

AS3833

6 Channel High-Precision LED Controller for LCD Backlight with Integrated Step-Up Controller

General Description

The AS3833 is a 6 channel high precision LED controller with PWM input for driving external bipolar transistors in LCD-backlight or various other general lighting applications.

The integrated step-up controller provides the necessary output voltage for the LED string supply.

The SMPS feedback control optimizes the power efficiency by adjusting the LED string supply voltage.

Built in safety features include undervoltage and thermal shutdown as well as open and short LED detection.

Ordering Information and Content Guide appear at end of datasheet.

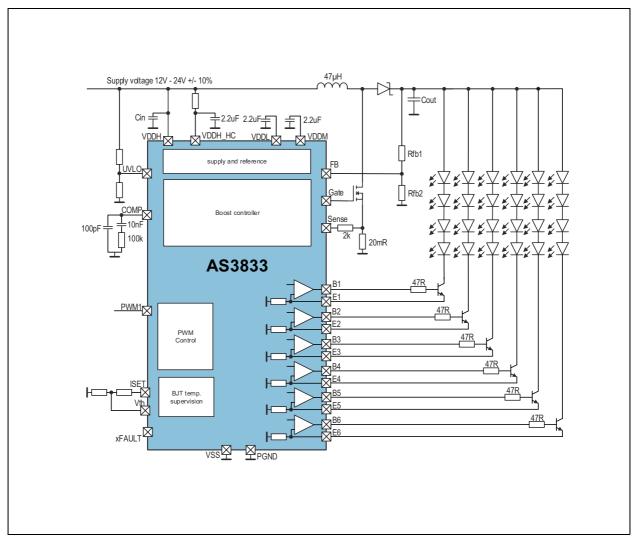
Key Benefits & Features

The benefits and features of AS3833, 6 Channel High-Precision LED Controller for LCD Backlight with Integrated Step-Up Controller are listed below:

Figure 1: Added Value of Using AS3833

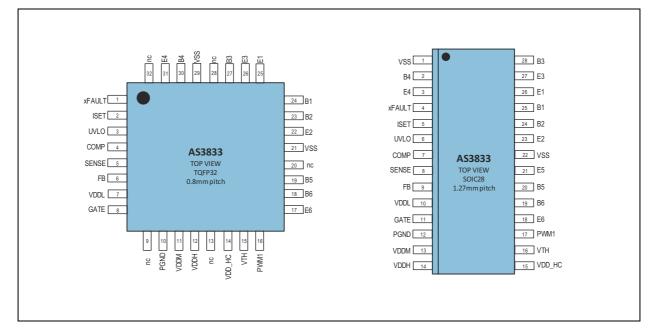
Benefits	Features
Easy integration	1 PWM input for dimming, no software needed.
Highest brightness uniformity	- Absolute LED current accuracy of \pm 0.8% and channel to channel matching of \pm 0.6%
Innovative BJT temperature supervision	 On chip temperature supervision of external bipolar transistor with programmable threshold.
Low BOM	Due to integrated DC/DC step up controller
On chip safety features and automatic fault handling	 Short/OPEN LED detection, temperature shutdown, undervoltage shutdown, overvoltage protection
Single sided PCB support	 SOIC-28 package can be routed on a single sided PCB saving system cost, TQFP-32 available for double sided PCB

Applications


AS3833 is suitable for LED backlighting used in LCD TV sets, monitors and various other general lighting applications.

Block Diagram

The functional blocks of this device are shown below:



Pin Assignment

Figure 3: Pin Assignment of AS3833 (Top View)

Figure 4: Pin Description

Pin Number TQFP-32	Pin Number SOIC-28	Pin Name	Pin Type	Description
29	1	VSS	Р	Analog ground
30	2	B4	A_I/O	Base 4. Connect to base of external transistor
31	3	E4	A_I/O	Emitter 4. Connect to emitter of external transistor
1	4	xFAULT	DO_OD	Fault output. Active low
2	5	ISET	A_I/O	Current setting. Connect current setting resistor
3	6	UVLO	A_I/O	Undervoltage lockout input
4	7	COMP	A_I/O	Compensation network . Connect compensation network.
5	8	SENSE	A_I/O	Current sense input . Provide a short, direct PCB path between this pin and the positive side of the current sense resistor.
6	9	FB	A_I/O	Output voltage feedback input . Input for voltage divider. Connect voltage divider output as short as possible to this pin
7	10	VDDL	A_I/O	Voltage regulator output 3.3V. Connect 2.2µF decoupling capacitor to GND

811GATEA_I/OGate driver output1012PGNDPPower ground1113VDDMPVoltage regulator output. Connect 2.2µF decoupling capacitor to GND1214VDDHPSupply voltage. Connect 1µF decoupling capacitor to GND1415VDDH_HCPVoltage regulator Input. Connect 2.2µF decoupling capacitor to GND1415VDDH_HCPVoltage regulator Input. Connect 2.2µF decoupling capacitor to GND1516VTHA_I/OReference input for overtemperature detection1617PWM1DI_PDPWM input 1. PWM input for channel 11718E6A_I/OBase 6. Connect to base of external transistor1819B6A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OBase 2. Connect to base of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OBase 1. Connect to emitter of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	Pin Number TQFP-32	Pin Number SOIC-28	Pin Name	Pin Type	Description
1113VDDMPVoltage regulator output. Connect 2.2µF decoupling capacitor to GND1214VDDHPSupply voltage. Connect 1µF decoupling capacitor to GND1415VDDH_HCPVoltage regulator Input. Connect 2.2µF decoupling capacitor to GND1516VTHA_I/OReference input for overtemperature detection1617PWM1DI_PDPWM input 1. PWM input for channel 11718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 6. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to base of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OBase 1. Connect to base of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	8	11	GATE	A_I/O	Gate driver output
1113VDDMPdecoupling capacitor to GND1214VDHPSupply voltage. Connect 1μF decoupling capacitor to GND1415VDH_HCPVoltage regulator Input. Connect 2.2μF decoupling capacitor to GND1516VTHA_I/OReference input for overtemperature detection1617PWM1DLPDPWM input 1. PWM input for channel 11718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to base of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OBase 1. Connect to emitter of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	10	12	PGND	Р	Power ground
1214VDDHPto GND1415VDH_HCPVoltage regulator Input. Connect 2.2µF decoupling capacitor to GND1516VTHA_I/OReference input for overtemperature detection1617PWM1DI_PDPWM input 1. PWM input for channel 11718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 6. Connect to base of external transistor1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to base of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OEmitter 1. Connect to emitter of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor	11	13	VDDM	Р	
1415VDDH_HCPcapacitor to GND1516VTHA_I/OReference input for overtemperature detection1617PWM1DI_PDPWM input 1. PWM input for channel 11718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 6. Connect to base of external transistor1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to base of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OEmitter 1. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	12	14	VDDH	Р	
1617PWM1DL_PDPWM input 1. PWM input for channel 11718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 6. Connect to base of external transistor1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OBase 1. Connect to emitter of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	14	15	VDDH_HC	Р	
1718E6A_I/OEmitter 6. Connect to emitter of external transistor1819B6A_I/OBase 6. Connect to base of external transistor1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 1. Connect to base of external transistor2425B1A_I/OBase 1. Connect to emitter of external transistor2526E1A_I/OEmitter 3. Connect to emitter of external transistor	15	16	VTH	A_I/O	Reference input for overtemperature detection
1819B6A_I/OBase 6. Connect to base of external transistor1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 2. Connect to base of external transistor2425B1A_I/OBase 1. Connect to base of external transistor2526E1A_I/OEmitter 1. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	16	17	PWM1	DI_PD	PWM input 1 . PWM input for channel 1
1920B5A_I/OBase 5. Connect to base of external transistor2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 2. Connect to base of external transistor2425B1A_I/OBase 1. Connect to base of external transistor2526E1A_I/OEmitter 1. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	17	18	E6	A_I/O	Emitter 6. Connect to emitter of external transistor
2021E5A_I/OEmitter 5. Connect to emitter of external transistor2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 2. Connect to base of external transistor2425B1A_I/OBase 1. Connect to base of external transistor2526E1A_I/OEmitter 1. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	18	19	B6	A_I/O	Base 6. Connect to base of external transistor
2122VSSPAnalog ground2223E2A_I/OEmitter 2. Connect to emitter of external transistor2324B2A_I/OBase 2. Connect to base of external transistor2425B1A_I/OBase 1. Connect to base of external transistor2526E1A_I/OEmitter 1. Connect to emitter of external transistor2627E3A_I/OEmitter 3. Connect to emitter of external transistor	19	20	B5	A_I/O	Base 5. Connect to base of external transistor
21 21 100	20	21	E5	A_I/O	Emitter 5. Connect to emitter of external transistor
23 24 B2 A_I/O Base 2. Connect to base of external transistor 24 25 B1 A_I/O Base 1. Connect to base of external transistor 25 26 E1 A_I/O Emitter 1. Connect to emitter of external transistor 26 27 E3 A_I/O Emitter 3. Connect to emitter of external transistor	21	22	VSS	Р	Analog ground
24 25 B1 A_I/O Base 1. Connect to base of external transistor 25 26 E1 A_I/O Emitter 1. Connect to emitter of external transistor 26 27 E3 A_I/O Emitter 3. Connect to emitter of external transistor	22	23	E2	A_I/O	Emitter 2. Connect to emitter of external transistor
25 26 E1 A_I/O Emitter 1. Connect to emitter of external transistor 26 27 E3 A_I/O Emitter 3. Connect to emitter of external transistor	23	24	B2	A_I/O	Base 2. Connect to base of external transistor
26 27 E3 A_I/O Emitter 3. Connect to emitter of external transistor	24	25	B1	A_I/O	Base 1. Connect to base of external transistor
	25	26	E1	A_I/O	Emitter 1. Connect to emitter of external transistor
	26	27	E3	A_I/O	Emitter 3. Connect to emitter of external transistor
27 28 B3 A_I/O Base 3. Connect to base of external transistor	27	28	B3	A_I/O	Base 3. Connect to base of external transistor

A_I/O	Analog pin
Р	Power pin
DO	Digital output
DO_OD	Digital output open drain
DI	Digital input
DI_PU	Digital input with pullup resistor
DI_PD	Digital input with pull down resistor

Absolute Maximum Ratings

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments		
		Electrica	Parameters			
VDDH to VSS, VDDH_HC to VSS	-0.3	55	V			
VDDM to VSS, GATE to VSS	-0.3	25	V			
xFAULT to VSS	-0.3	7	V			
VDDL to VSS	-0.3	5	V			
Analog Pin Voltage to VSS ⁽¹⁾	-0.3	5	V			
Digital Pin Voltage to VSS ⁽²⁾	-0.3	5	V			
Input Current (latch-up immunity)	-100	100	mA	JEDEC 78		
		Electrosta	tic Discharge			
Electrostatic Discharge HBM	±	1500	V	MIL 883 E method 3015		
Electrostatic Discharge MM	<u>+</u>	200	V	JESD22-A115C		
Continuos Power Dissipation (T _A = 70°C)						
Continuous Power Dissipation		1.5	W	P _T ⁽³⁾ for SOIC-28 Package		
Continuous Power Dissipation Derating Factor		13	mW/°C	P _{DERATE} ⁽⁴⁾		

Parameter	Min	Мах	Units	Comments				
Temperature Ranges and Storage Conditions								
Junction to ambient thermal resistance		76	°C/W	SOIC-28 Package. For more information about thermal metrics, see application note AN01 Thermal Characteristics.				
Junction Temperature (T _{Jmax})		150	°C					
Storage Temperature Range	-55	150	°C					
Package Body Temperature		260	٥C	The reflow peak soldering temperature (body temperature) specified is in accordance with <i>IPC/JEDEC</i> <i>J-STD-020"Moisture/Reflow Sensitivity</i> <i>Classification for Non-Hermetic Solid</i> <i>State Surface Mount Devices".</i> The lead finish for Pb-free leaded packages is matte tin (100% Sn).				
Relative Humidity (non-condensing)	5	85	%					
Moisture Sensitivity Level		3		Maximum floor life time of 168h				

Note(s):

1. Pins Vth, UVLO, Comp, Sense, FB, Iset, Ex, Bx.

2. Pins PWMx.

3. Depending on actual PCB layout and PCB used.

4. P_{DERATE} derating factor changes the total continuous power dissipation (P_T) if the ambient temperature is not 25°C. Therefore for e.g. T_A =85°C calculate P_T at 85°C = P_T - P_{DERATE} x (85°C - 25°C)

Electrical Characteristics

VDDH = 24V, all voltages referenced to VSS, Typical values are at $T_A = 25^{\circ}C$ (unless otherwise specified). All limits are guaranteed. The parameters with min. and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods

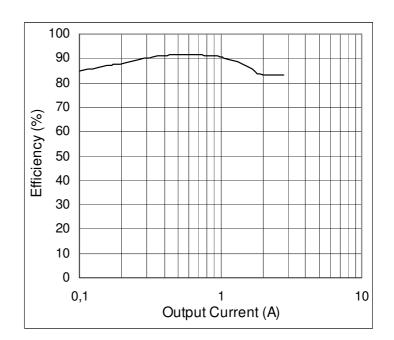
Figure 6: Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
General								
T _A	Operating Temperature Range	Apply proper cooling to stay below maximum allowed T _J .	-20		85	°C		
Tj	Operating Junction Temperature		-20		115	°C		
		Power Supply						
VDDH	Supply voltage		12		50	V		
VDDM	Driver supply voltage regulator output			9		V		
VDDL	3V voltage regulator output			3.3		V		
I _{DD}	Operating current consumption	UVLO=2V, PWM1=0, Rset=6kΩ, Vth=0.47V	4.6	5.0	5.6	mA		
I _{DDQ}	Quiescent current consumption	UVLO=0V, PWM1=0, Rset=6kΩ, Vth=0.47V	2.25	2.50	2.75	mA		
	C	urrent Sink Parameters		1	I	1		
I _{LED_100}	Trimmed current accuracy	ILED=100mA, Tj=25 °C excluding error of Rset	0.8		0.8	%		
I _{LED_ALL}	Current accuracy	ILED=50 ⁽¹⁾ to 250mA, BJT β>50 Tj=-20°C to 115°C	-1.5		1.5	%		
I _{CH_100}	Channel to channel accuracy	ILED=100mA, Tj = 25°C	-0.6		0.6	%		
V _{lsetX}	Reference voltage at pins lset		1.18	1.20	1.22	V		
Ratio	Ratio = ILED/Iset			500				
I _{BX}	Base output current limit		5.5		7.5	mA		

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
	Short Detection Comparator								
ACC _{short}	Overtemperature protection accuracy	Accuracy of V _{be} comparison with V _{TH} level	-10		10	mV			
	F	ower Supply Regulation	I						
B _{th}	BJT beta threshold		45	48	52				
	B	oost Controller Oscillator	I						
f _{osc}	Oscillator frequency		220	250	280	kHz			
		Boost Controller PWM							
D _{MAX}	Maximum duty cycle		85	87	89	%			
	Boo	st Controller Error Amplifier							
V _{FB}	Reference voltage at pin FB		1.23	1.25	1.27	v			
A _V	Voltage gain			80		dB			
BW	Bandwidth	A _V =0dB		2		MHz			
I _{FB_in}	Voltage sense input current	Pins FB		0.1	0.2	μΑ			
I _{comp_out}	Compensation output current	Pins COMP, V _{comp} = 1V		10		μA			
	Boost Co	ontroller Overcurrent Protec	tion						
V _{SENSE}	Current sense threshold	Pin SENSE	600	800	1000	mV			
	Boost Controller Driver								
R _{driver}	Driver resistance sink and source	Pin GATE	4	6	8	Ω			
V _{driver}	GATE maximum output voltage	IGATE = 0mA		VDDM		v			
t _{RISE_driver}	GATE voltage rise time	VGATE=0 to 3V, CLOAD=3nF	15	25	50	ns			
t _{FALL_driver}	GATE voltage fall time	VGATE=3 to 0V, CLOAD=3nF	15	25	50	ns			

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
	Boost Controller Undervoltage Lockout							
V _{UVLO}	Undervoltage lockout threshold		1.28	1.35	1.42	V		
I _{UVLO_Hyst}	Undervoltage lockout hysteresis current			20		μA		
		Digital Pins						
V _{IH}	Logic high input threshold		1.8			V		
V _{IL}	Logic low input threshold				0.8	V		
V _{OL}	Logic low output level	PIN x FAULT open drain. l=-2mA			0.3	V		
R _{PU}	Input resistance pull-up inputs			300		kΩ		
R _{PD}	Input resistance pull-down inputs			300		kΩ		
	Thermal Protection							
T _{OFF}	Thermal shutdown threshold			140		°C		
T _{hyst}	Thermal shutdown hysteresis			30		°C		

Note(s):


1. It is not recommended to set ILED < 50mA in order to minimize influences of offset voltages.

Typical Operating Characteristics

V_{OUTBoost} = 60V; I_{OUT} = 1A, T_A = 25°C (unless otherwise specified)

Figure 7: Boost - Efficiency vs. Output Current; V_{IN} = 13V

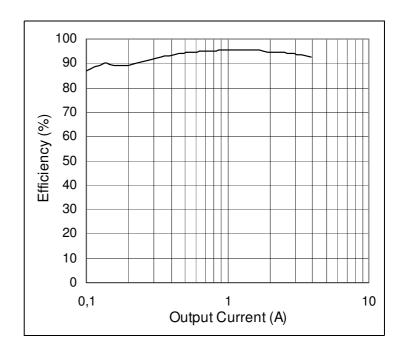


Figure 9: V_{OUT} vs. I_{OUT}, V_{IN} = 13V

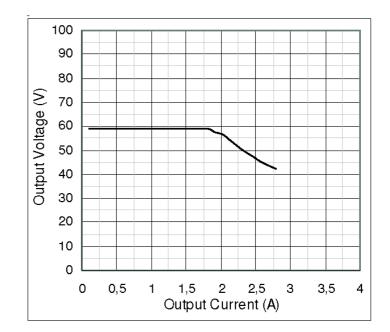
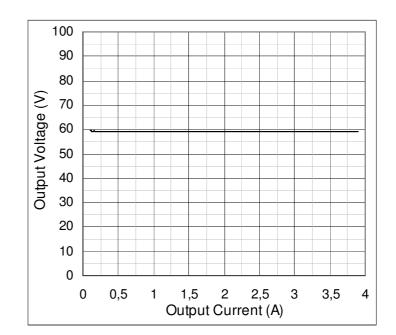



Figure 10: V_{OUT} vs. I_{OUT}, V_{IN} = 24V

amui

Figure 11: Boost - Efficiency vs. Input Voltage, I_{OUT} = 1A

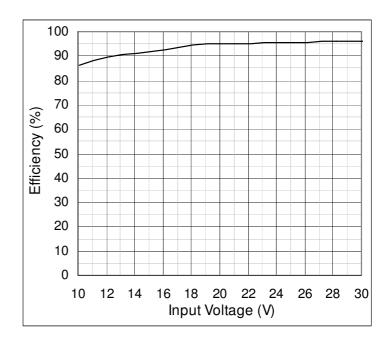
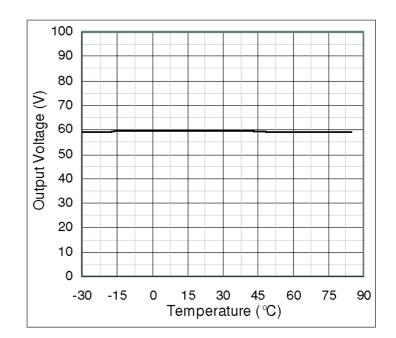
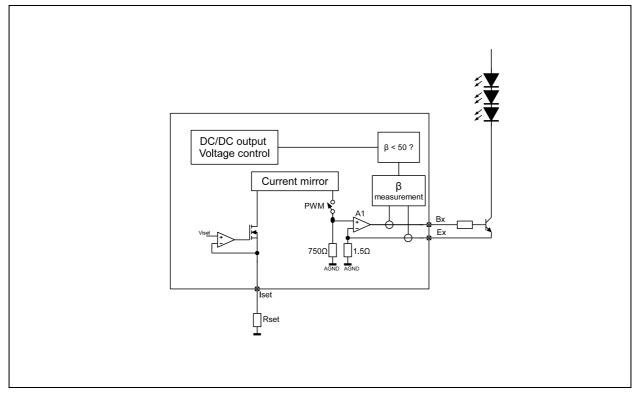



Figure 12: V_{OUT} vs. Temp, $V_{IN} = 24V$, $I_{OUT} = 0.2A$



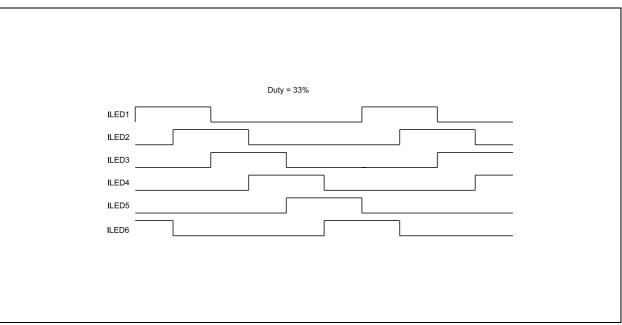
Detailed Description

Precision Current Output

Figure 13: Current Output Stage

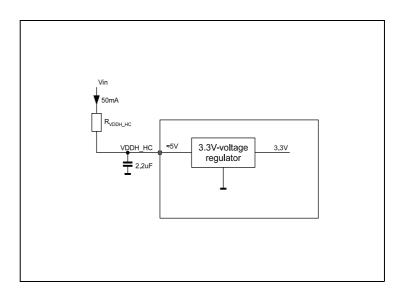
The LED-current is derived from either R_{set} using the following equation:

(EQ1)
$$I_{\text{LED}} = \text{RATIO} \times I_{\text{set}} = \text{RATIO} \times \frac{V_{\text{set}}}{R_{\text{set}}} = 500 \times \frac{1.2V}{R_{\text{SET}}}$$


 I_{set} is protected against a short to ground. In the case of a ground short the current I_{set} is limited to $660 \mu A$ and the LED-current to 330mA.

I_{set} has a lower limit of 6μA with a 1μA hysteresis.This sets the lower limit of the LED-current to 3mA with R_{set}=200kΩ. If R_{set} is larger than 200kΩ, the LED-current is set to 0mA.

Phase Shift


The outputs are controlled by the PWM-input and a built in phase shift generator. All outputs are phase shifted by 1/6 of the PWM-period. In order to calculate the phase shift timing, two PWM-periods are needed. This means that after changing the PWM-frequency, the phase shift is updated after the second period. The PWM-frequency must be in the range from 60Hz to 1kHz.

VDDH_HC Resistor

Figure 15: VDDH_HC Resistor

Pin VDDH_HC is connected to an internal 3.3V voltage regulator. In order to keep the power dissipation of this regulator low, it is recommended to connect pin VDDH_HC to the power supply V_{IN} with a resistor. The resistor should guarantee sufficient voltage drop so that the remaining voltage at pin VDDH_HC is approximately 5V. The power dissipation of the R_{VDDH_HC} has to be considered.

$$(EQ2) \qquad R_{VDDH_HC} = \frac{V_{in} - 5V}{75mA}$$

(EQ3)
$$P_{R_{VDDH_HC}} = (75 \text{ mA})^2 \times R_{VDDH_HC}$$

Typical values for R_{VVDH2} are:

 $V_{IN} = 13V: R_{VDDH_HC} = 100\Omega / 1W$ $V_{IN} = 24V: R_{VDDH_HC} = 250\Omega / 2W$

Safety Features

Undervoltage Lockout

In order to avoid startup of the Boost controller at low supply voltage an undervoltage lockout function is implemented. The boost controller only turns ON when the voltage at pin UVLO exceeds VUVLO. Once the boost controller is turned ON a current source I_{UVLO_Hyst} is activated which increases the UVLO voltage and so shifts the turn OFF voltage level.

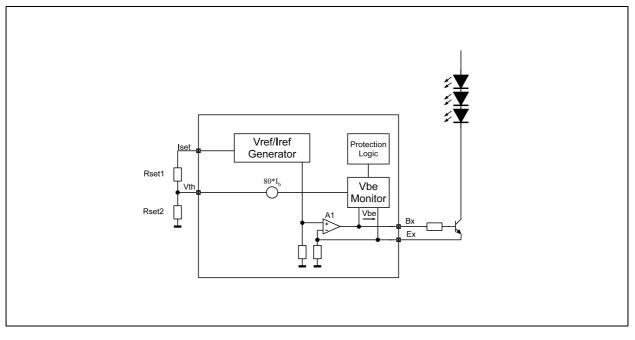
Figure 16: Undervoltage Lockout

Following equations can be derived for adjusting the threshold voltages:

Undervoltage lockout HIGH level:

(EQ4)
$$V_{DDH_UVH} = V_{UVLO} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO2}}\right)$$

Undervoltage lockout LOW level:


(EQ5)
$$V_{\text{DDH}-\text{UVL}} = V_{\text{UVLO}} \times \left(1 + \frac{R_{\text{UVLO1}}}{R_{\text{UVLO2}}}\right) - I_{\text{UVLO}} \times R_{\text{UVLO1}}$$

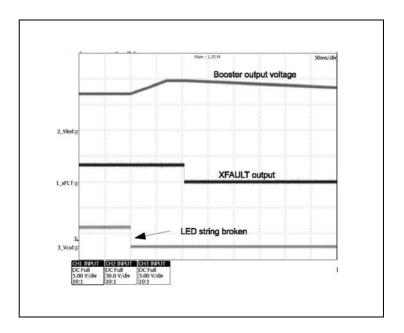
Overtemperature Shutdown

If the device temperature reaches T_{OFF} the boost controller and all current outputs are turned OFF. After the temperature has decreased by T_{hyst} all blocks are turned ON again.

Short LED Protection

Figure 17: Short LED Protection

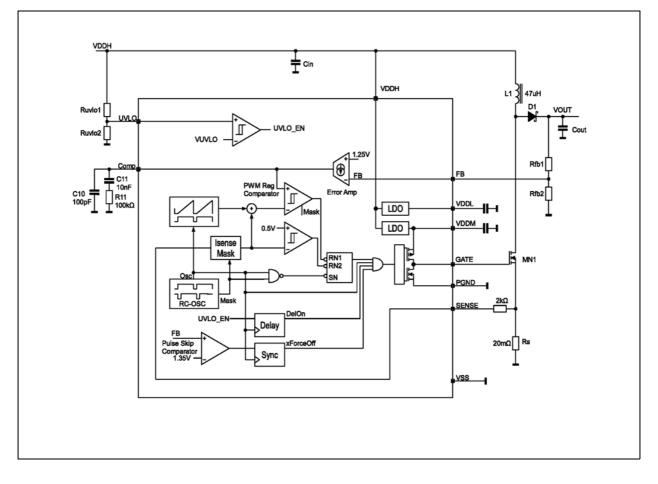
A built in short protection comparator is monitoring the junction temperature T_J of the external bipolar transistors by measuring the base-emitter voltage V_{BE} .


- (EQ6) V_{BE}=1.2V -0.002 x T_J
 - T_J Junction temperature in K

When the measured V_{BE} gets lower than the voltage applied at pin Vth an overtemperature an hence an short LED condition is detected. Subsequently the fault output is activated (xFAULT = 0) and the corresponding output is deactivated.

Open LED Detection

Figure 18: Open LED Detection



A broken LED-string is detected during PWM=1. If a LED-string is broken the power supply feedback will increment the IDAC to increase the power supply output voltage. After the IDAC has reached its maximum value, a debounce counter is started. In order to run the debounce counter, the corresponding PWM-signal has to be high for more than 150 μ s. After the debounce counter has counted up for 32ms, the fault output is activated (xFAULT = 0) and the corresponding output is disconnected from the power supply feedback loop.

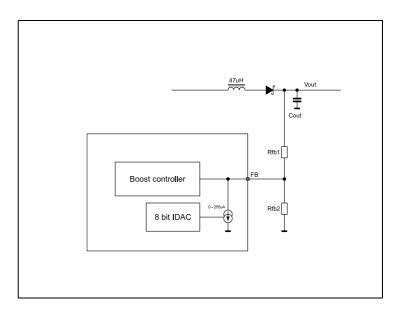

Boost Controller

Figure 19: Boost Controller

Setting the Output Voltage

Figure 20: V_{OUT} Setting

According to the requirements of the LED strings, the output voltage V_{out} is adjusted by the internal power supply feedback between:

$$V_{OUTmin} = V_{fb} \left(1 + \frac{R_{fb1}}{R_{fb2}} \right)$$

and

$$\mathbf{V}_{\text{OUTmax}} = \mathbf{V}_{\text{fb}} \left(1 + \frac{\mathbf{R}_{\text{fb1}}}{\mathbf{R}_{\text{fb2}}} \right) + 255 \mu \mathbf{A} \cdot \mathbf{R}_{\text{fb1}}$$

Once V_{out_min} and V_{out_max} is known the external resistors can be calculated:

(EQ7)
$$R_{fb1} = \frac{(V_{OUTmax} - V_{OUTmin})}{255\mu A}$$

(EQ8)
$$R_{fb2} = \frac{V_{fb} \cdot R_{fb1}}{(V_{OUTmin} - V_{fb})}$$

Note(s): The overall resistance should be in the range of $100k\Omega$ to $200k\Omega$ to avoid any noise issues. Keep FB-line as short as possible.

Continuous Conduction Mode (CCM)

For normal operation the converter should stay in continuous conduction mode, to ensure that the inductor value must be bigger than $L_{\mbox{CRIT}}$.

(EQ9)
$$L_{CRIT} = \frac{\left(1 - \frac{V_{IN}}{V_{OUT} + V_{D}}\right) \times V_{IN}^{2} \times R}{2 \times f_{SW} \times (V_{OUT} + V_{D})^{2}}$$

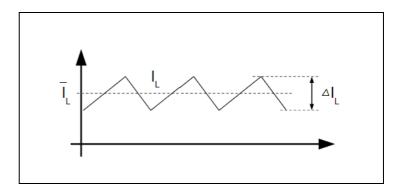
Where:

V _{IN}	Input voltage at VDDH
V _{OUT}	Output voltage
V _D	Diode forward voltage at D1
f_{SW}	Switching frequency
R	Load resistor, should be calculated with minimum current load R = V_{OUT} / I_{OUT_min}
I _{OUT_min}	Minimum output current (e.g. for LED driver only one LED string is on)

Duty Cycle

Within CCM, the well known relation between input and output voltage is derived in the following equation:

(EQ10)
$$\frac{V_{OUT} + V_D}{V_{IN}} = \frac{1}{1 - D}$$


this means for the duty cycle:

$$(EQ11) \quad D = \left(1 - \frac{V_{IN}}{V_{OUT} + V_{D}}\right)$$

Inductor Current

The inductor current varies during a switching cycle. This variation can be expressed by the mean value of the inductor current and the delta rise/fall current within each cycle (see Figure 21).

Figure 21: Inductor Current

Mean inductor current:

$$(EQ12) \qquad \overline{I}_{L} = \frac{I_{OUT}}{1-D}$$

Delta inductor current:

$$(\text{EQ13}) \qquad \Delta I_L = \frac{D \times V_{IN}}{f_S \times L}$$

Peak current:

$$(\text{EQ14}) \qquad I_{pk} = \overline{I_L} + \frac{\Delta I_L}{2} = \frac{I_{OUT}}{1 - D} + \frac{D \times V_{IN}}{2 \times f_S \times L}$$

RMS inductor current:

(EQ15)
$$I_{RMS} = \sqrt{\overline{I_L}^2 + (\frac{1}{12} \times \Delta I_L)^2}$$

This peak current is flowing through MN1 during phase 1 and through D1 during phase 2 of each cycle. Therefore this peak current is important for a proper diode, MOSFET and inductor selection.

Note(s): The saturation current of the inductor should be about 20% to 30% larger than the peak current

Input Capacitor

The input capacitor has to supply the delta inductor current and it should be selected according to:

(EQ16)
$$C_{IN} > \frac{\Delta I_L}{4 \times \Delta V_{IN} \times f_{SW}}$$

$$(EQ17) \qquad ESR > \frac{\Delta V_{IN}}{2 \times \Delta I_L}$$

Output Capacitor

The output capacitor must be chosen according to the max allowable output ripple at high load.

(EQ18)
$$C_{OUT} > \frac{I_{OUT} - max \times D}{\Delta V_{OUT} \times f_{SW}}$$

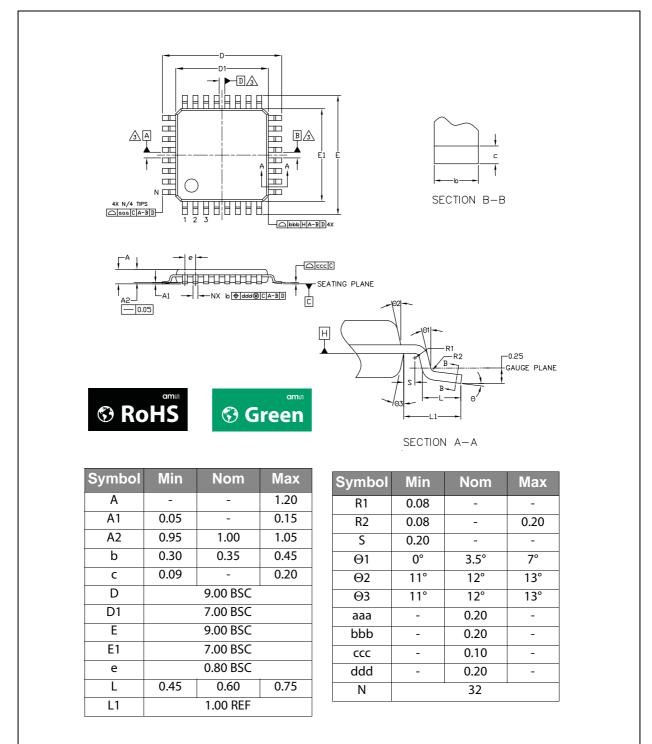
(EQ19) ESR >
$$\frac{\Delta V_{OUT}}{\left(\frac{I_{OUT}}{1-D} + \frac{V_{IN} \times D}{2 \times L \times f_{SW}}\right)}$$

Current Sense Resistor

(EQ20)
$$R_{S-max} = \frac{V_{SENSE}}{\overline{I_L} \times 0.5 \times \Delta I_L}$$

$$(EQ21) P_{RS} = I^2 L - rms \times R_S \times D$$

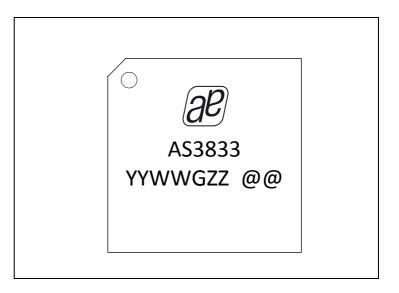
Note(s): Low inductance, specific designed current sensing resistors should be used, e.g. Stackpole Electronics CSR/CSRN series of sensing resistors with less than 0.2nH (typ.).


Compensation Network

A typical choice for values of the compensation network is C10 = 100 pF, C11 = 10 nF, R11 = 100 k Ω . Use these values as initial choice and evaluate the transient response of the system to verify the behavior at output load change.

Package Drawings & Markings

Figure 22: TQFP-32 Package Drawing



Note(s):

- 1. Dimensions and tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Datums A & B to be determined at datum H.

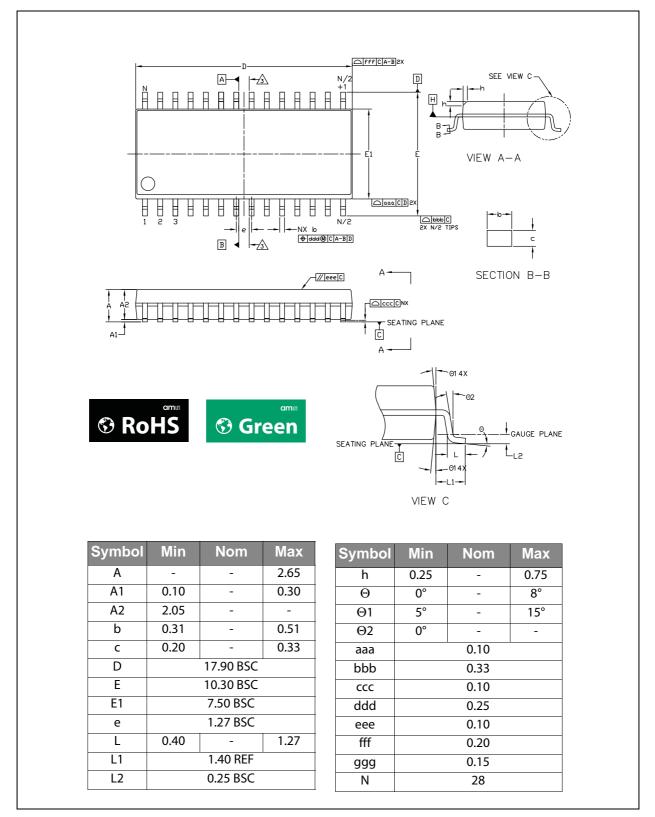
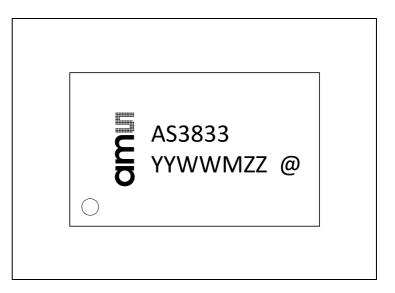

Figure 23: TQFP-32 Package Marking

Figure 24: Packaging Code

YY	WW	G	ZZ	@@
Manufacturing year	Manufacturing week	Plant identifier	Free choice/ traceability code	Sublot identifier

Figure 25: SOIC-28 Package Drawing



Note(s):

- 1. Dimensions and tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Datums A & B to be determined at datum H.

Figure 26: SOIC-28 Package Marking

Figure 27: Packaging Code

YY	WW	М	ZZ	@
Manufacturing year	Manufacturing week	Plant identifier	Free choice/ Traceability code	Sublot identifier

Ordering & Contact Information

Figure 28: Ordering Information

Ordering Code	Package	Marking	Delivery Form	Delivery Quantity
AS3833-ZTQT	TQFP-32	AS3833	Tape & Reel	2000 pcs/reel
AS3833-ZSOT	SOIC-28	AS3833	Tape & Reel	1500 pcs/reel

Buy our products or get free samples online at: www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 1.8 to current revision 2-01 (2016-Dec-08)	Page			
1.8 to 2-00 (2016-Nov-29)				
Content of austriamicrosystems datasheet was converted to latest ams design				
Updated Subtitle, General Description, Applications and added Figure 1	1			
Updated Figure 2	2			
Updated Figure 3	3			
Updated Figures 23 & 24	24			
Updated Figures 26 & 27	26			
Updated Figure 28	27			
2-00 (2016-Nov-29) to 2-01 (2016-Dec-08)				
Updated Figure 5	5			

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Content Guide

- 1 General Description
- 1 Key Benefits & Features
- 2 Applications
- 2 Block Diagram
- 3 Pin Assignment
- 3 Pin Description
- 5 Absolute Maximum Ratings
- 7 Electrical Characteristics
- **10** Typical Operating Characteristics

13 Detailed Description

- 13 Precision Current Output
- 14 Phase shift
- 14 VDDH_HC Resistor
- 15 Safety Features
- 15 Undervoltage Lockout
- 16 Overtemperature Shutdown
- 16 Short LED protection
- 17 Open LED Detection

18 Boost Controller

- 18 Setting the Output Voltage
- 20 Continuous Conduction Mode (CCM)
- 20 Duty Cycle
- 20 Inductor Current
- 22 Input Capacitor
- 22 Output Capacitor
- 22 Current Sense Resistor
- 22 Compensation Network
- 23 Package Drawings & Markings
- 27 Ordering & Contact Information
- 28 RoHS Compliant & ams Green Statement
- 29 Copyrights & Disclaimer
- 30 Document Status
- 31 Revision Information