | | | 25°C | | | 85°C | | I I mit m | |------------------|-------------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------| | Symbol | Parameter | Farameter | | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | V _{OH} | Output High V | oltage; NOTE 1 | 2.175 | 2.275 | 2.38 | 2.225 | 2.295 | 2.37 | 2.295 | 2.33 | 2.365 | V | | V _{OL} | Output Low Vo | oltage; NOTE 1 | 1.405 | 1.545 | 1.68 | 1.425 | 1.52 | 1.615 | 1.44 | 1.535 | 1.63 | V | | V _{IH} | Input High Vol | tage, Single-Ended | 2.075 | | 2.36 | 2.075 | | 2.36 | 2.075 | | 2.36 | V | | V _{IL} | Input Low Volt | age, Single-Ended | 1.43 | | 1.765 | 1.43 | | 1.765 | 1.43 | | 1.765 | V | | V _{BB} | Output Voltage
NOTE 2 | e Reference; | 1.86 | | 1.98 | 1.86 | | 1.98 | 1.86 | | 1.98 | ٧ | | V _{PP} | Peak-to-Peak | Input Voltage | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | V _{CMR} | Input High Vol
Mode Range; | tage Common
NOTE 3, 4 | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | ٧ | | I _{IH} | Input
High Current | PCLK0, PCLK1
nPCLK0, nPCLK1 | | | 200 | | | 200 | | | 200 | μA | | | Input | PCLK0, PCLK1 | -10 | | | -10 | | | -10 | | | μΑ | | I _{IL} | Low Current | nPCLK0, nPCLK1 | -200 | | | -200 | | | -200 | | | μΑ | Input and output parameters vary 1:1 with V $_{cc}$. V $_{EE}$ can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 Ω to V $_{cco}$ - 2V. NOTE 2: Single-ended input operation is limited. $V_{CC} \ge 3V$ in LVPECL mode. NOTE 3: Common mode voltage is defined as V_{IH}. NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is V_{cc} + 0.3V. Table 4C. LVPECL DC Characteristics, $V_{CC} = 2.5V$; $V_{EE} = 0V$ | 0 | D | | | -40°C | | | 25°C | | | 85°C | | Units | |------------------|-------------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------| | Symbol | Parameter | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Ullits | | V _{OH} | Output High V | oltage; NOTE 1 | 1.375 | 1.475 | 1.58 | 1.425 | 1.495 | 1.57 | 1.495 | 1.53 | 1.565 | V | | V _{OL} | Output Low Vo | oltage; NOTE 1 | 0.605 | 0.745 | 0.88 | 0.625 | 0.72 | 0.815 | 0.64 | 0.735 | 0.83 | V | | V _{IH} | Input High Vol | tage, Single-Ended | 1.275 | | 1.56 | 1.275 | | 1.56 | 1.275 | | -0.83 | V | | V _{IL} | Input Low Volt | age, Single-Ended | 0.63 | | 0.965 | 0.63 | | 0.965 | 0.63 | | 0.965 | V | | V _{PP} | Peak-to-Peak | Input Voltage | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | V _{CMR} | Input High Vol
Mode Range; | tage Common
NOTE 2, 3 | 1.2 | | 2.5 | 1.2 | | 2.5 | 1.2 | | 2.5 | V | | I _{IH} | Input
High Current | PCLK0, PCLK1
nPCLK0, nPCLK1 | | | 200 | | | 200 | | | 200 | μA | | | Input | PCLK0, PCLK1 | -10 | | | -10 | | | -10 | | | μA | | IIL | Low Current | nPCLK0, nPCLK1 | -200 | | | -200 | | | -200 | | | μΑ | Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 Ω to V_{CCO} - 2V. NOTE 2: Common mode voltage is defined as V_{IH} . NOTE 3: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is V_{cc} + 0.3V. Table 4D. LVPECL DC Characteristics, $V_{CC} = 5V$; $V_{EE} = 0V$ | Cumbal | Davameter | | | -40°C | | | 25°C | | | 85°C | | Linita | |------------------|-------------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------| | Symbol | Parameter | Parameter | | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | V _{OH} | Output High V | oltage; NOTE 1 | 3.875 | 3.975 | 4.08 | 3.925 | 3.995 | 4.07 | 3.995 | 4.03 | 4.065 | V | | V _{OL} | Output Low Vo | oltage; NOTE 1 | 3.105 | 3.245 | 3.38 | 3.125 | 3.22 | 3.315 | 3.14 | 3.235 | 3.33 | V | | V _{IH} | Input High Vol | tage, Single-Ended | 3.775 | | 4.06 | 3.775 | | 4.06 | 3.775 | | 4.06 | V | | V _{IL} | Input Low Volt | age, Single-Ended | 3.13 | | 3.465 | 3.13 | | 3.465 | 3.13 | | 3.465 | V | | V _{BB} | Output Voltage
NOTE 2 | e Reference; | 3.56 | | 3.68 | 3.56 | | 3.68 | 3.56 | | 3.68 | V | | V _{PP} | Peak-to-Peak | Input Voltage | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | V _{CMR} | Input High Vol
Mode Range; | tage Common
NOTE 3, 4 | 1.2 | | 5 | 1.2 | | 5 | 1.2 | | 5 | V | | I _{IH} | Input
High Current | PCLK0, PCLK1
nPCLK0, nPCLK1 | | | 200 | | | 200 | | | 200 | μΑ | | | Input | PCLK0, PCLK1 | -10 | | | -10 | | | -10 | | | μΑ | | I _{IL} | Low Current | nPCLK0, nPCLK1 | -200 | | | -200 | | | -200 | | | μΑ | Input and output parameters vary 1:1 with V $_{\rm CC}$ · V $_{\rm EE}$ can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 Ω to V $_{\rm CCO}$ - 2V. NOTE 2: Single-ended input operation is limited. $V_{cc} \ge 3V$ in LVPECL mode. NOTE 3: Common mode voltage is defined as V_{III}. NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is V_{cc} + 0.3V. Table 4E. ECL DC Characteristics, $V_{CC} = 0V$; $V_{EE} = -5.25V$ to -2.375V | 0 | B | | | -40°C | | | 25°C | | | 85°C | | Units | |------------------|---|--------------------------|-----------------------|--------|--------|-----------------------|--------|--------|-----------------------|--------|--------|-------| | Symbol | Parameter | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | V _{OH} | Output High V
NOTE 1 | oltage; | -1.125 | -1.025 | -0.92 | -1.075 | -1.005 | -0.93 | -1.005 | -0.97 | -0.935 | ٧ | | V _{OL} | Output Low Vo | oltage; | -1.895 | -1.755 | -1.62 | -1.875 | -1.78 | -1.685 | -1.86 | -1.765 | -1.67 | V | | V _{IH} | Input High Vol
Single-Ended | | -1.225 | | -0.94 | -1.225 | | -0.94 | -1.225 | | -0.94 | V | | V _{IL} | Input Low Volt
Single-Ended | age, | -1.87 | | -1.535 | -1.87 | | -1.535 | -1.87 | | -1.535 | V | | V _{BB} | Output Voltage
NOTE 2 | e Reference; | -1.44 | | -1.32 | -1.44 | | -1.32 | -1.44 | | -1.32 | V | | V _{PP} | Peak-to-Peak
Input Voltage | | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | V _{CMR} | Input High Vol
Common Mod
NOTE 3, 4 | • | V _{EE} +1.2V | | 0 | V _{EE} +1.2V | | 0 | V _{EE} +1.2V | | 0 | V | | I _{IH} | Input
High Current | PCLK[0:1],
nPCLK[0:1] | | | 200 | | | 200 | | | 200 | μΑ | | | Input | PCLK[0:1] | -10 | | | -10 | | | -10 | | | μΑ | | I _{IL} | Low Current | nPCLK[0:1] | -200 | | | -200 | | | -200 | | | μΑ | Input and output parameters vary 1:1 with V $_{\rm CC}$ · V $_{\rm EE}$ can vary +0.925V to -0.5V. NOTE 1: Outputs terminated with 50 Ω to V $_{\rm CCO}$ - 2V. NOTE 2: Single-ended input operation is limited. $V_{CC} \ge 3V$ in LVPECL mode. NOTE 3: Common mode voltage is defined as $V_{\rm int}$. NOTE 4: For single-ended applications, the maximum input voltage for PCLK0, nPCLK0 and PCLK1, nPCLK1 is V_{CC} + 0.3V. Table 5. AC Characteristics, $V_{CC} = 0V$; $V_{EE} = -5.25V$ to -2.375V or $V_{CC} = 2.375V$ to 5.25V; $V_{EE} = 0V$ | Cumbal | Parameter | | -40°C | | | 25°C | | | | 85°C | | | |--------------------------------------|--|------------|-------|------|-----|------|------|-----|-----|------|-------|-----| | Symbol | Parameter | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | | f _{MAX} | Output Frequency | | | >3 | | | >3 | | | >3 | | GHz | | $t_{\scriptscriptstyle{ extsf{PD}}}$ | Propagation Delay; NO | TE 1 | 570 | 670 | 770 | 605 | 705 | 805 | 665 | 765 | 875 | ps | | tsk(o) | Output Skew; NOTE 2, | 4 | | 23 | 35 | | 23 | 35 | | 23 | 35 | ps | | tsk(pp) | Part-to-Part Skew; NOT | ΓE 3, 4 | | 85 | 150 | | 85 | 150 | | 85 | 150 | ps | | <i>t</i> jit | Buffer Additive Phase or refer to Additive Phase | | | 0.03 | | | 0.03 | | | 0.03 | | ps | | t _R /t _F | Output Rise/Fall Time | 20% to 80% | 85 | 200 | 315 | 100 | 200 | 285 | 85 | 200 | 315 | ps | All parameters are measured ≤ 1GHz unless otherwise noted. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. ## **ADDITIVE PHASE JITTER** The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment. # PARAMETER MEASUREMENT INFORMATION ### **OUTPUT LOAD AC TEST CIRCUIT** #### DIFFERENTIAL INPUT LEVEL #### **OUTPUT SKEW** #### PART-TO-PART SKEW #### **OUTPUT RISE/FALL TIME** #### PROPAGATION DELAY # APPLICATION INFORMATION ### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVCMOS LEVELS Figure 2A shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF $_{\sim}$ V $_{\rm cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V $_{cc}$ = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609. FIGURE 2A. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT #### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LVPECL LEVELS Figure 2B shows an example of the differential input that can be wired to accept single ended LVPECL levels. The reference voltage level $V_{_{\rm BB}}$ generated from the device is connected to the negative input. The C1 capacitor should be located as close as possible to the input pin. FIGURE 2B. SINGLE ENDED LVPECL SIGNAL DRIVING DIFFERENTIAL INPUT ## LVPECL CLOCK INPUT INTERFACE The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both $V_{\mbox{\tiny SWING}}$ and $V_{\mbox{\tiny CMR}}$ must meet the $V_{\mbox{\tiny PP}}$ and $V_{\mbox{\tiny CMR}}$ input requirements. Figures 3A to 3E show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements. FIGURE 4A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A CML DRIVER FIGURE 3C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER FIGURE 3E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE FIGURE 3B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY AN SSTL DRIVER FIGURE 3D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER ### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS #### INPUTS #### **PCLK/nPCLK INPUTS** For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground. #### LVCMOS CONTROL PINS All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **O**UTPUTS #### LVPECL OUTPUTS All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. #### **TERMINATION FOR 3.3V LVPECL OUTPUTS** The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched imped- ance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FIGURE 4A. LVPECL OUTPUT TERMINATION FIGURE 4B. LVPECL OUTPUT TERMINATION ### **TERMINATION FOR 2.5V LVPECL OUTPUT** Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50 Ω to V_{cc} - 2V. For V_{cc} = 2.5V, the V_{cc} - 2V is very close to ground FIGURE 5A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE FIGURE 5C. 2.5V LVPECL TERMINATION EXAMPLE level. The R3 in Figure 5B can be eliminated and the termination is shown in Figure 5C. FIGURE 5B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE ## **TERMINATION FOR 5V LVPECL OUTPUT** This section shows examples of 5V LVPECL output termination. Figure 6A shows standard termination for 5V LVPECL. The termination requires matched load of 50Ω resistors pull down to FIGURE 6A. STANDARD 5V LVPECL OUTPUT TERMINATION V_{cc} - 2V = 3V at the receiver. *Figure 6B* shows Thevenin equivalence of Figure 6A. In actual application where the 3V DC power supply is not available, this approached is normally used. FIGURE 6B. 5V LVPECL OUTPUT TERMINATION EXAMPLE ### SCHEMATIC EXAMPLE This application note provides general design guide using ICS853111A LVPECL buffer. *Figure 7* shows a schematic example of the ICS853111A LVPECL clock buffer. In this example, the input is driven by an LVPECL driver. CLK_SEL is set at logic low to select PCLK0/nPCLK0 input. FIGURE 7. EXAMPLE ICS853111A LVPECL CLOCK OUTPUT BUFFER SCHEMATIC ## POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS853111A. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS853111A is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 5.25V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 5.25V * 85mA = 446.3mW - Power (outputs)_{MAX} = 30.94mW/Loaded Output pair If all outputs are loaded, the total power is 10 * 30.94mW = 309.4mW Total Power (3.8V, with all outputs switching) = 446.3mW + 309.4mW = 755.7mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C. The equation for Tj is as follows: Tj = θ_{La} * Pd_total + T_a Tj = Junction Temperature $\theta_{\text{\tiny IA}}$ = junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_{Δ} = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\text{\tiny JA}}$ must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1.1°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 70° C with all outputs switching is: 70° C + 0.547W * 42.1° C/W = 93° C. This is well below the limit of 125° C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). Table 6. Thermal Resistance $\theta_{_{JA}}$ for 32-pin LQFP Forced Convection ## θ_ω by Velocity (Linear Feet per Minute) | | U | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 8. FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{cco} - 2V. • For logic high, $$V_{\text{OUT}} = V_{\text{OH_MAX}} = V_{\text{CCO_MAX}} - 0.935V$$ $$(V_{CC MAX} - V_{OH MAX}) = 0.935V$$ • For logic low, $$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.67V$$ $$(V_{CCO,MAX} - V_{OL,MAX}) = 1.67V$$ $$Pd_{-}H = [(V_{_{OH_MAX}} - (V_{_{CCO_MAX}} - 2V))/R_{_{L}}] * (V_{_{CCO_MAX}} - V_{_{OH_MAX}}) = [(2V - (V_{_{CCO_MAX}} - V_{_{OH_MAX}}))/R_{_{L}}] * (V_{_{CCO_MAX}} - V_{_{OH_MAX}}) = [(2V - 0.935V)/50\Omega] * 0.935V = 19.92mW$$ $$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_{L}] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.67V)/50\Omega] * 1.67V = 11.02mW$$ Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW # RELIABILITY INFORMATION ## Table 8 $\theta_{_{1\Delta}}$ vs. Air Flow Table for 32 Lead LQFP # $\boldsymbol{\theta}_{_{JA}}$ by Velocity (Linear Feet per Minute) | | 0 | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Laver PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS853111A is: 1340 Pin compatible with MC100EP111 and MC100LVEP111 ### D D2 Ref. INDEX \Box **E2** E1 AREA Ref. E \Box $N + \square$ 3 D1 **SEATING** - C -PLANE □ ccc C -c PACKAGE OUTLINE AND DIMENSIONS - Y SUFFIX FOR 32 LEAD LQFP TABLE 9. PACKAGE DIMENSIONS | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | | | |---|------------|---------|---------|--|--|--|--| | SYMBOL | ВВА | | | | | | | | | MINIMUM | NOMINAL | MAXIMUM | | | | | | N | 32 | | | | | | | | Α | | | 1.60 | | | | | | A1 | 0.05 | | 0.15 | | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | | b | 0.30 | 0.37 | 0.45 | | | | | | С | 0.09 | | 0.20 | | | | | | D | 9.00 BASIC | | | | | | | | D1 | 7.00 BASIC | | | | | | | | D2 | 5.60 Ref. | | | | | | | | E | 9.00 BASIC | | | | | | | | E1 | 7.00 BASIC | | | | | | | | E2 | 5.60 Ref. | | | | | | | | е | 0.80 BASIC | | | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | | θ | 0° | | 7° | | | | | | ccc | | | 0.10 | | | | | Reference Document: JEDEC Publication 95, MS-026 TABLE 10. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|----------------------------|--------------------|---------------| | 853111AY | ICS853111AY | 32 Lead LQFP | tray | -40°C to 85°C | | 853111AYT | ICS853111AY | 32 Lead LQFP | 1000 tape & reel | -40°C to 85°C | | 853111AYLF | ICS853111AYL | 32 Lead "Lead-Free" LQFP | tray | -40°C to 85°C | | 853111AYFT | ICS853111AYL | 32 Lead ""Lead-Free"" LQFP | 1000 tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. | REVISION HISTORY SHEET | | | | | | | | |------------------------|----------|---|---|----------|--|--|--| | Rev | Table | Page | Description of Change | | | | | | | | 11 | Corrected Figure 5C. | | | | | | A | | 13 & 14 | Power Considerations - corrected Power(outputs) _{MAX} from 30.2mW to 30.94mW, and revised Junction Temperature and Worse Case Power Dissipation equations. | 10/31/03 | | | | | В | | 1 | Features section - increased voltage range to 5.25V. | | | | | | | T4A | 3 | Power Supply table - increased maximum V _{cc} to 5.25V. | | | | | | | T4D | 4 | Added 5V LVPECL DC Characteristics table. | 4/00/04 | | | | | | T5 | 5 | AC Characteristics table - increased $\rm V_{\rm EE}$ range to -5.25V to 2.375V, and $\rm V_{\rm CC}$ to 2.375V to 5.25V. | | | | | | | | 7 | Corrected Output Load AC Test Circuit Diagram, V _{EE} range from" -1.8V to -0.375V" to "-3.25V to -0.375V". | 4/28/04 | | | | | | | 11 | LVPECL clock Input Interface - added another CML driver diagram. | | | | | | | | 13 & 14 | Power Considerations - changed Power(core) _{max} from 3.8V to 5.25V and recalculated equations. | | | | | | В | | 3 | Absolute Maximum Ratings, corrected Supply Voltage & Negative Supply Voltage from 4.6V & -4.6V to 6V & -6V. | | | | | | В | T10 | 17 Ordering Information Table - added lead-free marking to part number. Updated datasheets. | | 7/6/07 | | | | | | T4B | 3 | LVPECL 3.3V DC Characteristics Table - corrected I _{IH} max. from 150μA to 200μA; and I _{II} min. from -150μA to -200μA. | | | | | | С | T4C, T4D | 4 | LVPECL DC Characteristics Tables - corrected I _{IH} max. from 150μA to 200μA; and I _{II} min. from -150μA to -200μA. | 10/25/07 | | | | | | T4E | 5 | ECL DC Characteristics Table - corrected I _{IH} max. from 150μA to 200μA; and I _{IL} min. from -150μA to -200μA. | | | | | | | | 12 | Added Termination for 5V LVPECL Output section. | | | | | # Innovate with IDT and accelerate your future networks. Contact: www.IDT.com ### **For Sales** 800-345-7015 408-284-8200 Fax: 408-284-2775 #### For Tech Support netcom@idt.com 480-763-2056 #### **Corporate Headquarters** Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.) #### Asia Pacific and Japan Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505 #### **Europe** IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851