System
Generator for
DSP

User Guide

UG640 (v 13.1) March 1, 2011

& XILINX.

& XILINX.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation”) to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-I1S” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2006 - 2011. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

System Generator for DSP User Guide www.xilinx.com UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Table of Contents

Preface: About This Guide

Guide Contents 9
System Generator PDF Doc Set........ 9
Additional Resources 9
ConvVentionst 10
Typographical.............. .. 10
Online Documentt 10

Chapter 1: Hardware Design Using System Generator

A Brief Introduction to FPGAs 14
Note to the DSP Engineer 18
Note to the Hardware Engineer................. oo ool 18

Design Flows using System Generator....................................... 18
Algorithm Exploration 19
Implementing Part of a Larger Design 19
Implementing a Complete Design................ o o i 19

System-Level Modeling in System Generator................................ 20
System Generator Blocksetsl 21
Signal Types ... 23
AXISIgNal Groups 24
Bit-True and Cycle-True Modeling i it 24
Timing and Clocking 24
Synchronization Mechanisms o ool 36
Block Masks and Parameter Passing................... . 37
Resource Estimation 39

Automatic Code Generation............ 39
Compiling and Simulating Using the System Generator Token.................. 40
Viewing ISE Reports 44
Compilation Results 44
HDL Testbench. e e 50

Compiling MATLAB intoan FPGA. 51
Simple Selector 51
Simple Arithmetic Operations i 52
Complex Multiplier with Latency o o o oo 55
Shift Operations i 56
Passing Parameters into the MCode Block................., 57
Optional Input Ports 60
Finite State Machines. 62
Parameterizable Accumulator o 63
FIR Example and System Verification, 66
RPN Calculator. 69
Exampleof disp Function................ o o o oo 71

Importing a System Generator Design into a Bigger System.................. 73
HDL Netlist Compilation o i i i i 73
Integration Design Rules.............. o o o 73

System Generator for DSP User Guide www.xilinx.com

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

New Integration Flow between System Generator & Project Navigator........... 74
A Step-by-Step Example 75
Configurable Subsystems and System Generator 82
Defining a Configurable Subsystem oL 82
Using a Configurable Subsystem 84
Deleting a Block from a Configurable Subsystem 85
Adding a Block to a Configurable Subsystem 85
Generating Hardware from Configurable Subsystems 86
Notes for Higher Performance FPGA Design 88
Review the Hardware Notes Included in Block Dialog Boxes 88
Register the Inputs and Outputs of Your Design 88
Insert Pipeline Registers i 88
Use Saturation Arithmetic and Rounding Only When Necessary 88
Use the System Generator Timing and Power Analysis Tools 88
Set the Data Rate Option on All Gateway Blocks 88
Reduce the Clock Enable (CE) Fanout 89
Processing a System Generator Design with FPGA Physical Design Tools. ... 89
HDL Simulation 89
Generating an FPGA Bitstream 92
Resetting Auto-Generated Clock Enable Logic............................... 95
ce_clr and Rate Changing Blocks...........o ool 95
ce_clr Usage Recommendations oL 97
Design Styles forthe DSP48. 98
About the DSP48 98
Designs Using Standard Components 99
Designs Using Synthesizable Mult, Mux and AddSub Blocks 99
Designs that Use DSP48 and DSP48 MacroBlocks....................... 100
DSP48 Design Techniques i i i i i 105
Using FDATool in Digital Filter Applications 108
Design Overview 109
Open and Generate the Coefficients for this FIR Filter 109
Parameterize the MAC-Based FIRBlock 110
Generate and Assign Coefficients for the FIR Filter 111
Browse Through and Understand the Xilinx Filter Block 113
Run the Simulation 114
Generating Multiple Cycle-True Islands for Distinct Clocks 117
Multiple Clock Applicationso i il 117
Clock Domain Partitioning 118
Crossing Clock Domains. i i 119
Netlisting Multiple Clock Designs, 120
Step-by-Step Example 121
Creating a Top-Level Wrapper oo i it 125
Using ChipScope Pro Analyzer for Real-Time Hardware Debugging........ 129
ChipScope Pro Overview 129
Tutorial Example: Using ChipScope in System Generator 129
Real-Time Debug 135
Tutorial Example: Using ChipScope Pro Analyzer with JTAG Hardware Co-Simulation139
AXIInterface......... 141
Introduction 141
AXI4 Support in System Generator. oo i 141
AXI4-Stream Support in System Generator 142
www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

AXI-Stream Blocks in System Generator o . 143

: Hardware/Software Co-Design

Hardware/Software Co-Design in System Generator........................ 146
Black Box Block 146
PicoBlaze Block. 146
EDK Processor Block o 146

Integrating a Processor with Custom Logic.................................. 146
Memory Map Creation i 148
Hardware Generation i 149
Hardware Co-Simulation oo oo 149
The Software Driver 150
Writing a Software Program. 153
Asynchronous SUpport 156
Clock Wiring in the Hardware Co-Simulation Flow 157

EDK Support 165
Importing an EDK Processor i 165
Exposing Processor Ports to System Generator............................... 167
Exporting a pcore.o i 168

Designing with Embedded Processors and Microcontrollers 168
Designing PicoBlaze Microcontroller Applications 168
Designing and Exporting MicroBlaze Processor Peripherals 175
Tutorial Example - Designing and Simulating MicroBlaze Processor Systems 180
Using XPS ... 188
Using Platform Studio SDK 193
Tutorial Example - Using System Generator and SDK to Co-Debug an Embedded DSP Design

202
Summary 225

Chapter 3: Using Hardware Co-Simulation

Introduction 227
M-Code Access to Hardware Co-Simulation................ 227
Installing Your Hardware Board, 227
Ethernet-Based Hardware Co-Simulation 227
JTAG-Based Hardware Co-Simulation. i, 228
Third-Party Hardware Co-Simulation 228
Compiling a Model for Hardware Co-Simulation 229
Choosing a Compilation Target................. oo ool 229
Invoking the Code Generator............. 229
Hardware Co-Simulation Blocks 230
Hardware Co-Simulation Clocking 233
Selecting the Target Clock Frequency................. 233
ClockingModesoo i i 234
Selecting the ClockMode oo i i il 234
Board-SpecificI/OPorts.......... 235
I/0 Ports in Hardware Co-simulationt 236
Ethernet Hardware Co-Simulation............... 236
Point-to-Point Ethernet Hardware Co-Simulation 237
Network-Based Ethernet Hardware Co-Simulation........................... 241
Remote JTAG Cable Support in JTAG Co-Simulation 242
System Generator for DSP User Guide www.xilinx.com 5

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Shared Memory Support 244
Compiling Shared Memories for Hardware Co-Simulation.................... 245
Co-Simulating Unprotected Shared Memories 247
Co-Simulating Lockable Shared Memories 248
Co-Simulating Shared Registers oL 250
Co-Simulating Shared FIFOs o o oL 251
Restrictions on Shared Memorieso 254

Specifying Xilinx Tool Flow Settings 254

Frame-Based Acceleration using Hardware Co-Simulation.................. 256
Shared MemOTiesttt 256
Adding BufferstoaDesigno oo oo 258
Compiling for Hardware Co-simulation 262
Using Vector Transferso i 264

Real-Time Signal Processing using Hardware Co-Simulation 269
Shared Memory I/O Buffering Example 269
Applying a 5x5 Filter Kernel DataPath 271
5x5 Filter Kernel Test Bench i 274
Reloading the Kernel o . i i il 278

Installing Your Board for Ethernet Hardware Co-Simulation................ 279
Installing Software onthe Host PC o oLt 279
Setting Up the Local Area Networkonthe PC 279
Loading the Sysgen HW Co-Sim Configuration Files 281
Installing the Proxy Executable for Linux Users.............................. 283
Installing an ML402 Board for Ethernet Hardware Co-Simulation 283
Installing an ML506 Board for Ethernet Hardware Co-Simulation 288
Installing an ML605 Board for Ethernet Hardware Co-Simulation 293

Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware Co-Simulation295
Installing a Spartan-3A DSP 3400A Board for Ethernet Hardware Co-Simulation . 296

Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation 301
Installing Your Board for JTAG Hardware Co-Simulation................... 303
Installing an ML402 Board for JTAG Hardware Co-Simulation................. 303
Installing an ML605 Board for JTAG Hardware Co-Simulation................. 305
Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation 307
Supporting New Boards through JTAG Hardware Co-Simulation........... 309
Hardware Requirements. i i 309
Supporting New Boards 309

Chapter 4: Importing HDL Modules

Black Box HDL Requirements and Restrictions 324
Black Box Configuration Wizard, 325
Black Box Configuration M-Function....................................... 326
HDL Co-Simulation......... 340
Introduction 340
Configuring the HDL Simulator, 340
Co-Simulating Multiple Black Boxes................o oL 342
Black Box Examples........... 343
Importing a Xilinx Core Generator Module.................................. 343
Importinga VHDLModule o i 357
Importing a VerilogModule 364
Dynamic Black Boxes. 366
www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Simulating Several Black Boxes Simultaneously......................... 368
Advanced Black Box Example Using ModelSim. 370
Importing, Simulating, and Exporting an Encrypted VHDL File................ 375
Black Box Tutorial Exercise 9: Prompting a User for Parameters in a Simulink Model and
Passing ThemtoaBlackBox oo o i i 380

Chapter 5: System Generator Compilation Types

HDL Netlist Compilation 384

NGC Netlist Compilation, 384
Bitstream Compilation 385
XFLOW Option Files o o o i 386

Additional Settings 387
Re-Compiling EDK Processor Block Software Programs in Bitstreams 388

EDK Export Tool........ 389
Creating a Custom Bus Interface for Pcore Export....................... 390

Exportas Pcore to EDK 391

System Generator Ports as Top-Level Portsin EDK........................... 392

Supported Processors and Current Limitations 392

See AlsO: 392

Hardware Co-Simulation Compilation 393
Timing and Power Analysis Compilation................................... 393
Timing Analysis Concepts Review oo ool 395

Timing Analyzer Features i 396

Creating Compilation Targets 407
Defining New Compilation Targets o i .. 408

IndeX 413

System Generator for DSP User Guide www.xilinx.com

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Preface

About This Guide

This User Guide provides in-depth discussions on topics that are key to understanding
and using System Generator. In addition, examples and turorials are also provided that
extend beyond the scope of the System Generator Getting Started Guide.

Guide Contents

This User Guide contains information the following topics:
e Hardware Design using System Generator

e Hardware Software Co-Design

¢ Hardware Co-Simulation

¢ Importing HDL Modules

e System Generator Compilation Types

System Generator PDF Doc Set

This User Guide can be found in the System Generator Help system and is also part of the
System Generator Doc Set that is provided in PDF format. The content of the doc set is as
follows:

e System Generator for DSP Getting Started Guide
e System Generator for DSP User Guide

e System Generator for DSP Reference Guide

Note: Hyperlinks across these PDF documents work only when the PDF files reside in the same
folder. After clicking a Hyperlink in the Adobe Reader, you can return to the previous page by pressing
the Alt key and the left arrow key («) at the same time.

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support/ mysupport.htm.

System Generator for DSP User Guide www.xilinx.com 9
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com
http://www.xilinx.com/support/mysupport.htm

Preface: About This Guide & XILINX.

Conventions
This document uses the following conventions. An example illustrates each convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example

Courier font Messages, prompts, and speed grade: - 100
program files that the system
displays

Courier bold Literal commands that you ngdbuild design_name
enter in a syntactical statement

Helvetica bold Commands that you select from |File & Open
a menu
Keyboard shortcuts Ctrl+C

Italic font Variables in a syntax statement ngdbuild design_name
for which you must supply
values

References to other manuals |See the Development System
Reference Guide for more
information.

Emphasis in text If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets [] |Anoptional entry or parameter. ngdbuild [option name]
However, in bus specifications, |design name
such asbus [7:01], they are

required.
Braces { } A list of items from which you |lowpwr ={on|off}
must choose one or more
Vertical bar | Separates items in a list of lowpwr ={on|off}
choices
Vertical ellipsis Repetitive material that has IOB #1: Name = QOUT’
been omitted IOB #2: Name = CLKIN'
Horizontal ellipsis ... |Repetitive material that has allow block block_name locl
been omitted loc2 ... locn;

Online Document

The following conventions are used in this document:

10 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Conventions

Convention

Meaning or Use

Example

Blue text

Cross-reference link to a
location in the current
document

See the topic “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text

Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text

Hyperlink to a website (URL)

Go to http://www.xilinx.com
for the latest speed files.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

11

http://www.xilinx.com

Preface: About This Guide & XILINX.

12 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Chapter 1

Hardware Design Using System
Generator

System Generator is a system-level modeling tool that facilitates FPGA hardware design. It
extends Simulink in many ways to provide a modeling environment that is well suited to
hardware design. The tool provides high-level abstractions that are automatically
compiled into an FPGA at the push of a button. The tool also provides access to underlying
FPGA resources through low-level abstractions, allowing the construction of highly

efficient FPGA designs.

A Brief Introduction to FPGAs

Design Flows using System
Generator

System-Level Modeling in
System Generator

Automatic Code Generation

Compiling MATLAB into an
FPGA

Importing a System Generator
Design into a Bigger System

Configurable Subsystems and
System Generator

Provides background on FPGAs, and discusses
compilation, programming, and architectural
considerations in the context of System Generator.

Describes several settings in which constructing
designs in System Generator is useful.

Discusses System Generator's ability to implement
device-specific hardware designs directly from a
flexible, high-level, system modeling environment.

Discusses automatic code generation for System
Generator designs.

Describes how to use a subset of the MATLAB
programming language to write functions that
describe state machines and arithmetic operators.
Functions written in this way can be attached to
blocks in System Generator and can be automatically
compiled into equivalent HDL.

Discusses how to take the VHDL netlist from a System
Generator design and synthesize it in order to embed
itinto a larger design. Also shows how VHDL created
by System Generator can be incorporated into a
simulation model of the overall system.

Explains how to use configurable subsystems in
System Generator. Describes common tasks such as
defining configurable subsystems, deleting and
adding blocks, and using configurable subsystems to
import compilation results into System Generator
designs.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

13

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Notes for Higher Performance
FPGA Design

Processing a System Generator
Design with FPGA Physical
Design Tools

Resetting Auto-Generated Clock
Enable Logic

Design Styles for the DSP48

Using FDATool in Digital Filter
Applications

Generating Multiple Cycle-True
Islands for Distinct Clocks

Using ChipScope Pro Analyzer
for Real-Time Hardware
Debugging

AXI Interface

A Brief Introduction to FPGAs

A field programmable gate array (FPGA) is a general-purpose integrated circuit that is
“programmed” by the designer rather than the device manufacturer. Unlike an

Suggests design practices in System Generator that
lead to an efficient and high-performance
implementation in an FPGA.

Describes how to take the low-level HDL produced by
System Generator and use it in tools like Xilinx's
Project Navigator, ModelSim, and Synplicity's
Synplify.

Describes the behavior of rate changing blocks from
the System Generator library when the ce_clrsignal
is used for re-synchronization.

Describes three ways to implement and configure a
DSP48 (Xtreme DSP Slice) in System Generator

Demonstrates one way to specify, implement and
simulate a FIR filter using the FDATool block.

Describes how to implement multi-clock designs in
System Generator

Demonstrates how to connect and use the Xilinx
Debug Tool called ChipScope™ Pro within System
Generator

Provides an introduction to AMBA AXI4 and
draws attention to AMBA AXI4 details with
respect to System Generator.

application-specific integrated circuit (ASIC), which can perform a similar function in an
electronic system, an FPGA can be reprogrammed, even after it has been deployed into a
system.

An FPGA is programmed by downloading a configuration program called a bitstream into
static on-chip random-access memory. Much like the object code for a microprocessor, this
bitstream is the product of compilation tools that translate the high-level abstractions
produced by a designer into something equivalent but low-level and executable. Xilinx
System Generator pioneered the idea of compiling an FPGA program from a high-level
Simulink model.

An FPGA provides you with a two-dimensional array of configurable resources that can
implement a wide range of arithmetic and logic functions. These resources include
dedicated DSP blocks, multipliers, dual port memories, lookup tables (LUTs), registers, tri-
state buffers, multiplexers, and digital clock managers. In addition, Xilinx FPGAs contain
sophisticated I/O mechanisms that can handle a wide range of bandwidth and voltage
requirements. The Virtex®-4 FPGAs include embedded microcontrollers (IBM PowerPC®
405), and multi-gigabit serial transceivers. The compute and I/O resources are linked
under the control of the bitstream by a programmable interconnect architecture that allows
them to be wired together into systems.

FPGAs are high performance data processing devices. DSP performance is derived from
the FPGA’s ability to construct highly parallel architectures for processing data. In contrast
with a microprocessor or DSP processor, where performance is tied to the clock rate at

14

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

A Brief Introduction to FPGAs

which the processor can run, FPGA performance is tied to the amount of parallelism that
can be brought to bear in the algorithms that make up a signal processing system. A
combination of increasingly high system clock rates (current system frequencies of 100-200
MHz are common today) and a highly-distributed memory architecture gives the system
designer an ability to exploit parallelism in DSP (and other) applications that operate on
data streams. For example, the raw memory bandwidth of a large FPGA running at a clock
rate of 150 MHz can be hundreds of terabytes per second.

There are many DSP applications (e.g., digital up/down converters) that can be
implemented only in custom integrated circuits (ICs) or in an FPGA; a von Neumann
processor lacks both the compute capability and the memory bandwidth required.
Advantages of using an FPGA include significantly lower non-recurring engineering costs
than those associated with a custom IC (FPGAs are commercial off-the-shelf devices),
shorter time to market, and the configurability of an FPGA, which allows a design to be
modified, even after deployment in an end application.

When working in System Generator, it is important to keep in mind that an FPGA has
many degrees of freedom in implementing signal processing functions. You have, for
example, the freedom to define data path widths throughout your system and to employ
many individual data processors (e.g., multiply-accumulate engines), depending on
system requirements. System Generator provides abstractions that allow you to design for
an FPGA largely by thinking about the algorithm you want to implement. However, the
more you know about the underlying FPGA, the more likely you are to exploit the unique
capabilities an FPGA provides in achieving high performance.

The remainder of this topicis a brief introduction to some of the logic resources available in
the FPGA, so that you gain some appreciation for the abstractions provided in System
Generator.

»
=
E;
B
[

i (e

e

The figure above shows a physical view of a Virtex®-4 FPGA. To a signal DSP engineer, an
FPGA can be thought of as a 2-D array of logic slices striped with columns of hard macro
blocks (block memory and arithmetic blocks) suitable for implementing DSP functions,
embedded within a configurable interconnect mesh. In a Virtex®-4 FPGA, the DSP blocks
(shown in the next figure) can run in excess of 450 MHz, and are pitch-matched to dual
port memory blocks (BRAMs) whose ports can be configured to a wide range of word sizes
(18 Kb total per BRAM). The Virtex®-4 SX55 device contains 512 such DSP blocks and
BRAMSs. In System Generator, you can access all of these resources through arithmetic and

System Generator for DSP User Guide www.xilinx.com 15
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

logic abstractions to build very high performance digital filters, FFTs, and other arithmetic
and signal processing functions.

ECOUT PCOUT
18]

’J
AD-4 0 = 5; ¥ oo
1=
[y) -
L I m ~}p
Jr [i 4
n
D,,.EEI }:I:] ERO # U8
4=

-

I+

Wira 3Hf Right By 17k

BIGIN POIN

While the multiply-accumulate function supported by a Virtex®-4 DSP block is familiar to
a DSP engineer, it is instructive to take a closer look at the Virtex® FPGA family logic slice
(shown below), which is the fundamental unit of the logic fabric array.

\
™
RAM 15 i 3y ORCY
\-'\.

N " . MUXFx D
'.|5RL1E

[t Peguir

.

Ramig | ™
'S
a L . MUXFs5

\\ . =
SRL1d
- 5 Fegistan
s L ateh
[} rithmetic Logic

Each logic slice contains two 4-input lookup tables (LUTs), two configurable D-flip flops,
multiplexers, dedicated carry logic, and gates used for creating slice-based multipliers.
Each LUT can implement an arbitrary 4-input Boolean function. Coupled with dedicated
logic for implementing fast carry circuits, the LUTs can also be used to build fast
adder/subtractors and multipliers of essentially any word size. In addition to
implementing Boolean functions, each LUT can also be configured as a 16x1 bit RAM or as
a shift register (SRL16). An SRL16 shift register is a synchronously clocked 16x1 bit delay
line with a dynamically addressable tap point.

In System Generator, these different memory options are represented with higher-level
abstractions. Instead of providing a D-flip flop primitive, System Generator provides a
register of arbitrary size. There are two blocks that provide abstractions of arbitrary
width, arbitrary depth delay lines that map directly onto the SRL16 configuration. The
delay block can be used for pipeline balancing, and can also be used as storage for time-

16

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

A Brief Introduction to FPGAs

division multiplexed (TDM) data streams. The addressable shift register (ASR) block,
with a function depicted in the figure below, provides an arbitrary width, arbitrary depth
tapped delay line. This block is of particular interest to the DSP engineer, since it can be
used to implement tapped delay lines as well as sweeping through TDM data streams.

T e = L

T

Address A\ /
o o

Although random access memories can be constructed either out of the BRAM or LUT
(RAM16x1) primitives, doing so can require considerable care to ensure most efficient
mappings, and considerable clerical attention to detail to correctly assemble the primitives
into larger structures. System Generator removes the need for such tasks.

For example, the dual port RAM (DPRAM) block shown in the figure below maps
efficiently onto as many BRAM or RAM16x1 components on the device as are necessary to
implement the desired memory. As can be seen from the mask dialog box for the DPRAM,
the interface allows you to specify a type of memory (BRAM or RAM16x1), depth (data
width is inferred from the Simulink signal driving a particular input port), initial memory
contents, and other characteristics.

eDud Port RAM (Glinx Dual Port Random Access Me... [M[=] E3

Basic I Advanced I Implememﬁtionl

Depth | 16]
Initial value vector I sin(pi*(0:15)/16)
Memory Type:

" Distributed memory % Block RAM
addm=

A Initizl walue for port 2 outputregister | 0
dina

Initial|walue for port B output register ID
wea

—Optional Ports

addrb
[~ Provide synchronous reset port for port & output register

dinb B
weh ™ Provide synchronous reset port for port B output register
Cual Port RAM

™ Provide enable port for port 2

[~ Provide enable port for port B

Latency I 1

Ok | Cancel | Help | Apply |

In general, System Generator maps abstractions onto device primitives efficiently, freeing
you from worrying about interconnections between the primitives. System Generator
employs libraries of intellectual property (IP) when appropriate to provide efficient
implementations of functions in the block libraries. In this way, you don’t always have to
have detailed knowledge of the underlying FPGA details. However, when it makes sense
to implement an algorithm using basic functions (e.g., adder, register, memory), System

System Generator for DSP User Guide www.xilinx.com 17
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Generator allows you to exploit your FPGA knowledge while reducing the clerical tasks of
managing all signals explicitly.

System Generator library blocks and the mapping from Simulink to hardware are
described in detail in subsequent topics of this documentation. There is a wealth of
detailed information about FPGAs that can be found online at http://support.xilinx.com,
including data books, application notes, white papers, and technical articles.

Note to the DSP Engineer

System Generator extends Simulink to enable hardware design, providing high-level
abstractions that can be automatically compiled into an FPGA. Although the arithmetic
abstractions are suitable to Simulink (discrete time and space dynamical system
simulation), System Generator also provides access to features in the underlying FPGA.

The more you know about a hardware realization (e.g., how to exploit parallelism and
pipelining), the better the implementation you’ll obtain. Using IP cores makes it possible to
have efficient FPGA designs that include complex functions like FFTs. System Generator
also makes it possible to refine a model to more accurately fit the application.

Scattered throughout the System Generator documentation are notes that explain ways in
which system parameters can be used to exploit hardware capabilities.

Note to the Hardware Engineer

System Generator does not replace hardware description language (HDL)-based design,
but does makes it possible to focus your attention only on the critical parts. By analogy,
most DSP programmers do not program exclusively in assembler; they start in a higher-
level language like C, and write assembly code only where it is required to meet
performance requirements.

A good rule of thumb is this: in the parts of the design where you must manage internal
hardware clocks (e.g., using the DDR or phased clocking), you should implement using
HDL. The less critical portions of the design can be implemented in System Generator, and
then the HDL and System Generator portions can be connected. Usually, most portions of
a signal processing system do not need this level of control, except at external interfaces.
System Generator provides mechanisms to import HDL code into a design (see Importing
HDL Modules) that are of particular interest to the HDL designer.

Another aspect of System Generator that is of interest to the engineer who designs using
HDL is its ability to automatically generate an HDL testbench, including test vectors. This
aspect is described in the topic HDL Testbench.

Finally, the hardware co-simulation interfaces described in the topic Using Hardware Co-
Simulation allow you to run a design in hardware under the control of Simulink, bringing
the full power of MATLAB and Simulink to bear for data analysis and visualization.

Design Flows using System Generator

System Generator can be useful in many settings. Sometimes you may want to explore an
algorithm without translating the design into hardware. Other times you might plan to use
a System Generator design as part of something bigger. A third possibility is that a System
Generator design is complete in its own right, and is to be used in FPGA hardware. This
topic describes all three possibilities.

18

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://support.xilinx.com
http://www.xilinx.com

& XILINX.

Design Flows using System Generator

Algorithm Exploration

System Generator is particularly useful for algorithm exploration, design prototyping, and
model analysis. When these are the goals, you can use the tool to flesh out an algorithm in
order to get a feel for the design problems that are likely to be faced, and perhaps to
estimate the cost and performance of an implementation in hardware. The work is
preparatory, and there is little need to translate the design into hardware.

In this setting, you assemble key portions of the design without worrying about fine points
or detailed implementation. Simulink blocks and MATLAB M-code provide stimuli for
simulations, and for analyzing results. Resource estimation gives a rough idea of the cost
of the design in hardware. Experiments using hardware generation can suggest the
hardware speeds that are possible.

Once a promising approach has been identified, the design can be fleshed out. System
Generator allows refinements to be done in steps, so some portions of the design can be
made ready for implementation in hardware, while others remain high-level and abstract.
System Generator's facilities for hardware co-simulation are particularly useful when
portions of a design are being refined.

Implementing Part of a Larger Design

Often System Generator is used to implement a portion of a larger design. For example,
System Generator is a good setting in which to implement data paths and control, but is
less well suited for sophisticated external interfaces that have strict timing requirements. In
this case, it may be useful to implement parts of the design using System Generator,
implement other parts outside, and then combine the parts into a working whole.

A typical approach to this flow is to create an HDL wrapper that represents the entire
design, and to use the System Generator portion as a component. The non-System
Generator portions of the design can also be components in the wrapper, or can be
instantiated directly in the wrapper.

Implementing a Complete Design

Many times, everything needed for a design is available inside System Generator. For such
a design, pressing the Generate button instructs System Generator to translate the design
into HDL, and to write the files needed to process the HDL using downstream tools. The
files written include the following:

e HDL that implements the design itself;

¢ A clock wrapper that encloses the design. This clock wrapper produces the clock and
clock enable signals that the design needs.

e A HDL testbench that encloses the clock wrapper. The testbench allows results from
Simulink simulations to be compared against ones produced by a logic simulator.

e Project files and scripts that allow various synthesis tools, such as XST and Synplify
Pro to operate on System Generator HDL

o Files that allow the System Generator HDL to be used as a project in Project
Navigator.

For details concerning the files that System Generator writes, see the topic Compilation
Results.

System Generator for DSP User Guide www.xilinx.com 19
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

System-Level Modeling in System Generator

System Generator allows device-specific hardware designs to be constructed directly in a
flexible high-level system modeling environment. In a System Generator design, signals
are not just bits. They can be signed and unsigned fixed-point numbers, and changes to the
design automatically translate into appropriate changes in signal types. Blocks are not just
stand-ins for hardware. They respond to their surroundings, automatically adjusting the
results they produce and the hardware they become.

System Generator allows designs to be composed from a variety of ingredients. Data flow
models, traditional hardware design languages (VHDL, Verilog, and EDIF), and functions
derived from the MATLAB programming language, can be used side-by-side, simulated
together, and synthesized into working hardware. System Generator simulation results are
bit and cycle-accurate. This means results seen in simulation exactly match the results that
are seen in hardware. System Generator simulations are considerably faster than those
from traditional HDL simulators, and results are easier to analyze.

System Generator Blocksets Describes how System Generator's blocks are
organized in libraries, and how the blocks can be
parameterized and used.

Signal Types Describes the data types used by System Generator
and ways in which data types can be automatically
assigned by the tool.

Bit-True and Cycle-True Specifies the relationship between the Simulink-based

Modeling simulation of a System Generator model and the
behavior of the hardware that can be generated from
it.

Timing and Clocking Describes how clocks are implemented in hardware,

and how their implementation is controlled inside
System Generator. Explains how System Generator
translates a multirate Simulink model into working
clock-synchronous hardware.

Synchronization Mechanisms Describes mechanisms that can be used to
synchronize data flow across the data path elements
in a high-level System Generator design, and
describes how control path functions can be

implemented.
Block Masks and Parameter Explains how parameterized systems and subsystems
Passing are created in Simulink.
Resource Estimation Describes how to generate estimates of the hardware

needed to implement a System Generator design.

20 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. System-Level Modeling in System Generator

System Generator Blocksets

A Simulink blockset is a library of blocks that can be connected in the Simulink block editor
to create functional models of a dynamical system. For system modeling, System
Generator blocksets are used like other Simulink blocksets. The blocks provide
abstractions of mathematical, logic, memory, and DSP functions that can be used to build
sophisticated signal processing (and other) systems. There are also blocks that provide
interfaces to other software tools (e.g., FDATool, ModelSim) as well as the System
Generator code generation software.

=M@l ¥iinz Blockset
3] Basic Elements
3 communicatian
3] contrd Lok
B Daka Types
B pep
B Irdew
] Math
*H Memory 2 £ =
] shared Memory [— —
B Taals e :": =

System Generator blocks are bit-accurate and cycle-accurate. Bit-accurate blocks produce
values in Simulink that match corresponding values produced in hardware; cycle-accurate
blocks produce corresponding values at corresponding times.

System Generator for DSP User Guide www.xilinx.com 21
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Xilinx Blockset

The Xilinx Blockset is a family of libraries that contain basic System Generator blocks.
Some blocks are low-level, providing access to device-specific hardware. Others are high-
level, implementing (for example) signal processing and advanced communications
algorithms. For convenience, blocks with broad applicability (e.g., the Gateway I/O
blocks) are members of several libraries. Every block is contained in the Index library. The
libraries are described below.

Library Description

Index Every block in the Xilinx Blockset.

Basic Elements ElementsStandard building blocks for digital logic

Communication Forward error correction and modulator blocks, commonly used in
digital communications systems

Control Logic Blocks for control circuitry and state machines

Data Types Blocks that convert data types (includes gateways)

DSP Digital signal processing (DSP) blocks

Math Blocks that implement mathematical functions

Memory Blocks that implement and access memories

Shared Memory Blocks that implement and access Xilinx shared memories

Tools “Utility” blocks, e.g., code generation (System Generator token),
resource estimation, HDL co-simulation, etc

Note: More information concerning blocks can be found in the topic Xilinx Blockset.

Xilinx Reference Blockset

The Xilinx Reference Blockset contains composite System Generator blocks that implement
a wide range of functions. Blocks in this blockset are organized by function into different
libraries. The libraries are described below.

Library Description

Communication Blocks commonly used in digital communications systems
Control Logic LogicBlocks used for control circuitry and state machines
DSP Digital signal processing (DSP) blocks

Imaging Image processing blocks

Math Blocks that implement mathematical functions

Each block in this blockset is a composite, i.e., is implemented as a masked subsystem, with
parameters that configure the block.

You can use blocks from the Reference Blockset libraries as is, or as starting points when
constructing designs that have similar characteristics. Each reference block has a

22

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. System-Level Modeling in System Generator

description of its implementation and hardware resource requirements. Individual
documentation for each block is also provided in the topic Xilinx Reference Blockset.

) Fumction Aleck Yarameters: Whits Gawslan daise Generator [5]

whis Bsnzun Hoca e jmak | fink

whalenm o Him Dermttod [irmsaley ndebs B inss o ramigisiond 4
bt il e B ulla slgration vl e Cend ol lewd Faesrs

Fuaraen

Sl
"z

Arwml podseb

O EE . T Pl omd A HUBRE REEG

‘White ¢anmsian
Haith Gasarsli

Addiai

Th WO poraaie-s wibe 081N NoiSa USing § CHmination of Tw Bowlulier Sgarhe andme Caniral Limd Thecesm
Foliraing B QRN SOaSR BEsled i |, The Do Bl MgSrmem Chshrisid § wrl Sl rifdim virkSh vl §
FANSETMGN Of W0 INRBending (ansom vanabie) Sl s erabmily Sisiitaed owe [3,1] This i acoemplisied Dysiorisg
[[B ol rebarm mpradgen vinsblay T umdaren rgfaneanakine s
e Dy Mgl BE A iotwasd PSR A sibkdaed LFER geratBli-D Of OUID [T 200 b KB eap-onwasd LF 3RS
e 340 I gerarale kot 2 Engle ot Forenamgle, 3 B3 kea-toreard LFER oulbuls 3 0850rme undem easdom
ARG BEAEEN Ar 15 & pirson o B S5 BBCK SMBMET Soid N Mer aich LFIR siomies) cralomeasan. The
taApEs o A pariibel B Ml obiysieme ane araged B0 oilain aprobakily denssdy fenchon (POFIEa] isOausaian

Thin e i bl Wt BRI i 13 i bl Thi i bl ol o 1 3 10 sl s P B, W B bty
painl

1] A Bhaze| E. BosSion,). L Cumger, 6. Gulik andH. Lawmnas,"Design and Perioanande Asalyss of 3
g B AAOH Camnuni s Chanosl Erulier IELE PACRIM Confitrirds. Viclars, I C . kg 3401

Faady % ade|

Signal Types

In order to provide bit-accurate simulation of hardware, System Generator blocks operate
on Boolean and arbitrary precision fixed-point values. By contrast, the fundamental scalar
signal type in Simulink is double precision floating point. The connection between Xilinx
blocks and non-Xilinx blocks is provided by gateway blocks. The gateway in converts a
double precision signal into a Xilinx signal, and the gateway out converts a Xilinx signal into
double precision. Simulink continuous time signals must be sampled by the Gateway In
block.

Most Xilinx blocks are polymorphic, i.e., they are able to deduce appropriate output types
based on their input types. When full precision is specified for a block in its parameters
dialog box, System Generator chooses the output type to ensure no precision is lost. Sign
extension and zero padding occur automatically as necessary. User-specified precision is
usually also available. This allows you to set the output type for a block and to specify how
quantization and overflow should be handled. Quantization possibilities include unbiased
rounding towards plus or minus infinity, depending on sign, or truncation. Overflow
options include saturation, truncation, and reporting overflow as an error.

Note: System Generator data types can be displayed by selecting Format > Port Data Types in
Simulink. Displaying data types makes it easy to determine precision throughout a model. If, for
example, the type for a port is Fix_11_9, then the signal is a two's complement signed 11-bit number
having nine fractional bits. Similarly, if the type is Ufix_5_3, then the signal is an unsigned 5-bit
number having three fractional bits.

System Generator for DSP User Guide www.xilinx.com 23
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

In the System Generator portion of a Simulink model, every signal must be sampled.
Sample times may be inherited using Simulink's propagation rules, or set explicitly in a
block customization dialog box. When there are feedback loops, System Generator is
sometimes unable to deduce sample periods and/or signal types, in which case the tool
issues an error message. Assert blocks must be inserted into loops to address this problem.
It is not necessary to add assert blocks at every point in a loop; usually it suffices to add an
assert block at one point to “break” the loop.

Note: Simulink can display a model by shading blocks and signals that run at different rates with
different colors (Format > Sample Time Colors in the Simulink pulldown menus). This is often useful
in understanding multirate designs.

AXI Signal Groups

System Generator blocks found in the AXI4 library contain interfaces that conform to the
AXI™4 specification. Blocks with AXI interfaces are drawn such that ports relating to a
particular AXI interface are grouped and colored in similarly. This makes it easier to
identify data and control signals pertaining to the same interface. Grouping similar AXI
ports together also make it possible to use the Simulink Bus Creator and Simulink Bus
Selector blocks to connect groups of signals together. More information on AXI can be
found in the section entitled AXI Interface. For more detailed information on the AMBA
AXI4 specification, please refer to the Xilinx AMBA AXI4 documents found at the
following location: http://www.xilinx.com /ipcenter/axi4

Bit-True and Cycle-True Modeling

Simulations in System Generator are bit-true and cycle-true. To say a simulation is bit-true
means that at the boundaries (i.e., interfaces between System Generator blocks and non-
System Generator blocks), a value produced in simulation is bit-for-bit identical to the
corresponding value produced in hardware. To say a simulation is cycle-true means that at
the boundaries, corresponding values are produced at corresponding times. The
boundaries of the design are the points at which System Generator gateway blocks exist.
When a design is translated into hardware, Gateway In (respectively, Gateway Out) blocks
become top-level input (resp., output) ports.

Timing and Clocking

Discrete Time Systems

Designs in System Generator are discrete time systems. In other words, the signals and the
blocks that produce them have associated sample rates. A block’s sample rate determines
how often the block is awoken (allowing its state to be updated). System Generator sets
most sample rates automatically. A few blocks, however, set sample rates explicitly or
implicitly.

Note: For an in-depth explanation of Simulink discrete time systems and sample times, consult the
Using Simulink reference manual from the MathWorks, Inc.

24 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/ipcenter/axi4.

& XILINX. System-Level Modeling in System Generator

A simple System Generator model illustrates the behavior of discrete time systems.
Consider the model shown below. It contains a gateway that is driven by a Simulink source
(Sine Wave), and a second gateway that drives a Simulink sink (Scope).

&

Syslam
Generalor

’F\U p{n [outl—m

Gateway In Gateway Dut

Sine Wave Scope

The Gateway In block is configured with a sample period of one second. The Gateway Out
block converts the Xilinx fixed-point signal back to a double (so it can analyzed in the
Simulink scope), but does not alter sample rates. The scope output below shows the
unaltered and sampled versions of the sine wave.

SHE|CAPH ABE B A & -

Multirate Models

System Generator supports multirate designs, i.e., designs having signals running at
several sample rates. System Generator automatically compiles multirate models into
hardware. This allows multirate designs to be implemented in a way that is both natural
and straightforward in Simulink.

Rate-Changing Blocks

System Generator includes blocks that change sample rates. The most basic rate changers
are the Up Sample and Down Sample blocks. As shown in the figure below, these blocks
explicitly change the rate of a signal by a fixed multiple that is specified in the block’s
dialog box.

Sapng ik JusTier of O S fe) QL SETRE] D|

Other blocks (e.g., the Parallel To Serial and Serial To Parallel converters) change rates
implicitly in a way determined by block parameterization.

System Generator for DSP User Guide www.xilinx.com 25
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Consider the simple multirate example below. This model has two sample periods, SP1
and SP2. The Gateway In dialog box defines the sample period SP1. The Down Sample
block causes a rate change in the model, creating a new rate SP2 which is half as fast as SP1.

T ol ol S e

Gateway In Gatevway Ouk
Registeid

p. "y p. vy
hd hd

5P 5P2

Hardware Oversampling

Some System Generator blocks are oversampled, i.e., their internal processing is done at a
rate that is faster than their data rates. In hardware, this means that the block requires more
than one clock cycle to process a data sample. In Simulink such blocks do not have an
observable effect on sample rates.

One block that can be oversampled is the DAFIR FIR filter. An oversampled DAFIR
processes samples serially, thus running at a higher rate, but using less hardware.

Although blocks that are oversampled do not cause an explicit sample rate change in
Simulink, System Generator considers the internal block rate along with all other sample
rates when generating clocking logic for the hardware implementation. This means that
you must consider the internal processing rates of oversampled blocks when you specify
the Simulink system period value in the System Generator token dialog box.

Asynchronous Clocking

System Generator focuses on the design of hardware that is synchronous to a single clock.
It can, under some circumstances, be used to design systems that contain more than one
clock. This is possible provided the design can be partitioned into individual clock
domains with the exchange of information between domains being regulated by dual port
memories and FIFOs. System Generator fully supports such multi-clock designs, including
the ability to simulate them in Simulink and to generate complete hardware descriptions.
Details are discussed in the topic Generating Multiple Cycle-True Islands for Distinct
Clocks. The remainder of this topic focuses exclusively on the clock-synchronous aspects
of System Generator. This discussion is relevant to both single-clock and multiple-clock
designs.

26

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. System-Level Modeling in System Generator

Synchronous Clocking

As shown in the figure below, when you use the System Generator token to compile a
design into hardware, there are three clocking options for Multirate implementation: (1)
Clock Enables (the default), (2) Hybrid DCM-CE, and (3) Expose Clock Ports.

) System Generator: hybrid_dem_ce casel =
5 o~
1

000 7

Compilation Clocking General

FPGA clock period (ns): Clock pin location :

fe |

Multirate implementation : DCM input clock period (ns) @

Hybrid DCM-CE =l |1 0

Clock Enables
Expoze Clock Portz
Simulink system period (sec) :

|1fzu

The Clock Enables Option

When System Generator compiles a model into hardware with the Clock Enable option
selected, System Generator preserves the sample rate information of the design in such a
way that corresponding portions in hardware run at appropriate rates. In hardware,
System Generator generates related rates by using a single clock in conjunction with clock
enables, one enable per rate. The period of each clock enable is an integer multiple of the
period of the system clock.

Inside Simulink, neither clocks nor clock enables are required as explicit signals in a
System Generator design. When System Generator compiles a design into hardware, it
uses the sample rates in the design to deduce what clock enables are needed. To do this, it
employs two user-specified values from the System Generator token: the Simulink system
period and FPGA clock period. These numbers define the scaling factor between time in a
Simulink simulation, and time in the actual hardware implementation. The Simulink
system period must be the greatest common divisor (gcd) of the sample periods that
appear in the model, and the FPGA clock period is the period, in nanoseconds, of the
system clock. If p represents the Simulink system period, and c represents the FPGA
system clock period, then something that takes kp units of time in Simulink takes k ticks of
the system clock (hence kc nanoseconds) in hardware.

To illustrate this point, consider a model that has three Simulink sample periods 2, 3, and
4. The gcd of these sample periods is 1, and should be specified as such in the Simulink
System Period field for the model. Assume the FPGA Clock Period is specified to be 10ns.
With this information, the corresponding clock enable periods can be determined in
hardware.

In hardware, we refer to the clock enables corresponding to the Simulink sample periods 2,
3, and 4 as CE2, CE3, and CE4, respectively. The relationship of each clock enable period to
the system clock period can be determined by dividing the corresponding Simulink

sample period by the Simulink System Period value. Thus, the periods for CE2, CE3, and

System Generator for DSP User Guide www.xilinx.com 27
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

CE4 equal 2, 3, and 4 system clock periods, respectively. A timing diagram for the example
clock enable signals is shown below:

CE4 [1 [] []
CE3 [1 [1 [] []
CE2 - rr - r - r o r i

ssow — LUyl

The Hybrid DCM-CE Option

If the implementation target is an FPGA with a Digital Clock Manager (DCM), you can
choose to drive the clock tree with a DCM. The DCM option is desirable when high fanout
on clock enable nets make it difficult to achieve timing closure.

System Generator instantiates the DCM in a top-level HDL clock wrapper and configures
the DCM to provide up to three clock ports at different rates for Virtex®-4 and Virtex®-5 and
up to two clock ports for Spartan-3A DSP. If the design has more clock ports than the DCM
can support, the remaining clocks are supported with the CE (clock enable) configuration.
The mapping of rates to the DCM outputs is done according to the following priority
scheme:

CLKO > CLK2x > CLKdv > CLKfx. The DCM supports the higher clock rates first.

A dcm_reset input port is exposed on the top-level wrapper to allow the external design
to reset the DCM after bitstream configuration. A dcm_locked output port is also exposed
to help the external design synchronize the input data with the single c1k input port.

Known Limitations: The following System Generator blocks are not supported by the
Hybrid DCM-CE Option:

¢ Clock Enable Probe

e Clock Probe

e DAFIR

¢ Downsample - when the Sample option First value of the frame is selected

¢ FIR Compiler - when the core rate is not equal to the input sample rate

e Parallel to Serial- when the Latency option is specified as 0 (zero)

¢ Time Division De-Multiplexer

¢ Time Division Multiplexer

e Upsample - when the Copy samples (otherwise zeros are inserted) option is not
selected.

The Expose Clock Ports Option

When you select this option, System Generator creates a top-level wrapper that exposes a
clock port for each rate. You can then manually instantiate a clock generator outside the
design to drive the clock ports.

Known Limitations: The following System Generator blocks are not supported by the
Expose Clock Ports Option:

e (Clock Enable Probe
e Clock Probe
e DAFIR

28

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

System-Level Modeling in System Generator

Downsample - when the Sample option First value of the frame is selected
FIR Compiler - when the core rate is not equal to the input sample rate
Parallel to Serial- when the Latency option is specified as 0 (zero)

Time Division De-Multiplexer

Time Division Multiplexer

Upsample - when the Copy samples (otherwise zeros are inserted) option is not
selected.

Tutorial Example: Using the Hybrid DCM-CE Option

The following step-by-step example will show you how to select the Hybrid DCM-CE
option, netlist the HDL design, implement the design in ISE®, simulate the design and
examine the files and reports to verify that the DCM is properly instantiated and
configured.

The hybrid_dcm_ce_casel.mdl design example is located at the following pathname
..<ISE Design Suite tree>/sysgen>/examples/clocking options/hybri
d dcm ce casel/hybrid dcm ce casel.mdl

1.

Open the model in MATLAB and observe the following blocks:

Addressable Shift Register (ASR): used to implement the input delay buffer. The
address port runs n times faster than the data port, where n is the number of the filter
taps (5 for this example)

Coefficient ROM: used to store the filter coefficients
Counter: used to generate addresses for the ROM and ASR

Comparator: used to generate the reset and enable signals

System Generator for DSP User Guide www.xilinx.com 29

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

e MAC Engine: used as a Multiply-Accumulator operator for the filter

Demonstration on Using the Hybrid DCM-CE Clocking Option

Ed 8

i i 9 System
Din in_reg Py Y
Step | sddr a_reg Genarator

ASR ,l.‘ [| Doutd

t 5 outh

= Down SampIE out_reg5

1oy g <. : I i = out
z qp—t B Dout2

— b_reg st - o S et out_reg4 Dout4

Counter Cocfficient — own Sample
ROM s Capture =

Engine Register er m Doutz

= 23 - out_reg3 Dout3

El+ Z=b Down Sample2
b
2 =

Out 5

out_reg2 Dout2

_ . Double click e D e B out

(c) Copyright _1995—20‘11 Hilinx, Inc. for Systemn Generator Up Sample2 out_reg1 Dout1

#— Al rights reserved. documentation on this example.
Double Click for Copyright Motice

ping [=7 | Out |——

Up Sample out_reg Dout

>

Scope

| This subsystemn implements 8 multiply-accumulate engine. I

S 2

a “axh b

b +=b
@ hult P a

rst

Accumulator

2. Double-click on the System Generator token to bring up the following dialog box:

)} System Generator- hybrid_dcm_ce_casel = [T x|
g o~
1
000 7
Compilation Clocking General
FPGA clock period (ns) : Clock pin location :
10 |
Multirate implementation : DCM input clock period (ns) @
Hybrid DCIM-CE =l |1 0

Clock Enables

Expose Clock Ports

Simulink system period [sec) :

1/20

30 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

System-Level Modeling in System Generator

As shown, click on the the Clocking tab, select Hybrid DCM-CE, then click Generate.
After a few moments, a sub-directory named hdl_netlist_dcm is created in the current
working directory containing the generated files.

3. In the MATLAB Current Directory window, double-click on the file
hybrid_dcm_ce casel sysgen.log. As shown below, the DCM clocks are listed
first (highest rates first), followed by the CE driven clocks.

DCH Clock Outputs

DCH Ouzput Used Frecquency

1 CLEO 100.Cooc
2 CLEFX 50.Cooc
4 CLEDWV z5.CoOoc
=1 {CLADV, ue_8) 1z . E00C
z0 (CLEDV, e 2 S.Cooc
40 [CLEDWV, ce_i0]) Z.Eooc

4. Launch ISE, then load the ISE project at pathname
./hdl netlist dcm/hybrid dcm ce casel dcm mcw.ise

Under the Project Navigator Processes view, double-click on Implement Design.

From the Project Navigator Design Sources Hierarchy view, do the following:

a.

580
581
582
583
554
585
586
587
588
589
590
591
592
593

Double-click on the file hybrid dem ce casel dem mcw.vhd, then scroll
down to view the DCM component declaration as shown below by the VHDL
code snippet:

component DCHM ADWV

generic |
CLEDYV_DIVIDE: real := 4.0;
CLEFZ_MOLTIFPLY: integer := 2:
CLEFX DIVIDE: integer := #;

i

DF3_FREQUENCY MODE: string := "LOW":
DLL_FREQUENCY MODE: string := "LOW":
CLEIN PERIOD: real := 10.0;

CLEIN_DIVIDE EY 2: hoolean := false:
CLECOUT_PHASE SHIFT: string := "HCHE™;

CLE _FEEDBACK: string := "1x";
PHASE SHIFT: integer := 0O;
SIM DEVICE: string := "WVIRTEXS"

b. Observe that System Generator automatically infers and instantiates the DCM
instance and its parameters according to the required clock outputs.

C

Close

the VHDL file.

Next, you are going to examine the clock propagation by examining the ISE timing report.
First, you must generate the report.

7. Open the following folder: Processes view > Implement Design > Place & Route >
Generate Post-Place & Route Static Timing

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

www.xilinx.com 31

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

8. Double -click on Analyze Post-Place & Route Static Timing and you should see the
information in the figure below:

Design +048 X Repott Mavigation | Detived Constraint Report £
[[] |View: o«]:F:EE Implementation ~ M Simulation L | o Timing report description ﬂDerived Canstraints far TS_clk_F02113be
. - Timing summary
(5] | Hizrarchy c, -
- - - Informational messages

EIE -- fﬂ hybrid_dcm_ce_casel_dom_mcw - Warning messages

—|=E3 xc5\-'.s><50t-1.FF1136 : [} Timing constraints

-3 .. @ﬁhﬁ bh};bréd_dcm_ce_c?seLl_dcm_mcw - structural (hybrid, B3 T5_clk_F0. HIGH 50%;

£|T ----- wbrid_dcm_ce_casel.m - Setup paths

= Hold paths

[Componen...g limits

[TS_ce_20_f. p" 200 ns;
[} TS_ce_40_f. p" 400 ns;
- [#-TS_ce_8_f0..up" 80 ns;
F] I _,I 75 _re 20 F.p" 200 ns; Derived Constraint Report
— - T5_ce_20_f..up" 40 ns; Derived Constraints for T3 clk £02113be

g | B2 MoProcesses Running - T5_ce_40_f..p" 200 ns; o Fmmmmmmm - +

o - = - T5_ce_40_f..up" 80 ns; | | Period |

Eirq: Plrocesses: heybrid_der_ce_casel_dem_mew - struckural I_I TS _ce_B_F0._up" 40 ns; | Cometraint | Deoquirement |

2 - B Ly Synthesize - XST T5_ce_B fo.up"8dns; | | | I

| = Ly Implement Design [T5_clock. . HIGH 50%; Fom e tommmm e +

:]: - B Ly Translate [T5_clocka. HIGH 50%; ITS_clk_£0211l3be | L10.000ns|

— - P Map [T5_clocka. . HIGH 50%; | T&_rclockGen _dem_inst_CLEOD I 10.000ns|

_ E E)L\. Flace & Route E}- Derived Constraint Report | T3 clockGen dcom_inst_CLEDV | 40 . 000ns |

- B2 1Y Generate Post-Place & Route Static Timing 113be I TS_clockGen_dem_inst CLEFX I Z0.000ns|
Analyze Post-Place & Rouke Static Tim... - Constraint compliance Fommmmmmmmmmmmmom s L *
P2 Generate Primetime Metlist 7 Data shest report)
- Analyze Timing J Floorplan Design (Plandh.. - Trace setkings 41l constraints wers uet.
B view/Edt Reuted Desian (FPGA Editor)

E Start E2 Design | Iu_"| Files I E Libraries | 1 ‘ hwbrid_dcm_ce_casel_dem_mcw, vhd | @ heebrid_dcm_ce_casel_dom_mow, be @J 4
This design is comprised of six clock rates -1, 2, 4, 8, 20, 40 with respect to the 10 ns
global clock constraint. The timing report validates the correct clock generation and
propagation by System Generator as follows:
¢ DCM-based clocks: clk_1 (CLKO ->10ns), clk_2 (CLKFEX ->20 ns) , clk_4 (CLKDIV

->40 ns) generated by the DCM based on the 10 ns global clock input
¢ Clock Enable-based clocks: ce_8 (80 ns), ce_20 (200 ns), ce_40 (400 ns) generated
by clock enables based on the clk_4 clock input
Next you want to perform a behavior simulation using the ModelSim.
9. As shown in the following figure, move to the Sources for dialog box in the Sources
window, then select Behavioral Simulation
32 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

System-Level Modeling in System Generator

Note: System Generator automatically creates the top-wrapper VHDL testbench, script file and

input/output stimulus data files. The Processes tab changes and displays according to the

Sources type being selected.

Design +0O g8 x l

&l
HEJ Hierarchy
3'3:

— E}- m hybrid_dem_ce_casel_dem_meow_th - structural (hvbrid_der_c

Ei Viems: £ Il':&lmplementation {* A Sirmulation

|

Behavioral

1. Select

-- "‘ﬂ hybrid_dcm_ce_casel_dcm_mow
| B £ wcSwsxGe-1FF1136

clk_driver - xlclk - behaviar (hvbrid_dem_ce_casel_dcm_mm
clk_driver_x0 - xlclk - behavior (hybrid_decm_ce_casel_dem
clksource_gated - xlclksource_agated - behavior (heybrid_do
din_driver - xlthsource - behavior (hvbrid_dem_ce_casel ¢

doutl_lnad - xltbsink - behavior (hybrid_decm_ce_casel_dc
I Araib? lnad - wlbhaink - hﬂh.awinr rhwheid drra me r=:=1_drlll
A

2. Double Click
f2 MaProcesses Running

Processes; hvbrid_dcm_ce_casel _den_mow_th - structural |

----- M Simulate Behavioral Model

4
o
é,-t B- ﬁ ~ Modelsim Simultor ’
=i

in the Processes window

11. After the simulation is finished, you should be able to observe the simulation

waveforms as shown in the figure below:

Transcripk

- Ipnored: 00,0%:) Don't Cares

Test completed with no ervars,

*

** Simulakion summary For instance hybrid_dcm_ce_casel_doukd:
Samples Processed: 20

* - Checked: 20{100.0%:)

#* - Ipnored: 0(0.0%) Don't Cares
Test completed with no errars,

#

** Simulation summary For instance hybrid_dcm_ce_casel_doutS:
Samples Processed: 50

- Checked: S0 (100.0%)

- Ignored: 00, 0%:) Don't Cares

Test completed with no errars,

*
** Sirulation surmary For instance hybrid_derm_ce_casel_douk:
Samples Processed: 400
- Checked: 400 {100.0%:)
- Ipnored: 00,0%:) Don't Cares
Test completad with no errars,

All DCM clocks are included in the top-level wrapper testbench file
(hybrid_dcm_ce_casel_dcm_mcw_tb.vhd) — clk_1, clk_2 and clk_4.

Summary

10. Simulate the design, as shown above, by double-click on Simulate Behavioral Model

System Generator for DSP User Guide www.xilinx.com
UG640 (v 13.1) March 1, 2011

33

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

L]

Step

&

Systam
Generator

Din

When you select the Hybrid DCM-CE option, System Generator automatically infers and
instantiates a DCM without further manual intervention. In addition, the tool intelligently
generates different clock rates by using a combination of DCM and CE clock generation
algorithms and by assigning appropriate clock rates to either the DCM or CE in order to
obtain optimal Quality of Results and low power consumption. You do not have to set
attributes or specify DCM clock outputs. You should expect minimal clock skew when
selecting the Hybrid DCM-CE option compared to the Clock Enables option alone.

Tutorial Example: Using the Expose Clock Ports Option

The following step-by-step example will show you how to select the Expose Clock Ports
option, netlist the HDL design, implement the design in ISE, simulate the design, then
examine the files and reports to verify the design.

The expose_clock_ports_casel design example is located at the following pathname
<ISE Design_ Suite tree>/sysgen>/examples/clocking options/expose c
lock ports casel/expose clock ports casel.mdl

1. Open the model in MATLAB and observe the following blocks:

e Addressable Shift Register (ASR): used to implement the input delay buffer. The
address port runs n times faster than the data port, where n is the number of the filter
taps (5 for this example)

e Coefficient ROM: used to store the filter coefficients
e Counter: used to generate addresses for the ROM and ASR
e Comparator: used to generate the reset and enable signals

e MAC Engine: used as a Multiply-Accumulator operator for the filter

Demonstration on Using the Expose Clock Port Option

@
z
; &
In_reg | addr

5_r=g

ASR
a

[++] plaoort —wl—we 3| —pd »

= o —»f § —eE—pui—s]

| - 5
Counter Cosfficient il put_reg Dout

Scope
Capture

Register

rst
ROM MAC
Engine
ez -3
>
Zzp—w
[ob+e -

| This subsystem implements a multiply-accumulate engine. I

Double click

() Copyright 1985-2011 Xilinx, Inc.
#— All rights reserved.

Double Click for Copyright Motice

for System Generator
documentation on this example.

— o o

int_reg

hb_@

Mult

Pl

q

rst

e 15t

Accumulator

34

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

System-Level Modeling in System Generator

2. Double-click on the System Generator token to bring up the following dialog box:

) System Generator: expose_clock_ports_casel

= (0] %]

)
1

&)

@/

000
Compilation Clocking General
FPGA clock period (ng): Clock pin location :

10

Multirate implementation :

DCM input clock period (ns) @

Expose Clock Ports

=l |1|3

Simulink system period (sec) :

Clock Enables
Hybrid DCM-CE
Expose Clock Ports

|1x5

As shown above, click on the Clocking tab, select Expose Clock Ports, then click Generate.
After a few moments, a sub-directory named hdl_netlist is created in the current working
directory containing the generated files.

3. Launch ISE, then load the ISE project at pathname
./hdl netlist/expose_clock ports casel mcw.ise

4. Under the Project Navigator Processes view, double-click on Implement Design.

5. From the Project Navigator Design Sources Hierarchy view, do the following:

a.

37
38
39
40
41
42
43
44
45
46
47
45

C.

Double-click on the file expose clock ports casel mcw.vhd, then scroll
down to view the entity named expose_clock_ports_mcw, as shown below:

library IEEE:
use IEEE.std logic_1164.all:
use work.conv pkg.all:

entity expose_clock ports_casel mew 1s

port |
clk 1: in =std logic; -- clock period = 10.0 ns (100.0 Mhz)
clk 5: in std logic; -- clock period = 50.0 n=s (20.0 HMhz)
din: in std logic wector (7 downto 0):

dourt: out std logic wvector (12 downto 0)
1

end expose clock ports casel mew;

Observe that System Generator infers the clocks based on the different rates in the
design and brings the clock ports to the top-level wrapper. Since this design
contains two clock rates, clocks c1k_1 and clk_5 are pulled to the top-level
wrapper. This will allow you to directly drive the multiple synchronous clocks
from outside the System Generator design.

Close the VHDL file.

Next you want to perform a behavior simulation using the ModelSim.

6. As shown below, move to the Sources for dialog box in the Sources window, then
select Behavioral Simulation

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

www.xilinx.com 35

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Note: System Generator automatically creates the top-wrapper VHDL testbench, script file and
input/output stimulus data files. The Processes tab changes and displays according to the
Sources type being selected.

Design +0F X
view: (J8F Implementation (%M Simulation
Behavioral ;I

Higrarchy \/1 -

-- '-F'] expose_clock_ports_casel _mow__" Select
B £ scevlz40t-1FF1156
EI E,: expose_clock_ports_casel_mcw_tb - struckural {expose_clock_ports_casel_mcw_tb.whd
g clk_1_driver - xldk - behavior {expose_clock_ports_casel_mcw_tb,vhd)
b g clk_S_driver - xlclk - behavior (expose_clock_ports_casel_mow_th,vhd)
g clk_driver - xlclk - behavior (expose_clock_ports_casel_mow_th,vhd)
- g din_driver - xltbsource - behavior {expose_dock_ports_casel_mcw_tb.vhd)
b '] dout_load - xltbsink - behavior (expose_clock_ports_casel_mow_th,vhd)
- [l sysoen dut - expose clock porks casel mow - structural fexpose dock ports ceialll
3

H| & §|m|§n|@@|j

1

2. Double Click
P2 MaProcesses Running HJ

Processes: expose_clock_parts casel_M_th - structural |
- $ MndelSlm Sirnulatar

ElEERZ

N

Simulate the design, as shown above, by double-click on Simulate Behavioral Model
in the Processes window

8. After the simulation is finished, you should be able to observe the simulation
waveforms as shown in the figure below:

[KNI [=i i |

Summary

When you select the Expose Clock Ports option, System Generator automatically infers the
correct clocks from the design rates and exposes the clock ports in the top-level wrapper.
The clock rates are determined by the same methodology when you use the Clock Enables

option. You can now drive the exposed clock ports from an external synchronous clock
source.

Synchronization Mechanisms

System Generator does not make implicit synchronization mechanisms available. Instead,
synchronization is the responsibility of the designer, and must be done explicitly.

36

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. System-Level Modeling in System Generator

Valid Ports

System Generator provides several blocks (in particular, a FIFO) that can be used for
synchronization. Several blocks provide input (respectively, output) ports that specify
when an input (resp., output) sample is valid. Such ports can be chained, affording a
primitive form of flow control. Blocks with such ports include the FFT, FIR, and Viterbi.

Indeterminate Data

Indeterminate values are common in many hardware simulation environments. Often they
are called “don’t cares” or “Xs”. In particular, values in System Generator simulations can
be indeterminate. A dual port memory block, for example, can produce indeterminate
results if both ports of the memory attempt to write the same address simultaneously.
What actually happens in hardware depends upon effectively random implementation
details that determine which port sees the clock edge first. Allowing values to become
indeterminate gives the system designer greater flexibility. Continuing the example, there
is nothing wrong with writing to memory in an indeterminate fashion if subsequent
processing does not rely on the indeterminate result.

HDL modules that are brought into the simulation through HDL co-simulation are a
common source for indeterminate data samples. System Generator presents indeterminate
values to the inputs of an HDL co-simulating module as the standard logic vector 'XXX. .
XX

Indeterminate values that drive a Gateway Out become what are called NaNs. (NaN
abbreviates “not a number”.) In a Simulink scope, NaN values are not plotted. Conversely,
NaNs that drive a Gateway In become indeterminate values. System Generator provides
an Indeterminate Probe block that allows for the detection of indeterminate values. This
probe cannot be translated into hardware.

In System Generator, any arithmetic signal can be indeterminate, but Boolean signals
cannot be. If a simulation reaches a condition that would force a Boolean to become
indeterminate, the simulation is halted and an error is reported. Many Xilinx blocks have
control ports that only allow Boolean signals as inputs. The rule concerning indeterminate
Booleans means that such blocks never see an indeterminate on a control port

A UFix_1_0is a type that is equivalent to Boolean except for the above restriction
concerning indeterminate data.

Block Masks and Parameter Passing

The same scoping and parameter passing rules that apply to ordinary Simulink blocks
apply to System Generator blocks. Consequently, blocks in the Xilinx Blockset can be
parameterized using MATLAB variables and expressions. This capability makes possible
highly parametric designs that take advantage of the expressive and computational power
of the MATLAB language.

Block Masks

In Simulink, blocks are parameterized through a mechanism called masking. In essence, a
block can be assigned mask variables whose values can be specified by a user through dialog
box prompts or can be calculated in mask initialization commands. Variables are stored in
a mask workspace. A mask workspace is local to the blocks under the mask and cannot be
accessed by external blocks.

Note: It is possible for a mask to access global variables and variables in the base workspace. To
access a base workspace variable, use the MATLAB evalin function. For more information on the

System Generator for DSP User Guide www.xilinx.com 37
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

MATLAB and Simulink scoping rules, refer to the manuals titted Using MATLAB and Using Simulink
from The MathWorks, Inc.

Parameter Passing

It is often desirable to pass variables to blocks inside a masked subsystem. Doing so allows
the block’s configuration to be determined by parameters on the enclosing subsystem. This
technique can be applied to parameters on blocks in the Xilinx blockset whose values are
set using a listbox, radio button, or checkbox. For example, when building a subsystem
that consists of a multiply and accumulate block, you can create a parameter on the
subsystem that allows you to specify whether to truncate or round the result. This
parameter will be called trunc_round as shown in the figure below.

=) Mask editor, :Subsystem |Z| |E| g|

Icon Parameters Initialization Documentation

Dialog parameters

= Prompt Wariahle Type Evaluate Tunahble
Truncate or Round ltrunc_raund [popup | |

As shown below, in the parameter editing dialog for the accumulator and multiplier
blocks, there are radio buttons that allow either the truncate or round option to be selected.

€5 Mult (Xitinx Multiplier) M=1E3

Hardware notes: To use the internd pipeline stage of the dedicated
mltiplier wou must select 'Pipeline to Greatest Extent Pozsible’

B azic | Advanced Implementation

Frecision:
) Ful (&) User defined
zer Defined Precizion
Output pe:
(%) Signed [2's comp] () Unsigned

Mumber of bit: [15 |

Birnany point |1 4 |

Quantization:
() Truncate () Round [unbiased: +/- Inf)

Overflow:

In order to use a parameter rather than the radio button selection, right click on the radio
button and select: “Define With Expression”. A MATLAB expression can then be used as
the parameter setting. In the example below, the trunc_round parameter from the

38

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Automatic Code Generation

subsystem mask can be used in both the accumulator and multiply blocks so that each
block will use the same setting from the mask variable on the subsystem.

) Mult (Xilinx Multiplier) =13

Hardware notes: To uge the internd pipeline stage of the dedicated
mltiplier wou must select 'Pipeline to Greatest Extent Pozsible’

Basic | Advanced | Implementation

Frecizion:
() Fll (& User defined

|dzer Defined Precizion
Output pe:
(%) Signed [2's comp] () Unsigned

Mumber of bitz |18
Binary paint 14

|Quantizatinn trunc_round

Overflow:

0 S .]

Resource Estimation

System Generator supplies tools that estimate the FPGA hardware resources needed to
implement a design. Estimates include numbers of slices, lookup tables, flip-flops, block
memories, embedded multipliers, I/O blocks and tristate buffers. These estimates make it
easy to determine how design choices affect hardware requirements. To estimate the
resources needed for a subsystem, drag a Resource Estimator block into the subsystem,
double-click on the estimator, and press the Estimate button.

Automatic Code Generation

System Generator automatically compiles designs into low-level representations. The
ways in which System Generator compiles a model can vary, and depend on settings in the
System Generator token. In addition to producing HDL descriptions of hardware, the tool
generates auxiliary files. Some files (e.g., project files, constraints files) assist downstream
tools, while others (e.g., VHDL testbench) are used for design verification.

Compiling and Simulating Using Describes how to use the System Generator token to
the System Generator Token compile designs into equivalent low-level HDL.

Compilation Results Describes the low-level files System Generator
produces when HDL Netlist is selected on the System
Generator token and Generate is pushed.

HDL Testbench Describes the VHDL testbench that System Generator
can produce.

System Generator for DSP User Guide www.xilinx.com 39
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Compiling and Simulating Using the System Generator Token

System Generator automatically compiles designs into low-level representations. Designs
are compiled and simulated using the System Generatortoken. This topic describes how to
use the block.

Before a System Generator design can be simulated or translated into hardware, the design
must include a System Generator token. When creating a new design, it is a good idea to
add a System Generator token immediately. The System Generator token is a member of
the Xilinx Blockset’s Basic Elements and Tools libraries. As with all Xilinx blocks, the
System Generator token can also be found in the Index library.

A design must contain at least one System Generator token, but can contain several System
Generator tokens on different levels (one per level). A System Generator token that is
underneath another in the hierarchy is a slave; one that is not a slave is a master. The scope
of a System Generator token consists of the level of hierarchy into which it is embedded
and all subsystems below that level. Certain parameters (e.g. Simulink System Period)
can be specified only in a master.

Once a System Generator token is added, it is possible to specify how code generation and
simulation should be handled. The token’s dialog box is shown below:

) System Generator: untitled 1 = B

& 9 @

Compilation Clocking General

Compilation :
)} System Generator: untitled1
- IiIIHDL Netlist Seffings ..
0
1
goo 7 Part:
Compiaton | Clocking General [][virtexs xcovexarstatriise
FPGA clock period [ns) : Clock pin location : Synthesis tool : Hardware description language :
[io I [xsT [[Y -]
)) . [" Create testhench |2 imporias confimurable subsysfem

Multirate implementation : DCM input clock period
[ciock Enables =l o Target directory :

™ Provide clock enable clear pin

[netist Browss. . |

[" Create interface document

Simulink system period (sec) :

1

Generatel OK | Apphy | Cancel | Help |

Generate |

OK | Apphy | Cancel | Help |‘

40

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Automatic Code Generation

Compilation Type and the Generate Button

Pressing the Generate button instructs System Generator to compile a portion of the
design into equivalent low-level results. The portion that is compiled is the sub-tree whose
root is the subsystem containing the block. (To compile the entire design, use a System
Generator token placed at the top of the design.) The compilation type (under
Compilation) specifies the type of result that should be produced. The possible types are

e Two types of Netlists, HDL Netlist and NGC Netlist

¢ Bitstream - produces an FPGA configuration bitstream that is ready to run in a
hardware FPGA platform

¢ EDK Export Tool - for exporting to the Xilinx Embedded Development Kit
e Various varieties of hardware co-simulation

¢ Timing and Power Analysis - a report on the timing and power consumption of the
design.

HDL Netlist is the type used most often. In this case, the result is a collection of HDL and
EDIF files, and a few auxiliary files that simplify downstream processing. The collection is
ready to be processed by a synthesis tool (e.g., XST), and then fed to the Xilinx physical
design tools (i.e., ngdbuild, map, par, and bitgen) to produce a configuration bitstream for
a Xilinx FPGA. The files that are produced are described in more detail in Compilation
Results.

NGC Netlist is similar to HDL Netlist but the resulting files are NGC files instead of HDL
files.

When the type is a variety of hardware co-simulation, then System Generator produces an
FPGA configuration bitstream that is ready to run in a hardware FPGA platform. The
particular platform depends on the variety chosen. For example, when the variety is
Hardware Co-simulation > XtremeDSP Development Kit > PCI and USB, then the
bitstream is suitable for the XtremeDSP board (available for separate purchase from
Xilinx). System Generator also produces a hardware co-simulation block to which the
bitstream is associated. This block is able to participate in Simulink simulations. It is
functionally equivalent to the portion of the design from which it was derived, but is
implemented by its bitstream. In a simulation, the block delivers the same results as those
produced by the portion, but the results are calculated in working hardware.

The remaining compilation parameters are described in the table below. Some are
available only when the compilation type is HDL Netlist. For example, the clock pin
location cannot be chosen for a hardware co-simulation compilation because it is fixed in
each hardware FPGA platform.

Control Description
Part Defines the FPGA part to be used.
Target Directory Defines where System Generator should write compilation results.

Because System Generator and the FPGA physical design tools
typically create many files, it is best to create a separate target
directory, i.e., a directory other than the directory containing your
Simulink model files. The directory can be an absolute path (e.g.
c:\netlist) or a path relative to the directory containing the model
(e.g. netlist).

System Generator for DSP User Guide www.xilinx.com 41
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Control Description

Synthesis tool Specifies the tool to be used to synthesize the design. The
possibilities are Synplify, Synplify Pro and Xilinx XST.

Hardware description | Specifies the language to be used for HDL netlist of the design. The
language possibilities are VHDL and Verilog.

Create testbench This instructs System Generator to create an HDL testbench.
Simulating the testbench in an HDL simulator compares Simulink
simulation results with ones obtained from the compiled version of
the design. To construct test vectors, System Generator simulates the
design in Simulink, and saves the values seen at gateways. The top
HDL file for the testbench is named <name>_testbench.vhd/.v,
where <name> is a name derived from the portion of the design
being tested and the extension is dependent on the hardware
description language.

Import as Tells System Generator to do two things: 1) Construct a block to
configurable which the results of compilation are associated, and 2) Construct a
subsystem configurable subsystem consisting of the block and the original

subsystem from which the block was derived. See Configurable
Subsystems and System Generator for details.

FPGA clock period Defines the period in nanoseconds of the system clock. The value
need not be an integer. The period is passed to the Xilinx
implementation tools through a constraints file, where it is used as
the global PERIOD constraint. Multicycle paths are constrained to
integer multiples of this value.

Clock pin location Defines the pin location for the hardware clock. This information is
passed to the Xilinx implementation tools through a constraints file.

Multirate Clock Enables (default): Creates a clock enable generator circuit to
implementation drive a multirate design.

Hybrid DCM-CE: Creates a clock wrapper with a DCM that can
drive up to three clock ports at different rates for Virtex®-4 and
Virtex®-5 and up to two clock ports for Spartan-3A DSP. The
mapping of rates to the DCM output ports is done using the
following priority scheme: CLKO > CLK2x > CLKdv > CLKfx. The
DCM honors the higher clock rates first. If the design contains more
clocks than the DCM can handle, the remaining clocks are
implemented using the Clock Enable configuration.

A reset input port is exposed on the DCM clock wrapper to allow
resetting the DCM and a 1locked output port is exposed to help the
external design synchronize the input data with the single c1k
input pin.

Expose Clock Ports: This option exposes multiple clock ports on the
top-level of the System Generator design so you can apply multiple
synchronous clock inputs from outside the design.

42 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Automatic Code Generation

Control Description
DCM input clock Specify if different than the FPGA clock period(ns) option (system
period(ns) clock). The FPGA clock period (system clock) will then be derived

from this hardware-defined input.

Provide clock enable | This instructs System Generator to provide a ce_clr port on the top-
clear pin level clock wrapper. The ce_clr signal is used to reset the clock
enable generation logic. Capability to reset clock enable generations
logic allows designs to have dynamic control for specifying the
beginning of data path sampling. See the topic for details.

Simulink System Period

You must specify a value for Simulink system period in the System Generator token
dialog box. This value tells the underlying rate, in seconds, at which simulations of the
design should run. The period must evenly divide all sample periods in the design. For
example, if the design consists of blocks whose sample periods are 2, 6, and 8, then the
largest acceptable sample period is 2, though other values such as 1 and 0.5 are also
acceptable. Sample periods arise in three ways: some are specified explicitly, some are
calculated automatically, and some arise implicitly within blocks that involve internal rate
changes. For more information on how the system period setting affects the hardware
clock, refer to Timing and Clocking.

Before running a simulation or compiling the design, System Generator verifies that the
period evenly divides every sample period in the design. If a problem is found, System
Generator opens a dialog box suggesting an appropriate value. Clicking the button labeled
Update instructs System Generator to use the suggested value. To see a summary of period
conflicts, click the button labeled View Conflict Summary. If you allow System Generator
to update the period, you must restart the simulation or compilation.

It is possible to assemble a System Generator model that is inconsistent because its periods
cannot be reconciled. (For example, certain blocks require that they run at the system rate.
Driving an up-sampler with such a block produces an inconsistent model.) If, even after
updating the system period, System Generator reports there are conflicts, then the model is
inconsistent and must be corrected.

The period control is hierarchical; see the discussion of hierarchical controls below for
details.

Block Icon Display

The options on this control affect the display of the block icons on the model. After
compilation (which occurs when Generating, Simulating, or by pressing Control-D) of
the model various information about the block in your model can be displayed, depending
on which option is chosen.

e Default—basic information about port directions are shown

e Sample rates—the sample rates of each port are shown

e Pipeline stages—the number of pipeline stages are shown

¢ HDL port names—the names of the ports are shown

e Input data types—the input data types for each port are shown
e Output data types—output data types for each port are shown

System Generator for DSP User Guide www.xilinx.com 43
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Hierarchical Controls

The Simulink System Period control (see the topic Simulink System Period above) on the
System Generator token is hierarchical. A hierarchical control on a System Generator token
applies to the portion of the design within the scope of the token, but can be overridden on
other System Generator tokens deeper in the design. For example, suppose Simulink
System Period is set in a System Generator token at the top of the design, but is changed in
a System Generator token within a subsystem S. Then that subsystem will have the second
period, but the rest of the design will use the period set in the top level.

Viewing ISE Reports

When the Compilation is finished, the Compilation status dialog box appears as shown
below. If your compilation target wasBitstream or Timing and Power Analysis, you can
click on the Show Reports button and the associated ISE Reports will be avilable for your
viewing:

a Compilation status | [=]

b Connpilation finished successhully.
Ta

(] 4 Larice] | Show Feports |
Detafed Reports [-1

Report Name Status | Generated Errors |Warnings |Infos

Synthesis Report Current |wed Feb 18 14:16:5% 2009

Translation Report Current |wed Feb 18 14:17:07 2009

Map Report Current |wed Feb 18 14:17:50 2009

Place and Route Report Current |wed Feb 18 14:158: 14 2009

Power Repoark

Post-PAR. Skatic Timing Report | Current |wWed Feb 18 14:18: 27 2009 _

Bitgen Repork Current |wed Feb 18 14:18:51 2009 _I
-

Compilation Results

In topic discusses the low-level files System Generator produces when HDL Netlist is
selected on the System Generator token and Generate is clicked. The files consist of HDL,
NGC and EDIF that implement the design. In addition, System Generator produces
auxiliary files that simplify downstream processing, e.g., bringing the design into Project
Navigator, simulating using an HDL simulator, and synthesizing using various synthesis
tools. All files are written to the target directory specified on the System Generator token.

44

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Automatic Code Generation

If no testbench is requested, then the key files produced by System Generator are the

following:

File Name or Type

Description

<design>.vhd/.v

This contains most of the HDL for the design

<design>_cw.vhd/.v

This is a HDL wrapper for <design> files.vhd/.v. It
drives clocks and clock enables.

.edn and .ngc files

Besides writing HDL, System Generator runs CORE
Generator™ (coregen) to implement portions of the design.
Coregen writes EDIF files whose names typically look
something like

multiplier virtex2 6_0_83438798287b830b.edn.

Other required files may be supplied as .ngc files.

globals

This file consists of key/value pairs that describe the design.
The file is organized as a Perl hash table so that the keys and
values can be made available to Pearl scripts using Perl evals.

<design>_cw.xcf (or .ncf)

This contains timing and port location constraints. These are
used by the Xilinx synthesis tool XST and the Xilinx
implementation tools. If the synthesis tool is set to something
other than XST, then the suffix is changed to .ncf.

<design>_cw.ise

This allows the HDL and EDIF to be brought into the Xilinx
project management tool Project Navigator.

hdlFiles

This contains the full list of HDL files written by System
Generator. The files are listed in the usual HDL dependency
order.

synplify_<design>.prj, or

xst_<design>.pr

These files allow the design to be compiled by the synthesis
tool you specified.

vcom.do

This script can be used in ModelSim to compile the HDL for a
behavioral simulation of the design.

If a testbench is requested, then, in addition to the above, System Generator produces files
that allow simulation results to be compared. The comparisons are between Simulink
simulation results and corresponding results from ModelSim. The additional files are the

following:

File Name or Type

Description

Various .dat files

These contain the simulation results from Simulink.

<design>_tb.vhd/.v

This is a testbench that wraps the design. When simulated in
ModelSim, this testbench compares simulation results from
Simulink against those produced by ModelSim.

vsim.do

This script can be used in ModelSim to run a testbench
simulation.

pn_behavioral.do,
pn_postmap.do,
pn_postpar.do,

pn_posttranslate.do

These files allow various ModelSim simulations to be started
inside Project Navigator.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

45

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Using the System Generator Constraints File

When a design is compiled, System Generator produces a constraints file that tells
downstream tools how to process the design. This enables the tools to produce a higher
quality implementation, and to do so using considerably less time. Constraints supply the
following:

e The period to be used for the system clock;

e The speed, with respect to the system clock, at which various portions of the design
must run;

e The pin locations at which ports should be placed;

e The speed at which ports must operate.

The file format depends on the synthesis tool that is specified in the System Generator
token. When XST is selected, the file is written in the XCF format; for Synplify and Synplify
Pro, the NCF format is used. The file name ends with . xcf or .ncf£, as appropriate.

System Clock Period

The system clock period (i.e., the period of the fastest hardware clock in the design) can be
specified in the System Generator token. System Generator writes this period to the
constraints file. Downstream tools use the period as a goal when implementing the design.

Multicycle Path Constraints

Many designs consist of parts that run at different clock rates. For the fastest part, the
system clock period is used. For the remaining parts, the clock period is an integer multiple
of the system clock period. It is important that downstream tools know what speed each
part of the design must achieve. With this information, efficiency and effectiveness of the
tools are greatly increased, resulting in reduced compilation times and improved
hardware realizations. The division of the design into parts, and the speed at which each
part must run, are specified in the constraints file using multicycle path constraints.

IOB Timing and Placement Constraints

When translated into hardware, System Generator's Gateway In and Gateway Out blocks
become input and output ports. The locations of these ports and the speeds at which they
must operate can be entered in the Gateway In and Out parameter dialog boxes.

See the descriptions of the Gateway In block and the Gateway Out block for more
information. Port location and speed are specified in the constraints file by IOB timing.

46

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Automatic Code Generation

Constraints Example

The figure below shows a small multirate design and the constraints System Generator
produces for it.

—= s‘
Syelam

Sample Tine2 Genaralor

h 4

Pla 21 of—w T o 1wmp ot 49 e ot ol ow | |

Sine lAave on Daut

nReg Lk Sample = Do SAmps Catfiedy Scoae

Sammke Time Sammle Timed

The up sampler doubles the rate, and the down sampler divides the rate by three. Assume
the system clock period is 10 ns. Then the clock periods are 10 ns for the FIR, 20 ns for the
input register, and 30 ns for the output register. The following text describes the constraints
that convey this information.

The lines that indicate the system clock period is10 ns are the following:

Global period constraint
NET "clk" TNM NET = "clk 392b7670";
TIMESPEC "TS clk 392b7670" = PERIOD "clk 392b7670" 10.0 ns HIGH 50 %;

To build timing constraints, the blocks in the design are partitioned into timing groups.
Two blocks are in the same timing group if and only if they run at the same sample rate. In
this design there are three timing groups, corresponding to the three rates. The nature of
constraints dictates that no name is needed for the fastest group. The remaining groups are
named ce_2_392b7670_group and ce_3_392b7670_group; they correspond to periods 20 ns
and 30 ns respectively.

The FIR runs at the system (i.e., fastest) rate and therefore is constrained using the global
period constraint shown above. The logic used to generate clocks always runs at the
system rate and is also constrained to the system rate.

The ce_2_392b7670_group consists of the blocks that operate at half the system rate, i.e., the
input register and the up sampler. Every block in the group is driven by the clock enable
net named ce2_sysgen. The constraints that define the group are the following:

ce_2 392b7670_group and inner group constraint

Net "ce 2 sg x0*" TNM NET = "ce 2 392b7670_ group";

TIMESPEC "TS ce 2 392b7670 group to _ce 2 392b7670 group" = FROM
"ce_2_392b7670_group" TO "ce_2_ 392b7670_group" 20.0 ns;

Note: A wildcard character is added to the net name to constrain any additional copies of this net
that may be generated when clock enable logic is replicated. The maximum fanout of a clock enable
net can be controlled in the synthesis tool.

The ce_3_392b7670_group operates at one third the system rate. It contains the down
sampler and the output register, and is defined in a similar manner to the ce2_group.

ce 3 392b7670 _group and inner group constraint
Net "ce 3 sg x0*" TNM NET = "ce 3 392b7670_group";

System Generator for DSP User Guide www.xilinx.com 47
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

TIMESPEC "TS ce 3 392b7670 group to ce 3 392b7670 group" = FROM
"ce 3 392b7670 group" TO "ce 3 392b7670_group" 30.0 ns;

Group to group constraints establish relative speeds. Here are the constraints that relate
the speeds of ce_2_392b7670_group and ce_3_392b7670_group:

Group-to-group constraints

TIMESPEC "TS ce_ 2 392b7670_group to _ce 3 392b7670_group" = FROM
"ce 2 392b7670 group" TO "ce 3 392b7670 group" 20.0 ns;
TIMESPEC "TS ce 3 392b7670 group to ce 2 392b7670 group"
"ce_3 392b7670_group" TO "ce 2 392b7670_group" 20.0 ns;

FROM

Port timing requirements can be set in the parameter dialog boxes for gateways. These
requirements are translated into port constraints such as those shown below. In this
example, the 3-bit din input is constrained to operate at its gateway's sample rate
(corresponding to a period of 20 ns). The "FAST" attributes indicate the ports should be
implemented using hardware that reduces delay. The reduction comes at a cost of
increased noise and power consumption.

Offset in constraints
NET "din(0)" OFFSET = IN : 20.0 : BEFORE "clk";
NET "din(0)" FAST;
NET "din(1)" OFFSET
(
(
(

IN : 20.0 : BEFORE "clk";
NET "din(1)" FAST;
NET "din(2)" OFFSET
NET "din(2)" FAST;

IN : 20.0 : BEFORE "clk";

Selecting Specify IOB Location Constraints for a gateway allows port locations to be
specified. The locations must be entered as a cell array of strings in the box labeled IOB
Pad Locations. Locations are package-specific; in this example a Virtex®-E 2000 in a FG680
package is used. The location constraints for the din bus are provided in the dialog box as
"{'D35', 'B36', 'C35' }". This is translated into constraints in the .xcf (or .ncf) file in the
following way:

Loc constraints

NET "din(2)" LOC = "D35";
NET "din(1l)" LOC = "B36";
NET "din(0)" LOC = "C35";

Clock Handling in HDL

Clock Handling in HDL

This topic describes how System Generator handles hardware clocks in the HDL it
generates. Assume the design is named <design>, and <designs> is an acceptable HDL
identifier. When System Generator compiles the design, it writes a collection of HDL
entities or modules, the topmost of which is named <designs>, and is stored in a file
named <designs>.vhd/.v.

The “Clock Enables” Multirate Implementation

Clock and clock enables appear in pairs throughout the HDL. Typical clock names are
clk_1, clk_2, and clk_3, and the names of the companion clock enables are ce_1, ce_2, and
ce_3 respectively. The name tells the rate for the clock/clock enable pair; logic driven by
clk_1 and ce_1 runs at the system (i.e., fastest) rate, while logic driven by (say) clk_2 and
ce_2 runs at half the system rate. Clocks and clock enables are not driven in the entity or
module named <design> or any subsidiary entities; instead, they are exposed as top-level
input ports

Of course, there must be a way to generate these clocks and clock enables. System
Generator produces a separate clock wrapper (written to a file named

48

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Automatic Code Generation

<design>_ cw.vhd/.v) to do this. This wrapper is external to the files described above.
The idea is to make the HDL flexible. In some applications, the files described above are
added to a larger design, but the clock wrapper is omitted. In this case, you are responsible
for generating clocks and clock enables, but a finer degree of control is obtained. If, on the
other hand, the clock wrapper is suitable for the application, then include it.

The names of the clocks and clock enables in System Generator HDL suggest that clocking
is completely general, but this is not the case. To illustrate this, assume a design has clocks
named clk_1 and clk_2, and companion clock enables named ce_1 and ce_2 respectively.
You might expect that working hardware could be produced if the ce_1 and ce_2 signals
were tied high, and clk_2 were driven by a clock signal whose rate is half that of clk_1. For
most System Generator designs this does not work. Instead, clk_1 and clk_2 must be driven
by the same clock, ce_1 must be tied high, and ce_2 must vary at a rate half that of c/k_1 and
clk_2.

The clock wrapper consists of two components: one for the design itself, and one clock
driver component that generate clocks and clock enables. The clock driver is contained in a
file named <design>_cw.vhd/.v. The logic within the <design>_cw generates the
ce_x signals. The optional ce_clr port would be generated if the design was generated
by selecting Provide clock enable clear pin on the System Generator token. The ports that
are not clocks or clock enables are passed through to the exterior of the clock wrapper.
Schematically, the clock wrapper looks like the diagram below.

=design=_clk_wrapper
Design Under
Test
=design=_clock_driver =design=
clk_=g P ol =g
CE ' — sysce
clk_x_=q o clb_x_=g
[cE_cir | sysoe_cir
cE_=7 ™ c=_=g
|3LK] syscle 3
ce_X 53 P c=_x =g
Data /0 Ports
A

Note: The clock wrapper exposes a port named ce. The port does nothing except to serve as a
companion to the clk port on the wrapper. The reason for having the port is to allow the clock wrapper
to be used as a black box in System Generator designs.

The “Hybrid DCM-CE” Multirate Implementation

If the implementation target is an FPGA with a Digital Clock Manager (DCM), you can
choose to drive the clock tree with a DCM. The DCM option is desirable when high fanout
on clock enable nets make it difficult to achieve timing closure.

System Generator instantiates the DCM in a top-level HDL clock wrapper (with a suffix
_dem_mcw) and configures the DCM to provide up to three clock ports at different rates for
Virtex®-4 and Virtex®-5 and up to two clock ports for Spartan-3A DSP. If the design has more
clock ports than the DCM can support, the remaining clocks are supported with the CE
(clock enable) configuration as described in the previous topic.

For a detailed examination of the files produced by this option, refer to the topic Tutorial
Example: Using the Hybrid DCM-CE Option.

System Generator for DSP User Guide www.xilinx.com 49
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

The “Expose Clock Ports” Multirate Implementation

When you select this option, System Generator creates a top-level wrapper that exposes a
clock port for each rate. You can then manually instantiate a clock generator outside the
design to drive the clock ports.

For a detailed examination of the files produced by this option, refer to the topic Tutorial
Example: Using the Expose Clock Ports Option.

Core Caching

System Generator uses cores produced by Xilinx CORE Generator™ (coregen) to
implement parts of designs. Generating cores can be expensive, so System Generator
caches previously generated ones. Before coregen is called, System Generator looks in the
cache, and if the core has already been generated, System Generator reuses it.

By default, the cache is the directory $TEMP/sg core_cache. And by default, System
Generator caches no more than 2,000 cores. When the limit is reached, System Generator
deletes cached cores to make room for new ones.

Note: Environment variables can be used to change the location of the cache and the cache size
limit. The variables are described below.

Environment Variable Description

SGCORECACHE Location to store cached files. Setting this variable to a string of
blanks instructs System Generator not to cache cores.

SGCORECACHELIMIT Maximum number of cores to cache.

HDL Testbench

Ordinarily, System Generator designs are bit and cycle-accurate, so Simulink simulation
results exactly match those seen in hardware. There are, however, times when it is useful to
compare Simulink simulation results against those obtained from an HDL simulator. In
particular, this makes sense when the design contains black boxes. The Create Testbench
checkbox in the System Generator token makes this possible.

Suppose the design is named <design>, and a System Generator token is placed at the top
of the design. Suppose also that in the token the Compilation field is set to HDL Netlist,
and the Create Testbench checkbox is selected. When the Generate button is clicked,
System Generator produces the usual files for the design, and in addition writes the
following:

1. A filenamed <design> tb.vhd/.v that contains a testbench HDL entity;
2. Various .dat files that contain test vectors for use in an HDL testbench simulation.

3. Scripts vcom.do and vsim. do that can be used in ModelSim to compile and simulate
the testbench, comparing Simulink test vectors against those produced in HDL.

System Generator generates the . dat files by saving the values that pass through
gateways. In the HDL simulation, input values from the . dat files are stimuli, and output
values are expected results. The testbench is simply a wrapper that feeds the stimuli to the
HDL for the design, then compares HDL results against expected ones.

50

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

Compiling MATLAB into an FPGA

System Generator provides direct support for MATLAB through the MCode block. The
MCode block applies input values to an M-function for evaluation using Xilinx's fixed-
point data type. The evaluation is done once for each sample period. The block is capable
of keeping internal states with the use of persistent state variables. The input ports of the
block are determined by the input arguments of the specified M-function and the output
ports of the block are determined by the output arguments of the M-function. The block
provides a convenient way to build finite state machines, control logic, and computation
heavy systems.

In order to construct an MCode block, an M-function must be written. The M-file must be
in the directory of the model file that is to use the M-file or in a directory in the MATLAB
path.

This tutorial provides ten examples that use the MCode block:
e Example 1 Simple Selector shows how to implement a function that returns the
maximum value of its inputs;

¢ Example 2 Simple Arithmetic Operations shows how to implement simple arithmetic
operations;

e Example 3 Complex Multiplier with Latency shows how to build a complex
multiplier with latency;

¢ Example 4 Shift Operations shows how to implement shift operations;

¢ Example 5 Passing Parameters into the MCode Block shows how to pass parameters
into a MCode block;

e Example 6 Optional Input Ports shows how to implement optional input ports on an
MCode block;

e Example 7 Finite State Machines shows how to implement a finite state machine;

e Example 8 Parameterizable Accumulator shows how to build a parameterizable
accumulator;

¢ Example 9 FIR Example and System Verification shows how to model FIR blocks and
how to do system verification;

e Example 10 RPN Calculator shows how to model a RPN calculator — a stack machine;

e Example 11 Example of disp Function shows how to use disp function to print
variable values.

The first two examples are in the mcode_block_tutorial. mdl file of the
examples/mcode_block directory in your installation of the System Generator software.
Examples 3 and 4 are in the mcode_block_tutorial2.mdl file. Examples 5 and 6 are in the
mcode_block_tutorial3.mdl file. Examples 7 and 8 are in the mcode_block_tutorial4.mdl
file. Example 9 is mcode_block_verify_firmdl. Example 10 is in
mcode_block_rpn_calculator.mdl.

Simple Selector

This example is a simple controller for a data path, which assigns the maximum value of
two inputs to the output. The M-function is specified as the following and is saved in an M-
file x1max . m:

function z = xlmax(x, V)
if x >y
Z = X;
System Generator for DSP User Guide www.xilinx.com 51

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

else

zZ =Y
end

The x1max . m file should be either saved in the same directory of the model file or should
be in the MATLAB path. Once the x1max . m has been saved to the appropriate place, you
should drag a MCode block into your model, open the block parameter dialog box, and

enter x1max into the MATLAB Function field. After clicking the OK button, the block has
two input ports x and y, and one output port z.

£ ximax block (Xilinx MCodz Block) =13

Pazs input values to a MATLAB function far evaluation in ¥iling
fined-poinl tppe. The input ports of the black ars input argurnents of the
function. The output porte of the black are output arguments of the
function.

Bazic | Interface | Advanced | Implementation

Block, Interface

MATLAE function
|

’ Browse...] ’EditM-FiIe...l

Explicit S ample Period
[1 Specity explicit zample period

| ok [Cace |[Hep [oy |

The following figure shows what the block looks like after the model is compiled. You can
see that the block calculates and sets the necessary fixed-point data type to the output port.

=1 mcode_block_tutorial/max example |._]r§][g|
File Edit VMigw Simulation Format Tools Help
D= ftBEBR 5 r = 11EIEI Marmal =
D s
H x| iz Z
(2w z
¥ =imax block
Ready |100% | lodeds

Simple Arithmetic Operations

This example shows some simple arithmetic operations and type conversions. The
following shows the xISimpleArith.m file, which specifies the x1SimpleArith M-
function.

function [zl, z2, z3, z4] = x1SimpleArith(a, b)

x1SimpleArith demonstrates some of the arithmetic operations
supported by the Xilinx MCode block. The function uses xfix()
to create Xilinx fixed-point numbers with appropriate

o° o°

o°

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

o°

container types.$%

You must use a xfix() to specify type, number of bits, and
binary point position to convert floating point values to
Xilinx fixed-point constants or variables.

By default, the xfix call uses xl1Truncate

and xlWrap for quantization and overflow modes.

constl is Ufix 8 3

constl = xfix({x1lUnsigned, 8, 3}, 1.53);

% const2 is Fix_10_4

const2 = xfix({x1Signed, 10, 4, xlRound, xlWrap}, 5.687);
zl = a + constl;

z2 = -b - const2;

z3 = zl1 - z2;

% convert z3 to Fix 12 8 with saturation for overflow

z3 = xfix({xlsigned, 12, 8, xl1Truncate, xlSaturate}, z3);

% z4 is true if both inputs are positive
z4 = a>constl & b>-1;

o° o° o° o° o°

o°

This M-function uses addition and subtraction operators. The MCode block calculates
these operations in full precision, which means the output precision is sufficient to carry
out the operation without losing information.

One thing worth discussing is the xfix function call. The function requires two
arguments: the first for fixed-point data type precision and the second indicating the value.
The precision is specified in a cell array. The first element of the precision cell array is the
type value. It can be one of three different types: x1Unsigned, x1Signed, orx1Boolean.
The second element is the number of bits of the fixed-point number. The third is the binary
point position. If the element is x1Boolean, there is no need to specify the number of bits
and binary point position. The number of bits and binary point position must be specified
in pair. The fourth element is the quantization mode and the fifth element is the overflow
mode. The quantization mode can be one of x1Truncate, x1Round, or x1RoundBanker.
The overflow mode can be one of x1Wrap, x1Saturate, or x1ThrowOverflow.
Quanitization mode and overflow mode must be specified as a pair. If the quantization-
overflow mode pair is not specified, the xf ix function uses x1Truncate and x1Wrap for
signed and unsigned numbers. The second argument of the xf ix function can be either a
double or a Xilinx fixed-point number. If a constant is an integer number, there is no need
to use the xf ix function. The Mcode block converts it to the appropriate fixed-point
number automatically.

System Generator for DSP User Guide www.xilinx.com 53
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

After setting the dialog box parameter MATLAB Function to x1SimpleArith, the block
shows two input ports a and b, and four output ports z1, z2, z3, and z4.

& simple arith example [Xilinx MCode Block) |Z||E||g|

Pazs input values to a MATLAB function far evaluation in iling
fiwed-painl type. The input ports of the block are input arguments of the
function. The output porte of the black are output arguments of the
function.

Easic |Interface ” Advanced ” Irnplemeritation

Block, Interface

MATLAR function
[#ISimpletith

[Browse...] ’EditM-FiIe...]

Ewplicit S ample Period
[Specify explicit sample periad

i |

[oK H Cancel ” Help H Apply

EEX

File Edit Wigw Simulation Format Tools Help
DieHEHS $ EBR 2 I1DEI ianmaI _v__J [z
Al (D)
(1 ——wa out
2 (D)
=151 mpl 2Arith Otz
B ()
(Z 3——mb Outs
In2 4 - 4
zImple arth example Bt
Ready {1009 [[[odeds

54

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Compiling MATLAB into an FPGA

M-functions using Xilinx data types and functions can be tested in the MATLAB command
window. For example, if you type: [z1, z2, z3, z4] = xlSimpleArith(2, 3)in
the MATLAB command window, you'll get the following lines:

UFix (9, 3): 3.500000
Fix (12, 4): -8.687500
Fix (12, 8): 7.996094
Bool: true

Notice that the two integer arguments (2 and 3) are converted to fixed-point numbers
automatically. If you have a floating-point number as an argument, an xfix call is
required.

Complex Multiplier with Latency

This example shows how to create a complex number multiplier. The following shows the
xlcpxmult . m file which specifies the xlcpxmult function.

function [xr, xi] = xlcpxmult(ar, ai, br, bi)
Xr = ar * br - ai * bi;
xi = ar * bi + ai * br;

The following diagram shows the sub-system:

i mcode_block tutorial2fcpx mult w latency

File Edit Wiew Simulation Format Tools Help
O edES| & BR| <2 » 5o Nomal =] & =
ar ai 7
2 b #lopxrmult Dels st
= cpxmult Dlayd wd
—
br
The xlepxmult is a function to compute complex multiplication.
bi
Ready [100% [[oded4s

Two delay blocks are added after the MCode block. By selecting the option Implement
using behavioral HDL on the Delay blocks, the downstream logic synthesis tool is able to
perform the appropriate optimizations to achieve higher performance.

System Generator for DSP User Guide

www.xilinx.com 55

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Shift Operations

This example shows how to implement bit-shift operations using the MCode block. Shift
operations are accomplished with multiplication and division by powers of two. For
example, multiplying by 4 is equivalent to a 2-bit left-shift, and dividing by 8 is equivalent
to a 3-bit right-shift. Shift operations are implemented by moving the binary point position
and if necessary, expanding the bit width. Consequently, multiplying a Fix_8_4 number by
4 results in a Fix_8_2 number, and multiplying a Fix_8_4 number by 64 results in a
Fix_10_0 number.

The following shows the x1simpleshift . m file which specifies one left-shift and one
right-shift:

function [1lsh3, rsh2] = xlsimpleshift (din)

[1sh3, rsh2] = xlsimpleshift (din) does a left shift
3 bits and a right shift 2 bits.

The shift operation is accomplished by
multiplication and division of power

of two constant.

1sh3 = din * 8;

rsh2 = din / 4;

o° o° o° o°

o°

The following diagram shows the sub-system after compilation:

21 mcode_block_tutorial2/simple shift E |E| E‘

File Edit Wiew Simulation Format Tools Help

OledHE| 2R < [3 100 Marmal _‘-

lsh3f—— i 1)

din sdsimpleshift doutt
din mh2— 2)
dout?

=lsimpleshift

The xlzimpleshift does a left shift 3 bitz and a right =hift 2 bits.
The shift operations are accoumplished by mulliplication and division
by power of bmo con=tants.

Ready 100%: pdeds

56 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

Passing Parameters into the MCode Block

This example shows how to pass parameters into the MCode block. An input argument to
an M-function can be interpreted either as an input port on the MCode block, or as a
parameter internal to the block.

The following M-code defines an M-function x1 sconvert is contained in file
xl sconvert.m:

function dout = x1 sconvert (din, nbits, binpt)
proto = {x1Signed, nbits, binpt};
dout = xfix(proto, din);

The following diagram shows a subsystem containing two MCode blocks that use M-
function x1_sconvert. The arguments nbits and binpt of the M-function are specified
differently for each block by passing different parameters to the MCode blocks. The
parameters passed to the MCode block labeled signed convert 1 cause it to convert
the input data from type Fix 16 8 to Fix 10_5 atits output. The parameters passed to
the MCode block labeled signed convert2 causes it to convert the input data from type
Fix_16_8to Fix_8_4 atits output.

i1 mcode_block tutorial3/signed convert |Z||E|fg|
File Edit Wiew Simulation Format Tools Help
OFEdE| 4 EBE|< 2 r m i Noma =|| 30 2R .
din =l _sconwvert dDLIt
din dout]

zignad canvart 1

din %l _sconwvert dout

doutz

signed convert 2

The m-function «l_sconwert iz used by o MCode blocks Each
pases different walues for nbik and binpt to the function.

function dout = ®x1_sconvertidin, nbits, binpr)
proto = {xl%igned, nbits, binptl:
dout = xfix(proto, din):

Ready 100%; i) il |odeds

System Generator for DSP User Guide www.xilinx.com 57
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

5] signed convert 1 [Xilinx MCode Block)

Fazz input values to a MATLABR function for evaluation in =ilins
fiwed-poinl tupe. The input ports of the block are input arguments of the
function. The output ports of the black are output arguments of the
furction.

Baszic |Interface ” Advanced " Implementation

Block. Interface

MATLAE function
|:4I_sc:u:|nvert

EaFie.

Ewplicit S ample Period

[Specify explicit sample period
L |

[oK][Cancel H Help H Apply]

£ signed convert 1 (Xilinx MCode Black) [|[B)[X]

Pagz input walues to 2 MATLAR function for evaluation in #ilins
fixed-poinl typa. The input ports of the block. are input arguments of the
function. The output parts of the black are output arquments of the
furction.

Bazic | Interface | Advanced ” Implementation

Block Interface

Input name Bind to walue
din
hbits 10
binpt:]
Output name Suppress output
dout O
ok] ’ LCancel l ’ Help l [Apply

To pass parameters to each MCode block in the diagram above, you can click the Edit
Interface button on the block GUI then set the values for the M-function arguments. The
mask for MCode block signed convert 1 is shown below:

58

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

The above interface window sets the M-function argument nbits to be 10 and binpt to
be 5. The mask for the MCode block signed convert 2 is shown below:

£ signed convert 2 (Xilinx Code Block) [|[B][X]

Pagz input values to a MATLAR function for evaluation in #ilins
fixed-poinl tupa. The input ports of the block. ara input arguments of the
function. The output ports of the black are output arguments of the

function.

Easic |Interface " Advanced ” Imnplermentation

Block Interface

MATLAR function
[#l_scomver

[Browse... I [EdilM-FiIe...]

Ewplicit S ample Period
[Specifty explicit sample period

Fazz input walues to a MATLAR function for evaluation in =iling
fiwed-poinl type. The input ports of the block are input arguments of the
function. The output ports of the black are output arguments of the

furction.

Bazic | Interface | Advanced " Implementatian

Block. Interface

Input name Bind to value
din
itz a
binpt 4
Output narme Suppress output
dout]
[ok I [LCancel] [Help] ’ Apply]

The above interface window sets the M-function argument nbits to be 8 and binpt
to be 4.

System Generator for DSP User Guide www.xilinx.com
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Optional Input Ports

This example shows how to use the parameter passing mechanism of MCode blocks to
specify whether or not to use optional input ports on MCode blocks.

The following M-code, which defines M-function xI_m_addsub is contained in file
xl m addsub.m:

function s = x1 m addsub(a, b, sub)

if sub

s =a - b;
else

s = a + b;
end

The following diagram shows a subsystem containing two MCode blocks that use M-
function x1 m_addsub.

= 2 | = R
[Z1 mcode_block_tutorial3/add sub * E”EJE
File Edit Wwiew Simulation Format Tools Help
Ol S| & BEBR|=2izk = 4100 1Normal _v_] @ Il
1 } e 3
a xl_m_addsub S
2} P b add_res
b
add
sub Ll 2
il =l _rn_addzub 54_
= sub addsub_res

addsub

The mfunction =|_m_addsub is used by two MCode bladks. In one case
the input argument is specified as constant false, zo the blodk perfarms

a full precizion addition. In the ather case, no input is in the constant list,
=0 the blods has the 3rd port sub.

functim s = ®x1_m addsub({a, b, sub)

if sub
g =4a - b:
elze
s =a+h;
end
Ready [100%, [f [ode45
60 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

The Block Interface Editor of the MCode block labeled add is shown in below.

£ add (Xilinx MCode Block)

Pagz input values to 3 MATLAR function for evaluation in Xiling
fixed-point twpe. The input ports of the block are input arguments of the
function. The output parts of the block are output arguments of the
furction.

Basic: | Interface | Advanced Implementation

Block. Interface

MATLAR funclion
|>:I_m_addsub

[R—] [Eit M-File...]

Ewplicit Sample Period
[Specify explicit sample period

£ add (Xilinx MCode Block) =13 '

Pazs input walues to a MATLAB function far evaluation in ¥iling
fined-painl tppe. The input parts of the black are input argurnsnts of the
function. The output porte of the black are output arguments of the
function.

Basic Interface Advanced Implement ation

Block Interface

Input name Bind to value
-]
b
sub falze
COutput name Suppress output
3 O
[oK] [Cancel] [Help] ’ Apply]

As aresult, the add block features two input ports a and b; it performs full precision
addition. Input parameter sub of the MCode block labeled addsub is not bound with any
value. Consequently, the addsub block features three input ports: a, b, and sub; it
performs full precision addition or subtraction based on the value of input port sub.

System Generator for DSP User Guide www.xilinx.com 61
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Finite State Machines

This example shows how to create a finite state machine using the MCode block with
internal state variables. The state machine illustrated below detects the pattern 1011 in an
input stream of bits.

IFput FChesput
0L

o part of L!N =

SHENE H \. Sren firs 1
scoh /,.leli jl
’, H.._,-/r / 'H-._,-f’ w\

The M-function that is used by the MCode block contains a transition function, which
computes the next state based on the current state and the current input. Unlike example 3
though, the M-function in this example defines persistent state variables to store the state
of the finite state machine in the MCode block. The following M-code, which defines
function detect1011 w_state is contained in file detect1011 w state.m:

function matched = detectl011l_w_state(din)
This is the detectl1011l function with states for detecting a
pattern of 1011.

o° o

seen none = 0; % initial state, if input is 1, switch to seen 1
seen 1 = 1; % first 1 has been seen, if input is 0, switch
% seen 10
seen 10 = 2; % 10 has been detected, if input is 1, switch to
% seen_ 1011

o°

seen 101 = 3; now 101 is detected, is input is 1, 1011 is

detected and the FSM switches to seen 1

o

[

% the state is a 2-bit register

persistent state, state = xl1 state(seen none, {XlUnsigned, 2, O});
% the default value of matched is false
matched = false;

switch state
case seen _none

if din==
state = seen_1;

else
state = seen_none;

end

case seen 1 % seen first 1

if din==1
state = seen_1;

else

62 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling MATLAB into an FPGA

state = seen_10;
end
case seen_10 % seen 10
if din==
state = seen_ 101;
else
% no part of sequence seen, go to seen none
state = seen_none;
end
case seen 101
if din==1
state = seen_1;
matched = true;
else
state = seen_10;
matched = false;
end
end

The following diagram shows a state machine subsystem containing a MCode block after
compilation; the MCode block uses M-function detect1101_w_state.

Clmeade Llack iolorialdfdetcon 1041 fsm
Ak Edt Wed Smukbon Foemat Toos Help

DB & i@z ey s [bmd - FHBE&Es RE@EG®

The delect1011_w_state m-function is a function with a state variable.

" D
»
m10110141004041001917 |——I-|In—|—b.diﬁ dumci 4011 1 v wbabns mntatied|—] Ol ——
Signal Fiem Input wiircs moode Hock Bock.dmaskxink: '™
Wohspaoe Tiname=atack 011 _w stats Statm Wlachine
dete il |murlick _pen ook
DEeked=1

|t awer=[, 0,0, 0,0, 0, 00 -
Reaty [100% s

Parameterizable Accumulator

This example shows how to use the MCode block to build an accumulator using persistent
state variables and parameters to provide implementation flexibility. The following M-
code, which defines function x1_accumis contained in file x1 accum.m:

function g = x1 _accum(b, rst, load, en, nbits, ov, op,
feed back down scale)
% g = x1_accum(b, rst, nbits, ov, op, feed back down scale) is
% equivalent to our Accumulator block.
binpt = x1 _binpt(b);

init = 0;
precision = {x1Signed, nbits, binpt, x1lTruncate, ov};
persistent s, s = xl state(init, precision);
qa=s;
if rst
if load
% reset from the input port
s = b;
else
% reset from zero
s = init;
System Generator for DSP User Guide www.xilinx.com 63

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

end
else
if ~en
else
% if enabled, update the state
if op==0
s = s/feed back down scale + b;
else
s = s/feed back down scale - b;
end
end
end

The following diagram shows a subsystem containing the accumulator MCode block using
M-function x1_accum. The MCode block is labeled MCode Accumulator. The
subsystem also contains the Xilinx Accumulator block, labeled Accumulator, for
comparison purposes. The MCode block provides the same functionality as the Xilinx
Accumulator block; however, its mask interface differs in that parameters of the MCode
block are specified with a cell array in the Function Parameter Bindings parameter.

L-Emeade block IularialAfAccumd

Ak Edt Wew SAmukdon Fomat Tooks Halp i
OS2 mE 2 i el = Haldas RBEST®
W o} e
Sinm s T argum_nuti
b nl_acoum o - T -
Aroum_mecde_auti
M Lo Aasumulaioer
e
Lh:i 'l: : L
agd
Ralatianald Sope
Raaty 100%] ~odBds A
64 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Compiling MATLAB into an FPGA

Optional inputs rst and 1oad of block Accum_MCode1 are disabled in the cell array of the
Function Parameter Bindings parameter. The block mask for block MCode Accumulator is

shown below:

) MCode Accumulator (Xilinx MCode Block) [= |[B][X]

function.

Pazs input values to a MATLAB function for evaluation in Xiling
fired-painl type. The input ports of the block are input arguments of the
function. The output ports of the black are output arguments of the

Easic |Interface " Advanced " Irnplemneritation

Block, Interface
MATLAE function

|:-:|_EICCL.ITI

[Browse... l

[Edit M-File...]

Explicit Sample Period

[1 Specity explicit sample period

[1

Pagz input values to a MATLAE function for evaluation in #ilins
fiwed-poinl type. The input portz of the block, are input arguments of the
function. The output porte of the black are output arguments of the
furction.
Bazic | Intefface | Advanced ” Implementation

Block Interface

Input name Bind to value

b

st falze

load falze

eh true

nbitz an

o 5 aturate

ap 1]

feed_back_down_scals 1

Output name Suppress output

q [

ok I [LCancel l ’ Help l [Apply

System Generator for DSP User Guide

www.xilinx.com

UG640 (v 13.1) March 1, 2011

65

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

The example contains two additional accumulator subsystems with MCode blocks using
the same M-function, but different parameter settings to accomplish different accumulator
implementations.

FIR Example and System Verification

This example shows how to use the MCode block to model FIRs. It also shows how to do
system verification with the MCode block.

This erample demonelales how o use weclor sEtE variables.
N also showes o 1o use the W Code block 10 0o Sestern verfcatian,

&

System

Ganeralor
n o S mpla_iir L] ' o
Galaaau In ir oudput -
Iown pantoim A b
Braped
Lje! 5
P N
rap -
emoimhen ne
- i ol

= AIr_frersposd L] | i
{ian=paza fir a uiput

trarcposa Ar

The model contains two FIR blocks. Both are modeled with the MCode block and both are
synthesizable. The following are the two functions that model those two blocks.

function y = simple fir(x, lat, coefs, len, c _nbits, c_binpt, o nbits,

O_

binpt)
coef prec = {xlSigned, c_nbits, c¢_binpt, xlRound, lerap};
out _prec = {x1Signed, o _nbits, o_binpt};

coefs xfix = xfix(coef prec, coefs);

persistent coef vec, coef vec = xl state(coefs xfix, coef prec);
persistent x line, x line = xl state(zeros(l, len-1), x);
persistent p, p = xl1 state(zeros(l, lat), out prec, lat);

sum = x * coef vec(0);

for idx = 1:len-1
sum = sum + x line(idx-1) * coef vec(idx);
sum = xfix(out prec, sum);

end

y = p.back;

p.push front pop back (sum) ;

x line.push front pop back (x) ;

function y = fir transpose(x, lat, coefs, len, c _nbits, c_binpt,
o nbits, o_binpt)

coef prec = {x1Signed, c_nbits, c binpt, xlRound, xlWrap};
out prec = {x1Signed, o nbits, o binpt};
coefs xfix = xfix(coef prec, coefs);
persistent coef vec, coef vec = xl state(coefs xfix, coef prec);
persistent reg line, reg line = xl1 state(zeros(l, len), out prec);
if lat <= 0
error ('latency must be at least 1');
end

66

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Compiling MATLAB into an FPGA

lat = lat - 1;
persistent dly,

if lat <= 0

y = reg line.back;

else

dly = x1 state(zeros(1,

y = dly.back;

dly.push_front pop_ back(reg_line.back) ;

end

for idx = len-1:-1:1

reg line (idx)

end

reg line(0) =

= reg line(idx - 1)

lat),

coef vec(len - 1) *

The parameters are configured as following:

& low perform fir (Xilinx MCode Block)

B=)E

out_prec,

+ coef vec(len - idx - 1)

Fazz input walues to a MATLAE function for evaluation in #ilins
fiwed-poinl type. The input ports of the block are input arguments of the
function. The cutput partz of the black are output arguments of the
furction.
Bazic | Interface | Advanced | Implementation

Block. Interface

Input name Bind to value

%

at 1

coefs ain(1:100)

len 100

o_nbitz 3

o_hinpt g

o_nbitz 2

o_hinpt E

Output name Suppress output

y]

0K] ’ Cancel] [Help l [Apply

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

67

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

In order to verify that the functionality of two blocks are equal, we also use another MCode
block to compare the outputs of two blocks. If the two outputs are not equal at any given

time, the error checking block will report the error. The following function does the error

checking:

function eq = error ne(a, b, report, mod)
persistent cnt, cnt = x1_state(0, {xlUnsigned, 16, 0});
switch mod

case 1
eq = a==b;
case 2
eq = isnan(a) || isnan(b) || a == b;
case 3
eq = ~isnan(a) && ~isnan(b) && a == b;
otherwise
eq = false;
error (['wrong value of mode ', num2str(mod)]) ;
end
if report
if ~eq
error (['two inputs are not equal at time ', num2str(cnt)]);
end
end
cnt = cnt + 1;

The block is configured as following:

£ error when ne (Xilinx MCode Block) E|@|Pz|

Pazs input values to a MATLAB function for evaluation in #iling
fixed-painl tupe. The input ports of the black are input arguments af the
function. The output ports of the block are output arguments of the
function.
Basic: Interface Advanced Implermentation

Block Interface

Input name Bind to value

a

b

repart e

mod 1

Output name Suppress output

eq O

ok I ’ Cancel l ’ Help l [Apply
68 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILIN

X.

Compiling MATLAB into an FPGA

RPN Calculator

This example shows how to use the MCode block to model a RPN calculator which is a
stack machine. The block is synthesizable:

=] mcode_block_rpn_calculator =] B3
File Edit View Simulation Format Tools Help
Dl HE | &= 6 = mpo [[Noma HEeBEE eERES
iv \Implementlng a Simple Calculator Using Mcode
.
Syslam
Ganaralor
| - a ‘ S
input Input - d
| onesil, kngthids)) }—P'| In |—.9n active Sut -
walid en active
Moo
The operation sequence is: e Scope
3
4 Double alick —
5 for System Generator {c) Copyright 1995-2011 Xilinx, Inc. To Workspace
6 I-ll-;iLll-th-IITriv ' #- All rights reserved.
add i)) .
mult Double Click for Copyright Motice
sub
35
drop
neg

Ready

add=2
sub =13
mult=4
neg=>5
drop =6

Input port d is a 9-bit port. d[8] indicates the type ofthe d and d[7:0]is the actual value.
Ifd[8] is 1, it's an operator. The accepted operator values are:

If d[8] is 0, d[7:0] is the data to be operated.

Qutport q is the value of the accumulator register. Qutport active indicates whether whether
the register holds a valid data.

[100% [[lode45 A

The following function models the RPN calculator.

function [qg, active] = rpn calc(d, rst, en)

d nbits = x1 nbits(d);

% the first bit indicates whether it's a data or operator
is oper = x1 slice(d, d nbits-1, d nbits-1)==1;

din = x1 force(xl slice(d, d nbits-2, 0), xlSigned, 0);

% the lower 3 bits are operator

op = x1_slice(d, 2, 0);

% acc the the A register

persistent acc, acc = xl state(0, din);

the stack is implemented with a RAM and

an up-down counter

persistent mem, mem = x1 state(zeros(l, 64), din);
persistent acc_active, acc_active = x1 state(false, {xlBoolean}) ;
persistent stack active, stack active = xl1 state(false,

o° o°

{x1Boolean}) ;

stack_pt prec = {x1lUnsigned, 5, 0};
persistent stack pt, stack pt = x1 state(0, {xlUnsigned, 5, 0});

°

% when en is true, it's action

System Generator for DSP User Guide www.xilinx.com
UG640 (v 13.1) March 1, 2011

69

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Il
N

OP_ADD
OP SUB = 3;
OP_MULT = 4;
OP NEG = 5;
OP_DROP = 6;
g = acc;
active = acc_active;
if rst
acc = 0;
acc_active =
stack pt = 0;
elseif en
if ~is oper
% enter data, push
if acc_active
stack pt = xfix(stack pt prec, stack pt + 1);

false;

mem(stack pt) = acc;
stack active = true;

else
acc_active = true;

end

acc = din;

else

if op == OP_NEG
% unary op, no stack op
acc = -acc;

elseif stack active
b = mem(stack pt);
switch double (op)
case OP_ADD
acc = acc + b;
case OP_SUB
acc = b - acc ;
case OP_MULT

acc = acc * b;
case OP_DROP
acc = b;

end
stack pt = stack pt - 1;
elseif acc_active

acc_active = false;
acc = 0;
end
end
end
stack_active = stack pt ~= 0;
70 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Compiling MATLAB into an FPGA

Example of disp Function

The following MCode function shows how to use the disp function to print variable

values.

function x = testdisp(a, b)
persistent dly, dly =
persistent rom, rom =
disp('Hello World!"');
disp(['num2str(dly) is ',
disp('disp(dly) is ');
disp(dly) ;
disp('disp(rom) is
disp(rom) ;
a2 = dly.back;
dly.push front pop back(a) ;
a + b;
disp(['a = ', num2str(a), ', ',
'b = ', num2str(b), ', ',
'x ', num2str(x)]);
disp (num2str (true)) ;
disp('disp(10) is');
disp(10) ;
disp('disp(-10)
disp(-10);
disp('disp(a) is
disp(a) ;
disp('disp(a == b)');
disp(a==b) ;

x1l state([3, 2,

")

X =

is');

")

The Enable print with disp option must be checked.

€£) MCode [Xilinx MCode Block)

Pagz input values to a MATLAE function for evaluation in =ilin:
fixed-poinl tups. The input portz of tha block are input arguments of the
function. The output ports of the black are output arguments of the
furction.

Basic || Interface | Advanced | Implementation
Simulation

Override with doubles
Enable printing with disp

[] Enable MATLAE debugging [slows simulation)

oK][Cancel ” Help H Apply

x1 state(zeros(1,
1, ol,

8), a);

a);

num2str (dly)]) ;

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

71

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Here are the lines that are displayed on the MATLAB console for the first simulation step.

mcode_block_disp/MCode (Simulink time: 0.000000, FPGA clock: 0)
Hello World!
num2str(dly) is [0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000]
disp(dly) is

type: Fix 11 7,

maxlen: 8,

length: 8,
0: binary 0000.0000000, double 0.000000,
1: binary 0000.0000000, double 0.000000,
2: binary 0000.0000000, double 0.000000,
3: binary 0000.0000000, double 0.000000,
4: binary 0000.0000000, double 0.000000,
5: binary 0000.0000000, double 0.000000,
6: binary 0000.0000000, double 0.000000,
7: binary 0000.0000000, double 0.000000,
disp(rom) is
type: Fix 11_7,
maxlen: 4,
length: 4,
0: binary 0011.0000000, double 3.0,
1: binary 0010.0000000, double 2.0,
2: binary 0001.0000000, double 1.0,
3: binary 0000.0000000, double 0.0,
a = 0.000000, b = 0.000000, x = 0.000000
1

disp(10) is
type: UFix 4 0, binary: 1010, double: 10.0
disp(-10) 1is
type: Fix 5 0, binary: 10110, double: -10.0
disp(a) is
type: Fix 11 7, binary: 0000.0000000, double: 0.000000
disp(a == b)
type: Bool, binary: 1, double: 1

72

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Importing a System Generator Design into a Bigger System

Importing a System Generator Design into a Bigger System

A System Generator design is often a sub-design that is incorporated into a larger HDL
design. This topic shows how to embed two System Generator designs into a larger design
and how VHDL created by System Generator can be incorporated into the simulation
model of the overall system.

Starting with Release 10.1, System Generator introduced a new integration flow between
System Generator (Sysgen) and Project Navigator (ProjNav). This first phase of integration
concentrates on the following areas:

¢ Allows you to add a System Generator design as a sub-level to a larger design
¢ Consolidates and associates System Generator constraints to the top-level design

¢ Enables you to perform certain design iterations between Project Navigator and the
System Generator design

HDL Netlist Compilation

Selecting the HDL Netlist compilation target from the System Generator token instructs
System Generator to generate HDL along with other related files such as NGC files and
EDIF files that implement the design. In addition, System Generator produces auxiliary
files that simplify downstream processing such as bringing the design into Project
Navigator, simulating the design using an HDL simulator, and performing logic synthesis
using various logic synthesis tools. See the topic System Generator Compilation Types for
more details.

Starting with Release 10.1, the System Generator project information is encapsulated in the
file <design name>_cw.sgp or <design name>_mcw.sgp depending on which
clocking option is selected. This topic shows how multiple System Generator designs can
be included as sub-modules in a larger design.

Integration Design Rules

When a System Generator model is to be included into a larger design, the following two
design rules must be followed.

Rule 1: No Gateway or System Generator token should specify an IOB/CLK location
constraint. Otherwise, the NGDBuild tool will issue the following warning;:

WARNING:NgdBuild:483 - Attribute "LOC" on "clk" is on the wrong type
of object. Please see the Constraints Guide for more information on
this attribute.

Also, IOB timing constraints should be set to "none" in this case as well to avoid the
following NGDBuild error:

NgdBuild:756 -Could not find net(s) 'gateway out(1l)' in the design.
To suppress this error, specify the correct net name or remove the
constraint.

Rule 2: If there are any I/O ports from the System Generator design that are required to be
bubbled up to the top-level design, appropriate buffers should be instantiated in the top-
level HDL code.

System Generator for DSP User Guide www.xilinx.com 73
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

New Integration Flow between System Generator & Project Navigator

The illustration below shows the entire flow of how multiple System Generator designs
can be integrated into Project Navigator as lower-level designs. System Generator
generates a project file with an extension .sgp that you can add a System Generator source
type in Project Navigator. This SGP file is an empty file by design, but by its location, it
implicitly identifies the location of the System Generator model. Prior to the integration
with Project Navigator in Release 10.1, you had to manually consolidate and associate UCF
constraints into the top-level design. It is now done automatically during the
implementation in Project Navigator as shown in the following figure.

ey

A i Project Navigator |
. MATLABI ; i |
| Simulink I i | |
| ! | SGPISEProjectFlle | .| TopfHighe el design |
: ' i i i 26P 1 i
: i -MOL Lacation oo i »GP 2 i
; t | -HDL Metiist ; ! !
5 i | -Cone Geanarator : : -
i * | Metists : i _ =
[-Constraints i i Synihecize g |
: -Sirnulation Files ; : !
]] i 5 |
i : Corstraint g
i Censolidstion o
] 15 50 tiatican i
i i
i i
i |
i i
Ciasigh lterationg -I
74 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Importing a System Generator Design into a Bigger System

A Step-by-Step Example

In this example, two HDL netlists from System Generator are integrated into a larger
VHDL design. Design #1 is named SPRAM and design #2 is named MAC_FIR. The top-
level VHDL entity combines the two data ports and a control signal from the SPRAM
design to create a bidirectional bus. The top-level VHDL also instantiates the MAC_FIR
design and supplies a separate clock signal named clk2. A block diagram of this design is
shown below.

[Top_level VHDL

|

|

I spram_cw

| { Sysgen Design #1)

ag B— jad

dat < l—— dAla data o

rd wr w
clk Hell
mac_fir_cw
[Sysgen Design #2)

|

1

1

I

1

1

I

1

1

- I
| 1
| 1
I I
| 1
| 1
I 1
| 1
| |

fir in * »(dzta data o * fir_out

| 1
I

|

1

I

I

The files used in this example are located in the System Generator tree at pathname
<ISE Design Suite tree>/sysgen/examples/projnav/mult diff designs.
The following files are provided:

¢ spram.mdl - System Generator design #1

e mac_fir.mdl - System Generator design #2

Files within the sub-directory named top_level:

e top_level.ise -ProjNav project for compiling top_level design
e top_level.vhd- Top-level VHDL file

e top level testbench.do- Custom ModelSim .do file

e top level testbench.vhd-Top-level VHDL testbench file

e wave.do-ModelSim .do file called by top_level testbench.do to display
waveforms

System Generator for DSP User Guide www.xilinx.com 75
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Generating the HDL Files for the System Generator Designs

The steps used to create the HDL files are as follows:

1. Open the first design, spram.mdl,in MATLAB. This is a multirate design due to the
down sampling block placed after the output of the Single Port RAM.

2. Double click on the System Generator token; select the HDL Netlist target and press
the Generate button. By pressing the Generate button, the HDL file for this design is
created in the directory
<ISE Design Suite tree>/sysgen/examples/projnav/mult diff desig
ns/hdl _netlistl.

3. Repeat steps 1 and 2 for themac_fir.mdl model. The HDL file for this design is
created in the directory
<ISE Design Suite trees/sysgen/examples/projnav/mult diff desig
ns/hdl netlist2.

Note: You are now finished generating HDL Netlists from System Generator

Switching to Different HDL Libraries

When integrating two or more System Generator designs into a bigger design, you need to
rename HDL libraries to prevent name clashes and other undesired behaviors during
simulation. System Generator provides a utility that switches library names for all related
files in your System Generator design. In addition, it also makes a backup copy in a folder
justin case you want to revert back to the original library name. The following is the syntax
for this utility:

Syntax:

xISwitchLibrary(<target_dir_pathname>, <from_lib_name>, <to_lib_name>)
<target_dir_pathname>: location of the design

<from_lib_name>: Original HDL library name

<to_lib_name>: New HDL library name

1. From the MATLAB Console, enter the following command:
x1SwitchLibrary ('hdl netlistl', 'work', 'designl 1lib')

2. Next, from the MATLAB Console, enter the following command:
x1SwitchLibrary('hdl netlist2', 'work', 'design2 1lib')

76 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Importing a System Generator Design into a Bigger System

The transcript should look similar to the following:

=r xliwitehlibrary('hdl necliscl','work','designl lib')

INFO: Zwitching HDL likbrary references in design 'spram cw' ...

INFO: A baZQup of the original files can be found at 'C:/Hilinx/12.1 ISE DS/ISE/s
INFO: Processing file 'spram.wvhd!

INFO: Processing file 'spram cw.vhd'

INFO: Frocessing file 'isim spream.pr]’

INFO: FProcessing file 'xst sprawm.prij’

INFO: Processing file 'wcom.do!

TMFO: Processing file 'wsim.do!

INFO: Frocessing file 'pn bhehavioral.do!

INFO: Frocessing file 'pn posttranslate.do’

INFO: Frocessing file 'pn postwap.do!

INFO: Frocessing file 'pn postpar.do'

xx ®l3witehlLibrary('hdl netlistz','work','designZ lib')

INFO: Zwitching HDL library references in design 'mac fir cuw'

INFO: A backup of the original files can be found at 'C:/Xilinx/12.1 ISE DS/ ISE/s
INFO: Processing file 'mac fir.vhd'

INFO: Frocessing file 'mac fir cw.vhd'

INFO: Frocessing file 'isim mac fir.prj'

Adding System Generator Source into the Top-Level Design
The next two steps are used to synthesize the top_level design:
1. Launch ISE and reload the pre-generated top-level design ISE project at
~top_level/top_level.ise.

Note: At this point, your Project Navigator should look like the figure below. Both spram_cw and
mac_fir_cw instances are instantiated at the top_level design. But since they are not located on the
same directory as the top-level design, Project Navigator puts a question mark next to each one of
them to indicate that it can not find these two instances / modules.

Design +0F X

[1] | View: * ﬁi}lmplementatinn = M Simulation

=] | Higrarchy

| B E§ xcSvsxSO-1FF1138

BT 0.

op_level - structural (top_level vhd)
_Spram_ciw - spram_cw ()
u_mac_Ffir - mac_fir_cw

<«

| Bd MoProcesses Running

T Processes: top_level - skructural

- _1: il Design Summary/Reports
_ | B Design Utilities

- .]: [+ User Constrainks
— | B ®Q Synthesize - 3T

T |52 Implement Design

{} Generate Programming File
[+ E@ Configure Target Device

- % Analyze Design Using ChipScope

2. Add the System Generator source: under the Sources tab, right-click on
u_spram_cw -> Add Source...at
<ISE Design Suite tree>/sysgen/examples/projnav/mult diff desig
ns/hdl netlistl/spram cw.sgp

System Generator for DSP User Guide www.xilinx.com 77
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

3. Repeatitem 2 with u_mac_fir at
<ISE Design Suite tree>/sysgen/examples/projnav/mult diff desig
ns/hdl_netlist2/mac_fir cw.sgp

4. Asshown below, make sure the file top_1level is selected, then implement the design
by double clicking on Implement Design in the Processes window. Once the
implementation is finished, Project Navigator should look like the figure below.

Design +05F X
[| Yiews i+ ﬁj}lmplementation M Simulation

% Higrarchy |
> 'E_':j top_level
B EF wcSvsxS0t-1FF1136

=8 ﬁnﬁ top_level - structural (top_level.whd)
- B8 U_Spram_cow - Spram_cw (spram_cw, xise)
Lo u_mac_fir - mac_fir_cw (mac_fir_cw,xise)

2 Mo Processes Running

Processes: top_level - structural

- Design Ukilities

- User Constraints

P2 Synthesize - x5T

% Implement Design

} Generate Programming File

[+~ '-f@ Configure Target Device

- g% Analyze Design Using ChipScope

E Start EIE Design | U™ Files | h Librariesl

-
T
r {: - I Design Summary/Reporks
=

o 00 O B

5. Examine the timing constraints in the Place and Route Report that is located in the
Detailed Reports section of the Design Summery pane.

Note that in the PAR report the multirate constraints were met:

Conateaint | ©heck | Wokat Ceas |0 Bedb Coos | Timing | Timing

| | 2lack | Aichilevshle | Errars | dcore
T= olk £A88215c2 = PERICDD TINEGRP "Clk I8 | SEIOFR | FE.339n3| J.666Dal ol o
B5&15c2" 100 ne HIGH S0k | HSLD | 0.308n=| | aj [n]
Té_clk _cdbYea4dl = PERICT TINEGRF “"clk c4 | SETOR | SE.3 6603 Z.E654nal aj [n]
b7e2441"™ 100 n= HIGH S50k | HoLO | O.0&3n=| | aj a

T# e 16 cdhTel4d group To ce 15 cdhTeidd | SETUR 155756802 Z.152na|]

| |

_graupl = WATDELAY FRCOW TIHEGAR " | HOLD | 0. 106x=| | o o
1 |
| |

o

©e 1B cdnveEsd groupl® TO TINEGRP "oe 16
cih7ez44 groupl® 1600 nm

T¥ oe 3 res8ilSe group Co Ce I CY9SSEISC_Q

| N'h
roup? = MI¥OFLAT FROM TINFCRF tee |

|

1

Nlal winl NS n/L

OBNOOXO

_Z_T885215c groupz™ TO TIMEGRE "ce Z_rass
¥18c_groupe™ 200 o=

Constraints for each System Generator design were created and translated to a UCF (User
Constraint File). These UCF constraint files were then consolidated and associated during
ISE implementation (NGDBUILD). They are briefly described as follows:

A system sample period of 100 ns was set in the System Generator token for both designs
1&2)

o TS_clk_f488215c2 constraints are from the SRAM design (1)

78

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Importing a System Generator Design into a Bigger System

o The TS_clk_c4b7e2441 constraints are from the FIR design (2)

e The cel6_c4b7e244_group_to_cel6_cb47e244_groupl constraint is for all the

synchronous elements after the down sampler and it is set to sixteen, the system
sample period (3)

¢ The down sampling block in the SRAM design performs a down sample by 2. The
ce2_f488215c_group_to_ce2_f488215c_group2 constraint is for all the synchronous
elements after the down sampler and is set to twice the system sample period (4)

With the new integration between System Generator and Project Navigator, these
constraints are automatically associated and consolidated by Project Navigator up to the
top-level design. This flow is only available starting with Release 10.1.

Simulating the Entire Design

To perform a behavioral simulation of the top_level design, do the following:

1. System Generator creates VHDL files and invokes the selected logic synthesis tool to
generate the HDL Netlist. These VHDL files are used when simulating the top-level
design. The VHDL files generated for a design are named <design>_ cw.vhd, and
<designs>.vhd. Open the custom ModelSim do file named “top_level_testbench.do”
to see how the VHDL files for both designs are referenced.

Memory initialization (.mif) and coefficient (. coe) files that are used during
simulation must be placed in the same directory as the top-level VHDL file. For this
example, the mif files are copied from bothhdl_netlistland hdl_netlist2 sub-
folders by the following statement in the ModelSim do file (top_level_testbench.do):

foreach i [glob ../hdl netlistl/*.mif]
file copy -force $i .

In a case where there are also coefficient files, you can add a similar statement to the do
tile to copy the files up to the top-level VHDL file.

2. Change the Design View to Simulation. Select the top_level_testbench-
structural(top_level.vhd) source file. This file is imported into the project as a
testbench file, thus allowing you to simulate the design using the Simulator.

Design +0F X
[0 | Yiew: (o ﬁj}lmplementation f+ M Simulation
LEEJ Behavioral ;I
HIEJ H.ierarchy | -
— 'ILE"'_'] top_level
s | B £ wcSvsxst-17F1136
= [+ default_clock_driver - structural {mac_fir_cw.vhd)
Q; [+ mac_fir_tb - structural {mac_fir_th.vhd}
single_reg_w_init - skructural {mac_firvhd)
) [+ spram_th - skructural {spram_tb.vhd})
4] stl17e - skructural {mac_firwhd)
— synth_reg_reg - behay (mac_fir.vhd)
a [+ synth_reg_w_init - struckural {mac_fir.vhd)
[+ synth_reg - skructural {mac_firvhd)
[}I ¥ itop_level_testbench - structural ftop_level_testhench,vhd)
— "ug] xlclk - behaviar (mac_fir_tb,vhd) ;I
System Generator for DSP User Guide www.xilinx.com

79
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

3. In the Processes View, right click on Simulate Behavioral Model and select Process
Properties... You should see a Simulation Properties dialog box as shown below. Note
that aCustom Do File has been specified.

B ' Process Properties - Simulation Properties ﬂ

Category

Switch Mame Property Name Yalue

Si.mulation Propertes & Compiled Library Direckory ILINY <language{ <simulator > +.]
i Display Properties

Ignore Pre-Compiled Library Warning Check, ul

Generate Yerbose Library Compilation Messages [V

Use: Custom Do File 3

Cuskom Do File 0 _levelftop_level_testberch.do .o
Use Automatic Do File ol

Sirmulation Fun Time 1000ns

Property display level: IStandard VI [W Display switch names Default |
QK I Cancel | Apply | Help |

4
##f HOTE: customer.do file
i
uvlib designi_lib
vcom -explicit -93 -work designi_lib *../hdl_netlist1/spram.vhd™
vcom -explicit -92 -work designi1_lib *"../hdl_netlist1/spram_cw.uhd™
vlib designZ_lib
vcom -explicit -93 -work design?_lib *../hdl_netlist2/mac_fir.vhd"
vcom -explicit -93 -work designZ_lib *../hdl_netlist2/mac_fir_cw.uhd"
vlib work
vcom -explicit -93 top level.vhd
vcom -explicit -93 top_level_testbench.vhd
foreach i [glob ../hdl_netlist1/x.mif] ¢
file copy -force $i .
H
foreach i [glob ../hdl_netlist2/=.mif] {
file copy -force $i .
H
usim -t 1ps -1lib work top level testbench
do wave.do
run 18888ns
80 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Importing a System Generator Design into a Bigger System

The previous screen shot shows the ModelSim commands used to compile the VHDL code
generated by System Generator. To simulate the top_level design, double left click on the
Simulate Behavioral Model process. The ModelSim .do file compiles the VHDL code and
runs the simulation for 10000 ns. The resulting waveform is shown below.

o —

IBAOETSAEL 0007 ¥0000T._ 00007

Jto pP_

Jop_level_testbenchddata

=

ench/res_data

fop_lE tberchreal_fir_... §0.0097

Summary

This topic has shown you how to import a System Generator Design into a larger system.
There are a few important things to keep in mind during each phase of the process.

While creating a System Generator design:

e IOB constraints should not be specified on Gateways in the System Generator model;
neither should the System Generator token specify a clock pin location.

e Use the HDL Netlist compilation target in the System Generator token. The HDL
Netlist file that System Generator produces contains both the RTL, EDIF and
constraint information for your design.

For top-level simulation:

e Create a custom ModelSim .do file in order to compile the VHDL files created by
System Generator. Modify the Project Navigator settings to use this custom .do file

New capabilities:

e Add System Generator Source type project file (.sgp) into Project Navigator as a sub-
module design

¢ Consolidate and associate System Generator constraints into the top-level design

¢ Launch MATLAB and System Generator MDL directly from Project Navigator to
perform certain design iterations

System Generator for DSP User Guide www.xilinx.com 81
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Configurable Subsystems and System Generator

A configurable subsystem is a kind of block that is made available as a standard part of
Simulink. In effect, a configurable subsystem is a block for which you can specify several
underlying blocks. Each underlying block is a possible implementation, and you are free to
choose which implementation to use. In System Generator you might, for example, specify
a general-purpose FIR filter as a configurable subsystem whose underlying blocks are
specific FIR filters. Some of the underlying filters might be fast but require much hardware,
while others are slow but require less hardware. Switching the choice of the underlying
filter allows you to perform experiments that trade hardware cost against speed.

Defining a Configurable Subsystem

A configurable subsystem is defined by creating a Simulink library. The underlying blocks
that implement a configurable subsystem are organized in this library. To create such a
library, do the following:

¢ Make a new empty library.

i1 Library: untitled *
File Edit Wiew Format Help

O =Ed&E iz] o BEE

Configurable Subsystem
Example Library

Ready 100% Unlocked

¢ Add the underlying blocks to the library.

E!Lihrary: untitled *
File Edit Wiew Format Help

O zE&E iz] = BEE

Configurable Subsystem
Example Library

n wn xn wn
LESP Blockset Simulation bModel Hilinx DA FIR
Ready 100% Unlocked
82 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Configurable Subsystems and System Generator

e Draga template block into the library. (Templates can be found in the Simulink library

browser under Simulink /Ports & Subsystems/Configurable Subsystem.)

O 4 # |

Configurable Subsystem: Select the zettings for the subszystem block,

=1 Tgh| Sirnulink. ”
2| Commonly Used Blocks
y Zonkinuous

| Discontinuities

| Discrate

Configurable
Subsgyztem

Atomic Subsstem

Eubsystem

hsystern

£

k) Library: untitled *
File Edit Yiews Format Help
b =S
d
Template
i Wn *n ¥n al
Configurable DSP Blockset Simulation Model Hilinw DA FIR
Subsystem al
Ready 100%: Unlacked

¢ Rename the template block if desired.
e Save the library.
e Double click to open the template for the library.

¢ In the template GUI, turn on each checkbox corresponding to a block that should be
an implementation.

List of block choices Portnames
Black hame Inports | Outports |
OSF Blockset Simulation Maodel
¥
Hiling DA FIR
[kK ” Cancel ” Help ”| Apply "

e Press OK, and then save the library again.

System Generator for DSP User Guide www.xilinx.com
UG640 (v 13.1) March 1, 2011

83

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Using a Configurable Subsystem

To use a configurable subsystem in a design, do the following:

design.

E! example

File

Edit View Simulation Format

Open the library.

k ools Help

As described above, create the library that defines the configurable subsystem.

Drag a copy of the template block from the library to the appropriate part of the

The copy becomes an instance of the configurable subsystem.

IS[=1E3

DEHES| fE2R|Es 422 r m o

I Nermal

Ready

&

Syzlem
Genzrator

MNoks Source

Configurable Subsystem Example

FIR Filters for Simu

lation and Generation

Input Signal » |:|
ol I ¥n "‘-OL‘It Fieed Sgal ™
[l
FIR Filker Scope
DEF Bhoc ket Simulation Modsl
) - Dauble ¢
(c) Copyright j995—2011 Xilinx, Inc. for Systern Generator
#- All rights reserved. documentation on this example,
Double Click for Copyright Motice
[100% [[[Variable Step Discrete A

Right-click on the instance, and under Block choice select the block that should be

used as the underlying implementation for the instance.

—»

xn

wh

-

FIR Filter

DO%P Blockset Simulatio

! - Fittered Signal !

Explore Soopa

uk |
Copry |
Delete |

Block Cheice

ld v D5P Blocks
Mask Parameters, ..
Sub3yskemn Parameters, .,
Block Properties, .

et Simulation Model

ilinx DA FIR

Model Advisor. ..

84

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Configurable Subsystems and System Generator

Deleting a Block from a Configurable Subsystem

To delete an underlying block from a configurable subsystem, do the following:
¢ Open and unlock the library for the subsystem.

e Double click on the template, and turn off the checkbox associated to the block to be
deleted.

e Press OK, and then delete the block.

=) Configuration dialog : Configurable Subsystem

List of block choices Portnames
Block narme Member Inports Outports
DSP Bloraza Aoton Mo
¥
Hilink DAFIR
a O D

Ok “ Cancel H Help H Apply
Template
®n wn xn n
Eonfigurable DSP Blockset Simulation bModel Hiliree DA FIR
Subsystemn
Ready 100%: Unlacked

e Save the library.
e Compile the design by typing Ctrl-d.

¢ If necessary, update the choice for each instance of the configurable subsystem.

Adding a Block to a Configurable Subsystem

To add an underlying block to a configurable subsystem, do the following;:

¢ Open and unlock the library for the subsystem.
¢ Drag ablock into the library.

System Generator for DSP User Guide www.xilinx.com 85
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

e Double click on the template, and turn on the checkbox next to the added block.

=): Configuration dialog : Configurable Subsystem E|E|E|
List of block choices Fort names
Block name Mernber Inports Outports
: ¥
¢] |MewBlock

B

[o]34 H Cancel ” Help ” Apply
Templats
xn W xn wn
Configurable DSP Blodkset Simulation Model Hilins DA FIR
Subsystem
xn W
Mew Block
Ready 100%: Unlacked

e Press OK, and then save the library.
e Compile the design by typing Ctrl-d.

e If necessary, update the choice for each instance of the configurable subsystem.

Generating Hardware from Configurable Subsystems

In System Generator, blocks both participate in simulations and produce hardware.
Sometimes, for a configurable subsystem, it is worthwhile to use one underlying block for
simulation, but use another for hardware generation. For example, it might make sense to
use ordinary System Generator blocks to produce simulation results, but use a black box to
supply the corresponding HDL. The System Generator configurable subsystem manager
block makes this possible; the ordinary block choice for the configurable subsystem is used
when simulating, and the block specified in the manager is used for hardware generation.

To use a configurable subsystem manager, do the following:

e Open and unlock the library for the configurable subsystem.

¢ Select one of the blocks in the library, and double click to open it. (Aside from the
template any block will do, provided the block is itself a subsystem. If there is no such
subsystem in the library, it is not possible to use a configurable subsystem manager.)

86 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Configurable Subsystems and System Generator

e Drag a manager block into the subsystem opened above. (The manager block can be
found in Xilinx Blockset/Tools/Configurable Subsystem Manager).

bra Browse L]
O = Ha dh |
System Generator: System Generator
+- W@ Real-Time Warkshop ~ ey ~
+-- W@ Real-Time Workshop Embeddet Configurable Subsystem
B Report Generatar Manager
+ W@ Signal Processing Blockset)
: EJ sirnulink Extras Dizreqard Subsystem
W simulink Verification and validat =
B atefloug E LA T
= Link: example_tib/Xilinx DA FIR * B)X%]
File Edit Yiew o Help bite Probe
== = =ER
ation
10 24 0>
n ¥ icroconiroller
/ FIR [
F stimator
2
Configurable Subsystem v
hnager
Ready 100% Locked

e Double click to open the GUI on the manager, then select the block that should be
used for hardware generation in the configurable subsystem.

J Configurable Subsystem Managen |:||:,fg|

Manage Configurable Subsystem

When gerersting, use:

Configurakle Subsystem Block Choice w

Configurable Subsystem Block Choice
DSP Blockset Simulstion Model

[—

e Press OK, then save the subsystem, and the library.

The MathWorks description of configurable subsystems can be found the following
address:

http:/ /www.mathworks.com/access/helpdesk/help/toolbox/simulink/slref/configura
blesubsystem.shtml.

System Generator for DSP User Guide www.xilinx.com 87
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Notes for Higher Performance FPGA Design

When you use the following design practices, it helps System Generator produce efficient
and high performance hardware realizations.

Review the Hardware Notes Included in Block Dialog Boxes

Pay close attention to the Hardware Notes included in the block dialog boxes. Many blocks
in the Xilinx Blockset library have notes that explain how to achieve the most hardware
efficient implementation. For example, the notes point out that the Scale block costs
nothing in hardware. By contrast, the Shift block (which is sometimes used for the same
purpose) can use hardware.

Register the Inputs and Outputs of Your Design

Register inputs and outputs of your design. This can be done by placing a Delay block
having latency 1 or a Register block after the Gateway In and before Gateway Out blocks.
Selecting any of the Register block features adds hardware.

Double registering the I/Os may also be beneficial. This can be performed by instantiating
two separate Register blocks, or by instantiating two Delay blocks, each having latency 1.
This allows one of the registers to be packed into the IOB and the other to be placed next to
the logic in the FPGA fabric. A Delay block with latency 2 does not give the same result
since this block is implemented using an SRL16 and cannot be packed into an IOB.

Insert Pipeline Registers

Insert pipeline registers wherever possible. Deep pipelines are efficiently implemented
with the Delay blocks since the SRL16 primitive is used. If an initial value is needed on a
register, the Register block should be used.

Use Saturation Arithmetic and Rounding Only When Necessary

Saturation arithmetic and rounding have area and performance costs. Use only if
necessary.

Use the System Generator Timing and Power Analysis Tools

You can use System Generator Timing and Power Analysis Tools to Meet Timing
Requirements. System Generator provides a Timing Analysis tool that can help resolve
timing related issues. The timing analysis tool shows you the slowest paths and those
paths which are failing to meet the timing requirements. The power analysis tool XPower
can be used to provide a quick, less accurate analysis or a complete analysis using a full
HDL simulation run. For more information, refer to topic Timing and Power Analysis
Compilation.

Set the Data Rate Option on All Gateway Blocks

Select the IOB timing constraint option Data Rate on all Gateway In and Gateway Out
blocks. When Data Rate is selected, the IOBs are constrained at the data rate at which the
IOBs operate. The rate is determined by the Simulink system period(sec) field in the
System Generator token and the sample rate of the Gateway relative to the other sample
periods in the design.

88

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Processing a System Generator Design with FPGA Physical Design Tools

Reduce the Clock Enable (CE) Fanout

An algorithm in the ISE® Mapper uses register duplication and placement based on
recursive partitioning of loads on high fanout nets. This means improved FMAX on
System Generator designs with large CE fanout.

Although this feature is enabled in System Generator by default, the fanout reduction
occurs downstream during the ISE mapping operation and the following MAP options
must be turned on:

e Perform Timing-Driven Packing and Placement : on

e Map Effort Level : High

e Register Duplication : on

If you are using the ISE Project Navigator flow, these MAP options are also on by default.
However, if you are using a System Generator flow like Bitstream, you must turn on these

MAP options by modifying the bitstream .opt file or by providing you own .opt file. See
the topic XFLOW Option Files for more information.

Processing a System Generator Design with FPGA Physical
Design Tools

HDL Simulation

System Generator creates custom .do files for use with your generated project and a
ModelSim simulator. To use these files, you must have ModelSim. You may run your
simulations from the standalone ModelSim tool, or you may associate it with the Xilinx
ISE® Project Navigator, and run your simulations from within Project Navigator as part of
the full software implementation flow.

Compiling Your IP

Before you can simulate your design, you must compile your IP (cores) libraries with
ModelSim.

ModelSim SE

There are multiple ways to compile your IP libraries. Complete instructions for running
compxlib can be found in the chapter titted COMPXLIB in the Command Line Tools User
Guide.

From the Windows command line you can compile the necessary HDL libraries using the
compxlib program. For example, the following command can be used to compile all the
HDL libraries with ModelSim SE:

compxlib -s mti se -f all -1 all

System Generator for DSP User Guide www.xilinx.com 89
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Simulation using ModelSim within Project Navigator

Before you can launch ModelSim from Project Navigator you must specify the location of
your installed version of ModelSim. To do so, open Project Navigator and choose the main
menu Edit > Preferences. This brings up a dialog box. Choose the ISE General >
Integrated Tools category in the dialog box. Enter the full path to the version of ModelSim
on your PC in the Model Tech Simulator edit box. You must include the name of the
executable file in this field.

E Preferences - Integrated Tools Options

Cakegory

- ansole
- HTML Browser

=+ ISE General

- Diesign Goals & Strates
- Editars

- Integrated Tools

- Process Completion M
- I5E Tewt Editor

- Language Templates

= RTL{Technology Yiewers

- Calar Scheme

- Mew Object Colars
- Object Calars

- User Color Rules

[=]- Schematic Editor

- Check,

- Zolars

- Dievice Families
- Layouk

- Printing

- Sheet Sizes

[=1- Symbal Editor

i Check

i Colors
- Timing Analvzer
- WebTalk

[=) Wilirechakify

‘o Prowy Sektings

N

Set the paths for the integrated tools vou have installed,

Madel Tech Simulator:

I :)ModelsimiModelsim-6, Schwin32imodelsim. exe

Syniplify:

Swnplify Pro:

Precision:

Planahead:

| Crixilined 12,1 _ISE_DSiPlanabeadibin

o]

apply | Help |

P

The Project Navigator project is already set up to run simulations at four different stages of
implementation. System Generator creates four different ModelSim .do files when the

Create Testbench option is selected on the System Generator token. The ModelSim do files
created by System Generator are:

pn_behavioral.do - for a behavioral (HDL) simulation on the HDL files in the
project, before any synthesis or implementation.

pn_posttranslate.do - this file runs a simulation on the output of the Xilinx

translation (ngdbuild) step, the first step of implementation.

pn_postmap.do - to run a simulation after your design has been mapped. This file
also includes a back-annotated simulation on the post-mapped design.

pn_postpar.do - to run a simulation after your design has been placed and routed.

This file also includes a back-annotated simulation step.

90

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Processing a System Generator Design with FPGA Physical Design Tools

In the Project Navigator Design Simulation view, you can use the pull-down menu to
select Behavioral Simulation, Post-Translate Simulation, Post-Map Simulation, or Post-
Route Simulation (corresponding to pn_behavioral.do, pn_posttranslate.do,
pn_postmap.do, and pn_postpar.do respectively).

Design —+05F X
[| view {8} Implementation ' Mg Simulation

CE Behavioral :I
HEJ Post-Translate

.. | Post-Map

45 | Post-Route

E -- L"EJ default_clack_driver - structural {mac_fir_cw,whad) —I

If you select the <your design>_ tb.vhd/.v file in the Project Navigator Design
Simulation view, the ModelSim Simulator will become available in the Processes view.
Expand the ModelSim Simulator process by clicking on the plus button to the left of it. A
simulation process associated with the ModelSim Simulator will appear (in the image
below the process is labeled Simulate Behavioral Model).

Diesign 09 x
[] | view {8} Implementation ' M Simulation

CE Behavioral :I
HEJ Hierarche | ;I
— i 'y synth_req_req - behav (mac_Fir.vhd)

Pt Bt ['hy] synth_reg_w_init - structural {mac_Ffir.vhd) J
g Bt ['4y] synth_reg - structural {mac_fir.vhd)

£|; -- E top_level_testhench - structural (kop_level_testbench.vhd)

S iy xlelk - behavior {mac_Fir_th.whd)

i l'l'l. "W elrlackdrivar - hehavine frnac Fie e whdt LI

p | €2 Mo Processes Running

Processes: top_lewel_testbench - structural |

o E}ﬁ‘ _ ModelSimn Sirmulator

W ‘Simulate Behavioral Model

@ Start EZ Design | U™ Files | h Libraries

System Generator for DSP User Guide www.xilinx.com 91
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

The Process Properties dialog box shows that the System Generator . do file is already
associated as a custom file for this process.

B! Process Properties - Simulation Properties il
(Calimaay Switch Mame Property Mame Value
- Simulation Properties ~dir Compiled Library Direckory ILINY <language =) <simulators o)

L. Display Properties
Ignore Pre-Compiled Library Wwarning Check ol

Generate Yerbose Library Compilation Messages [V

Use Custom Da File e——

Custom Do File (p_levelftop_level_testbench.dao)_l
Lse Automatic Da File e~

Simulation Fun Time 1000ns

Property display lewvel: IStandard VI [V Display switch names Default |
QK I Cancel | Apply | Help |

v

Now if you double-click on the simulation process, the ModelSim console opens, and the
associated custom do file is used to compile and run your System Generator testbench. The
testbench uses the same input stimuli that was generated in Simulink, and compares the
HDL simulation results with the Simulink results. Provided that your design was error
free, ModelSim reports that the simulation finished without errors.

Generating an FPGA Bitstream

Xilinx ISE Project Navigator

During code generation, the System Generator creates several project files for use in Xilinx
and partner software tools. One of these project files is for the Xilinx ISE® Project
Navigator tool. By opening this project file, you can import your System Generator design
into the Project Navigator, and from there, you can synthesize, simulate, and implement
the design. This file is called <design name> cw.ise and it is created in the target
directory specified in the System Generator token.

Note: my project cw.ise is used in the following discussion.

Opening a System Generator Project

You may double-click on your . ise file in Windows Explorer. The Project Navigator file
association with .ise causes Project Navigator to launch, opening your

my_ project_cw.ise System Generator design project. You may also open the Project
Navigator tool directly, then choose File > Open Project from the top-level pull down
menu. Browse to the location of your System Generator my project_cw.ise and open
it.

92

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Processing a System Generator Design with FPGA Physical Design Tools

Customizing your System Generator Project

When first opening your System Generator project, you will see that it has been set up with
the synthesis tool, device, package, and speed grade that you specified in the System
Generator token. To change these settings, right-click on top_level in the Design
Implementation View and select Design Properties...

This brings up the Design Properties dialog box. From this dialog box, you can change
your Device, Package, Speed, and Synthesis Tool. Note that if you change the device
family, the Xilinx IP cores that were produced by System Generator must be regenerated.
In such a case, it is better if you return to the System Generator and re-generate your

project.
[®% Design Properties x|
Mame: I top_lewvel
Location: IE_DS'I,ISE'I,sysgen'I,examples'I,projnav'l,mult_diff_designs'l,top_level

Working directory: IE_DS'I,ISE'I,sysgen'I,examples'I,projnav'l,mult_diff_designs'l,top_level

Descripkion:

Project Settings

Property Mame Yalue =
Top-Lewvel Source Type HOL LI
Product Category General Purpose LI
Farnily VirkexS |
Device HCSWIRE0T |
Package FF1136 |
Speed -1 |
Synthesis Tool #3T {WHDLerilog) LI I
Sirnulakor Maodelsim-SE Mixed |
Preferred Language WHDL LI
Property Specification in Project File Store all values LI ﬂ
|- . i—

[0]'8 | Cancel I Help |

Implementing Your Design

You have many options within Project Navigator for working on your project. You can
open any of the Xilinx software tools such as the Constraints Editor, report viewers, etc. To
implement your design, you can simply instruct Project Navigator to run your design all
the way from synthesis to bitstream. In the Sources window, select the top- level HDL
module in your design. In our example the top-level HDL module is named

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 93

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

my project cw - structural. The Processes window shows the processes that can

be run on the top-level HDL module.

Design

[| View: (& {83 mplementation (M Simulation

Higrarchy

> ’.fé'] top_level
[EF weSvesSt-11136
=8 mﬁlﬂ top_level - structural (kop_level vhd)

B

|@|gm|

o _mnac_Fir - mac_fir_cw (mac_fir_cw,xise)

=

{2 Mo Processes Running

b 0 L1_Spram_rv - spram_cw (spram_cw, xise)

Processes: bop_level - structural

Diesign Summary/Reparts
- Design Ukilities

B 28|58 58| v

£

[User Constrainks
[Synthesize - X357
[Implernent: Design

[Config rm
@2 fnalze penn
S Rerun Al
-Ei E’Iﬁ JEs E"-t Shap
Consale Yiew Text Report

tdtfi(vhdl) o
Launching Des

Kl

@ Implement Top Module
Design Goals & Strategies., .

vhdtdefizDeel, ForceProcess Upto-Date _ow) not foun

Er...

F',t Pracess Properties,.
iles Resulks

Cansale |a Errh-r-——'-.—i_l_

Run highlighted process

In the Processes window, if you right-click on Generate Programming File and select Run,
you are instructing Project Navigator to run through whatever processes are necessary to
produce a programming file (FPGA bitstream) from the selected HDL source. In the
messages console window, you see that Project Navigator is synthesizing, translating,
mapping, routing, and generating a bitstream for your design.

Now that you have generated a bitstream for your design, you have access to all the files

that were produced on the way to bitstream creation.

94

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Resetting Auto-Generated Clock Enable Logic

Resetting Auto-Generated Clock Enable Logic

System Generator provides a bit and cycle accurate modeling of FPGA hardware in the
Simulink environment. Several clocking options are available including the default option
Clock Enables. With this option, System Generator uses a single clock accompanied by
clock enables (ce) to keep various sample domains in sync. Multirate clocking is described
in detail in the topic Compilation Results. System Generator models are often included as
part of a bigger system design which need dynamic control for specifying the beginning of
data path sampling. To allow this control within a bigger framework System Generator
token provides an optional ce_c1lr port in the top-level HDL clock wrapper for resetting
the clock enable generation logic. The figure below shows the reset of the CE4 signal
generation logic after ce_clr signal is de-asserted.

DO is First “alue of Frame
D3 is Last Value of Frama

I_ ORI WAL FRAME —| I_ MEWY FRAME —‘
Din >{DEI D1:;{Dz}qfna:’)(on)(m:}(m}(m)(DQ}{DaiDu

Dot X D3

Diris sampled by CE4

The effect of ce_clr signal cannot be simulated using the original System Generator
design. To model this behavior within Simulink follow the steps below:

1. Select Provide clock enable clear pin and NGC Netlist Compilation option on the
System Generator token.

Press the Generate button on the System Generator token.

Run the following command from the MATLAB console to produce the post translate
VHDL netlist. Use “-ofmt verilog” with netgen for generating Verilog netlist:

>> lInetgen -ofmt vhdl ./<target directorys/<design name> cw.ngc

4. Bring in the post translate VHDL / Verilog file as a Black Box within Simulink and use
HDL co-simulation to model the effect of asserting ce_c1r signal on your design.

ce_clr and Rate Changing Blocks

The ce_clr signal changes the sampling phase of all the multi-sample data signals. This
behavior has the potential of changing the functionality of all rate changing blocks which
rely heavily on the ce signal to have a periodic occurrence. The various rate changing
blocks and their behavior with regards to the de-assertion of the ce_clr signal is
explained in the table below. These blocks were characterized by importing and simulating
the post translate HDL model as a black box.

System Generator for DSP User Guide www.xilinx.com 95
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Table 1-1:
Synchronized to
Synchronized ce after ce_clr Behavior after ce_clr is de-asserted
Block Name deasserted
to ce_clr and the next ce pulse
(1 sample cycle
delay)

Down Sampler | Yes N/A The last sampled value is held till the

with Last Value new ce signal arrives.

of frame

Down Sampler | No No Re-synchronization does not occur

with First Value after de-assertion of the ce_clr signal.

of frame

Up Sampler Yes N/A In hardware, this block is

with copy implemented as a wire.

samples

Up Sampler No Yes The last value (zero or sample) is held

with zeros till the next destination ce signal

inserted arrives.

Time Division No Yes The TDM block samples through all

Multiplexer the remaining input channels and
then sets the output to 0 till the next ce
arrives. The new ce signal re-
synchronizes the output to the new
frame definition.

Time Division No Yes The TDD block holds the output

Demultiplexer channels to the same value till the
next ce signal arrives. The new ce
signal re-synchronizes the output to
the new frame definition.

Parallel to Serial | No Yes The p2s block samples through all the
remaining data words and then holds
the output to the last sampled word
until the next ce arrives. The new ce
signal starts the conversion of the
parallel data stream to a serial one.

Serial to Parallel | No Yes The s2p block holds the output when

the ce_clr is asserted. When de-
asserted, the input is sampled on the
last value of the input sample frame,
and the output occurs on the first ce
pulse corresponding to the output
rate.

96

www.xilinx.com

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Resetting Auto-Generated Clock Enable Logic

Table 1-1:
Synchronized to
Block Name Synchronized §§:sftseverr:::c!_CIr Behavior after ce_clir is de-asserted
to ce_clr and the next ce pulse
(1 sample cycle
delay)
The ASR block will hold the values in
the shift register when ce_clr is
S?\Cilfiliszs?sbieer No Yes asserted. When de-asserted, the
(ASI% stored values will be shifted out, and
new data will be put into the shift
register.
Interpolating or Decimating FIR does
Polvphase FIR No No not work with the ce_clr signal unless
yp the optional reset port is used to reset
the FIR after the ce_clr is de-asserted.

ce_clr Usage Recommendations

Based on the above analysis, the ce_clr signal can be used if the following
recommendations are adhered to:

Replace down sampler blocks with first value of frame behavior with an equivalent
circuit using down sampler block with last value of frame selected.

Design for N clock cycles of invalid data after ce_clr is de-asserted, where N is the
slowest ce associated with the block.

Design the model to always use down sampler with last value of frame and up
sampler with copy samples.

If N cycle invalid data is not desired replace parallel to serial, serial to parallel, time
division multiplexer and time division demultiplexer block with an equivalent circuit
built out of a counter, mux and up/down sampler blocks. The equivalent design
circuit should also have a reset port pulled to the top-level and connected to the same
signal driving the ce_clr port.

Counters used in performing operations like multiply-accumulate should always be
reset using a combination of user reset which is tied to the ce_c1lr signal and ce
signal extracted from the Clock Enable Probe block.

Always verify the effect of ce_clr signal on the design by importing and simulating
the post translate HDL model as a black box.

System Generator for DSP User Guide www.xilinx.com 97
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Design Styles for the DSP48

About the DSP48

Xilinx Virtex® and Spartan® devices offer an efficient building block for DSP applications
called the DSP48 (also known as the Xtreme DSP Slice). The DSP48 is available as a System
Generator block which is a wrapper for the DSP48 UNISIM primitive. Architectural and
usage information for this primitive can be found in the DSP48 Users Guide for your
device.

B.BCIM BCOUT

P, PCOUT

o
-

vt
48 D optional register with
/ . optional reset and
Op to varous clock enahle
11 control ports

The DSP48 combines an 18-bit by 18-bit signed multiplier with a 48-bit adder and a
programmable mux to select the adder's inputs. It implements the basic operation: "p=a*b
+(c+cin);", however other operations can be selected dynamically. Optional input and
multiplier pipeline registers are also included and must be used to achieve maximum
speed. Also included with the DSP48 are high performance local interconnects between
adjacent DSP48 blocks (BCIN-BCOUT and PCIN-PCOUT). The DSP48 also includes
support for symmetric rounding. This combination of features enables DSP systems which
use the higher-speedDSP48 devices to be clocked at over 500 MHz.

There are three ways to program a DSP48 in System Generator:

e Use Standard Components - Map designs to Mult and AddSub blocks or use higher-
level IP such as the MACFIR filter generator blocks. This approach is useful if the
design uses a lower-speed clock and the mapping to DSP48s is not required.

e Use Synthesizable Blocks - Structure the design to map onto the DSP48's internal
architecture and compose the design from synthesizable Mult, AddSub, Mux and
Delay blocks. This approach relies on logic synthesis to infer DSP48 blocks where
appropriate. This approach gives the compiler the most freedom and can often
achieve full-rate performance.

e Use DSP48 Blocks - Use System Generator's DSP48 and DSP48 Macro blocks to
directly implement DSP48-based designs. This is the highest performance design
technique. Be aware however that obtaining maximum performance and minimum
area for designs using DSP48s may require careful mapping of the target algorithm to
the DSP48's internal architecture, as well as the physical planning of the design.

98

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Design Styles for the DSP48

Designs Using Standard Components

Designs for Xilinx FPGAs such as Spartan®-3 will compile to the Virtex®-4 devices.
Multipliers will be mapped into the DSP48 block, however, logic synthesis tools cannot
pack adders and muxes into the DSP48 block since these blocks are delivered as cores
which prevents synthesis from optimizing the logic. Place and route tools do place the
MULT18x18S and MULT18x18 into the DSP48 block but do not pack the adder, or mux into
the DSP48 block. (PAR will however pack the mux into the LUT-based adder).

()
In1
s "I 1 -
+b = = 1

InZ ol S - f L

" Z_éab) o oz | Out1
AddSub Delay
In2 hlult Crelayt [

To obtain the best possible performance, you should set the multiplier latency to 3 and
include an input register to cover the delay from the DSP48's output to the adder. In
Virtex®-4, unlike Spartan®-3 devices, the multiply speed in nearly independent of bit
width. For medium speed designs, this approach works fine.

An additional way to use the DSP48 is to use IP blocks optimized for the DSP48 such as the
MACFIR block available from coregen, or to use the architecture wizard to generate a
custom configured DSP48. Both of these approached require importing the logic
containing the DSP48 as a black box into System Generator. Simulation will require
ModelSim HDL cosim.

Designs Using Synthesizable Mult, Mux and AddSub Blocks

Synthesis tools now have the ability to infer DSP48 logic. This enables the tools to pack
adders, multipliers and muxes into the DSP48 block, as well as to enable the application of
retiming and other synthesis techniques such as register duplication.

(Z r—w =1 1,5 La

sd=rnadd -
a =r 3 [
sdammult plpl 21 Julb a1 i1
b . i alzynmusgs | '{;}
@_’ =1 amadd u
=nmuk Celays =t el ay
. MM
@ Calayd

L]

If the design is composed of synthesizable blocks, both Synplify Pro and XST have
demonstrated the ability to infer DSP48s and to make use of the DSP48's local interconnect
buses (PCOUT-PCIN and BCOUT-BCIN). In the above example, three blocks have been
built using the MCode blocks which are defined by the following M-functions.

function o = xlsynmux2(i0,il,sel)
if (sel==0) 0=i0; else o=il; end

function p = xlsynmult (a,b)
p=a*b;

function s = xlsynadd(a,b)
s=a+b;

System Generator for DSP User Guide www.xilinx.com 99
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

For synthesis to work, the circuit must be mappable to the DSP48 and signal bitwidths
must be less than the equivalent buses in the DPS48.

You should kept in mind that the logic synthesis tools are rapidly evolving and that
inferring DPS48 configurations is more of an art than a science. This means that some
mappable designs may not be mapped efficiently, or that the mapping results may not be
consistent. It will be necessary to inspect the post synthesis netlist using a tool similar to
Synplify Pro's gate-level technology viewer to determine if the design is being correctly
mapped. If not, it may be possible to recast it to be correctly inferred. A model of a fully
synthesizable FIR filter is located at the follwing pathname in the System Generator
software tree:

.../sysgen/examples/dsp48/synth fir/synth fir tb.mdl

Designs that Use DSP48 and DSP48 Macro Blocks
DSP48 Block

S ra

Constant Fateway In

Constants Gateway Ind B _’ﬂl_’ 1]
10 —E—» P Gateway Out Displayt

Constant! Gateway In2

P=C+(A™E) op

Constantd

DSP4a2

The DSP48 block is effectively a wrapper for the DSP48 UNISIM primitive. Because of this,
any possible DSP48 design can be implemented. This low-level implementation however
requires an 11-bit binary opmode to be routed to the DSP48's control ports in order to
configure its function. The Constant block has a special mode enabling it to generate a
DSP48 control field. The DSP48's parameters dialog box is used to configure the pipelining
mode of the DSP48 as well as the use of the DSP48's local interconnect buses named
PCOUT-PCIN and BCOUT-BCIN. You can try out the DSP48 block by opening the
simulink model that is located at the follwing pathname in the System Generator software
tree:

.../sysgen/examples/dsp48/dsp48 primitive.mdl

Dynamic Control of the DSP48

The DSP48 has the unique capability of being able to change its operation on a per cycle
basis. This is useful in applications where the DSP48 is used in a 'resource shared' mode
such as a FIR filter where multiple taps are implemented by the same multiplier. A simple

100

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Design Styles for the DSP48

method of generating this type of control pattern is to use a mux to select the DSP48
instruction on a clock by clock basis.

P=+ATH
Constant h p
b

dd

¥

P=P>=17+(A"E)

Constant! 41 L kL

L e DSPas

Constant?
d3

F=F s 17+(A7B)

=
c
x

Constant2

The above example illustrates the use of a DSP48 and Constant blocks to implement a 35-
bit by 35-bit multiplier over 4 clock cycles. During synthesis, the mux and constant logic is
reduced by logic optimization. In the example above, the DSP48 block and the 4:1 mux are
reduced to just two 4-LUTs. A Simulink model that illustrates how to implement both
parallel and sequential 35*35-bit multipliers using dynamic operation for the sequential
mode of operation is located at the follwing pathname in the System Generator software
tree:

.../sysgen/examples/dsp48/mult35x35/mult35x35 tb.mdl

DSP48 Macro Block

LSP42 Macro instroctions

p= a_real ™ b_real
p=p- a_impg*® b_img
a_img p= a_real ™ b_img
p=p+ a_imp® b_real

]

[yl
o
=
u
[N
=]
-
[N

|

a_real

& ateway Out

[y)
o
=]
u
W
2
=4
=

dar

|

[y
o
El
o8
[
El
Fi
=

Scope
b_real

E

[l
o
El
o
i
El
b3
=

Sel

out

LEPIE Macro
Counter

The DSP48 Macro block is a wrapper for the DSP48 block which makes it simple to
implement a sequence of DSP48 instructions (known as dynamic instructions). In addition,
it provides support for specifying input and output types. For example, in the model
above, a DSP48 Macro block is configured to implement a complex multiplier using a
sequence of four different instructions. The instructions are entered in a text window in the
DSP48 Macro's dialog menu. You can try out the DSP48 Macro block by opening the
simulink model that is located at the follwing pathname in the System Generator software

System Generator for DSP User Guide www.xilinx.com 101
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

tree:
.../sysgen/examples/dsp48/dsp48 macro.mdl

Replacing a DSP48 Macro Block with DSP48 Macro 2.0 Block

In Release 11.4, Xilinx introduced version 2.0 of the DSP Macro block. The following text
describes how to replace an existing DSP Macro block with a DSP Macro 2.0 block.

One fundamental difference of the new DSP48 Macro 2.0 block compared to the previous
version is that internal input multiplexer circuits are removed from the core in order to
streamline and minimize the size of logic for this IP. This has some implications when
migrating from an existing design with DSP48 Macro to the new DSP48 Macro 2.0. You can
no longer specify multiple input operands (i.e. A1, A2, B1, B2, etc...). Because of this, you
must add a simple MUX circuit when designing with the new DSP48 Macro 2.0 if there is
more than one unique input operand as shown in the following example.

DSP48 Macro-Based Signed 35x35 Multiplier

The following DSP48 Macro consists of multiple 18-bit input operands such as alo, ahi for
input to port A and blo, bhi for input to port B. The input operands and Opcode
instructions are specified as shown below. Notice that the multiple input operands are
handled internally by the DSP48 Macro block.

DEPAS Macra

gl cast—— pulahi

i
|

Shift
——i ER N — CAS — Al

alg
e

—] ——— cast—— P bhi FlL
z
Shift!
I [azh] 2 cast P bla
blo

o

102

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Design Styles for the DSP48

2 DSP4B Macro [Xilinx DSP4E Macro)

|Mscrolur-ctinﬂtu:mciyusedﬂunﬁ?ﬂpriﬂ'rve, scpecisly uc m di i O stor |
Basic | Pipedining Output Typs Ports Advanced | Impdernentation

Irapasts bos poat &

sow] | Nlultiple input operands
for A inputs

Traputs bos poet B

b b

Irapasts b peoat ©

rehructions

P

pedia’bhi + Pa2 17

preahiblo + P Old Dprede
wahibhieF 1 7 . ;

" i instructions

ok || cacd || hee || ey

DSP48 Macro 2.0-Based Signed 35x35 Multiplier

The same model shown above can be migrated to the new DSP48 Macro 2.0 block. The
following simple steps and design guidelines are required when updating the design.

1.

Make sure that input and output pipeline register selections between the old and the
new block are the same. You can do this by examining and comparing the Pipeline
Options settings.

If there is more than one unique input operand required, you must provide MUX
circuits as shown in the fugure below.

Ensure that the new design provides the same functionality correctness and quality of
results compared to the old version. This can be accomplished by performing a quick
Simulink simulation and implementing the design.

When configuring and specifying a pre-adder mode using the DSP48 Macro 2.0 block
in System Generator, certain design parameters such as data width input operands are
device dependent. Refer to the LogiCORE IP DSP48 Macro v2.0 Product Specification
for details on all the parameters on this LogicCore IP.

System Generator for DSP User Guide www.xilinx.com 103

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

4 inputs and 2 ouputs MUX circuit can be decoded as the following;:

sel A inputs B inputs Opode
0 alo blo A*B
1 alo bhi A*B+P>>17
2 ahi blo A*B+P
3 ahi bhi A*B+P>>17
b=l
Fram2
el i1
A=2 17
» [| . B d1 »a
2 i samyout
shit Lgbtd Teminats
k] oast—
ak o
ak g b
M2
B i
. From3 g
::':?1 e 01 (B el
3 z.| C cast o L Fram1
41
DSP48 maco 210
——4 [n:kl Gt e Bz
bly
kg
Muxéd

Siwsilabls Prstrckions

a0 A
[A10)'E |
[A+DPB+

(AR BTC HCARRNIN
[A+D)PB+LARRYEN
[AETEP
(A+D)D+B-CARBYEH

(A4DI B+ 317

[A+EPBH 5] THEARRY

I

CA+DBHACIN
(O BHOIHCARRY]

Iew Orcode (RO BN 7

; ; [A+DPEHPCIND 3 T4CA
wnstructions RRYIN

[A+EIBE
(DB I
[A+DIRE T 2+ ZARRY]
M

(A+DFBCIH-CARR YN
CA+DIBC
[A+DYBC B4 AREY]
7l

ke
APl
AP

S]

[A+DIBCINPD (T
(AL BCIH 31 T4CA

[7] Show Fitsred Brstructions

104 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Design Styles for the DSP48

You can find the above complete model at the following pathname:
<sysgen paths>/examples/dsp48/mult35x35/dsp48macro mult35x35.mdl

DSP48 Design Techniques

Designing Filters with the DSP48

The DSP48 is an ideal block to implement FIR filters. You can examine how to use the
DSP48 block for Type 1 and Type 2 FIR filters by opening the simulink model that is located
at the follwing pathname in the System Generator software tree:
.../sysgen/examples/dsp48/firs/dsp48 firs tb.mdl

Design Techniques for Very-High Performance Designs

DSP48-based designs usually require I/O, BRAMS and SLICE logic. Typically, this
associated SLICE logic is used to implement delay registers, SRL16s, muxes, counters, and
control logic. Since the DSP48 block is expected to operate at speeds greater than 500 MHz,
other components will also be required to operate at the same speed. This generally
requires special design techniques for the non-DSP48 logic.

At 500 MHz only 2 ns is available in each clock. For V4-11 devices, roughly 300 ps are
required for register clock to out and 300 ps for setup. For comparison, a LUT delay is 166
ps. Special inputs and outputs such as clock enables and DSP48 and BRAM signals
generally have setup and clock to out times closer to 500 ps. With clock skew and jitter,
roughly 1 ns is available for net delays. This restriction will generally allow only 1 net in
each path and it must be fairly short.

There are a number of guidelines that can be used to insure the operation at DSP48 speeds.
Some of these guidelines are outlined below.

3y atl 16 az control pattem
generator

9 dapdE as counter, adder
/ 4./ 5 Limit fanout to 4-5
loads
BEAM DiEp4s ‘/d /
10 ¥

23 Extra output regs

SRL14

i) Use input and) 3 PCOUT-PCIN

oufput regs with -
LUIIst ; ?:I'_.{"lmt to llevel 1y useinput and output regs
oflogc

43 Use extra registers to cowver distance greater than 20-40 slices

Always use DSP48, BRAM16, FIFO16 with input, mult and output registers
Use additional FF to buffer DSP48 and BRAM outputs if necessary

Plan out the usage of the PCOUT-PCIN bus to allow DSP48 chaining

Add registers to any path that is greater than 20 - 40 slices long

Limit fanout to 32 loads located within a 20 slice distance

Add output registers to any LUT-based logic

N oG XD

Limit LUTs to 1 level or a 4:1 MUX and insure a local register for input or output

System Generator for DSP User Guide www.xilinx.com 105
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

8. Use RAMs, SRL16 to clock out control patterns instead of state machines
9. Use DSP48 to implement counters and adders greater than 8-16 bits
10. Use area constraints — "INST ff1* LOC = SLICE_X0Y8:SLICE_X1Y23;"

Physical Planning for DSP48-Based Designs

The DSP48 requires correct placement to achieve dense, high performance designs. While
the automatic place and route tools do a good job, the best results may require manual
placement of DSP48 and RAM blocks. There are several additional issues with the DSP48s.

a ail az a3

a d a a
o+ >3

Terminato Terminatord Merminator2

bein _,—bbcin
beout beout
>

h

beout

poin

poin |—>pcin Cutl
poout

op

poout

poout

- op op

bEP42 DSPA DSP2

¥ 1r_l

P=CHAB) P=PCIN+(A") P=PCIN+(A") P=PCIN+(A"B)

dzpdd inst d=pd inst1 d=pda inst2 dspd2 inst?

Cascade Routing Buses

Adjacent DSP48 blocks are connected with two local buses called PCOUT, and BCOUT.
The PCOUT bus is used to pass accumulation data from one DSP48 to the next. The
BCOUT bus is used to pass delayed B input data to the next DSP48. The DSP48 and DSP48
Macro block both support PCOUT and BCOUT buses. The use of the buses is shown in the
figure above, which illustrates a pipelined 4-Tap Type 1 FIR filter.

C-Input Sharing

Each pair of DSP48s share a single C input. You should be aware of this when you do
resource planning. Since the placer will not always find the most optimal placement to
share C inputs, DSP48s should avoid using C inputs if possible.

Adder Trees Planning

Tree-based filter topologies are problematic for efficient DSP48 implementation. An adder
tree requires isolated 2-input adders. Two input 36-bit adders can be implemented using a
single DSP48, however this requires a C input and precludes the use of the multiplier. In
addition, the long signals between DSP48s may require additional pipeline stages. A better
approach is to convert the tree into a pipelined cascade.

Placement

Most designs will benefit from some placement of DSP48 and BRAMs. Use of area
constraints to constrain LUT fabric logic placement may also be beneficial.

Signal Length Planning

At 500 MHz, signal lengths should be limited to around 20 slices. This means that long
signals should have multiple pipeline stages.

106

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Design Styles for the DSP48

Clock Enable Planning

When using the Clock Enables clocking option, the clock enables are often the limiting
path at high frequencies. This is partially due to System Generator's use of LUTs to gate
clocks at the destination. To avoid clock enables in the critical path, avoid using the System
Generator upsampled and downsampled clock domains. This requires the manual use of
clock enables for logic that runs at less than the system clock rate.

Place and Route Flow

e Use the command map -timing with effort level high for both map and place

e Use trce —v 100 to get a good sense of the failing nets and inspect the
xflow/design. twr file to understand the nature of the design's timing.

e Thefile bitstream v4.opt is available in the examples/dsp48 directory. This
file can be used with the Bitstream compile target to set the PAR options mentioned
above.

Synthesis Flow

e Use Synplify Pro with retiming and pipelining enabled to avoid having to manually
pipeline every LUT and signal.

e Use Synplify Pro with the fanout limit set around 32 to avoid long net delays.

e Open compiled projects in Synplify Pro and inspect the generated logic using the
RTL- and Gate-level views to get a good idea of what logic is being generated.

e The file syn.pl is available in the examples/dsp48 directory. Place this file in
<ISE_Design_Suite_tree>/sysgen/scripts directory to modify the synthesis
options in System Generator

Logic Depth Planning
The following rules seem to allow the LUT fabric to run at 450 MHz using a -11 V4 device:

¢ Only one net can be allowed in a critical path at 450 MHz. This allows a 4:1 mux to a
reg a4_input LUT to a reg or a net through a LUT directly to a DSP48

e Counters up to 16-bits can be used, but do not use count limited counters without
additional pipelining

e If accumulators or counters are used, invert the enable line to an active-low condition
to prevent a extra LUT from being inserted in the critical path

e Any adders must have local input registers. It may be necessary to place control
counters in the DSP48 to insure speed.

Fanout Planning

Avoid fanouts of more than 32 LUTs or 8 DSP48s or BRAMs. This can be avoided by

inserting additional pipeline registers in these signals paths.

Register Retiming

Check retiming on delay blocks to allow them to be used as registers for pipelining. Then
use Synplify Pro or XST with retiming enabled to allow the synthesis tool to move registers
into optimal positions.

System Generator for DSP User Guide www.xilinx.com 107
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

Using FDATool in Digital Filter Applications

The following example demonstrates one way of specifying, implementing, and
simulating a FIR filter using the FDATool block. The FDATool block is used to define the
filter order and coefficients and the Xilinx Blocksets are used to implement a MAC-based
FIR filter using a single MAC (Multiply-ACcumulate) engine. The quality of frequency
response is then validated by comparing it to a double-precision Simulink filter model.

Y 5imulink Library Browser

Filz Edit “iew Help

HD = = ”lEmersearchterm

144

Libraries

- | Simulink
E Communications Blockset
EI Control System Toolkox
- T| EDA Simulster Link MG
EI Irreaacee: gz tion Toolkox
E Resl-Time Warkshop
E Repaort Gemeratar
i+ | FF Blockeet
H Zignal Processing Blockset
E Simulink Contral Design
i+ T Simuink Exras
El Simulink Weritication and Walidation
- T Stateriow
EI “ideo and Image Processing Blocksst
B T Wirtual Realty Taolkbex
= Wbl Hilinx Blockset
! i-Basic Blements
- CormmLnication
e Control Logic

Data Types
- DIP

= ndie

-~ fifath
Femory

Shared Memoary

- Tonls

EIE' Hilin= Reference Dlockset
~ Tl Hilin #tremeDSP Hit

Library: Xilime BlockzetDEP I Seatch Resuts

|

DSPE5A

DEFISE

Fast Faurizr Transfarm 6.0

FOATaal

FFT w3 _2

FFT ud 1

FFTwE_0

FIR Compiler<.0

FIR GCampilerv1_0O

Although a single MAC engine FIR filter is used for this example, we strongly recommend
that you look at the DSP Reference Library provided as a part of the Xilinx Reference
Blockset. The DSP Reference Library consists of multi-MAC, as well as, multi-channel
implementation examples with variations on the type of memory used.

108

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using FDATool in Digital Filter Applications

A demo included in the System Generator demos library also shows an efficient way to
implement a MAC-based interpolation filter. To see the demo, type the following in the
MATLAB command window:

>> demo blockset xilinx

then select FIR filtering: Polyphase 1:8 filter using SRL16Es from the list of demo designs.

Design Overview

This design uses the random number source block from the DSP Blockset library to drive
two different implementations of a FIR filter:

o The first filter is the one that could be implemented in a Xilinx device. It is a fixed-
point FIR filter implemented with a dual-port Block memory and a single multiply-
accumulator.

e The second filter is what is referred to as reference filter. It is a double-precision,
direct-form II transpose filter.

The frequency response of each filter is then plotted in a transfer function scope.

Elmac dizt
Ei= Edt Yjew Simulstion Format Toos Hep
O EES = L [inf Hoimal - Eﬁ@@ BJ
MAL Based FIR filter
dn_q= {0l ol » iy
TR oy B{irz 0wl] Biernan
Aandom
BoUICE M Bazed FIR MaH Filter WALC FIR
Xfer Scope
WA = OFZT
.
System -
Genamator f\\“‘-
DFET
» # Bfarnan
Filter 5padfcatlon Rafuiance Fillar xng;ET .
rSoope
Sampling Tiequenty: FE= 9941 KHZ
Fassband frequeney: Fpass= 0 kHz This design example mplemments @ 43130 FIR FlIEEFwith 3 MAC ERGINe
:tw:an: f.leqlu“ﬁw: F""‘-'1Pﬂ'al7-725 bz ahd a Oual Port Ram used for data and cooMelent E1arage. The tar s a
m=aband ripple: Apass= B R
Stpband ripple; Actop = 48 dB Ll:nw Pass filtar with & cut off freguency of B Khz. The Sampling Fragquency
iz 441 ke
|Raady 100k odads

Open and Generate the Coefficients for this FIR Filter
1. From the MATLAB console window, cd into the directory
<ISE Design Suite tree>/sysgen/sysgen/examples/mac_ fir
2. Open the design model by typing mac_df2t from your MATLAB command window.

For the purpose of this tutorial, the variables coef, coef width, coef binpt,
data_width, data_binpt and Fs are not defined. You will first use these variables as
mask parameters to the MAC Based FIR block and then design and assign the filter

System Generator for DSP User Guide www.xilinx.com 109
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

coefficients using the FDATool. The fully functional model is available in the current
directory and is called mac_df2t_soln.mdl.

Parameterize the MAC-Based FIR Block
1. Right Click on the MAC-Based FIR block and select Edit Mask as shown in the figure

below.
din_quat | doubsle

M double | ir Explare
Fandom | cut
Source hAC Copy
Delete

Mask Parameters. ..

Subswstem Farameters. .
-~ Block Properties. .

Model Adwisor. ..

Systam
Genzralor ok b Medel Black
’7 Requirements r
" Real-Time Workshop 4
Fixed-Point s

Linearize Block...

Add the FDAToal and set the filter

S I Y T ST S S,

2. Double-click on the Parameters tab and add the parameters coef, data_width and
data_binpt as shown below.

Mask editor : MAC Based FIR =3

lcon | Parameters |Initia|izatiu:|n Documertation

Dialog parameters

= Prarmpt Yarighle Type Evaluate = Tunahle
Fiter Coefficients coef edi » [v] [v]
Pa Coefficiernt Yidth et _width edil v [v] [v]
4 | |[coetficient Binary Poirt cioet_binpt edil v g g
= | |Data vuidth data_wvictth edil » [v] [v]
b Cata Binary Point data_kingt il b z z
Sampling Frequency (Hz) F= edil b 1+] 1]

Cptions for selected parameter

Pooups (one per line). In dialog:

Dialog
callback:

l Ok][Cancel H Help ” Apply]

110 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using FDATool in Digital Filter Applications

Generate and Assign Coefficients for the FIR Filter

1. Drag and drop the FDATool block into your model from the DSP Xilinx Blockset
Library.

2. Double-click on the FDATool block and enter the following specifications in the Filter
Design & Analysis Tool for a low-pass filter designed to eliminate high-frequency
noise in audio systems:

¢ Response Type: Lowpass
¢ Filter Order: Minimum order
¢ Frequency Specifications
- Units: Hz
Fs: 44100
- Ppass: 6000
- Fstop: 7725
¢ Magnitude Specifications
- Units: dB
- Apass: 1
- Astop: 48

I =101 x]

Ao Edt @nadyds Tangets Wiew ‘Window Help

Peak 2l 0|l AEH2 O BLOEEH| W

— Curram ks nfanTedon.

—Wisanibce Racporesn (dB)

=
T
H
!
H
i
-
'
i
H
'
-
H
!
H
H
i
H
'
H
i
H
'
H
'
H
i
i

Struclae Cirecl-Form FR
Cwcds 4l

Slobie: e

Saurpe Dexired

AN
Storm Fier ... o 5 Fm::u“y o 15 a1
=

— REE00nES TYES —F Ear Oy ke — FreqUBncy Hachzaliong. — hiaanbude Specincaion:
& o 2] || - Syt || ot iz || v e |
1 [Higpan= -

rLH FE ﬁ'llIl
™ BErcksEE (B o Aps i
T~ Barcop __oplione Fpeex EI]III Y- r
™ ’m' Derdty Facior: fis Foop e

| Cesenmisthcd |

T IR [Buttererorth -
= FR |Eadrpple -

Megnbade (A6

Bk o

e e B

[Coeesign Filr I

)

pady

®»

Click on Design Filter at the bottom of the tool window to find out the filter order and
observe the magnitude response.

You can also view the phase response, impulse response, coefficients and more by
selecting the appropriate icon at the top-right of the GUI Based on the FDATool, a 43-
tap FIR filter (order 0-42) is required in order to meet the design specifications listed
above.

System Generator for DSP User Guide www.xilinx.com 111
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

E Lo d i bk Prcnik lens: Beleveaee Lillen

The filter coefficients can be displayed in the MATLAB workspace by typing:
>> xlfda numerator ('FDATool')

These useful functions help you find the maximum and minimum coefficient value in
order to adequately specify the coefficient width and binary point:

>> max(xlfda numerator ('FDATool'))
>> min(xlfda numerator ('FDATool'))

For this tutorial, the coefficient type has been set to be Fix_12_12, which is a 12-bit
number with the binary point to the left of the twelfth bit. The result of the max()
function above shows that the largest coefficient is 0.3022, which means that the binary
point may be positioned to the left of the most significant bit. How do you reason that?
A Fix_12_12 number has a range of -0.5 to 0.4998, meaning the dynamic range is
maximized by putting the binary point left of the most significant bit. If you moved the
binary point to the right (by using a Fix_12_11 number) you would lose one bit of
dynamic range because a Fix_12_11 number has a range of -1 to 0.9995, which is more
than you require to represent the coefficients.

Click on the Reference Filter block and the MAC Based FIR block and verify the
parameter values for coef, coef_width, coef_binpt, data_width, data_binpt and Fs as
shown below.

ﬁ =3 amne i BBV ek Bk Lans: BVAC Dol IR |';<
DiraclFain || Tranzpaze Fille [matk) k] kAL FIF mazk |mazk)

lrdependanlly likers emch channel of inpul aver imea usng a DireclFom | Tranepass
implerertatian. The cosficients for the numerstor and denaminetor ol the fiker's
rarsfer function ae specied nthefeldsbelose Inbd condlionz am interpreted o Farametarz

they waul be by the fker fanchan in MATLAB.

Fon fiame-besed proceseing, each colmn ol theinput maliy reprezents one fiame of
dala from a gihgle channe.
Paramehers

Hurmealor:

Hfda_rrmerakoe[FOA Tool]

Dlanamiraior

1

Initial conditione:
a

Fiter Crefficienls
llda_rumerator|FOATool)
Corflicent ‘widih

1z

Cocfliciert Binerp Paink

12

Data Widih

10

[&a Binarp Pai

b

B ampling Frequency [Hz)
44100

GF §[Cawd [Hem | b

Click OK on each dialog box

112

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using FDATool in Digital Filter Applications

Browse Through and Understand the Xilinx Filter Block

The following block diagram showing how the MAC-based FIR filter has been
implemented for this tutorial.

Sarmple Mermory

= Cyclic AN buffer.

*Liepth =Taps. Full Wultiplisr

" Width = Sample sdize. = Sample-width = max Coeffowidth

Samples
43 %10

Sarple o X 24 — 24

Saraple 7 oo

Address e k

»
) Coe ficients \‘

Coefficient 43 %13 Capture of final reeult.

A ddress Y —— » Simnple register. .

= Saroipls- width dependsonno. of taps S UPpOTts result sizs.

and coefficients value

At this point, the MAC filter is set up for a 10-bit signed input data (Fix_10_8), a 12-bit
signed coefficient (Fix_12_12), and 43 taps. All these parameters can be modified directly
from the MAC block GUI. The coefficients and data need to be stored in a memory system.
For the tutorial, you choose to use a dual-port memory to store the data and coefficients,
with the data being captured and read out using a circular RAM buffer. The RAM is used
in a mixed-mode configuration: values are written and read from port A (RAM mode), and
the coefficients are only read from port B (ROM mode).

The multiplier is set up to use the embedded multiplier resource available in Xilinx
Virtex® devices as well as three levels of latency in order to achieve the fastest performance
possible. The precision required for the multiplier and the accumulator is a function of the
filter taps (coefficients) and the number of taps. Since these are fixed at design time, it is
possible to tailor the hardware resources to the filter specification. The accumulator need
only have sufficient precision to accumulate maximal input against the filter taps, which is
calculated as follows:

acc _nbits = ceil (log2 (sum(abs (coef*ZAcoef_width_bp)))) + data_width+ 1;

Upon reset, the accumulator re-initializes to its current input value rather than zero, which
allows the MAC engine to stream data without stalling. A capture register is required for
streaming operation since the MAC engine reloads its accumulator with an incoming
sample after computing the last partial product for an output sample.

Finally, a downsampler reduces the capture register sample period to the output sample
period. The block is configured with latency to obtain the most efficient hardware
implementation. The downsampling rate is equal to the coefficient array length.

System Generator for DSP User Guide www.xilinx.com 113
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Run the Simulation

1. Change the simulation time to 0.05, then run the simulation

You should get the message shown in the figure below.

[macdte N B =10
Y Fork Siee
Message Source Reportz=d by Summary

Sitnlnk Sreovr-pcled be ST elioc s s kb T2 = A aA

(|6 mac_dfItMAC vs DF 2TiOutional Buffering)Buffer
Errar reported by S-Tunctiion 'zdsprebuf In fnac drittilAC we OF ST ptonal Bufedn ifELTer
canlinuous sample times not allowed.

Open I Help I Chss I

System Generator gets its input sample period from the din Gateway In block which
has 1/Fs specified as the data input sample period. As the MAC-based FIR filter is
over-sampled according to the number of taps, the System Clock Period will always be
equal to 1/(Filter Taps * Fs).

2. Double click on the System Generator token and change the Simulink system period to
specify the System Clock Period as 5.273427e-007 = 1/(43 * 44100) as shown below.

Cr/EfriTE with doubies IAcu:u:rding 1o Block Setiings j

Smuink system petiod (z2c) F.ETBM.‘-’EEIDSBNEEIE-DDT

Block icon distlay: IDefaurt j

Generate

ik | Bpoply | Cencel | Help |

3. Run the simulation again and notice that the Xilinx implementation of the MAC-based
FIR filter meets the original filter specifications and that its frequency response is
almost identical to the double precision Simulink models.

As you can see, the filter passband response measurement as well as zeros can clearly
be seen. You should get similar frequency responses as shown in the following figure.

114 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Using FDATool in Digital Filter Applications

pe 10
File Axes Chanmels ‘Window Help N
0
im]
= .
2
= -0
=
 -Al
=
-3
0 3 10 15 2
Frame: 3 Frequency (kHz)
' =Y
File Axes Channels ‘Window Helo E
0
wm
= .0
=
= -0
=
[1:] -Ei:l
=
-3
0 g 10 15 2
Frame: 3 Frequency (kHz)
L=
File Axes Channels Window Help a
0
@ — CHZ
o
w -2l
E
5
o -4l
=
-50
0 5 10 15 2
Frame: 35 Fregquency (kHz)

It is possible to increase or decrease the precision of the Xilinx Filter in order to reach the
perfect area/performance/quality trade off required by your design specifications.

Stop the simulation and modify the coefficient width to FIX_10_10 and the data width to
FIX_8_6 from the block GUI. Update the model (Ctr1-d) and push into the MAC engine
block. You should now notice that the datapath has been automatically updated to only

eighteen bits on the output of the multiplier and twenty on the output of the accumulator.

System Generator for DSP User Guide www.xilinx.com 115
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Restart the simulation and observe how the frequency response has been affected. The
attenuation has indeed degraded (less than 40dB) due to the fixed-wordlength effects.

=} mac_df2t_soln/Xfer Scope MAE FIR = |EI|5|
File Axes Channels Window Help
0
@
= -0
Lo
ER 1 :
= ‘ oo .
-80 -
] 5 10 15 20
Frame: 14 Freguency (kHz)
; _{olx]
Of" - — CH1
10 A — CH2
D - \
a -20 \
3 .
£ 30 l
=2 |
= -0
50 2Vavi
60
1] 3 10 14 20
Frame: B4 Frequency (kHz)
116 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Generating Multiple Cycle-True Islands for Distinct Clocks

Generating Multiple Cycle-True Islands for Distinct Clocks

System Generator's shared memory interfaces allow you to implement designs that are
driven by multiple-clock sources. These multi-clock designs may employ a combination of
distinct clocks and derived clock enables to implement advanced clocking strategies
completely within a single design environment. This topic describes how to implement
multi-clock designs in System Generator through discussions of the following topics:

e Applications that benefit from multiple clocks;

e Using hierarchy to partition a System Generator model into two or more clock
domains;

¢ Using shared memories to cross clock domains;
¢ Simulating and netlisting multiple clock designs;

e Wiring multiple clock domains together using the Xilinx Multiple Subsystem
Generator block.

A step-by-step example is provided to help clarify the topics listed above. Although the
example uses two clocks, the concepts presented here can be extended so that System
Generator designs requiring any number of clock sources can be constructed using similar
techniques.

Before continuing with the example, you may want to familiarize yourself with standard
System Generator clocking terminology and implementation methodologies. This
information is covered in-depth in the topic Timing and Clocking. In general, System
Generator designs are driven by a single, system clock source. Multirate design portions
are handled using clock enables derived from the system clock source. It is possible,
however, to use System Generator to implement designs that are driven by distinct clock
sources.

Broadly speaking, the approach is the following;:

Divide the design into several subsystems, each of which is to be driven by a different
clock. In the example, you call these subsystems asynchronous clock islands. Xilinx shared
memory blocks should be used as bridges that communicate between these clock islands.
Once the design is partitioned, the Xilinx Multiple Subsystem Generator block may be
used to translate the design into hardware that uses multiple distinct clock sources.

Multiple Clock Applications

A common application for multiple clock domains is for interfacing different pieces of
external hardware that operate at different clock rates. For example, you may need to
provide a set of I/O registers to a microprocessor, and the processor must be able to read
and write these registers synchronous to its own clock. You may get data from a clock/data
recovery unit and need to re-synchronize the data to your local clock domain. You may
need to feed data to a digital-to-analog converter that must be running at a precise sample
rate which is different from your system clock.

Another important application for multiple clock domains is in employing a high-speed
processing unit. Let us take an example of an interpolating FIR filter. The filter gets symbol
data from an external unit, and the filter needs to take the symbols and perform a 4X
interpolation that creates four output samples for each input symbol. The output samples
are fed to a digital-to-analog converter (DAC) that is clocked at the sample rate.

The FIR filter may be clocked at any of several rates. It may be clocked at the symbol rate,
and on each cycle it must create four samples which will then be fed to the DAC at the
sample rate. This highly parallel implementation has large hardware resource

System Generator for DSP User Guide www.xilinx.com 117
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

requirements and would only be employed if the sample rate were very fast. An
alternative approach is to clock the FIR filter at the sample rate, creating one sample per
cycle. This scenario takes an intermediate amount of hardware and would be used for
intermediate sample rates. If the sample rate is slow, the FIR filter may be clocked at a rate
several times faster than the sample rate, perhaps by means of a DCM that multiplies the
sample-rate clock. In this way the multiplier-accumulator units of the FIR filter may be
reused several times during the calculation of each sample output, requiring the least
amount of hardware. This last method would use a symbol-rate clock domain, a high-
speed processing clock domain, and a sample-rate clock domain.

A good FPGA design practice is to have each resource in the FPGA device operating at the
highest possible rate to optimize hardware usage. In general, it is best to use a single clock
domain when possible and to use clock enables to gate slower circuitry, creating multicycle
paths. The drawback to this technique is that it increases power consumption and may
make it difficult to route the high-speed clock enable. As a result, separate domains for
high-speed processing are preferable in some instances. Also, it may not be possible to
avoid dealing with different clock domains when dealing with asynchronous data inputs
and outputs.

Clock Domain Partitioning

Partitioning a multiple-clock design into multiple domains is an important aspect of FPGA
design. System Generator uses design hierarchy to support clock domain partitioning.
More specifically, when a design uses multiple clock domains, the logic associated with
each distinct clock domain should be grouped together in a Simulink subsystem.

The subsystems, or in this case, synchronous islands, are cycle-true in the sense that the
hardware that is generated for an island is faithful to the Simulink behavior of the island
model. The notion of bit and cycle accuracy is preserved only within the individual
synchronous islands. The end model containing the synchronous islands is not necessarily
cycle-true, because it drives the islands with asynchronous clocks. Although System
Generator and Simulink are able to simulate the design using ideal clock sources, the
complexities involved with asynchronous clocking systems can result in discrepancies
between the software simulations and hardware realizations.

The advantages to partitioning a design using subsystems are manifold:

¢ The physical clock lines are abstracted away from the block diagram;

e Cross-domain transfers are well-defined and can be handled with metastable-safe
blocks from the Xilinx Blockset;

e Because the domains are well-defined, System Generator can accurately produce
timing constraints for the synchronous islands.

The abstraction level of System Generator reduces the risk that users will perpetrate some
of the more common design errors. These include:

e Gated Clocks: because the clocks in System Generator are inferred during hardware
generation, it is not possible to connect non-clock lines to clock inputs (i.e., gated
clocks).

¢ Asynchronous Clears: because the asynchronous resets in System Generator are
inferred during hardware generation, it is not possible to explicitly clear synchronous
logic using the asynchronous reset, which often results in timing problems.

e Inferred Latches: latches will not be generated from System Generator designs.

118

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Generating Multiple Cycle-True Islands for Distinct Clocks

Crossing Clock Domains

System Generator shared memory blocks should be used whenever it is necessary to cross
clock domains. The tool provides several blocks for transferring data across clock domains,
each of which is available in the Xilinx Shared Memory library:

e Shared Memory
e To FIFO / From FIFO

e To Register / From Register

When these shared memory blocks are used to cross clock domains, each set should be
split into a matched pair.

File Edit View Simulaton Format Tools Help
U =Es& L » 100
Write Domain ~ Read Domain
doiut
data in ol
=] el
L=l full
Empty|
Te FIFD From FIFQ
e B U e
sddr 3ddr
i dout) i dout
L WE
Shared Memary Shared Mamony 1
et A et A
din
ot gt
=n
To Register From Regiter
e ez L0 e
F|91% ode45

The To FIFO blockis putin the domain in which it is to be written. The From FIFOis put
in the domain in which it is to be read. The two blocks are linked by the name of the
Shared memory name parameter. The FIFO is implemented in hardware using the Xilinx
FIFO Generator core. Using FIFO blocks is the safest and easiest-to-use of the three blocks
which cross domains and is the best for high-bandwidth, sequential data transfers.

A pair of Shared Memory blocks is implemented as embedded Xilinx dual-port block
RAM core. The two blocks are linked by the name of the shared memory object. Each

System Generator for DSP User Guide www.xilinx.com 119
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

member of the pair resides in a different domain. Because the RAM is a true dual-port,
each domain may write to the RAM. Care must be taken, by means of semaphores or other
logic, to ensure that two writes or a read and a write to the same address do not happen
simultaneously. For example, if domain A writes to a memory location at the same time
that domain B is reading from it, the data read may not be valid. The shared memory is
implemented as a using Xilinx Dual Port Block Memory core to ensure that large memories
are efficiently mapped across multiple BRAMs.

The To Register is put in the domain in which it is to be written, and the From
Register in the domain from which it is to be read. The two blocks are linked by the
name of the shared memory. The To Register may also be read synchronously in its own
domain. The register may be of variable width and will synthesize as flip-flops. A 1-bit
To/From Register pair will synthesize as a single flop.

Note: Crossing domains in this manner can be unsafe, and requires the use of metastability-
reducing synchronization flops and semaphores for multiple-bit transfers. This technique should only
be used when the hardware pitfalls are well-understood.

Netlisting Multiple Clock Designs

Each clock domain should have its own subsystem in a System Generator design. The
diagram below shows a two-domain design. The top-level block contains the Multiple
Subsystem Generator block and two subsystems which each comprise a clock domain.
Each subsystem has a System Generator token that sets the system clock period for that
clock domain.

B £l Yew Sedsion Fymest ook
bl

O o bl & R o

2 A
7] wstithird * E|EE| Damities =
B Ede e Seedsion Fomst [och heo B G e gedstion Pt ok Heb
0 E & -] b [fomd - O = o & LB b [EUTL RE

iA |FFQ Cut Ciack Domain

Tawansiat

Note: The Multiple Subsystem Generator block does not support designs that include an EDK
Processor block

120

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Generating Multiple Cycle-True Islands for Distinct Clocks

The diagram below illustrates the concept of putting domain-crossing blocks into their
own subsystem. When a multiple-domain design is netlisted, System Generator does the
following:

e Creates an HDL file for Domain 0 (on the left), excluding the To FIFO block, and calls
the netlister to create a black-box netlist delivered as an NGC file;

¢ Creates an HDL file for Domain 1 (on the right), excluding the From FIFO block, and
calls the netlister to create a black-box netlist delivered as an NGC file;

e Invokes the Xilinx CORE Generator™ to produce a core for the FIFO block (middle);

e Creates a top-level HDL wrapper that instantiates three block components.

Azynchranous FIFO

e v ol

Clock Darnain 1 Chock TeeHin -

Tap-Level Wrapper

Step-by-Step Example

This example shows how design hierarchy can be used to partition a System Generator
design into multiple asynchronous clock islands. The example also demonstrates how
Xilinx Shared Memory blocks may be used to communicate between these islands. Lastly,
the example describes how the Multiple Subsystem Generator block can be used to netlist
the complete multi-clock design.

1. From the MATLAB window, change directory to the following:
<ISE Design Suite trees/sysgen/examples/multiple clocks/.

2. Openthe two async_clks model from the MATLAB command window, and save it
into a temporary directory of your choosing.

Subsystem hierarchy is used in this example to partition the design into two synchronous
clock domains, to which you refer as domains A and B, that are internally synchronous to
a single clock, but asynchronous relative to each other. The design includes two
subsystems named ss_clk domaina and ss_clk domainB, which include logic
associated with clock domains, A and B, respectively. The blocks inside the

ss_clk domainA subsystem operate in clock domain A while all blocks inside the
ss_clk domainB subsystem operate in a second clock domain, B.

The asynchronous islands in the example communicate with one another via a shared
memory interface implemented using a pair of Xilinx Shared Memory blocks. The two
Shared Memory blocks are distributed so that one block resides in domain
ss_clk_domainA and the other resides in domain ss_clk_domainB. Both blocks
specify the same shared memory object name, bram_iface. This allows the Shared
Memory blocks to access a common address space during simulation. Note that in the
diagram there is no physical connection shown between the two shared memory halves.

System Generator for DSP User Guide www.xilinx.com 121
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

This is because the connection is implicitly defined by the fact that the two Shared Memory
blocks specify the same shared memory object name and therefore, share an address space.
When the two subsystems are wired together and translated into hardware, the shared
memory blocks are moved from their respective subsystems and merged into a block RAM
core. For more information on how this works, refer to the topic Multiple Subsystem
Generator.

The synchronous islands sample different input sources. Island ss_clk_domainA samples a
sinusoid input, while ss_clk_domainB samples a saw-tooth wave input. Each subsystem
writes its samples into opposite halves of the shared memory. Once an island has filled its
half of memory, it reads samples from the other island's half. You can simulate the design
to visualize of the model's behavior.

3. Press the Simulink Start button to simulate the design.

4. Open the scope to visualize the output signals.

Also shown in the output scope are the two clocks, clk_A and clk_B. At the default time
scale, it is difficult to distinguish the two. Zoom in to get a more detailed view.

J Scope EIBIX] | - scope S=ES

SB LLL ARBE B S8 oL ARBE B

cll_a_date clk_&_data

|
u
-1

=

0

clk_B_data

clk B

u

270 25 280 285 290

Time offset; O Tune ofizet 0

Notice that c1k A and clk_ B have different periods and are out of phase with one
another. Earlier, it was claimed that System Generator uses a single clock source per
design. In the scope, you clearly see two different clocks. How is this possible?

The answer is in the hierarchical construction of the design. All blocks are buried in at least
one level of hierarchy using subsystems. Because there is no System Generator token at the
top level, you can consider each subsystem as a completely separate System Generator
design (at least for the time being). In this model, you have effectively defined two clock
domains by giving the ss_clk_domainA and ss_clk_ domainB subsystems different
Simulink system periods. This is allowed since you are treating these subsystems as
separate System Generator designs. The clock probes in the ss_clk_domaina and
ss_clk_domainB subsystems use the Simulink system periods in their respective

122

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Generating Multiple Cycle-True Islands for Distinct Clocks

) System Generator- two_async_clks/ss_clk_domainA ==

&

&)

subsystems to determine their output, hence different system periods yield different
system clocks.

Now consider the clocks defined by the System Generator token in the ss_clk_domaina
and ss_clk_domainB subsystems.

5. Open the System Generator token parameter dialog boxes inside the
ss_clk _domainA and ss_clk domainB subsystems.

) System Generator: two_async_clks/ss_clk_domainB

& 8 @

000 H
Compilation Clocking General Compilation Clocking General
FPGA clock period (ns) : Clock pin location : FPGA clock period (ns) : Clock pin location :
PN
|
()= | B |
Multirate implementation : DCM input clock period [ns) @ Multirate implementation : DCM input clock period [ns) :
ICIuckEnables j I1UU ICIuck Enables j I1UU

[~ Provide clock enable clear pin

Simulink system period (sec):

l- Provide clock enable clear pin

Simulink system period (sec):

()=

8

Generate |

OK | Apply | Cancel | Help | Generatel 0K | Apply | Cancel | Hel

The System Generator token dialog box in the ss_clk domainA subsystem defines an
FPGA clock period of 10ns (i.e., a frequency of 100MHz). To simplify the sample period
values in the model, the 10 ns clock is normalized to a Simulink system period value of 2
sec. In the ss_clk_domainB subsystem, an FPGA clock period of 15ns (i.e., a frequency
66.7 MHz) is defined. Normalizing this clock period gives us a Simulink system period
value of 3 sec.

Because the two subsystems in this example implement multiple, synchronous, System
Generator domains, you will use the Multiple Subsystem Generator block to wire the
subsystems together into a single HDL top-level component that exposes two clock ports.
When the Multiple Subsystem Generator translates a design into hardware, it generates
each subsystem individually as an NGC netlist file. It also creates a top-level VHDL
component or Verilog module that instantiates the subsystem netlist files as black boxes,
and wires them together using shared memory cores as clock domain bridges.

You begin by using the Multiple Subsystem Generator block to netlist subsystems
ss_clk domainA and ss_clk domainB.

6. Open the Multiple Subsystem Generator dialog box by double clicking on the Multiple
Subsystem Generator block included in the top-level of the two_async_clks model

7. Pick a suitable target directory inside the Multiple Subsystem Generator dialog box.
The default directory isnetlist.

System Generator for DSP User Guide www.xilinx.com 123
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

8. Press the Generate button. You may leave the Part, Synthesis Tool, and Hardware
Description Language fields as they are.

)} Multiple Subsystem Generator - two_async_clks - [T x|

— Multiple Subsystem Generator

Part :

[=][virtexs xcsvixtootasri7as

Target Directory :

I.a'netlist Browse.. |
Synthesis Tool : Hardware Description Language :

fxsT =l fveoL -]

[Do not embed constraints

Generate oK | Apphy | Cancel | Help |

Once the Multiple Subsystem Generator block is finished running, it will display a
message box indicating that generation is complete. It is worthwhile to take a look at the
generated results.

9. cdinto the design's target directory, netlist.

There are two NGC files in this directory: ss_clk_domaina_ cw.ngc and

ss_clk domainb cw.ngc. These files store the netlist and constraints information
corresponding to the subsystems ss_clk_domaina and ss_clk_domainb. Note that
these NGC files include the clock wrapper layer logic associated with each subsystem. This
is necessary to ensure that any clock enable logic required by a multirate design is included
in netlist file. By using the clock wrapper layer of a design, the corresponding clock driver
components are automatically included in the netlist.

Also in this directory is a dual port memory core netlist file named

dual port block memory virtex2 6 1 ef64ecl22427b7be.edn. This core
provides the hardware implementation for the Shared Memory blocks used in the original
design. The width and depth of the memory are based on values used in the Shared

Memory block configurations.

You will now take a look at the top-level HDL component that the Multiple Subsystem
Generator block produced for the design.

10. Open the two_async_clks.vhd file in a text editor.
This component defines the HDL top-level for the two_async_clks model.

entity two_async_clks is
port (
din a: in std logic_vector (7 downto 0);
din b: in std logic_vector (7 downto 0);

ss_clk domaina cw ce: in std logic := '1';
ss_clk domaina cw clk: in std logic;
ss_clk domainb cw ce: in std logic := '1';

ss_clk domainb cw clk: in std logic;
dout_a: out std logic_ vector (7 downto 0);
dout b: out std logic vector (7 downto 0)
) ;

end two async_ clks;

124

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Generating Multiple Cycle-True Islands for Distinct Clocks

There are several interesting things to notice about the port interface. First, the component
exposes two clock ports (shown in bold text). The two clock ports are named after the
subsystems from which they are derived (e.g., ss_clk_domaina), and are wired to their
respective subsystem NGC netlist files. Also note that the top-level ports of each
subsystem (e.g., din_a and dout_a) appear as top-level ports in the port interface.

The Multiple Subsystem Generator block does not generate circuitry (e.g., a DCM) to
generate multiple clock sources. You may modify the top-level HDL component to include
the circuitry, or instantiate the top-level HDL as a component in a separate wrapper that
includes the clocking circuitry.

Creating a Top-Level Wrapper

If you decide to create a top-level HDL wrapper for your multi-clock System Generator
design, it should perform the following tasks at a minimum:

¢ Instantiate the System Generator top-level component along with other wrapper logic
(e.g., a DCM);

o Wire the System generator component to the other logic;

e Create a new top-level port map which supersedes that from the System Generator
component.

The following is an example of making a top-level HDL component to instantiate clocking
circuitry. In this example, you take the output created when the example from the previous
topic is generated using the Multiple Subsystem Generator block. The resulting System
Generator design is called two_async_clks and the top-level HDL component is called
top_wrapper (for the case of VHDL synthesis).

Because the clock lines and main clock enables are inferred, the names of the clocks and
clock enables (with the _ce and _c1k suffixes above) are generated automatically by
putting suffixes on the subsystem names from which the clocks are inferred. The other port
names, such as dout _a, are taken directly from the names given to the gateway blocks in
the System Generator design.

An example VHDL top-level wrapper to instantiate the entity two_async_clks, with
deletions made for clarity, is provided below. Note that the wrapper uses a DCM
component to generate the two clocks required by the System Generator design.

-- top_wrapper.vhd

-- Example Top Level Wrapper

-- This is an example top-level wrapper for instantiating a System
Generator

-- design along with a DCM. In this example, the DCM connects the two
clock

-- inputs of the System Generator block ('two async clks') to two
buffered

-- outputs of the DCM, namely, CLKO and CLKFX. CLKO is the same
frequency

-- and phase as the input clock, and CLKFX is configured to be twice the
-- frequency of the input clock.

library IEEE;
library unisim;
use IEEE.std logic_1164.all;

System Generator for DSP User Guide www.xilinx.com 125
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

use unisim.vcomponents.all;
entity top wrapper is

port (
clk : in std logic;
din a : in std_logic_vector(7 downto 0);
din b : in std logic vector (7 downto 0);
dout _a : out std logic_vector (7 downto 0) ;
dout_ b : out std logic_vector (7 downto 0)

)i

end top wrapper;

architecture structural of top wrapper is

component two_async_ clks
port (
din a: in std logic vector (7 downto 0);
din b: in std logic vector (7 downto 0);

ss_clk domaina_cw ce: in std logic := '1';
ss_clk domaina cw clk: in std logic;
ss_clk_domainb_cw_ce: in std_logic := '1';

ss_clk domainb cw clk: in std logic;
dout _a: out std logic vector (7 downto 0
dout b: out std logic vector (7 downto 0
)

end component;

component bufg

port(i: in std logic;
o: out std logic);

end component;

component dcm
-- synopsys translate off

generic (clkout phase shift : string := "fixed";
dll frequency mode : string := "low";
duty cycle correction : boolean := true;
clkdv_divide : real := 3;
clkfx multiply : integer := 2;
clkfx divide : integer := 1);
-- synopsys translate_ on
port (clkin : in std logic;
clkfb : in std logic;
dssen : in std logic;
psincdec : in std logic;
psen : in std logic;
psclk : in std logic;
rst : in std logic;
clk0 : out std logic;
clk90 : out std logic;
clkl80 : out std logic;
clk270 : out std logic;
clk2x : out std logic;
clk2x180 : out std logic;
clkdv : out std logic;
clkfx : out std logic;

clkfx180 : out std logic;

126 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Generating Multiple Cycle-True Islands for Distinct Clocks

locked : out std logic;
psdone : out std logic;
status : out std ulogic vector (7 downto 0));

end component;

attribute dll_frequency mode string;
attribute duty cycle correction string;
attribute startup wait string;
attribute clkdv_divide string;
attribute clkfx multiply string;
attribute clkfx divide string;
attribute clkin_ period string;

attribute duty cycle correction of dcmO
attribute startup wait of dcmO label is "false";
attribute dll frequency mode of dcmO label is "low";
attribute clkdv_divide of dcmO label is "3";
attribute clkfx multiply of dcmO label is "2";
attribute clkfx divide of dcmO label is "1";
attribute clkin period of dcmO label is "10";

signal clkOunbuf std logic;
signal clkObuf std logic;
signal clkfxbuf std logic;
signal clk2xunbuf std logic;
signal clkfxunbuf std logic;
signal clkdvunbuf std logic;
signal clkdvbuf std logic;

signal ff1,ff2,ff3,ff4 std_logic;
signal dcm_rst std logic;
signal intlock std logic;

label is "true";

-- The top level instantiates the SysGen design,

a DCM,

and two BUFGs.

-- The DCM generates two clocks of different frequencies.
-- These two clocks are used to drive the two different clock domains

-- in the SysGen block.

begin
dcmO: dcm
-- synopsys translate off

generic map (dll_frequency mode => frequency mode,
clkdv divide => clkdv _divide generic,
clkfx multiply => clkfx multiply generic,
clkfx divide => clkfx divide generic)

-- synopsys translate on
port map (clkin => clk,

clkfb => clkObuf,
dssen => '0',
psincdec => '0',

psen => '0',

psclk => '0',

rst => dcm rst,

clk0 => clkOunbuf,
clk2x => clk2xunbuf,

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 127

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

clkfx => clkfxunbuf,
clkdv => clkdvunbuf,
locked => intlock) ;
bufg clk0: bufg
port map (i => clkOunbuf,
=> clkObuf) ;
bufg clkfx: bufg
port map (i => clkfxunbuf,
o => clkfxbuf);

-- This is the DCM reset. It is a four-cycle shift register used to
-- hold the DCM in reset for a few cycles after programming.

flopl: FDS port map (D C => clk, Q =>
flop2: FD port map (D => f£f1, C => clk, Q => ff2
flop3: FD port map (D C => clk, Q =>
flop4: FD port map (D => ff3, C => clk, Q =>
dcm _rst <= ff2 or ff3 or ff4;

-- SysGen Component Port Mapping
-- One clock input is being connected to clkO0 of the DCM,
-- and the other clock is being connected to clkfx.

two_async clks: two async clks

port map (
din_a => din_a,
din b => din b,
ss_clk domaina cw ce => 'l1',
ss_clk domaina cw clk => clkObuf,
ss _clk domainb cw ce => '1',

ss_clk _domainb_cw clk => clkfxbuf,
dout b => dout b);
end structural;

128 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

The integration of ChipScope™ Pro in the System Generator flow allows real-time
debugging at system speed. By inserting a ChipScope block into your System generator
design, you can debug and verify all the internal signals and nodes within your FPGA.

ChipScope Pro Overview

The increasing density of FPGA devices has rendered attaching test probes to these devices
impractical. The ChipScope™ Pro tools integrate key logic analyzer hardware components
with the target design inside of a Xilinx device. The ChipScope Pro tools communicate
with these components during system operation and in effect provide the designer with a
logic analyzer for nodes inside the Xilinx FPGA. ChipScope gives you a deep trace
memory, fast clock speeds and multiple trigger options, which can vary in complexity. You
can easily capture and view signal activity inside your FPGA without having to dedicate
critical logic space, come up with complex capture schemes, or allocate additional I/O
pins. Data samples are captured based on user-defined trigger conditions and stored in
internal block memory. All control and data transfer is done via the JTAG port eliminating
the need to drive data off-chip using 1/O pins.

Please refer to the following Web page for further details on ChipScope Pro:

http:/ /www.xilinx.com/ise/optional_prod/cspro.htm

Tutorial Example: Using ChipScope in System Generator

Note: This tutorial assumes that you have already installed and configured both the hardware and
software required to run an ML506 platform. For installation and configuration information, refer to the
ML506 documents located at the following web address:
http://www.xilinx.com/products/boards/mI506/docs.htm

This tutorial shows how to modify a Simulink model to integrate the ChipScope™ block
and how to select the data to be captured and viewed for debugging. The steps are as
follows:

1. From the MATLAB console, change the directory to
<sysgen_path>/examples/chipscope/examplel. The following files are located in
this directory:

¢ chipscope_exl.mdl - Your working model.
¢ chipscope_exl_soln.mdl - Solution model, including the ChipScope block.

2. Open the chip_ex1.mdl model from the MATLAB console. This model represents a
simple usage model of a DDS Compiler block that will produce sine and cosine output
waveforms. Both sine and cosine output waveforms will later be connected to a
Chipscope block, enabling you to debug and verify the Systen Generator block by
probing and plotting the waveforms.

System Generator for DSP User Guide www.xilinx.com 129
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com/products/boards/ml506/docs.htm
http://www.xilinx.com
http://www.xilinx.com/ise/optional_prod/cspro.htm

Chapter 1: Hardware Design Using System Generator & XILINX.

3. The 8-bit Counter is used to trigger ChipScope. The most significant bit is extracted
with a slice block and can be used for a variety of purposes such as driving an LED on
the ML506 Platform for this exercise.

ChipScope Pro Tutorial Example

M5B LED
{ ++ g P [a:b] | Qut
b T
Slce Gateway Outl
Syslem Counter i X
Gianeralor Trg - Oout Trigger
Reqgistar Gateway
i =n R ol Gateway Oul2
d Sinz
. z L
sine JCos pelen A Out
Gaterway Cut
cosine pd Cosing
. AL Cut
DDS Compiler4.0 Fegistar Gateway Oul3
Singe_PuED Out
Step Center_PBE_SW Rizing Edge Gateway Outd
D tenctor] Soope

4. Simulate the model by clicking on the Start simulation Icon [. At this point, without
modifying the model, you should be able to see the following plot.

) Scope
8B LPp hREE B & &

100 200 300 400 s00 E00 oo 00 900 1000

Time offset: 0

¢ The first plot represents the most significant bit of the 8-bit counter. The MSB
becomes 1 when the counter output is within the range of 128 through 255.

¢ The second plot represents the full output of the counter.

130 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

L4

The third and forth plots show the output sine and cosine respectively.

Integrate ChipScope into the Simulink model. The ChipScope block can be found in
the Simulink Library Browser in the Xilinx Blockset, under the Tools library. While
holding down the left mouse button, select the ChipScope block and drag it into the
open area in the lower-right corner of the Simulink model.

Double click on the ChipScope block in order to set the following parameters:

*

Number of trigger ports: Multiple trigger ports allow a larger range of events to
be detected and can reduce the number of values that must be stored. Up to 16
trigger ports can be selected. In this example, only one is used.

Display settings for trigger port: For each trigger port, the number of match units
and the match type need to be set. The pulldown menu displays options for a
particular trigger port. For N ports, the display options for trigger port 0 to N-1
can be shown. In this example, there is one Trigger port named Trig0. This option
should therefore be set to 0.

Number of match units: Using multiple match units per trigger port increases the
flexibility of event detection. One to four match units can be used in conjunction

to test for a trigger event. In this example, this option should be set to 1 since you
are only checking for one condition (i.e., the 8-bit counter value). You will set the
trigger value at run-time in the ChipScope Pro Analyzer.

Match type: This option can be set to one of the following six types:

1. Basic: performs = or <> comparisons

2. Basic With Edges: in addition to the basic operations high/low, low /high
transitions can also be detected

3. Extended: performs =, <>,>,<, <=, >= comparisons

4. Extended With Edges: in addition to the extended operations, high/low,
low /high transitions can also be detected.

5. Range: performs =, <>, >, >=, <, <=, in range, not in range comparisons

6. Range With Edges: in addition to the range operations, high /low, low /high
transitions can also be detected. In this example, set the Match Type to Basic with
Edges.

Number of data ports: Up to 256 bits can be captured per sample. This means that
the sum over all ports of the bits used per port must be less than or equal to 256.
System Generator propagates the data width automatically; therefore, only the
number of data ports needs to be specified. In this example, you want to view the
sine and cosine and trig_counter, hence you enter 3.

Depth of capture buffer: The depth of the capture buffer is a power of 2, up to
16384 samples. In this example, set the depth to 1024 (min value required for V5).

System Generator for DSP User Guide www.xilinx.com 131

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

After parameterization the ChipScope™ GUI should look like the following;:

@EhipScope (Xilinx ChipScope) -0 x|

Enables run-time debugaing and werification of signals by inserting
ChipScope Pro ICON and ILA cores,

Restrickions:

Only one ChipScope core can be instantiated in a System
Generator design, A design or subsystem containing a ChipScope
block must have at least one output pork.

— Triggers
Mumber of trigger ports Il vl
— Trigger Setkings

Display settings For trigger pork IEI vl

Mumber of match units |1 VI

Match type IExtended with edges LI

[Use trigger ports as data

Mumber of data ports |3

Depth of capture buffer

Implementation

[v Use SRL16s (when possible)

v add BUFG to JTAG clack

[o]4 Cancel Help Apply

132

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

7. Connecting the ChipScope Block

The signal used to trigger ChipScope is the counter output. The two buses that you
want to probe are the sine and cosine from the Sine/Cosine table. Connect the signals
appropriately as shown on the following figure:

ChipScope Pro Tutorial Example

m MSB o LED
Trig_Counler T
- s Tlig_Cou'grﬁal Slice Gateway Outl
s Trig_Ciountar > out Trigger
YE 1M
Ganerator Counter Gateway Dul2
i = ot Sinz
Pid Gateway Out
. plens IS
Registert Gaterway Cut3
S
cosine Peid cope
en- I clert
DDS Compiler 4.0 "
Register
trigh_low_p_fagh]trig0 low to_high
Canter_PB_SW Rizing Edge f
St
=P Detectar] ELL P zine
coe e | cosine
. Trig_Ciountar | Tiig_Counter
Double click g
1) Copyright 1995-2011 Xiling, Inc. for System Generator ipScope
#— All rights reserved. documentation on
))) this tutorial example.
Jouble Click for Copyright Motice

Note that the names of the ports on the ChipScope block are specified by names given
to the signals connected to the block, e.g. Sine and Cosine.

8. Location Constraints

Now that the design is fully implemented and simulates correctly, the next step is to
prepare it for connection to the hardware target. Although it can work on any
hardware platform, the process is described for the ML506.

Two pins need to be locked down in this design: The LED and the clock pin.

¢ LED Pin: Double click on the Gateway Outl block, select Specify IOB Location
constraints and type in {'AE24'} (note the need for single quotes).

= SpeciFy IOD ocatisn censtraints

100 pad locations {cell array {'M50°, .., 'L30'F)

[{aEzat

¢ Clock Pin: Double click on the System Generator token, set the clock period to
10ns and the clock pin location to AH15.

Clocking Crptions
FPGA, clock petiod (ns) : Clozk pir location :

fio {aHI5

System Generator for DSP User Guide www.xilinx.com 133
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator

& XILINX.

If you are using a different board, the pin locations should be modified appropriately.

System Generator GUI settings

The last two parameters that should be updated before generating a bitstream are the
target device and the compilation target.

¢ Double click on the System Generator token and verify the parameter settings as

follows:

) System Generator: chipscope_ex1_soln

@ g

Clecking General

Compilation

Compilation :
Ii“E!i‘tstream

Part :

[=][virtexs xesvsxsot-1fr1136

Synthesis tool @

Hardware description language

= Impontas configuratle Subeystem

fsT -]

JwHoL
I~ Greate testhench

Target directory :
imetist

Browse... |

[Create interface document

= 3

Seftings ... |

|)} System Generator- chipscope_ex1_soln

Clocking General

Compilation

FPGA clock period (ns) : Clock pin location @

janis
DCM input clock period (ns):

] Jwoo

|1u

Multirate implementation :

ICIuck Enables

™ Provide clock enable clear pin

Simulink system period (sec):

fa

Generate

0K | Apply | Cancel | Help |

Generatel OK | Apply | Cancel | Hel

10. Bitstream Generation

Xilinx System Generator software automatically calls both the Core Generator™ and
ChipScope generator to create the netlist and cores. In addition, when the Bitstream
target is selected, a configuration bitstream is created.

¢ Create a bitstream by pressing the Generate button.

¢ The Core Generator is automatically called to generate the Sine/Cosine table and
Counter netlists. ChipScope generator is called to create an Integrated Logic
Analyzer (ILA) core and an ICON core to communicate with the ChipScope Pro
software via the JTAG port.

134

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

Real-Time Debug

The next step is to run the design on the ML506 platform and view the probed outputs with
the ChipScope™ Pro Analyzer.

1. Connect one end of the Parallel Cable IV or Platform USB cable to the General JTAG
connector (J1) on the ML506 board. Connect the other end to your computer.

General JTAG (J1) Connector

2. Launch ChipScope Pro Analyzer

¢ Open the JTAG Chain by clicking on the following icon s, or by selecting JTAG
Chain > Xilinx Platform USB Cable. You should see the following table of the
JTAG Chain Device Order. After observing the order, click OK

Lhipscape Pro Analyzer ﬂ

JTRG Chain Device Omer

Ingex | MHame Device Mame IR Lengih | Device [DCODE | UEBERCODE
OftyDavicel HWIZFIZP 16 felSH0a3
1(MyDeviced HWIZFIZP 16 felSH0a3
2(MyDavice 2 IS0 [i SHG06093
AMyDaviced Swstem_ACE_CF (B Da001093
4[MyDeviced HCETSHA0T 10 12232093

| ok || cencel || RerduseRcopes |

System Generator for DSP User Guide www.xilinx.com 135
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

3.

Configure the FPGA

¢ Under the New Project Window, right click on Device 4 > Configure > Select
New File. At this point, you need to look for the bitstream which was generated
in step 10 of the previous section (./bitstream /chip_cw.bit). After configuration,
you should see an INFO message at the bottom of the ChipScope Analyzer
window “Found 1 Core Unit in the JTAG chain”.

Import ChipScope Project File

System Generator creates a project file for ChipScope in order to group data signals
into buses. A bus is created for each data port so that it can be viewed in the same
manner (sign and precision) in which it was viewed in the Simulink environment.

Load this project file by going under File > Import > Select New File, and select
<ISE Design Suite tree>/sysgen/examples/chipscope/netlist/temp/
chip chipscope.cdc.

Plot the Sine Waves

¢ In the New Project window, under Device 4, double click on Trigger Setup to
bring up the setup window but do not set it yet at this step.

¢ Inthe New Project window, under Device $ > Unit 0 MyILAO (ILA), double click
on Bus Plot.

A Bus Plot window appears. Select cosine and sine in the Bus Selection section, and
then arm the trigger by clicking the B button. Since you have not yet set any trigger
conditions, values are captured immediately. Both the sine and cosine appear as
shown below. You can change the display option to represent the waveforms with
points, lines, or both.

5 B P - DEV: MyDewiced (ICSVSISOT) LIMITD LA QL 555550 s s o s e

Pl

Bua

) ElR e e
b detevs data

Display

(]I cosine
(v JW =i
[T

Selection

Loa ED0 oo 400 2

=0 By

Il e

Hin Hax

1]

Dl L0

sel —n.s:nsl 0.937F

Hi —da Ti 0. 05085

Setup Trigger

In the Trigger Setup window, change the current X value with all 1s. A low-to-high
pulse is used for this trigger and can be manually triggered by pushing the center PB
SW as shown below. ChipScope starts capturing data when it detects a low-to-high
pulse. Earlier, you setup the buffer to 1024 so that up to 1024 data points can be
captured and visualized in ChipScope.

136

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

Re-capture the data by clicking on the ¢ button and you should see this screen below
indicating that the ChipScope is waiting for a qualified trigger signal before capturing
and displaying data.

Z Bus Plul - DEV:4 MyDeviced (XCIVSXS0T) UNIT:0 Myl... o a” B4

Waiting for upload...

This method of triggering is useful if you want a full control of when you like to
capture the data. This is accomplished by connecting one of the PB switches to a single
shot (Rising Edge Detector) circuit. The center PB switch (AJ6, SW14) is used for this
exercise.

VIRTEX &
KCEVERRIT

gk ' : Center PB Switch

System Generator for DSP User Guide www.xilinx.com 137
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Importing Data Into the MATLAB Workspace From ChipScope

Now you can export the data captured by ChipScope™ back into the MATLAB workspace.

1. Export data from ChipScope Pro Analyzer

¢ Select File > Export option from within ChipScope Pro Analyzer. Select ASCII
format and choose Bus Plot Buses to export. Press the Export button and save the
file as sinecos.prn.

2. Start MATLAB and change the current working directory to the location where you
saved sinecos.prn.

¢ TypexlLoadChipScopeData ('sinecos.prn') ; Thisloads the data from the
.prn file into the MATLAB workspace. In the workspace there are two new
arrays named Sin and Cos.

3. You can plot the values using the MATLAB plot function.
¢ Type:plot(1:1024, sine, 1:1024, cosine) and the following plotis

generated:
rgwer o]
File Edt Wiew Insert Tools Deskbop ‘Window Help A

DEeE& K RAME® € 08| 0O

| | | 1 1
] 200 400 BO0 800 1000 1200

138 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Using ChipScope Pro Analyzer for Real-Time Hardware Debugging

Tutorial Example: Using ChipScope Pro Analyzer with JTAG Hardware
Co-Simulation

Design Description

The following Simulink design model is used to demonstrate an integrated design flow
between ChipScope Pro Analyzer and JTAG Hardware Co-simulation. The model contains
a DDS Compiler block and a ChipScope block. The phase_in input port of the DDS
Compiler block is accumulated phase variations, which are in turn used to adjust sine and
cosine output waveforms. These outputs are then internally captured by ChipScope Pro
Analyzer in real time.

E! chipscope_ex2
Fle Edt View Simulation Fomat Tools Help

DiEE&| &&= 4|2 & b o |[Nomal HRemns s nEE &

iv ChipScope Pro & JTAG HW Cosim Exampl

Syslam
Sensralor

P Qut
- phase_inc_out
Registe2
phase_inc can be changed at 4= P
Out

un-time via HW Cao-sim bl

sine_out

Cut
|
cos_out

Constant phase_inc Scope

¥

sine

sinz
ChipScope captues data

at eal time mtes when using
free running HW Co-sim

a+ b | phaz=_in

o
—b

osing

¥

cosine

cosing

AddSub

DOS Compiker4.0 ChipScope

Setup the SP601 Hardware Co-Simulation Platform

Setup the SP601 Platform for JTAG Hardware Co-Simulation as described in the topic
Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation.

Generate a Bitstream File
1. Open <sysgen_path>/examples/chipscope/example2/chipscope_ex2.mdl and
generate a netlist targeting SP601 JTAG
Save the current Simulink model as chipscope ex2 hwcs.mdl

Replace all the Simulink blocks with the JTAG HWCS block that you just generated
except for input and output gateways

System Generator for DSP User Guide www.xilinx.com 139
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

4. Add a Simulink Slider Gain block to attenuate phase inc/dec changes and your model
should look similar to the figure below:

074747 _ phase_ing JTA_G phase_inc_out E
Co-zim

Constant Slider phase_inc phase_inc_out Display

Gain
chipscope_ex
HW Co-Simulation hwycoim

Model

Benefits

One of the main benefits for this feature is the ability capture and examine the System
Generator data in real time. The data can be captured directly from external IO pins via
non-memory-mapped IO such as Analog to Digital without having to capture the data
onto Shared Memory of FIFO and then read it onto Simulink. In this particular example,
ChipScope captures data at real time rates when using Free Running, HW Co-simulation
mode.

How to Iterate a Design between System Generator for DSP and ChipScope
Pro Analyzer

In Simulink

Press play on the Simulink model to start hardware co-simulation to download the
bitstream

In ChipScope Pro Analyzer
1. Start the ChipScope Pro Analyzer from the Windows Start menu

2. From the pulldown menu: File > Open Project... and select
chipscope ex2 chipscope.cpj

3. From the pulldown menu: JTAG Chain > Xilinx Platform USB Cable... then press OK
4. From the toolbar: Press the Trigger Now button (i.e. T! button)
Note: You should be able to observe the following output waveform from the Bus Plot

ol i |

@ Bus Plot - DEV:0 MyDevice0 (XC6SLX16) UNIT:0 MyILAO (ILA) :::
Flot

& data s time
) data s data

Cisplay

line =

Eus Selection

- -0 ' ' '
/MM Cosine z0 40 3 200 000
[Sine

hfinshta:

X o 10z32
W -n.9275 0.9275

K 186[¥: 0.50044

140 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. AXI Interface

In Simulink

1. Press Play and change the Slider Gain setting to change the frequency of the DDS

2. Press Pause in Simulink

In ChipScope Pro Analyzer

1. Press the Trigger Now button again to capture the new Sine and Cosine waves that are
running at a different frequency

AXI Interface

Introduction

AMBA® AXI™4 (Advanced eXtensible Interface 4) is the fourth generation of the AMBA
interface defined and controlled by ARM®, and has been adopted by Xilinx as the next-
generation interconnect for FPGA designs. Xilinx and ARM worked closely to ensure that
the AXI4 specification addresses the needs of FPGAs.

AXIis an open interface standard that is widely used by many 3rd-party IP vendors since
it is public, royalty-free and an industry standard.

The AMBA AXI4 interface connections are point-to-point and come in three different
flavors: AXI4, AXI4-Lite and AXI4-Stream.

e AXI4is a memory-mapped interface which support burst transactions
e AXI4-Lite is a lightweight version of AXI4 and has a non-bursting interface

e AXI4-Stream is a high-performance streaming interface for unidirectional data
transfers (from master to slave) with reduced signaling requirements (compared to
AXI4). AXI4-Stream supports multiple channels of data on the same set of wires.

In the following documentation, AXI4 refers to the AXI4 memory map interface, and AXI4-
Lite and AXI4-Stream each refer to their respective flavor of the AMBA AXI4 interface.
When referring to the collection of interfaces, the term AMBA AXI4 shall be used.

The purpose of this section is to provide an introduction to AMBA AXI4 and to draw
attention to AMBA AXI4 details with respect to System Generator. For more detailed
information on the AMBA AXI4 specification please refer to the Xilinx AMBA-AXI4
documents found in http:/ /www.xilinx.com /ipcenter /axi4.htm.

AXI4 Support in System Generator

AXI4 (memory-mapped) support in System Generator is available through the EDK
Processor block found in the System Generator block set. The EDK Processor block allows
users to connect hardware circuits created in System Generator to a Xilinx Microblaze
processor; users have the option to connect to the processor via a PLB46 or AXI4 interface.

Users need not be fluent in AXI4 nomenclature when using this flow because the EDK
Processor block presents to the users a bus-agnostic interface that is memory centric. Users
need only create hardware that utilize Shared Registers, Shared FIFOs and Shared
Memories and The EDK Processor block will take care of connecting these memories to the
chosen interface.

Please refer to the System Generator documentation for more information on Hardware
and Software Co-design refer to the topic titled Integrating a Processor with Custom Logic
and EDK_Processor block.

System Generator for DSP User Guide www.xilinx.com 141
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/ipcenter/axi4.htm

Chapter 1: Hardware Design Using System Generator & XILINX.

AXI4-Stream Support in System Generator

The 3 most common AXI4-Stream signals are TVALID, TREADY and TDATA. Of all the
AXI4-Stream signals, only TVALID is denoted as mandatory, all other signals are optional.
All information-carrying signals propagate in the same direction as TVALID; only
TREADY propagates in the opposite direction.

Since AXI4-Steam is a point-to-point interface, the concept of master and slave interface is
pertinent to describe the direction of data flow. A master produces data and a slave
consumes data.

Naming conventions

AXI4-Stream signals are named in the following manner:

<Role> <ClassName>[<BusName>] [<ChannelName>]<SignalName>

For instance:

m_axis_tvalid

Here m denotes the Role (master), axis the ClassName (AXI4-Stream) and tvalid the
SignalName

s_axis control tdata

Here s denotes the Role (slave), axis the ClassName, control the BusName which
distinguishes between multiple instances of the same class on a particular IP, and tdata
the SignalName.

Notes on TREADY/TVALID handshaking

The TREADY/TVALID handshake is a fundamental concept in AXI to control how data is
exchanged between the master and slave allowing for bidirectional flow control. TDATA,
and all the other AXI-Streaming signals (TSTRB, TUSER, TLAST, TID, and TDEST) are all
qualified by the TREADY /TVALID handshake. The master indicates a valid beat of data
by the assertion of TVALID and must hold the data beat until TREADY is asserted.
TVALID once asserted cannot be de-asserted until TREADY is asserted in response (this
behavior is referred to as a “sticky” TVALID). AXI also adds the rule that TREADY can
depend on TVALID, but the assertion of TVALID cannot depend on TREADY. This rule
prevents circular timing loops. The timing diagram below provides an example of the
TREADY /TVALID handshake.

ACLK | | I

TDATA XXX DO oo o1 o2 D3) xxx

TVALD | J \
TREADY / [

Handshaking Key Points
e A transfer on any given channel occurs when both TREADY and TVALID are high in
the same cycle.

e TVALID once asserted, may only be de-asserted after a transfer has completed
(TREADY is sampled high). Transfers may not be retracted or aborted.

142

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

AXI Interface

AXI-Stream

Once TVALID is asserted, no other signals in the same channel (except TREADY) may
change value until the transfer completes (the cycle after TREADY is asserted).

TREADY may be asserted before, during or after the cycle in which TVALID is
asserted.

The assertion of TVALID may not be dependent on the value of TREADY. But the
assertion of TREADY may be dependent on the value of TVALID.

There must be no combinatorial paths between input and output signals on both
master and slave interfaces:

¢ Applied to AXI4-Stream IP, this means that the TREADY slave output cannot be
combinatorially generated from the TVALID slave input. A slave that can
immediately accept data qualified by TVALID, should pre-assert its TREADY
signal until data is received. Alternatively TREADY can be registered and driven
the cycle following TVALID assertion.

¢ The default design convention is that a slave should drive TREADY
independently or pre-assert TREADY to minimize latency.

¢ Note that combinatorial paths between input and output signals are permitted
across separate AXI4-Stream channels. It is however a recommendation that
multiple channels belonging to the same interface (related group of channels that
operate together) should not have any combinatorial paths between input and
output signals.

For any given channel, all signals propagate from the source (typically master) to the
destination (typically slave) except for TREADY. Any other information-carrying or
control signals that need to propagate in the opposite direction must either be part of
a separate channel (“back-channel” with separate TREADY/TVALID handshake) or
be an out-of-band signal (no handshake). TREADY should not be used as a
mechanism to transfer opposite direction information from a slave to a master.

AXI4-Stream allows TREADY to be omitted which defaults its value to 1. This may
limit interoperability with IP that generates TREADY. It is possible to connect an
AXI4-Stream master with only forward flow control (TVALID only)

Blocks in System Generator

System Generator blocks that present an AXI4-Stream interface can be found in the Xilinx
Blockset Library entitled AXI4. Blocks in this library are drawn slightly differently from
regular (non AXI4-Stream) blocks.

Port Groupings

]

data_tready data_tvalid | >
data_tdata | >
phase_tready
phase_tvalid §I>
e phase_tdata ||>

DS Compiler5.0

System Generator for DSP User Guide www.xilinx.com 143

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 1: Hardware Design Using System Generator & XILINX.

Blocks that proffer AXI4-Stream interfaces have AXI4-Stream channels grouped together
and color coded. For example, on the DDS Compiler 5.0 block shown above, the top-most
input port data_tready and the top two output ports, data_tvalid and data_tdata belong in
the same AXI4-Stream channel. As does phase_tready, phase_tvalid and phase_tdata.

Signals that are not part of any AXI4-Stream channels are given the same background color
as the block; rst is an example.

Port Name Shortening

In the example shown below, the AXI4-Stream signal names have been shortened to
improve readability on the block. Name shortening is purely cosmetic and when netlisting
occurs, the full AXI4-Stream name is used. Name shorting is turned on by default; you can
uncheck the Display shortened port names option in the block parameter dialog box to
reveal the full name.

[m_axis_data_twalid||>
>l m_axis_data_tready

m_axis_data_tdata| >

m_axis_phase_tready

m_axiz_phase_twalid li>

m_axis_phass_tdatafi>

bDS Compiler5.0

#2 DDS Compiler 50 (Xilinx DDS Compiler 5.4

Basic Implementation Qutput Frequency
Block Icon Display
[] Display shortened port names

Breaking Out Multi-Channel TDATA

In AXI4-Stream, TDATA can contain multiple channels of data. In System Generator, the
individual channels for TDATA are broken out. So for example, the TDATA of port dout
below contains both real and imaginary components.

»| a_tvalid
) dout_tvalid >
»| a_tdata_imag
| a_tdata_real
dout_tdata_imag [
b_tvalid
b_tdata_imag
dout_tdata_real >
b_tdats_real

Complex Multiplier 4.0

The breaking out of multi-channel TDATA does not add additional logic to the design and
is done in System Generator as a convenience to the users. The data in each broken out
TDATA port is also correctly byte-aligned.

144 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Hardwarel/Software Co-Design

The Chapter covers topics regarding developing software and hardware in System

Generator.

Hardware/Software Co-Design
in System Generator

Integrating a Processor with
Custom Logic

EDK Support

Designing with Embedded
Processors and Microcontrollers

A collection of tutorials that touch on designs with
embedded processors.

A collection of tutorials that touch on designs with
embedded processors

Documentation of support for the Xilinx Embedded
Development Kit.

A collection of tutorials that touch on designs with
embedded processors.

System Generator for DSP User Guide www.xilinx.com

UG640 (v 13.1) March 1, 2011

145

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Hardware/Software Co-Design in System Generator

System Generator provides three ways for processors to be brought into a model;
processors can be imported through a Black Box block, a PicoBlaze Microcontroller block
and an EDK Processor block.

Black Box Block

The Black Box approach provides the largest degree of flexibility, at the cost of design
complexity. You can interface any processor HDL into a System Generator design in this
manner. All ports and buses on the processor can be exposed to the System Generator
diagram, and you are free to engineer the required connectivity between the processor and
other System Generator blocks. You also have complete control over software compilation
issues. Please refer to the topic Importing HDL Modules for more information.

PicoBlaze Block

The PicoBlaze™ block provides the smallest degree of flexibility but is the least complex to
use. The Xilinx PicoBlaze Microcontroller block implements an embedded 8-bit
microcontroller using the PicoBlaze macro, and exposes a fixed interface to System
Generator. Ordinarily, a single block ROM containing 1024 or fewer 8 bit words serves as
the program store. You can program the PicoBlaze using the PicoBlaze Assembler
language. This flow is documented in the topic Designing PicoBlaze Microcontroller
Applications.

EDK Processor Block

The EDK Processor block provides an interface to MicroBlaze™ processors created using
the Xilinx Platform Studio (XPS). The EDK Processor block allows System Generator
Shared Memory blocks (i.e., "From/To Register"s, "From /To FIFOs", and "Shared Memory"
blocks) to be associated with a processor through an automatically generated memory map
interface. Once associated, that memory can be read or written in software running on the
MicroBlaze processor. This flow is documented in the topic Integrating a Processor with
Custom Logic.

The EDK Processor block can import a MicroBlaze processor specified through an EDK
project created using Xilinx Platform Studio and Base System Builder. Alternatively, a
System Generator design with an EDK Processor block can also be exported into an EDK
project.

The export process creates a PLB-based or FSL-based pcore, which can be added to any
XPS project and communicate with the MicroBlaze or PowerPC® processor.

Integrating a Processor with Custom Logic

Integrating a processor with a piece of user-defined logic is typically a fairly involved
process. The communications between a processor and a custom piece of hardware often
occurs over a shared bus. Additionally, the information conveyed frequently consists of
different types of data; for example data for processing, data denoting the status of the
hardware or data affecting the mode of operation. Organizing how this data is transferred
between the processor and custom logic is a tedious and error prone process that would
benefit from automation. Furthermore, connectivity is only half of the problem, writing
software to communicate with custom logic can also be challenging.

146

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Integrating a Processor with Custom Logic

The EDK Processor block provides a solution to both these problems through automation.
The EDK Processor block encourages the interface between the processor and the custom
logic to be specified via shared-memories. Shared-memories are used to provide storage
locations that can be referenced by name. This allows a memory map and the associated

software drivers to be generated.

Please refer to the EDK Processor block documentation regarding information on the use
of the block. The topics that follow describe the automatic memory map creation,
hardware generation in different compilation flows, and the use of the associated software
drivers, and the two clock wiring schemes provided by the EDK Processor block.

Memory Map Creation

Hardware Generation

Hardware Co-Simulation

The Software Driver

Writing a Software Program

Asynchronous Support

Clock Wiring in the Hardware
Co-Simulation Flow

Troubleshooting

Explains the memory map generated when
shared memories are added to a processor.

Documents the different hardware generation
options in different compilation flows.

Explains how to create a hardware co-
simulation model for the EDK Processor block.

Documents how a software driver is created and
how to writing software using the software
driver to perform read/write operations to the
memory-mapped interface.

Documents the process of writing software to
control hardware created in System Generator.

Documents the capability in System Generator,
in both import and export mode, to allow the
processor and the System Generator design to
run with different clocks.

Documents the dual clock wiring and single
clock wiring scheme offered by the EDK
Processor block in the hardware co-simulation
flow.

Describes how to resolve issues such as how to
update outdated netlists that are cashed inside
XPS.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 147

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Memory Map Creation

_ = RAM fe---- RAM<<'data>>
MicroBlaze | &
- . . Custom
Processor | 2 FIFO ====+ FIFO <<'sfream’=>)
s logic
Subsystem | S
fa Reg I"""" Reg <<'status’>>
/ o 3 P~
B | sbvecsd | deplesentation, | Saf S yew Gmuston fgmet ook peb L
Frimssan Ot . T . 4 . = omd = -
rastnir R wfon || =& e REE
Plamery Mgy --L.q_-':
S j
L, < creemgpt s,
S
I, < o b
PEL, < au s =
Aplabie P [=] Sy

é]

il

A System Generator model is shown on the bottom-right of the figure above. The System
Generator model corresponds to custom logic that will be integrated with the
MicroBlaze™ processor. In the construction of the model, shared-memories are used in
locations where software access is required. For example, the status of the hardware might
be kept in a register. To make that status information visible in the processor, the register is
replaced by a named shared-register. Naming the shared-register "status" gives the name
of the memory context that will be useful later on during software development.

The block GUI of the EDK Processor block allows these shared-memories to be added to
the memory map of the processor (bottom-left of the figure). The block diagram at the top
of the figure above shows the flow of data. When a shared memory is added to the memory
map of the processor, the EDK Processor block creates the corresponding matching shared
memory. This shared memory is attached to the memory map that is generated for that
EDK Processor block. Next, a bus adaptor is used to connect that memory map to the
MicroBlaze processor.

Note: The EDK Processor block does not support Shared Memory blocks with spaces in their
names.

When hardware is generated, each shared memory pair is implemented with a single
physical memory. The implementation for each class of shared memory is documented in
the topic Shared Memory Support, found under the topic Using Hardware Co-Simulation.

148 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Integrating a Processor with Custom Logic

Hardware Generation

The EDK Processor block supports two modes of operation: EDK pcore generation and
HDL netlisting. The different modes of operation are illustrated below and can be chosen
from a list-box in the EDK Processor block's GUL

| EDK Pcoregenerationmode |

MicroBlaze
Processor
Subsystem

Bus adaptor

HOL netlist mode |

EDK pcore Generation Mode

The Xilinx Embedded Development Kit (EDK) allows peripherals to be attached to
processors created within the EDK. These peripherals can be packaged as pcores. Each
pcore contains a collection of files describing the peripheral's hardware description,
software drivers, bus connectivity and documentation.

When set in EDK-pcore-generation mode and used with the EDK Export Tool (selected via
the System Generator token), System Generator is able to create a pcore from the given
System Generator model. The figure above shows the part of the model that is created as a
pcore. When set in this mode, the assumption is that the MicroBlaze™ processor added to
the model is just a place-holder. Its actual implementation will be filled in by the EDK
when the peripheral is finally added into an EDK project. As such, the pcore that is created
consists of the custom logic, the generated memory map and virtual connections to the
custom logic, and the bus adaptor.

HDL Netlist Mode

An EDK processor can also be brought into a System Generator model when HDL
netlisting mode is selected. The EDK Processor block can be set to HDL netlisting mode
only when an EDK project is supplied to the block. When in HDL netlisting mode, the
processor described in the EDK project will be imported into System Generator as a black
box. The supplied EDK project is also augmented with the bus interfaces necessary to
connect the System Generator memory map to the processor. During netlisting, the
MicroBlaze™ processor and the generated memory-map hardware are both netlisted into
hardware.

Hardware Co-Simulation

Currently the EDK Processor block provides hardware-based simulation through
hardware co-simulation. The creation of a Hardware Co-Simulation block follows the
standard co-simulation flow described in the topic Using Hardware Co-Simulation. The
only difference is how top-level ports of the imported XPS project are treated.

When an XPS project is imported into System Generator, the import wizard assumes that
all the ports are well constrained and applies that given constraint on the ports during the
creation of the Hardware Co-Simulation block. That is to say, if the top-level entity of the
XPS system contains ports that connect to pads on the FPGA, when compiling a Hardware

System Generator for DSP User Guide www.xilinx.com 149
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Co-Simulation block, these ports will still connect to the pads on the FPGA and will not
appear as ports on the Hardware Co-Simulation block. Similarly, the bitstream flow
constraints specified on top-level ports in the imported XPS system will be honored.

Should there be top-level ports that do not connect to pads, or are not constrained, these
ports can be made visible in System Generator by exposing the ports using the Processor
Port Interface table in the Advanced tab of the EDK Processor block. See the topic Exposing
Processor Ports to System Generator for details.

You may use the EDK's XPS tool to write and compile your software. However before
simulation can begin, the Compile and update bitstream button in the co-simulation
block's Software tab must be used to put the compiled C-code into the bitstream.

When used in conjunction with a hardware-board supported by network-based hardware
co-simulation, it is possible to free up the JTAG port on the FPGA and use that for software
debug with XMD.

The Software Driver

For both the EDK pcore generation mode and the HDL netlist mode, the EDK Processor
block automatically generates a custom software driver, which can be used to drive the
memory map which is automatically generated by the block.

Location of the Software Driver

In the EDK pcore generation mode, the software driver is located at pathname
<pcores>/<sysgen pcore_dir>/src.<sysgen pcore_dir> which is the directory
where System Generator places the exported pcore. Normally, this is under the netlist
directory specified by the System Generator token.

In the HDL netlist mode, when the XPS project is imported into System Generator, the
software driver is placed at <xps_project_dirs/pcores/sg_plbiface_vl_00_a/src,
where <xps_project_dirs is the location of the imported XPS project. After going
through the HDL netlist, NGC netlist, Bitstream, or other hardware co-simulation
compilation flows as provided by the System Generator token, the software driver and the
associated APl documentation are placed under the directory

<netlist dir>/SDK Export/sysgen repos/drivers/sg plbiface vl 00 a/src
along with other SDK export files. By doing so, the generated software driver can be used
in the Xilinx SDK (Software Development Kit).

Launching Xilinx SDK from System Generator

In the HDL netlist mode, the EDK Processor automatically invokes the Export to SDK
utility provided by XPS (Xilinx Platform Studio) to export the imported XPS project to
<netlist_dir>/SDK_Export. For the Bitstream compilation flow, this directory also
contains the bit file and the back-annotation BMM file generated from the compilation
flow. Thus, for the Bitstream compilation flow, the SDK_Export directory is the only
directory required to be handed off to a software developer for software development.

150 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Integrating a Processor with Custom Logic

As shown in the following figure, you can click on the Launch Xilinx SDK button on the
Software tab of a Hardware Co-Simulation block GUI to launch the Xilinx SDK.

@MicruBlaze Processor Subsystem hwcosim (Xilink ITAG H... =] E3

Basic I Advanced I Zable I Shared Memories Software |

Iv: Enable Co-Debug with Hiline 50K (Beta)

wilimx Software Development Kit (SDK)

Wiorkspace Igen'l,examples'l,SDK_C:::DeI:uug'l,netlist'l,SDK_Wu:urkspace |

Launch xilinz: SOk |

When Xilinx SDK is launched from System Generator, the following items are
automatically set up by System Generator.

1. The workspace is set to the one as specified on the above Hardware Co-Simulation
block GUIL

2. A Xilinx Hardware Platform Specification is automatically created and points to
<netlist dir>/SDK Export/hw/<edk_project names.xml. This XML file is
generated by XPS through the Export to SDK utility. It contains information from the
hardware specification MHS file and software specification MSS file in the original
XPS project.

3. System Generator automatically adds <netlist_dir>/SDK_Export/sysgen_repos to
local software repositories. You can verify this by going to Xilinx Tools > Repositories
> Local Repositories as shown in the following figure. By doing so, Xilinx SDK can
locate the software driver generated by System Generator.

[@preferences =lol x|

type Add, remove or change the order of SDK's software repositories. -
e g::f Local Repositories (avadable o the current workspace)

- Help C:ideviEDEPrisPa0Sinetlist spf0S p2p\SDE Exportisysoen repos

- InstalfUpdate M
- Run/Debug Bemoyve

B Team

Terminal

&1 Kiiree SDK =
Flash Programming =
Log [nformsation L svel Giobal Reposkories (available across workspaces)
Reposkories
System Generator for DSP User Guide www.xilinx.com 151

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Note: If you launch Xilinx SDK standalone, rather than through System Generator as mentioned
above, you need to specify the Workspace directory and manually add the folder
<netlist dir>/SDK Export/sysgen_ repos to the local repositories.

o

5' T2l heloworld.c i system.mss 53 =g .g.
' | hello_world_bsp_0 Board Support Package = ==

Target Information
Irhis Board Support Package is compiled to run on the Following target.

Hardware Specfication: C:\deviEDKPriSPe0Sinetlist_spe0S_p2pl SO _Workspacelhws_platformisyste
Target Processar: microblaze 0

Operating System
Board Support Package 05,
Name: standalone
Version: 3.00.4

Description: Standalone is a simple, low-level software platform. It provides access ta basic proc
features such as caches, interrupts and exceptions a5 well as the basic Features of .
hosted ervvironment, such as standard input and outpuk, profiling, abort and exit,

Documentation: standalone v3 00 &

Peripheral Drivers
Drivers present in the Board Support

Package.
RSZ32_Uart_1 vartlite Documentation
dimb_cntlr bram Documentation

irnby_crtle biram Documentation
i
5g_plbiface_0 sg_pl¥ace Documentation

\

Libraries

Libraries present in the Board Support Package. =

Crveryiew | Source |

API Documentation

There is API documention associated with the software driver, which you can find by
clicking the Documentation link shown in the above the figure.

In order to utilize these functions, the following two header files need to be included in
your C code.

#include "xparameters.h"
#include "sg plbiface.h"

The hardware settings of the shared memories inside the System Generator pcore can be
found in the header file xparameters.h. For example, absolute memory-mapped
addresses, data bit widths (n_bits) and binary point positions (bin_pt), depths of the "To
FIFO" shared memories on the processor memory map can be found in this header file. The
header file sg_plbiface.h defines the basic data types and software driver functions for
accessing the shared memories.

152 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Integrating a Processor with Custom Logic

There is a Shared Memory Settings session in the API documentation, which lists the settings
of the available shared memories contained by the System Generator peripheral as shown
in the following figure.

Shared Memory Settings

Shared Memory Name Memory type Access Data Type Native Precision®
¢ dout From FIFO xe_from fife t UFix_32_0
din To FIFQ xc_to_fifo t UFe_32_0

Writing a Software Program

You should follow the Xilinx SDK flow to create a software application project and write
software to drive the System Generator peripheral. In the HDL netlist mode, you can
choose a sample application to customize for the System Generator peripheral as shown in
the figure below.

~loix]
New Xilinx C Project EJ
Create a managed make application project, Choose from one of the sample applications, #

Project name: | sq_phiface_esxample_0

¥ Use default location

Hardware Specification: | \dev|EDEPriSPE0S|netlist_spa0S_n2pSDK_WWorkspaceltw_platformisystem.

=]
Processor: I icroblaze 0 d

Dhirystone [~ Description

E;"i’;x{”?ﬂ'mtmn Example C program for using sg_plbiface software driver ﬂ
P Echo Server

Memary Tests

In the API documentation, a number of example code snippets are provided to perform
read /write operations. These code snippets are detailed in the following text.

Accessing "From Register" and "To Register" shared memories

Single-Word Writes

The following code snippet writes a value to the "To Register" shared memory named
"toreg".

uint32_t value;
xc_iface t *iface;
xXc_to _reg t *toreg;

// initialize the software driver, assuming the Pcore device ID is 0
xc_create(&iface, &SG_PLBIFACE ConfigTable[0]) ;

System Generator for DSP User Guide www.xilinx.com 153
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

// obtain the memory location for storing the settings of shared memory
Iltll

xc_get shmem(iface, "toreg", &toreg);

// write value to the "din" port of shared memory "toreg"
xc_write(iface, toreg->din, (const unsigned) value);

Single-Word Reads

The following code snippet reads data stored in the "From Register" shared memory
named "fromreg" into "value".

uint32 t value;

xc_iface_t *iface;

xc_from reg t *fromreg;

// initialize the software driver, assuming the Pcore device ID is 0
xc_create(&iface, &SG_PLBIFACE ConfigTable[O0]) ;

// obtain the memory location for storing the settings of shared memory

"fromreg"

xc_get shmem(iface, "fromreg", (void **) &fromreg) ;

// read data from the "dout" port of shared memory "fromreg" and store
at value

xc_read(iface, fromreg->dout, &value);
Accessing "From FIFO" and "To FIFO" shared memories

Single-Word Writes

The following code snippet writes value to the "To FIFO" shared memory named "tofifo".

uint32_t full;

uint32 t value;

xc_iface t *iface;

xc_to fifo t *tofifo;

// initialize the software driver, assuming the Pcore device ID is 0
xc_create(&iface, &SG_PLBIFACE ConfigTable[0]) ;

// obtain the memory location for storing the settings of shared memory

lltll
xc_get shmem(iface, "tofifo", (void **) &tofifo);
// check the "full" port of shared memory "tofifo"
do {
xc_read(iface, tofifo->full, &full);
} while (full == 1);
// write value to the "din" port of shared memory "tofifo"
value = 100;

xc_write(iface, tofifo->din, value);

154 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Integrating a Processor with Custom Logic

Single-Word Reads

The following code snippet reads data stored in the "From Register" shared memory
named "fromreg" into "value".

uint32 t empty;

uint32 t value;

xc_iface_t *iface;

xc_from fifo t *fromfifo;

// initialize the software driver, assuming the Pcore device ID is 0
xc_create(&iface, &SG PLBIFACE ConfigTable[0]) ;

// obtain the memory location for storing the settings of shared memory

"fromfifo"

xc_get shmem(iface, "fromreg", (void **) &fromfifo);
// check the "empty" port of shared memory "fromfifo"
do {

xc_read(iface, fromfifo-sempty, 9);
} while (empty == 1);
// read data from the "dout" port of shared memory "fromfifo" and store
at value
xc_read(iface, fromfifo-s>dout, &value);

Accessing "Shared Memory" Shared Memories

Single-Word Writes

The following code snippet writes "value" to the shared memory named "shram1".

uint32 t value;

xc_iface t *iface;

xc_shram t *shram;

// initialize the software driver, assuming the Pcore device ID is 0
xc_create(&iface, &SG_PLBIFACE ConfigTable[0]) ;

// obtain the memory location for storing the settings of shared memory

"shraml"

xc_get shmem(iface, "shraml", (void **) &shram);

// write value to the shared memory "shraml"

xc_write(iface, xc_get addr(shram->addr, 2), (const unsigned) value);

Single-Word Reads

The following code snippet reads data stored in the shared memory named "shram?2" into
"value".

uint32 t value;

xc_iface_t *iface;

xc_shram t *shram;

// initialize the software driver, assuming the Pcore device ID is 0
xc _create(&iface, &SG_PLBIFACE ConfigTable[0]) ;

// obtain the memory location for storing the settings of shared memory

"fromfifo"
xc_get shmem(iface, "shram2", (void **) &shram);
// read data from the shared memory "shram2" and store at value
xc_read(iface, xc_get addr (shram->addr, 2), &value);
System Generator for DSP User Guide www.xilinx.com 155

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Asynchronous Support

Asynchronous support for processors allow for the processor and the accelerator hardware
hanging off the processor to be clocked with different clocks. This allows the hardware
accelerator to run at the fastest possible clock rate, or at a clock rate that is necessary for its
correct functioning, for example when it is required to interface with an external
peripheral.

This feature is enabled when the Dual Clock check box is selected in the EDK Processor
block GUI's Implementation tab. The figure below shows how clocks will be connected for
the import and export flow; in the export flow, the MicroBlaze ™(MB) block is not present.
Basically, the custom logic design in System Generator is driven with the clk clock and the
processor system is driven with the xps_clk clock. The clock source that drives the PLB bus
in the MicroBlaze processor system is extracted to drive the bus adaptor, the memory map,
and halves of the shared memories. Shared memories straddle between these two domains
(e.g. the clk domain and the plb_clock domain) and are driven by both these clocks. In the
import flow where an XPS project is imported into System Generator, the PLB bus on the
processor must be driven with the same clock as the xps_clk signal.

MicroBlaze
Processor
Subsystem

Custom
logic

angl;r? FIFO """"l FIFO ==<'stream’==

Reg ----DI Reg <<'status™>=
—r

Bus adaptor

T —— clk

xps_clk

When Dual Clock is enabled and a design is netlisted for hardware co-simulation, a
slightly different clock wiring topology is used. This is shown in the figure below. The
clock source from the board is bifurcated with one branch going into the Hardware Co-
simulation module before being connected to the clk clock (depicted in the figure above).
The other branch is routed through a clock buffer and connected to the xps_clk clock
signal.

This topology allows for the custom logic designed in System Generator to be single-
stepped, while allowing the MicroBlaze processor to continue in free-running mode. This
allows for clock-sensitive peripherals (such as the RS232 UARTS) to work when the
Hardware Co-Simulation token is set to single-step.

RAM === RAM =<data’==

an”;gr? FIFO |e---={FIFO <<stream>>

Reg ----DI Reg <<'status=>
-

MicroBlaze
Processor
Subsystem

Busadaptor

— [—
f_,/ HIH__F_-—
__,t/J le ‘ .,—o-"""-f
Hardware
co-simulation circuitry Board
xps_clk inputclock
156 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Integrating a Processor with Custom Logic

In hardware co-simulation, the processor subsystem is driven by the board clock directly.
This means that the processor subsystem must be able to meet the requirements set by this
clock. In hardware co-simulation, it is possible for users to select different ratios of clock
frequencies based of the input board frequency. Note that this hardware co-simulation
clock is generated in the hardware co-simulation module and is not available to the
processor subsystem.

For exmaple, if the input board frequency is 125MHz, and the hardware co-simulation
frequency is set to 33 Mhz, only the custom logic portion of the design will be constrained
to 33 MHz, the MicroBlaze processor must still run at 125 MHz. If the MicroBlaze processor
cannot meet timing at this speed, you need to instantiate a clock generator pheripheral in
your XPS project and slow down the clock in that way.

Clock Wiring in the Hardware Co-Simulation Flow

When a Xilinx Platform Studio (XPS) project is imported into System Generator using the
EDK Processor block, you can generate a Hardware Co-Simulation block for the imported
XPS project. The Hardware Co-Simulation block allows you to run the XPS system on the
hardware while simulating the System Generator design in Simulink on the host PC.

In a typical hardware co-simulation session, a portion of the System Generator design runs
on hardware, while the rest of the design is simulated in software. The design portion
running in hardware is driven with a clock generated by a clock control module. This clock
control module is a piece of hardware automatically inserted by System Generator
hardware co-simulation to ensure that the hardware and the Simulink simulation are
synchronized. The hardware co-simulation flow allows you to select the clock frequency
used to drive the hardware. For example, in the hardware co-simulation settings dialog
box for the ML506 board shown below, a 100 MHz clock frequency is selected. The Design
Under Test (DUT) running on hardware is then driven by a 100 MHz clock output from the
hardware co-simulation clock control module.

-} Hardware Co-Simulation Settings =101 %]

[T XFLOW Options Files
Impilementation Flovw (NGDBuikd, MAP, PAR, TRACE)

Configurabion Flow (BitGen]

|-. il trnikouipulireleass wxporiey sgenivwoosimitagibipen_jtsg opt ﬂ
Clock Frequency [Settings |

00 MHz j The sedacted clock frequency = uzed o drive the single-stepping

and Tréa-nunning clock in hardwoans co-smulation.

50 Wz
re Defauts Help
33.3333 MHz 4'

When participating in hardware co-simulation, the EDK Processor block provides two
clocking schemes to suit different simulation and runtime requirements: dual-clock wiring
and single-clock wiring. In dual-clock wiring, the EDK Processor and the System Generator
design are driven by two asynchronous clocks; in single-clock wiring, the EDK Processor
and the rest of the System Generator design are driven by the same clock.

System Generator for DSP User Guide www.xilinx.com 157
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

As a rule of thumb, if you want the processor to free-run at the board rate, you should
choose the dual-clock wiring scheme. In case you want to single-step the processor for
debug or profiling purposes, you should choose the single-clock wiring scheme.

Starting with Release 12.1, the dual-clock wiring scheme is turned on by default. You can
change the wiring scheme to single-clock wiring through the Implementation tab on the
EDK Processor block GUI

Dual Clock Wiring Scheme

There are three key advantages of the dual-clock wiring scheme. The first advantage is to
allow the imported XPS project (processor) to run at full speed. This allows peripherals
interfacing with external I/Os such as UART and memory controller to function correctly
during simulation.

The second advantage is to speed up the simulation time by having an asynchronous
communication interface between the XPS project with the DUT. In fact, the DUT and the
imported XPS project run asynchronously. The DUT is controlled by the clock control
module automatically added by System Generator hardware co-simulation. This clock
control module ensures that the DUT is synchronized with the Simulink software
simulation during single-stepped hardware co-simulation. Allowing the imported XPS
project and the processor inside it to run asynchronously from the DUT eliminates the
need to simulate though thousands of lines of boot-loading code before meaningful data
shows up in Simulink.

The dual-clock wiring scheme is shown in the figure below. The main difference compared
with the single-clock wiring scheme is that the board input clock directly drives the
hardware co-simulation module and the imported XPS project.

1 Circuit automatically added ' ; Generated fromthe user 5
: byhardware co-simulation | Simulink model
; | (Design Under Test)
: | Clock controlmodule | |
Inputclock | DCM
200MHz | !] P E
|| : Memory-mapped i
100MHz' ¢ shared memories f
orsingle-stepped: | [- E
_ with Simulink W
= T
; generator ;
| 125 MHz 5
MicroBlaze i
Imported XPS project)
\ ML506 FPGA board ‘**’J
158 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Integrating a Processor with Custom Logic

The third advantage is that designs compiled with the dual-clock wiring scheme tend to
meet timing more easily compared with the single-clock wiring scheme. With the dual-
clock wiring scheme, the DCM in the hardware co-simulation clock control module and
the clock generator in the imported XPS project are not cascaded (as is the case when
single-clock wiring is used). This greatly improves the chances of meeting timing when
generating the Hardware Co-Simulation block with the imported XPS project.

Limitations for Boards with Multiple-Input Clocks

In the dual-clock wiring scheme, both the hardware co-simulation clock control module
and the imported XPS project are driven by the board input clock specified by the
hardware co-simulation compilation target. For FPGA boards with multiple clock sources,
it is possible that the imported XPS project uses a different board input clock than the
System Generator hardware co-simulation compilation target.

An example is the ML506 FPGA board. The ML506 FPGA board has two input clock
sources, one crystal 100 MHz input clock and one LVDS 200 MHz input clock. The XPS
project generated by Base System Builder uses the 100 MHz input clock, while the System
Generator ML506 hardware co-simulation compilation target uses the LVDS 200 MHz
input clock.

The following procedure uses the ML506 board to illustrate how to change the clock
sources in an XPS project in order to match the input clock source used by System
Generator hardware co-simulation.

1. Find out the frequency of the board input clock used by the System Generator
hardware co-simulation target. For the JTAG ML506 hardware co-simulation
compilation target, you can look at the file
<sysgen>/plugins/compilation/Hardware Co-Simulation/ML506/JTAG/
ML506_JTAG.ucf

2. Verify that the board input clock frequency is 200 MHz. Another way to find out the
board input clock source is to run the hardware co-simulation compilation target once
and look at the file <netlist_dir>/jtagcosim_top.uct. In the following snippet of
the file ML506_JTAG.ucf, you can see that the System Generator hardware co-
simulation uses a 200 MHz LVDS board input clock source.

NET "sys clk p" LOC = "L19";

NET "sys clk n" LOC = "K19";

NET "sys_clk_p" TNM_NET = "hwcosim_sys_clk";

NET "sys clk n" TNM NET = "hwcosim sys clk";

TIMESPEC "TS hwcosim sys clk" = PERIOD "hwcosim sys clk" 200 MHz HIGH

50%;

3. Inthe system.mhs file found in the XPS project, change the input clock frequency from
100 MHz to 200 MHz, which is the frequency of the clock source used by the System
Generator hardware co-simulation compilation target.

PORT fpga 0 clk 1 sys clk pin = dem _clk s, DIR = I, SIGIS = CLK,
CLK_FREQ = 200000000

System Generator for DSP User Guide www.xilinx.com 159
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design

& XILINX.

4. Change the input clock frequency of the clock generator in the imported XPS project.

BEGIN clock generator

PARAMETER INSTANCE = clock generator 0
PARAMETER C_CLKIN_FREQ = 200000000
PARAMETER C_CLKOUTO_FREQ = 125000000

PARAMETER C_CLKOUTO_PHASE = 0
PARAMETER C_CLKOUTO_GROUP = NONE
PARAMETER C_CLKOUTO_BUF = TRUE
PARAMETER C_EXT_ RESET HIGH = 0
PARAMETER HW VER = 4.00.a
PORT CLKIN = dcm clk_ s
PORT CLKOUTO = clk 125 0000MHz
PORT RST = sys_rst_s
PORT LOCKED = Dcm_all locked

END

5. After this, you can import the modified XPS project through the EDK Processor block
and generate a Hardware Co-Simulation block for this project.

Single Clock Wiring Scheme

The System Generator hardware co-simulation module can use the DCM (Digital Clock
Manager), the MMCM (Mix-Mode Clock Manager), or the PLL (Phase Lock Loop) to
convert the board input clock to the clock frequency requested by you. The clock generated
by hardware co-simulation is used to drive all blocks in the DUT.

Circuit automatically added
by hardware co-simulation

Clock control module

Inputclock | ¢

S |

Generated from the user
Simulink model

Design Under Test

200MHz | i |

@

100MHz

| ML506 FPGA board with Simulink

F Y
|

i
]
]
]
]
L]

P

orsingle-stepped "

=

160

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Integrating a Processor with Custom Logic

When a System Generator model contains an XPS project imported through the EDK
Processor block in single clock mode, the XPS project is driven by the clock generated by
the Hardware Co-Simulation module. This allows the processor to be simulated in lock-
step with the rest of the DUT and the Simulink simulation. This kind of simulation can be
very helpful when you are debugging transactions over a custom bus or when you are
profiling code.

¢ Circuitautomatically added Generatedfrom the user
i by hardware co-simulation : Simulink mode| i
i Design Under Test
i Clock control module : . imported XPS project .
Input clock J Dcm ,| Clock
200MHz | | I | o generator i
et 125 MHz !
.mDMHZ ! MicroBlaze
orsingle-stepped | i
with Simulink || L 2 i
\ ML506 FPGA board e

Limitations with the XPS Clock Generator

An XPS project created using BSB (Base System Builder) usually includes a clock generator,
which is used to generate clock signals with requested frequencies to drive the MicroBlaze
processor and other peripherals such as DDR3 external memory and Ethernet MAC.
Similar to the hardware co-simulation module, the clock generator generates the requested
clock frequencies using DCM/MMCM/PLL.

In the single-clock wiring scheme depicted in the previous figure, the DCM inside the
hardware co-simulation clock control module and the clock generator from the imported
XPS project are cascaded. For some FPGA boards such as ML506 and SP601, cascading
DCM/PLLs prevents the design from achieving timing closure.

Additionally, in single-step hardware co-simulation, the output clock from the hardware
co-simulation module is synchronized with the Simulink simulation. The XPS clock
generator simply stops working in single-stepped hardware co-simulation.

One Solution to the Single-Clock Wiring Limitations

One solution to the limitation described above is to take out the clock generator in the XPS
project and re-import it into System Generator. The following procedure illustrates how to
take out the clock generator using a ML506-based project generated using BSB. While you
can do this through the XPS GUI, this procedure shows you how to modify the MHS
(Microprocessor Hardware Specification) file and MSS (Microprocessor Software
Specification) file directly to remove clock generator.

1. The original system.mhs file created using BSB is shown below. Observe that the input
board clock fpga_0_clk 1_sys_clk_pin is connected to the CLKIN pin of the clock
generator instance. The output clock pin cLKOUTO is then used to drive the processor
and the other hardware peripherals.

System Generator for DSP User Guide www.xilinx.com 161
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

PORT fpga 0 clk 1 sys clk pin = dcm clk s, DIR = I, SIGIS = CLK,
CLK_FREQ = 100000000

BEGIN clock generator
PARAMETER INSTANCE = clock generator 0
PARAMETER C_CLKIN_FREQ = 100000000
PARAMETER C_CLKOUTO_FREQ = 125000000
PARAMETER C_CLKOUTO_PHASE = 0
PARAMETER C_CLKOUTO_GROUP = NONE
PARAMETER C_CLKOUTO_BUF = TRUE
PARAMETER C EXT RESET HIGH = 0
PARAMETER HW_VER = 4.00.a
PORT CLKIN = dcm clk s # input clock
PORT CLKOUTO = clk 125 0000MHz # output clock
PORT RST = sys_rst_ s
PORT LOCKED = Dcm_all locked

END

Next, you should simply comment out the clock generator. The output clock is directly
attached to the board input clock. The modified system.mhs file is like the following:

PORT fpga 0 _clk 1 sys clk pin = clk 125 0000MHz, DIR = I, SIGIS = CLK,
CLK_FREQ = 100000000

BEGIN clock generator

PARAMETER INSTANCE = clock generator 0

PARAMETER C CLKIN_ FREQ = 100000000

PARAMETER C CLKOUTO FREQ = 125000000

PARAMETER C_CLKOUTO_PHASE = 0

PARAMETER C_CLKOUTO GROUP = NONE

PARAMETER C CLKOUTO BUF = TRUE

PARAMETER C_EXT RESET HIGH = 0

PARAMETER HW VER = 4.00.a

PORT CLKIN = dcm clk_s # input clock
PORT CLKOUTO = clk 125 0000MHz # output clock
PORT RST = sys_rst_s

PORT LOCKED = Dcm_all locked

END

TheDcm_all_locked pin on the clock generator is used to indicate whether the output
clock signal is locked with the input clock signal. Replace the input pins driven by this
signal with net_vcc. These kind of changes can be tricky in some design scenarios. So
far, no abnormality has been observed for the hardware peripherals generated from
BSB.

BEGIN proc_sys reset
PARAMETER INSTANCE = proc_sys reset 0
PARAMETER C_EXT RESET HIGH = 0
PARAMETER HW _VER = 2.00.a
PORT Slowest sync_clk = clk_125 0000MHz
PORT Ext Reset In = sys_rst_s
PORT MB Debug Sys Rst = Debug SYS Rst
PORT Dcm_locked = net vcc # changed from Dcm all locked
PORT MB Reset = mb reset
PORT Bus_Struct Reset = sys bus reset
PORT Peripheral Reset = sys_periph reset
END

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Integrating a Processor with Custom Logic

4. Comment out the software driver for the clock generator in the system.mss file

BEGIN DRIVER

PARAMETER DRIVER NAME = generic

PARAMETER DRIVER VER = 1.00.a

PARAMETER HW_INSTANCE = clock_generator_0
END

5. After the modification, the clock generator is safely removed from the XPS project. You
can import this modified XPS project into System Generator through the single-clock
wiring scheme.

Caveats with Peripherals like UART and MDM

Peripherals like UART and MDM (microprocessor debugger module) do not work in the
single-stepped hardware co-simulation mode.

The UART peripheral needs to be driven by a specific input clock source in order to
communicate properly through the serial ports. If you choose a hardware co-simulation
frequency on the hardware co-simulation dialog box which is different from the clock
frequency with the original XPS project, you will see invalid output on the serial port
console.

For MDJV,, its connection with gdb will time out if its input clock frequency is too slow. In
this case, the debug session in SDK (Software Development Kit) or XMD (Xilinx
Microprocessor Debugger) will run into errors such as “Unable to stop MicroBlaze
processor.”

Troubleshooting

Limitations on the Imported XPS Project

In theory, any XPS project can be imported into System Generator through the EDK
Processor block. However, you may need to modify the XPS project in some situations to
avoid resource conflicts and to allow the EDK Processor block to properly interpret the
project.

e Input clock port: XPS uses SIGIS = CLK to tag an external port as a clock port. The
EDK Processor block only recognizes a single input clock to implement the single
clock and dual clock wiring described above. In this case, you need to remove the
SIGIS = CLK tag on other clock ports. The following XPS project example has two
input clock ports, sys_clk_pinand fpga_0_PCIe Diff Clk_IBUF DS.In order to
import this project into System Generator, you need to ensure that SIGIS = CLKis
removed from the PCI input clock ports.

PORT sys clk pin = dcm clk s, DIR = I, SIGIS = CLK, CLK FREQ = 100000000
PORT fpga 0 PCIe Diff Clk IBUF DS P pin = PCIe Diff Clk, DIR = I,
DIFFERENTIAL_POLARITY = P # need to remove SIGIS = CLK

PORT fpga 0 PCIe Diff Clk IBUF DS N pin = PCIe Diff Clk, DIR = I,
DIFFERENTIAL POLARITY = N # need to remove SIGIS = CLK

e Resource conflict: You need to ensure that there is no resource conflict between the
imported XPS project and the rest of the System Generator design. For example, if you
use the Point-to-Point Ethernet-Based Hardware Co-Simulation flow and the target
hardware board has only one Ethernet MAC component (e.g., the Xilinx ML506,
SP601, and SP605 evaluation boards), the XPS project can contain peripherals that use
the Ethernet MAC (e.g., xps_ethernetlite). You should consider changing to the JTAG-
Based Hardware Co-Simulation flow in this case. Another example is when the target
hardware board only has a single BSCAN module (e.g., the Spartan 3A DSP 1800

System Generator for DSP User Guide www.xilinx.com 163
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Starter board). You have to remove the JTAG-Based MDM (Microprocessor Debug
Module) peripheral from the imported XPS project. Otherwise, you need to switch to
the Point-to-Point Ethernet-Based Hardware Co-Simulation flow and use the Ethernet
for downloading the bitstream.

Constraint handling: The EDK Processor block automatically modifies the UCF (user
constraint file) file from the imported XPS based on the compilation flow that is used.
Upon importing an XPS project, a copy of the modified UCF file is placed under
<xps_project_dirs>/data/sg_<xps_project_names.ucf. The snippet of a modified
UCEF file is shown below. Constraints that belong to certain external ports of the
imported XPS are commented /uncommented depending on whether or not the port
is exposed on the EDK Processor block. The input clock ports are commented out in
the hardware co-simulation flow automatically.

constraints for pin 'fpga 0 RS232 Uart 1 RX pin' (not exposed)
Net fpga 0 RS232 Uart 1 RX pin LOC = AG15 | TOSTANDARD=LVCMOS33;

constraints for pin 'fpga 0 RS232 Uart 1 TX pin' (not exposed)
Net fpga 0 RS232 Uart 1 TX pin LOC = AG20 | IOSTANDARD=LVCMOS33;

constraints for pin 'fpga 0 clk 1 sys clk pin' (exposed, clock port)
Net fpga 0 clk 1 sys clk pin TNM NET = sys_ clk pin;

TIMESPEC TS sys clk pin = PERIOD sys clk pin 100000 kHz;

Net fpga 0 clk 1 sys clk pin LOC = AH15 | IOSTANDARD=LVCMOS33;

H H H H

In case where you do not want the EDK Processor block to make automatic
modifications, you can put the line ### SYSGEN VERBATIM ### in the original XPS
project UCEF file. All the lines after this commented line will be untouched. See the
explanation found from the beginning of the modified UCF file, which is also shown in
the code snippet below.

This file is generated automatically by System Generator for DSP from
the following file:

Do NOT modify this file directly. Instead, change the above original
file. Synchronize the processor memory map, or re-import the XPS
project to apply the changes. # # In case that the automatic changes
by System Generator for DSP are
undesired, put the following comment in the above original file. All
the contents after this comment will be copied verbatim.

#
#
#
C:\dev\trunk\test\edk\edkplbimport\EDKPrj\data\system.uct
#
#
#

SYSGEN VERBATIM #i##

164

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. EDK Support

EDK Support

Importing an EDK Processor How to import an EDK project into System
Generator using the EDK Import Wizard.

Exposing Processor Ports to How to route top-level ports in the EDK into

System Generator System Generator.

Exporting a pcore How to export a System Generator design to the
EDK as a pcore.

Importing an EDK Processor

Note: Starting with Release 11.3, further development of System Generator support for the FSL has
been discontinued. You may continue to use the FSL with ISE Design Suite 11, however, FSL support
will not be included in ISE Design Suite 12 and beyond.

A processor created using the Xilinx Platform Studio (XPS) tool, found in the Xilinx EDK
suite of tools, can be imported into a System Generator model using the EDK Import
Wizard.

Eazc | =imuabon ATYIroes -mpeme-taacn

Pruoesszr Dolioes

Conflzure Processor for |=CL ~edsing b [Irport.,]

o =
O =RB& K Sroecs
[¥ &moiy N
e = g Import LUK project ..
Plos o i L in1. ||j| Hnusim 4| |:'|“ E-
ECkK Frocesss) . -
3 Coimictist;
L o mictiistz
Ny Feced
Fonamenis
< F_'Fi
| 00%
Sl | T
Wy Jozuments
'dyﬁnrrth:r
=
f-‘TPf;Cct:::ﬂi Tk nimme- I'\"n'l "l Cpon
ik of biee [g] Lawe

There are two ways to launch the EDK Import Wizard in the EDK Processor block: (1) press
the Import... button, or (2) select HDL netlisting when the EDK project field is empty.

Note: When you import the EDK Project into System Generator, there are modifications made to the
EDK project. These modifications are described in the following topic.

System Generator for DSP User Guide www.xilinx.com 165
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

EDK Import Wizard

When the Wizard starts up, it prompts you for an EDK project file (xmp file).
Clicking the Import... button starts the import process.

Note: The import process will alter your EDK project to work inside System Generator. If you wish
to retain an unadulterated version, please make a copy before importing. System Generator
automatically backs up the hardware platform specification (i.e., the MHS file) and the software
platform specification (the MSS file) of the EDK project to files with the "bak" suffix.

When an EDK project is imported into System Generator, the EDK project is augmented
with a pair of FSL, or a PLB46 interface depending on the options made on the EDK
Processor block. A pcore (xlsg_iface for FSL and xlsg_plbiface for PLB) is also added to
provide software drivers for the interface. The MHS and MSS files in the EDK project will
be altered. Following that, the HDL files that describe the processor will be generated and
linked to your System Generator project.

Note: Starting with Release 11.3, further development of System Generator support for the FSL has
been discontinued. You may continue to use the FSL with ISE Design Suite 11, however, FSL support
will not be included in ISE Design Suite 12 and beyond.

Making Changes to Processor Hardware After an Import

After importing an EDK project, further changes to the hardware inside of the EDK will
not be reflected inside of System Generator. In other words, the hardware makeup of the
processor is now fixed. If changes to the processor hardware are to be made, the EDK
project must be re-imported using the EDK Import Wizard.

It is recommended that you re-import an EDK project when it is changed. The EDK
Processor block can detect the PLB or FSL interfaces and the related pcores that are
automatically added by System Generator during a previoius import, and will not include
redundant hardware or software to the XPS project.

Limitations

Currently the Wizard can only import single processor projects. Only the MicroBlaze
processor is supported. Peripherals added to the processor cannot conflict with the
resources used by other System Generator services. For instance, if network-based
hardware co-simulation is used, the EDK project cannot make use of the peripherals using
the Ethernet MAC.

166

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

EDK Support

Exposing Processor Ports to System Generator

The preferred mechanism for getting data to and from the processor and System Generator
is via shared-memories. It is however possible to expose ports on the top-level of the
processor to System Generator.

Port listin PSS
- “»Edemal Parts

foga_0_R5232_Uart_... foga__AS232... |
fpga_0_RS232_lart_... fpga_{ RS332.. O
% EDK Processor (Xilinx EDK Processor) sys_clk_pn dem_clk_s I
— sys_rst_pin sys_rst_s |
Basic | Simulgtion | Advanced | g el r wkg_facesgd_rl
fal2sg_otd wbag_ifacefsl2a.. O
fslZsg_data x=g_ffacefslds.. O
Direction | Port name Diznlay name Expo fal?ep_endsts wg_ffacefsl?s.. O
n fpaa_0_rs232_uart_m_pin |fpga_0 rs232 uat_nc_pin [] eqel_otr xkg_ffacesgXa... |
ot fpga_0_rs232_ert_tv_pin (fpga_ 0 232 _uat_te_pin [] :Ei:::iaﬁ ﬁg:::z::i: :
in sys_rst_pin rt O felZsg_ul xsg_ffacefelds.. O
out mysxtamalbort myport myEdenzlPort mycdemal_net 0

IE] ProcBlockSmokemodel__+ 2][Bf)

Fle Edit UView Smulabion Farmat Toole Help
. O EHdE & 8
I
— A
oK] [Cancel] iv N
“~ MB mypoit
Syslam F
Genemator
EDK Processor
|
& - | E2
JF 100% odeqt

The top-right box in the figure above shows a snippet from an EDK project in XPS. The
external port list has among other ports, a user-defined port called myExternalPort.

After importing the EDK project, open up the processor's block GUI in System Generator.
Select the Advanced tab to reveal the processor port interface table.

The port list shows all the top-level ports available on the processor. This port list has been
filtered to remove clock ports and also signals used by System Generator to implement the
memory-map interface. In this example, the RS232 ports, sys_rst_pin and myexternalport are
shown to be ports that can be exposed to the top-level of the System Generator block.
Selecting the expose check box will cause the port to be exposed on the EDK Processor
block. As shown in the figure above, the display name of the port can be changed, should
the original name be too long.

This mechanism allows ports from the processor to be directly exposed to the System
Generator design without going through the memory map generated by System
Generator. You may choose to do this to expose the reset ports on the processor, or to
expose interrupt ports directly to the System Generator diagram.

System Generator for DSP User Guide www.xilinx.com 167
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Exporting a pcore

System Generator designs containing an EDK Processor block can be exported as an EDK
pcore using the EDK Export Tool compilation target on the System Generator token.

Before exporting to the EDK as a pcore, the EDK Processor block must be configured for
"EDK pcore generation". This can be done by opening the EDK Processor block GUI and
selecting the relevant drop down option in the "Configure processor for" parameter.

Please refer to the topic EDK Export Tool for more information.

Designing with Embedded Processors and Microcontrollers

Designing PicoBlaze Microcontroller Applications

The PicoBlaze™ block in System Generator implements an 8-bit microcontroller.
Applications requiring a complex, but non-time critical state machine as well as data
processing applications are candidates to employ this block. The microcontroller is fully
embedded into the device and requires no external support. Any additional logic can be
connected to the microcontroller inside the device providing ultimate flexibility.

PicoBlaze Overview

The following example uses PicoBlaze 3 (hereto referred to simply as PicoBlaze), which is
optimized for low resource requirements. A memory block is used as a program store for
up to 1024 instructions.

in_port oul_pord
port_id
bk =h
st S|
irnd_a]
i addr|
FlzoBlaze
Wicrocantrallar
AOMA
addr|
Signal Direction Description
in_port[7:0] Input Input Data Port. During an INPUT
operation, data is transferred from
the port to a register.
brk Input Interrupt. Mustbe at least two clock
cycles in duration.
rst Input Reset
instr[17:0] Input Instruction Input.
out_port[7:0] Output Output Data Port.
port_id[7:0] Output Port Address.

168

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

Signal Direction Description
rs Output Read Strobe.
ws Output Write Strobe.
addr[9:0] Output Address of the next instruction.
ack Output Interrupt Acknowledge.

Architecture Highlights

e Predictable performance, two clock cycles per instruction

e 43-66 MIPS (dependent upon device type and speed grade)

e Fast interrupt response

e 96 5lices, 0.5 to 1 block RAM

e 16 8-bit general-purpose registers
e 64-byte internal RAM
e Internal 31-location CALL/RETURN stack
e 256 input and 256 output ports

= =
5 =
1318 2 o2 £4-Byte PORT_ID
Ingfruction 0 =l Scratchpad RAM =
PROM o e et ¥
—
= z OUT_PORT
o
* & & &
Instruction Constants
Decoder *

¥

16 Byte-Wide Registers Operand 1|

[JE] Enable

=]

31

52

EX]

]

z5

Sh

57

[m_PoRT_ R R e
e =0 =E =k

Operamd 2

PicoBlaze Instruction Set Architecture

PicoBlaze is a hardware-centric microcontroller, which can be programmed using
assembly code. It supports a program length up to 1024 instructions. Requirements for
larger program space are typically addressed by using multiple microcontrollers.

16 General Purpose Registers

There are 16 8-bit general-purpose registers specified 's0' to 'sF'.

System Generator for DSP User Guide 169

UG640 (v 13.1) March 1, 2011

www.xilinx.com

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

ALU

The Arithmetic Logic Unit (ALU) provides operations such as add, sub, load, and, or, xor,
shift, rotate, compare, and test. The first operand to each instruction is a register to which
the result is stored. Operations requiring a second operand can specify either a second
register or an 8-bit constant value.

Flags and Program Control

The result of an ALU operation determines the status of the zero and carry flags. The zero
flag is set whenever the result is zero. The carry flag is set when there is an overflow from
an arithmetic operation. The status of the flags can be used to determine the execution
sequence of the program using conditional program flow control instructions such as
jump and call.

Input/Output

There are 256 input ports and 256 output ports. The port being accessed is indicated by an
8-bit address value provided on port_id. The port address can be specified in the
program as an absolute value or indirectly specified as the contents of a register. During an
input operation, the value provided to in_port is transferred into any of the 16 registers.
During an output operation, a value is transferred from a register to out_port.

Interrupt

The processor provides a single interrupt input port, brk. When interrupts are enabled,
setting brk to 1 causes the program counter to be set to memory location 0x3FF, where a
jump vector to the interrupt service routine is stored. At this time, a pulse is generated on
the ack port (two clock cycles after brk is asserted), the control flags are preserved and
further interrupts are disabled. The return instruction ensures that the end of an interrupt
routine restores the status of the control flags and specifies if future interrupts should be
enabled.

For extensive details regarding the feature and instruction set, please refer online to the
topic PicoBlaze User Resources.

Tutorial Example - Using PicoBlaze in System Generator

In the following example, you modify a PicoBlaze program that alters the output
frequency of a Direct Digital Synthesizer (DDS) during an interrupt.

A Simulink model and PicoBlaze assembler code are provided but need modification.

1. From the MATLAB console, change directory to
<ISE Design Suite tree>/sysgen/examples/picoblaze. The following
tiles are located in this directory:

¢ Pico_dds.mdl — An unfinished Simulink model
¢ Pico_code.psm — Unfinished PicoBlaze code
Open Pico_dds.mdl.

Modify the design.

a. Find the PicoBlaze block in the Xilinx Blockset Library under Index or Control
Logic and add it to the model where indicated. The default settings of the block do
not give the same number of ports as is expected by the model. This will be
corrected in the following step. You may need to resize the block to fit into the
space allocated in the design.

170

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/ipcenter/processor_central/picoblaze/picoblaze_user_resources.htm

& XILINX.

Designing with Embedded Processors and Microcontrollers

b. Double-click the block and set Version to PicoBlaze 3. Turn off the option to

Display internal state. Connect the ports to the existing lines in the model.

Qr‘icuBlazc Microcontroller (Xiling P =]
Basic I Implementatior I
Wergion:
at
n_pon . ~iee ¥ Picodlaze 2 PicoBlaze 3
psrt_id
bt Internal State
s
et])
wa [Display internal skate
insh i
prpE— Disdlay values as;
Mizzoontlier = Decimall £ [lexedecimal
Ok I Cancel | Help Lpply
4

c. Find the PicoBlaze Instruction Display block in the Index or Tools Library and add it
to the model where indicated. Make sure it is connected properly, as shown in the

figure below:

| =loixl
Ele Edt Y¥lew 3Jmdation Format Tools Help
- IRr rgrar A
DS EAS BR[|y = @88 BRE TS
data
sut_port pForoa| P
P Felnteiprett 0
Motneeded purl_id Reglstel ain
=15
[{dbl ot bic i .
BRE1 BREIMA oes fpt dbl
al 1 soE NG
[gl
Dalay 1au s
and int_adc
ool iristr
addr
FlaoBlaze
Mlcioconirallar el
—'- i
st: COMPARE 2. Comtinuous
RaOM _"Ij Fragtnt:
z P addr
-~ Dl Single-Step
System addi g =l FicnBlaze [n=truction Simulatian
Genaratar B
Dizplay
Ready 100%. odads o
171

System Generator for DSP User Guide www.xilinx.com

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

d. Double-click the PicoBlaze Instruction Display block and set the Version to

PicoBlaze 3. Check the Disable Display option. Disabling the display option
allows the simulation to run without the overhead of updating the block display.

E 5ink Block Parameters: PicoBlaze Instruction Displ x|
— Hilire P ocBlzzs Microccrholier Insirucsion O splay Slock (k] (ink—————

SicoBlzzs [FshicctcrtwClizda),

instr

addr

Inst: LOAD 58, 57 WersLn IPiJ_B'd:U g ;I
BrogCnt: 28

s LU LTS

[w Fizahie Dizpls,

PicoBlaze Instruction
Display

Ok | Canz= | Izl | Apph |
Find the ROM block in the Memory Library and add it to the model where

indicated. Flip the block by Right clicking on the block and selecting Format > Flip
Block. Attach the ports to the existing lines.

Change the Single-Step Simulation block to be in continuous mode by double
clicking on the block.

4. Configure the program store. Double click the ROM to do the following.
With the Basic tab selected:

a.

The ROM block is used to store the PicoBlaze instructions. The depth of the ROM
must be set to 1024. This is because the program uses interrupts and setting brk to
1 causes the program counter to be set to 0x3FF.

As detailed in step 5, the code is assembled and produces an initialization file for
the memory named £ill pico code program store.m Hence the ROM
Initial Value Vector should be set to fill_pico_code_program_store.

To increase the performance for synchronous designs, the Latency should be set to

£} RoM (Rilinx Single Mork Read Only o] JES |

Biasic IDutput T/pe I Acvanced | Implermestation I

Depth |1 024
Initial walie wector |fiII_Jicn_code_program_store
temary Type:

T Diztributed mamory ™ Block Ré

O2tional Forts

I Provide r=eet part for autput register

|riial walue fan oulput register, |IZI

[~ Prowde enable porl

Latency |1

QK. I Cancel Hep Apply

172

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Click on the Output tab and enter the following:

a. The Word Type should be Unsigned and Number of Bits should be set to 18 with
the Binary Point at 0.

£ ROM (xilink Single Purl Read-Ouly N [=] |
Basic | Ouraue Type I.ﬂ.dvanced | Imnplermentation I

Latput Freazion
S e,
™ Boolean % Ursigned Signed 2'z comp)

Murnben of b |13

Binary paint IIJ

QK. I Cancel | Help | Apply

5. Edit the PicoBlaze assembly program.
a. Openpico_code.psm.

b. Add instructions as described in the pico code.psm file. For detailed
information about the PicoBlaze instruction set see the Xilinx Application Note
XAPP627 at
http:/ /www.xilinx.com /support/documentation/application_notes/xapp627.p
df

c. Save the file.

6. Run the assembler to generate the memory initialization file.

Note: The Xilinx PicoBlaze Assembler is only available with the Windows Operating System. Third-
party PicoBlaze Assemblers are available for Linux, but are not shipped by Xilinx.

In the MATLAB command window, type:
>> xlpb _as -p pico code.psm
x1lpb_as stands for Xilinx PicoBlaze Assembler.
A filenamed £ill pico_code program store.m was created.
7. Simulate the Simulink model.

Run the simulation by clicking on the Start Simulation Icon.

System Generator for DSP User Guide www.xilinx.com 173
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp627.pdf

Chapter : Hardware/Software Co-Design & XILINX.

Output should look like this:

1ol x|

lempro hBEE BA ¢

wmmmmmwmmwmmwwm
o e
il \\lw AT

HH

|I' |M|||

'||'

'('|(\'| \

S ﬂ L

Notice the sine wave frequency increasing proportionally to the phase increment.
8. Utilize Debug Tools

If the program is not working properly, there are several tools that can be utilized to ease
debugging. Deselecting the Disable Display checkbox in the PicoBlaze Instruction
Display block causes the block to be activated, displaying the updated program counter
and instruction each clock cycle. In conjunction with enabling the display, the registers and
control flag values can be viewed by selecting the Display Internal State in the PicoBlaze
Microcontroller block. Change the Single-Step Simulation block to single-step mode by
double clicking on the block. Step through the simulation to debug.

174 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Designing and Exporting MicroBlaze Processor Peripherals

The Xilinx Platform Studio (XPS) tool suite allows the development of customized
MicroBlaze™ and PowerPC® processor systems. A hardware peripheral of the processor
system is called “pcore”, which consists of a bundle of design files organized according to
a specific structure. These design files describe the hardware implementation, the
connection interface, and software drivers of the XPS pcore.

The EDK Processor block in conjunction with the EDK Export Tool allows customized
processor hardware peripherals to be designed in System Generator. A System Generator
design can be exported as an XPS pcore, which can be included and used in an XPS project.

The following tutorial illustrates the creation of a XPS pcore using System Generator. The
files used in this tutorial can be found in:

<ISE Design Suite tree>/sysgen/examples/EDK/rgb2gray, where

<ISE Design Suite_ tree>/sysgen denotes the System Generator installation
directory.

Tutorial Example - Creating MicroBlaze Peripherals in System Generator

Note: You must have EDK installed to complete this tutorial.

=] rgb2gray S [=] E3
File Edit View Simulation Format Tools Help
D|D”‘H§|$%E|<}==D{P|DQ|> IIZI} INDrrnaI j“
Y
Gmyscak conversion using the following weights
Grayscalk = 0.3°R+ 0.58°G + 0.11°B
N
System Add in an EDK Processor hee.
Ganaralor

daut Pejcast—= x 0

Fiom Register FConvert !
o e Rhult Ez+ b

AddSub

daut Pejcast—= x 0

= =
From Register! GConvert g+ b—W cast—#{din
< ‘green’ s
AddSubi dout—=]
II'—’ an
dout = cast —e
To Reqister
From HBQEISQBCDM'EH < g ull’ =
R [T (=T X
1| | »
Ready [100% [[[Variable Step Discrete i

1. Open the rgb2gray model from pathname
<ISE Design Suite tree>/sysgen/examples/EDK/rgb2gray.

The peripheral contains three inputs, which are 32-bit red, green and blue pixel values.
These values are scaled and summed to produce a result that represents the 32-bit
grayscale value. The red, green and blue values are sourced from three shared registers
named 'red’, 'green’ and 'blue’. The result is written back to a shared register called 'result'.

System Generator for DSP User Guide www.xilinx.com 175
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

2. Prepare to export the pcore. Drag an EDK processor block into the model. Configure
the processor block by double clicking on the block to bring up the block's dialog box,
as shown below:

@EDK Processor (Xiline CDK Processon) =] 1

Basic I Advanced | Implemertation |

— Processur Cyliune

Configure Processor for IEJK prore generation j Import, .. |

EDK Froject |

—Mzimwry Map

Ely < <hlue = >
Ely < cgreen=:=
Ely < ared=»

Bl = aresulz =

fvailadle Memor es |<emply> vl add Sync |

QK | Canzel | Felp | Apple |

&

Add all available shared memories in the model to the EDK Processor by
verifying/selecting <all> , then click the Add button. As shown above, ensure that the
EDK Processor block has been configured for EDK pcore generation in the Configure
processor for drop-down menu. Dismiss the GUI by clicking the OK button. The EDK
Processor will then create a memory map for the shared memories.

3. Explore the pcore. Double click on the System Generator token to open up the System
Generator dialog box. You will use the EDK Export Tool to create the pcore. Options in

176 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

the EDK Export Tool are more fully detailed in the topic System Generator
Compilation Types.:

) System Generator- gb2gray _ =] I

% @ @

Compilation Clocking General

Compilation :
Ii"Expurt as a pcore to EDK Settings .. |

Part :

IVirtexﬁ xcBvexd15t-3171156

Synthesis tool @ Hardware description language :
= =l |wou =

I8 | Create testhench r Imporbas configuratie subey=tem

Target directory :

I..n'netlist Browse... |

™ Create interface document

Generatel oK | Apphy | Cancel | Help |

As shown above, set the Compilation type to be Export as a pcore to EDK. Click on the
Settings... button to open up options for the compilation target. Accept the default settings
so that the pcore is generated and exported into the model's target directory.

Click on the Generate button to initiate the pcore export process.
4. Integrate the Exported pcore in the XPS

You will now create an XPS project and integrate the pcore into the XPS project.
Information on how to create an XPS project can be found in the topic Using XPS. Follow
the directions there to create an XPS project.

Once the XPS project is created, copy the pcore that is created by System Generator into its
local pcore repository. Since System Generator is instructed to place the pcore inside the
target directory in the previous step, you should find a directory named pcore inside the
target directory. Copy the contents of the directory into the corresponding pcore directory
inside your XPS project. If your XPS project does not contain a pcore directory, create one
before copying.

In the XPS menu, select Project > Rescan User Repositories. The pcore exported by System
Generator, named rgb2gray_plbw, will appear on the list of EDK Peripherals after the
rescan.

Follow the directions in the topic Using XPS for information on how to connect up a pcore
to the MicroBlaze™ processor in the EDK tool.

After connecting up the pcore, compile the netlist by selecting Hardware > Generate
Netlist.

System Generator for DSP User Guide www.xilinx.com 177
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design

& XILINX.

Write Software

Create a new software application in your XPS project. Again, information on how to do
this can be found in the topic Using XPS. Add the following code to your application and

compile the software.

#include "xparameters.h"
#include "stdio.h"
#include "xutil.h"

// header file of System Generator Pcore

#include "rgb2gray plbw.h"

int main (void) {
int i;

uint32 t gray, red, green, blue;

print ("-- Entering main() --\n\r");

xc_iface t *iface;
xc_from reg t *fromreg gray;

xc_to reg t *toreg red, *toreg green, *toreg blue;

// initialize the software driver
xc_create(&iface, &RGB2GRAY PLBW ConfigTable[0]) ;

// obtain the memory locations

xc_get shmem(iface, "result", (void **) &fromreg gray) ;
xc_get shmem(iface, "red", (void **) &toreg red);
xc_get shmem(iface, "green", (void **) &toreg green);
xc_get shmem(iface, "blue", (void **) &toreg blue);

for (i=15; 1<30; i++){
red = 1i;
green = i + 10;
blue = 1 + 20;

// Write RGB value to peripheral
xc_write(iface, toreg red->din, red);
xc_write(iface, toreg green->din, green);

xc_write(iface, toreg blue->din, blue);

xil printf ("R = 0x%x, G = 0x%x, B = 0x%x -- ",
red, green, blue);

xc_read(iface, fromreg gray->dout, &gray);

xil printf ("Gray = %$x \n\r", gray);

}
print ("-- Exiting main() --\n\r");
return 0;
}
178 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

There can be multiple instances of a System Generator pcore in an XPS project. Each of the
instances is associated with a device ID, which can be found in “xparameter.h”. Assume
that the instance of interest has a device ID of 0 based on the following information in
“xparameter.h”.

/* Definitions for driver SG_PLBIFACE */
#define XPAR SG _PLBIFACE NUM_ INSTANCES 1

/* Definitions for peripheral SG_PLBIFACE 0 */
#define XPAR_SG PLBIFACE_0 DEVICE ID 0

Use the device ID of a System Generator pcore instance to select the corresponding item in
RGB2GRAY PLBW_ConfigTable, which is then provided to xc_create to retrieve the
settings of the specific System Generator pcore instance.

The topic Integrating a Processor with Custom Logic contains more information on how
the hardware is wired up and other software issues.

Running the code will produce the following print out on a R5232 terminal.

File Edit Setup Control Window Help

WL PRt

B
B
B
B
B
B
B
B
B
B
B
B
B
B

LS S T E T T S |

o

System Generator for DSP User Guide www.xilinx.com 179
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Tutorial Example - Designing and Simulating MicroBlaze Processor

Systems

This topic shows an example on how to design and simulate a System Generator model
containing a MicroBlaze™ processor. A DSP48 co-processor is developed using System
Generator. Using the EDK Processor block, you import a MicroBlaze processor, customized
in Xilinx Platform Studio (XPS), into the System Generator model. You then attach the
DSP48 co-processor to the imported MicroBlaze processor through the automatic memory
mapping mechanisms provided by the EDK Processor block.

This tutorial uses hardware co-simulation to simulate and verify the design. In this case,
the MicroBlaze processor is compiled into hardware, while the DSP48 co-processor model
is left in the System Generator diagram for software simulation. In this example, the
hardware simulation and software simulation communicate with each other using the
point-to-point Ethernet co-simulation technology.

This tutorial example contains the following topics:

e Create an XPS Project

¢ Create a DSP48 Co-Processor Model

e Import an XPS Project

¢ Configure Memory Map Interface

¢ Write Software Programs

¢ Create a Hardware Co-Simulation Block

¢ Create a Testbench Model

e Update the Co-Simulation Block with Compiled Software

¢ Run the Simulation
This example uses the Xilinx Virtex®-4 ML402 Evaluation Platform.

The files used in this tutorial can be found a pathname:

<ISE Design Suite tree>/sysgen/examples/EDK/DSP48CoProcessor, where
<ISE_Design_ Suite_tree>/sysgen denotes the System Generator installation
directory.

180

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Create an XPS Project

First of all, you will need to create a new XPS project, which contains an PLB-based UART
peripheral. A tutorial on how to create a new XPS project can be found in the topic Using
XPS.

Create a DSP48 Co-Processor Model

IZ] DSP48CoProcessor * M=
File Edit View Simulation Format Tools Help
=i ¥ L b _—
O[S @& 55 RE 2] b afo o 5| @0 S | 5@
-
iA 70 .
System Fram Register
Generstor Frooessor Subsystem o :E; << ‘overflow’ >>
To Register
: [out]
dout {521, From Registert 2L
<< b = P Gatewsy Out
—re Bfull]
P=C+AB)[Hw{d0 - - | din
empty » er{?nut
From FIFQ P=P+{AB){m{d1 [rom Register2 BitBssher | To Registert Gatewsy Out1
= instr’ 2, o << "result’ 3>
P=+{AB)Hm d2 »op
P=C+A:B) Hm{d2 DsPag
P=C-A:B)[Hw{d4

e

[
4

Ready [100% [[|Variable StepDiscrate

Copy the DSP48CoProcessorModel found in the folder
<ISE Design Suite tree>/sysgen/examples/EDK/DSP48CoProcessor intoa
temporary working directory, then open the model.

The model contains a DSP48 block with the a, b, and c ports fed from three shared From
Registers with corresponding names. The op port receives signals from a multiplexer
whose select line is sourced from a shared From FIFO named instr.

The output port p of the DSP48 block is sliced and fed into another two shared To Resigers:
the top 16 bits into the overflow register and the bottom 32 bits into the result register.

System Generator for DSP User Guide www.xilinx.com 181
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Import the XPS Project

In this step, you import an XPS project that contains a MicroBlaze processor into the DSP48
Co-Processor model. Double click on the subsystem called Processor Subsystem and look
into it. In that subsystem, you will find a System Generator token and a blue text box as the
place holder for an EDK Processor block. Open the System Generator block set and drag an
EDK Processor block from the Index library into the Processor Subsystem. Your
augmented subsystem should look like the one shown below:

E! DSP48CoProcessor/Processor Subsystem = [[=] B4
Fle Edt WView Simulation Fomat Tools Help

NDEH&| el e 4| o

System Add EDK R block here

Generator

EDK Processor

F[100% | | |VariableStepDiscn

You will now configure the EDK Processor block to import the XPS project. The import
process will make changes to the XPS project. Thus, ensure that the XPS project is not
currently opened by Xilinx Platform Studio before importing.

Double click on the processor block to bring up the block dialog box. In the Configure
processor for drop-down menu, select HDL netlisting. The Import... button is enabled as
a result of the selection.

Note that the Import... button is disabled when the processor is configured for EDK pcore
generation. In EDK pcore generation mode, it is expected that you will create a pcore in
System Generator and export it to be used in another XPS project. In this case, the
processor is not instanced inside the EDK Processor block. In HDL netlisting mode, it is
expected that you import an XPS project into the System Generator model and netlist it
with other System Generator blocks.

If no XPS project is ever imported, configuring the processor for HDL netlisting will
automatically trigger the launching of the XPS Import Wizard. The XPS Import Wizard can
be launched manually by pressing the Import... button.

In the pop-up file selection dialog, browse to the XPS project created in earlier steps. The
import process starts once a XPS project file (xmp file) is selected. The import process
copies necessary files into the XPS project and changes the project accordingly to allow the
MicroBlaze processor to communicate with the System Generator model.

Note that if there is any software applications contained by the imported XPS project, they
are not compiled during import.

182 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Configure Memory Map Interface

Re-open the dialog box of the EDK Processor block. Add all the shared memories in the
model to the processor's memory map by selecting <all> in the Available memories pull-
down menu and then press the Add button. The EDK Processor block dialog box should
look like the following screenshot. Dismiss the dialog box by clicking the OK button at the
bottom.

{2) [DK Processor; {Xilinx DK Processor)

Badc | swdaton | Advanced | Implementanan

Processor Options

Configure Processor For |H1 netiding Vl I_ Irpaart.. .]

EC# Prniect| Aedkprilcystem. emp |

[Mlemory Mep

[EREFEESY
Ei=zhss
Bl
T2 atireskr

= znverflow ==

Bl <result s =
evalatle Mernoves [<empty> %[[add][smc]
[ox [canct |[o |[meoy |

Write Software Programs

You will write software programs running on MicroBlaze processor to read from and write
to the shared memories. Re-open the XPS project in Xilinx Platform Studio. Create a new
software application called MyProject. Make sure that the MyProject software application is
marked for download into BRAM while the other software applications are unmarked.
Refer to the topic Using XPS on how to add a new software application to an EDK project.

Create a new source code file MyProject . ¢ for MyProject and open it in the XPS code
editor.

Configure 1P ...

View MPD

Bravse HOL Sowrces...,

iz sq_plbifare_wl _0_a b View MDD

Dekte Instance.. . Views £PT D cunent stion
. Browse Oriver Sources, ..

Filber Bus Inkerfaces. .. »

Hide Selecton

The above figure shows a portion of the System Assembly View of the XPS project in Xilinx
Platform Studio. A sg_plbiface peripheral is automatically added to an XPS project after it is
successfully imported into System Generator. The sg_plbiface peripheral connects the PLB
bus attached to the imported MicroBlaze processor to the System Generator model

through a memory-mapped interface, and to capture information on how to generate the

System Generator for DSP User Guide www.xilinx.com 183
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

corresponding device software drivers. Right click on sg_plbiface in the System Assembly
View to see its API documentation.

Follow the instructions in the API documentation to include the following header file and
initialize the software driver in MyProject.c.

#include "sg plbiface.h"
xc_iface_t *iface;

// initialize the software driver
xc _create(&iface, &SG_PLBIFACE ConfigTable[0]) ;

Before reviewing the code to run on the processor, first consider how to write data to the a
register on the model. Look at the DSP48 Co-Processor model. Recall that the a port of the
DSP48 block is driven by the output of a shared register by the same name. You want to
write a value to that shared register from with-in MicroBlaze processor code. By referring
to the driver API, you can see that the shared memory called a is a “To Register” memory
type with xc_to_reg_t access data type, which contains the following data fields:

typedef struct ({
xc_w_addr_t din;
uint32 t n bits;
uint32 t bin pt;
} xc_to reg t;

Once the software driver is initialized, din stores the memory-mapped address of the din
port of the shared memory a, whilen_bitsand bin_pt store the number of bits and
binary point information.

Shared Memory Name Memory type Access Data Type
averflow From Register xc_from_reg_t
result From Register #c_from_reg_t
fa To Register BC_to_red_t
‘b To Register we_to_reg_t
L — wo_to_reg_t
Instr we_to fifo t
I doutf———a

From Register
=< 'a' =e
LIt i |y

From Register1

<<'b' ==

dout cast ¢

Frewm Raaistar?

So in order to write a value to the a shared register, you need to first obtain the shared
register settings through xc_get shmem and thus:

Xc _to reg t *toreg a;

xc_get shmem(iface, "a", (void **) &toreg a);

Note: Calling xc_get shmemn is expensive. You should cache the returned toreg_a for later use
and avoid calling xc_get_shmem multiple times in a program.

184

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

You can then use the following single-word write access function to write to the a shared
register:

// -- Set the a port register to 2
xc_write(iface, toreg a->din, 2);

Copy and paste the above code into your source code file MyProject.c
A reference copy of the full code of MyProject. cis located at the following pathname:

<ISE Design Suite trees/sysgen/examples/EDK/DSP48CoProcessor/MyProject
.c

Create a Hardware Co-Simulation Block

The complete Simulink model can be simulated through hardware co-simulation. Make
sure that the shared memories are added into the Memory Maps window and the EDK
Processor block is configured for HDL netlisting. These are required for hardware co-
simulation.

Open the dialog box of the System Generator token in the same subsystem as the EDK
Processor block. You generate the hardware co-simulation block from this level of the
model so that only the imported MicroBlaze processor runs in hardware while the rest of
the design is kept in Simulink for software simulation.

Under the Compilation menu select Hardware Co-simulation > ML402 > Ethernet >
Point-to-point. Next, press the Generate button to begin the compilation process. This
may take some time. Upon completion, a hardware co-simulation block is created that
contains a MicroBlaze processor.

5] Librany: Process.... [2)[E]E]

File Edit Wiew Faormat Help

O=zES &

Fointto-paint
Ethernet

Froce==or Submy=tem
hwcnsim

Rear 100% Unlocked

System Generator for DSP User Guide www.xilinx.com 185
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Create a Testbench Model

A testbench model will be created to use the co-simulation block created in the previous
step. Open the DSP48CoProcessor model and delete the Processor Subsystem. Copy the
Processor Subsystem hwcosim block you just generated into the DSP48CoProcessor
model. Save the model as DSP48CoProcessor_testbench.mdl.

EI D5P48CoProcessor_testbench

File Edit Wiew Simulation Formab Tools Help
= = + = > 100 [Nemal
Foint-to-point
iA Ethernat a
Gﬁ:‘;‘;'ﬂ;r From Registar
Froceszor Subsystem 1 v << owerfloy’ >>
huuzaszim To Register
B hi din
daut =2l From Registerd - N B
—fre wul e Rl "
F=C+iATH) dd I e din
Lo erW/ e
From FIFO P=P+(A*B)|+d1 from Register2 BitBazher|To Register
<< instr’ 5> el B < result’ »»
Assert F
Foasia e = O
e [Eeame
P=C [H]d5
SR
L L]
Ready 100% T=0.00 odeds
186 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Update the Co-Simulation Block with Compiled Software

E DAPARCoPr s leskinzinczly

File Edit ‘iew Simulation Format Toos Hep

LR & BB+ =

i Puairdtie-paint
&~ Ethumat daut

Syslem
Genaralor

<< merflonr k3
Ta Repisler

[Besc | Advarced || Bthemet | Confiuraton || Stered Memores | Software

EDK project fmp) | H:“wvork ' ED K Proc Block \ [5 P4 8o Processor, edkpr system xmp
BlMM nama Hawork \EDKC\Proc Bloek WD 5 P £ 3Ce Processorinetliel ‘praceeser_subeyetem_ocw_be

l Compile and updsis bil2r=am

[k |[Canesl][Halp]| Poply

reacy T T= 5= |

Return to the testbench model. Double click on the Processor Subsystem hwcosim block to
bring up the dialog box shown above. To compile the software contained in the XPS project
listed in the Software tab and load it into the hardware co-simulation bitstream, click the
button labeled Compile and update bitstream.

Since Point-to-point Ethernet co-simulation is chosen, you need to configure the Ethernet
interface and also the Configuration interface of the Processor Subsystem hwcosim block.
Select a valid Host interface for your Ethernet communications, and set the configure
interface to Point-to-point Ethernet. Refer to the topic Using Hardware Co-Simulation for
more usage information of the hardware co-simulation block.

Run the Simulation

Before starting the simulation, you need to set up a terminal connected to the COM port of
your computer. This allows for text inputs and outputs to be read from and written to the
MicroBlaze processor through the RS232 port.

Open up your favorite terminal program. Windows comes with a Hyperterminal
application, which can be found in Start > All Programs > Accessories > Communications
> Hyperterminal. Set up the terminal program to listen to the COM port that you have
wired your RS232 to.

Configure your terminal as follows:
*Baud rate = 115200

*Data = 8 bits

eParity = none

*Stop =1 bit

System Generator for DSP User Guide www.xilinx.com 187
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

eFlow control = none

Set the simulation time of the testbench model to inf, allowing enough simulation time for
the MicroBlaze processor to wake up and respond.

Using XPS

This topic provides a quick tutorial on several aspects of the Xilinx Embedded
Development Kit (EDK). Please refer to the EDK documentation for more in depth
explanations and tutorials.

Tutorial Example - Creating a New XPS Project

The Base System Builder is an EDK Wizard to help you construct a fully configured EDK
project. This topic walks you through creating an EDK project configured with a
MicroBlaze™ Processor, running on a Xilinx ML402 hardware development board.

1. Launch Xilinx Platform Studio from the Windows start menu

2. When XPS launches, the following dialog should appear. Select Base System Builder
wizard (recommended), then click OK.

& Zilinn Makhorny Studia ﬂ

— Create nev or open existing project

Erre"a = Base System Bulder wizerd (recommended]

@ " Blenk ¥FS progect
E £ open arecent project

[Browsse For Move Projects. ., x|

Eroise EDK examples {projects) on the web hers

QK | Canal I Help |

3. Next, specify the XPS project name as system.xmp and the location, as shown below,
then click OK.

= Lrcakte Moer XIS I'rpiect Using BoE Wizard | x|

—Mew proyct

Proj: file

IC:JEDKfsrstcm.xmp Bromse ...

—advanced options toptiona: F1 for belp)

™ Sek Project Paripberal Paposkonies

| Eron=s ... |
oK I Cancel I

188 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/edk_pstudio.htm
http://www.xilinx.com/ise/embedded/edk_pstudio.htm

& XILINX.

Designing with Embedded Processors and Microcontrollers

4. Next, tell Base System Builder that you would like to create a new design, then click
Next.

:.:,: Base systen Bullder

Wdcome Board
(.

alx|
Sy=kem Frooessor Frripherd Cache Applcation SumTmary

Welcome bo the Baae System Builder

This taol Ieads pou thraugh Bhe steps racassary For creating an embadded sysbem,
Selact Ona af the Fallwing:

= Twwould [k bo areste & new desian

T waculd lss bo load an axictiog beh sottings fla (raved Friom 3 presdous seegion)

Brovae .. |

5. Base System Builder — Select the Board Vendor and Board Name, then click Next

\elcame Board Systam Proressor

2lx

Pariphexal Cache Appication Summay

Board Selection
Selack a3 target develipmen: board,

—Baard

% [woul bke o create & system for the flloaing devslopment: board
Board “erdar IHiinx

=l
Board Mama "ntex 4 1ML EX rT

Board Revein |1 x|
™ [voul ke bo create & system for a custom board
—Baard Informskion
Irchitectura Device Packans Spaad Grada
uirtees =l Jcteses =] [fress =l |- =l
I usa stepping | =l
Reset Polarky [Rathve Lo =l
Relsbed [nformation
6. Base System Builder — Select a Single Processor System, then click Next
:,: Base bystem Bulder ﬂﬁl
I eloome Board Sysbem Frocesso Feripheral Code Application Jumrmary
NN N I N N N B NN AN
Sysbem Configur ation
Corfigre pour sysbam,

% Sngle-Processor Syetem

" DUE-ProcEesor Sysham
Select this option t @este 3 deson wWih a Sngle processor, This

Select this optlon ta create 4 dzsian Wb bwo pracessars, This Wizard
Wizard will ek ywou canfigure bhe processar, the peripherd set and wil |zt you configre the bvpes of Ehe processors, the perphera
some major conflpration paremeters for the pefipherak.

accessble bo the bao processors and the peripherals shaved by the
bwo processors,

Fiosesser | Parphiarals

Fresasect 1

Wailons Mutex

2 Parpharale

System Generator for DSP User Guide www.xilinx.com 189
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

7. Base System Builder — Configure the Reference Clock Frequency and the Local
Memory, as shown below, then click Next.

:.,: Ikaer wystemn miden llﬁl
‘el Come: Board Sisem PTOCESSMN Fetpheeal Cade Applicetion SumrEr

Proresonr ConfiguesBan
Corfiqure the processors].

Reference Oodk Frequency |ltl:|.tl:| MHz
—Processoe | Confiporation

Fromaszor Trea [Mrcitaz x|
System Quck Freqpency [100.00 x| M
Lozl Mlamcery [-
Oebug beface [Er—chin Hiw Debg ikl =]

[™ Enebl= Rontig Poit Linit

8. Base System Builder — Select R§232_Uart, dlmb_cntlr and ilmb_cntlr. Remove other
peripherals using the Remove button, then click Next.

e basc system sulder fd 1

Board Syskem Processar PeHpheral Cache Applcation Summz)
N NN NN W

Peripheral Configuration
To odd & peripberal, deopo & From the "8valable Pericherals” ko the processor peripheral kst Ta dhanae & core parameter, s=pand the care,

Bevailzhle Paripheras Procassor 1 iMiroBlaza) Pedpherak
Petipheral Names
[+ I Davices o
- LEDS_46E 5 Zﬁ—'f't ITi'EEIIl—_I
-~ LED's_Posknns D"‘"E' E? c m
- Pugh_Buttans_Pockian F:ri?y s T —
DIP_svdbhes 56K ke TrEmrd r
[IC_EEPREM dimb_cntk
:Sys.ﬂ.cE_Cnrrpau:lﬁash C_orc: nb_brern_F_sntk
DDR_SDRAM
Imb_crek
-- Etharmat_M&Z -
- saft_TEMAC Core: imb_brom_f _cntr
- AN
- FLASH

(= Int=mal Peripheraks
== #ps_bram_if_mbr
- xps_Hmehase vk

== mps_Hmer Add = |

< Remave

i

9. Base System Builder — Click Next in the Cache configuration dialog box.
10. Base System Builder — Click Next in the Application configuration dialog box.

11. Base System Builder — Click Finish in the Summary screen. At this point, the XPS
project will be automatically generated.

190 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Adding a New Software Application

1. To add a new software application to an EDK Project, first open the EDK project in the
EDK.

2. In the Project Information Area, click on the Applications tab to reveal the Software
Projects page.

iCPHe: Doy

Project Informction Arca »

Praect | Applicetions | |2 Calalog

Software Projects
& JAdd Sciware Application Pioject ..

g Al Snftware Application Projenct le

Fiujeut Nane || |
Hote: Project Mame cannot have spaces. :
ok,] [Cancel]

3. Thefirstitem on this page is Add Software Application Project ... Double click on this
to bring up the Add Software Application Project dialog box. Type in a project name,
then click OK.

4. By default, the project is created and not set to be initialized into BRAMS. Make sure to
initialized the project into BRAMS; otherwise, the software code will not be compiled
and added to the bitstream. Also, if you have more than one application, ensure that all
other applications have Marked to Initialize BRAM unchecked.

s Hilinx Platform Studio - Hwork/EDKProcBlock/DSP45CoPr:

Ik Fic Edit ‘ow Drojeck Fardwarc Softwarc Dowico Configur

‘DPEH- O ooy B3 M
X

Fraject Informatian Arza OLL
Project Applications | P Zatal PMN
' | g BB E
Software Projects
Je14dd S ofmare Application Project. .
W Deault: icraslaze 0 bootlacp -
oraH
mDe:auIt: microolaze 0 sndztub

BB 4 Project: MyProject et Campiler Oprions...

[#- Processor, microblaze_C

Esacutzble: HewarkAEDKAF vark 2o Incahize BRAMS

Cempiler Options 3uild Project
Sources Zlean Project
Header: Jelete Proect.

vake Froject Inackive

aenerate Linker Scrips,..

System Generator for DSP User Guide www.xilinx.com 191
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

5. Next, create Source or header files. Double click on the Sources branch of a project tree
to cause a File Open Dialog to pop-up. The dialog is rooted at the base location of your
EDK project. It is good to create a directory named after your project and keep your
source and header files there; in this case, MyProject. Create the directory in the same
directory as your EDK. xmp file

Adding a pcore to an EDK Project

1. Pcores in an EDK project must be in the user repository, or in a directory named pcores,
at the same directory level as the EDK project file

2. To ensure that the pcore has been loaded, from XPS, select Project > Rescan User
Repositories

3. Pcores in System Generator are currently FSL-based, so you may use the Configure
Co-processor tool. The tool can be launched from XPS by selecting Hardware >
Configure Coprocessor...

~ Configure Coprocessar

Thiz tool helps you nanage the FSL peripherak (coprocessors) attached w0 this CPL instznce.
Selzct the desired penpheral end chck "Add™ to attach it ta the CPU

Connected Coprocessars: fwvailadle Coprocessors:

microbaze_[Coprocessor | Description

igb2gay2_sm |rgbZgryZ_sm
:I

Femaove >3

MicroSlaze o—

Availahle FSI intefares onthe
CPL:

Magter: &

Slave: 8

&) (o=

Available FSL-based pcores are listed on the right hand window. Select the relevant pcore,
then click on the Add button. The Configure Coprocessor tool takes care of connecting the
clock and reset signals for the FSL bus, however, any user signals must be wired up by you.

192

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Using Platform Studio SDK

Introduction

The Xilinx Platform Studio Software Development Kit (SDK) is an Integrated
Development Environment for creating software platform designs. The SDK is an eclipse-
based IDE that makes it easier to write high-quality C/C++ code for Xilinx embedded
processors. System Generator provides access to the SDK by automatically generating an
SDK workspace and providing a "hello world" program template that contains example
code which allows you to write productive code in a short period of time.

Invoking the SDK

System Generator automatically generates an SDK workspace if an EDK Processor block is
present during a Hardware Co-simulation compilation. Additionally, the Hardware Co-
simulation token will have an additional tab in the block's GUI called Software. In this tab,
there is a SDK panel that provides access to the SDK.

'+ Subsystemn hweosim (Xilinx JTAG Hardware Co-simul |=|[®][®

Basic l Advanced I Cable] Shared Memaries Software

Xilinx Platform Studio (XF3)

Project file |fgroup/dspusers-xsj/spstestEDKiest/prifsystem.xmp

BMM file :stEDKtestnetlist_hwecosimfsubsystem_ow_bd.bmm

JTAG
Ci0-gim Software Development Kit (SDK)

Subsystemn ELF file I
hucosin —J

[_Cnmp-ile and update bitstream I

RS U GERTRIEN Mo

8

Pressing the Edit software button will launch the SDK. The SDK workspace can also be
found under the netlist directory of the design. The ELF file field tells the Hardware Co-
simulation block what executable binary to use during simulation, and the "Compile and
update bitstream" takes the binary file specified in "ELF file" and merges it into the
bitstream.

Please refer to documentation in the SDK regarding the creation of a software platform and
a managed C or C++ project within the SDK.

System Generator for DSP User Guide www.xilinx.com 193
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Creating a Hello World Application in SDK

When SDK is launched with a workspace created from System Generator, it is possible to
create a C application project that has example code that shows how memories in System
Generator can be read from and written to.

In the C/C++ Project navigation pane, right click on a Software Platform and select
New > Managed Make C Application Project.

F il

w MNew Managed Make C Application Project *

Managed Make C Project .
&) Project name must be specified ‘&

Project Mame: |

Software Platform: ‘TESIP'I’DJEEI | » ‘

Froject Location

Usze Default Location for Project (recommended)

Location: ! faroupfdspusers-xsjspsfestE Dktestnetlisi_hwcasim/S DI{_-| Browse...

Sample Applications

=% Emipty Application Des_criptiun B o T
=5 Dhrystane Example C program for using i
&S Hello World |sg_plbiface software driver
=X Memary Tests

=% Peripheral Tests

=5 Xilkernel POSIX Threads Dema

=L lwiIP Echo Server

£ cg plbiface example |

o

< Back Next = | | Einish | | Cancel

In the list of Sample Applications, select the sg_plbiface example and click Finish. This
creates a software project with a main () routine that prints "Hello World". The file also
contains example functions that show how to access the memories in the System Generator
design.

194 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Getting help on the Software Drivers Generated by System Generator

In the SDK menu, select Hardware Design > View Design Report. This will launch a web
page that contains the resources available to this software platform. In the left hand
navigation panel, select Peripherals > sg_plbiface_0..

Flle Edi ¥iew Hisiory Boohmarks Tools Help
b SRl ol EEE o | ||j file groupdapusers-2slispshe sYEDKtesUnel sty cosimSOH_Expar |'| Bl-] l ||-'g']
Overview Eﬂ Lpibitece O %
Block Dlagram Fﬁ'i i
reares T L
@ Procsesor ot B
i3 Care Vemlan Dl rves it Hewry i:
[Debuggers i i
e 1400, DANVER |25
% Busses E‘ 28_plaace A b
¥ Memary i B
% Memory Conirolle_ =
L1Peripherals B 1t A g}
{EDs_adit [I al A
LEDs_Fasitiona E@I =43 1 Thmmmepumlii:]:l
Rassa_Uar = A 4 1 ¥ NAME o [l
vd T K shollce 8 o lrsris_on ol
ag_piblface & i 1° G 1 |egSPLE_Rst o |5
®IP i 27 :
- . E7 2 |sgFLE_ABus]
Timing Information
Bl (@ s 3 |1gPLE_PRYalk a
iy
B 4 |agPLE_RNW a | B
B i
EE,-‘* B |sgFLBE_wrOBus o | &
‘:’a 8 |apSLeddréack | B
5 55
ke [
E 7 |epSl_walt 1 E
+ o v A BRI Tar S S e R T e R B R R e T
Done | ‘%l. |

This will scroll the report into the section pertaining to the System Generator peripheral. In
the IP Specs table, click on the DRIVER link and that will launch the documentation
generated by System Generator for the peripheral.

How to Migrate a Software Project from XPS to Standalone SDK

Adding and managing software applications in XPS is deprecated starting in release 11.1
and will become obsolete starting in release 12.1. You can still continue using an existing
XPS project until 12.1, but it is highly recommend that you migrate the software portion to
the Standalone SDK flow to take advantage of the flexibility and advanced features in
adding and managing software. You can follow the step-by-step instructions described
below on how to migrate from an existing XPS flow to an SDK design flow. The same
generic steps can also be used on other Sysgen/EDK designs to accomplish the same
migration paths between XPS and Standalone SDK.

System Generator for DSP User Guide www.xilinx.com 195
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

How to Migrate to the Standalone SDK Flow
In the following description, a design called VFBC will be used.

1. Open the System Generator model with the hardware co-sim block (vfbc_hwcs.mdl).
Double-click on the Hardware Co-Sim block and click on the Edit software button to
launch SDK.

Note: Notice that you do not have to enter the ELF file yet at this point.

aPassThru_SuhS:rstem hywcosim (Xilins Poi =10] |

Basic I Ethernet | Configur ation | Shared Memories Saftware |

— wilire= PlatForm Studio (XPS)

Project file I CAWFBC\xps_mlS0& \svstem . =mp

EMM file I CANWFBC | hwes_netlistipassthru_subsyskem_ow_bd.bmm

—Sofbware Development ik (SOK)

ELF file || |
Edit software |

Compile and update bitstream

oK Zancel Help Apply

196 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

2. Click OK to start creating the software project.

4" Next Steps x|

- Mow that wou have a hardware design, you can start creating sefbware
\:!l) projects Far it, Before vou can create C or C++ application projects, wou
have to first create Software Platform projecks, To create a Software
Flatfarm praject, click on the Rew icon below the File menu and select
Software Platform.

For tutarials on how ko get skarted with Xilin: Sofbware Development kit,

zelect Help -= Cheat Sheets. For SDK on-line documentation, select Help -=
Help Corkents o the SDE ican in the Welcams page.

[~ Do not shove this message again

4 C/C++ - Xilinx Software Development Kit

File Edit Pefactor Mawigate Search Project Tools Hardware Design Run Window Help

165 - B |Ee R (2B | PheRR | DB |-

Y | Bgcicet

EZ) cpc++ Projects EEI = O
< | B &7

=15 CHWFBCihwes_netlistSDK_Exportffisystem . xml
microblaze_0 {microblaze)

oLl)

System Generator for DSP User Guide www.xilinx.com 197
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

3. Right-click on the system.xml file and select New > Project

i C/C++ - Xilink Software Development Kit
File Edit Refactor Mavigate Search Project Tools Hardware Design Rum window Help

BB PR R DR (&g-8-E--[%-0-%- |

i

163~ I | & =

B | BRcict++

8T C/C++ Projects X = O
=

= O|| B outine 52| ™1 =8

#n outling is not avaiable,

=M FEC] | JSCIK m
u| microblaze_0 {microblaze) MNeww i Proj
g Import. ., @ Managed Make C Application Project
£ Export. .. Standard Make C Project {Makefile created and ma
all Declarations 3 Converk to 5 CiCH+ Make Project
Al References ' @ Managed Make C++ Application Project

Standard Make C++ Project (Makefile created and

E Generate Linker Script. ..
57 Source Folder

‘3; Board Support Package Settings. ..
"c'.. Software Platform Settings. .. [Folder

.:) .
[y View Design Report. .. €] Saurce File

|n Header File

| File

4. Select the Software Platform Wizard

{T New Project x|

Select a wizard

wilin Software Plakform wizard |

<

\Wizards:

----- il Baard suppart Package

----- @: Managed Make C++ Application Project
----- @ Managed Make C Application Project

----- Softveare Plakform

= C
B2 CH+
H-[= C¥S
E
[

H- [Simple
H- (= Hiline

< Bach I M=t = I Fimish Zancel

198 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

5. Enter the project name and click Finish

4 Mew Software Platform Project

Create a Software Platform Project

Create a software Platform project

Praoject name: | SvsGan_VFBC_SDK|

Pracessaor: Imi-:rnblaze_lj iricroblaze)

-

Kl

Plakfarm Type: Istandalnne

tandalone is a simple, low-lewel software platform. It prowides access ko hasic
rocessor Features such as caches, inkerrupts and exceptions as well a5 the basic
eatures of a4 hosted environment, such as standard input and output, profiling,
bort and exit.

Project Location;
[v Use defalk

Direckory: | CAWFBC hwwcs_netlistYSOK_warkspace!|SysGen YWFBC SDK

L

Eroise, |

< Back Mext = I Finish I

Cancel

System Generator for DSP User Guide www.xilinx.com
UG640 (v 13.1) March 1, 2011

199

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

6. Right-click on SysGen_VFBC > New > Manage Make C Application Project

=0 | | =08 ||0ut|ine I (@) Make Targeks 33
B &£~ - fl% SysGen_VFEC
C WFBCThwes_metlisk SO _Exparthw/system, xml
| microblaze 0 {microblaze)
& o I - -
=L@ Ma Sio L = | 2 Application Pre
-E :IEE Cipen in Mew Window [c'] Standard Make C Project (Makefile created and managed by user
" Create Maks Target... Convert ko a CJC++ Make Prajact
Build Make Target... I&{ Managed Makes C++ Application Project
Build Project [Standard Make C+-+ Project (Makefile created .and managed by user)
Rebuild Project % Source Folder
= Copy [Folder
Il Faste ¢ Source File
Renarne K Header File
3 Delete “ Eilg
g Impart. ., (& Class
2y Export... [Other... Chrl+N
200 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

7. Enter the Software Platform Project name, select Empty Application with no template
and click Finish.

4" New Managed Make C Application Projeck il

Managed Make C Project .
Create a nevs Managed Make C project. @

Praject Mame: | WFEBC

Software Platformm: ISysGen_‘«-‘FBC j

—Project Location

¥ Use Default Location For Project (recommendead)

Location; | i WFBChwes_netlistfSDK_Workspace/YFEC Browse, ., |

—Sample Applications

mpty &pplication [~ Description
=5Dhrystone &n application with no :I
=5 Hello world contents.
=5 Memary Tests
1=5Peripheral Tests
== vilkerniel POSIE Threads Demo
1= wIP Echo Server
=% s0_plhiface example ;I

< Back I Rext = | Finish I Cancel

Your SDK design cockpit should look similar to the figure below:.

P C/C++ - Xiling Software Development Kit

Fil= Edit Refactor Mavigate Search Project Tools Hardware Cesign Run Window Help

JE5- & | Blms i 2R el | O g8
=5 =
@B &Y

E|1__'__I CeWFBCThmcs_netlict/SDK_Exporthwisystem, il
=-[rd] microblaze_i {microblaze)
=H-ille SysGen_wFEC
¢ E-& Archives
feei] microblaze 0
& Makefile
libgen.lomg

System Generator for DSP User Guide www.xilinx.com 201
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

8. The last step is to either create a new C-code source file or add an existing one to the
project. In this case, you can just add the existing one from C:\VFBC\C-code\vfbc.c.

The easiest way to add a C-code source file to the VFBC {SysGen_VFBC} application
project is to simply Copy & Paste or Drag & Drop the file into the project. Once the file
is added, the project will be built and compiled automatically.

How to Iterate the Design between System Generator and SDK

By default, the ELF file is named after the application project name — VFBC. elf in this
case. It’s also located under the folder of the application project location.

Design iteration using the SDK is similar to that performed in XPS but with more advanced
features and functionality. Once the C-code is modified and saved, the software
application is rebuilt and recompiled automatically. This, in turn, generates a new ELF file
that isthen be used by System Generator to recompile and update the bitstream to the
target platform.

Software lteration

1. SDK -- Modify C-code and make sure the software project is recompiled successfully
2. Sysgen — Simulate the design

Hardware lteration

SDK — Add new peripherals or modify existing ones
Sysgen — Re-import an XPS project into the Sysgen design

SDK — Modify C-code accordingly

1
2
3. Sysgen — Re-generate a Hardware Co-Simulation block
4
5. Sysgen — Re-simulate the design

Note: Making Hardware changes requires a new design implementation through Place & Route.

Tutorial Example - Using System Generator and SDK to Co-Debug an
Embedded DSP Design

Introduction

Xilinx ISE Design Suite includes a new beta feature that introduces key improvements in
the integration flow between System Generator, Xilinx Platform Studio (XPS), and
Software Development Kit (SDK). These improvements concentrate on the following
areas:

1. Enables you to rapidly import a test MicroBlaze processor subsystem into System
Generator and simulated through hardware co-simulation in order to debug a DSP
circuit under development

2. Perform co-debugging with System Generator and SDK together

The majority of this tutorial exercise is focused on the use-case where you import an XPS
design into System Generator. This flow allows you to debug your DSP design in System
Generator with real live data generated from the MicroBlaze. System Generator's
Hardware Co-Simulation technology allows the MicroBlaze to be running in hardware and
for the rest of the DSP design to be simulated (in software) in System Generator. This gives
you visibility into all the signals of the DSP design and is useful for finding hardware and
interface/protocol bugs.

202

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

The following are some of benefits of using Co-Debug between System Generator and
SDK:

e Concurrent visibility of software and hardware for debug
¢ Setabreakpoint and debug while the MicroBlaze and hardware are stopped
¢ Signals to probe do not need to be chosen before the bit stream is generated
¢ Find a bug, modify the C code, recompile and update the bitstream in seconds.

¢ No need to rerun synthesis and the implementation flow when the software
changes

¢ The initial software program (ELF file) is automatically updated to the download
bitstream. You no longer need to manually click the Compile and update
bitstream button on the Hardware Co-Simulation block.

e Tight integration
¢ The SDK project is automatically setup with the correct hardware platform

¢ The required logic is automatically added to the design

Objectives

After completing this tutorial exercise, you will be able to:

¢ Use shared memories in System Generator to interface DSP hardware with the
MicroBlaze embedded processor

e In XPS, create a basic XPS project using the BSB Wizard
e In System Generator, import an XPS project into a Sysgen design

e In System Generator, generate a hardware co-simulation block and launch SDK
directly from System Generator

e In SDK, co-debug a design by single-stepping and observing output waveforms on a
Simulink scope

Tutorial Exercise Setup

The following software is required to be installed on your system to successfully complete
this exercise:

¢ Xilinx ISE Design Suite 13.1 (System Edition)

e MATLAB / Simulink R2010a or R2010b

e SP601 Platform

e JTAG Cables that come with the SP601 Platform

System Generator for DSP User Guide www.xilinx.com 203
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

Design Description

The System Generator design below includes a FIR Compiler 5.0 block with Shared
Memory blocks — From / To FIFOs. Also included is an SP601 embedded system with a
MicroBlaze processor, PLB4.6 bus, and a UART Lite peripheral, all created using the
Platform Studio BSB (Base System Builder) Wizard.

Processor Subsystem - i do.uble
:l din, _m;&
Fushed down to hardware through
[System Generator » ol double
hardware co-simulation flow L1 din_maﬁ

AXI Embedded Digital Sighal Processing Application With
FIR Compiler 6.0 IP and Shared Memories Blocks

Mapped onto
) Mapped anto MicroBlaze Memony
MicroBlaze Memaony Space
Space
data_tready —LTEI i i
meak: o — | data_tvalid cast| U320 el data_in wiun | 2=l
dout =
. ; d
—elre | U T — data_teali [[-£20! I LI un [2P
System Bool st
Generator emphy | FIFD
| data_tdata) b
D data_tdata UFix_40_0| << 'dout’ >>
< din’ 5>
FIR Compiler 6.0

IS

MicroBlaze

double
-
W Out dout_tdatg
oy L
fal e | dout,t\r!ir

This simple design contains the following major components:

FIR Compiler 5.0: a parameterizable FIR filter that accepts input data from the din

pin.
MicroBlaze Processor Subsystem: contains an SP601 embedded system with a
MicroBlaze processor, PLB4.6 bus, and a UART Lite peripheral created using the
Platform Studio BSB (Base System Builder) Wizard. This subsystem will be compiled
into hardware using the System Generator hardware co-simulation design flow.

From FIFO din block: is used to accept input data from the MicroBlaze processor and
feed it to the input din of FIR Compiler. This input data is accessible via both Simulink
and MicroBlaze during the co-debugging session.

To FIFO dout block: is used to accept output data from the FIR Compiler dout and
feed it to the MicroBlaze processor. This output data is also accessible via both
Simulink and MicroBlaze during the co-debugging session.

204

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

The two design files for this exercise are located at the following pathname:
<ISE Design Suite tree>/sysgen/examples/SDK CoDebug

¢ fir compiler_mb.mdl - A System Generator Simulink design model

¢ axi_sdk_codebug_example.c or plb_sdk_codebug_example.c- C code used to
drive the DSP design from the Microblaze processor depending on which
memory map type (AXI4 or PLB) you are using.

PROCEDURE

In this procedure, you will follow four primary steps:

Step 1 Familiarize yourself with the tool flow between System Generator and Platform
Studio and how DSP and Embedded components can be integrated together

Step 2 Create an embedded system that includes a MicroBlaze embedded processor using
Xilinx Platform Studio (XPS)

Step 3 Incorporate an XPS project into a System Generator design and generate a
Hardware Co-Simulation block

Step 4 Create a software application project and co-debug a System Generator design
using an integrated flow between System Generator and SDK

Step 1 Familiarize yourself with tool flow between System Generator and Xilinx
Platform Studio

Note: You can skip this step and start with Step 2 if you are already familiar with Sysgen design
flows. You can revisit these steps later if you like.

General Flow for this Exercise

Step1: Step 2: Creating Step 3: Import Step 4:
Familiarizing anembedded an XFS project Setup and co-
ourself withtool —Msystem (10 mins) into a SysGen debug designin
flows (10 mins) design (10 mins) SDK (15 mins)

The figure above shows a typical Xilinx tool flow between IP, Project Navigator, Platform
Studio, Software Development Kit and System Generator. Depending on your application,
you may want to use different design methodologies when designing an Embedded DSP
application. Sysgen provides two different approaches to integrating a MicroBlaze
processor from Platform Studio with a System Generator design and they serve different
purposes. It will be helpful to understand some of its basic differences between these two
unique flows.

1. EDK Export flow: allows you to generate and export a Sysgen design model as a pcore
to the MicroBlaze processor project. This flow works well if you want to integrate a
System Generator design as a sub-level design to the MicroBlaze processor system.
The typical steps to accomplish this design flow are described as follows:

¢ Create a System Generator design model

¢ Generate and export the System Generator model to an XPS project. The XPS
project can be created using the Base System Builder Wizard. The System
Generator pcore will appear in the XPS IP catalog.

¢ Add and attach the System Generator pcore to an embedded MicroBlaze
processor system

System Generator for DSP User Guide

www.xilinx.com 205

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

2. EDK Import flow: allows you to integrate a MicroBlaze processor system into a
System Generator design as a sub-system. This flow is very useful especially if you
want to bring the MicroBlaze processor system into the System Generator design
environment for debugging and simulating purposes. You can take advantages of a
very complex and powerful simulation platform — Simulink, HDL (including
ModelSim and ISIM), and hardware simulations. The typical steps to accomplish this
design flow can be described as follows:

¢ Create an XPS project using the Base System Builder Wizard
¢ Create a System Generator design model

¢ Import the XPS project into a System Generator design by using the EDK
Processor block

¢ Depending on your needs, you can either perform hardware co-simulation for
debugging or validating your hardware platform or add the netlist into a bigger
design

Note: The obvious advantage with this flow is the ability to perform the hardware co-simulation

on the processor block and its peripherals and take advantages of the rich and powerful Simulink

simulation and debugging capability.

3. System Generator Dual Clock Support for EDK Processors: System Generator
supports dual clock wiring, which means that the imported processor system and the
other portion of a System Generator model are driven by two independent clock
domains. One major benefit with dual clock wiring is that the MicroBlaze processor
system and the System Generator user logic can run at different clock frequencies. For
example, MicroBlaze can comfortably operate at 100 MHz, while a DSP FIR (finite
impulse response) filter in System Generator can run at up to 400 MHz.

o &[T
MB s g—- Map

Adapter

Processor Auto Generated by SysGen

Hardware Co-simulation
module

Hardware Co-simulation with Dual Clock Wiring

206 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

Step 2 Generating the BSB System Using the XPS BSB Wizard

General Flow for this Exercise

Step 1:

Familiarizing
ourselfwithtaol

flows (10 mins)

Step 2: Creating Step 3: Import
an embedded an XPS project
ystem (10 mins)f—hjinto a SysGen

debug designin
—|design (10 mins) SOK (15 mins)

Step 4:
Setup and co-

Create a sub-folder in the SDK_CoDebug examples folder named “XPS”
Select Start > All Programs > Xilinx ISE Design Suite 13.1 > EDK > Xilinx Platform

Studio 13.1 or double-click the Xilinx Platform Studio shortcut on the desktop if

available

Select File > New Project

Select Base System Builder wizard and click OK

- Xilins Platform Studio

x|

— Cieate new or open existing project

B:?Eg & Base System Bulder wizard [recommended)

@ ¢ Blank XPS project

¢ Dpen a recent project

I EBirowsze for More Projects. ;l
EBrowse installed EDK examples [projecis) here

[ok | came | ne |

4. Specify an XPS project name, located in the SDK_CoDebug/XPS folder and click OK.

\-, Create New XPS Project Using BSB Wizard

—Mew praject

Project file

'ISE,I'sysgen,l'examples,l'SDK_CoDebug,l'XPS,I'system.xmp

—Advanced options - optional (press F1 key For help)

[~ Set Project Peripheral Repository Search Path

Erowse ...

Ok |

Cancel |

x|

5. Click Next

< Base System Builder

EBoard Frocessor

Peripheral

Welcome to the Base System Builder
This tool beads you through the steps necessary for creating an embedded system.
Selact One of the Following:

() 1 would ke to creats a new design

) 1 would ke to load an existing .bsb settings file (saved from a previous session)

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

207

http://www.xilinx.com

Chapter : Hardware/Software Co-Design

& XILINX.

6. Select the Spartan-6 SP601 Evaluation Platform and click Next

(5) Twould ke to create a system For the Following development board

1 Evahuation Platform

Board Revision |C

< Base System Builder El EI
Welcome Board System Processor Peripheral Cache Apphcation Sunmary
E==============
| Board Selection
Select a target development board

System Configuration
Configure your system.

(3 Single-Processor System

Select this option to create a design with a single processor. This Wizard
waill let wou configure the processor, the peripheral set and some major
configuration parameters for the peripherals,

Proc

ss0r 1 Paripharals

RS232 GFIO

) bual-Processor System

Select this option to creste a design with bwo processors. This Wizard
waill lt: yous configure the types of the processors, the peripherals

accessible to the two processors and the peripherals chared by the two
Processors,

Processor 1

Peripharals

Mutax

Processor 2 Peripherals

DDR

Processor 2

EMAC

8. Change “Local Memory” to 32 KB and click Next

< Base System Builder

Processor Configuration
Configure the processor(s].

Reference Clock Frequency |200.00
Processor | Configuration
Processor Type MicroBlaze

System Clock Frequency |66.67

Local Memary [

Debug Interface

On=Chip HW Debug Module

peve ________________________________[J

208

www.xilinx.com

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

9. Use the Remove button to remove unused 10 Devices and Internal Peripherals under
Processor 1 at the right-hand side of the screen and only keep RS232_Uart_1,
dlmb_cntlr, and ilmb_cntr as shown in the figure below. Click Next.

« Base System Builder @@

Welcorme: Board Systam Procassor Peripheral Cache Application Surnary

Peripheral Configuration
To add a peripheral, drag it from the "Avalable Peripherals™ to the processor peripheral kst. To change a core parameter, click on the peripheral,

fvvailable Peripherals

Peripheral Names Processar 1 (MicroBlaze) Peripherals
= IO Devices
DIP_Switches _1Bits Core Parameter
LEDs_4Eits RSZ3Z_Uart_1
GPIO_HDR Core: xps_uartlite, Baud Rate: 9600, Data B...
Push_Buttons_4Bits dirnb_crithe
IIC_EEPROM Cores Imb_brae_if_onitlr
SPI_FLASH b _cnitle
Linear_Flash Core: Imb_bram_if_critir
MCB_DDRZ
Ethennet_MaC
Soift_TEMAC
= Internal Peripherats
xps_bram_f_cnth
xps_timebase_wdt
wps_kimer

Add >

< Remove

10. Click Next in the Cache configuration screen and press OK on Timing closure
Warning.

11. Click Next in the Application configuration screen
12. Click Finish in the Summary screen
13. Click OK in The Next Step screen and close the XPS application

Step 3 Import the Embedded System into the Sysgen Design and Generate a
Hardware Co-Simulation Block

General Flow for this Exercise

Step 1: Step 2: Creating Step 3: Import Step 4:

Familiarizing an embedded an XPS project Setup and co-
ourseffwithtool —hfsystem (10 mins)—Hhinto a SysGen debug designin

fows (10mins) —/| —/|design (10 mins) SOK (15 mins)

You have just completed the process of creating and configuring an embedded system for
a Xilinx FPGA. This embedded system is now ready to be incorporated into a Sysgen
design — fir_example_mb.mdl

1. Switch to Sysgen and open the file fir_example_mb.mdl

Note: This may take up to 3 minutes the first time since Sysgen will call PartGen in order to populate
the devices in the Sysgen token.

Note: Change the Simulink Solver on this model to ‘ode45’ or you will get the following warning:

Warning: The model 'fir_example_mb’ does not have continuous states, hence Simulink is using the
solver 'VariableStepDiscrete” instead of solver ‘ode45’

System Generator for DSP User Guide www.xilinx.com 209
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

2. Double-click on the MicroBlaze Processor Subsystem to open down to a lower

hierarchy
agped wale
BBl aTe W ras
- Foare
i B 0
- urad s =
- =
f:'\::w L]
PG
(AR i
:——9\
oot
iy Fie Edt Vew Semdstion Fomet Took Heb
[DEES P T2
Fiothad dowe be S arS=ire Bieagh
Feflam dareesar

pedimarn o mal gt T Agd EDK Processor

DIOCK Pisne:
w
W BT
r s
oy e EDe Paemad
[et
F 100 Varadin s

3. Open the Simulink Library Browser, then open the Xilinx Blockset/Index folder. Select
and Drag an EDK Processor block into the Subsystem sheet as shown above. Select the
pulldown menu File > Save to save the sheet.

4. Double-click on the EDK Processor block and click Add to map all available shared
memory blocks and you should see the following shared memories:

) EDK Processor (Xilinx EDK Processor) Q@:@

| Basic | Advanced Emﬁl.emwm Software

Processor Options
Configure Processor for |HDL netlisting v
%P5 Project | \EDKPr|system. xmp | [mmport...

Memory Map
|y cadin>>

| M <<dout>>

Avalsble Memories | <empty> M | add || sme |

Lo J[concel J[mee][eoov |

Click Apply, then proceed to the next step.

210 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

Select the Implementation tab and verify that the Dual Clocks options is selected. The

Bus Type is automatically detected by System Generator.

Note: You will be using the Dual Clocks feature for this exercise. It enables System Generator
and the imported XPS processor subsystem to operate in different asynchronous clock domains.

@ EDK Processor (Xilinx EDK Processor) E|E|E|
Basic Advanced Irplemnentation | Software

Memory Map Inkerface

Eus Type:
FLE w4.6 {Processor Local Bus) Anl4 (Beta)

Base Address |0x74818000| CLock

Dual Clocks

[Ireqister Read-Back.

Constrainks

Constraint File|.'l,EDKPrj'l,data'l,system.ucF | ’ Wiew
[J1nherit Device Type
’ oK] ’ Cancel] ’ Help] ’ Apply]

9 EDK Processor (Xilinx EDK Processor)

Click Apply, then proceed to the next step.

Select HDL netlisting in the Configure Processor for pull down menu. Click the

Import button and use the Import EDK project... dialog box to select the XPS project

that you just created in Step 2. The file is called system.xmp in the XPS directory.

EEX

Basic | advanced = Implementation Software

Processor Cptions

Corfigure Processar For [HDL netisting v l

HPS Project | \EDKFri\system.xmp

Memory Map

Wy <din>>

B4 <odout>>

Avalable Memories | <empty> % | add | [syne

[o [comcel J[web |[apow

System Generator for DSP User Guide

www.xilinx.com

UG640 (v 13.1) March 1, 2011

211

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

7. Click Apply and OK to close the dialog box. Save the design with the File > Save
pulldown menu.

8. You are now ready to generate a hardware co-simulation block for this subsystem.
Double-click on the Sysgen Token on this Subsystem and set its parameters as shown
below.

) System Generator- fir_example_mb ==l

Y 8 @

Compilation Clocking General

Compilation :

|i||speus (ITAG) Seftings ... |

Part:
[>][spartans xcosteast 3tagese

Synthesis tool : Hardware description language :
fxst [[0 =

[" Create testbench |l Importaz configurable eubeyztem

Target directory :

I..fnetlist Browse... |

™ Create interface document

@ 0K | Apphy | Cancel | Help |

9. Click the Generate button to start generating a Hardware Co-Simulation block. This
may take a few minutes.

Step 4 Create a Software Application Project and Co-Debug the Sysgen Design
Using an Integrated Design Flow between Sysgen and SDK

General Flow for this Exercise

Step 1:
Familiarizing

Step 2: Creating
an embedded

Step 3: Import
an XPS project

Step 4:
Setup and co-

ourseffwithtool system (10mins) into a SysGen |—Mdebug designin
floves (10 mins) design (10 mins) —/ASDK (15 mins)

Importing an XPS design into System Generator allows you to co-debug your DSP design
in SDK with real live data generated from the MicroBlaze while observing signals on the
Simulink model. System Generator's Hardware Co-Simulation technology allows the
MicroBlaze to be running in hardware and for the rest of the DSP design to be simulated (in
software) in System Generator. This gives you visibility into all the signals of the DSP
design and is useful for finding hardware and interface/protocol bugs.

In this section of the exercise, you will co-debug a System Generator design using SDK and
System Generator. This will involve single-steping the C-code and oberving expected
output signals inside the SDK console as well as on the waveform Scope of the Simulink

212

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Designing with Embedded Processors and Microcontrollers

& XILINX.

model. This co-debug methodology enables you to examine and verify signal values at
different points in the C-code and Simulink signals.
Delete the Subsystem block from the fir_example_mb.mdl model as shown below:

1.
Mapped onto
MicmBlaze Memory
Space
dout
i A
{e 2full | |
Systam
Generalor o
FIFO
< 'din' = ¥
ok 4J
MicmoBlaze
Fmocessor Subsystem
Pushed down to hardware through
Systern Generator
hardware co-simulation flow
2. Now you will replace it with the hardware co-simulation block you just generated.

Open the file ...netlist\Subsystem_hwcosim_lib.mdl. then copy and paste the
generated hwcosim block into the model as shown in the figure below.

Mapped onio

MicioBlaze Memory
Space
b dout

Syslem e Sifull ==
Genamalor
Empty
FIFO

= din’ s

JTAG
Co-sim

Micm B laze
Processar Subsystem
hwoosim

Fushed down to hardware through

Swystem Generatar
hardware co-simulation flow

3. Save the model fir_example_mb.mdl as fir example_mb_hwcs.mdl

213

System Generator for DSP User Guide www.xilinx.com

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

4. Double click on the Subsystem hwcosim block and configure the block as follows:

e Basic Tab: select Free running

{ZMicroBlaze Processor Subsystem hweosim (Xilinx ITAG H... [HJ=] E3

Basic | Advanced I Cable I Shared Memories I Software I

Clacking

Clock source:
"~ Single stepped {*} Free running

¥ Has combinational path

Bitstrean File pebug'l,netlist'|,micrnblazejrocessor_subsystem_cw.bit |

e Cable Tab: select Xilinx Platform USE

{ZMicroBlaze Processor Subsystem hweosim (Xilinx 1TAG H... [[=] B3

EBasic I Advanced Cable | Shared Memaries I Software I

Type |><ilin>c PlatFarm LUSE LI

Speed 12 MHz = | Part [USE21

Blug-im Parameters Ixilinxglatformusb pork=U3BZ21 Frequency=12000000

¥ Share cable for concurrent access witlkchipScope Analyzer or EDE XMD

Note: Verify that the Share cable for concurrent access with: checkbox is selected

e Shared Memories tab:

e MicroBlaze Processor Subsystem hweosim (Xilinx 1TAG H... [[=] E3

EBasic I Advanced I Cable Shared Memaories | Software I

El+ < <'dbg_stop'=>
WMy <<'din'=»

M+ < <'dout’=>

Ely <<'sg_resume' =

e Software tab:

eMicruBlaze Processor Subsystem hwcosim (Xilink JTAG H... =] [E3

Basic I Advanced I Zahle I Shared Memories Software |

[Enable Co-Debug with Xilin SDK (Beta)

wilin Software Dewvelopment Kik (S0

Workspace Igen'|,exampIes'l,SDK_Cu:nDebug'l,netlist'l,SDK_Workspace |

Launch ilinz SOk |

5. Click the Launch Xilinx SDK button, as shown in the figure above to launch SDK.

214 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Note: When SDK is launched directly from System Generator, the target hardware platform should
already be associated for you as shown by the figure below:

4 C/C++ - hw_platform_0/system.xml - Xili

File Edit Source Refactor Mavigate Search

I - |8 |22 E|e-a
™ Project Explorer &3 = EI|
=

= fg hws_platfFarm_0
| syskerm, bit
: syskem. brnm
e S syskem. il

Note: You can also choose launch SDK independently and associate the SDK project with a
hardware co-sim design using the following procedure:

a. Launch SDK from the Windows Desktop
b. Specify the SDK_Working directory associated with the Sysgen design

4 Workspace Launcher [X]

Select a workspace

wilim: SOK, stores vour projects in a folder called a workspace,
Choose a warkspace Folder to use For this session,

Workspace:

Browse. ., |

c. From the SDK pulldown menu, select Xilinx Tools > System Generator Co-
Debug Settings

4 system Generator for DSP E3
Co-Debug Settings (Beta) : =

Model: |C:'l,XiIinx'l,12.1_ISE_DS'l,ISE'l,sysgen'l,examples'l,SDK_CnDebug'l,Fir_exampIe_mb_hwcs.mdl |

Part: | 4734,

i
l\\?_,l oK I Canecel |

d. Enter the pathname to the associated Hardware Co-Simulation model. You can use
the default Port specification 4739.

System Generator for DSP User Guide www.xilinx.com 215
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

6. Continuing from step 5, create a new Xilinx C Project: File > New > Xilinx C Project >
Hello World (default project template)

T New Project - @E

New Xilink C Project) el
Craste s mansged make sppication project, Choose from one of the samphe
appications. k y
Project name: | helo_world_0|

[#] Use dafauk location

Target Hardware
Hardvsara Specfication:

Processor:

Sedact Project Template
Ohrystone Desoription
e — 7 T I

IIP Echo Server

Memary Tests

Peripheral Tests

g_pliface example

SREC Bootioader

Hilkernel POSIE Threads Demo

7. Click Next and Finish

Note: At this point, both the Xilinx C application and Xilinx Software Platform should have

already been created for you. (In the previous version of SDK, you would have to manually create
each step separately.)

8. The next task is to develop C-code to interface with the System Generator pcore. The
default file helloworld.c is created for you and it can be used as your starting point.

For your convenience, a complete C-code source file is provided for you named
sg_hello_world.c and is located in the SDK_CoDebug folder.

9. Under the “hello_world_0" C application, within the src folder, delete the
helloworld.c and replace it with the ...sg_hello_world.c. The easiest way to add a new
C-code file is to simply drag and drop it from Windows Explorer into the src directory.

r[\“_jPrnject Explorer &3 =0
S-S
=

%, Binaries
[Includes
= Debug
== src
(€] helloworld.c o ——
[0 platfarm_canfig.h
@ platFarm.c
[0 platfarm.h
T Iscript,id
= E‘;& hello_warld_hsp_0
(== microblaze_0
libgen log
=l libgen,options

& MakeFile

216 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Note: Notice that the new C-code is automatically detected and compiled. If there is no syntax error
and everything goes well, you should see a screen-shot similar to the one shown below.

I CIC++ - hello_world_bsp_Ofsystern.mss - Xilinx SDK

Fle Edkt Source Refactor Mavigste Segrch Run Project fiine Tooks Window Help
[3* a2 a@;iﬁ'ﬂi'é'@' : 1} B | Bg o+
-0 ™ . e
L{ Project Explorer £ = 8L system.ml b system mss £2 = 0| 3= outin 2 @Maske | T O
—r—— . A | &n outing is not avalable.
% hello_world_bsp_0 Board Support P
5 125 hebo_workd_0
= ﬂ.b [Binaries Target Information
& I:nci.rdns This Board Support Packsge is compded bo run onthe followi
Ey "f‘“-ml-:-- ebug | Hardware Specfication: C:\Co-Debug_Labimetlst_fwes_S
== Target Processoer: microblaze_0
- bl platform_config.h oet -
+ ::' platfomm.c Operating System
@ b platfoem.h ”
& 6] sg_hello_warldic Board Support Package 05,
Tl kcriped Hame: standalone
1B bako_yat bep. 0 Dss:euf:: ;mmm low-level software
H E? L0 bﬂmmim'esﬂﬂ\asmd‘rs,
= libgen.dog a5 the basic Features of a hosted erviron
L libgen. cpticns: output, profiing, abort and ek,
L@y Mabefile Docurmentstion: standalone v3 00 3
B System.mss
= 3 biws_platfoern Peripheral Drivers
L system.xml Drivers present in the Board Support
Package,
RSFI llart 1 nartite Perumsnbabisn M
Crverview
oblems |) Tasks | & Conscle i [0 Properties W e ™ i~ =0
C-Build [hello_world_0]
Invoking: MicroBlaze Print Size G
mb-2ize hello world O.2lf |tees "hello world O.elf.size”
TEXT data hsa dec hex filename
16920 1428 2144 20492 500c hello world O.elf
Finished building: hello world O.elf.size
w
1) 0 ikens selecked

10. Before you start debugging your design, you may need to make sure that the COM
port setting in SDK STDIO is the same with what is being set on your PC.

Verify the COM port setting on your PC as follows:

a. Right-click on My Computer > Manage, then click on Device Manager.
b. Expand the Ports (COM & LPT) entry

System Generator for DSP User Guide www.xilinx.com 217
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

c. View the Silicon Labs CP210x USB toUART Bridge entry. The COM port
assignment appears in parenthesis at the end of the line. In the case below, the port
assignment is COM4.

E Computer Management
Q File Action View ‘Window Help |

e OEEFS 2 A ="E

Q Camputer Management (Local) +-fidg Human Interface Devices
Eﬁ& System Tools ¥l IDE ATAJATAPT controllers

[]--@ Event Yiewer Kevboards
[#--g-] Shared Folders ') Mice and other pointing devices
[]---% Local Users and Groups E,. Modems
[Performance Logs and Alerts g Manitars
o amn, Dewvice Manager E1-E8 Network adapters
[—]—-@ Storage 1 H8 Broadcom Metxtreme S7:x Gigabit Controller
[+ Removable Storage | 0 b B8 Cisco Systems YPH Adapter
----- Disk, Defragmenter - H8 Intel(R) PROSWireless 2915486 Network Connection
Disk Management [+ E PCMCIA adapters
[]—-@ Services and Applications I:—er;lryi Ports (COM & LPT)

----- # Communications Port (COMLY

----- A ECP Printer Port (LPT1)

----- B Silicor L SE ko UART Bridge (
-5 Processors

t|-E& Prograrmming cables

]--@. Smart card readers

1 | |_’| 1@, Sound, video and game controllers

| | [

d. If the port assignment is COM1, right-click on Silicon Labs CP210x USB toUART
Bridge (COM1) and select Properties.

e. Click on the Port Settings tab and then click Advanced.

In the COM Port Number entry box, change the value from COM]1 to any other
unused port such as COM2.

i 0 e O e O

g. Click OK to exit all open windows in this sub-procedure

11. There are a couple of ways to get to COM port settings from the SDK GUI. Here is one
way:

a. Select the pulldown menu Run > Run Configurations...

T Run Configurations @

Create, manage, and run configurations ;—i
e -
= Configure launch settings From this dislog:
9 - Press the New' button to create a configuration of the selected type.
[E] cfc++ Application - Press the ‘Duplicate’ button bo copy the salected configuration,
B Launch Group
& §7 Hiirue CjC++ ELF | 3 - Press the Delete’ button to remave the selected configuration,

S - Press the 'Filter' button to configure Fikering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

Filter matched 4 of 4 items

@
218 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

b. Expand the Xilinx C/C++ ELF tree and select hello_world_0 Configuration.
Configure the COM port by clicking on the STDIO Connection tab and select the
COM port and BAUD Rate to match your PC settings as shown by the figure
below, then click Apply.

| & Run Configurations

| Create, manage, and run configurations

@ [Main]: Program not specified

B

X B-

fi

Mame: I hello_world_bsp_0 Configuration

|type Filker text
...... [E] fC++ Application

s Launch Group
=-$7 il Cfc++ ELF

Filter matched 4 of 4 ikems

x hella_world_bsp_0 Configuration Part:

Main rd%j Device Initializatio (ﬁ)@ STDIO Connection ., h.” Profile Cptions

I Connect STDIO to Console

BALD Rate: I%DD 'l

Apply |

c. Close the dialog box for now.

Note: Keep the following expected behavior in mind when debugging this simple Embedded DSP

application.

¢ MicroBlaze creates a impulse signal that is transferred into the “din” FIFO shared

memory.

¢ This input impulse response is then propagated through the input din of the FIR
Compiler IP with filter coefficients of 1~16.

¢ The FIR Compiler outputs are then captured by the MicroBlaze via the “dout”
FIFO shared memory. In this case the outputs are simply the filter coefficients,
which are 1, 2, 3, 4...16.

12. Highlight the file hello_world_0.elf under the Debug folder and select the pulldown
menu Run > Debug to initiate a debug session

5= I - i * B &1 % Debug | B cice+
O Q- ™
o Project Explores 51 = 0|y (%) Make Targets
= 4 1 ot ol
12 hello_weeld_0
o Bruews =
U Shap Flters Shift4FS
@, Bun CarhePi1l
Peun Hisk oy 3
u Run &g]
Rty Cordfiguestions.
Debusy History ’
W platform_config.h Debug As v
14 platform.c Dty Configurations. .
b platform.h
&8 s _belio_world.c
T oot b
s (B hello_world_bep (1
= (B t_piakfioem
Note: Click Yes on the next screen
System Generator for DSP User Guide www.xilinx.com 219

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

The tool should start downloading and configuring the bitstream through JTAG.

JITAG Hardware Co-simulation

-y
= Initializing JTAG Hardware Co-simulation
b Status: Opening JTAG programming cable

13. You may need to rearrange the Debug windows to display what you like to observe
during the Debug session as shown in the following figure.

14. When you debug any application in the workspace for the first-time, CDT switches to
"Debug Perspective" and prompts the user "if this should be the default behavior on
debug?". Click on Yes to confirm this behavior.

40" Confirm Perspective Switch E3

9 This kind of launch is configured ko open the Debug perspective when it
_*H suspends,
This Debug perspective is designed to support application debugging, It
incorporates views For displaying the debug stack, variables and breakpaoink
management,

Do ywou want bo open this perspective now?

Yes Mo

220 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

T Debug - hello_world_0/srefsg_hello_world.c - Xilinx SDK

Fle Edt Sowce Refactor Mavigste Search Run Project e Tools Window Help

% pebug 52 = 1] (e wariaties &3 . % Breakpont | (3 XMD Cons | 4 Registers | A Moduies| — 01

£

B Console 55) Tasks | [2. Problems | () Executables| () Memory - Bi[E[E 4 @-ri-=0
feello_world_0.eff [lin: C/C-+H ELF] C:\Co-Debug LabiSDK_Workspacelhello_workd_OiDebugihello_work_0,e¥ (2/5/10 12:36 PM) [Console nok connected to process stdio]

i} k > - -~
gm}ww Current Debug Session§] o

= dout_empty .
= $7 hello_werld_0.eF [C/C++ ELF] e vae Varlablqs

= @2 MO Target Debug Agent (2/5/10 12:36 PM) (Suspended) @ (= din_vake
= 4P Thread [0] {Suspended) % (™ douit valie

@ systememl) s0_hello_world.e 3 = 0)[B= outine | B console
#include "xparameters.h” -~ hello_world_0.elf [¥dino CfC+H ELF] C:\Co-Debug_Lab\SDK_Wy
Winclude "scdio.h™ [] % Qb fb_‘l &t B-ri-

#include "sg_plbiface.h”
#include ‘xucil.h® C-code
#include "time.h"

int main (void) {

uine3z_c i; First Console
uint3z_c douc_empcy, value;

/f impulse response
uintiz_c din_value[lé] = {1, 0, 0, 0, 0, O, CQ, O, 0, O, O, Q,

<

i (B 2@ O Qr i ARl [| 45 pebug | B cicH+

| Y] @, S, i T =] =

Name N

uint3Z_t dout waluwe[16] = (0, O, O, O, O, O, O, O, O, O, O, O,
xe_iface_t Tiface:

xc_to_fifo t *tofifo_din;

¥c_from fifo_t *fromfifo_dout:

= | main{) YcygdrivelclCo-Debug _LabiSDK_Werkspacethelo_world 0 o | € »
S X

2 =

for storing output data

Second Console

Note: Here are some of the nice features in this Debug cockpit that might be useful to you when
debugging a design.

L4

You can hover on most of the variables in the C-code to display the values

¢ You don't have to bring up a separate HyperTerminal console. It's now being
integrated inside the SDK GUL
¢ The First Console is not available the first time you launch SDK but it can be
added by using the New Console View as shown in the figure below.
(Display Selected Consol New Console View)
System Generator for DSP User Guide www.xilinx.com 221

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

15. First, just download the bitstream and run the whole program without any
breakpoints by clicking on the play button as shown below.

@ Debug - hello_world_Ofsrc/sg_hello_world.c - Xilinx SDK

File Edit Zource Refactor Mavigate Search Run Project Xiline Tools Window Help

fﬁbehug b

iy

a (0 B E ey -Q- ™Y v ¥ &

% &9 e [~} > S - =

16. You should see the same results for the dout signal both on the SDK console and
Simulink scope as shown below.

SDK Console Simulink Scope

& Tasks [:_ Problems G Executables | [J me

<terminated > hello_world_0.elf [¥ilinx CiC++ ELF & /ol@l/@ ﬁ %

Press any key to continue

dout[0] :
dout[1] :
dout[2] :
dout[3]
dout[4] :
dout[5] ¢
dout [6] :
dout [7] ¢
dout [8] :
dour [9] :

W0 om =) ;on b W R e

[
o

dout [10] :
douc[11]:
douc[12]:
dout[13]:
douc[14]:
dout[15] :

Done

11
1z
13
14
15
16

Dot

0 500 1000 1500

ime offset: 0

17. Place a breakpoint on line 55 of your C-code by double clicking on the line number.
This will toggle the breakpoint off/on.

Note: You need to right click on the gray bar and select Show Line Numbers to display line
numbers. When you first start SDK it does not show line numbers.

45
49
50
51

R T T

do {

#xc_read(iface, fromfifo_dout->empty, <&dout_emp
} while (dout_empty == 1):
/{ read data from 'dout' FIFO
x¢_read({iface, fromfifo_dout->dout, &value);
dout_wvalue[i] = value:

xil printf("douc(%d]: %d\r\n”, i, dout value[i]):

222

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Designing with Embedded Processors and Microcontrollers

18. Instead of clicking on the play button, click on the Debug button as shown below.

@ Debug - hello_world_O/src/sg_hello_world.c - Xilinx SDK

File Edit Source Refactor Nawigate Search Run Project Xilinc Tooks Window Help

o i o B0 EBEF-O0-Q- P L=

%5 Debug 22 / ko= 2R RJF|PPRTTO

File Edit Source Refactor Navigste Search Run Project Yl Tools Window Help

N o B RE B0 @™ :
%5 Debug 2 5 0p -
©Q <unknown> /
o <unknown =

20. Again, place your mouse cursor into the open console and press any key to continue
running the program.

T Debug - hello_world_O/src/sg_hello_world.c - Xilinx SDK
File Edit Source Refactor Navigate Search Run Project Xilink Tools ‘Window Help

N mm&@%'D'Q' & 4

%5 Debug i & > R0 1P
0 <unknown >
0 <unknown:

21. Continue clicking the Resume button and observe both the SDK console and Simulink
Scope. You should see dout bit 0~16 being displayed as you step through the program.
On the Simulink side, multiple signals are wired to the scope.

Note: Click on the Autoscale button to refresh the scope.

) Tasks | |21 Problems | () Executables | [J Memory EI nsole XN

hello_world_0.elf [¥ilinx CfC++ ELF] C:\Co-I y
Press any key to continue . Scope?

dout [0] :
dout[1] :
dout[2] :
dout[3] :
dout[4] :
dout[5] :

(= I R S

Dout

i 100

200 300 |

System Generator for DSP User Guide www.xilinx.com 223
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design

& XILINX.

22. Next, terminate the current debug session and relaunch another one by right-clicking
on the current application and select the Terminate and Relaunch submenu as shown

below.

M

.elf [linoe CIC4++ E
=@ %MD Target Debug Agent (2f<
»@ Thread [0] (Running)

pid mb-gdb (2/5/10 2:25 PM)
p CiiCo-Debug_Lab\SDK_Works

=l

o

&
L@ svstem.xml E2
Hardware Platform Spec

Design Information

Target FPGA)

Create

Original XPS Project Lo
Hardware Specification C:

<
Owerview | Source

.= Copy Stack Chrl+C
Find... Ctrl+F
[55]
b
7 Use Step Filers
»
8 Terminate Chrl+F2

< Terminate and Relaunch

23. Another nice feature in SDK is an ability to examine and override variables. This is
especially useful if you want to test for certain conditions of your C-code as well as
your System Generator model. For example, if you want to test the While-loop by

ur
1

overriding the

variable, right-click on the
to 16 (the last value).

0= Yarisbles 1 9 Breakpoints [i] ¥MD Console | ¥4 Registers | B, Modules =0
vk B | & =
Narne Value A
09+ dout_empty 0 Select All Chrl+A
(=)= walue 3 |5 Copy Yariables Chri+C
£
2 Disable

= B[82 cutlne 52

A o uparameters.h
o stdio.h
s pliface.h
ot b
o time.h
@ main(void) : int

, Cast To Type...

Wiew Mernory
Format 4
Eind... Chr+F

2. Change Value...

75 idd Watchpoint (CHC++)...
£ add Global Variables...

u
1

variable and change its current value

24. Click the Resume button and you should see “Done” printed out on the SDK console.

224

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Designing with Embedded Processors and Microcontrollers

Summary

The following are some of advantages of using Co-Debug between System Generator and
SDK:

¢ You can debug software running in MicroBlaze as you normally do (insert
breakpoints, single step, etc..) while observing how data is being transferred to/from
a System Generator design

® You can develop and debug hardware and software concurrently without having to
recompile the bitstream

¢ The System Generator Co-Debug circuit is automatically inserted into the XPS design

¢ When SDK is launched from System Generator, the SDK project is automatically setup
with the correct hardware platform

¢ SDK-System Generator-ModelSim tool integration is enabled. You can import HDL
code into System Generator, simulate it using ModelSim while co-debugging through
the improved System Generator and SDK integration

System Generator for DSP User Guide www.xilinx.com 225
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter : Hardware/Software Co-Design & XILINX.

226 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Chapter 3

Using Hardware Co-Simulation

Introduction

System Generator provides hardware co-simulation, making it possible to incorporate a
design running in an FPGA directly into a Simulink simulation. "Hardware Co-
Simulation" compilation targets automatically create a bitstream and associate it to a block.
When the design is simulated in Simulink, results for the compiled portion are calculated
in hardware. This allows the compiled portion to be tested in actual hardware and can
speed up simulation dramatically.

M-Code Access to Hardware Co-Simulation

It is possible to programmatically control the hardware created through the System
Generator hardware co-simulation flow using MATLAB M-code (M-Hwcosim). The M-
Hwcosim interfaces allow for MATLAB objects that correspond to the hardware to be
created in pure M-code, independent of the Simulink framework. These objects can then be
used to read and write data into hardware. This capability is useful for providing a
scripting interface to hardware co-simulation, allowing for the hardware to be used in a
scripted test-bench or deployed as hardware acceleration in M-code.

For more information of this subject, refer to the topic M-Code Access to Hardware Co-
Simulation in the section Programmatic Access.

Installing Your Hardware Board

The first step in performing hardware co-simulation is to install and setup your hardware
board. The following topics provide Specific installation and setup instructions for Xilinx
supported boards:

Ethernet-Based Hardware Co-Simulation
Installing an ML402 Board for Ethernet Hardware Co-Simulation
Installing an ML506 Board for Ethernet Hardware Co-Simulation
Installing an ML605 Board for Ethernet Hardware Co-Simulation
Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware Co-Simulation
Installing a Spartan-3A DSP 3400A Board for Ethernet Hardware Co-Simulation
Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation

Note: If installation instructions for your particular board are not provided here, please refer to the
installation instructions that come with your board Kit.

System Generator for DSP User Guide www.xilinx.com 227
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

JTAG-Based Hardware Co-Simulation
Installing an ML402 Board for JTAG Hardware Co-Simulation
Installing an ML605 Board for JTAG Hardware Co-Simulation
Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation

Third-Party Hardware Co-Simulation

As part of the Xilinx XtremeDSP™ Initiative, Xilinx works with distributors and many
OEMs to provide a variety of DSP prototyping and development boards. Please refer to the
following Xilinx web site page for more information on available board

http:/ /www.xilinx.com/products/boards_kits/index.htm

228 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Compiling a Model for Hardware Co-Simulation

Compiling a Model for Hardware Co-Simulation

Once your hardware board is installed, the starting point for hardware co-simulation is the
System Generator model or subsystem you would like to run in hardware. A model can be
co-simulated, provided it meets the requirements of the underlying hardware board. This
model must include a System Generator token; this block defines how the model should be
compiled into hardware. The first step in the flow is to open the System Generator token
dialog box and select a compilation type under Compilation.

For information on how to use the System Generator token, see Compiling and Simulating
Using the System Generator Token.

Choosing a Compilation Target

You may choose the hardware co-simulation board by selecting an appropriate
compilation type in the System Generator token dialog box. Hardware co-simulation
targets are organized under the Hardware Co-Simulation submenu in the Compilation

dialog box field.
Compilation :
HDL Netist settngs |
NGC Netlist

Par Bitstream

EDK Export Tool

Hardware Co-Simulation » ML402 4
¥ Timing and Power Analysis ML506 3
[xsT = MLS0S b
SPEM 3
[Create testbench —
Target directory : Spartan-3A4 DSP 1800A Starter Platform 3 Point4o-point Ethemet
I.a'neﬂist Spartan-3A DSP 3400A Development Platform » |
¥tremeDSP Development Kit]
[™ Create interface document New Compilation Target...

When a compilation target is selected, the fields on the System Generator token dialog box
are automatically configured with settings appropriate for the selected compilation target.
System Generator remembers the dialog box settings for each compilation target. These

settings are saved when a new target is selected, and restored when the target is recalled.

Invoking the Code Generator

The code generator is invoked by pressing the Generate button in the System Generator
token dialog box.

The code generator produces a FPGA configuration bitstream for your design that is
suitable for hardware co-simulation. System Generator not only generates the HDL and
netlist files for your model during the compilation process, but it also runs the downstream
tools necessary to produce an FPGA configuration file.

Note: A status dialog box (shown below) will appear after you press the Generate button. During
compilation, the status box provides a Cancel and Show Details button. Pressing the Cancel button
will stop compilation. Pressing the Show Details button exposes details about each phase of

System Generator for DSP User Guide www.xilinx.com 229
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation

& XILINX.

compilation as it is run. It is possible to hide the compilation details by pressing the Hide Details

button on the status dialog box.

@ Compilation status

= Ruming XFLOW

NGDEUILD Design Results Summary:
Mumber of errors: 1]
Munber of warnings: [
Writing NGD file "henone top poi.ngd™ ...

Writing NGDEUILD log f£ile "benone top pci.bld™...

HGDEUILD done.

Starting progran map

map -o benone_top_pci_map.ncd -intatyle xflow bhenone top_poi
.ngd

henone_top poi.pof

Using target part "ZvzZ000£ge76-47.

W

cancel | | Hoe Details

]

The configuration bitstream contains the hardware associated with your model, and also
contains additional interfacing logic that allows System Generator to communicate with
your design using a physical interface between the board and the PC. This logic includes a
memory map interface over which System Generator can read and write values to the
input and output ports on your design. It also includes any board-specific circuitry (e.g.,
DCMs, external component wiring) that is required for the target FPGA board to function

correctly.

Hardware Co-Simulation Blocks

System Generator automatically creates a new hardware co-simulation block once it has
finished compiling your design into an FPGA bitstream. A Simulink library is also created
in order to store the hardware co-simulation block. At this point, you can copy the block

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Hardware Co-Simulation Blocks

out of the library and use it in your System Generator design as you would other Simulink
and System Generator blocks.

=1L brary: macfir_cos... E| E| El

File Edt Wiew Format Help

OeES

13

E! macfir_cosim_ex

File Edit View Simulation Format Tools

=y == L,

Unlocked

Systam
Generalor

F80%: T=0.00 ode3

The hardware co-simulation block assumes the external interface of the model or
subsystem from which it is derived. The port names on the hardware co-simulation block
match the ports names on the original subsystem. The port types and rates also match the
original design.

== pldata A_in data_out Fix_12_8
s -
—.-UFX-'-‘ data_B_in
Bog g ctrin ctr_gut [SFEE2
Criginal
Subsystem
Fic 12 8 : o 137
——=—=Jp(data_A_in dats out Fix 12 8
B fl_’;i_l
Ci .
Boal o oot in atrl_gut| UFR A2
Criginal
Subsystemn
hweasim

Hardware co-simulation blocks are used in a Simulink design the same way other blocks
are used. During simulation, a hardware co-simulation block interacts with the underlying
FPGA board, automating tasks such as device configuration, data transfers, and clocking.
A hardware co-simulation block consumes and produces the same types of signals that

System Generator for DSP User Guide www.xilinx.com 231
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

other System Generator blocks use. When a value is written to one of the block's input
ports, the block sends the corresponding data to the appropriate location in hardware.
Similarly, the block retrieves data from hardware when there is an event on an output port.

Hardware co-simulation blocks may be driven by Xilinx fixed-point signal types, Simulink
fixed-point signal types, or Simulink doubles. Output ports assume a signal type that is
appropriate for the block they drive. If an output port connects to a System Generator
block, the output port produces a Xilinx fixed-point signal. Alternatively, the port
produces a Simulink data type when the port drives a Simulink block directly.

Note: When Simulink data types are used as the block signal type, quantization of the input data is
handled by rounding, and overflow is handled by saturation.

Like other System Generator blocks, hardware co-simulation blocks provide parameter
dialog boxes that allow them to be configured with different settings. The parameters that
a hardware co-simulation block provides depend on the FPGA board the block is
implemented for (i.e., different FPGA boards provide their own customized hardware co-
simulation blocks).

232

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Hardware Co-Simulation Clocking

Hardware Co-Simulation Clocking

Selecting the Target Clock Frequency

If you are using a Xilinx ML402 or ML506 board, System Generator allows you to choose a
clock frequency for the target design that is equal to or less than the system clock
frequency. The following table outlines the frequencies that are available:

System Clock Available
Board Interface .
Frequency Frequencies
Xilinx ML402 JTAG, 100 MHz 100 MHz
Point-to-point Ethernet, 66.7 MHz
Network-based Ethernet 50 MHz
33.3 MHz
Xilinx ML506 Point-to-point Ethernet, 200 MHz 100 MHz
Network-based Ethernet 66.7 MHz
50 MHz
33.3 MHz

As shown below, you set the target clock frequency at compilation time, by clicking the

Settings button on the System Generator token dialog box, then select the frequency in the
pulldown menu.

) System Generator: fir_example_mb

Compilation Clocking General

Compilation :
Ii""‘ LEDS (Point-to-point Ethernet)

Part
B BT EERERE]) Hordware Co Simulation Settings

[~ XFLOWI Options Files m
Synthesis tool :
| Implementation Flow (NGDBuild, MAP, PAR, TRACE):
i ! |
Configuration Flow (BitGen):
Target directory : I ﬂ
[metist

[™ Create interface document

[” Create testbench

Clock Freguency

50 MHz d The selected clock frequency is used to drive the single-stepping
and free-running clock in hardware co-simulation.
100 MHz

66,6667 MHz

Generate

Help
33.3333 MHz e

System Generator for DSP User Guide www.xilinx.com 233
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Clocking Modes

There are several ways in which a System Generator hardware co-simulation block can be
synchronized with its associated FPGA hardware. In single-step mode, the FPGA is in
effect clocked from Simulink, whereas in free-running clock mode, the FPGA runs off an
internal clock, and is sampled asynchronously when Simulink wakes up the hardware co-
simulation block.

Single-Step Clock

In single-step clock mode, the hardware is kept in lock step with the software simulation.
This is achieved by providing a single clock pulse (or some number of clock pulses if the
FPGA is over-clocked with respect to the input/output rates) to the hardware for each
simulation cycle. In this mode, the hardware co-simulation block is bit-true and cycle-true
to the original model.

Because the hardware co-simulation block is in effect producing the clock signal for the
FPGA hardware only when Simulink awakes it, the overhead associated with the rest of
the Simulink model's simulation, and the communication overhead (e.g. bus latency)
between Simulink and the FPGA board can significantly limit the performance achieved
by the hardware. As a general rule of thumb, as long as the amount of computation inside
the FPGA is significant with respect to the communication overhead (e.g. the amount of
logic is large, or the hardware is significantly over-clocked), the hardware will provide
significant simulation speed-up.

Free-Running Clock

In free-running clock mode, the hardware runs asynchronously relative to the software
simulation. Unlike the single-step clock mode, where Simulink effectively generates the
FPGA clock, in free-running mode, the hardware clock runs continuously inside the FPGA
itself.

In this mode, simulation is not bit and cycle true to the original model, because Simulink is
only sampling the internal state of the hardware at the times when Simulink awakes the
hardware co-simulation block. The FPGA port I/O is no longer synchronized with events
in Simulink. When an event occurs on a Simulink port, the value is either read from or
written to the corresponding port in hardware at that time. However, since an unknown
number of clock cycles have elapsed in hardware between port events, the current state of
the hardware cannot be reconciled to the original System Generator model. For many
streaming applications, this is in fact highly desirable, as it allows the FPGA to work at full
speed, synchronizing only periodically to Simulink.

In free-running mode, you must build explicit synchronization mechanisms into the
System Generator model. A simple example is a status register, exposed as an output port
on the hardware co-simulation block, which is set in hardware when a condition is met.
The rest of the System Generator model can poll the status register to determine the state of
the hardware.

Selecting the Clock Mode

Not every hardware board supports a free running clock. However, for those that do, the
parameters dialog box for the hardware co-simulation block provides a means to select the
desired clocking mode. You may change the co-simulation clocking mode before
simulation starts by selecting either the Single stepped or Free running radio button
under the Clocking etch box.

234

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Board-Specific I/0 Ports

€ _hweosim (XtremeDSP Development Kit ... E|E|E|

Basic Shared Memories

Clocking

Clock sounce:
(%) Sngle stepped () Free mnning

Intefacs
Card number | 1 first card found) |

Bus:

® pCl (O USB

Has combinational path

Bitstreamname | example bit

| ok || cenest || Heb | ey

Note: The clocking options available to a hardware co-simulation block depend on the FPGA board
being used (i.e., some boards may not support a free-running clock source, in which case it is not
available as a dialog box parameter).

Board-Specific I/0 Ports

FPGA boards often include a variety of on-board devices (e.g., external memory, analog to
digital converters, etc.) that the FPGA can communicate with. For a variety of reasons, it
may be useful to form connections to these components in your System Generator models,
and to use these components during hardware co-simulation. For example, if your board
includes external memory, you may want to define the control and interface logic to this
memory in your System Generator design, and use the physical memory during hardware
co-simulation.

You can interface to these types of components by including board-specific I/O ports in
your System Generator models. A board-specific port is a port that is wired to an FPGA
pad when the model is compiled for hardware co-simulation. Note that this type of port
differs from standard co-simulation ports that are controlled by a corresponding port on a
hardware co-simulation block.

A board-specific I/O port is implemented using special non-memory mapped gateway blocks
that tell System Generator to wire the signals to the appropriate FPGA pins when the
model is compiled into hardware. To connect a System Generator signal to a board-specific
port, connect the appropriate wire to the special gateway (in the same way as is done for a
traditional gateway).

Non-memory mapped gateways that are common to a specific device are often packaged
together in a Simulink subsystem or library. The XtremeDSP Development Kit, for
example, provides a library of external device interface subsystems, including analog to
digital converters, digital to analog converters, LEDs, and external memory. The interface
subsystems are constructed using Gateways that specify board-specific port connections.
These subsystems are treated like other System Generator subsystems during simulation
(i.e., they perform double precision to Xilinx fixed-type conversions). When System

System Generator for DSP User Guide www.xilinx.com 235
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Generator compiles the design into hardware, it connects the signals that are associated
with the Gateways to the appropriate external devices they signify in hardware.

=] Library: XtremeDSPKit_r4

Eile Edit View For Help
L=y = = BET
Xilinx Blocksetvg.2
(c) 2004-2008 Xilinx, Inc.
KiremeD3P Kit
Analog to Digital Converbers Digital to Analog Comerters
x«-nﬂm‘ Xa-wm
ADCH DACT
}(_mm xr.--ﬂiﬂ"
8qgr
' Yermemstn
data
LEL Flaznar External RAN
Ready 100%: Locked

I/O Ports in Hardware Co-simulation

A hardware co-simulation block does not include board-specific ports on its external
interface. This means that if a model includes a gateway that corresponds to a board-
specific port, the corresponding port is connected to the simulation model instead of the
actual hardware when the design is compiled for hardware co-sim. To leave the port
connected to a real port, use a non-memory mapped gateway instead. See the topic on non-
memory-mapped ports Supporting New Boards.

Ethernet Hardware Co-Simulation

System Generator provides hardware co-simulation interfaces that facilitate high-
throughput communication with an FPGA board over an Ethernet connection. These
interfaces eliminate the communication range limitation imposed by programming cable
solutions, while also offering superior bandwidth for real-time applications. By supporting
device configuration over Ethernet, there is no need for a separate programming cable.

Two flavors of Ethernet hardware co-simulation are supported by the tool. Point-to-point
Ethernet co-simulation provides a straightforward high-performance co-simulation
environment using a direct, point-to-point Ethernet connection between a PC and FPGA
board. Network-based Ethernet Co-Simulation allows communication with a remote
FPGA through the widely deployed IPv4 network infrastructure.

236

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Ethernet Hardware Co-Simulation

Point-to-Point Ethernet Hardware Co-Simulation

Point-to-point Ethernet Hardware Co-simulation provides a co-simulation interface using
a raw Ethernet connection. The raw Ethernet connection refers to a Layer 2 (a.k.a. Data-
Link Layer) Ethernet connection, between a supported FPGA development board and a
host PC, with no network routing equipment along the path. By taking the advantage of
the ubiquity and advancement of Ethernet technologies, the interface facilitates a
convenient and high-bandwidth co-simulation to an external FPGA device.

Interface Features

The interface supports 10/100/1000 Mbps half/full duplex modes. Jumbo Frame is also
supported on a Gigabit Ethernet, provided it is enabled by the underlying connection. For
FPGA device configuration, the interface supports either JTAG-based configuration over a
Xilinx Parallel Cable IV or a Xilinx Platform USB cable, or , for selected boards, Ethernet-
based configuration over the same Point-to-point Ethernet connection for co-simulation.

Note: This co-simulation interface utilizes an evaluation version of the Ethernet MAC core. Because
this is an evaluation version of the core, it will become dysfunctional after continuous, prolonged
operation (e.g., around 7 hours) in the target FPGA. Operation of the core will restart with a new
simulation. For more information about obtaining the full version of the core, please visit the product
page at http://www.xilinx.com/xInx/xebiz/designResources/ip_product_details.jsp?key=TEMAC.

Supported FPGA Development Boards

Development boards that support point-to-point ethernet hardware co-simulation are
listed in the topic Ethernet-Based Hardware Co-Simulation. Links to the appropriate board
installation instructions are also provided.

Configuring Co-Simulation Block Parameters

There are several block parameters specific to the Point-to-point Ethernet co-simulation
interface. The rest of this topic describes step-by-step how to configure the parameters of
the Point-to-point Ethernet co-simulation block. Refer to the topic Point-to-point Ethernet
Co-Simulation in the Xilinx Block section for details of all the block parameters.

1. Use the Basic tab to select the appropriate clock source for the co-simulation.

@ dsp48 firs_tb hwoosim {(Zilinx Point-te-point Ethernet Ha =

Basic IElhamE:l | Configurahon I Shared Memaries I Software |

Clocking

Clock souce: Select a Clock

(' Single stepped i+ Fies ILIANIFg

¥ Has combinational path

Bitztrearn filerarme Ihspd&_firs_th_c:w.hit

System Generator for DSP User Guide www.xilinx.com 237
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=TEMAC
http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

2. Use the Configuration tab to select the Configuration Method:

EB hwcosim (Xilinx Point-to-point Ethernet Ha — O] =|

Basic I Ethernet Configuration I Shared Memories I Scﬁ:warel

— Cable

Type I.ﬂ.utcu Detect ;l

Auto Detect

¥ilinx Parallel Cable IV
¥ilinx Platform USE
¥ilimx Point-to-point Ethernet
Plug- Custom

Spes

¢ For the Download cable panel, choose Point-to-point Ethernet.

¢ For JTAG-based download cables (Parallel Cable IV or Platform USB), change
the cable speed if the default value is not suitable for the cable in use.

¢ Change the Configuration timeout (ms) value only when necessary. The default
value should suffice in most cases. A larger value is needed when it takes a
considerable amount of time to re-establish a network connection with the FPGA
board after device configuration completes.

¢ If thereis a Video I/O daughter card attached to the ML402 board, select Video
I/0 Daughter Card (VIODC) from the Configuration profile pulldown menu

238 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Ethernet Hardware Co-Simulation

3. Use the Ethernet tab to configure the Ethernet Interface Settings:

Basic I Advanced

=

Type |Xilinx Platform USB

Cable I Shared Memories I Software I

Speed [12MHz x| Port [UsB21

| Blink Cable LED

Plug-in Parameters Ixilin:-u:ule LISB22

[T Share cable for concurrer

UsB21

o LSB21 frequency =12000000
LUSE24
USB25
USB26
UsB27
LISB2E8
LISE29
LUSE210
uUse211

hipScope Analyzer or EDE. XMD

From the Host interface panel, use the pulldown list to select the appropriate
network interface for co-simulation.

Note: The pulldown list only shows those Ethernet-compatible network interfaces installed
on the host, which support 10/100/1000 Mbps, and are currently enabled and attached to an
active Ethernet segment. If the target interface is not listed as expected, examine the
connection and click the Refresh button to update the list.

The information box beneath the pull-down list provides the details about the
selected interface. Examine the information to ensure the appropriate interface is
chosen, and adjust the network settings in the operating system when necessary.

4. Depending on which configuration method is chosen, the MAC address in the FPGA

interface panel may need to be changed.

a. For Point-to-point Ethernet-based configuration:

Observe the MAC address displayed on the LCD screen of the target board when the
configuration boot-loader is running. Change the FPGA MAC address in the co-
simulation block if the default value does not match the target board. Refer to Optional

Step to Set the Ethernet MAC Address and the IPv4 Address for details about

assigning the MAC address on a ML402 board.

@dspd-ﬂ_ﬁrs_tb hwcosim {(filinx Point-to-point Ethernet Hardweare C

Eazic | Etheret

Configuration I Shared Memones | S oftvears |

—Hazt interface

trerne Liigabit Ethernet Diveer [Micros

B roadcam

MAC address
Lirk, speed
tMasirum frame size

Conrechon name

00:12:3F:03:06: 8b
1000 Mbps

1514 byles

Local Area Connection

(Select an Interface

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 239

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Note: The MAC address must be specified using six pairs of two-digit hexadecimal number
separated by colons (for example, 00:0a:35:11:22:33).

Co-Simulating the Design

After setting the block parameters appropriately, you may begin co-simulation by pressing
the Simulink Start button. System Generator automates the device configuration process
and transfers the design under test (DUT) into the FPGA device for co-simulation. A dialog
box will be shown to describe the status of the process.

1. The final configuration file is first generated based on the input bitstream specified in
the block parameters.

L3¢ Sysgen status §| @l g|

Initializing Paint-to-paint Ethernel Hardware Co-simulation
Host: 00 0e:0c: 77 4d. df
FPGA; 00:0835:11:22.33
Status: Creating configuration ACE file

HHX

2. The final configuration file is then transferred to the target board using the selected
download cable, and used to configure the FPGA device. The progress of
configuration is shown in the dialog box when the configuration is performed over a
Point-to-point Ethernet connection.

& Sysgen status g@@

Initializing Point-ta-paint Ethernel Hardware Co-zimulation
T Host: 00:0e:0c: 77 4d:df
= FPGA: 00:0a35:11:22:33
o Status: Configuring FPGA device ... 30%

3. Upon the completion of device configuration, the co-simulation engine re-establishes
the connection to the target board, and starts co-simulating the design.

o] Sysgen status Zl E| El

Initializing Point-to-point Ethernel Hardware Co-zsimulation
Host: 00:0e: 0z 7740 df
FPGA: 000 3517:22:33

Statuz Re-establishing cormection

LHX

240

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Ethernet Hardware Co-Simulation

Known Issues

e If you encounter problems transmitting data over a point-to-point Ethernet
connection or experience instability issues, please disable the Hyper-Threading
option in the BIOS on an Intel board.

e [P fragmentation is not supported by the network-based Ethernet configuration.
Please consult with your network administrator or the user manual for the Ethernet
interface card to ensure that the connection established between the host and the
target FPGA board can handle a maximum transmission unit (MTU) size of at least
1300 bytes without fragmentation. The MTU size (or similarly maximum frame size
setting such as “maximum transfer size” or “jumbo frame size”) may be determined
or changed through the Ethernet interface settings.

Network-Based Ethernet Hardware Co-Simulation

Interface Features

The interface supports operations in 10/100/1000 Mbps half/full duplex modes. For
FPGA device configuration, the interface supports Ethernet-based configuration over the
same network connection for co-simulation. This means that a separate programming
cable (e.g., Parallel Cable IV) is not required.

Note: This co-simulation interface utilizes an evaluation version of the Ethernet MAC core. Because
this is an evaluation version of the core, it will become dysfunctional after continuous, prolonged
operation (e.g., around 7 hours) in the target FPGA. Operation of the core will restart with a new
simulation. For more information about obtaining the full version of the core, please visit the product
page at http://www.xilinx.com/xInx/xebiz/designResources/ip_product_details.jsp?key=TEMAC.

Supported FPGA Development Boards

The Xilinx ML402 and ML506 development board is currently supported for the network-
based Ethernet co-simulation.

Setup Procedures

1. Network-based Ethernet co-simulation performs device configuration over the
network configuration. Before using network configuration, you must ensure the IP
address, MAC address, and configuration server are properly setup on the System
ACE™ CompactFlash. Refer to the topic Optional Step to Set the Ethernet MAC
Address and the IPv4 Address for information on how to do this.

2. The target FPGA listens on the UDP port 9999. Please ensure the underlying network
does not block the associated traffic.

Known Issues

e [P fragmentation is not supported by the network-based Ethernet configuration.
Please consult with your network administrator or the user manual for the Ethernet
interface card to ensure that the connection established between the host and the
target FPGA board can handle a maximum transmission unit (MTU) size of at least
1300 bytes without fragmentation. The MTU size (or similarly maximum frame size
setting such as “maximum transfer size” or “jumbo frame size”) may be determined
or changed through the Ethernet interface settings.

System Generator for DSP User Guide www.xilinx.com 241
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=TEMAC

Chapter 3: Using Hardware Co-Simulation & XILINX.

Remote JTAG Cable Support in JTAG Co-Simulation

Starting with Release 12.2, JTAG Co-simulation supports a remote JTAG cable connection
via the CSE (ChipScope Engine) server (which is also being used with iMPACT software
and ChipScope Pro software). This allows you to run JTAG Co-simulation over a JTAG
cable that is connected to a board in a remote location.

Specifying the Cable Location

As shown in the figure below, the “Cable Location” option on the Cable tab of the JTAG
Co-simulation block is used to specify the location of the cable.

) _hwcosim (Xilinx ITAG Hardware Co-simulatic =10 %
Basic | Advenced Cable | SharedMemaries | Software |
Cable Ssttings

[Share cable for concurrent access with ChipScope Analyzer or EDK XMD

o corcel | Heb Apoly

If the Cable Location is set to Local, a local JTAG cable is used.

242 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Ethernet Hardware Co-Simulation

If the Cable Location is set to Remote CSE Server, you can specify a CSE server, in form of
a host name or an IP address, followed by an optional port number:

<host name or IP address> [:<port numbers>]

If you omit the port number, the default port number is used by the CSE server.

Q_hwcu-sim (Xilinx JTAG Hardware Co-simulatio _._LDJiI
Basic | Advanced Cable | SharedMemories | Software |

—Cable Settings

Type | Auto Detect =

speed /A 7] Port]rja <]

Plug-in Parameters |

Cable Location

" Local " Remote CSE Server [mvsewcf.-suunz

[Share cable for concurrent access with ChipScope Analyzer or EDK XMD

oK Lancel Help Apply

Starting Up a CSE server

Before starting JTAG co-simulation, you need to start the CSE server on the remote
machine that connects to the target board with a JTAG cable. The CSE server can be started
by simply running the CSE server executable located in the ISE installation:

Windows 32-bit: <ISE_tree>\bin\nt\cse server.exe

Windows 64-bit: <ISE tree>\bin\nté64\cse server.exe
Linux 32-bit: <ISE_tree>/bin/lin/cse_ server

Linux 64-bit: <ISE_tree>/bin/liné4/cse_server

cse_server starts a CSE server with the default port number.

cse_server -port <port numbers startsa CSE server with the given port number.

System Generator for DSP User Guide www.xilinx.com 243

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Shared Memory Support

System Generator's hardware co-simulation interfaces allow shared memory blocks and
shared memory block derivatives (e.g., Shared FIFO and Shared Registers) to be compiled
and co-simulated in FPGA hardware. These interfaces make it possible for hardware-based
shared memory resources to map transparently to common address spaces on the host PC.
When applied to System Generator co-simulation hardware, shared memories can help
facilitate high-speed data transfers between the host PC and FPGA, and further bolster the
tool's real-time hardware co-simulation capabilities. This topic describes how shared
memories can be used within the context of System Generator's hardware co-simulation
framework.

Compiling Shared Memories for =~ Describes how to compile a System Generator
Hardware Co-Simulation design for hardware co-simulation when the
design contains shared memory blocks.

Co-Simulating Unprotected Describes how shared memory blocks
Shared Memories configured with unprotected access mode
behave during hardware co-simulation.

Co-Simulating Lockable Shared ~ Describes how shared memory blocks
Memories configured with lockable access mode behave
during hardware co-simulation.

Co-Simulating Shared Registers ~ Describes how to compile a System Generator
design for hardware co-simulation when the
design contains shared Registers.

Co-Simulating Shared FIFOs Describes how to compile a System Generator
design for hardware co-simulation when the
design contains shared FIFOs.

Restrictions on Shared Memories Lists the restrictions that are imposed when
using shared memory blocks with hardware co-
simulation.

244 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Shared Memory Support

Compiling Shared Memories for Hardware Co-Simulation

System Generator allows shared memory and shared memory derivative (e.g., shared
FIFO and shared register) blocks to be compiled for hardware co-simulation. Designs that
include shared memories are compiled for hardware co-simulation the same way
traditional System Generator designs are compiled — by selecting a compilation target and
pressing the Generate button on the System Generator dialog box. A design containing
shared memory blocks may be compiled for hardware co-simulation provided the
requirements described in the topic Restrictions on Shared Memories are satisfied.

When a shared memory is compiled for hardware co-simulation, it is implemented in
hardware either by a core or HDL component. The table below shows how shared memory
blocks are mapped to hardware implementations

To Block From Block Hardware Implementation
Shared Memory | Shared Memory Dual Port Block Memory
To FIFO To FIFO Fifo Generator
To Register To Register synth_reg_w_init.(vhd,v)

There are two ways in which shared memories are compiled for hardware co-simulation.
The type of compilation depends on whether the shared memory name is unique in the
design, or if the shared memory has a partner who shares the same name. The following
topics describe the two types of compilation behavior.

Single Shared Memory Compilation

A shared memory block is considered "single" if it has a unique name within a design.
When a single shared memory is compiled for hardware co-simulation, System Generator
builds the other half of the memory and automatically wires it into the resulting netlist.
Additional interfacing logic is attached to the memory that allows it to communicate with
the PC. When you co-simulate the shared memory, one half of the memory is used by the
logic in your System Generator design. The other half communicates with the PC
interfacing logic as shown in the figure below. In this manner, it is possible to communicate
with the shared memory embedded inside the FPGA while a simulation is running,.

' N
addr Host PCto FPGA > System Generaor for ISP
Intefacing Logc * C Program
. L MATLAE Program
din dout

System Generaor Host PC

we

Shared Memory
e "Bar 3 DOuzd Port Memosy

FPGA Fabric

The shared memory hardware and interface logic are completely encapsulated by the
hardware co-simulation block that is generated for the design. By co-simulating a
hardware co-simulation block that contains a shared memory; it is possible for your design
logic and host PC software to share a common address space on the FPGA.

System Generator for DSP User Guide www.xilinx.com 245
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Note: The name of the hardware shared memory is the same as the shared memory name used by
the original shared memory block. For example, if a shared memory block uses "my_memory," the
hardware implementation of the block can be accessed using the "my_memory" name.

All shared memories embedded inside the FPGA are automatically created and initialized
before the start of a simulation by their respective co-simulation blocks. This means that
any other shared memory objects that wish to access the hardware shared memory must
specify Ownership and initialization parameter as Owned and initialized elsewhere.
Doing so causes the software-based shared memories to attach automatically to the shared
memories that reside inside the FPGA.

Compiling Shared Memory Pairs

It is also possible to compile a shared memory pair (i.e., two shared memories that specify
the same name) for hardware co-simulation. In this case, the two shared memory halves
are merged into a single hardware implementation during compilation. Unlike single
shared memories, both sides of a shared memory pair connect to System Generator user
design logic. For example, the figure below shows the hardware implementation for a To /
From FIFO shared memory pair.

dats_in full

we full

To FIFO
=< "Bar >

din full

System . WI_en wr_data_count . SYStem
Generator Senerator
Design Design
Logic empty . Logic

dout
rd_data_count .
FIFO Core
FPGA Fabric

dout
e Sefull
empty

From FIFO
€< Bar =»

Note that because both sides of the shared memory connect to user design logic, it is not
possible to communicate with these shared memories directly from the host PC.

246

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Shared Memory Support

Viewing Shared Memory Information

Hardware co-simulation blocks allow you to view information about the shared memories
that were compiled as part of the design. A hardware co-simulation block that contains
shared memories will have an enabled Shared Memories tab in the block configuration
dialog box shown below. Clicking on this tab exposes a table of information about each
shared memory in the design.

£ shared_mem_tb hwcosim (XtremeDSP D... |Z||E|g|

Basic | Shared Memories

=< Alaska>:
&1 Depth: 511
&1 Mumber of Bits: 5
&1 Type: To FIFD
<< Oregon >
Depth: 256
&1 Mumber of Bits: 8
& Apcess Protection: Unprotected
<< Virginia's>
&l Depth: 1
&
Al

Bl

&1 MNumber of Bits: 5
&l Type: To Register

[ok [ceeel J[B J[mow |

The shared memory information table describes the type, bit width, and depth of each
shared memory in the design. For Shared Memory blocks, it also specifies the Access
Protection mode. Clicking on the [+] or [-] symbol next to the shared memory icon expands
or collapses the shared memory table, respectively.

The icons associated with each shared memory type are shown in the table below.

Memory Type lcon

Shared Memory EH|

Shared FIFO]

Shared Register E

Co-Simulating Unprotected Shared Memories

Unprotected shared memory blocks may be written to or read from at any time — this type
of memory has no notion of mutually exclusive access. Data transfers to and from an
unprotected hardware shared memory occur a single-word at a time, unlike the high-
speed data transfer mode used by lockable shared memories. To ensure data coherency
between software and hardware, a single image of the shared memory data is shared
between hardware and software. This image is stored in the FPGA using dual port
memory. System Generator allows both hardware design logic and other software-based
shared memory objects on the host PC to access the shared memory data concurrently.

System Generator for DSP User Guide www.xilinx.com 247
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

When software shared memory objects read or write data to the shared memory, a proxy
seamlessly handles communication with the hardware memory resource.

The following figure shows an example of unprotected shared memory implemented in
the FPGA that is communicating with three shared memory objects running on the host
PC. In this example, the software shared memory objects access the hardware shared
memory by specifying the same shared memory name, my_mem. From the perspective of
the software shared memories, the implementation of the shared memory resource is
irrelevant; the hardware shared memory is treated as any another shared memory object.
Read and writes to the shared memory are handled by the shared memory APIL

Note: Not all shared memory objects need to be created or executed in the Simulink environment.
The C++ application in the figure below is just one example of an external application that may
communicate with the hardware shared memory data using the shared memory API.

FFPGA Fabric
Shared
lemary
‘my _mem"
b
¥
L
Shared ¥ Cs
Memory Shared Pragram
Black Mermary
Block ‘my_mem'
my_mem*
'ty _mem’
Host PC

Co-Simulating Lockable Shared Memories

In lockable access mode, the System Generator co-simulation hardware must acquire lock
over the shared memory object before it may access its contents. When the hardware
acquires (releases) lock of the shared memory, the memory contents are transferred to
(from) the FPGA using a high-speed data transfer. Using this methodology, it is possible to
implement System Generator hardware co-simulation designs with high memory
bandwidth requirements. For more information on how to do this, refer to the tutorial
entitled Real-Time Signal Processing using Hardware Co-Simulation.

Unlike unprotected shared memories, two images of the shared memory data are used
when a lockable shared memory is co-simulated. One memory image is stored using dual
port memory in the FPGA. This image is accessed by the System Generator hardware co-
simulation design and co-simulation interfacing logic. The other image is implemented as
a shared memory object on the host PC. This software shared memory image is accessed by
any software shared memory objects used in a design.

In lockable mode, a software process or hardware circuit that wishes to access the shared
memory must first obtain the lock. If the hardware has lock of the memory, no software
objects may access the memory contents. Likewise, if a software object controls the
memory, the hardware cannot read or write to the memory. Note that lockable hardware

248

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Shared Memory Support

shared memories include additional logic to handle the mutual exclusion. The interaction
between hardware and software lockable shared memories is shown in the figure below: .

FPGAFahric
FPGA
Shared
e mary
Image
rr" \:I“V.a
- k
r
1
Shared ! Shared
Mermory Softvare Mermory
Blaock Shared Blaock
M mary =
Image '
LOCK AEE
MODIFIABLE
HostPC

The red circle in the figure above represents a lock token. This token may be passed to any
shared memory object, regardless of whether it is implemented in hardware or software.
The dashed circle represents lock placeholders and signifies that lock can be passed to the
block it is associated with. The diamond in the figure above represents a modifiable token.
This token illustrates that when hardware has lock of the memory, the hardware shared
memory image may be modified. Likewise, when a software shared memory object has

lock, the software shared memory image may be modified.

Having two shared memory images requires synchronization between software and
hardware to ensure the images are coherent. This synchronization is accomplished by
transferring the memory image between software and hardware upon lock transfer.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

249

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

System Generator performs high speed data transfers between the host PC and FPGA. The
semantics associated with these transactions are shown in the figure below. .

FPGAFatric

FPGA
Shared
e mary
; Image

Shared
Software ternory
Shared Block

LOCH

MODIFIABELE
HostPC

Co-Simulating Shared Registers

A To Register, From Register or shared register pair may be generated and co-simulated in
FPGA hardware. Here and throughout this topic, a shared register pair is defined as a To
Register block and From Register block that specify the same name (e.g., Bar'). In
hardware, a shared register is implemented using a synthesizable register component (for
VHDL) or a module (for Verilog). This topic explains how single shared registers and
shared register pairs behave during hardware co-simulation.

When a design that includes a shared register pair is compiled for hardware co-simulation,
the pair is replaced by a single register instance. Both sides of the register attach to user
design logic; that is, logic that originated from the original System Generator model.
Unlike designs compiled using the Multiple Subsystem Generator block, all ports on the
hardware register attach to signals in the same clock domain. In this case, control of the
register is not shared between the PC and FPGA hardware since all register ports are
attached to user design logic. Compiling a shared register pair into hardware is equivalent
to compiling a System Generator Register or Delay block.

Compiling a single To Register or From Register block for hardware co-simulation results
in a different type of implementation. A single register is still created to replace the To or
From Register block. Only in this case, the register connects to both the PC interface and
FPGA logic. The side of the register in the original model remains connected to user design
logic. The other side of the register attaches to data and control ports that interface with the
PC.

For example, in the following figure, when a From Register block is compiled for hardware
co-simulation, the dout register port remains attached to the user design. The din, ce, and
clk register ports attach to control and data ports that interface with the PC. In this way, it

250 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Shared Memory Support

is possible for the PC to write to the register using System Generator's hardware co-
simulation interfaces.

] System
e din .
HostPC 3] ce S
ok -
e Logic
Register

FPGA Fabric

When a To Register block is compiled for hardware co-simulation, as shown in the figure
below, the input ports are wired to user logic while the output port is wired to PC interface
logic. You may access a shared register during hardware co-simulation using the other half
of the shared register (i.e., using a To or From Register block), a C program or executable
(System Generator API), or a MATLAB program.

v

E;!ilstem - din dout
Generator .

Design

Logic

. Hast PC
ok

Register

FPGA Fabric

For designs that use hardware co-simulation, shared register pairs are typically distributed
between software and FPGA hardware. In other words, one half of the pair is implemented
in the FPGA while the other half is simulated in software using a To or From Register
block. When data is written to a software To Register block, the hardware register is
updated to with the same data. Similarly, when data is written into the hardware register,
the same data is read by the From Register software block. A software shared register may
connect to a hardware shared register simply by specifying the name of the shared register
as it was compiled for hardware co-simulation.

Note: You may find the names of all shared memories embedded inside an FPGA co-simulation
design by viewing the Shared Memories tab on a hardware co-simulation block.

When a software / hardware shared memory pair is co-simulated, System Generator
transparently manages the interaction between the PC and FPGA hardware. This means
that a shared register pair simulated in software should behave the same as a shared
register pair distributed between the PC and FPGA hardware.

Co-Simulating Shared FIFOs

A To FIFO, From FIFO or shared FIFO pair may be generated and co-simulated in hardware.
Here and throughout this topic, a shared FIFO pair is defined as a To FIFO block and From
FIFO block that specify the same name (e.g., 'Bar'). In hardware, a shared FIFO is
implemented using the FIFO Generator core. The core is configured to use independent
(asynchronous) clocks, and block memory for data storage. This topic explains why co-
simulating shared FIFOs is useful, and also how these blocks behave in hardware.

System Generator for DSP User Guide www.xilinx.com 251
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Asynchronous FIFOs are typically used in multi-clock applications to safely cross clock
domain boundaries. When a Free-Running Clock mode is used for hardware co-
simulation, the FPGA operates asynchronously relative to the Simulink simulation. That s,
the FPGA is not kept in lockstep with the simulation. Using the Free-Running Clock mode
effectively establishes two clock domains: the Simulink simulation clock domain and the
FPGA free-running clock domain. In these designs, Shared FIFOs provide a reliable and
safe way to transfer data between the host PC and FPGA board.

Shared FIFOs may also be used to support burst transfers during co-simulation. It is
possible to create vectors or frames of data, and transfer the data to the FPGA in a single
transaction with the hardware. These interfaces can be used to further accelerate
simulation speeds beyond what is typically possible with hardware co-simulation. For
more information on how this is accomplished, refer to the topic Frame-Based Acceleration
using Hardware Co-Simulation.

When a shared FIFO pair is generated for co-simulation, a single asynchronous FIFO core
replaces the two software shared FIFO blocks. As shown in the figure below, the read /
write FIFO sides are attached to user design logic (i.e., logic derived from the original
System Generator model) that attached to the From FIFO and To FIFO blocks. Because both
FIFO sides attach to user logic in hardware, the PC does not share control of the FIFO with
the design. Instead, the FIFO behavior is similar to a System Generator design that
includes a traditional FIFO block.

rd_en

rd_ck

FIFQ Imglemerntation

FPGA Fabric

Note that even though the FIFO exposes independent clock ports, the same co-simulation
clock drives both ports when a FIFO pair is compiled. This is different from compiling a
shared FIFO pair using the Multiple Subsystem Generator block, where the clocks are from
distinct clock domains.

Single shared FIFO blocks are treated differently than shared FIFO pairs. A single To FIFO
or From FIFO block is replaced by an asynchronous FIFO core when it is compiled for
hardware co-simulation. One side of the FIFO (i.e., the unused shared FIFO half in System
Generator) is connected to PC interface logic. The other side is connected to user design
logic that attached to the original To or From FIFO block. In this manner, control over the
FIFO is distributed between the PC and FPGA design.

As shown in the following figure, when a To FIFO block is compiled for hardware co-
simulation, the write side of the FIFO is connected to the same logic that attached to To

252 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Shared Memory Support

FIFO block in user design. The read side of the FIFO is connected to PC interface logic that
allows the PC to read data from the FIFO during simulation.

P * Host PC

FIFC Implementation

FPGA Fabric

In the figure below, the opposite wiring approach is used when a From FIFO block is
compiled for hardware co-simulation. In this case, the write side of the FIFO is connected
to PC interface logic, while the read side is connected to the user design logic. The host PC
writes data into the FIFO and the design logic may read data from the FIFO.

Lp din full * J
o F_ER

vk wr_dats_sourt - Host PC

empty
dont
rd_sk re_data_court

Generatne

L FIFO Implemertation

From Side

FPGA Fabric

For designs that use hardware co-simulation, shared FIFO pairs are typically distributed
between software and FPGA hardware. In other words, one half of the pair is implemented
in the FPGA while the other half is simulated in software using a To or From FIFO block.
Together, the software and hardware portions form a fully functional asynchronous FIFO.
When a software / hardware shared FIFO pair is co-simulated, System Generator
transparently manages the necessary transactions between the PC and FPGA hardware.

When data is written to a software To FIFO block during simulation, the same data is
written to the FIFO in hardware. The design in hardware may then retrieve this data by
reading from the FIFO. Similarly, when data is written into the hardware FIFO by design
logic, the data may be read by the From FIFO software block. Note that the empty, full, read
and write count ports on the shared FIFO blocks pessimistically reflect the state of the
hardware FIFO counterpart. A software shared FIFO may connect to a hardware shared
FIFO simply by specifying the name of the shared FIFO as it was compiled for hardware
co-simulation.

System Generator for DSP User Guide www.xilinx.com 253
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Note: You may find the names of all shared memories embedded inside an FPGA co-simulation
design by viewing the Shared Memories tab on a hardware co-simulation block.

Restrictions on Shared Memories

The following restrictions apply to System Generator designs that use shared memory,
register, or FIFO blocks in conjunction with hardware co-simulation:

e The access protection mode of a shared memory may not be modified once it has been
compiled for hardware co-simulation.

e Shared memory address port widths are limited to 24-bits (or less), allowing an
address space of 16,777,216 words;

e Shared memory, register, and FIFO data port widths are currently limited to 32-bits or
less.

e Shared memories and FIFOs are implemented in hardware using block memories;
neither distributed nor external memory implementations are currently supported.

¢ No more than two shared memories with the same shared memory name may be
compiled for hardware co-simulation.

¢ Two or more hardware co-simulation blocks that have shared memory names in
common may not concurrently be used in the same design.

Specifying Xilinx Tool Flow Settings

When a design is compiled for System Generator hardware co-simulation, the command
line tool, XFLOW, is used to implement and configure your design for the selected FPGA
board. XFLOW defines various flows that determine the sequence of programs that should
be run on your design during compilation. There are typically multiple flows that must be
run in order to achieve the desired output results, which in the case of hardware co-
simulation targets, is a configuration bitstream.

System Generator uses two flows, implementation and configuration, in order to produce a
configuration bitstream. The implementation flow is responsible for compiling the
synthesis tool netlist output (e.g., EDIF or NGC) into a placed and routed NCD file. To
accomplish this, it runs the Xilinx tools NGDBuild, MAP, and PAR. The implementation
flow can also execute TRACE (for timing analysis purposes), although this program is
typically omitted in order to expedite the compilation process. The configuration flow runs
the tools necessary to create an FPGA bitstream, using the fully elaborated NCD file as
input.

The implementation and configuration flow types have separate XFLOW options files
associated with them. An XFLOW options file declares the programs that should be run for
a particular flow, and defines the command line options that are used by these tools. Each
hardware co-simulation compilation target provides options files that define the default
configuration options for these tools. Sometimes you may want to use options files that use
settings that differ (e.g., to specify a higher placer effort level in PAR) from the default
options provided by the target. In this case, you may create your own options files, or edit
the default options files to include your desired settings.

254

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Specifying Xilinx Tool Flow Settings

The Hardware Co-Simulation Settings dialog box, shown below, allows you to specify
options files other than the default options files provided by the compilation target.

} Hardware Co-Simulation Settings Qlﬁlgl

— XFLCAYW Options File
Implementation Flowe (MGDBuild, MAP, PAR, TRACE]) .
o dilireccilitiddat s bhakanced opt =

Configuration Flowe (BitGen) :
cilinilineclatabitgen.opt =

[Ok] [Cancel]I_ Help]

Parameters available on the Hardware Co-Simulation Settings GUI are:

e Implementation Flow: Specifies the options file that is used by the implement flow
type. By default, System Generator will use the implement options file that is
specified by the compilation target.

¢ Configuration Flow: Specifies the options file that is used by the config flow type. By
default, System Generator will use the config options file that is specified by the
compilation target.

The Xilinx ISE® software includes several example XFLOW options files. From the base
directory of your Xilinx ISE software tree, these files are located under the directory
xilinx\data. Three commonly used implementation options files include:

e Dbalanced.opt
e fast runtime.opt
e high effort.opt

Note: l|tis possible to define options files that may cause errors in the System Generator hardware
co-simulation flow. As a result, it is typically a good idea to make backup copies of the default options
files before modifying them. In addition, the configuration options file should be edited with caution, as
most FPGA hardware boards have specific configuration parameter requirements.

System Generator for DSP User Guide www.xilinx.com 255
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

With the tremendous growth in programmable device size and computational power,
lengthy simulation times have become an expected, yet undesirable part of life for most
engineers. Depending on the design size and complexity, the required simulation time can
be quite large, sometimes on the order of days to run to completion. This problem is
exacerbated by the fact that most systems must be simulated many times before the design
is considered functional and ready for deployment. Fortunately, System Generator for DSP
provides hardware co-simulation interfaces that allow you to dramatically accelerate
simulation speeds of your FPGA designs.

There are several factors that influence exactly how much acceleration can be gained by
using hardware co-simulation. These considerations include the size of the design, the
number of ports on the model, and the hardware over-sampling rate. Under normal
operation, the PC communicates with the FPGA during each Simulink simulation cycle.
These software / hardware transactions often involve significant overhead and can end up
being the limiting factor in simulation performance. Also of importance is the co-
simulation interface being used. Some interfaces (e.g., PCI) are faster than others (e.g.,
JTAG). For a reasonably large design, the typical simulation is accelerated by an order of
magnitude when co-simulated in hardware.

Keeping the above points in mind, there are ways to further bolster simulation
performance. Remember that every time the PC interacts with hardware, there is an
overhead cost that impacts simulation performance. One of the ways the number of FPGA
transactions can be mitigated is by utilizing Simulink vector and frame signal types. Here
and throughout the rest of this tutorial, FPGA transactions involving Simulink vector and
frame signals as simply referred to as vector transfers. Thisidea is straightforward —
bundle as many input data samples together as possible and have the FPGA process the
data in a single transaction. Fewer transactions with the FPGA results in better simulation
performance.

In this tutorial, Simulink vector and frame signals are used to increase simulation
performance beyond what is traditionally possible with hardware co-simulation. A step-
by-step example filter design is presented to help illustrate these concepts.

Before diving into the details, it is worth exploring exactly what you are trying to
accomplish from a high-level perspective. In summary, you will do the following during a
Simulink simulation cycle:

o Buffer a series of scalar input data values into a Simulink vector;
e Transfer the vector data to a buffer residing on the FPGA using a burst transfer;

e Use the FPGA, in free-running clock mode, to sequentially process the entire input
buffer;

o Use the FPGA to write the data into an output buffer;

e Transfer the contents of the output buffer back into Simulink and reconstruct the data
as a Simulink vector;

e Unbuffer the vector into a series of output scalar values.

Shared Memories

Before a System Generator design can support vector transfers, it must be augmented with
appropriate input and output buffers. In hardware, these buffers are implemented using
internal memory (e.g., BRAMs) and are used to store vectors of simulation data that are
written to and read from the FPGA by the PC. This means that the maximum size of the

256

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

buffers is limited by the amount of internal memory available on the target device. In
System Generator, shared memory blocks provide interfaces that implement such buffers.

A question that quickly comes to mind is why not use standard FIFO or memory blocks?
The buffers required for hardware co-simulation differ from traditional FIFOs and
memories in that they must be controllable by both the PC and FPGA user design logic.
The standard FIFO and memory blocks provided by System Generator can only interface
with user design logic.

There are two types of shared memories that provide this control: lockable shared
memories and shared FIFOs. These blocks provide different buffering styles; each with
their own handshaking protocols that determine when and how burst transactions with
the FPGA occur. In this tutorial, primary attention is focused on shared FIFO buffers. For
an example on how to use lockable shared memories, please refer to the tutorial entitled
Real-Time Signal Processing using Hardware Co-Simulation. You may find the lockable
shared memory and FIFO blocks in the Shared Memory library of the Xilinx Blockset.

addr
dog dats_in - %full oo
din
s 26full
W
wWe full)
grant SE
req
To FIFO From FIFO
Shars Bz B :

Because shared FIFOs play a central role in enabling vector transfers, it is worth a brief
aside to discuss their behavior. A shared FIFO pair is comprised of a To FIFO block and a
From FIFO block that specify the same name (e.g., Bar in the figure above). The To FIFO
block provides the "write side" control signals, while the From FIFO block provides the
"read side" control signals. When used together, a shared FIFO pair is conceptually the
same thing as a single FIFO — only the control signals for the two sides are graphically
disjoint. This means that a shared FIFO pair shares the same FIFO memory space. For
example, if you write data into a To FIFO block, you may retrieve the same data by reading
from the From FIFO block. The connection between these two blocks is implicit; shared
FIFOs are associated with one another by name and not by explicit Simulink wires.

Shared FIFOs and shared memories in general may be compiled for hardware co-
simulation. Note that although this tutorial touches briefly on how shared FIFOs are co-
simulated, it is useful to refer to the topic titled Co-Simulating Shared FIFOs for more in-
depth information. When one-half of a shared FIFO block is compiled for hardware co-
simulation, a full FIFO block is embedded in the FPGA using the FIFO Generator core. One
side of the FIFO connects to user design logic (i.e., the System Generator logic that
connected to the shared FIFO block). The other half connects to interface logic that allows
it to be controlled by the PC. This side of the FIFO may be controlled by other System
Generator software model logic (e.g., the half of the shared FIFO), by a C program or
software executable, or by a MATLAB program. By compiling shared FIFOs for hardware

System Generator for DSP User Guide www.xilinx.com 257
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

co-simulation, you create embedded FIFO-style buffers in the FPGA that can be controlled
directly by a PC.

' ™
-
System Generator
L C Program
din fu >
MATLAR Program
User wren wr_dat count >
Design »
Logic emply Host PC
™ rd_en dout
d_data_count —‘
FPGA Fabric
. /

There are several ways to communicate with a shared FIFO that is embedded inside the
FPGA. The most common approach is to include the other half of the shared FIFO in the
System Generator design. It is also possible to communicate with the shared FIFO using a
C program or MATLAB program. System Generator provides additional blocks that
support vector transfers to and from the FIFO. These blocks will be touched on later in the
tutorial as they play a key role in supporting burst transfers to and from the FPGA.

Adding Buffers to a Design

Having gained an understanding of how shared FIFOs work in hardware, you will now
turn you attention towards building designs that can utilize these buffers for high-speed
vector processing in the FPGA.

Consider the scenario in which you have an FPGA data path that you would like to
accelerate using vector transfers. You need to include input buffer storage in the FPGA that
can store data input samples that are written by the PC. An output buffer is also required
so that the processed data values can be stored while the FPGA waits for the PC to retrieve
them. With these requirements in mind, a From FIFO block is used to implement the input
data buffer and a To FIFO block is used to implement the output data buffer. In the model
shown below, data is written into the data path as soon as it shows up in the input FIFO.
Note that the data path block contains new data (nd) and data valid (vld) flow control
ports. These ports support a simple flow control scheme that determines when new data
enters and valid data leaves the data path. The nd signal is asserted whenever there is data

258

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

available in the input FIFO. Conversely, data is written into the output FIFO whenever
valid data is present on the data path.

dout

= Sefull

- din dout o __peldata_in 9%full

.y nd wid - -—fe{ e fuII

empty

Frorn FIFO Ta FIFC

cc "CA 3> Insert Data Path <€ VA =3
Assert

To gain a better understanding of how the Shared FIFOs are used, you will now take a look
at an example design that uses vector transfers to accelerate a MAC filter design.

1. From the MATLAB console, change directory to
<ISE Design Suite tree>/sysgen/examples/shared memory/hardware
cosim/frame_ acc.

2. Openmacfir sw w_fifos.mdl from the MATLAB console.

Frame-based Acceleration using Hardware Co-simulation

data_ira@fuu Ea
dout Scope
=] Safull

we full
Slider emply
Gain hw_cosim
To FIFO From FIFO
< TA' oo o WA oa i
Syslem

Generalor
The example design implements a 32-tap MAC FIR filter that removes additive white noise
from a sinusoid input source. The amount of white noise can be adjusted interactively by
moving the Slider Gain control bar before or during simulation. An output scope compares
the filtered output data against the unfiltered input data. The MAC filter itself is contained
inside a subsystem named hw_cosim. This subsystem contains all of the logic that will be

System Generator for DSP User Guide www.xilinx.com 259
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

compiled into the FPGA for hardware co-simulation. You consider everything else in the
design (i.e., all blocks in the top-level) as the design test bench.

E! macfir_ sw_w_fifos/hw_cosim ~
File Edit View Simulation Format Tools Help
D & | & B =2y = | |[Nomal
dout
i | S L g ciata_in %full
a5 32 tap
= % fuII Nl
not | —{we fuII
empty
Ermm FIFD n-lap To FIFD
o TA' wn MAC FIR Filber e WA
Assart (it
iA
Syzlam
Genaralor
Ready [100% | | lode3 i

Pushing into the hw_cosim subsystem, you have an n-tap MAC FIR Filter block that
implements the design data path. Wrapping the filter are From FIFO and To FIFO blocks
that provide the input and output buffers, respectively. The MAC filter in the example
design is a modified version of the n-tap MAC filter available in the System Generator DSP
Reference Blockset library. In the example, the filter is modified to include valid in and
valid out ports in order to support the FIFO flow control scheme.

In total, there are four shared memory blocks in the design that define the CA and VA
shared FIFO pairs. In truth, you only need the shared FIFO blocks contained inside the
hw_cosim subsystem to successfully compile the design for hardware co-simulation.
Because you would like to simulate the complete design, including FPGA hardware, you
include a CA To FIFO block and VA From FIFO block in the test bench logic. These shared
FIFO blocks are responsible for writing and reading test data from the shared FIFOs in the
hw_cosim subsystem.

Unfiltered data from the din Gateway In block is written into the CA To FIFO block. At this
point, the CA From FIFO block in the hw_cosim subsystem reads data from the FIFO and
writes it into the MAC filter. The MAC filter in turn processes the data and writes it into the
output buffer, represented by the VA To FIFO block. Lastly, the VA From FIFO block in the
top-level reads the data and sends it to the Scope block for visualization.

For this example, you have chosen a maximum buffer size of 4K. This parameter is set by
specifying 4K for the Depth parameter on the CA From FIFO and VA To FIFO block dialog
boxes. Note that because shared FIFOs are implemented using asynchronous FIFO

260

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Frame-Based Acceleration using Hardware Co-Simulation

Generator cores, the actual depth of the hardware FIFO is n-1 words, where n is the depth
specified on the dialog box.

€ From FIFO (Xilinx Shared Memory Base... Z|®

Firgt-in-firg-out [FIFO) block that reads FIFO data from ghared memony
storage.

Baszic | Output Type | Advanced Implemment ation
Shared memormy name |'C.f3«'
Dwnerghip:

= Locally awned (O Dwned sleswhers

Oest
Bitz of precizion to uze for full port

Optional Portz

[Provide asyrchronous reset port

I QK. l [Cancel l ’ Help] ’ Apply l

You will now have a chance to simulate the design to see how fast it runs in software.

3. Press the Simulink Start button to simulate the design in software.

4. Record the time required to simulate the design for 10000 cycles. To get an accurate
measurement, it is preferable to leave the scope block closed since the graphic updates
may affect simulation performance.

You may adjust the Slider Gain bar during simulation to see how the presence of additional
noise affects the filter performance. You may view the filtered and unfiltered data in the
output scope block. The top axis shows the unfiltered input data. The bottom axis shows
the filtered data results.

100 ao ao Sl I 900 1000

System Generator for DSP User Guide www.xilinx.com 261
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Compiling for Hardware Co-simulation

You will now compile the design for hardware co-simulation. Before performing the
following steps, ensure that you have an appropriate hardware co-simulation board
installed in System Generator and attached to your PC. In this example, you only want to
compile the portion of the design that resides inside the hw_cosim subsystem. This is
because you want the CA To FIFO and VA From FIFO blocks to remain in software as part
of the design test bench (while their partner shared FIFOs are compiled into FPGA logic).

5. Double-click on the System Generator token in the hw_cosim subsystem to open the
System Generator dialog box.

6. From the Compilation submenu, choose an appropriate hardware co-simulation
target. Note that although you use the Point-to-point Ethernet hardware co-simulation
interface in this example, any installed hardware co-simulation board (e.g., a board
that supports JTAG co-simulation) will suffice.

) System Generator- macfir sw_w_fifos/hw_cosim

@)

Compilation Clocking General

HDL Netist
NGC Netist
Par Bitstream

EDK Export Toaol

Hardware Co-Simulation » ML402 Ell'wrnwl » Network-based

S¥Y' Timing and Power Analysis ML506 Jma
[xsT T MLS0S »

7. Press the Generate button on the System Generator dialog box to generate the design.

A new hardware co-simulation library and block are created once System Generator
finishes compiling the design. Note that the new hardware co-simulation block does not
have any input or output ports. This is because the subsystem that was compiled did not
contain gateway blocks or Simulink ports. Instead, all connections to other Simulink blocks
are handled implicitly through shared memories that were compiled into the FPGA.
Because you left the To FIFO and From FIFO blocks as part of the software testbench, the
software FIFOs will automatically attach to the FIFOs in hardware at the beginning of
simulation.

It is often necessary to examine the type and configuration of a shared memory that was
compiled for hardware co-simulation. The information about each shared memory is
available in a Shared Memories tab on the hardware co-simulation block dialog box. This
tab contains a tree view of information about each shared memory embedded in the
design.

8. Double-click on the hardware co-simulation block to open the parameters dialog box.
9. Select the Shared Memories tab in the hardware co-simulation block dialog box.

The tree-view contains information about the CA and VA shared FIFO blocks that were
compiled. If your co-simulation design contains other shared memory blocks, information
about these blocks will also be displayed here. You may expand or collapse shared

262

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

memory information by clicking on the (+) or (-) icons located adjacent to the shared

memory icons.

£ hw_cosim hwcosim (XtremeDSP Develop... Q|§| E|

Basic | Shared Memories |

&1 Number of Bits: 32
& Type: To FIFD

| ok U Cancel || Heb [opy

10. Close the parameters dialog box.

You are now ready to insert the hardware co-simulation block in the original design. Before
continuing on with the next steps, it is worthwhile to either rename the design or create a
backup of the original since you will be making modifications.

11. Remove the hw_cosim subsystem from the design.

12. Insert the hardware co-simulation block in place of the hw_cosim subsystem.

E’ macfir_sw_w_fifos_w_hw

B=1Es

File Edit Yiew Simulation Format Tools Help

O = dE = » = [iooo0

| MNomal

[~

g N

12

Syslem
Genaralor

Ready T4%

ode3

13. Configure the hardware co-simulation block with any settings necessary to co-

simulate using single-step clock mode.

14. Press the Simulink Start button to start the design.

System Generator for DSP User Guide

www.xilinx.com

UG640 (v 13.1) March 1, 2011

263

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

15. Record the amount of time required to simulate the design for 10000 cycles.

16. Close the design, but leave the hardware co-simulation library open since you will
need it in the next topic.

In the simulation above, hardware co-simulation uses single word transfers. That is,
whenever there is a new simulation value to be read or written to the hardware co-
simulation, the PC initiates a transaction with the FPGA. The next topic describes how
vector transfers may be used to increase simulation speed by making more efficient use of
the available hardware co-simulation bandwidth.

Using Vector Transfers

The System Generate Shared Memory Read and Write blocks allow you to use vector
transfers with hardware co-simulation. These blocks may be found in the Shared Memory
library in the Xilinx Blockset.

width: 0 width: 0

depth: 0 >{d depth: O ‘

Shared Memory Read Shared Memory Write

The Shared Memory Write block accepts a Simulink scalar, vector, matrix or frame data
type and writes the data sequentially into a shared memory. The complete contents of the
Simulink signal are written into the shared memory in a single simulation cycle. As is the
case with all shared memory blocks, an association is made between a Shared Memory
Read or Write block and another shared memory by specifying the same shared memory
name.

Matrix types are treated as having a column-major order. That is, when data is written
sequentially into a shared memory, the elements in a column are written first before
advancing to the next column. For example, assume you have the matrix of data shown
below. During simulation, this matrix data is written into the FIFO (or shared memory) in
the following order:

Using these blocks, it is possible to read or write full vector, frame, or matrix signals into
shared memories, provided the following conditions are met:

e The input signal driven to a shared memory write block is an 8-bit, 16-bit, or 32-bit
signed or unsigned integer;

e The number of elements in the vector or matrix does not exceed the depth of the
shared memory or FIFO.

e The data width of the Shared Memory Read or Write block (i.e., the bitwidth of the
scalar, or vector or matrix element) equals the shared memory or FIFO data width.

You can use these blocks in the example design to read and write vectors of data samples
to the MAC filter in a single software / hardware transaction.

264

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

17. Openmacfir hw w_frames_tb.mdl from the MATLAB console.

This design is a very similar to the previous design, with a few modifications made to
support the Shared Memory Read and Write blocks. Before simulating the design, you
consider each of these modifications. Most importantly, Shared Memory Read and Write
blocks have been substituted in place of the To and From FIFO testbench blocks in the
previous design. By specifying CA and VA as the Write and Read shared memory names,
respectively, an association is automatically made to the input and output FIFO buffers in
the FPGA hardware during simulation.

A Simulink Buffer block builds a frame of scalar input samples by sequentially buffering
the unfiltered input data. A simple analogy is that the Buffer block is performing a serial to
parallel conversion. Recalling that you compiled the FIFO buffers with a depth of 4K, you
choose a frame size of 4095.

| SP=1 ’“T| SP = 2095 ‘
= g

oonv

Buffer Shared Ms

Note that the buffer block introduces a sample rate change in the design. For every 4095
inputs, there is only one output. Thus if the data input sample period is 1, the buffer data
output sample period is 4095. This means that the Shared Memory Write block need only
send a new frame of data to the FPGA on every 4095th simulation cycle (which is
considerably more efficient than initiating a hardware transaction during every simulation
cycle).

Because the Buffer block introduces a rate change, you must adjust the downstream blocks
to accommodate the slower sample period. You begin by telling the Shared Memory Read
block to read a frame of data every 4095th simulation cycle.

18. Double-click on the Shared Memory Read block to open its parameters dialog box.

€3 Shared Memory Read (Xilinx Shared Me... E‘@|E|

Reads zeguentially from a shared memorng block,

Baszic | Output Type

Shared memom name |"WA'

Tupe:
(& FIFO) Lockable memarp
Sample tine 4095
I QK l [Cancel l ’ Help] ’ Apply l

On the Type field under the Basic tab, you have configured the block to use shared FIFOs.
To ensure a new frame is read at the appropriate time, you configure the Shared Memory
Read block with a Sample time value of 4095.

The Shared Memory Read block allows you to specify the output data type and
dimensions.

System Generator for DSP User Guide www.xilinx.com 265
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

19. On the parameters dialog box, switch to the Output Type tab.

2 Shared Memory Read (Xilinx Shared Me... E]@|g|

Reads sequentially fram a shared memany block.

Basic | Output Type

[rata typa 32w
Dutput dimensions [N or [MM]) |[4095 1]

|Jze fame-bazed output [otherwize sample-based)]

| ok || came |[Hem || aey |

There are several things of interest on this tab. First, you set the output data type as an int32
to match the filter data path output width of 32-bits. Note the design will not simulate
unless these widths match. Secondly, you choose an output dimension that is 4095 words
deep in the Output dimensions field. Finally, you tell the block to generate frame-based
output since frame data types are required by the downstream Unbuffer block.

20. Close the parameters dialog box.

The Simulink Unbulffer block takes the frame data from the Shared Memory Read block
and deserializes it into sequential scalar values. The Simulink Unbuffer block also
introduces a sample rate change in the diagram. Because the input sample period to the
block is 4095, and the frame size is 4095 words, the Unbuffer block output sample period is
1. This works out nicely since you have data moving through the overall system at an
effective sample period of 1.

SP =085

e
Unbuffer

Because the Shared Memory Write and Read block operate on integer values, you must
insert Simulink type conversion blocks into the diagram so that the data is interpreted
correctly in various portions of the model. The in_data_conv subsystem converts the
Simulink doubles into 16-bit integer values that can be interpreted appropriately by the
FPGA hardware. On the output side, the out_data_conv subsystem converts the 32-bit
integers into 32-bit Simulink fixed-precision values.

Before simulating the design, you must add the hardware co-simulation block you created
from the previous design.

266

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Frame-Based Acceleration using Hardware Co-Simulation

21. Add the hardware co-simulation block to the design as shown below.

=1 macfir_hw_w_frames_tb E| fﬁl El

File Edit Wew Simulaton Format Tools Help

O =ES L. 2 ||nf |Nl:-n'na| j @

e e =1 2 «”LE

Sufer Shared Memery Wiks Shearsd Memer —moter
TR="0 L] -

Syslam
Genaralor

Ready B85 % ode3

As mentioned before, the Shared Memory Write block writes a new input frame of 4095
words to the FPGA on every 4095th clock cycle. Likewise, the Shared Memory Read block
reads an output frame of 4095 words from the FPGA on every 4095th clock cycle. This
means that the FPGA must process the entire frame in a single-cycle. How exactly is this
accomplished?

The first step is to configure the FPGA in free-running clock mode. In doing so, you allow
the FPGA to process data considerably faster than if it were otherwise kept in lockstep with
the Simulink simulation. Whereas in single-step mode the FPGA can only process one data
per Simulink cycle, the FPGA processing speed is limited only by the system clock
frequency when operating in free-running clock mode. Even so, if the buffer is large
enough, the FPGA may not have time to process the complete buffer before the next block
in the design is woken up. You still need a way to stall the rest of the simulation while the
FPGA processes the entire buffer.

The Shared Memory Read block checks the number of FIFO words available in the output
buffer before trying to read a frame. If the number of words in the buffer is insufficient, the
Read block waits for a small amount of time, and then checks again to determine if the
words have become available. It only reads the frame once all of the words are available in
the output buffer, in this case 4095. In this manner, the Shared Memory Read block can stall
the simulation until the complete frame has been processed by the FPGA.

System Generator for DSP User Guide www.xilinx.com 267
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

The simulation flow of data through the diagram is shown below.

E! macfir_hw_w_frames_th
Eile Edit VWew Smulation Format Tools Help

O =E & L. 2 ||nf |Nc-n'na| j @

» dde:!:'\ 4085 e lciid (Coormers E E
w18 wikd® 32 L] e

S

St Snared Memar Nirse Snarsd ey Seed

o H (D

* -=rz-poi: I F—
armet

=

System
Ganaralor

Frw_zsim
Pesoesim

Ready 65% ode3

Two steps necessary to run the simulation using Simulink frames signals are provided

below:

22. Double-click on the hardware co-simulation block to bring up the parameters dialog
box.

23. Select Free running clock mode as shown below.

€ hw_cosim hweosim (Xilinx Point-to-point Ethernet Har... Z||E|E|

Basic |Advanced ” Ethamst " Configuration " Shared Memories |Soﬂware |

Clocking

Clock source:
() Singke stepped | (%) Free running I

Has combinational path

Bitstream filename | Shw_cosim_cw bit |

ok |[Goneel [Bk |[ooy |

24. Configure the hardware co-simulation block with any additional settings necessary for
simulation according to the requirements of your co-simulation board.

25. Press the Simulink Start button to start the design.
26. Record the amount of time required to simulate the design for 10000 cycles.

27. What is the simulation speed increase over the time recorded in step 15?

268 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Real-Time Signal Processing using Hardware Co-Simulation

Real-Time Signal Processing using Hardware Co-Simulation

The shared memory interfaces available in System Generator allow signal processing
designs with high bandwidth and memory requirements to be co-simulated using FPGA
hardware. When used in conjunction with the Xilinx Shared Memory Read and Write
blocks, it is possible for hardware co-simulation designs to process complete Simulink
vector and matrix signals in a single simulation cycle. These large data transactions
between Simulink and the FPGA are realized using burst transfers, and depending on the
co-simulation interface, often provide sufficient throughput for real-time signal processing
applications.

There are two types of System Generator interfaces that support burst transfers when
compiled into FPGA hardware. These interfaces include lockable shared memories and
shared FIFO blocks. Both blocks provide different handshaking protocols that determine
how and when transactions between the FPGA and host PC occur. Before using these
blocks, it is useful to understand how they work in relation to hardware co-simulation. For
more information, please refer to the following topics:

Co-Simulating Lockable Shared Memories
Co-Simulating Shared FIFOs

In this document, a high-speed co-simulation buffering interface implemented as a System
Generator model is presented. The example interface uses lockable-shared memories to
implement the required buffer storage. Note that it is relatively straightforward to modify
the flow control logic so that shared FIFOs may be used in place of the shared memories.

The high-speed buffering interface is discussed first, followed by an example in which the
interface is used to support real-time processing of a video stream using a 5x5 filter kernel.
Described last is how an additional unprotected shared memory is applied to the system to
support dynamic reloading of the image kernel during co-simulation.

Shared Memory 1/O Buffering Example

When a lockable shared memory is compiled for hardware co-simulation, additional
circuitry is included in the FPGA to the handle the mutual exclusion. Part of this circuitry
includes logic to enable high-speed transfers of the memory image when the FPGA
acquires or releases lock of the memory. It takes advantage of the lockable shared memory
mutual exclusion semantics to implement a high-speed I/O buffering interface for
hardware co-simulation. This topic describes this interface, which is included as an
example model in your System Generator software installation.

1. From the MATLAB console, change directory to
<ISE Design Suite tree>/sysgen/examples/shared memory/hardware
cosim/io bufferin

2. Openhighspeed iobuf ex.mdl from the MATLAB console.

The I/0O buffering interface allows you to easily buffer and stream data through a System
Generator signal processing data path during hardware co-simulation. The example
design is comprised of two subsystems that implement input and output buffer storage,
named Input Buffer and Output Buffer, respectively. The turquoise block in the center of
the diagram is a placeholder for the signal processing data path which you will substitute
into the design.

At the heart of each buffering subsystem is a lockable shared memory block that provides
the buffer storage. Each shared memory is wrapped by logic that controls the flow of data

System Generator for DSP User Guide www.xilinx.com 269
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation

& XILINX.

from the host PC, through the interface, and back to the host PC. Operation of the I/O

buffering interface is shown in the flow chart below:

1. Input and output buffers request lock

/’ of their respective shared meamaories.

2. Interface waits on grants far both
MEMmOries.

'

3 HostPC shared memaory image is
copied to the FPGA {i.e., input buffer is

filled with new: data).

'

4. Input huffer contents are streamed
throughthe data path, beginning at
memaryaddress 0. Input huffer assers
dourt_walid signal for each new wormd.

Diata path processes each waord and
wirites output data into the astput huffer,
Data path assers din walid for each

autput weard.

A, Input huffer releases lock once all data
is written into the data path.

Qutput buffer releases its lock once the
huffer memary is filled.

\ 6. Output buffer memary image is copied

hack to the host PC.

dout_walid

Inpui Buffer

- T odin_valld dout_valng - - - - —edin_valid

Notice that the buffering interface design includes several data valid ports. These ports are
used for data flow control. A "true" output from the Input Buffer dout_valid port
indicates new data is ready to be processed by the data path. Likewise, when the data path
is finished processing the data, it should drive the Output Buffer subsystem's

din_ valid port to "true" to indicate valid output data (the din_valid port is analogous to
a write enable control signal).

The example includes a placeholder that should be replaced by a System Generator data
path. You may insert any data path in the buffer interface provided that it works within the
valid signal semantics described above.

270

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Real-Time Signal Processing using Hardware Co-Simulation

Note: The output buffer shared memory does not release lock until the output buffer is full. To avoid
deadlock, the number of valid assertions by the data path should equal the output memory buffer size
for a given processing cycle.

Applying a 5x5 Filter Kernel Data Path

You will now apply a data path to the I/O buffering interface to demonstrate a complete
system capable of processing a 128x128 8-bit grayscale video stream in real-time. You have
chosen to use a 5x5 image processing kernel to implement the data path portion of the
high-speed buffering interface. For more information about the filter kernel, refer to the
System Generator demo entitled sysgenConv5x5. You begin by considering various
aspects of the design implementation.

3. From the MATLAB console, change directory to
$SSYSGEN/examples/shared memory/hardware cosim/conv5x5 video.

4. Open conv5x5 video ex.mdl from the MATLAB console.

Buffer and Data Path Configuration

With the frame and pixel constraints in mind, the input and output buffer parameter
dialog boxes are configured with a depth of 128x128 (16K) words and a word width of 8-
bits. This depth allows the interface to process a complete frame in a single simulation
cycle. Note that these configuration parameters are propagated automatically to the
lockable shared memories that implement the buffer storage.

=1 Source Block Parameters: Input Buffer. B|

Subsypzten [mazk]

Parameters
Shared temory Mame
‘Foo'
Shared Memong Depth
128128

Shared Memorn wWidth
i]

[Ok] ’ Cancel] ’ Help l

The data path uses line buffers to properly align data samples in the filter kernel. The size
of these line buffers can be parameterized to accommodate different frame sizes. In this

example, the line buffers are implemented in the Virtex2 5 Line Buffer blockin the
conv5x5_video_ex/5x5_ filter subsystem, and are pre-configured with a line size of

System Generator for DSP User Guide www.xilinx.com 271
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

128. If you decide to process a different size frame, the Line Size parameter should be
updated accordingly.

=] Function Block Parameters: Virtex2 5 Line Buffer El

Wirtexe 5 Line Buffer [maszk) [paameterized link)]

The black buffers a zequential stream of pikels to congtruct B lines of output, Each
line iz delayed by M samples, where M is the length of the line. Line 1 is delayed 4N
zamples, each of the following lines are delay by M feveer samples, and line 5is 2
copy of the input,

Parameters
Like See
128

Sample Period
1

[0k] ’ Cancel] [Help Apply

Valid Bit Generation

The data path includes a subsystem named valid_generator that is responsible for
driving the din_valid port of the output buffer block. The subsystem has two inputs,
valid inand offset. The valid in portis driven by the dout valid signal from the
input buffer block, which is delayed by a variable number of cycles before it is driven to the
valid_ out port. The logic associated with the valid generator subsystem is shown
below.

¥

d g i

S (D

walid_in
- = walid_out
g & ASR
g

offset ’—b &n
din dout

one_shot

An addressable shift register block (ASR) is used to delay the valid bit. The of fset portis
used to control the address of the ASR block, which in turn controls the amount of latency
the valid bit incurs. By simply delaying the valid bit generated by the input buffer block,
You ensure the number of words written to the output buffer is always equal to the buffer
size. Note that when the design is run in hardware, a change in the offset value will cause
the vertical alignment of the filtered images to change.

272

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Real-Time Signal Processing using Hardware Co-Simulation

Support for Coefficient Reloading

An interesting characteristic of the kernel data path is that its coefficients can be
dynamically reloaded at run-time. The 5x5 filter block includes Load and Coe £ control
ports, which are driven by the coefficient memory subsystem.

Lines (S

Lines LineE

Wite=2 5 Line Buffer

oad Laad

L 4

acaf J{ Coaf

caeflclent_memony

(S)—woan

qain

H-SFiler

The coefficient memory contains a copy of the most recently loaded filter coefficients,
which are stored in an unprotected shared memory named coef_buffer. During run-
time, the subsystem monitors the shared memory contents, and initiates a reload sequence
if detects a change. By co-simulating the unprotected shared memory, any process on the
host PC may write new kernel coefficients simply by writing to a shared memory object
named coef buffer. This interface is convenient, as communication with the FPGA
hardware is completely abstracted through the Shared Memory APL

Compiling for Hardware Co-simulation

The full filter kernel design must be compiled for hardware co-simulation before it can be
simulated.

5. Double click on the System Generator token located at the top of the
conv5x5 video_ ex model

6. Select an appropriate hardware co-simulation target.

7. DPress the Generate button to compile the design for hardware co-simulation.

A hardware co-simulation block is created once the design finishes compiling.

gain
Hirame
DsSP
offsat

convBxd_video_sx

hwossim

Hardware co-simulation blocks include information about any shared memories, registers,
or FIFOs that were compiled as part of the design. You may view this information by
double-clicking on the hardware co-simulation block to open the parameters dialog box.

System Generator for DSP User Guide www.xilinx.com 273
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Once the dialog box is open, selecting the Shared Memories tab reveals information
about each shared memory in the compiled design.

£ cony5x5_video_ex hweosim (XtremeDS... E|E|E|

Basic Shared Memories

El-<<'Bar's>

@l Depth: 16384

&l MNumber of Bits: 8

&l Access Protection: Lockable
Bl-<<'Foo"ss

&1 Depth: 16384

&1 Mumber of Bits: 8

i Apcess Protection: Lockable
Bl-<<'cosf_buffers:

& Depth: 32

&1 Mumber of Bits: 6

& Apcess Protection: Unprotected

Lo | GCecel |[Hep || ey |

Go ahead and leave the hardware co-simulation library open. In the next topic you will
include the hardware co-simulation block in a video processing testbench design.

5x5 Filter Kernel Test Bench

Included with the example files is a Simulink test bench model that uses the hardware co-
simulation block to filter a looped video sequence.

8. From the
...sysgen/examples/shared memory/hardware cosim/conv5x5 video
directory, open conv5x5_video_testbench.mdl.

The testbench model uses a From Workspace block to produce the looped video sequence.
Each frame of the video sequence is represented as a 128x128 uint8 Simulink matrix (a
pre-load function loads and initializes the video sequence automatically when the model is
opened). Video frames are written into the FPGA Processing subsystem where they are
filtered at the rate of one frame per simulation cycle. The filtered output is then written to
a Matrix Viewer block for analysis.

The FPGA Processing subsystem contains a stub for the hardware co-simulation block,
as well as Shared Memory Read and Write blocks. In this example, the Shared Memory
Read and Write blocks are responsible for managing video frame I/O to and from the
shared memories operating inside the FPGA. The operation of these blocks is described
below:

a. The Shared Memory Write block wakes up and requests lock of the input buffer
lockable shared memory Foo. Once lock is granted, the block writes the video
frame data input into the lockable shared memory and releases lock.

b. The hardware co-simulation block wakes up and requests lock of the input and
output buffer shared memories Foo and Bar. The host PC shared memory images
are transferred to the FPGA and lock is granted. The FPGA processes the input
buffer data and writes the output into the output buffer. Lastly the FPGA releases

274

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Real-Time Signal Processing using Hardware Co-Simulation

lock of Foo and Bar, causing the FPGA shared memory images to be transferred
back to the host PC.

c. The Shared Memory Read block wakes up and requests lock of the output buffer
lockable shared memory Bar. The block reads a video from the output buffer and
drives its output port with the processed video frame data.

frame_in

depth: 18384

width: 8

—— | offset

depth: 16384 4
width: 8

ralll

fiame_out

convExE_video_ex

hweasim

Note that the three steps listed above assume a specific sequencing of the hardware co-
simulation and Shared Memory Read and Write blocks. To ensure these blocks are
properly sequenced, you can set block priorities, where a lower priority block is woken up
first during simulation.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 275

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

9. Add the hardware co-simulation block to the testbench model in place of the turquoise
placeholder residing in the FPGA Processing subsystem.

[=] conv5x5_video_testbench/FPGA Processing r._|E|P5_<|
File Edit Wiew Simulation Format Tools Help
O EE & w2 3 ||nf |N0rrnal j
- N depth: 16284 d=pth: 18284 N -

& width: 8 width: 8 @
frame_in frame_out
Shared Memaory Write Shared Memory Read

gain hw_gain sifzTTE
- DSP
ot
cffsel hw_offset .
convBxE_video_ex
hweosim System
Genzrator

Insert your hardware co-simulation block here. Before
simulating the design, ensure the co-simulation block
is configured as follows:

- Clocking mode is set to Free-Running;
- Setthe block priority to 2 to ensure correct sequencing.

Ready 100%% FixedStepDiscrete

The Shared Memory Write block in the testbench is pre-configured with a priority of 1, and
the Shared Memory Read block is pre-configured with a priority of 3. Since you want the
hardware co-simulation block to wake up second in the simulation sequence, you must set
the hardware co-simulation block priority to 2.

10. Right-click on the hardware co-simulation block, and select Block Properties.

——P{gain

Open Block
— ploffsy Open Block In Mew Window
L | Explore

convd
Cut

I Copy
fware co-¢ Delete
design, ef
s follows: S-Function Parameters...
&is setto)
ariority to 4 Reguirements 3

Look Under Mask
Link Options 3

Sinnal & Seone Mananer. .. iscrete

11. Specify a Priority of 2 in the Block Properties dialog box.

Proriy:
|2

276 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Real-Time Signal Processing using Hardware Co-Simulation

For high-speed processing applications, the hardware co-simulation block should be
configured to operate in Free Running clock mode. When this mode is used, the
synchronization between the FPGA and Simulink are handled entirely by the lockable
shared memories. By running the FPGA in free-running mode, you allow it to run fast
enough to process a complete video frame in a single Simulink cycle. Keep in mind that the
hardware co-simulation block circuitry waits to acquire lock before processing data. Since
the lock cannot be granted until the hardware co-simulation block is woken up, the FPGA
sits idle until new data is presented in the input buffer.

12. Double-click on the hardware co-simulation block and choose a Free Running
Clock under the Basic Tab.

€9 conv5x5_video_ex hwcosim (XtremeDS... ; §||E|

Basic | Shared Memories

Clocking

Clock sounce:

) Sngle stepped, (&) Free unning)

Frequercy (MHz) [40

Imterfacs
Card number | 1 first card found) |
Bus:

® Pl (O USE

Has combinational path

Bitstreamname [c\sandbox’env'Jobs'sysgen'src'examples shared|

ok | cancel [Heb || ey |

You are now ready to simulate the design.
13. Press the Simulink Start button to start simulation.

Two windows will appear showing the original and filtered video streams.

widen testhenchiirig. ..

The left image is the original video frame. The image on the right is the same frame that has
been processed using the "smooth" filter kernel. Note that the smoothing filter is just one of
several filters that can be applied to the video source.

System Generator for DSP User Guide www.xilinx.com 277
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Reloading the Kernel

The filter data path is designed so that the filter kernel can be reloaded dynamically while
hardware co-simulation is running. Once the simulation is running, you may use the
xlReloadFilterCoef function to load a new kernel. The function accepts a string kernel
identifier (e.g., sobelxy) as an input parameter. A list of available filter kernels can be
viewed by typing help x1ReloadFilterCoef in the MATLAB console. The function is
supplied as a MATLAB source file and can be found in the

$SSYGEN/examples/shared memory/hardware cosim/conv5x5 video
directory.

Note: Once you have reloaded the filter, you may choose to adjust the coefficient gain. The gain can
be adjusted using the Coefficient Adjust slider control at the top-level of the testbench model. This
also demonstrates how System Generator's traditional, port-based, hardware co-simulation
interfacing can be used in conjunction with the shared memory hardware co-simulation interfaces.

It is worthwhile to note that System Generator provides a MATLAB object interface to
shared memory objects. The x1ReloadFilterCoef function uses this object interface to
write new coefficients into the unprotected shared memory named coef_buffer running in
the FPGA. The function is fully annotated with comments that explain how the shared
memory object is created, written to, and released when the operation is complete.

Note: The source code for the MATLAB object interface is supplied with the System Generator
software installation, and can be found in the $SYGEN/examples/shared_memory/mex_function
directory. Also included in this directory is MATLAB M-code that demonstrates how the mex-function
source code was built.

14. After ensuring the testbench design is running, load the SobelXY filter kernel into the
FPGA by typing x1ReloadFilterCoef ('sobelxy') from the MATLAB command
window.

You will now see the video output generated using the SobelX-Y kernel.

278

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Installing Your Board for Ethernet Hardware Co-Simulation

Installing Your Board for Ethernet Hardware Co-Simulation

Note: If installation instructions for your particular board are not provided here, please refer to the
installation instructions that come with your Board Kit. For instructions on how to install a Xilinx USB
Cable and cable driver software on a Windows or Linux Operating System, refer to the following
document:_http://www.xilinx.com/support/documentation/user_guides/ug344.pdf

Installing Software on the Host PC

Install Xilinx ISE® Design Suite software as described in the document: ISE Design
Suite Installation, Licensing, and Release Notes

Install WinPcap version 4.1.1 software, which may be obtained from the website at
http:/ /www.winpcap.org.

Install the currently supported version of MATLAB®/Simulink software from The
MathWorks. Refer to the System Generator for DSP Release Information for the
currently supported version of MATLAB.

Setting Up the Local Area Network on the PC

For Ethernet Point-to-Point Hardware Co-Simulation, you are required to have a 10/100
Fast Ethernet or a Gigabit Ethernet Adapter on your PC. To configure the settings do the

following:
1. Asshown below, from the Start menu, select Control Panel, then right-click on Local
Area Connection, then select Properties.

il
File Edit “iew Favorites Tools Advanced Help | .-"J.'
Q Sack - '__) - ﬂ' /) search Folders ‘ v
Address |& fetwark Cornections ZI 6o

= | Mame | Cevice Hame I
Metwork Tasks ¥ LAN or High-Spzed Internet
Other Places 2 %Luml Argd Connelion 2 Cismo SysLene VPN Adapler
bk Pucodecs betytreme 57 Gigabit Controller
[} Conkrol Panel U0 wireless MNebwar zl:at D Mirel=ss 2915435 Mebwaork Connection
\.-3 My Netwark 2laces = fls
Repai
(=) My Docamerts
J My Conputs- Bridge Conneckions
- Creats Sherkout

. . Delete

Details = Eetrianie

Local Area Lonnection W
| &M rr High-Speed Tnkzrnek - | P I I _._I

System Generator for DSP User Guide www.xilinx.com 279

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug344.pdf
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.winpcap.org

Chapter 3: Using Hardware Co-Simulation & XILINX.

2. Asshown below, select Internet Protocol (TCP/IP), then click on the Properties button
and set the IP Address 192.168.8.2 and Subnet mask to 255.255.255.0. (The last digit of
the IP Address must be something other than 1, because 192.168.8.1 is the default IP

address for the board.

Ciereral | Advanced | Gereral

Lenmect usirg: You car qet IP zetings assigned aatomatically if vour neswark supparts
) thiz capahbility Othenwise, you neec to azk your netwark. sdninistratar for

I B2 Eioadicum Nelslenme 07 s Gigaoil C Lonhgure... | the approprialc 1P soitings.

Thig cotneclion uses the folowing items: " Dbtain an P addiess avtomaically

== Metmork Monior Diver ﬂ — & Use the following IP address:
[== AEGIS Frotocol [IEZE 90214 +2.1.0.1 IP address 192 168 . & . 2
® w={REnE | J

Subnat mazk: 285 28R 28R 0
+ Default galeway: I . . .

) Obtain MNE sarve addess automatically

4]

Istall... I hingtall |

r~ Desciptior _
Tranzmisz on Cantrol Protocald nterret Pratoccl. The default —* Usze the following DMS server addiosess:

wids area natwark pratocal that provides communication Mrefered DN server I—
acrozz diverze nterconnected nebwark s,
alterrate CHS sarver I . . .
W Show icon in notification area when connected
v Matiy me when this connection has limitzd or no connectivity
Advanced.. |

Ok, | Cancel | ok I Cancel |

3. Click on the Configure button, select the Advanced tab, select Flow Control, then
select Auto.

L Local Area Connection Properties llil Broadcom MetXtreme 57:: Gigakbit Controlle ﬂﬂ

General |-"3*d‘\"a""33d| Genmal Advanceoc | Diven I HUSJUILJI:'-SI P e Mallagculcnll

Cannect using Thz follm«ing properties are available for thiz netwaork, adapter, Click
the property yau want to charge on the left, aad then seect itz val.e

I Ha Rroadram Mef<heme 57w Gigahit Cormfigure... | on the right.
Property: Value:

Thiz connection uses the follawing itens:

802 1pQ0S Auto -
T Metwark, Monitor Diriver ;I S I J
pee uplex -
W] %= AEGIS Protocol [EEE 80214 +3.1.0.1 ke Up Ctpabiltiss Diizable
T Internet Pratocal [TCPAP] R PALSE
o Ru/Tu PALSE
T= PALISE
4| | B —
Install... | rinztall | Propertiez I
r— Dezcription
Allowrs your computer bo access resources an a Mizrosaft
network,

W Show iconin notification area when connected

¥ Motify me when this connection has imited or no connectivity

Ok, Cancel ak. I Caticel

280 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Installing Your Board for Ethernet Hardware Co-Simulation

4. Set Speed & Duplex to Auto, then click out using the OK button.

Broadcom MetXktreme 5Txrx Gigabit Contra i |

Genzral Advancec I Dirwer | Hes:urcesl Powerhflanagementl

Thz faollowing properties are available for this netwerk, adapter. Click
the property wou want to charge on the eft, and than select it: value

anthe right,
Froperty W alue;
002.1p 0% Aty |
Flow Control 10 MbE Edl
— 10 Kb Half
“wake Up Capabilties 100 kb Ful
100 Mb Half

QK. I Cancel |

Loading the Sysgen HW Co-Sim Configuration Files

Note: The following instructions apply only to boards that support Ethernet-based hardware
configuration. These boards include: ML402, ML506, and Spartan-3A DSP 3400.

System Generator comes with HW Co-Sim configuration files that first need to be loaded
into the CompactFlash card with a CompactFlash Reader.

1. Optionally Backup the Demo Files

The CompactFlash card comes with a series of demo files that you might want to re-load
and exercise later.

a. Connect the CompactFlash Reader to the PC. This is usually done through a USB
port.
b. Insert the CompactFlash card into a CompactFlash Reader.

c. Click on the MyComputer icon, then select the Removable Disk drive that
represents the CompactFlash Reader.

d. Create or open a backup folder on the PC and copy the content of the
CompactFlash card to that folder for later use.

Note: For the following steps, 'e: ' is assumed to be the drive name associated with the
CompactFlash reader.

2. Re-Format the CompactFlash Card

The card needs to be re-formatted to a FAT16 file system before the System Generator files
can be transferred. You use the mkdosfs utility to format the card.

a. Download the mkdosfs program from the Xilinx URL address:
http:/ /www.xilinx.com /products/boards/ml310/current/ utilities/ mkdosfs.zip.

b. Extract to folder C: /mkdosfs

System Generator for DSP User Guide www.xilinx.com 281
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/products/boards/ml310/current/utilities/mkdosfs.zip

Chapter 3: Using Hardware Co-Simulation & XILINX.

c¢. Opena Windows shell by selecting Start > Run..., then type cmd in the Run dialog
box and click OK.

d. In the shell, move to the mkdosfs folder:
cd C:\mkdosfs

Caution! In the following step, make sure the drive name (e.g., 'e:' in this case) is specified
correctly for the Compact Flash Removable Disk. Otherwise, the information on the mistakenly
targeted drive will be erased and the drive will be re-formatted.

e. Type the following mkdosfs command after the Windows command prompt:
mkdosfs -v -F 16 e:

The content of the Compact Flash card should be wiped clean and re-formatted.

3. Copy the Sysgen configuration files to the Compact Flash card
Note: For reference, the Sysgen files to be copied are located at the following pathname:

For ML402:

..<ISE Design Suite tree>/sysgen/plugins/bin/ML402 sysace cf.zip
For ML506:

..<ISE Design Suite trees>/sysgen/plugins/bin/ML506 sysace cf.zip
For Spartan-3A DSP 3400:

..<ISE Design Suite tree>/sysgen/plugins/bin/S3ADSP DB sysace cf.zip
Invoke MATLAB on the PC, then enter the following command on the MATLAB
Command Line. The command for ML402 is illustrated:

unzip(fullfile(xilinx.environment.getpath('sysgen'), plugins/bin /ML402_sysace_cf.zip'),'e:/")
The following files and folder should now be listed on the CompactFlash drive:

_Io/x

Fle Edit view »| J*

O Back ~ __‘J - >

Address ILq-ll ! j G0

MName = ﬂ
Cymi402

|ﬂ ip. dat

|ﬂ mac,dat

xilinx . sys -

A M

Optional Step to Set the Ethernet MAC Address and the IPv4 Address

Note: The following step may be necessary if the default MAC and IP addresses conflict with your
default network settings, or if you wish to co-simulate two or more boards concurrently. If not, proceed
to the next topic.

After writing the data to the card, you will find two files, mac .dat and ip.dat, in the
card root directory. The mac.dat and ip. dat files specify the Ethernet MAC address
and IPv4 address associated with the board, respectively. These addresses are used to
uniquely identify a target board during Ethernet hardware co-simulation.

a. Openmac.dat in a text editor and change the Ethernet MAC address. The MAC
address must be specified as a six pair of two-digit hexadecimal separated by
colons (e.g. 00:0a:35:11:22:33). All-zeros, broadcast, or multicast MAC
addresses are not supported.

282 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

b. Open ip.dat in a text editor and change the IP address. The IP address must be
specified in IPv4 dotted decimal notation (e.g. 192.168. 8. 1). All-zeros,
broadcast, multicast, or loop-back IP address are not supported. After changing
the IP address for the board, update the IP address for the network connection on
the PC accordingly as mentioned in topic Setting Up the Local Area Network on
the PC. For a direct connection, the board and the PC must be on the same subnet.
Otherwise, the board IP address should be reachable from the PC and vice versa.

Installing the Proxy Executable for Linux Users

Running hardware co-simulation on a Linux machine requires that you first run a shell
script that installs a proxy executable. Do the following:

1. Log into the root account on your Linux machine
2. Go to the bin directory where System Generator is installed. For example,
cd $XILINX DSP/sysgen/bin

3. Run the shell script called install_pcap_proxy.sh. For example, at the shell command
line type:

./install pcap proxy.sh

Installing an ML402 Board for Ethernet Hardware Co-Simulation

The following procedure describes how to install and configure the hardware and software
required to run Ethernet Hardware Co-Simulation on an ML402 board.

Assemble the Required Hardware

1. Xilinx Virtex®-4 SX ML402 board which includes the following;:
a. Virtex®-4 ML402 board
b. 5V Power Supply bundled with the ML402 Kit
c. CompactFlash Card
2. You also need the following items on hand:
a. Ethernet network Interface Card (NIC) for the host PC.
b. Ethernet RJ45 Male/Male cable. (May be a Network or Crossover cable.)
c. CompactFlash Reader for the PC.

Setup the PC

1. Install the related software on the PC as described in the topic Installing Software on
the Host PC.

2. Setup the Local Area Network as described in the topic Setting Up the Local Area
Network on the PC.

Load the Sysgen ML402 HW Co-Sim Configuration Files

System Generator comes with HW Co-Sim configuration files that first need to be loaded
into the ML402 CompactFlash card. Follow the instructions that are described in the topic
Loading the Sysgen HW Co-Sim Configuration Files.

System Generator for DSP User Guide www.xilinx.com 283
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Setup the ML402 board

The figure below illustrates the ML402 components of interest in this setup procedure:

Ethemet
X
A

Ethernet
status LECs ., m

UM OFE

LCD

CPUJ Reset .,
_."'- CompactFlash ™
M1~ and * System ACC
DOMNE LED setlings

1. Position the ML402 board so the Virtex®-4 and Xilinx logos are oriented near the top
edge of the board.

2. Make sure the power switch, located in the upper-right corner of the board, is in the
OFF position.

3. Asshown below, Eject the CompactFlash card from the CompactFlash Reader.

| Mame - IT pe
G ocal Disk (C:) Local Disk,
ADVDJCD-RW Drive (D) D Diriv=

Rernmwahle Mick

“#Remcvab Open
“eRamovab Browse with Faint Zhop Pro &

“w#Remrwah Explore
“elocal Disk Jearch..

SelocalDisk oo For Virusss. .
Sharing and S=curity. .
Openn as PurLable Media Devie, .
vI 4 I A
£ WWinZip J

Format, .

4. Remove the CompactFlash card from the CompactFlash Reader.

5. Locate the CompactFlash card slot (on the back side of the ML402 board), and carefully
insert the CompactFlash card with its front label facing away from the board. The
figure below shows the back side of the board with the ConpactFlash card properly
inserted.

284 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Note: The CompactFlash card provided with your board might differ.

Caution! Be careful when inserting or removing the CompactFlash card from the slot. Do not
force it.

| COMPACTFLASH™

6. Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the ML402 board. Plug in the power supply to AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

7. Using the RJ45 Male/Male Ethernet Cable, connect the Ethernet connector on the
ML402 board directly to the Ethernet connector on the host PC.

8. Set the Configuration Address DIP Switches.

As shown below, set the Configuration Address DIP Switches as follows: 1:on, 2:off,
3:0ff, 4:0n, 5:0ff, 6:0n]

Configuration Address
and Mode DIP Switches

9. Set the Configuration Source Selector Switch.

System Generator for DSP User Guide www.xilinx.com 285
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

As shown below, set the Configuration Source Selector Switch to SYS ACE

System ACE

CPLD Plat S¥S
Flazh Flazh ACE

Configuration Source
Selector Switch

10. Verify the Configuration Settings

a.

b.

Turn the target board Power switch ON.

Check the on-board status LEDs to ensure the FPGA is configured. If the
configuration succeeded, the DONE LED should be on and all error LEDs should
be off.

As shown below, check the information displayed on the 16-character 2-line LCD
screen of the board. If no error occurred, the Ethernet MAC address (without
colons) should appear on the first line of the display and the IPv4 address should
appear on the second line.

Ethernst MAC address

000435112233« |

192 .168.8.1+

IPvd address
LCD

If the LCD display does not show the information correctly, press the System
ACE™ Reset button to reconfigure the FPGA.

Check the status LEDs again to ensure the configuration sequence completed
successfully.

11. Verify the Ethernet Interface and Connection Status

a.

Connect the Ethernet interface of the board to a network connection, or directly to
a host.

Check the on-board Ethernet status LEDs to make sure the Ethernet interface is
attached to an active Ethernet segment. The LEDs should reflect the link speed and
the duplex mode at which the interface is operating. The TX and RX leds should
flash on and off occasionally depending on the network traffic. If no LED is on,
press the CPU Reset button to reset the FPGA, and also examine whether the
Ethernet segment is active.

I

== O
[l]
[=1]

[—E=]
=
-

1000

Ethernet status LEDs

286

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

c. To ensure the board is reachable by the host, issue ICMP ping from the host to
check the connectivity. For example, type "ping 192.168.8.1" on a console to test the
connectivity to a board with IP address 192.168.8.1.

Command Prompt

for 192.
nt = 4, Received = 4, Lost
nd trip times 1in 1

d. The target FPGA listens on the UDP port 9999. Please ensure the underlying
network does not block the associated traffic when network-based Ethernet
configuration is used. This does not affect point-to-point Ethernet configuration.

System Generator for DSP User Guide www.xilinx.com 287
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Installing an ML506 Board for Ethernet Hardware Co-Simulation

The following procedure describes how to install and configure the hardware and software
required to run an ML506 board Point-to-Point Ethernet Hardware Co-Simulation.

Assemble the Required Hardware

1. Xilinx Virtex®-5 SX ML506 board which includes the following:
a. Virtex-5 ML506 board
b. 5V Power Supply bundled with the ML506 kit
c. CompactFlash Card
2. You also need the following items on hand:
a. Ethernet network Interface Card (NIC) for the host PC.
b. Ethernet RJ45 Male/Male cable. (May be a Network or Crossover cable.)
c. CompactFlash Reader for the PC.

Install Related Software

Install the related software on the PC as described in the topic Installing Software on the
Host PC.

Setup the Local Area Network

Set up the Local Area Network on your PC as described in the topic Setting Up the Local
Area Network on the PC.

Load the Sysgen ML506 HW Co-Sim Configuration Files

System Generator comes with HW Co-Sim configuration files that first need to be loaded
into the ML506 CompactFlash card. Follow the instructions that are described in the topic
Loading the Sysgen HW Co-Sim Configuration Files.

288 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Setup the ML506 board

The figure below illustrates the ML506 components of interest in this setup procedure:

C’:onfiguration Address

DIP Switches (SW3) (Power Connector m

gEthernet Mode Select Ethernet Status LEDs> LCD

jumpers (J22 & J23)

1. Position the ML506 board so the Xilinx logo is oriented near the lower-left corner.

2. Make sure the power switch, located in the upper-right corner of the board, is in the
OFF position.

System Generator for DSP User Guide www.xilinx.com 289
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

3. As shown below, Eject the CompactFlash card from the CompactFlash Reader.

| Mame - IT pe
G ocal Disk (C:) Local Disk,
ADVDJCD-RW Drive (D) D Diriv=

Rernmwahle Mick

“#Remcvab Open
“eRamovab Browse with Faint Zhop Pro &

“w#Remrwah Explore
“elocal Disk Jearch..

SelocalDisk oo For Virusss. .
Sharing and S=curity. .
Openn as PurLable Media Devie, .
vI 4 I A
£ WWinZip J

Format, .

o
Cooy

Remove the CompactFlash card from the CompactFlash Reader.

Locate the CompactFlash card slot (on the back side of the ML506 board), and carefully
insert the CompactFlash card with its front label facing away from the board. The
figure below shows the back side of the board with the CompactFlash card properly
inserted.

Note: The CompactFlash card provided with your board might differ.

Caution! Be careful when inserting or removing the CompactFlash card from the slot. Do not
force it.

LU

e MR ETET Y .

Co M Mol ou MUl

SILIC

SYSTEMS

Connect the AC power cord to the power supply brick. Plug the 5V power supply
adapter cable into the ML506 board. Plug in the power supply to AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

Using the RJ45 Male/Male Ethernet Cable, connect the Ethernet connector on the
ML506 board directly to the Ethernet connector on the host PC.

290

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Installing Your Board for Ethernet Hardware Co-Simulation

8. Set the SW3 Configuration Address DIP Switches.

SW3 Configuration
Address

DIP Switches

(not yet configured)

Set the Configuration Address DIP Switches as follows:
1:0n, 2:0ff, 3:0ff, 4:0n, 5:0ff, 6:0n, 7:0ff, 8:on

9. Set the Ethernet Mode Select jumpers

As shown below, connect pin 1 and 2 on both the Ethernet Mode Select jumpers (J22
and J23)

Ethernet Mode Select
jumpers (J22 & J23)

10. Verify the Configuration Settings
a. Turn the target board Power switch ON.

b. Check the on-board status LEDs to ensure the FPGA is configured. If the
configuration succeeded, the DONE LED should be on and all error LEDs should
be off.

c. As shown below, check the information displayed on the 16-character 2-line LCD
screen of the board. If no error occurred, the Ethernet MAC address (without
colons) should appear on the first line of the display and the IPv4 address should
appear on the second line.

Ethernet MAC address

000435112233« |
192.168.8.1+

IPvd address

LCD

System Generator for DSP User Guide www.xilinx.com 291
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

d. If the LCD display does not show the information correctly, press the System

(System ACE™ Reéet>

e. Check the status LEDs again to ensure the configuration sequence completed
successfully.

11. Verify the Ethernet Interface and Connection Status

a. Connect the Ethernet interface of the board to a network connection, or directly to
a host.

b. Check the on-board Ethernet status LEDs to make sure the Ethernet interface is
attached to an active Ethernet segment. The LEDs should reflect the link speed and
the duplex mode at which the interface is operating. The TX and RX leds should
flash on and off occasionally depending on the network traffic. If no LED is on,
press the CPU Reset button to reset the FPGA, and also examine whether the
Ethernet segment is active.

11

== QL 2o
FE338EF

1000

Ethernet status LEDs

c. To ensure the board is reachable by the host, issue ICMP ping from the host to
check the connectivity. For example, type "ping 192.168.8.1" on a console to test the
connectivity to a board with I’ address 192.168.8.1.

e+ Command Prompt

D\=ping 192.168.8.1

Finging l9s.1bs.8.1 with 32 bytes of data:

d. The target FPGA listens on the UDP port 9999. Please ensure the underlying
network does not block the associated traffic when network-based Ethernet
configuration is used. This does not affect point-to-point Ethernet configuration.

292 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Installing an ML605 Board for Ethernet Hardware Co-Simulation

The following procedure describes how to install and configure the hardware and software
required to run an ML605 board Point-to-Point Ethernet Hardware Co-Simulation.

Assemble the Required Hardware

1. Xilinx Virtex®-6 LX ML605 board which includes the following:
a. Virtex-6 ML605 board
b. 12V Power Supply bundled with the ML605 kit
2. You also need the following items on hand:
a. Ethernet network Interface Card (NIC) for the host PC.
b. Ethernet RJ45 Male/Male cable. (May be a Network or Crossover cable.)

Install Related Software

Install the related software on the PC as described in the topic Installing Software on the
Host PC.

Setup the Local Area Network

1. Set up the Local Area Network on your PC as described in the topic Setting Up the
Local Area Network on the PC.

Setup the ML605 board

The figure below illustrates the ML605 components of interest in this setup procedure:

Ethernet Mode Select (Power Connector Power Switch
jumpers (J66 & J67)

"~
[
(o
-
.
"
y -
-~

1. Position the ML605 board so the Xilinx logo is oriented near the lower-left corner.

System Generator for DSP User Guide www.xilinx.com 293
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

2. Make sure the power switch, located in the upper-right corner of the board, is in the
OFF position.

3. Connect the AC power cord to the power supply brick. Plug the 12V power supply
adapter cable into the ML605 board. Plug in the power supply to AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

4. Using the RJ45 Male/Male Ethernet Cable, connect the Ethernet connector on the
ML605 board directly to the Ethernet connector on the host PC.

294 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware
Co-Simulation
The following procedure describes how to install and setup the hardware and software
required to run Hardware Co-Simulation on a Spartan-3A DSP 1800A Starter Board. This

board uses a JTAG cable instead of System ACE™ to download the configuration
bitstream.

Assemble the Required Hardware

1. Xilinx Spartan-3A DSP 1800A Starter Board which includes the following:
a. Spartan-3A DSP 1800A Starter Board
b. 5V Power Supply bundled with the development kit
2. You also need the following items on hand:
a. Ethernet network Interface Card (NIC) for the host PC.
b. Ethernet RJ45 Male/Male cable. (May be a Network or Crossover cable.)

c. Xilinx Parallel Cable IV with associated Power Jack splitter cable or a Xilinx
Platform USB Cable and a 14-pin ribbon cable.

Install Related Software

Install the related software on the PC as described in the topic Installing Software on the
Host PC.

Setup the Local Area Network

1. Setup the Local Area Network on your PC as described in the topic Setting Up the
Local Area Network on the PC.

Setup the Spartan-3A DSP 1800A Starter Board

1. Position the Spartan-3A DSP 1800A Starter Board so the Xilinx logo is oriented
rightside up and located in the lower-right quadrant of the board.

2. Make sure the power switch, located in the upper-right corner of the board, is in the
OFF position.

3. If you are using a Xilinx Parallel Cable IV, follow steps 3a through 3d.

a. Connect the DB25 Plug Connector on the Xilinx Parallel Cable IV to the IEEE-1284
compliant PC Parallel (Printer) Port Connector.

b. Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Parallel Cable IV to the JTAG Port (J2) on the Starter Board.

c. Connect the attached Power Jack cable to the Keyboard/Mouse connector on the
PC.

d. Ifnecessary, connect the male end of the Keyboard /Mouse cable to the associated
female connector on the Xilinx Power Jack cable (splitter cable).

4. If you are using a Xilinx Platform Cable USB, follow step 4a and 4b.
a. Connect the Xilinx Platform Cable USB to a USB port on the PC.

b. Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Platform Cable USB to the JTAG Port (J2) on the Starter Board.

System Generator for DSP User Guide www.xilinx.com 295
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

5. Connect the AC power cord to the power supply brick. Plug the 5V power supply
adapter cable into the 5V DC ONLY connector (J5) on the Starter Board. Plug the power
supply cord into AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

6. Turn the Spartan-3A DSP 1800A Starter Board POWER switch ON.

Installing a Spartan-3A DSP 3400A Board for Ethernet Hardware Co-
Simulation
The following procedure describes how to install and configure the hardware and software

required to run an Spartan-3A DSP 3400A Development Board Point-to-Point Ethernet
Hardware Co-Simulation.

Assemble the Required Hardware

1. Xilinx Spartan-3A DSP 3400A Development Board Kit which includes the following:
a. Spartan-3A DSP 3400A Development Board

b. +12V Power Supply bundled with Board LYR178-101C (Rev C) or
+5 V Power Supply bundled with Board LYR178-101D (Rev D)

c. CompactFlash Card
2. You also need the following items on hand:
a. Ethernet network Interface Card (NIC) for the host PC.
b. Ethernet RJ45 Male/Male cable. (May be a Network or Crossover cable.)
c. CompactFlash Reader for the PC.

Install Related Software

Install the related software on the PC as described in the topic Installing Software on the
Host PC.

Load the Sysgen Spartan-3A DSP 3400A HW Co-Sim Configuration Files

System Generator comes with HW Co-Sim configuration files that first need to be loaded
into the Spartan-3A DSP 3400 CompactFlash card. Follow the instructions that are
described in the topic Loading the Sysgen HW Co-Sim Configuration Files.

296 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Setup the Spartan-3A 3400A Development Board

The figure below illustrates the Spartan-3A 3400A Board (Rev C) components of interest in

this setup procedure:
r\ (LYR178-101C (Rev C))
O

G-12V Power Connecto

Ethernet Port

Ethernet Mode Select
jumper (JP2)

Configuration
Address
DIP Switches (S2)

System ACET”
Reset Button

(Compact Flash Card) LCD

System Generator for DSP User Guide www.xilinx.com 297
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

The figure below illustrates the Spartan-3A 3400A Board (Rev D) components of interest in
this setup procedure:

Ethernet Port

('LYR178-101D (Rev D)

Ethernet Mode Select
jumper (JP2)

Configuration
Address
DIP Switches (S2)

System ACET”
Reset Button

(Compact Flash Card +5V Power Connector)

1. Position the Spartan-3A 3400A Development Board as shown above with the LCD
display at the bottom.

Make sure the power switch is in the OFF position.

As shown below, Eject the CompactFlash card from the CompactFlash Reader.

= | Mamz = |T {=l=]
“eolocal Disk (C:) Local Disk
H,,'-,‘;.D'\-'D,I'CD-RW Drive (D) CD Drivz

Rernntahle risk

“eRemcvab OPEN
“wdRemovab Browse with Paink Shop Pro 8

_ | *=*Remcvab Explore
ceblocalDigk Search..

“eoLocal Disk

Sican Far Wirusss. .

Sharing and Szcuriky. ..
Open as Portable Media Device, ..

3

298 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

4. Remove the CompactFlash card from the CompactFlash Reader.

5. Locate the CompactFlash card slot (on the back side of the Spartan-3A 3400A Board)
and carefully insert the CompactFlash card with its front label facing away from the
board. The figure below shows the back side of a board with the ConpactFlash card
properly inserted.

Note: The CompactFlash card provided with your board might differ.

Caution! Be careful when inserting or removing the CompactFlash card from the slot. Do not
force it.

SILICON

MS

6. If you are using a “Rev C” 3400A Development Board, plug the +12V power supply
adapter cable into the power connector. Plug in the power supply into AC power.

If you are using a “Rev D” 3400A Development Board, plug the +5V power supply
adapter cable into the power connector. Plug in the power supply into AC power.

Caution! Make sure you use an appropriate power supply with the correct voltage and power
ratings.

7. Using the RJ45 Male/Male Ethernet Cable, connect the Ethernet connector on the
Spartan-3A 3400A board directly to the Ethernet connector on the host PC.

8. Set the S2 Configuration Address DIP Switches as follows:
1:0ff, 2:0n, 3:0ff, 4:0n, 5:0ff, 6:0n, 7:0n, 8:0ff

9. Set the Ethernet Mode Select jumper JP2 to pin 1 and pin 2 (the default GMII).
10. Verify the Configuration Settings
a. Turn the target board Power switch ON.

b. As shown below, check the information displayed on the 16-character 2-line LCD
screen of the board. If no error occurred, the Ethernet MAC address (without
colons) should appear on the first line of the display and the IPv4 address should
appear on the second line.

__— Ethemst MAC address

000435112233« |

192 .168.8.1«

IPvd address
LCD

System Generator for DSP User Guide www.xilinx.com 299
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/bvdocs/ipcenter/user_guide_user_manual/s3a-dsp-3400a-userguide.pdf

Chapter 3: Using Hardware Co-Simulation & XILINX.

c. If the LCD display does not show the information correctly, press the System
ACE™ Reset button to reconfigure the FPGA.

11. Verify the Ethernet Interface and Connection Status

a. To ensure the board is reachable by the host, issue ICMP ping from the host to
check the connectivity. For example, type "ping 192.168.8.1" on a console to test the
connectivity to a board with IP address 192.168.8.1.

Command Prompt

C:“>ping 292.168.8.1

Finging l9Z.lb8.8.1 with 3¢ bytes of data:

Reply Tron
Reply

Ping sta
= 4, Received = 4, Lost = 0 (0% loss),
trip times in mil1i-second
, Maximum = (ms, Average = Oms

b. The target FPGA listens on the UDP port 9999. Please ensure the underlying
network does not block the associated traffic when network-based Ethernet
configuration is used. This does not affect point-to-point Ethernet configuration.

For in-depth reference information on the Spartan-3A 3400A Development Board, please
refer to the following online manual:

http:/ /www.xilinx.com /support/documentation /boards_and_kits/ug498_s3a_3400_bo
ard.pdf

300 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for Ethernet Hardware Co-Simulation

Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation

The following procedure describes how to install and setup the hardware and software
required to run Ethernet Hardware Co-Simulation on an SP601/SP605 board.

Assemble the Required Hardware

1. Xilinx Spartan®-6 SP605 Kit includes the following:
a. Spartan-6 LXT SP605 board
b. 12V Power Supply
c. Xilinx Platform USB cable
d. Xilinx Point-to-point Ethernet cable

Install Related Software

Install the related software on the PC as described in the topic Installing Software on the
Host PC.

Setup the SP601/SP605 Board

The figure below illustrates the SP605 components of interest in this JTAG setup
procedure:

Mini USB
Connector

Power
Connector

2. Make sure the power switch, located in the right edge of the board, is in the OFF
position.

3. Onthe SP605 board, connect the small end of the Mini USB cable to the connector USB
socket closest to the LEDs, as shown below. On the SP601 board, connect the small end
of the USB cable to the socket labeled “USB JTAG”.

System Generator for DSP User Guide www.xilinx.com 301
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Connecting Xilinx USB cable to the SP605 board

Connect Large
End to PC

4

s

4. Connect the large end of the Mini USB cable to a USB socket on your PC.

5. Connect one end of the Ethernet cable to the Ethernet socket on the SP601/SP605
board and the other end to the Ethernet socket on the PC.

302 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for JTAG Hardware Co-Simulation

6. Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the SP601/SP605 board. Plug in the power supply to AC power.

7. Turn the SP601/SP605 board Power switch ON.
Installing Your Board for JTAG Hardware Co-Simulation

Installing an ML402 Board for JTAG Hardware Co-Simulation

The following procedure describes how to install and setup the hardware and software
required to run JTAG Hardware Co-Simulation on an ML402 board.

Assemble the Required Hardware

1. Xilinx Virtex®-4 SX ML402 board which includes the following;:
a. Virtex-4 ML402 board
b. 5V Power Supply bundled with the ML402 kit
c. CompactFlash Card

2. You also need the following items on hand:

a. Xilinx Parallel Cable IV with associated Power Jack splitter cable or Xilinx
Platform USB Cable and a 14-pin ribbon cable.

b. CompactFlash Reader for the PC.
Install Xilinx ISE Design Suite Software on the Host PC

Install Xilinx ISE® Design Suite software in the Host PC as described in the document:

ISE Design Suite Installation, Licensing, and Release Notes

Setup the ML402 Board

The figure below illustrates the ML402 components of interest in this JTAG setup

procedure:
an s OF=
FPGA & CPU Tals]
Debug Port -
CPU Resat .
_.".I CompactFlash K
INT and * Syslern ACE
DONE LED settings
System Generator for DSP User Guide www.xilinx.com 303

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Position the ML402 board so the Virtex®-4 and Xilinx logos are oriented near the top

edge of the board.

Make sure the power switch, located in the upper-right corner of the board, is in the

OFF position.

If you are using a Xilinx Parallel Cable IV, follow steps 3a through 3d.

a. Connect the DB25 Plug Connector on the Xilinx Parallel Cable IV to the IEEE-1284
compliant PC Parallel (Printer) Port Connector.

b. Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Parallel Cable IV to the FPGA & CPU Debug Port (shown above) on
the ML402 board.

c. Connect the attached Power Jack cable to the Keyboard/Mouse connector on the
PC.

d. If necessary, connect the male end of the Keyboard /Mouse cable to the associated

female connector on the Xilinx Power Jack cable (splitter cable).

If you are using a Xilinx Platform Cable USB, follow step 4a and 4b.

a.
b.

Connect the Xilinx Platform Cable USB to a USB port on the PC.

Using the narrow (14 pin) 6” High Performance Ribbon cable, connect the pod end
of the Xilinx Platform Cable USB to the FPGA & CPU Debug Port (shown above)
on the ML402 board.

Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the ML402 board. Plug in the power supply to AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

Turn the ML402 board Power switch ON.

304

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for JTAG Hardware Co-Simulation

Installing an ML605 Board for JTAG Hardware Co-Simulation

The following procedure describes how to install and setup the hardware and software
required to run JTAG Hardware Co-Simulation on an ML605 board.

Assemble the Required Hardware

1. Xilinx Virtex®-6 SX ML605 board which includes the following;:
a. Virtex-6 ML605 board
b. 12V Power Supply bundled with the ML605 kit
c. Mini USB cable

Install Xilinx ISE Design Suite Software on the Host PC

Install Xilinx ISE® Design Suite software in the Host PC as described in the document:

ISE Design Suite Installation, Licensing, and Release Notes

Setup the ML605 Board

The figure below illustrates the ML605 components of interest in this JTAG setup
procedure:

Mini USB (Power Connector (Power Switch)
Connector
! A) / H L

Position the ML605 board as shown above.

2. Make sure the power switch, located in the upper-right corner of the board, is in the
OFF position.

System Generator for DSP User Guide www.xilinx.com 305
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm

Chapter 3: Using Hardware Co-Simulation & XILINX.

3. Asshown below, connect the small end of the Mini USB cable to the connector USB
socket closest to the LEDs.

Connect Large
End to PC

4. Connect the large end of the Mini USB cable to a USB socket on your PC.

As shown below, the LED next to the Mini USB connector turns green when the cable
is connected properly.

5. Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the ML605 board. Plug in the power supply to AC power.

Caution! Make sure you use an appropriate power supply with correct voltage and power
ratings.

6. Turn the ML605 board Power switch ON.

306 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Installing Your Board for JTAG Hardware Co-Simulation

Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation

The following procedure describes how to install and setup the hardware and software
required to run JTAG Hardware Co-Simulation on an SP601/SP605 board.

Assemble the Required Hardware

1. Xilinx Spartan®-6 SP601/SP605 Kit includes the following;:
a. Spartan-6 LXT SP601/SP605 board
b. 12V Power Supply
c. Mini USB cable

Install Xilinx ISE Design Suite Software on the Host PC

Install Xilinx ISE® Design Suite software in the Host PC as described in the document:

ISE Desig¢n Suite Installation, Licensing, and Release Notes

Setup the SP601/SP605 Board

The figure below illustrates the SP605 components of interest in this JTAG setup
procedure:

Mini USB
Connector

Position the SP605 board as shown above.

2. Make sure the power switch, located in the right edge of the board, is in the OFF
position.

3. Asshown below, connect the small end of the Mini USB cable to the connector USB
socket closest to the LEDs.

System Generator for DSP User Guide www.xilinx.com 307
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm

Chapter 3: Using Hardware Co-Simulation & XILINX.

Connecting Xilinx USB cable to the SP605 board

Connect Large
End to PC

Connect the large end of the Mini USB cable to a USB socket on your PC.

Connect the AC power cord to the power supply brick. Plug the power supply adapter
cable into the SP601/SP605 board. Plug in the power supply to AC power.

6. Turn the SP601/SP605 board Power switch ON.

308 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Supporting New Boards through JTAG Hardware Co-Simulation

Supporting New Boards through JTAG Hardware Co-Simulation

System Generator provides a generic interface that uses JTAG and a Xilinx programming
cable (e.g., Parallel Cable IV or Platform Cable USB) to communicate with FPGA
hardware. This takes advantage of the ability of JTAG to extend System Generator's
hardware in the simulation loop capability to numerous other FPGA boards.

Hardware Requirements

An FPGA board can support the JTAG hardware co-simulation interface, provided it
includes the following hardware components:

¢ A Xilinx FPGA part that is available in System Generator as a supported device (i.e., a
device that can be chosen in the Part field of the System Generator token dialog box);

¢ Anon-board oscillator that supplies the FPGA with a free-running clock source;
e A JTAG header that provides access to the FPGA.

Supporting New Boards

Although the JTAG hardware co-simulation interface is generic, an FPGA board must
provide its own board support package before it can be supported in System Generator. A
board support package is comprised of four files that provide information about the board,
or board. A number of FPGA boards already have board support packages available. You
may have an FPGA board that does not have a hardware co-simulation board support
package. In this case, you can create your own, assuming your board meets the specified
Hardware Requirements. Creating a new board support package for a board is a
straightforward process. System Generator provides a utility, called the System Generator
Board Description Builder (SBDBuilder), that allows you to create new board support
packages in a graphical environment. It is also possible to define board support packages
manually by editing a series of template files that are included in the System Generator
software tree.

SBDBuilder can be launched by using the command x1sBDBuilder in the MATLAB
console. Alternatively, SBDBuilder can also be launched from the System Generator Token
by double-clicking on the System Generator token; under Compilation select Hardware
Co-Simulation > New Compilation Target ...

System Generator for DSP User Guide www.xilinx.com 309
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation

& XILINX.

SBDBuilder Dialog Box

After invoking SBDBuilder, the main dialog box will appear as shown below:

@System Generator Board Description Build o i)

~Target Board Information

Eard Marme ||

—System Clock

Frequency (MHz) | Pin Location |

—IT&iG Options

Boundary Scan F'Dsitinnl IR Lengths I Detect I

~Targetable Devices

Family | Part | Spead | Package | add = |
Delste |

~Mon-Memory-Mapped Ports

Paort Marne Direction Width | add... |
Edit... |
Delete |

Help Load. .. I Save Zip. .. Install | Exit |

Once the main dialog box is open, you may create a board support package by filling in the

required fields described below:

Board Name: Tells a descriptive name of the board. This is the name that will be listed in
System Generator when selecting your JTAG hardware co-simulation board for

compilation.

System Clock: JTAG hardware co-simulation requires an on-board clock to drive the
System Generator design. The fields described below specify information about the

board's system clock:

310

www.xilinx.com

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Supporting New Boards through JTAG Hardware Co-Simulation

o Frequency (MHz): Specifies the frequency of the on-board system clock in MHz.

Note: You should use a clock frequency between 10 MHz and 100 MHz. Depending on the
target FPGA device and your design, the design compiled for hardware co-simulation may
not meet timing constraints at a higher clock frequency after the hardware co-simulation
logic is added.

¢ Pin Location: Specifies the FPGA input pin to which the system clock is connected.

JTAG Options: System Generator needs to know several things about the FPGA board's
JTAG chain to be able to program the FPGA for hardware co-simulation. The topic
Obtaining Platform Information describes how and where to find the information required
for these fields. If you are unsure of the specifications of your board, please refer to the
manufacturer's documentation. The fields specific to JTAG Options are described below:

¢ Boundary Scan Position: Specifies the position of the target FPGA on the JTAG chain.
This value should be indexed from 1. (e.g. the first device in the chain has an index of
1, the second device has an index of 2, etc.)

¢ IR Lengths: Specifies the lengths of the instruction registers for all of the devices on
the JTAG chain. This list may be delimited by spaces, commas, or semicolons.

e Detect: This action attempts to identify the IR Lengths automatically by querying the
FPGA board. The board must be powered and connected to a Parallel Cable IV for this
to function properly. Any unknown devices on the JTAG chain will be represented
with a "?" in the list, and must be specified manually.

Targetable Devices: This table displays a list of available FPGAs on the board for
programming. This is not a description of all of the devices on the JTAG chain, but rather a
description of the possible devices that may exist at the aforementioned boundary scan
position. For most boards, only one device needs to be specified, but some boards may
have alternate, e.g., a choice between an xcv1000 or an xcv2000 in the same socket. Use the
Add and Delete buttons described below to build the device list:

e Add: Brings up a menu to select a new device for the board. As shown in the figure
below, devices are organized by family, then part name, then speed, and finally the

package type.
¢ Delete: Remove the selected device from the list.

spartan2
spartanle xc2enle
spartan3

xe2e100e

Xo2E200e
XE2E300e

¥
»
¥
wvirtex ¥
virtexe ¥
virtex2 4
vitez2p b r2ed00e
virtexd 4 wo2aB00e

Non-Memory-Mapped Ports: You can add support for your own board-specific ports
when creating a board support package. Board-specific ports are useful when you have on-
board components (e.g., external memories, DACs, or ADCs) that you would like the
FPGA to interface to during hardware co-simulation. Board specific ports are also referred
to as non-memory-mapped because when the design is compiled for hardware co-
simulation, these ports will be mapped to their physical locations, rather than creating
Simulink ports. See Specifying Non-Memory Mapped Ports for more information. The
Add, Edit, and Delete buttons provide the controls needed for configuring non-memory
mapped ports.

System Generator for DSP User Guide www.xilinx.com 311
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

e Add: Brings up the dialog to enter information about the new port.
e Edit: Make changes to the selected port.

e Delete: Remove the selected port from the list.
Help: Displays this documentation.

Load: Fill in the form with values stored in an SBDBuilder Saved Description XML file.
This file is automatically saved with every plugin that you create, so it is useful for
reloading old plugin files for easy modification.

Save Zip: Prompts you for a filename and a target pathname. This will create a zip file with
all of the plugin files for System Generator. The zip will be in a suitable format for passing
to the System Generator xlInstallPlugin function.

Exit: Quit the application.

Specifying Non-Memory Mapped Ports

You may use SBDBuilder to specify the non-memory mapped ports for your FPGA board.
When you choose to Add or Edit a non-memory mapped port from the main dialog, the
port editor dialog will come up as shown below.

Configure a Port gl
Port Options
PUr‘[Namel & |nput © OQutput
Mew Pin
Pin LOC [PULLUP [FAST Add Pin
Pin List
Index | PinLoC | PULLUP | FAST | wave up
Mowe Diown
Celele Pin
Save and Start MNew Save and Close ‘ Cancel ‘

The port editor dialog presents the following controls for port configuration:
Port Options: Specifies the options that will affect the entire port.

e Port Name: This is the name that will describe the port in System Generator. It should
be a MATLAB-compatible name (begins with a letter, followed by only letters,
numbers, and underscores).

¢ Input/Output: Specifies the direction of the port.

New Pin: This is the entry point to add pins to a port. Ports may consist of a single pin for
a Boolean value, or multiple pins for a vector or bus.

e Pin LOC: Defines the absolute placement of the pin within the FPGA by specifying a
location constraint. It is necessary to define this for every pin to make sure that the
FPGA programming corresponds to the actual hardware connections.

¢ PULLUP: A constraint that can be applied to each pin. It guarantees a logic High level
to allow 3-stated nets to avoid floating when not being driven.

312

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Supporting New Boards through JTAG Hardware Co-Simulation

e FAST: A constraint that can be applied to each pin. It increases the speed of an IOB
output. FAST produces a faster output but may increase noise and power
consumption.

¢ Add Pin: Add a pin to the port. Note that the pin is not part of the port until this
button is selected.

Note: Pressing 'enter' while the cursor is in the Pin LOC field is equivalent to pressing this
button.

Pin List:
¢ Index: (Cannot edit directly) Since a port can be more than one bit, it is represented as

a vector of pins. The index indicates which bit position a particular pin represents in
the port. Zero is the least-significant bit.

¢ Move Up/Down: Move the selected pin up or down in the pin list. This is useful to
correct the vector bit-ordering of the port.

¢ Delete Pin: Removes the selected pin from the list.

Save and Start New: Save the port to the board support package. The form will then be
cleared so that you may enter a new port.

Save and Close: Save the port to the board support package and return to the main screen.
Cancel: Discard changes to the current port and return to the main screen.

When you are finished entering a port, it will look similar to the dialog box shown below:

Configure a Port El
Port Options

Port Mame [lcd_data " Input & Cutput
Mew Pin

Pin LOC [PULLUR [FAST

Pin List
Index | PinLOC | PULLUP | FAST Move Up
] I [[d
4 Rz [[tdave Dionven
5 R B [
i P2z [[Delele Pin
7 P1]
Save and Start Mew | Save and Cloze | Cancel ‘
System Generator for DSP User Guide www.xilinx.com 313

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation

& XILINX.

Saving Plugin Files

Once you have filled out the dialog box with information about your board, it should

resemble the dialog box shown below:

[52] System Generator Board Description Builder Z“E|E|

Target Board Information

Board Mame [Memec Deslgh vinexl Fra LG

Systern Clock

Frequency (MHz) (100 Pin Location |D12

JTAG Options

Boundary Scan Position |2_ IR Lengths 2,10 Detect

Targetahle Devices

Family Part Speed Package Add =
virtexZ2p we2vpd -5 fgd56

Delete

MNon-Memor-Mapped Pors

Udafigus

Port Mame Direction Width Add
led_en out 1 Edit...
led_rs out 1
led1 aut 1 Delete
ler? nnt 1 j

Help | Load... ‘ Save Zip.. Save Files. .. ‘ Exit |

At this point, you can save the board support package into a System Generator plugin zip
file or as the raw board support package files described in the topic Board Support Package

Files, plus the additional SBDBuilder files described below:

¢ yourboard.xml: This is the SBDBuilder Saved Description, which allows SBDBuilder
to reload plugins you have previously created. The name you select for this file
(‘'yourboard') will propagate into the names of the other files as well.

¢ yourboard_libgen.m: Automates the process of creating the gateways for the non-
memory-mapped ports on this device. Running this script results in the creation a

library like that shown below:

=] Library: Memec_Design_V2P4_FG456_L... [= |[B][X]

File Edit Yiew Farmat Help
O S 1)
nmm nmm
Feset TxD
nmm nmm
Ready 100% Unlocked
314 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Supporting New Boards through JTAG Hardware Co-Simulation

Board Support Package Files

An FPGA board that supports JTAG hardware co-simulation is defined in System
Generator by its board support package. This package tells System Generator useful
information about the board, such as the appropriate part settings and additional
information related to the JTAG and Boundary Scan interface provided by the board. A
board support package is comprised of the files listed below:

Note: In this document, three of the filenames are prefixed by the name 'yourboard'. This prefix
should be replaced with a moniker suitable for 'your board' (e.g., xtremedspkit, mblazedemo).

1. xltarget.m — Tells System Generator that your FPGA board is a compilation target.
There is a unique xltarget.m file for each compilation target. This function tells the tool
the name of the compilation target (this name is shown in the compilation target field
of the System Generator token dialog box) and also the name of the function where it
can look for information about the particular board.

2. yourboard_target.m — Configures the System Generator token dialog box with
information about the FPGA board, including device and part information, clock
frequency, and the location of the clock pin.

3. yourboard_postgeneration.m — Tells System Generator the scripts to run after HDL
netlist generation in order to produce an FPGA configuration file that is suitable for
your board. It also specifies non-System Generator token dialog box related
information, including the position of the device in the board's Boundary Scan chain
and the instruction register lengths of each device. This function is referred to as a
post-generation function.

4. yourboard.ucf — User Constraints File (UCF) for the FPGA board. Specifies clock pin
location and frequency, and optionally constrains any board-specific ports.

Included in the System Generator software tree are templates for the files listed above. If
you would like to manually support a new board, you may customize each of the four
template files with information that is specific to your board. You must also rename the
files by substituting a suitable name in place of the ' yourboard' prefix.

Each template is fully annotated with step-by-step instructions that indicate which fields
should be modified, and the types of values that should be given to these fields. The fields
that must be modified are underlined using "~~~" notation. The template files can be
found in the sysgen/hwcosim/jtag/templates directory of your System Generator
install tree.

System Generator for DSP User Guide www.xilinx.com 315
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation

& XILINX.

Obtaining Platform Information

SBDBuilder (or alternatively, the board support package template files) require certain
information about your FPGA board. The table below lists the information you need.

Information

Description

Clock pin location

Pin location constraint for the FPGA system clock source.

Clock period

Period constraint for the FPGA system clock source.

Device position in the
Boundary Scan Chain

the chain.

Tells the position of the target FPGA in the board's Boundary Scan
Chain. Indexing begins at 1, with device 1 being the first device in

Instruction register
lengths

Chain.

Instruction register length of every device in the Boundary Scan

You may obtain the clock pin location and period from any number of possible sources,
including the vendor documentation, existing constraints files, or vendor online
documentation/support.

If you do not know which devices are in your board's boundary scan chain, you may use
iMPACT to assist you in finding this information. iMPACT is a tool that is included with
the Xilinx ISE® software that allows you to perform device configuration and file
generation functions. When the tool is invoked, it automatically detects the contents of
your board's boundary scan chain, and displays these contents graphically, as shown

below.

IMPACT - fdefaull.ipl - [Buuidary Sean]

ﬂ File Edit Yiew Operaions Options Oukput Debug Window Help

[~ 18]%]

‘PH&#BBX
|'| X
- ZalBoundary Scan
PG lnveSenal
TS electAP

BalDezktap Confiquration
Balect SPI Configurati...
[E]5vetemacE

[E]PROM Fie Farmatter

MPACT Mades

IMFEL | Fo

Arvailable Dperations are:

=g Get Davica D

whGet Device Signauredls...
=pCheck |doode

=pHead Btatus Reagister

MPACT Proces: Operations

PROGRESS_END -
Elmgp=ed time =

£

=
it
=

ff %% BATCH CHD @ identifyNPHM

“Ouput | Epor | Wwarning

(=&
of M aaam ({F: (2SO0 W
s, =|u||'uu|n e
Tol EUNT EXIUNXE E X
k|
ACCace WETIE ey] X057 440
---file ¥ —- ---filg 7 -— - fig 7 --- —-fie ? —-
TOD!
| g Boundary Scan
End Operation. ~
1 =zec.
bt
Configuration | Paralld IV | 5 MHz | LPTL

316

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Supporting New Boards through JTAG Hardware Co-Simulation

Once you have determined which devices are in the Boundary Scan Chain, you must
determine the instruction register lengths for each device. The table below specifies the
instruction register lengths for various Xilinx families. You may use the auto detection

capability of SBDBuilder to determine the instruction register lengths. If this utility does

not work, you may use the following table to find the instruction register lengths for a

particular part family.

Family IR Length

System_ACE™-CF 8

Spartan®-3, 3E, 3A, 3AN, 3A DSP 6

Spartan-6 LX, LXT 6

Virtex®-4 LX, SX 10
Virtex®-4 FX 12, 20 10
Virtex®-4 FX 40, 60, 100, 140 14
Virtex®-5 LX, LXT, SXT 10
Virtex®-5 FX 30T, 70T 10
Virtex®-5 FX 1007, 130T, 200T 14
Virtex®-6 LX, LXT 10
Platform Flash XCFxxS 8

Platform Flash XCFxxP 16

System Generator for DSP User Guide www.xilinx.com 317

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Manual Specification of Board-Specific Ports

You can manually specify your own board-specific ports when creating a board support
package. To define board-specific ports for your FPGA board, you must do the following;:

¢ Add all board-specific ports to the yourboard.ucf template file. Each constraint
should be accompanied by a special comment, <port> contingent, where <port>
is the name of the board specific port. When System Generator compiles a model for
hardware, it creates a custom UCF file. Constraints associated with signals that aren't
used in the model are removed from the custom UCEF file.

Example constraints for ports adcl_d(0) and adcl_d(1):

net adcl _d(0) loc = af20; # adcl d contingent
net adcl d(1) loc = adl8; # adcl d contingent

e Declare all board-specific ports in the yourboard postgeneration.m function.

Note: Bi-directional ports are currently not supported.

Include this line in yourboard postgeneration.m function:
params. ('non_memory mapped ports') = non_mm_ports;

¢ Customize a gateway with the board-specific port information:
¢ Create a library and add a gateway

¢ Name the Gateway with the name of your board specific port (this name must
match the port name used in the post-generation function and UCF file)

¢ Select the Gateway by clicking on it
¢ In the MATLAB command window, type the following
> xl1SetNonMemMap (gcb, 'Xilinx', 'jtaghwcosim')

¢ Save the library

You are now ready to use your board-specific gateway in System Generator. When you
include the gateway in your model, you must make sure the signals that drive (or are
driven by) the gateway have widths that match the widths of the ports in hardware. You
can force the width of a signal driving a gateway out by preceding it with a convert block.

318 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Supporting New Boards through JTAG Hardware Co-Simulation

Note: A subsystem (as shown below) is a convenient place to store the gateway out and convert

block pairs.

i1 bsio_ex/dac1_d

EEX]

File Edit WView Simulat

O =zE&

on Format Tools Help

F1100%

ode45

Providing Your Own

Top Level

When a model is compiled for JTAG hardware co-simulation, System Generator produces
a generic top-level HDL entity for the design. This entity instantiates the logic required by

the model and the interfacing logic required for JTAG hardware co-simulation.

Sometimes your board may have a special requirement that precludes you from using this
generic top level. For example, your board may have components that rely on clocks that

are generated by a DCM that resides in the board's FPGA. In these situations, System

Generator allows you to use your own top-level netlist when it compiles the model into

hardware.

Note: If you choose to use your own top-level component, you must provide a previously

synthesized version (.ngc, .edf, .edn) to System Generator.

Note: Your top-level component must instantiate the generic JTAG hardware co-simulation top-level
component. The component instantiation must include the required clocking signals, plus any board-
specific 1/0 ports your board may support. An example component instantiation is provided below:

component jt
-- require
sys_clk
cosim clk
sys_clk _bu
-- board s
adcl d
dacl_d
dacl_divo
dacl divl
dacl mod0
dacl modl
dacl reset

)i

agcosim top port (
d clocking ports
in std logic;
out std logic;
f : out std logic;
pecific ports
in std _logic_vector (13 downto 0);
out std logic_vector (13 downto 0) ;
: out std logic;
: out std logic;
: out std logic;
: out std logic;
: out std logic

end component;

You may specify your own top-level netlist in yourboard_postgeneration.mas

follows:

params.vendor toplevel = 'yourboard toplevel';

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

319

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

Here yourboard_toplevel is the name of the pre-compiled, top-level netlist component
you would like System Generator to use for the top level. You must also tell System
Generator the netlist file names that are associated with the top-level component. These
files are specified as shown below in yourboard _postgeneration.m.

params.vendor netlists = {'yourboard toplevel.ngc', 'foo.edf'};

Installing Board-Support Packages

SBDBuilder can generate a plugin zip file for your board support package that may be
installed automatically using the xlInstallPlugin utility provided with System Generator.
You may manually install the board support package files if an appropriate plugin zip file
is not provided. This topic describes how to install the files manually in your System
Generator software tree.

Plugins Directory

The System Generator software provides a special directory in which the board support
package files for new compilation targets can be added. This directory,
plugins/compilation, provides a repository for System Generator compilation target
plugins, and has unique properties that are discussed later in this topic. Your System
Generator software tree should resemble the tree hierarchy shown below.

EH:I silir
E|{:| SYSOEen

&1 bin

-1 core_cache
-] data
B examples
E{:I help

{21 include
#-{] jtagcosim
= i

BT plugins

= whremedspkit

The board support package files for you board should be saved in a subdirectory, or series
of subdirectories, under the plugins/compilation directory.

Note: All configuration files associated with a board support package must be saved in the same
directory.

System Generator searches this directory (and subdirectories) for compilation targets.
Recall that the x1target .m file tells System Generator the board should be used as a
compilation target. When the tool searches the plugins/compilation directory, it adds
a compilation target to the System Generator token dialog box for every x1target . mfile
that it encounters.

The System Generator token dialog box Compilation submenus mirror the directory
structure under the plugins/compilation directory. When you create a new directory,

320

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Supporting New Boards through JTAG Hardware Co-Simulation

or directory hierarchy, for a board support package, the names of the directories define the
taxonomy of the compilation target submenus.

Compiation :
HDL etis: |
. part MEC Motk
4 Bistraam
EDE Expart Toal

e Timirg Snakysis MicroBaze Multimedia Board l

Hardware Co-Simulation
™) Fon
e
1 MicroBlaze Multimedia Board
[#1 7] seremeDsP Development kit

Detecting New Packages

In order for System Generator to recognize the new target, you must tell it to search for
new compilation targets by entering the following command in the MATLAB command
window:

xlrehash xltarget_cache

You can now select the FPGA board from the list of compilation targets in the System
Generator token dialog box.

Note: If you have a System Generator token dialog box open when you enter this command, it will
not show up until you close and re-open the dialog box.

System Generator for DSP User Guide www.xilinx.com 321
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 3: Using Hardware Co-Simulation & XILINX.

322 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Chapter 4

Importing HDL Modules

Sometimes it is important to add one or more existing HDL modules to a System Generator
design. The System Generator Black Box block allows VHDL, Verilog, and EDIF to be
brought into a design. The Black Box block behaves like other System Generator blocks - it
is wired into the design, participates in simulations, and is compiled into hardware. When
System Generator compiles a Black Box block, it automatically wires the imported module
and associated files into the surrounding netlist.

Table 4-1:

The Black Box Interface

Black Box HDL Requirements
and Restrictions

Details the requirements and restrictions for VHDL,
Verilog, and EDIF associated with black boxes.

Black Box Configuration Wizard

Describes how to use the Black Box Configuration
Wizard.

Black Box Configuration M-
Function

Describes how to create a black box configuration M-
function.

HDL Co-Simulation

Configuring the HDL Simulator

Explains how to configure ISE® Software or
ModelSim to co-simulate the HDL in the Black Box
block.

Co-Simulating Multiple Black
Boxes

Describes how to co-simulate several Black Box blocks
in a single HDL simulator session.

Black Box Tutorial Example 1:
Importing a Core Generator
Module that Satisfies Black Box
HDL Requirements

Describes an approach that uses the System Generator
Black Box Configuration Wizard.

Black Box Tutorial Example 2:
Importing a Core Generator
Module that Needs a VHDL
Wrapper to Satisfy Black Box
HDL Requirements

Describes an approach that requires that you to
provide a VHDL core wrapper. Simulation issues are
also addressed.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

323

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

Black Box Tutorial Example 3:
Importing a VHDL Module

Describes how to use the Black Box block to import
VHDL into a System Generator design and how to use
ModelSim to co-simulate.

Black Box Tutorial Example 4:
Importing a Verilog Module

Demonstrates how Verilog black boxes can be used in
System Generator and co-simulated using ModelSim.

Black Box Tutorial Example 5:
Dynamic Black Boxes

Demonstrates dynamic black boxes using a transpose
FIR filter black box that dynamically adjusts to
changes in the widths of its inputs.

Black Box Tutorial Example 6:
Simulating Several Black Boxes
Simultaneously

Demonstrates how several System Generator Black
Box Blocks can be co-simulated simultaneously, using
only one ModelSim license while doing so.

Black Box Tutorial Exercise 7:
Advanced Black Box Example
Using ModelSim

Describes how to design a Black Box block with a
dynamic port interface and how to configure a black
box using mask parameters. Also, describes how to
assign generic values based on input port data types
and how to save black box blocks in Simulink libraries
for later reuse. How to specify custom scripts for
ModelSim HDL co-simulation is also covered.

Black Box Tutorial Example 8:
Importing, Simulating, and
Exporting an Encrypted VHDL
File

Describes how to import a design as an encrypted
VHDL file into a Black Box block, simulate the design,
then export the VHDL back out as a separate
encrypted file from the rest of the netlist.

Black Box Tutorial Exercise 9:
Prompting a User for Parameters
in a Simulink Model and Passing
Them to a Black Box

Describes how to access generics/parameters from
the masked counter and pass them onto the black box
to override the default local parameters in the VHDL
file.

Black Box HDL Requirements and Restrictions

An HDL component associated with a black box must adhere to the following System
Generator requirements and restrictions:

The entity name must not collide with any other entity name in the design.

Bi-directional ports are supported in HDL black boxes, however they will not be

displayed in the System Generator as ports; they only appear in the generated HDL
after netlisting.

For Verilog black boxes, the module and port names must be lower case and must
follow standard VHDL naming conventions.

Any port that is a clock or clock enable must be of type std_logic. (For Verilog black
boxes, ports must be of non-vector inputs, e.g., input clk.)

Clock and clock enable ports in black box HDL should be expressed as follows: Clock
and clock enables must appear as pairs (i.e., for every clock, there is a corresponding
clock enable, and vice-versa). Although a black box may have more than one clock
port, a single clock source is used to drive each clock port. Only the clock enable rates
differ.

Each clock name (respectively, clock enable name) must contain the substring c1k, for
examplemy clk landmy ce 1.

324

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration Wizard

e The name of a clock enable must be the same as that for the corresponding clock, but
with ce substituted for c1k. For example, if the clock is named src_clk_1, then the
clock enable must be named src_ce_1.

e Falling-edge triggered output data cannot be used.

Black Box Configuration Wizard

System Generator provides a configuration wizard that makes it easy to associate a VHDL
or Verilog module to a Black Box block. The Configuration Wizard parses the VHDL or
Verilog module that you are trying to import, and automatically constructs a configuration
M-function based on its findings. It then associates the configuration M-function it
produces to the Black Box block in your model. Whether or not you can use the
configuration M-function as is depends on the complexity of the HDL you are importing.
Sometimes the configuration M-function must be customized by hand to specify details
the configuration wizard misses. Details on the construction of the configuration M-
function can be found in the topic Black Box Configuration M-Function.

Using the Configuration Wizard

The Black Box Configuration Wizard opens automatically when a new black box block is
added to a model.

Note: Before running the Configuration Wizard, ensure the VHDL or Verilog you are importing
meets the specified Black Box HDL Requirements and Restrictions.

For the Configuration Wizard to find your module, the model must be saved in the same
directory as the module you are trying to import. This means, in particular, that the model
must be saved to same directory.

Note: The wizard only searches for .vhd and .v files in the same directory as the .md1 file. If the
wizard does not find any files it issues a warning and the black box is not automatically configured.
The warning looks like the following:

) Could Not Use Black Box Configuration Wizard

To usze the configuration wizard for the black box, you must brst save the
model o a folder that includes the black box YHOLA AYerlog. 1f vou do not
wigh to uze the configuration wizard, pou can wite your own

initialization m-furction to describe this black bow Plzase consult the
block documentation for detals,

o |

System Generator for DSP User Guide www.xilinx.com 325
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

After searching the model's directory for . vhd and .v files, the Configuration Wizard
opens a new window that lists the possible files that can be imported. An example
screenshot is shown below:

Select the file that contains the entity description for th... E|g|

Loak jn: |_;' black_box j l:j(-

example.whd

File narme: |h|ack_bn:<_e>:ample.vhd
Filez of wpe: |AII Supported HDL Files %, " vhd] ﬂ Cancel

You can select the file you would like to import by selecting the file, and then pressing the
Open button. At this point, the configuration wizard generates a configuration M-function
and associates it with the black box block.

Note: The configuration M-function is saved in the model's directory as <module> config.m,
where <modules is the name of the module that you are importing.

Configuration Wizard Fine Points

The configuration wizard automatically extracts certain information from the imported
module when it is run, but some things must be specified by hand. These things are
described below:

Note: The configuration function is annotated with comments that instruct you where to make these
changes.

e If your model has a combinational path, you must call the tagAsCombinational
method of the block's SysgenBlockDescriptor object.

e The Configuration Wizard only knows about the top-level entity that is being
imported. There are typically other files that go along with this entity. These files must
be added manually in the configuration M-function by invoking the addFile method
for each additional file.

¢ The Configuration Wizard creates a single-rate black box. This means that every port
on the black box runs at the same rate. In most cases, this is acceptable. You may want
to explicitly set port rates, which can result in a faster simulation time.

Black Box Configuration M-Function

Animported module is represented in System Generator by a Black Box block. Information
about the imported module is conveyed to the black box by a configuration M-function.
This function defines the interface, implementation, and the simulation behavior of the
black box block it is associated with. More specifically, the information a configuration M-
function defines includes the following:

e Name of the top-level entity for the module;

e VHDL or Verilog language selection;

326

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration M-Function

e Port descriptions;

¢ Generics required by the module;

¢ Clocking and sample rates;

e Files associated with the module;

e Whether the module has any combinational paths.

The name of the configuration M-function associated with a black box is specified as a

parameter in the black box parameters dialog box (parity block config.min the
example shown below).

Basic | Implamentation

Block configuration m-function
parity_block_config

Sirulation mode | External co-simulator [«

HOL corsimulator to use (specify helper block by name)
todelSim

Configuration M-functions use an object-based interface to specify black box information.
This interface defines two objects, SysgenBlockDescriptor and SysgenPortDescriptor.
When System Generator invokes a configuration M-function, it passes the function a block
descriptor:

function sample block config(this block)

A SysgenBlockDescriptor object provides methods for specifying information about the
black box. Ports on a block descriptor are defined separately using port descriptors.

Language Selection

The black box can import VHDL and Verilog modules. SysgenBlockDescriptor provides a
method, setTopLevelLanguage, that tells the black box what type of module you are
importing. This method should be invoked once in the configuration M-function. The
following code shows how to select between the VHDL and Verilog languages.

VHDL Module:

this block.setTopLevelLanguage ('VHDL') ;
Verilog Module:

this block.setTopLevelLanguage ('Verilog') ;

Note: The Configuration Wizard automatically selects the appropriate language when it generates
a configuration M-function.

Specifying the Top-Level Entity

You must tell the black box the name of the top-level entity that is associated with it.
SysgenBlockDescriptor provides a method, setEntityName, which allows you to specify
the name of the top-level entity.

Note: Use lower case text to specify the entity name.

For example, the following code specifies a top-level entity named foo.

System Generator for DSP User Guide www.xilinx.com 327
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

this block.setEntityName ('foo') ;

Note: The Configuration Wizard automatically sets the name of the top-level entity when it
generates a configuration M-function.

Defining Block Ports

The port interface of a black box is defined by the block's configuration M-function. Recall
that black box ports are defined using port descriptors. A port descriptor provides
methods for configuring various port attributes, including port width, data type, binary
point, and sample rate.

Adding New Ports

When defining a black box port interface, it is necessary to add input and output ports to
the block descriptor. These ports correspond to the ports on the module you are importing.
In your model, the black box block port interface is determined by the port names that are
declared on the block descriptor object. SysgenBlockDescriptor provides methods for
adding input and output ports:

Adding an input port:
this block.addSimulinkInport ('din') ;
Adding an output port:

this block.addSimulinkOutport ('dout') ;

The string parameter passed to methods addSimulinkInport and addSimulinkOutport
specifies the port name. These names should match the corresponding port names in
the imported module.

Note: Use lower case text to specify port names.
Adding a bidirectional port:

config phase = this block.getConfigPhaseString;
if (strcmpi(config phase, 'config netlist interface'))
this block.addInoutport ('bidi') ;

)

% Rate and type info should be added here as well
end

Bi-directional ports are supported only during the netlisting of a design and will not
appear on the System Generator diagram; they only appear in the generated HDL. As
such, it is important to only add the bi-directional ports when System Generator is
generating the HDL. The if-end conditional statement is guarding the execution of the
code to add-in the bi-directional port.

It is also possible to define both the input and output ports using a single method call. The
setSimulinkPorts method accepts two parameters. The first parameter is a cell array of
strings that define the input port names for the block. The second parameter is a cell array
of strings that define the output port names for the block.

Note: The Configuration Wizard automatically sets the port names when it generates a
configuration M-function

Obtaining a Port Object

Once a port has been added to a block descriptor, it is often necessary to configure
individual attributes on the port. Before configuring the port, you must obtain a descriptor
for the port you would like to configure. SysgenBlockDescriptor provides methods for

328

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration M-Function

accessing the port objects that are associated with it. For example, the following method
retrieves the port named din on the this_block descriptor:

Accessing a SysgenPortDescriptor object:
din = this block.port('din');

In the above code, an object din is created and assigned to the descriptor returned by the
port function call.

SysgenBlockDescriptor also provides methods, inport and outport, that return a port

object given a port index. A port index is the index of the port (in the order shown on the
block interface) and is some value between 1 and the number of input/output ports on the
block. These methods are useful when you need to iterate through the block's ports (e.g.,

for error checking).

Configuring Port Types

SysgenPortDescriptor provides methods for configuring individual ports. For example,
assume port dout is unsigned, 12 bits, with binary point at position 8. The code below
shows one way in which this type can be defined.

dout = this block.port ('dout');
dout .setWidth(12) ;

dout .setBinPt (8) ;

dout .makeUnsigned () ;

The following also works:

dout = this block.port ('dout');
dout .setType ('Ufix 12 8');

The first code segment sets the port attributes using individual method calls. The second
code segment defines the signal type by specifying the signal type as a string. Both code
segments are functionally equivalent.

The black box supports HDL modules with 1-bit ports that are declared using either single
bit port (e.g., std_logic) or vectors (e.g., std_logic_vector(0 downto 0)) notation. By default,
System Generator assumes ports to be declared as vectors. You may change the default
behavior using the useHDLVector method of the descriptor. Setting this method to true
tells System Generator to interpret the port as a vector. A false value tells System
Generator to interpret the port as single bit.

o

dout .useHDLVector (true); % std logic vector
dout .useHDLVector (false); % std logic

Note: The Configuration Wizard automatically sets the port types when it generates a configuration
M-function.

Configuring Bi-Directional Ports for Simulation

Bi-directional ports (or inout ports) are supported only during the generation of the HDL
netlist, that is, bi-directional ports will not show up in the System Generator diagram. By
default, bi-directional ports will be driven with 'X' during simulation. It is possible to
overwrite this behavior by associating a data file to the port. Be sure to guard this code
since bi-directional ports can only be added to a block during the config_netlist_interface
phase.

if

(strcmpi (this block.getConfigPhaseString, 'config netlist interface'))

bidi port = this block.port ('bidi');

System Generator for DSP User Guide www.xilinx.com 329
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

bidi port.setGatewayFileName ('bidi.dat');
end

In the above example, a text file "bidi.dat" is used during simulation to provide stimulation
to the port. The data file should be a text file, where each line represents the signal driven
on the port at each simulation cycle. For example, a 3-bit bi-directional port that is
simulated for 4 cycles might have the following data file:

7277
110
011
XXX

Simulation will return with an error if the specified data file cannot be found.

Configuring Port Sample Rates

The black box block supports ports that have different sample rates. By default, the sample
rate of an output port is the sample rate inherited from the input port (or ports, if the inputs
run at the same sample rate). Sometimes it is necessary to explicitly specify the sample rate
of a port (e.g., if the output port rate is different than the block's input sample rate).

Note: When the inputs to a black box have different sample rates, you must specify the sample rates
of every output port.

SysgenPortDescriptor provides a method, setRate, which allows you to explicitly set the
rate of a port.

Note: The rate parameter passed to the setRate method is not necessarily the Simulink sample rate
of that the port runs at. Instead, it is a positive Integer value that defines the ratio between the desired
port sample period and the Simulink system clock period defined by the System Generator token
dialog box.

Assume you have a model in which the Simulink system period value for the model is
defined as 2 sec. Also assume, the example dout port is assigned a rate of 3 by invoking
the setRate method as follows:

dout .setRate (3) ;

A rate of 3 means that a new sample is generated on the dout port every 3 Simulink system
periods. Since the Simulink system period is 2 sec, this means the Simulink sample rate of
the portis 3 x 2 = 6 sec.

Note: If your port is a non-sampled constant, you may define it as so in the configuration M-function
using the setConstant method of SysgenPortDescriptor. You can also define a constant by passing
Inf to the setRate method.

Dynamic Output Ports

A useful feature of the black box is its ability to support dynamic output port types and
rates. For example, it is often necessary to set an output port width based on the width of
an input port. SysgenPortDescriptor provides member variables that allow you to
determine the configuration of a port. You can set the type or rate of an output port by
examining these member variables on the block's input ports.

For example, you can obtain the width and rate of a port (in this case din) as follows:
input width = this block.port('din') .width;
input rate = this block.port('din') .rate;

Note: A black box's configuration M-function is invoked at several different times when a model is
compiled. The configuration function may be invoked before the data types and rates have been
propagated to the black box.

330

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration M-Function

The SysgenBlockDescriptor object provides Boolean member variables
inputTypesKnown and inputRatesKnown that tell whether the port types and rates
have been propagated to the block. If you are setting dynamic output port types or rates
based on input port configurations, the configuration calls should be nested inside
conditional statements that check that values of input TypesKnown and
inputRatesKnown.

The following code shows how to set the width of a dynamic output port dout to have the
same width as input port din:

if (this_block.inputTypesKnown)
dout.setWidth(this block.port ('din') .width);
end

Setting dynamic rates works in a similar manner. The code below sets the sample rate of
output port dout to be twice as slow as the sample rate of input port din:

if (this block.inputRatesKnown)
dout.setRate(this block.port('din') .rate*2);
end

Black Box Clocking

In order to import a multirate module, you must tell System Generator information about
the module's clocking in the configuration M-function. System Generator treats clock and
clock enables differently than other types of ports. A clock port on an imported module
must always be accompanied by a clock enable port (and vice versa). In other words, clock
and clock enables must be defined as a pair, and exist as a pair in the imported module.
This is true for both single rate and multirate designs.

Note: Although clock and clock enables must exist as pairs, System Generator drives all clock ports
on your imported module with the FPGA system clock. The clock enable ports are driven by clock
enable signals derived from the FPGA system clock.

SysgenBlockDescriptor provides a method, addC1kCEPair, which allows you to define
clock and clock enable information for a black box. This method accepts three parameters.
The first parameter defines the name of the clock port (as it appears in the module). The
second parameter defines the name of the clock enable port (also as it appears in the
module).

The port names of a clock and clock enable pair must follow the naming conventions
provided below:

e The clock port must contain the substring c1k
e The clock enable must contain the substring ce

e The strings containing the substrings c1k and ce must be the same (e.g., my_clk 1
andmy ce 1).

The third parameter defines the rate relationship between the clock and the clock enable
port. The rate parameter should not be thought of as a Simulink sample rate. Instead, this
parameter tells System Generator the relationship between the clock sample period, and
the desired clock enable sample period. The rate parameter is an integer value that defines
the ratio between the clock rate and the corresponding clock enable rate.

For example, assume you have a clock enable port named ce 3 that would like to have a
period three times larger than the system clock period. The following function call
establishes this clock enable port:

addClkCEPair('clk 3','ce 3',3);

System Generator for DSP User Guide www.xilinx.com 331
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

When System Generator compiles a black box into hardware, it produces the appropriate
clock enable signals for your module, and automatically wires them up to the appropriate
clock enable ports.

Combinational Paths

If the module you are importing has at least one combinational path (i.e., a change on any
input can effect an output port without a clock event), you must indicate this in the
configuration M-function. SysgenBlockDescriptor object provides a
tagAsCombinational method thatindicates your module has a combinational path. It
should be invoked as follows in the configuration M-function:

this block.tagAsCombinational;

Specifying VHDL Generics and Verilog Parameters

You may specify a list of generics that get passed to the module when System Generator
compiles the model into HDL. Values assigned to these generics can be extracted from
mask parameters and from propagated port information (e.g., port width, type, and rate).
This flexible means of generic assignment allows you to support highly parametric
modules that are customized based on the Simulink environment surrounding the black
box.

The addGeneric method allows you to define the generics that should be passed to your
module when the design is compiled into hardware. The following code shows how to set
a VHDL Integer generic, dout width, to a value of 12.

addGeneric ('dout width', 'Integer', '12"');

It is also possible to set generic values based on port on propagated input port information
(e.g., a generic specifying the width of a dynamic output port).

Because a black box's configuration M-function is invoked at several different times when
a model is compiled, the configuration function may be invoked before the data types (or
rates) have been propagated to the black box. If you are setting generic values based on
input port types or rates, the addGeneric calls should be nested inside a conditional
statement that checks the value of the input TypesKnown or inputRatesKnown
variables. For example, the width of the dout port can be set based on the value of din as
follows:

if (this block.inputTypesKnown)
% set generics that depend on input port types
this block.addGeneric ('dout width',
this block.port('din') .width) ;

end

Generic values can be configured based on mask parameters associated with a block box.
SysgenBlockDescriptor provides a member variable, blockName, which is a string
representation of the black box's name in Simulink. You may use this variable to gain
access the black box associated with the particular configuration M-function. For example,
assume a black box defines a parameter named init_value. A generic with name

init value can be set as follows:

simulink block = this block.blockName;

init value = get param(simulink block, 'init value');

this block.addGeneric('init value', 'String', init value);
Note: You can add your own parameters (e.g., values that specify generic values) to the black box
by doing the following:

332

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Configuration M-Function

e Copy ablack box into a Simulink library or model;
e Break the link on the black box;
e Add the desired parameters to the black box dialog box.

Black Box VHDL Library Support

This Black Box feature allow you to import VHDL modules that have predefined library
dependencies. The following example illustrates how to do this import.

The VHDL module below is a 4-bit, Up counter with asynchronous clear
(async_counter.vhd). It will be compiled into a library named async_counter_lib.

1 -- 4-bit, Up counter, with asynchronous clear
2 library ieee;

3 use ieee.std logic 1164.al11;

4 use ieee.std logic unsigned.all;

5 entity async counter is

& port (clk, clr : in s3td logics

7 ce: in =std logic = 'l';l

8 g : out std logic wector (3 downto 0)):;
g end async counter;

10 architecture archi of async counter is

11 gignal tmp: std logic wvector (3 downto 0);
12 begin

13 process (clk, clr)

14 begin

15 if (clr='1'} then

16 tmp <= "0000";

17 el=zif {clk'event and clk='1') then
18 thp <= tmp + 1;

19 end if;

20 end process;

21 q <= tmp;

22 end archi;

The VHDL module below is a 4-bit, Up counter with synchronous clear
(sync_counter.vhd). It will be compiled into a library named sync_counter_lib..

1 -- 4-bit, Up counter, with synchronous clear
2 library ieee;
2
4
5
& entity sync counter is
7 port(clk, clr : in =td logic;
8 ce: in std logic Ual0 g
g g : out ztd logic wvector(3 downto 0)):
10 end sync_counter;
11 architecture archi of sync counter is
12 signal tmp: std logic wector (3 downto 0):
13 begin
14 process (clk)
15 begin
16 if (clk'event and clk='1'}) then
17 if (clr='1'}) then
8 tmp <= "0000";
15 el=se
20 tnp <= tmp + 1;
21 end if;
22 end if;
23 end process;
24 q <= tmp;
25 end archi;
System Generator for DSP User Guide www.xilinx.com 333

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

The VHDL module below is the top-level module that is used to instantiate the previous
modules. This is the module that you need to point to when adding the BlackBox into you

System Generator model.

Define libraries using
“library” and "use"
clauses

tor (3 downto 0);
ector (3 downto 0)

1 library ieee;

2 use ieee.std logic 1164.a2l1;

3 use ieee.ztd logic unsigned.all;

4 library sync counter 1ibh;

5 use sync counter 1ib.all:;

& library async counter 1libh;

7 use async counter 1ibh.all;

8

g9

10 entity top lewvel is

11 port (clk, clr : in =td 1o

12 ce: in std logic = 'l

13 g s2ync : out std 1

14 g _async @ out std logic

15)i

16 end top lewvel;

17

18 architecture structural of top lewvel is
19 COMpONent async _counter

20 port |

21 clk, clr, ce: in =td logic;

22 g: out std logic wector (3 downto 0));
23 end component;

24

25 COMpONent Sync_counter

28 port |

27 clk, clr, ce: in =td logic;

28 g: out std logic wector (3 downto 0));
29 end component;

30

31 begin

32 counter O: entity async counter lib.async counter
S portc map |

34 ce =» ce,

=3 d => d_async,

36 clk => clk,

37 clr =» clr

38)i

39 counter 1: entity sync counter lib.sync counter
40 portc map |

41 ce =» ce,

42 g =X g_sync,

43 clk => clk,

44 clr => clr

45 Vi

46 end structural;

The VHDL is imported by first importing the top-level entity, top_level, using the Black

Box.

334

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration M-Function

Once the file is imported, the associated Black Box Configuration M-file needs to be

modified as follows:

% Rdd =zddticmal scurce files =3 needed.

5 |-

% | Rdd files in the crder in which they should be compiled.
% | If two files "a.vhd" and "b.vhd" contzin the entities

% | entity a and entity b, and entity a contains a

% | component of type entity b, the correct segquence of

% | addFile() eczlls would be:

5 this_klock.addFile('b.vhd");

5 this_klock.addFile('a.vhd");

R Specifying library names by using

"addFileToLibrary” command

% this block.addFile('");
% this block.addFile('"); *
this block.addFile('top.vhd');

f.s_blcck -2ddFileTolikrary('zsync counter.
T

vhd", "async_counter_lik")
his block.addFileTolibrary('sync counter.vhd', 'sync ccounter libk');

The interface function addFileToLibrary is

used to specify a library name other than

“work” and to instruct the tool to compile the associated HDL source to the specified

library.

The System Generator model should look similar to the figure below.

Systam
Gensrator m double
e UF_4_0 a_szync
‘doubike UFE:_1
cir
Gat In1 ‘g_async U 40
ateway In
Black Box
O_aEsync

Scope

The next step is to double-click on the System Generator token and click on the Generate

button to generate the HDL netlist.

During the generation process, an ISE project file is created and placed in the netlist folder.
To verify that each VHDL sub-module was compiled into its own library, double click on
the ISE project file to bring up Project Navigator. Select the Libraries tab and you will see
that not only is there a work library, but a async_counter_lib library and a

sync_counter_lib library as well.

Libraries

B

Source Libraries

= Eéasync_counter_lib
async_countervhd
sync_counter_lib
sync_countervhd

work

] hdl_library_sxamplevhd
e] hdl_library_sxample_cw.ucf
] hdl_library_sxample_cw.wvhd
4] hdl_library_sxample_tb.vhd

LT

=0

=0

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

335

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

Error Checking

It is often necessary to perform error checking on the port types, rates, and mask
parameters of a black box. SysgenBlockDescriptor provides a method, setError, which

allows you to specify an error message that is reported to the user. The string parameter
passed to setError is the error message that is seen by user.

Black Box API

SysgenBlockDescriptor Member Variables

Type Member Description

String entityName Name of the entity or module.

String blockName Name of the black box block.

Integer numSimulinkInports Number of input ports on black box.

Integer numSimulinkOutports | Number of output ports on the black
box.

Boolean inputTypesKnown true if all input types are defined, and
false otherwise.

Boolean inputRatesKnown true if all input rates are defined, and
false otherwise.

Array of inputRates Array of sample periods for the input

Doubles ports (indexed as in inport(indx)).
Sample period values are expressed as
integer multiples of the Simulink
System Period value specified by the
master System Generator token

Boolean error true if an error has been detected, and
false otherwise.

Cell Array of | errorMessages Array of all error messages for this

Strings block.

336

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Configuration M-Function

SysgenBlockDescriptor Methods

Method Description

setTopLevelLanguage(language) Declares language for the top-level entity (or
module) of the black box. language should be
'VHDL' or 'Verilog'.

setEntityName(name) Sets name of the entity or module.

addSimulinkInport(pname) Adds an input port to the black box. pname tells the
name the port should have.

addSimulinkOutport(pname) Adds an output port to the black box. pname tells
the name the port should have.

setSimulinkPorts(in,out) Adds input and output ports to the black box. in
(respectively, out) is a cell array whose element tell
the names to use for the input (resp., output) ports.

addInoutport(pname) Adds a bi-directional port to the black box. pname
specifies the name the port should have. Bi-
directional ports can only be added during the
'config_netlist_interface' phase of configuration.

tag AsCombinational() Indicate that the block has a combinational path (i.e.,
direct feedthrough) from an input port to an output
port.

addClkCEPair(clkPname, cePname, | Defines a clock/clock enable port pair for the block.
rate) clkPname and cePname tell the names for the clock
and clock enable ports respectively. rate, a double,
tells the rate at which the port pair runs. The rate
must be a positive integer. Note the clock
(respectively, clock enable) name must contain the
substring clk (resp., ce). The names must be parallel
in the sense that the clock enable name is obtained
from the clock name by replacing clk with ce.

port(name) Returns the SysgenPortDescriptor that matches the
specified name.

inport(indx) Returns the SysgenPortDescriptor that describes a
given input port. indx tells the index of the port to
look for, and should be between 1 and
numInputPorts.

outport(indx) Returns the SysgenPortDescriptor that describes a
given output port. indx tells the index of the port to
look for, and should be between 1 and
numOutputPorts.

System Generator for DSP User Guide www.xilinx.com 337
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

Method Description

addGeneric(identifier, value) Defines a generic (or parameter if using Verilog) for
the block. identifier is a string that tells the name of
the generic. value can be a double or a string. The
type of the generic is inferred from value's type. If
value is an integral double, e.g., 4.0, the type of the
generic is set to integer. For a non-integral double,
the type is set to real. When value is a string
containing only zeros and ones, e.g., “0101', the type
is set to bit_vector. For any other string value the
type is set to string.

addGeneric(identifier, type, value) Explicitly specifies the name, type, and value for a
generic (or parameter if using Verilog) for the block.
All three arguments are strings. identifier tells the
name, type tells the type, and value tells the value.

addFile(fn) Adds a file name to the list of files associated to this
black box. fn is the file name. Ordinarily, HDL files
are associated to black boxes, but any sorts of files
are acceptable. VHDL (respectively, Verilog) file
names should end in .vhd (resp., .v). The order in
which file names are added is preserved, and
becomes the order in which HDL files are compiled.
File names can be absolute or relative. Relative file
names are interpreted with respect to the location of
the .mdl or library .mdl for the design.

getDeviceFamilyName() Gets the name of the FPGA device corresponding to
the Blackbox.
getConfigPhaseString Returns the current configuration phase as a string.

A valid return string includes: config_interface,
config_rate_and_type, config_post_rate_and_type,
config_simulation, config_netlist_interface and
config_netlist.

setSimulatorCompilationScript Overrides the default HDL co-simulation

(script) compilation script that the black box generates.
script tells the name of the script to use. This method
can, for example, be used to short-circuit the
compilation phase for repeated simulations where
the HDL for the black box remains unchanged.

setError(message) Indicates that an error has occurred, and records the
error message. message gives the error message.

338 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Configuration M-Function

SysgenPortDescriptor Member Variables

Type Member Description

String name Tells the name of the port.

Integer simulinkPortNumber Tells the index of this port in Simulink.
Indexing starts with 1 (as in Simulink).

Boolean typeKnown True if this port's type is known, and
false otherwise.

String type Type of the port, e.g., UFix_<n>_,
Fix_<n>_, or Bool

Boolean isBool True if port type is Bool, and false
otherwise.

Boolean isSigned True if type is signed, and false
otherwise.

Boolean isConstant True if port is constant, and false
otherwise.

Integer width Tells the port width.

Integer binpt Tells the binary point position, which
must be an integer in the range
0..width.

Boolean rateKnown True if the rate is known, and false
otherwise.

Double rate Tells the port sample time. Rates are
positive integers expressed as MATLAB
doubles. A rate can also be infinity,
indicating that the port outputs a
constant.

SysgenPortDescriptor Methods
Method Description
setName(name) Sets the HDL name to be used for this port.

setSimulinkPortNumber(num)

Sets the index associated with this port in Simulink.
num tells the index to assign. Indexing starts with 1
(as in Simulink).

setType(typeName) Sets the type of this port to type. Type must be one of
Bool, UFix_<n>_ , Fix_<n>_, signed or
unsigned. The last two choices leave the width and
binary point position unchanged.

setWidth(w) Sets the width of this port to w.

setBinpt(bp) Sets the binary point position of this port to bp.

makeBool() Makes this port Boolean.

makeSigned() Makes this port signed.

makeUnsigned() Makes this port unsigned.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 339

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

Method Description
setConstant() Makes this port constant
setGatewayFileName(filename) Sets the dat file name that will be used in simulations

and test-bench generation for this port. This function
is only meant for use with bi-directional ports so that
a hand written data file can be used during
simulation. Setting this parameter for input or
output ports is invalid and will be ignored.

setRate(rate) Assigns the rate for this port. rate must be a positive
integer expressed as a MATLAB double or Inf for
constants.

useHDLVector(s) Tells whether a 1-bit port is represented as single-bit
(ex: std_logic) or vector (ex: std_logic_vector(0
downto 0)).

HDLTypelsVector() Sets representation of the 1-bit port to
std_logic_vector(0 downto 0).

HDL Co-Simulation

Introduction

This topic describes how a mixed language/mixed flow design that includes Xilinx blocks,
HDL modules, and a Simulink block diagram can be simulated in its entirety.

System Generator simulates black boxes by automatically launching an HDL simulator,
generating additional HDL as needed (analogous to an HDL testbench), compiling HDL,
scheduling simulation events, and handling the exchange of data between the Simulink
and the HDL simulator. This is called HDL co-simulation.

Configuring the HDL Simulator

Black box HDL can be co-simulated with Simulink using the System Generator interface to
either ISE® Simulator or the ModelSim simulation software from Model Technology, Inc.

ISE Simulator

To use the ISE® Simulator for co-simulating the HDL associated with the black box, select
ISE Simulator as the option for the Simulation mode parameter on the black box as shown
in the following figure. The model is then ready to be simulated and the HDL co-
simulation takes place automatically.

340 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. HDL Co-Simulation

@ Black Box (Xilinx Black Bax)

Incorporates black box HOL and simulation model into a Systermn
Generator design.

Y'ou must supphy a Black Box with certain information about he HOL
component youwould like to bring into System Generatar. This
information is provided through a Matlab function.

Wwhen "Simulation Mode" is setto "Inactive," you will typically want to
provide aseparate simulation model by using & Simulation
Multiplexer.

Wwhen "Simulation Mode" is setto "Use HDL Co-Simulation", you must
include a ModelSim block in the design.

Basic | Implementation

Block corfiguration rm-function
|transpuse_fir_c:onfig |

Sirmulation mode | ISE Simulator w

Inactie

s

External co-simulator

Y by namej

Simulatar

| ok || cencel |[Help [aAppy |

ModelSim Simulator

To use the ModelSim simulator by Model Technology, Inc., you must first add the
ModelSim block that appears in the Tools library of the Xilinx Blockset to your Simulink
diagram.

M adelSim

hodelSim

For each black box that you wish to have co-simulated using ModelSim simulator, you
need to open its block parameterization dialog and set it to use the ModelSim session
represented by the black box that was just added. You do this by making the following two
settings:

System Generator for DSP User Guide www.xilinx.com 341
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

1. Change the Simulation Mode field from Inactive to External co-simulator.

2. Enter the name of the ModelSim block (e.g., ModelSim) in the HDL Co-Simulator to use
field.

@ Black Box (Xilinx Black Box) g@g|

Incorporates black box HOL and simulation model into a System
Generator design.

You must supply & Black Box with certain information about the HDL
component youwould like to bring into Systerm Generatar. This
information is prowvided through a Matlab function.

Wwhen "Simulation Mode" is setto "Inactive." yvou will typically want to
provide a separate simulation model by using a Simulation
Multiplexer.

YWhen "Simulation Mode" is setto "Use HDOL Co-Simulation”, wou must
include a ModelSim block in the design.

Basic | Implementation

Block corfiguration rm-function
transpose_fir_config

Sirmulation mode | External co-simulator s

HOL co-simulator to use (specify helper block by name)
ModelSim

0] H Cancel H Help H Apply

The block parameter dialog for the ModelSim block includes some parameters that you
can use to control various options for the ModelSim session. See the Modelsim block help
pages for details. The model is then ready to be simulated with these options, and the HDL
co-simulation takes place automatically.

Co-Simulating Multiple Black Boxes

System Generator allows many black boxes to share a common ModelSim co-simulation
session. I.e., many black boxes can be set to "use" the same ModelSim block. In this case,
System Generator automatically combines all black box HDL components into a single
shared top-level co-simulation component. This is transparent to the user. It does mean,
however, that only one ModelSim simulation license is needed to co-simulate several black
boxes in the Simulink simulation.

For an example of how to do this, see Simulating Several Black Boxes Simultaneously.

Multiple black boxes can also be co-simulated with ISE® Simulator by just selecting ISE
Simulator as the option for Simulation mode on each black box.

342 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

Black Box Examples

Black Box Tutorial Example 1:
Importing a Core Generator
Module that Satisfies Black Box
HDL Requirements

Black Box Tutorial Example 2:
Importing a Core Generator
Module that Needs a VHDL
Wrapper to Satisfy Black Box
HDL Requirements

Black Box Tutorial Example 3:
Importing a VHDL Module

Black Box Tutorial Example 4:
Importing a Verilog Module

Black Box Tutorial Example 5:
Dynamic Black Boxes

Black Box Tutorial Example 6:
Simulating Several Black Boxes
Simultaneously

Black Box Tutorial Exercise 7:
Advanced Black Box Example
Using ModelSim

Black Box Tutorial Example 8:
Importing, Simulating, and
Exporting an Encrypted VHDL
File

Black Box Tutorial Exercise 9:
Prompting a User for Parameters
in a Simulink Model and Passing
Them to a Black Box

Describes an approach that uses the System Generator
Black Box Configuration Wizard.

Describes an approach that requires that you to
provide a VHDL core wrapper. Simulation issues are
also addressed.

Describes how to use the Black Box block to import
VHDL into a System Generator design and how to use
ModelSim to co-simulate.

Demonstrates how Verilog black boxes can be used in

System Generator and co-simulated using ModelSim.

Demonstrates dynamic black boxes using a transpose
FIR filter black box that dynamically adjusts to
changes in the widths of its inputs.

Demonstrates how several System Generator Black
Box Blocks can be co-simulated simultaneously, using
only one ModelSim license while doing so.

Describes how to design a Black Box block with a
dynamic port interface and how to configure a black
box using mask parameters. Also, describes how to
assign generic values based on input port data types
and how to save black box blocks in Simulink libraries
for later reuse. How to specify custom scripts for
ModelSim HDL co-simulation is also covered.

Describes how to import an encrypted VHDL file into
a Black Box, simulate the design, then export the
encrypted VHDL file separately from the rest of the
design netlist.

Describes how to access generics/parameters from
the masked counter and pass them onto the black box
to override the default local parameters in the VHDL
file.

Importing a Xilinx Core Generator Module

This topic describes two different ways of importing Xilinx CORE Generator™ modules,
as black boxes, into System Generator. The first example shows how to import blocks
which satisfy Black Box HDL Requirements and Restrictions. The second example shows

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

www.xilinx.com

343

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

how to write a VHDL wrapper to import CORE Generator™ modules as black boxes. The
flow graph below illustrates the process of importing CORE generator modules.

| Open Corien Project |

Parameterize and generate
Coregen Care to import

Generated core has
clk, ce and HDL ports that match

Rlack box requirements

Na

Create HDL wrapper for the top level
HDL generated by coregen which
satisfies all black box requirements.

Import top level HDL generated by
coregen by using sysgen black box. l,
l Importt the top level HDL wrapper

by i black box.
Add HDL, EDN. NGC, MIF files y Using sysgen Diack box

required by the core for simulation
and implementation to black box
configuration function.

Co-simulate black box using
Nadelsim or ISE Simulator

Black Box Tutorial Example 1: Importing a Core Generator Module that
Satisfies Black Box HDL Requirements
1. Start CORE Generator and open the the following CORE Generator project file:

<ISE Design Suite tree>/sysgen/examples/coregen import/examplel
/coregen_ import examplel.cgp

344 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

2. Double click the CORDIC 4.0 icon to launch the customization GUI

® Xilinx CORE Generator - coregen_impart_examplel.cgp*
File

Project Wiew Help

— | Catalog

” EGAE |_:] | CORE Generator Help KT “J L 5
8 X

Wiews by Function | Yiew by Hame |
Mame

H- |~ Automotive & Industrial
Basic Elements
Comrmmunicabion & Hebworking
Debug B Verification

Digtal Slgnd Processng
7 Building Blocks
1 Complex: Mukipler

f |\I'E:'slon | Lic_=

B o | B o

3.0

\1' Linaar Feedback Shift... 3.0
7 Carrelators

7 Flkers

Modulation

Multiply Accumulators

I Transforms

I Trig Furctions

E' Wawveform Synthesis

¥ FPEA Features ard Desgn

~/ Math Functions

r

:‘N:"|J~E

1i | _'|L|

Clear

Search IP Cd:alug:l

[allIF versions [Cnly IP compatible with chosen park

LgICRE CORDIC

Thir cora iz supported by yvour chogen part,

Infomation
Core bype: CORDIC
Version: 4.0

Core Summary: The Hiling CORDIC LogiCoRE is @ module For generation of the
generalized caordinate rotatlonal digital cormputer {CORDIC)
algorrchm whidh beratively sobses tHgonometric, hyperballc and
sQuare root equatlons, The corels fully syndronous using a
single clock, Cptlons Include pararmetenzable daca wideh and
control dgnals, The core supparts elther serial architecture for
minirnal ares Implernentatians, or paralel archicecture For speed
nrklmizatnn The rore k delivered Hrenndb Fhe %ilinys ©ORF

Console

welomne 1o Jilire CORE Gensrator,

Help system nitkalised,

Bullding caches.

Qpening project file C:fBlackbaxfexampleljcaregen_|mport_examplel,cgp.

Search Consals I Find | Save |

Clear

[E| tnfamation | I\ Warrings Ig Errors I

[[Part: xcSwheSIE-1Ff1136 | Design Entry: ¥HOL [

3. Parameterize and generate the CORDIC 4.0 core with component name
cordic_sincos, a functional Selection of Sin and Cos and the remaining options set
to be the default values as shown below:

it

o

¥

—lojx

[P rmbd

RRE CORDIC

4.0

Comporent Mame | condkc_sncos

—Functional Sekction
T Aotam
™ Trenslsbe
& 5hand Cos

KR40 =3
T_IHI! 3
PHASE IHI15:0]=—H

Ko —3
cE—3
BCLR —3
ELE—3

™ Sinh and Cesh

[—+3_OUmIE0 Ay Tan
e F_OUT[E]

: & Are Tanh
+ PHAIE_OUTTIS 1]

™ Squsr= Roat

—Archit=ctLral Canfiguradan

" wiard Serld
& Poralel

—Ppeining kade

™ Mo Ppaining
oo
A pasrum

[P Symbd I M:rrmtalimba‘:.ikl

[aakars bt < Back Papaiofs Meat > Senarate

Cancal

Halp

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

345

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

CORDIC

4.0

—Dxaa Famma:
& sgnedFrection
T Unsipred Framson
* Unsigred Infemer

—Phe== Format

F Radans

2_Iji52)
IH[t] 1 Scaled i

_IM[1E]

% G| 5]
_DUTTIRD]

PHeE_IMIED| FHAEE OUTHED]

—InputfOutput Oplions

[¥ Registet Inputs

[V Fragigher Clubputs

npwk Wik I]E Ranga: 8..45
SCLA : vt ickh I]ﬁ Aarge: 6. 46

—PRaound Mad;

F Threats

* Rourd Poz Inf

T Rourd Pos Mg nf
1 Hoerest Evan

Dtasheet: | <Bach | Page2oFa

IP Sy mbal I Implmank tion Batais I

Bl 3 Generte | ceeel | wen |

g PF CORDIC

—Avanced Corfiguralion Parametars

4.0

Jberations ID Range: 0..48
Precidon II:I Range: O0..48

F* Conrse Rotaban

Comperestion Scaim [0 Scde Compermztion

=l

—pdonal Firs
S_INW[i5:0] ¥ _OUT[iED|
FE

_IM %0 I _OUTTIR0
PHEAE_INTI%:E] PHOAE OUTHED] ™ sCiR
i Il
RO
s oum
P v our

I Phasa cutput

Datnshert | <o |Pageacra

fet s | Genete | coreml | mem

IF Symbol I Impkmenkaton Dotaiz I

346

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

File Edit View

Click Generate. Core Generator produces the following files after generation:

¢ cordic_sincos.
¢ cordic_sincos.
¢ cordic_sincos.

¢ cordic_sincos.

Start Simulink and open the design file
(<ISE Design Suite tree>/sysgen/examples/coregen import/example
1/coregen import examplel.mdl)

ngc: Implementation netlist

vho: Core instantiation template

vhd: VHDL wrapper for behavioral simulation

xco: Parameters selected for core generation

Drag and drop the black box from the Xilinx "Basic Elements" library into the model
coregen_ import examplel.mdl. Select cordic_sincos.vhd for the top-level
HDL file and click Open.

GOl U

Simulation

Format Tools Help

Oe & &BE RS 4 Sy m oo

I MNormal

HdEe B s

BERE®

£

The CORDIC core outputs 16-bit data value

Importing CORDIC SINCOS Core with CLK and CE Ports

|»

=] Simulink Library Browser =[O as a signed input with 15 fractional bits.
Fle Edt View Help The reinterpret block casts the output of
the blackbox as sysgen FIX_16_15
JJ 0= = JJI Enter search term ﬂ H brets 16-pit v=a - -
Libraries Library: Xiinx Blocksetindex | <| p | inputwith H
(e S e B = Out
[]..E Simscape ;I i: System Generator [N Femrt S
E]--E Simulink 30 Animation E Accumulator | N
- i Simulink Control Design E.} AddSub T H
E]--E Simulink Extras E Addressable Shift Register pr— ; Rerinte me 2 Cosine .
E Simulink Verification and Va... '
e S out
E State flow)
- | Video and Image Processin... D BitBashar v
)-8 Xilnx Blockset E‘ BlacBox Select the file that contains the entity description for the black box HE
i X CIC Compiler 2.0 _ i
Basic Elements {> J— Look in: Ilﬂsolution ﬂ & % E-
Communication D CORDIC 4.0 cordic_sincos.vhd
Control Logic [l . - “
e ChinSrone
~DSP =] | »
Showing: Xilinx Blockset/index 4
7. Connect the input and output ports of the black box to the open wires.
System Generator for DSP User Guide www.xilinx.com 347

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

8. Openthe cordic_sincos_config.mfile, and add the EDIF netlist to the black box
file list as shown below. This file will get included as part of the System Generator
netlist for the design when it is netlisted.

B Editor - C:\ ¥ilinx"11.1\.DSP_Tools' sysgen',exampleshca =]
File Edit Text Go Cel Tools Debug Desktop Window Help L | A X
NO0d| s8R ¢ |- |d@pl -] O]
BB -rn o+ | s fir x| @

- =

&7 % this block.addFile('']; =

&8 3 thi=z block.addFile(''):

a3 — this_hlock.addFile (' cordic_sincos.vhd'):

70 — this block.addFile (' cordic sincos.noc'); =

71 |

T2 = return: =
L | [

| cordic_sincos_canfig [ln 71 Cd 3 |OWR Y

9. Open the black box parameterization GUI and select ISE Simulator for the simulation
mode.

€9 Black Box (Xilinx Blackbox) E‘E”Z‘

Incorporates black box HOL and simulation model into a System
Generatordesign.

“rou must supply & Black Box with certain information about he HOL
component you would like to bring into System Generator. This
infarmation is provided through a Matlab function.

YWhen "Simulation Mode" is setto "Inactive”, wou will typically want to
provide a separate simulation model by using & Simulation
Multiplexer.

When "Simulation Mode" is setto "External co-simulator", wau must
include a ModelSim block in the design.

Basic ‘ Implementation

Block corfiguration m-function
|C:Drdic:_sinc:os_u:c:nfig |

Simulation mode | ISE Simulatar w

HDOL co-simulatar to use (specify helper block by name)

| ok [cencel |[Hep [aAppy |

348 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

10. Press the Simulate button to compile and co-simulate the CORDIC core using the ISE
simulator. The simulation results are as shown below.

J Scope

Siree Outpuat

Ready Signal

Phaze Input

400 GO0 200 1000 1200 1400 1600 1800 200

Time offzet. 0

System Generator for DSP User Guide www.xilinx.com 349
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

Black Box Tutorial Example 2: Importing a Core Generator Module that
Needs a VHDL Wrapper to Satisfy Black Box HDL Requirements
1. Start Core Generator and open the Core Generator following project file:

<ISE Design Suite tree>/sysgen/examples/coregen import/example2
/coregen_import example2.cgp

2. Asshown below, double click the FIR Compiler icon to launch the customization GUI.

ﬁ iy CUHE Gencrator UAEDAYSIIngYT1.1WD%F 1 oolsvsvzocndcxamplezicorcoen mporlckompleAcorcgen impost cxamplc?. cop

Fle Troec: I Tacls el

”@ t [I |5h0t\|LalE£tU3(ci:ns :Iml E] ﬁi"[f h?l

F_xchion Wergior | L canz=s Etat.4 = erp H =
: - icore FIR Gompiler
[T a drvmlie= fe sl al iﬁgﬂ s f N p
:i| [Fi e kerort:
'-_:FI-I:IE‘:mn’uni:aIion i M stwarking
-7 Diebug & Weizeton
= [Digka Sigrel Plocesshg Tke #iin< FIR Comple’ LogiCORE & a module ‘o Jenenation ol ~igh epe=c, compact fller
i L3R il b R ks wnpenenlA e el e h= e e Dy cpenenl waroiees Ui ing oms e ~oe
i L N core iz flbe sonchrorous asing & sinde clach. g g tighs sermesizadle dloeing
::| Locltors dzaqnzrs by coebol Ihe Hicr vpe, 30k aac ocethcenl aidhz. thz nombor of ke baze, bac
2 [CTFiters nribse of crEnne £, ale, Mo,
% CIC Corrpier 2 P'—L'“’I" .
i - P IEHENE i Il vy Zaly Clest
i B3 b ’ A Wice, “Aerzon Inborrabon
41T Modu dion - igw, Snser Rscond:
- [Mulidly dccamu abers
-:*I-[:I'EI'B:DII'B Families supported: —
5-[= igF xoctione: Wikl U-ra it Had [ocrent, U-ra%ime-d b olane Vlex2H, Sparland, ulormckve
H , . " Spartanz, SoasranzE, Automoise spaka-3E. Spatsndt aoc spaks-das Vikel, 0=o
_q FB‘IFEIG: ;N::W :m:-;vl:t :I “itedd Rad Toerznt, 0= imesd HiR=, Yitead, Spanan-3a DEP _|
. =zt.res and Detix =
e 2w Carchon I wi-n [M e J SriaqanllP I nlomnaize

welzemz 1o Aiine CZRE Gewrstor,

s el pm e A Tle C8F st 127527 0 Bebswsg—r Sezan plsdfa onegen_iny ool secanpe® s e er_ i el _pse a2 0gp
Cuslomizig M.

Lanzclicd Luglomizalion

=| Zonsoe mEnors I U, Walhings
Feeadn Zait: 4254l IF1136 | Desigr Snmw WHIL | 3

350 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

3. Customize and generate the FIR Compiler 4.0 core with the following parameters:
¢+ Component Name: fir_compiler_8tap

¢ Load Coefficients: fir_compiler_8tap.coe file located in sysgen directory
¢ Input Sampling Frequency: 25
¢ Clock Frequency: 300

¢ Leave the other parameters set to the default values
¢ Click Next >

System Generator for DSP User Guide www.xilinx.com

351
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

¢ In this frame, leave the options set to the default values.

"‘ FIH Lompilcr

& s,

Ard linlieg faw

¢ Click Next >

352 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

¢ This example will show you how to import a core that does not have a CE (clock
enable) port. As shown below, verify that the CE port option is not selected, then
click Generate..

HH Commler 1 =]
er
Frag, Kesacnsa | x '
[ogiC 7 FIR Compiler »
Frouen oy Paespon g Mag s Crhivizatior Zoal Ih
:_"_ “—-H__\‘- L —izorra Cipzins
’ ; \rl 1'| [“lac=2
\ 7 D -, i isdi = 56 R el i
I~ | mome,_ratin
: ‘ [zE
™ o
. - AN Opsicns
1:;' i [= | Gsgmerste SHOML LM valus 17 3t ance
% umkst oF samplest IU— Hamge: L4
&]
b —Meroty Cptloms
Dete 2f=r vps [utaratic =]
_E Toplfinia | fodC e Tep= m
_- Znpk Bufer Tupe Im
: utput Euffer 1vae Im
Mg cooc ~o° othe shoroge ¢ Im
| — L=k lizs wolun Cohons
R ULk 2ol mim SuzEort m
Foenabzed Fregoency (x -1 rad 'sanpls) e el gt ’4t— ——
Passtand Corfigu-acicn Gtapbard Configu ation Cefun Yarsp Lonath 1€ FE =k
i £33 UL _L=UU dB Cnter-Ca umn =ipe Lenzh ’4— Rangei [1o
Une EREREDIR Flex ¢ 4701582 B
2ip e 1A N74E5MIR
—_— = Zatashast ~ kack | Fage 3 af 3 [zt = Lararate Canzsl Hep
I Syrkol | g Resxense | Mesarer Ssmokss |

4. CORE Generator produces the following files:
¢ fir_compiler_8tap.ngc: Implementation netlist
¢ fir_compiler_8tap.vhd: VHDL wrapper for behavioral simulation
¢ fir_compiler_8tap.vho: Core instantiation template
¢ fir_compiler_8tap.xco: Parameters selected for core generation
¢ Multiple .mif files: Memory initialization files for functional simulation

5. Since this core does not have a ce port and the System Generator blackbox requires a
clk, ce pair, you need to specify a core wrapper to add a ce port to the top level.

6. Open the following empty template wrapper file:
<ISE Design Suite tree>/sysgen/examples/coregen import/example2
/ fir compiler 8tap wrapper.vhd

This file contains an empty entity declaration.

7. Modify the template wrapper according to the instructions below:

System Generator for DSP User Guide www.xilinx.com 353
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

¢ Openthe fir compiler 8tap.vho file.

¢ Copy the component declaration from fir compiler_ 8tap.vho and paste it
in fir compiler_ 8tap_wrapper.vhd in the component declaration area.
(after -- Add Component Declaration from VHO file ------)

¢ Copy the core instantiation template from fir compiler 8tap.vho and paste
itin fir compiler 8tap wrapper.vhd in the architecture body.

(after --------

————— ADD INSTANTIATION Template -----)

¢ Copy the port declaration for the component fir compiler 8tap and paste it
for the fir compiler 8tap entity declaration
(after ---- Add Port declaration for entity ----)

¢ Add the ce port to the top-level entity declaration, and change the case of the CLK

port to clk.

Port
declaration
copied fom
COTnpone nt
declaration

Component
declaration
copied from
fir compiler_
stap. vho

Tnatantiation
tetplate
copted from
fir compiler
Stap . vho

LIEBRARY ztd, iesee;

UZE std.standard, ALL;

USE iges.ztd logic 1194.LLL;

-— Remewber to mnd?fy the CLE port declaration
—— of the entity below to he lower case
entity fir_cnmpiler_Btap_wrapper i=

———— 1dd Port declarstion for entity —--—-
ot |

elk: IN std logic Add ce port
ce: IN =td logic:
rfd: OUT std logic:
rdy: OUT std logic:
dini IN std logic VECTOR(1S downto 0);
dour; QUT std logic VECTOR(ZS downto 0));
———— End Fort declaration for entity —--—-
end fir compiler Stap wrapper;

architecture test of fir compiler Stap wrapper 1
—— bdd Component DeclaraEinn from_UHO Eile —_———
Component fir_cnmpiler_atap

port |

clk: IN std logic:

rfd: OUT std logic:

rdy: OUT std logic:

din: IN std logic VECTORI(1S downto 0] ;

dout: OUT std logic VECTOR(ZS downto 0])7
end component;

———— End COMPONENT Declaration ————-—
begin
———— ADD INSTAWNTIATION Tewplate ————
U0 » fir_cowpiler Stap
port mwap |
olk => clk,
rfd => rfd,
rdy => rdv,
din == din,
hout =r dout] s
———— End INSTAWTIATION Templace ———-
end test;

Start Simulink and open the following design file:
<ISE Design Suite tree>/sysgen/examples/coregen import/example2
/coregen import example2.mdl

354

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

9. Drag and drop the black box from the "Basic Elements" library in the
coregen import example2.mdl.Select fir compiler 8tap wrapper.vhd
for the top-level HDL file.

=] coregen_import_example2 =10
File Edit View Simulation Format Tools Help
D H & &= =e mfion |[Nomal ARy REE®
Example showing how to import an IP
iA with no ce port from CoreGen
Syslam
Gensralor
[2! g Bal Feady For Data Oupul Ly
| doutl
1 Register2
Fag- i wla -
1 - ut -
Trput Ta ---» e -ﬁ-—’{ cast . Emz g = Impukse Res porse of the Filter
Step '::r Up Sampk > Convert Registerl Seope |
Since the fiter outputs valid data
) [t once every 4 cycles, the capture register
The filter samples input once every 4 Rerinte et captures and holds the output value for 4 cycles.
clock cycles. The lower sample input is The filter cutputs
up-sampled and fed to the FIR block. signed data values J
Ready [100% | lode45 i
10. Connect the black box to the open wires.
11. Openthe fir compiler 8tap wrapper config.mfile, and add the VHDL file,
EDIF netlist and MIF files to the black box file list as shown below. These files get
included as part of the System Generator netlist for the design when it is generated.
67
£& & this klock.addFile('"');
6 3 this_blﬂc:]-:.add]‘“ilel:' Y
70 — this khlock.addFile (' fir cowmpiler Stap.vhd']:
TL = this_h lock.addFile (! fir_campiler_ﬁtap_wrapper.vhd' 12
7z — this block.addFile ('fir_cowmpiler Stap.mif']:
T3 — this block.addFile('fir compiler Stap.ngo']):;
74
75 — return;
Note: The order in which the files are added in the configuration function is the order in which they
get compiled during synthesis and simulation.
System Generator for DSP User Guide www.xilinx.com 355

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

mode.

@ Black Box (Xilinx Blackbaox) E|E|B

|qcoron-otes bloc< o« FCL ond sirclotior rmodel wio o Sysen
GRNRET RSN

~currustsucpy a Black Boocwith ca e n ivformation abouthe HI_
corponertezuwzu d iks tobrng mio Systen Ceqerator This
ivfnratinn is prosad2d tamuzh a atabhnntna

'hen ' Simalatios koo ¢ stz nactive’, wouwill tepicalbsiesn o
provice oseporode sirrulociza roze by using o 5 mu otion
kenlt ppRr

'hen ' Simalatios ko ¢ getts 'Saeensl o=l st wan ks
imchdz = ModelS m blod: inthe dzsign,

Bosic Imp e n=maticn

Fl=r rewiicu-atinn m-funetinn
Lurzi__s nons_euor fig
Cincl=tior mode | 13C Jinwlato v

HCL co simalztzrio use (speciky hzlzerb ozk by nzwe)

NEERETEEETE

12. Open the black box parameterization GUI and select the ISE Simulator for simulation

13. Press the Simulate button to compile and co-simulate the FIR core using the ISE

simulator. The simulation results are as shown below.

o Dcta Cuput

Irpulze
1

356

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

Importing a VHDL Module

Black Box Tutorial Example 3: Importing a VHDL Module

This topic explains how to use the black box to import VHDL into a System Generator
design and how to use ModelSim to co-simulate the VHDL module.

1.

From the MATLAB console, change the directory to
<ISE Design Suite tree>/sysgen/examples/black box/intro.

The following files are located in this directory:

¢ Dblack box_intro.mdl - A Simulink model containing an example black box.

¢ transpose_ fir.vhd - Top-level VHDL for a transpose form FIR filter. This file
is the VHDL that is associated with the black box.

¢ mac.vhd - Multiply and add component used to build the transpose FIR filter.
Open the black box_ intro model from the MATLAB command window by
typing

>> black_box_intro

Open the subsystem named Transpose FIR Filter Black Box. At this point, the
subsystem contains two inports and one outport. The black box subsystem is shown
below:

L_'1 black_bow_introfOown Conwerter/Transpose FIR Filter Black Box

Ak Edt Yew Smdsbon Format Took Hep
D EEaS bou [l [Homel v | H&E RS G REB TS
oclal Bircresiar K
=- 8@ black_hoinm
3 Dowm Convenar @ -
Ot
3
| ¥
P;éé&g . 6% Rredstep iy e

4. Go to the Simulink Library Browser and add a black box block to this subsystem. The
black box is located in the Xilinx Blockset's Basic Elements library. The Black Box
Configuration Wizard is automatically invoked when a new black box is added to the
subsystem. A browser window appears that lists the VHDL source files that can be
System Generator for DSP User Guide www.xilinx.com 357

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

associated with the black box. From this window, select the top -level VHDL file
transpose_fir.vhd. This is illustrated in the figure below:

Select the file that contains the entity description for th... |E|fg|
Laok i |L‘f} intra j =k B9

;_ﬁ] mac.rhd
E transpose_fir,vhd

Files of type: |.&II Supported HOL Files [*v, “vhd) ﬂ Cancel

Note: The wizard will only run if the black box is added to a model that has been saved to a file. If
the model has not been saved, the wizard does not know where to search for files and System
Generator will instead display a warning that looks like the following:

) Could Not Use Black Box Configuration Wizard &|

To uze the configuration wizard for the black box, pou must first gave the
madel to a folder that includes the black box WYHDL Aenilog. If you do nat
wizh bo uze the corfiguration wizard, you can write your awn

initialization m-funchon to describe this black box. Please consult he
block docurentation for details.

_ |

5. The wizard parses the VHDL to generate a configuration M-function for the black box.
This is a MATLAB script that, among other things, associates the black box to the
VHDL and creates black box ports. Once the function has run, the ports on the black
box match those in the top-level VHDL entity (not including clock and clock enable
ports). This is illustrated below:

5| black_box_introfDown Converter/Transpose FIR Filter Black Box *

Ak Edt Yew Smuston Format Took Hep

ODsH& &8 L] » 500 Homel - || B & () & REB T+ %

W odal Broveser EMES

=B hlack_bogimm

=24 Down Converiar
? din 1
daut| DOut
n i
et Black Box
L - i
Reach 0% R=edstepOiyrate
358 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

Be aware of the following rules when working this example:

*

A synchronous HDL design that is associated with a black box must have one or
more clock and clock enable ports. These ports must occur in pairs, one clock for
each clock enable, and vice-versa. Each of these ports must be of type std_logic.
The name of the clock port must contain the substring clk. The name of the clock
enable port must be the same as the name of the clock port, but with ce
substituted for c1k.

The clock enable port has a specific meaning to System Generator and is not a
general purpose user enable for the block. Refer to the topic Black Box HDL
Requirements and Restrictions for details.

6. Double click on the black box block. The dialog box shown below appears:

3 Elack Box (Xilinx Black Box) F:|E@|

Incorpomates black boe HOL and simuladion model into a Systemn
Ganerator design.

vou muatsupphy o Black Box with cermin information about the HOL
componertyau wauld like to bring inla Systern Generator. This
information is provided through 2 Metlab function.

Wyhen "Simulation mode" is setto "Inadtive", you will tpicsl b want to
provide a zeparate simulation model by uzsing B Simulatian
Muliiplaxar.

Yhen "Simulation mode" is aetto "Externel co-simulatar”, you must
include a ModelSim block in the design.

Bagic

Block comiguration m-functian
transpose_fir_corfig
Simulation mode | Inactive Ad

HOL co-simulator 1o use [specif helpar hlock by name)

Implementation

ok || cancal || Hep [Appl |

The following are the fields in the dialog box:

*

*

Block configuration M-function - This specifies the name of the configuration M-
function for the black box. In this example, the field contains the name of the
function that was generated by the Configuration Wizard. By default, the black
box uses the function the wizard produces. You can, however, substitute one you
produce yourself. For more information on the configuration M-function, refer to
the topic Black Box Configuration M-Function.

Simulation mode - There are three simulation modes:

- Inactive - When the mode is Inactive, the black box participates in the
simulation by ignoring its inputs and producing zeros. This setting is
typically used when a separate simulation model is available for the black
box, and the model is wired in parallel with the black box using a simulation
multiplexer. Black Box Tutorial Example 1: Importing a Core Generator
Module that Satisfies Black Box HDL Requirements shows how this is
accomplished.

- ISE Simulator - When the mode is ISE Simulator, simulation results for the
black box are produced using co-simulation on the HDL associated to the
black box.

System Generator for DSP User Guide www.xilinx.com 359

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

- External co-simulator - When the mode is External co-simulator, it is
necessary to add a ModelSim HDL co-simulation block to the design, and to
specify the name of the ModelSim block in the field labeled HDL co-
simulator to use. In this mode, the black box is simulated using HDL co-
simulation.

¢ FPGA Area Estimation - The numbers entered in this field are estimates of how
much of the FPGA is used by the HDL for the black box. These numbers must be
entered by hand. The numbers are only needed if you would like to use the
resource estimating utilities supplied with System Generator. For more
information, see Resource Estimation.

To continue the tutorial, leave the parameters set as they currently are.

Wire the black box's ports to the corresponding subsystem ports.

Run the simulation by clicking the Simulation Play button and then double click on the
scope block. Notice the black box output shown in the Output Signal scope is zero.
This is expected as the black box is configured to be inactive during simulation.

SBH LOPLPL ABEIE

Y=l
RV T
000 - - - e D e e e e

2000

]
U SR
1000

1]

Tiweulwl 1

360 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

9. Go to the Simulink Library Browser and add a ModelSim block to this subsystem. The
ModelSim block is located in the Xilinx Blockset /Tools library. This block enables the
black box to communicate with a ModelSim simulator. Double click on the ModelSim
block to open the dialog box shown below:

€ ModelSim (ModelSim HOL Co-... [_ [T

Allow other blocks to schedule HDL co-simulation tasks.

Mote that selecting "Skip compilation" when
inappropriate can cause simulation errars and failures.
Flease refer to the block help for details.

Basic | Advanced

Run co-simulation in directory: | /modelsim
Open wawvefarm viewer

Leave ModelSim open at end of simulation

I:l Skip compilation {use previous results)

| Ok |[Cancel ” Help H Apply

10. Make sure the parameters match those shown in the preceding figure. Close the dialog
box.

11. From the Simulink menu, select Port Data Types from the Format menu to display the
port types for the black box. Compile the model (Ct r1-d) to ensure the port data types
are up to date. Notice that the black box port output typeisUFix 26_0. This means it
is unsigned, 26 bits wide and has a binary point 0 positions to the left of the least
significant bit.

12. Open the configuration M-function transpose fir config.mand change the
output type from UFix_26 0 to Fix 26_12. The modified line should read:
dout port.setType('Fix 26 12');

13. Edit the configuration M-function to associate an additional HDL file with the black
box. Locate the line:

this block.addFile('transpose fir.vhd') ;

Immediately above this line, add the following:

this block.addFile('mac.vhd') ;

System Generator for DSP User Guide www.xilinx.com 361
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

14. Save the changes to the configuration M-function and recompile the model (Ctr1-d).
Your subsystem should appear as follows:

|T1 black_bowx_introfDown Conwerter/Transpose FIR Filter Black Bax *

Ak Eft vew Smuaten Format Took Hep

0DedS A b B0 [Mormed - || G & [& mE T
Koclal Brresar kR
= B black_boe intm
=- 2= Down Conwanar ®H|_.
SlEea In din
dout] FEIB1 =:)1
(Z)ami_,—l-ﬂ Out
] BlagiBoH
Mled=|Elm
heda [EIm
S | B
Reach 7% FizedStepOizcrete

15. From the black box block parameter dialog box, change the Simulation mode field
from Inactive to External co-simulator. Enter Mode1Sim in the HDL co-simulator to
use field. The name in this field corresponds to the name of the ModelSim block that
you added to the model. The black box dialog box should appear as follows:

3 Elack Box (xilinx Black Box) r:lﬁ[g|

Incomorates hlack bo HOL and simulation model into a Systern
Ganerator design.

You muat aupphy o Black Box with cerain informafion about the HDL
carnponantyau wauld ke ta bring inla Zwstern Ganaratar. This
iformatian is provided through a kool function.

Yyhen "Simulation mode" is setto "Inadive”, yau will typicalb want to
provide a sepanate simulation model by using o Simulation
Muliplawar.

YWhen "Simulation mode" is aetto "Externel co-simuletar”, you must
include a hodelSim block inthe design.

Basic |Imp|ementaii0n |

Block, configuration m-functian
[ranspose_fir_config |

Simulstion mode | Exernel oo-simulanr |)

HDL co-simulatorn o use [specify helper block by name)
[iodelSim |

[ok || cencel |[Help || Apply |

362 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

16.

Run the simulation. A ModelSim command window and waveform viewer opens.
ModelSim simulates the VHDL while Simulink controls the overall simulation. The
resulting waveform looks something like the following:

ﬁSystem Generator Co-Simulation (from block “ModelSim™) - dafault |Z|E[g|

Flle Edt wew INsart Format Took Window

DeB& i B>

'

[es@E | 4 IF npd RS BRE Y Y| »

o 439001 000000000 =

RV IR

[

| 1[N

N [1 A

A73411152912631 ps to 49038TRITD: | Mow: 498,001 ms Delta: O

i

The following warnings received in ModelSim can safely be ignored.

** Warning: There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand,
the result will be 'X' (es).

Time: 0 ps Iteration: 0 Instance: /

xlcosim _black box exl down_ converter transpose fir filter bl

ack box modelsim/

black box exl down converter transpose fir filter black box

black box/g0_ 22/g last/m2

They are caused by the black box VHDL not specifying initial values at the start of
simulation.

System Generator for DSP User Guide www.xilinx.com 363

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

17. Examine the scope output after the simulation has completed. When the Simulation
Mode was set to Inactive, the Output Signal scope displayed constant zero. Notice the
waveform is no longer zero. Instead, Output Signal shows the results from the
ModelSim simulation.

S8 L LA A
| apuit £ ignal
Tinm
L1111 S TR
-1000
1]
Tiwulml]
Importing a Verilog Module

This example demonstrates how Verilog black boxes can be used in System Generator and

co-simulated using ModelSim. Verilog modules are imported the same way VHDL

modules are imported. For more information on how this is done, seethe topics Black Box

Configuration Wizard and Black Box Configuration M-Function. System Generator

provides all of the code that is needed to incorporate Verilog black boxes, both to generate

hardware and to co-simulate HDL. System Generator also allows Verilog black boxes to be
parameterized. This example demonstrates all of these capabilities. The files for this
example are contained in the following directory:

<ISE Design Suite trees>/sysgen/examples/black box/example4.

The files are:

e Dblack box ex4.mdl - A Simulink model with two black boxes, one using VHDL
and the other using Verilog.

e word parity block.vhd-The VHDL for the combinational portion of the state
machine seen in word parity example presented above. This is a purely combinational
(stateless) block that computes the parity of each input word and outputs the parity
bit. It has been parameterized with a generic so that it can accept any input type (see
the description of dynamic black boxes for a discussion of generics).

e word parity block config.m- The configuration M-function for the VHDL
black box, including the generic setting. The M-function tags this block as
combinational so that it simulates correctly in Simulink.

e shutter.v - The Verilog for a simple synchronous latch. The code has been
parameterized so that the input port din can have arbitrary width.

364 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

e shutter_ config.m- The configuration M-function for the Verilog black box,
including the parameter setting. The configuration M-function uses methods referring
to VHDL syntax even for configuring Verilog black boxes. Thus for this black box, you
have the lines:

this block.setEntityName ('shutter') ;
this_block.addGeneric ('din_width', dwidth);

Black Box Tutorial Example 4: Importing a Verilog Module

1. Navigate into the example4 directory and open the example model.

This is a simple design with two black boxes, one VHDL and the other Verilog. The
VHDL black box computes the parity of each input word, and the Verilog black box
latches the words that have odd parity. No Simulink model is used to compute the
behavior of the black boxes; instead, HDL co-simulation is used. The example model is
shown in the figure below.

5] black_box_ex4 * =1 3|
File Edt View Simulation Fomat Tools Help
D EH&| &&= i a2 b =0 |[Noms ARl nEBRE®

D

Black Box Tutorial, Example 4
Mixed-Mode Simulation

=1 clin
dout
>

Syslam "
Gensratar to Bool Verilog Latch

latch

—— Scope
oon3azzz In l Pclin _parity > Qut Farity
Input Sequence Gateway In parity fronn
WHDL Parity Block

Modelsim
ModelSim

=

Ready 100% [[|ode45 S

You must have a license for mixed-mode ModelSim simulation to run this example. If
you do and you run the simulation, you will see a ModelSim waveform window that
looks like the one captured below. The behavior of both black boxes is shown. You can
browse the design structure in ModelSim to see how System Generator has combined
the two black boxes.

System Generator for DSP User Guide www.xilinx.com 365
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

2. Change the input type to an arbitrary type and rerun the simulation. Both black boxes
adjust in the appropriate way to the change.

'ﬁ System Generator Co-Simulaotion (from block "HodelSim®') - default

Edr flew Insert Fomat Ioals ndow

nnnejoain 1 SO i] n

11 L 1
l|:||:||1||—) oL Lciood jaoonic

| 0 ps to 25645568620253 ps | Now: 23,004 ms Delts: 0

Dynamic Black Boxes

This example extends the transpose FIR filter black box so that it is dynamic, i.e., able to
adjust to changes in the widths of its inputs. The example is contained in the directory
<ISE Design Suite tree>/sysgen/examples/black _box/example3. For this
example to run correctly, you must change your directory (cd within the MATLAB
command window) to this directory before launching the example model.

The files contained in this directory are:

¢ Dblack box ex3.mdl - A Simulink model containing a dynamic black box.
e transpose fir parametric.vhd-The VHDL for the transpose FIR filter.
¢ mac.vhd-Multiply and add component used to build the transpose FIR filter.

e transpose fir parametric_config.m- The configuration M-function for the

black box.

Black Box Tutorial Example 5: Dynamic Black Boxes

1. Open the model by typing black_box_ex3 at the MATLAB command prompt.

2. Run the simulation from the top-level model, and view the results displayed in the

scopes.

366

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

3. Reduce the number of bits on the gateway Din Gateway In from 16 bits down to 12
and the binary point from 14 to 10, then run the simulation again. Note that both the
input and output widths on the black box adjust automatically. The black box
subsystem and simulation results should look like those shown below.

= - . A (] 0 "
Lo Ieleagch Mg vl i Conierst LendPannnae ok il il ke Lo

Ble Edit Yew Smulation Format Jools Help
0SS L) B0 [Homal || e [0 B »ERET®

Mook Brosszr B E X
=) Hack_tom_=d
= % Diown Corwerter

= [o Pdin
In daut e 1
ED; o =t Ot
el

Faiamebic Filb=r BlagkBox

Tha qutputwddth of tha Fliter IF salculated
higdalSim by tha Blode Canfiguiafian L1 Coda

Mad el Elm

Paady 100% FliadSapiscrets

COutput Signal

a0 200 2A0 a0 400 45 a00

System Generator for DSP User Guide www.xilinx.com

367
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

4. The black box is able to adjust to changes in input width because of its configuration
M-function. To make this work, the M-function must be augmented by hand. Open the
M-function file transpose_fir_parametric.m. The important points are described
below.

¢ Obtaining data input width:
input bitwidth = this block.port('din') .width;
e Calculating output width:

output_bitwidth = ceil (log2 (2" (input bitwidth-1)*2” (coef bitwidth-1) *
number of coef)) ;

e Setting output data type:

dout_port.makeSigned;
dout port.width = output bitwidth;
dout_port.binpt = 12;

e Passing input and output bit widths to VHDL as generics:
this block.addGeneric('input bitwidth', this block.port ('din') .width) ;
this block.addGeneric ('output bitwidth', output bitwidth) ;

For details concerning the black box configuration M-function, seethe topic Black Box
Configuration M-Function.

If you examine the black box VHDL file transpose_fir_parametric.vhd you see generics
input_bitwidth and output_bitwidth that specify input and output width. These
are passed to lower-level VHDL components.

Simulating Several Black Boxes Simultaneously

Several System Generator black boxes can co-simulate simultaneously, using only one
ModelSim license while doing so. The example shown below illustrates this. The files for
the example are contained in the directory

<ISE Design Suite tree>/sysgen/examples/black box/example2.

The files contained in this directory are:

e Dblack box ex2.mdl: A Simulink model containing two black boxes.

e parity block.vhd: VHDL for a simple state machine that tracks the running
parity of an 8-bit input word.

e parity block config.m: The configuration M-function for the black boxes. The
code has barely been changed from what was produced by the Configuration Wizard:
the line that tagged the block as having a combinational feed-through path
(this_block.tagAsCombinational) has been removed.

Black Box Tutorial Example 6: Simulating Several Black Boxes
Simultaneously

Navigate into the example2 directory and open the example model. This is a simple
model with two identical black boxes, each implementing a state machine. The state
machines compute the running parity of their inputs. One black box is fed the input stream
of the model and the other is fed the input stream after it has been serialized and de-
serialized. Notice that no simulation model is provided for either state machine. Instead,
HDL co-simulation is used to produce simulation results. The ModelSim block provides

368

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

the connection between the black boxes and ModelSim. The example model is shown in
the figure below.

iv Black Box Tutorial, Example 2
.
Systlam
Sanaralor
0030110 In l— Bcin parity Out S Fariy
Input Sequence input parity

Running Parity1 ::|§|

Scope
Al . .
p S}—>|S > Pl—’d'” parity Out Trare mitled Farily

Pamlelto Sarial Senalto Pamlkel parity1

Running Parity2

MaodelSim

MaodelSim

If you run the simulation, you will see a Simulink scope and ModelSim waveform window
that look like the figures below. The scope shows that the black boxes produce matching
parity results (as expected), but with one delayed from the other by one clock cycle. The
waveform window shows the same results, but viewed in ModelSim and expressed in
binary. System Generator automatically configures the waveform viewer to display the
input and output signals of each black box. You can also browse the design structure in
ModelSim to see how System Generator has elaborated the design to combine the two
black boxes.

LEX

Original Parity

Tranzmitted Parity

System Generator for DSP User Guide www.xilinx.com 369
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

System Generator Co-Simulation {from block “ModelSim?) - default

File Edit Wew Insert Format Tools indow

_I‘ b = : | -

| 0 ps to 15308056572028 ps | Mow: 29 000,250 us Delta: 0

Advanced Black Box Example Using ModelSim

The following topics are discussed in this example:

¢ How to design a black box with a dynamic port interface;

e How to configure a black box using mask parameters;

¢ How to assign generic values based on input port data types;
e Saving black box blocks in Simulink libraries for later reuse;

¢ How to specify custom scripts for ModelSim HDL co-simulation.

This example also shows a way to view signals coming from a black box. In Simulink,
waveforms are typically viewed with a scope. The Simulink scope block serves this
purpose and the System Generator WaveScope block is available in versions 8.1 and later.
The waveform viewer in the ModelSim simulator may also be used to view waveforms. In
this example, a black box is configured as a specialized ModelSim waveform scope for
Xilinx fixed-point signals. When a model that uses the black box scope is simulated, the
signals that drive the black box are displayed in ModelSim.

The files for this example are contained in the directory
<ISE Design_ Suite tree>/sysgen/examples/black box/example5.
The files contained in this directory are:

e Dblack box ex5.mdl: A Simulink model containing a black box scope.
e scope_lib.mdl: A Simulink library containing the black box waveform viewer.
e scope config.m: The configuration M-function for the black box waveform viewer.

e scopel.vhd, scope2.vhd, scope3.vhd, scope4.vhd: Black box VHDL for the
signal scope that accept one, two three, and four input signals, respectively.

e waveform.do - A script that instructs ModelSim how to display signals during
simulation.

370

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

Black Box Tutorial Exercise 7: Advanced Black Box Example Using
ModelSim

1. Navigate into the example5 directory and open the example black_box_ex5.mdl
file. The model includes an adder that is driven by two input gateways. The gateways
are configured to produce signed 8-bit values, each with six bits to the right of the
binary point. Sine wave generators drive the gateways. The model also includes a
black box named waveform scope. This is driven by three signals. The first input is
driven by the adder. The other two are driven by the inputs to the adder. The
ModelSim block enables HDL co-simulation. The example model is shown below.

E! black_box_exb * =10 x|
File Edt Wiew Simulation Fomat Tools Help
D|D”E§|¥:E|<}==ﬁ>{r|fﬁﬁ|b lld['.' INorrnaI le

Black Box Tutorial, Example 5
i Using ModelSim as a Waveform Viewer
b
Syslam
Genamalor
ﬁLL,J » In W
Sine 1 A
ne 2a+'..'. - Qut |:|
|n'| = = Gateway Out
Lu'l P In Ll Scope
Sine 2
Sum
=i 1
e iy 2 ModelSim
=i
wavelom scope MaodelSim LI
Ready [100% | | |ode45 4

2. Simulate the black box_ex5 model. A ModelSim window opens and ModelSim
compiles the files necessary for simulation. After the compilation is complete, both
MATLAB and ModelSim simulations begin. A ModelSim waveform viewer opens and
displays four signals. The first input to the block, sigl, is driven by the adder. This

System Generator for DSP User Guide www.xilinx.com 371
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

signal is represented in two ways in the ModelSim viewer — binary and analog. The
ModelSim waveforms for the black box ex5 simulation are shown below.

7 Byslem Generalon o Simulation (inemn block “thadelSim:]

Ble Edt Mew Format Comple Smdate gdd Iods Window Belp

DeEaE i BB AED|| duRH|

4 B B EFEJJH 7| ke
ff'i"ﬁ'ﬂ'»IJI_J._mi 23 8 H

[0 to 1553454133535 s [Wow: 33,001 e Dehe:0

. o [| 2
Tranzcript £
FF Fici wie by Healmarme: Procazall: | j

Athempting to Lae dlemale file "o Yemphae T
Ii \w'arning: Leziméa! LF-500 | Coudd nol open bap fike veimws, Ucing o amphwaltT iatead,
i The Sycmm Genarso) simalstion has leminabed.
B The Sustem Genersho) corsimulelion inbesface will now paoses [but nol berminste]
H 1 Meeded Sim +iudalion 0 B¢ 1o dkrirepection al e desion sl
¥ Smulation hal reques ed by faieign mlafaca
B eimalats:
i Simulalion Bi=s: poinl: SimuAion hak requede=d by foeign in=ilace.
B HACAD Ahlech bow enE cosing_cw.lod PAUSED s lke 123

/51 W [pawzad
|Nuw: 39,001 rns Dehe: O |5im:.’hlack_hnx_e:ﬁ_:nsim_:w - Limited “Aaibility Regian

|

3. Double click on the Simulink scope in the model. The output is shown below and
resembles the analog signal in the ModelSim waveform viewer.

The black box in this example is configured using mask parameters. There are many
situations in which this is useful. In this case, the number of black box input ports, i.e.,
the number of scope inputs, is determined by a mask parameter.

372 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

4. Double click on the waveform scope black box. Notice a Number of Input Ports field is
included in the block dialog box and is unique to this black box instance. The dialog
box is shown below:

=1 Sink Block Parameters: waveform scope g|

Hiling Blackbox Scope Example [mazk]

Farameters

Mumber of input portz| 3 w

HDL co-gimulator bo u
ModelSim

Cancel

5. Change the number of input ports from 3 to 4 and apply the changes. The black box
now has an additional input port labeled sig4 and should look like the following:

—J=igl
——]=igl
—m|=igl
zigd
maveform scope

Every black box has a standard list of mask parameters. The black box in this example
has an additional mask parameter nports that stores the number of input ports
selected by the user. To change a black box mask it is necessary to disable the link to the
library. When a black box is changed in this way, it is best to save the black box in a
library. (See the Simulink documentation on libraries for details.) The tutorial library
scope_lib.mdl contains the modified signal scope black box used in this example.
When a black box configuration M-function adds an HDL file, the path to the file can
be relative to the directory in which the library is saved. This eliminates the need to
copy the HDL into the same directory as the model.

The black box's configuration M-function is invoked whenever the block parameter
dialog box is modified. This allows the M-function to check the mask parameters and
configure the black box accordingly. In this example, the M-function adjusts the
number of block input ports based on the nports parameter specified in the mask.

6. Open the file scope_config.m that defines the configuration M-function for the
example black box. Locate the line:

simulink block = this_ block.blockName;

This obtains the Simulink name of the black box and assigns it to the variable
simulink block. The name is useful because it is the handle that MATLAB
functions need to manipulate the block.

7. Locate the line:
nports = eval (get param(simulink block, 'nports')) ;

The value of the nports mask parameter is obtained by the get _param command.
The get_paramreturns a string containing the number of ports. An eval encloses the
get_paramand converts the string into an integer that is assigned to the nports
variable.

System Generator for DSP User Guide www.xilinx.com 373
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

10.

11.

Once the number of input ports is determined, the M-function adds the input ports to
the black box. The code that does this is shown below.
for i=1:nports
this block.addSimulinkInport (sprintf ('sig%d’',i)) ;
end

There are four VHDL files, named scopel.vhd, scope2.vhd, scope3.vhd, and
scope4 . vhd, which the black box in this example can use. The black box associates
itself to the one that declares an appropriate number of ports.

The configuration M-function selects the appropriate VHDL file for the black box.
Locate the following line in scope_config.m:

entityName = sprintf ('scope%d',6 nports);

The HDL entity name for the black box is constructed by appending the value of
nports to scope. The VHDL is associated with the black box in the following line:

this block.addFile(['vhdl/' entityName '.vhd']l);

The input port widths for each VHDL entity are assigned using generics. The generic
name identifies the input port to which the width is assigned. For example, the width3
generic specifies the width of the third input. In scope_config.m, the generic names
and values are set as follows:

if (this block.inputTypesKnown)

for i=1:nports

width = this block.inport (i) .width;

this block.addGeneric (sprintf ('width%d', i) ,width) ;
end

You can change the way ModelSim displays the signal waveforms during simulation
by using custom tcl scripts in the ModelSim block. Double click on the ModelSim block
in the black_box_ex5 model. The following dialog box appears:

) ModelSim (ModelSim HDL Co-Simulation ... [= |[8][X]

Allows other blocks to schedule HDL co-simulation tasks.

Mote that selecting "Skip compilation” when inaporopriate can cause
simulation errors and failures. Flease refer to the block help for details.

Bazic | Advanced

[] Inehude Werilog unisim bran

Add cuztom zonpte
Script to un before starting compilation:
Script to un in place of "wsim'

Script to min after Mwsim''; waveform.do

[fiTs H Cancel ” Help H Apply]

Custom scripts are defined by selecting the Add Custom Scripts checkbox. In this
case, a script named waveform. do is specified in the Script to Run after vsim field.
This script contains the ModelSim commands necessary to display the adder output as
an analog waveform.

374

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Black Box Examples

Importing, Simulating, and Exporting an Encrypted VHDL File

This example show you how to import an encrypted VHDL file into a Black Box block,
simulate the design, then export the VHDL out as an encrypted file that is separate from the rest
of the netlist.

Black Box Tutorial Example 8: Importing, Simulating, and Exporting an
Encrypted VHDL File

1. From MATLAB, open the following MDL file:
<ISE Design Suite tree>/sysgen/examples/black box/example7/blac
k_box ex7.mdl

i Black Box Tutorial, Example 7
a~ Simulating an Encrypted VHDL Simulation Model
System
Generator
‘ [10:length(BL:J-1T double(B{:))] B m n
R—b-—b r_chann=l
B_ch |
—tenne R_channel_out
0:length(G{:))-1T double(G{:))) G RGE | video_data_i
‘ oeng o viasecEem video_data_gut—e{RGE G -;_:I'arral
G_ch |
—henn® G_channel_out
‘ [10:length{R{:}}-11" double{R{:}}) R

é

b_channel

R_channsl

active_wvideo_in

B_channel_out

- - o - CCM_out
‘ [[0:{length{R}}-1] ones{langth{R},1]] active_video_out | Out =
active_video_in CoMiF active_video_out
RGB = {R,G,B} - -
hblank_in

IZ'—PII'—P sclr hklank_out Terminator
vblank_out Out » .
vixlank_in
wilank_cut Terminater1

vblank_in

¥

Blad: Box

This design imports an encrypted VHDL file generated from the licensed core Color
Correction Matrix v1.0. The input to the core is a 24-bit RGB signal {R, G, B} and the
output is a Color transformed 24-bit signal {Rt, Gt, Bt} signal such that :

| Bt
| e
| _ Et

1 R
o6 |
1 I_®

o oo
tn dn O
S L S
Coa
oo o
== =
o
oo Qo

The active_video_in signal is used to mark each video_data_in sample as valid. The
signals hblank_in and vblank_in are ignored in this example design. Refer to the
Color Correction Matrix v1.0 LogiCORE datasheet for more information on this core.

2. The filenamed encrypted _hdl_ import.vhd is the encrypted simulation model
generated by Core Generator. In order to import this encrypted simulation model, you
must first create a VHDL wrapper file that instantiates the encrypted VHDL model.
You then import this wrapper file using the standard Black Box Configuration Wizard.
This process is described in the topic Black Box Tutorial Example 2: Importing a Core
Generator Module that Needs a VHDL Wrapper to Satisfy Black Box HDL
Requirements and has already been done for you in this example.

During the Black Box creation process, the Black Box Configuration Wizard creates a
configuration file named encrypted hdl import wrapper config.m.

System Generator for DSP User Guide www.xilinx.com 375
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules

& XILINX.

Double click on the Black Box in the example design and you will see this config file

specified:

_inx

Incorporates black biox HOL and simulation model inko 3 5wskem
Generatar desiar.

You must supply a Black Box with certain information about the HOL
component you would like to bring into System Generator. This
inFormation is provided through a Matlab Funckion,

‘When "Simulation mode” is set ko "Inackive", wou will by pically want ko
provide a separate simalation model by using a Simulation Multiplexer,
When "Simulation mode" is set ko "External co-sinnulator”, wou musk
include & ModelSim black in the design.

Basic | Implernertation

Block: configur ation r-funckion

I encrypted_hd_import_wrapper_config|

Simulation maode |ISE Simulatar |

HOL co-simulator bo use (specify helper block by name)

[~ verbose

K Cancel Help Lpply

Notice also that the ISE Simulator has been been specified as the simulator to use.

In order to tell System Generator to netlist the encrypted VHDL file separately, you

must open the file encrypted_hdl_inport wrapper_ config.mand modify the

file by adding the following line:

this block.addFile ('encrypted hdl import.vhd', 'encrypted hdl import.vhd');

In the above line, the second parameter in the addFile function instructs System
Generator to netlist the encrypted file as a separate file and to not include the file in the

376

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

consolidated VHDL netlist. The following figure shows how this line has already been
added for you in this example:

inn%11.1%D5P_Tools' sysgentcnamples black_box' example T encrypted _hdl - IEIIiI
| Flle Edit Text Ga Csll Tools Debug Deskoop Window Help a2 x

BT TR

D-Aesf|p-BR0E@REEA| KD

a0
al
| 92
N =k
| 94
|| 35
a5
a7
a3
a3
| 100
1 1ol
| 102
|| 103
104 =
105

106 —

|

%
5

P

a

P

-E"EEE|'IT+|"'I“ x|%9§%9§|°.

bLdd addtional scurce files as needed.

return;

=a

idd files in
If two files
entity a and

vompunenl. ul

the order in which they should be compiled.
"a.vhd" aad "b.vhd" ccntsin the entities
entity b, and entity s contains a

Lhie cur

Lype eubioy by,

addFile () calls would be:
thiz block.addFile('b.vhd']
thiz block.addFile('a.vhd'] ;

This line added to netlist
this file separately

chis hlock.acdFile(''):
~his block.acdFile(''):

J
o

thio block.addFilc{'cnerypted hdl import.whd','cneryptcd hdl dmport.vhd'j:
this_block.addFile('encrypted hdl import_wrappzr.vhd j:

cncryptcd_hdl_inport_wrappcr_c...|Ln L ol 1

ER v

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com 377

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

4. DPress the Simulate button to simulate the design.

The simulation results are as shown below.

J e 1: wniginad Lneage =13/ =]
lle _ck e Inert oog Lesdss Wrdow kb u

FEEENEEEEEr R EEEIL

} Figuare= Z; Blue= Green Fillered Dinaye =132
Fie ol wiens Deal Toon Cewdoo Wi el i

Ndda|L[&849@«L-|32 208 m@

378 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

black_bex_ex? whd
black_box_ex7_ow.gise
black_baw_ex7_cwise
black_bas_gx7_ow.sde
black_box_ex7_ow.sgp
black_bex_ex?_cw.uck
black_box_ex7_ow.vhd
black_bowx_ex7_cw.xcf
black_box_ex7_ow.xise

black_bex_ex?_cw_import.log
black_box_ex7_cw_impork.kol

commandLings

Encry FltEuj _h d I_i PP ot ehd

globals

hdlFile=
isim_black_box_ex7.pri
name_kr anslations
SglseProject.tol

!
!
!
/L1005 10:53 AM
B(L1/03 11:00 &M
= /1109 11:00 AM
!
!
!
!

ElR1[E

8i11/09 10:59 4M
BI1109 11:00 &M
8/11/09 10:59 AM

BI11J09 10:59 4M
B/11/09 10:59 AM
811109 11:00 A4M e __
B cditor - C¥ilins,11.14DSP_Taolssysge =1a] x|
Fle Edit Tex: Go Tcols Debug Deskion Window Help =~ |2 %

Iﬂj _’3 ﬂ| .r’.- L‘ﬁ ‘] o 'I.—" '3 »Iﬂ
BoB| -ir + sfT x|« k| @

EENEL[

1 [ELxV37EE £220 bccxﬁ@]ﬁanDT_(;Oﬁ.‘f&Da
2 h-edviEs--RxAcmOT@1E
3 trOHgsEsTeoci=Trdequrunyes e relvee iy @1
4 »IfzidtE=0«]90«Idi0, " LoEzwek - aidzgic@dny , oo
5 ThOilp-2¥&ad—leoe™" —o/atédrrhfemenl. s, Yiir
& S5j0z;g|cvobnol) CU-%07) | Ohwl 0¥ v 0 2 igpi
7 BI.ivE%elEd [Ll dicTwainisansot #ik: daskz)
& Orzobxz ! 2@79Sa00Tcixsk /1 BEizadteTosfahIo
9 SelI0dy, ¥9 OJEqQI0uess: , HIOOV2 4860 | VAIREH"E
10 n°02
11 DOO5400,. Z@4s;V.0NZ o000 | pe04' 300sT5086 T
|12 00~ &7, I*E0LA+704 (3OO 90 I4B08AE0&1°013 20701
13~ O&F u! &<¥m0200v0t *O0=800QACe tpO<0kxOECT
14 - PYRfICuxEIOuxEinds«—0-0006Z:0/ kT 4740 |k
15 OB#+,Bv0...-0 =

| plaim bzt file [t 1 Col 1 [oR 4

5. Double click on the System Generator Token and verify that the Compilation option is
set to HDL Netlist. Click Generate.
A folder named hdl is created inside the example7 folder.
6. Open the hdl folder and notice the file named encrypted_hdl_import.vhd. Open
the file to see that this is the encrypted file that was netlisted separately.
Mame - ID |Date Modified
_xXmsgs [81109 11:00 4M -
black_box_ex7_cw_xdb [8/LLf09 11:00 AM
Yo e .._:. BJ11/09 10:59 41

Note: The file encrypted hdl import .vhd is for simulation purposes only. If you want to netlist
this design for implementation, you’ll need to include another addFile line in the configuration file that
specifies the NGC file that is created by Core Generator. Refer to the tutorial Black Box Tutorial
Example 2: Importing a Core Generator Module that Needs a VHDL Wrapper to Satisfy
Black Box HDL Requirements for an example of how to do this.

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

379

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

Black Box Tutorial Exercise 9: Prompting a User for Parameters in a
Simulink Model and Passing Them to a Black Box

This tutorial exercise describes how to access generics/parameters from a masked counter and
pass them onto the black box to override the default local parameters in the VHDL file.

1. Navigate into the directory
<ISE Design Suite tree>/sysgen/examples/example8 directory and open
the file black box_ ex8.mdl. The model is a simple counter, which includes two
inputsignals (reset and enable), a subsystem with a black box, and an output signal
(count) . The black box example model is shown below.

=] black_box_ex8 - =] B3
File Edit View Simulation Format Tools Help
D& B2 4 92 r = |[Nmdl = e 2
Black Box Tutorial, Example 8
A Passing parameters from a Simulink model to Black Box
Syzlam
Genaralor
Step el Outt Out |:|
Constant enablk Seape
Subsystem
[
Ready [100% [[|Variable Step Discrete 4

2. Simulate the black box_ ex8 model. The Simulink waveforms for the
black box_ex8 simulation are shown below.

B[=]E

T

0 100

10

Time offset: 0

380 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Black Box Examples

3. Double click on the Subsystem block and change the COUNT_MAX to a different
count value, simulate the design, and verify the count on the WaveScope.

31 Function Block Parameters: Subsystem fg|
Subsystemn (mask) ~
Parameters

COUMT_BIT_WIDTH

COUNT_INITIAL
o |

COUMT_Max

116 | [

b

I [al'd] l Zancel l [Help l apphy

4. Next, take a look at the counter_config.mfile and examine the following lines of
M-code that were added to the original machine-generated code by System Generator.

a. Access parameters from the masked counter block:

% This code iz the one that shows how to grab parameters
% from the masked counter block

mybb = this block.blockName;

maszked counter = get_param(mybb, "Parent'});

Work around: Create a structure of all the Parameter Names

and their evaluated wvalues that are on the specified mask

For MaskWSVariables See MATLAB Doc > Mask Parameters > Model and Block
Parameters > Mask Parameters > About Mask Parameters

o o o e o oo

mazkParamNameValuePairs = get param(masked counter, 'MaskWSVarisbles'):

gh each MASKE to get the name and the evaluated walue

count width = -1; %Initial walues 30 to know if Mask is present.
count_init = -1;
count _max = -1;
for i=l:length (maskParamNameValuePairs)
if (strcmpi (maskParamNameValuePairs(i).Name, 'count width'})
count_width = maskParamNameValuePairs(i).Value;
end
if (strcmpi (maskParamMNameValuePairs(i).Name, 'count init'}))
count_init = maskParamNameValuePairs(i).Value;
end
if (strcmpi (maskParamMNameValuePairs(i).Name, 'count max'))
count max = maskParamNameValuePairs(i).Value;
end
end
numChannels = count Max;
System Generator for DSP User Guide www.xilinx.com 381

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 4: Importing HDL Modules & XILINX.

b. Set the appropriate bit width for the count output based on the count _max value
entered by a user.

count = thisz block.port|('count'):
if (count_width ~= -1}

count.setType (['UFix ' numZstr(count width) " 0']);
end

c. Modify the addGeneric statements as follows:

% Original code

o o

L

% Modified code

this block.addGeneric ("COUNT_EIT H',"integer',nuomZstr (count width)):;
this block.addGenerxric (" COUNT f'integer', numZstr (count_init));
this block.addGeneric ('COUNT_MRX', "integer',numZstr (count_max));

The following is a screen-shot of the parameters that are declared at the beginning of the
counter.vhd file.

entity counter 1i=s

generic |
COUNT_EBIT WIDTH : integer := 4:
COUNT_INITIALL : integer := 0:
COUNT_MAX : integer := 15

1:

382

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.
Chapter 5

System Generator Compilation Types

There are different ways in which System Generator can compile your design into an
equivalent, often lower-level, representation. The way in which a design is compiled
depends on settings in the System Generator dialog box. The support of different
compilation types provides you the freedom to choose a suitable representation for your
design’s environment. For example, an HDL or NGC netlist is an appropriate
representation when your design is used as a component in a larger system. If, on the other
hand, the complete system is modeled inside System Generator, you may choose to
compile your design into an FPGA configuration bitstream. Sometimes you may want to
compile your design into an equivalent high-level module that performs a specific
function in applications external to System Generator (e.g., ModelSim hardware co-

simulation).

HDL Netlist Compilation System Generator uses the HDL Netlist compilation
type as the default generation target. More details
regarding the HDL Netlist compilation flow can be
found in the topic Compilation Results.

NGC Netlist Compilation Describes how System Generator can be configured to
compile your design into a standalone NGC file.

Bitstream Compilation Describes how System Generator can be configured to
compile your design into an FPGA configuration
bitstream.

EDK Export Tool Describes how System Generator can be configured to
compile your design into an FPGA configuration
bitstream that is appropriate for the selected part.

Hardware Co-Simulation Describes how System Generator can be configured to

Compilation compile your design into FPGA hardware that can be
used by Simulink and ModelSim.

Timing and Power Analysis Describes how to use the System Generator Timing

Compilation and Power Analysis tools on the compilation target.

Creating Compilation Targets Describes how to add custom compilation targets to
the System Generator token.

System Generator for DSP User Guide www.xilinx.com 383

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

HDL Netlist Compilation

System Generator uses the HDL Netlist compilation type as the default generation target.
More details regarding the HDL Netlist compilation flow can be found in the sub-topic
titled Compilation Results.

As shown below, you may select HDL netlist compilation by left-clicking the Compilation
submenu control on the System Generator token dialog box, and select the HDL Netlist
target.

) System Generator: AddSubExample M=
@l ® @
1
E) @
Compilation Clocking General

Compilation :

M
NGC Netlist

Par Bitstream

EDK Export Tool

Hardware Co-Simulation »

Syr Timing and Power Analysis Hardware description language :
| I 1

Settings ... |

NGC Netlist Compilation

The NGC Netlist compilation target allows you to compile your design into a standalone
Xilinx NGC binary netlist file. The NGC netlist file that System Generator produces
contains the logical and optional constraint information for your design. This means the
HDL, cores, and constraints file information corresponding to a System Generator design
are self-contained within a single file.

If you have chosen to include clock wrapper logic in your design, the netlist file is saved as
<design> cw.ngc. Otherwise, the file is saved as <design>.ngc. Here <designs is
derived from the portion of the design being compiled. This file can be used as a module in
alarger design, or as input to NGDBuild when the netlist constitutes the complete design.
For an example showing how a System Generator design can be used as a component in a
larger design, refer to the topic titled Importing a System Generator Design into a Bigger
System.

The NGC compilation target generates an HDL component instantiation template that
makes it easy to include your System Generator design as a component in a larger design.
For VHDL compilation, the template is saved as <design>_cw.vho when the clock
wrapper is included. Otherwise it is saved as <design>.vho . Alternatively, a .veo
extension is used for Verilog compilation. The instantiation template is saved in the
design's target directory.

System Generator produces the NGC netlist file by performing the following steps during
compilation:

1. Runs the selected synthesis tool to produce a lower-level netlist. The type of netlist
(e.g., EDIF for Synplify or Synplify Pro, NGC for XST) depends on which synthesis tool
is chosen for compilation.

Note: Note: 10 buffers are not inserted in the design during synthesis.

2. Combines synthesis results, core netlists, black box netlists, and optionally the
constraints files into a single NGC file.

384

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Bitstream Compilation

As shown below, you may select the NGC compilation target by left-clicking the
Compilation submenu control on the System Generator token dialog box, and selecting
the NGC Netlist target.

) System Generator- AddSubExample

¥ @ @

Compilation Clocking General

I B3

Compilation :
HDL Netlist setings _ |
Par Bitstream E!

EDK Export Tool
Hardware Co-Simulation »

Bwr T AT AL

Hardware descrintion lanmanea @

You may access additional compilation settings specific to NGC Netlist compilation by
clicking on the Settings... button when NGC Netlist is selected as the compilation type in
the System Generator token dialog box. Parameters specific to the NGC Netlist Settings
dialog box include:

¢ Include Clock Wrapper: Selecting this checkbox tells System Generator whether the
clock wrapper portion of your design should be included in the NGC netlist file. Refer
to the topic Compilation Results for more information on the clock wrapper.

Note: If you exclude the clock wrapper from multirate designs, you will need to drive the clock
enable ports with appropriate signals from your own top-level design.

¢ Include Constraints File: Selecting this checkbox tells System Generator whether the
constraints file associated with the design should be included in the NGC netlist file.

Note: When the constraints file is excluded, you should supply your own constraints to ensure
the multi-cycle paths in the System Generator design are appropriately constrained.

Bitstream Compilation

The Bitstream compilation type allows you to compile your design into a Xilinx
configuration bitstream file that is suitable for the FPGA part that is selected in the System
Generator dialog box. The bitstream file is named <design> cw.bit and is placed in the
design's target directory, where <designs is derived from the portion of the design being
compiled.

System Generator produces the bitstream file by performing the following steps during
compilation:

1. Generates an HDL netlist for the design;

2. Runs the selected synthesis tool to produce a lower-level netlist. The type of netlist
(e.g., EDIF for Synplify Pro, NGC for XST) depends on which synthesis tool is chosen
for compilation.

3. Runs XFLOW to produce a configuration bitstream.

System Generator for DSP User Guide www.xilinx.com 385
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

As shown below, you may select the Bitstream compilation by left-clicking the
Compilation submenu control on the System Generator token dialog box, and selecting
the Bitstream target.

) Sysiem Generator: AddSubBExample = S

o o~
1
000 7
Compilation Clocking General
Compilation :
HOL Metlist Settings ... |
NGC Metlist

B
EDK Export Tool

Hardware Co-Simulation »
Swr e e o Hardware descriotion lanauace :

System Generator uses XFLOW to run the tools necessary to produce the configuration
bitstream. Execution of XFLOW is broken into two flows, implementation and configuration.

The implementation flow is responsible for compiling the synthesis tool netlist output
(e.g., EDIF or NGC) into a placed and routed NCD file. In summary, the implementation
flow performs the following tasks:

1. Combines synthesis results, core netlists, black box netlists, and constraints files using
NGDBuild.

2. Runs MAP, PAR, and Trace on the design (in that particular order).

The configuration flow type runs the tools (e.g., BitGen) necessary to create an FPGA BIT
file, using the fully elaborated NCD file as input.

XFLOW Option Files

The implementation and configuration flow types have separate XFLOW options files
associated with them. An XFLOW options file declares the programs that should be run for
a particular flow, and defines the command line options that are used by these tools. The
Xilinx ISE® software includes several example XFLOW options files. From the base
directory of your Xilinx ISE software tree, these files are located under the xilinx\data
directory. Three commonly used implementation options files include:

e Dbalanced.opt;
e fast_runtime.opt;
e high_effort.opt.

Note: By default, System Generator uses the balanced. opt file for the implementation flow, and
bitgen.opt file for the configuration flow.

Sometimes you may want to use options files that use settings that differ (e.g., to specify a
higher placer effort level in PAR) from the default options provided by the target. In this
case, you may create your own options files, or edit the default options files to include your
desired settings. The Bitstream settings dialog box allows you to specify options files other
than the default files.

386

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Bitstream Compilation

Additional Settings

You may access additional compilation settings specific to Bitstream compilation by
clicking on the Settings... button when Bitstream is selected as the compilation type in the
System Generator token dialog box. Parameters specific to the Bitstream Settings dialog
box include:

Import Top-level Netlist: Allows you to specify your own top-level netlist into which
the System Generator portion of the design is included as a module. You may choose
to import your own top-level netlist if you have a larger design that instantiates the
System Generator clock wrapper level as a component. Refer to the Compilation
Results topic for more information on the clock wrapper level. This top-level netlist is
included in the bitstream file that is generated during compilation. Selecting this
checkbox enables the edit fields Top-level Netlist File (EDIF or NGC) and Search Path
for Additional Netlist and Constraint Files.

¢ Top-level Netlist File (EDIF or NGC): Specifies the name and location of the top-
level netlist file to include during compilation. Note that any HDL components
that are used by your top-level (including the top-level itself) must have been
previously synthesized into netlist files.

¢ Search Path for Additional Netlist and Constraint Files: Specifies the directory
where System Generator should look for additional netlist and constraint files
that go along with the top-level netlist file. System Generator copies all netlist
(e.g., .edn, .edf, .ngc) and constraints files (e.g., .ucf, .xcf, .ncf) into the
implementation directory when this directory is specified. If you do not specify a
directory, System Generator will only copy the netlist file specified in the Top-
level Netlist File field.

Specify Alternate Clock Wrapper: Allows you to substitute your own clock wrapper
logic in place of the clock wrapper HDL System Generator produces. The clock
wrapper level is the top-level HDL file that is created for a System Generator design,
and is responsible for driving the clock and clock enable signals in that design.
Sometimes you may want to supply your own clock wrapper, for example, if your
design uses multiple clock signals, or if you have a board-specific hardware you
would like your design to interface to.

Note: The name of the alternate clock wrapper file must be named <design> cw.vhd or
<design>_cw.v or it will not be used during bitstream generation.

XFLOW Option Files: When a design is compiled for System Generator hardware co-
simulation, the command line tool, XFLOW, is used to implement and configure your
design for the selected FPGA platform. XFLOW defines various flows that determine
the sequence of programs that should be run on your design during compilation.
There are typically multiple flows that must be run in order to achieve the desired
output results, which in the case of hardware co-simulation targets, is a configuration
bitstream.

¢ Implementation Phase (NBDBuild, MAP, PAR, TRACE): Specifies the options
file that is used by the implement flow type. By default, System Generator will
use the implement options file that is specified by the compilation target.

¢ Configuration Phase (BitGen): Specifies the options file that is used by the
configuration flow type. By default, System Generator will use the configuration
options file that is specified by the compilation target.

System Generator for DSP User Guide www.xilinx.com 387

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

Re-Compiling EDK Processor Block Software Programs in Bitstreams

When you perform bitstream compilation on a System Generator design with an EDK
Processor block, the imported EDK project and the shared memories sitting between the
System Generator design and MicroBlaze™ processor are netlisted and included in the
resulting bitstream.

System Generator also tries to compile any active software programs inside the imported
EDK project. If the compilation of active software programs succeeds, System Generator
invokes the data2bram utility to include the compiled software programs into the resulting
bitstream.

Note: No error or warning message is issued when System Generator encounters failures during
software program compilation or when System Generator updates the resulting bitstream with the
compiled software programs.

You can modify the software programs in the imported EDK project and use the following
command to compile the software programs, and update the System Generator bitstream
with the compiled software programs:

x1lProcBlockCallbacks ('updatebitstream', [], xmp file, bit file,
bmm file) ;

where

xmp file is the pathname to the imported EDK project file

bit file is the pathname to the Sysgen bitstream file

bmm file is the pathname of the back-annotated BMM file produced by
Sysgen during bitstream compilation

If the imported EDK project contains a BMM file named imported_edk_project.bmm,
System Generator creates a back-annotated BMM file named

imported edk project bd.bmm. You should provide the later back-annotated BMM
file to the above command in order to update the bitstream properly.

388

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. EDK Export Tool

EDK Export Tool

The EDK Export Tool allows a System Generator design to be exported to a Xilinx
Embedded Development Kit (EDK) project. The EDK Export Tool simplifies the process of
creating a peripheral by automatically generating the files required by the EDK.

The EDK Export Tool can be accessed from the System Generator token GUI under the
Compilation pull-down menu - the figure below shows this being done. After the EDK
Export Tool is selected, the Settings... button will be enabled.

) System Generator- mb2gray = [T x|
0 g
1
000 _ZE 7
Compilation Clocking General
Compilation :
HDL Netlst settings |
MNGC MNetlist). EDK export setfings !El
Par Fitstream o
— Pcore options:
Major Minor HW/SW compatibility revision
Hardware Co-Simulation M » |_1:| W:I l_aj

Syr Timing and Power Analysis Hardware description language : oE
IET T WHOL T -

_I I J ™ Enable custom bus interfaces
[T Create testbench I= importas configurabie sabsystem i imsrfacsl

Target directory : — Export Pcore to:
I..l'netlist Bro " System Generator target directory
(¢ EDK project:

[™ Create interface document

=

oK | Cancel | Help |

Generatel oK | Apphy | Cancel | Help ”l

Clicking on the Settings... button brings up the EDK export settings dialog.
Pcore options allow you to do the following:

e Assign a version number to your pcore
e Select Pcore under development

This feature works for both FSL- and PLB-based pcore export. When a pcore is marked
as Pcore under development, XPS will not cache the HDL produced for this pcore.
This is useful when you are developing pcores in System Generator and testing them
out in XPS. You can just enable this checkbox, make changes in System Generator and
compiled in XPS. XPS always compiles the generated pcore, so you don’t have to
empty the XPS cache which may contain caches of other peripherals, thus slowing
down the compile of the final bitstream.

e Select Enable custom bus interfaces

This feature works for both FSL- and PLB-based pcore export and allows you to create
custom bus interfaces that will be understood in XPS.

System Generator for DSP User Guide www.xilinx.com 389
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com/ise/embedded/edk_pstudio.htm
http://www.xilinx.com/ise/embedded/edk_pstudio.htm
http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

Creating a Custom Bus Interface for Pcore Export

Consider the following example. In the model below, you have one design that you are
going to export as a pcore to XPS. This design has the output ports Pixel Enable, Y, Cr, and
Cb. You want to group these signals into a bus to simplify the connection in XPS.

R=TET

Fil= Edit Views Simdatior Formak Toos Help

D|£n§|$%a|¢,¢?|ge| 1. Double Click

i'/

N

ME

Syslam
Gienaralor

EQK Processar

Qult —Jm Ot

Pizel Enabe

Subassta
F 1m0 | | |odez 4
! System Generator: data_producer — =] x|
[E=p10 Iy
W' '-1 -!._-.
m a— 1 -
. . 3. Click
Compilation Clocking

Compilation : /
Ii“Expurt as a pcore to EDK Seftings ... |
| EDK export settings _|I:I|5|I

— Pcore options:
Major Minor HW/SW compatibility revizion

i o] 2
- et 4- Select)

W Enable custom bus interfaces(5. Click
Bus interface

8l -) Bus Interface

Browse... |

0 Bz nterfacs
Cus Marne Dus Skandard Dus Tvpe =
1 pid ok myYideBus IMITIATOR =l
=
FartEus Mapping
r2akzumay Marne Bus Irterface Name Eus Mame 'S
~ | 1 Fixel Eqable pe wid ot = o| Help |
G y WId ot = |
e c: vid oot =l
4 ch b “—Fadax =
6. Enter
Ok Cancel
390 www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. EDK Export Tool

You follow the sequence in the previous figure to bring up the Bus Interface dialog box. In
this dialog box, you define a new Bus Interface called vid_out that is marked as a
myVideoBus Bus Standard and is Bus Type INITIATOR. (Other supported Bus Types
include: Target, Master, Slave, Master-slave, Monitor.) Next, in the Port-Bus Mapping
table, you list all the gateways that you want in the bus, then give each a Bus Interface
Name. You then Netlist the design as a pcore. Remember that you marked this pcore bus as
INITIATOR since it contains outputs.

In another model (shown below), you create corresponding input gateways. You set this
up as a TARGET bus giving the bus interface the same Bus Standard myVideoBus. XPS
will use the Bus Standard name to match different bus interfaces. XPS will then connect the
outputs to the inputs with the same Bus Interface Names.

alataa_ vuisimmer ===
N SV CaTErAOE Sk Edt wkew Slmdazon =orma: Took Help
Cargiafizn: =R = o o e I S T
|‘L|F::|||I-.xap e nFK = T
Pa--
JISTES i A 3
Pecie odone: System ECK Prococosr
W hlime HAEVS 3 wpd bl v s o Generator
-FED- (I o | ;
I Fuore uies d=ve v, iWC : Mse Chzhe
p Enzbic cUStCH CuE Mormazos ' e
Mn.s i‘h'l‘ﬂr.FI — ad ol » Qaut =
EuE nler-oce -
Uz -~ 1 +|
1 fad e — lrr_w'frﬁ:l":i e |mR::I‘ = _-II lT‘ »
Uzt Lzge

PortBis Mepaing

£
x|

Sa.zwee Man e | By Dkerlans Nanz B: M x 3‘ Teedsftoot l 45 A
X

1 M=z E-ablc |2 Ad 1 =l
HI v il 1 |
= |ur [\ad 1 jl
En [al] wd i |

You export this pcore to the XPS project. When these two pcores are used in the same XPS
project, XPS will detect that they have compatible buses and will allow you to connect
them if you wish.

Export as Pcore to EDK

When a System Generator design is exported to the EDK, the name of the pcore (processor
core) has the postfix "_plbw" appended to the model name if a PLB v6.4 bus is specified.
For example, when a model called mul_accumulate is exported to the EDK, it will be called
mul_accumulate_plbw on the EDK side. If Fast Simplex Link is specified, the postfix
“_sm” is appended to the model name.

System Generator for DSP User Guide www.xilinx.com 391
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

The following table shows subdirectory structure of the pcore that is generated by System

Generator:
pcore .
Subdirectory Description
data The data directory contains four files: BBD, PAO, MPD and
TCL.

e The BBD (black-box definition) file tells the EDK what EDN
or NGC files are used in the design.

e The PAO (peripheral analyze order) file tells the EDK the
analyze order of the HDL files.

¢ The MPD (Microprocessor Peripheral Description) file tells
the EDK how the peripheral will connect to the processor.

e The TCL file is used by LibGen when elaborating software
drivers for this peripheral.

doc Documentation files in HTML format.

hdl The hdl directory contains the hdl files produced by System
Generator.

netlist The netlist directory contains the EDN and NGC files listed by
the BBD file

src Source files for the software drivers.

System Generator Ports as Top-Level Ports in EDK

Input and output ports created in System Generator are made available to the EDK tool as
ports on the peripheral. You may pull these ports to the top-level of the EDK design. This
is useful for instance when the System Generator design has ports that go to the
input/output pads on the FPGA device.

Supported Processors and Current Limitations

Currently, PLB v4.6 memory-map links and FSL memory-map links to the MicroBlaze™
processor are exported with the EDK Export Tool. There can only be one instance of an
EDK Processor block.

See Also:
EDK Processor

392 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Hardware Co-Simulation Compilation

Hardware Co-Simulation Compilation

System Generator can compile designs into FPGA hardware that can be used in the loop
with Simulink simulations. This capability is discussed in the topic Using Hardware Co-
Simulation.

You may select a hardware co-simulation target by left-clicking the Compilation submenu
control on the System Generator dialog box, and selecting the desired hardware co-
simulation platform. The list of available co-simulation platforms depends on which
hardware co-simulation plugins are installed on your system.

Note: If you have an FPGA platform that is not listed as a compilation target, you may create a new
System Generator compilation target that uses JTAG to communicate with the FPGA hardware. Refer
to the Supporting New Boards for more information on how to do this.

Timing and Power Analysis Compilation

Sometimes the hardware created by System Generator may not meet the requested timing
requirements. System Generator provides a Timing and Power Analysis tool flow that can
help you resolve timing and power related issues. The timing analysis tool shows you,
both in graphical and textual formats, the slowest system paths and those paths that are
failing to meet the timing requirements. This allows you to concentrate on methods of
speeding up those paths. Methods for doing so will be discussed. Underlying the System
Generator Timing Analysis tool is Trace, a software application delivered as part of the
ISE® software used to analyze timing paths.

As shown below, you invoke the Timing Analyzer by double-clicking on the System
Generator token and selecting the Timing and Power Analysis option from the
Compilation submenu. Specify the optional Power Analysis option and the the exact
device you wish to target as the size and speed of the device will affect the path delays.
Result files will be put in the Target Directory. The value in the FPGA Clock Period box is
the value that will be used during place & route:

) System Generator: parity_test

% 8| o
>

000
iming and Power Analysis

=101x]

Compilation

2. Select Part

Part:

= ||Spartang xc8skk16-2csgizd

=l g) Compilation Target Settings

Synthesis tool : Hardware description langu [~ XFlow Options Files

JxsT 2 Implementation Phiase (IC0Buid, AP, BAR);

[7 Greate festhench Il Imponias configurable subz! I ﬂ

eI Timing Analysis Biase (| RACE):

I.a‘timing I ﬂ

[™ Create interface document —Power Analysis /4- Select Power AnaIVSis Type
Mo analysiz j

5. Click —— No analysis

Full zimulation-bazed analysiz

| o | o | e —

System Generator for DSP User Guide www.xilinx.com 393
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types

& XILINX.

After filling out the dialog box, click the Generate button and System Generator will
perform the following steps:

1. The design is compiled using Simulink then netlisted by Sysgen into HDL source.

2. If you selected the Power Analysis option Full simulation-based analysis, the ISim
simulator is called to simulate the HDL design. The HDL Synthesis Tool is then called

to turn the HDL into an EDIF (Synplify /Synplify Pro) or NGC (XST) netlist.

NGD Build is called to next to turn the netlist into an NGD file. The ISE Mapper
software is then called to map elements of logic together into slices; this creates an
NCD file.

The ISE Place & Route software is then called to place the slices and other elements on
the Xilinx die and to route the connections between the slices. This creates another
NCD file.

The ISE Trace software is then called to analyze the second NCD file and find the paths
with the worst slack. This creates a trace report. The System Generator Timing
Analyzer tool appears, displaying the data from the trace report.

Note: If timing data is generated using this method and you wish to view it again at a later time, then
you can enter the following command at the MATLAB command line:

>>xITimingAnalysis('timing')

where 'timing' is the name of the target directory in which a prior analysis was carried out.

6. Asshown below, you can click the Power Analysis button on the Timing Analyzer
window to bring up the Xilinx XPower Analysis tool report.

34 Timing Analyzer I =13] =
¢ -'-J. | Lhow 1'aths
e
f L . Tivi ' BB il oc 5P e By er - CSrgbety e Aanioy, oo @arerg_s sl - [Talibe Wies] -7 =]
1Ting ocrel
Fl= Yen Tods 1 e
Sk Picks ma Tords 1lelp =l
Source H-} il e A
1 ors 2 .
- brormeors zcd Tzl Avalabic Lt lzacicn [72]
oc2gre | Mice | 1
Chatks T 0EE | o Sy | Yo 189 e 1.5
Edizas | 5 = =
= : — i i 1
0’ 2o i Therndlomates
rorszors - lell-l_lh.cl'lll e el el
R rofslarc i selings
rotiors 1By Tope
roooigrc - Clockz
‘I' : P Log e
i OE- Siay
< | paht i i Lala
TRATE =l-Czrirol
== Zhooe Znzble
E')_'.I H N The | 'mer Aralyses s o ln dabe
= ! T_'Alllg, 1 mrair. -y
I3Z Repacts
oA
. il Trhie ViR I
=
g A pesacn _oaz e corplets =
. Ieszden loat Sl -crpletrz
e De=dicn "ns ORE =replers
DPciign _oas V8T ZCrplots
Iezlon Loalk LOD% CopleCe
Iezivy dnal =iz 295 cumplele
Design Analysis 62% complete
PocJien awnalsiolo 10U comt Lot
Te=den 'O A il awd oA af e f I et T A e el arened moonessfel e i
Click = 2]
Gwupess | Reptt | wamia | Emor |
b >

394

www.xilinx.com System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Timing and Power Analysis Compilation

Timing Analysis Concepts Review

This brief topic is intended for those with little or no knowledge of logic path analysis.

Period and Slack

A timing failure usually means there is a setup time violation in the design. A setup time
violation means that a particular signal cannot get from the output of one synchronous
element to the input of another synchronous element within the requested clock period
and subject to the second synchronous element's setup time requirement. A typical path is
shown in this Synplify schematic:

registard_TES7110dc7 Hor_da_TaTdi4282h
22770 LUT4 B509E
FD A LUT4 | 5398
— D T~ party_reg_3123
— C u [EXNL] [ETEECT 152,730
reg| 14_17(0 e FD
gl 14 17[0] nsa.?.m___| 1oEaa | D Lz |
iy T i el
raclistard 4[] regl 14_17(0]
y[0])
¥or_%a parity_req

The path shown is from the Q output of the register on the left (register3) to the D input of
the register on the right (parity_reg). The path goes through two LUTs (lookup tables) that
are configured as 4-input XOR gates. This path has two levels of logic. That means that it
goes through two separate combinational elements (the two LUTs).

The requested period for this path is 10ns. This path easily meets timing. The second of the
two red comma-separated numbers above each logic elements shows the slack for the path.
The slack is the amount of time by which the path 'meets timing'. In this case the slack is
7.79ns. That means that the path could be 7.79ns slower and still meet the 10ns period
requirement. A negative slack value indicates that the path does not meet timing and has
a setup (or hold) time violation.

Path Analysis Example

Let us examine this path in more detail. The first value on the top of register3 is 0.35ns. This
means that the clk-to-out time of the register is 0.35ns, so the data will appear on the Q
output 0.35ns after the rising edge of the clock signal. (The clock signal, not shown, drives
the C inputs of both registers.)

The input of the LUT y_4[0] shows two numbers on each input. The first is the arrival time
of the signal. This value is 0.98ns. This means that the signal arrives at the input 0.98ns
after the rising edge of the clock. Therefore the net delay is (0.98ns-0.35ns)=0.63ns. Any
path delay is divided into net delays and logic delays. In an FPGA, the net delays are
normally the predominant type of delay. This is because the configurable routing fabric of
the FPGA requires that a net traverse many delay-inducing switchboxes in order to reach
its destination.

The path leaves y_4[0] and travels along another net to y[0]. The first of the two values at
the output of y[0] shows the arrival time of the signal at the output of that LUT. This value
is 1.62ns. The signal travels along the final net, incurring a net delay of 0.26ns to arrive at
the D input of parity_reg at 1.88ns after the clock edge. This register has a required setup
time. The setup time for this register is 0.33ns. This means that the signal must arrive at the
D input 0.33ns before the rising edge of the next clock. Therefore the total path requires
(1.88ns+0.33ns)=2.21ns. Subtracted from 10ns, this yields the 7.79ns slack value.

System Generator for DSP User Guide www.xilinx.com 395
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

Clock Skew and Jitter

The net delay values shown here are estimates provided by Synplify. The synthesizer
doesn't know the actual net delay values because these are not determined until after the
place & route process. An actual path contains other variables which must be accounted
for, including clock skew and clock jitter. Clock skew is the amount of time between clock
arrival at the source and destination synchronous elements. Clock jitter is a variation of the
clock period from cycle to cycle. Jitter is created by the DCMs (digital clock managers) and
by other means. The timing analysis is carried out with worst-case values for the given
part's delay values, jitter, skew, and temperature derating.

Timing Analyzer Features

Observing the Slow Paths

Clicking on the Slow Paths icon displays the paths with the least slack for each timing
constraint. An example is shown below:

3¢ Taming Anatyzar |15
|

Timing coreiraint | T5%_clk_afc3683d = PEAIOD TIMEGRP "ok _afc3fiad" 10 re HIGH 50%;

Coiree Dextination Slack [ns] Dialew |re] A RAcule Delap | Lewed: of Lagic! A._

R e s ey et e o e e X[E] 7
+ peTity_tmzt Reqistec(parity testoparity_xes [:lF¥] 173 G54 2 B

Cheta | |paritp tast-Reqietsrl Darity testqparity_Teg 3292 1708 4.3 2]

DaTity_tast-Regietert parity_ tEst-parity Teg 4352 1.642 4.3 2
O' paTity_tast-Regieterd parity_tEst-parity Teg 8470 1.520 487 2 1

maTite tastsRenistar? mEritor test S maratr e f479 1RH R 2 1 |.°’.
Shaliatics

Palh Element Oelss Typeof Dday

0 Pty bt A grted] 040 Tokn

1 pain_ter Aapkhd 1.447 et

2 T 0135 Tin
TRaCE 13 pathy ol nzia ret

4 K T4 Tes

[Diapkay lowd-leved names:

e

The top section of the display shows a list of slow paths, while the bottom section of the
display shows details of the path that is selected. The elements of this display are explained
here:

¢ Timing Constraint: You may opt to view the paths from all timing constraints or just a
single constraint. A typical System Generator design has but a single timing
constraint which defines the period of the system clock. This is the constraint shown
in this example. TS_clk_a5c¢9593d is the name of the constraint; the (sometimes
confusing) suffix is a hash meant to make the identifier unique when multiple System
Generator designs are used as components inside a larger design. The timing group
clk_a5c9593 is a group of synchronous logic, again with a hash suffix. The group in
this case contains all the synchronous elements in the design. The period of the clock
here is 10ns with a 50% duty cycle.

e Source: The System Generator block that drives the path.
¢ Destination: This is the System Generator block that is the terminus of the path.

o Slack: The slack for this particular path. See the topic entitled Period and Slack for
more details.

¢ Delay (Path): The delay of the entire path, including the setup time requirement.

¢ % Route Delay: This is the percentage of the path that is consumed by routing (net)
delay. The remainder portion of the path is consumed by logic delay.

396

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Timing and Power Analysis Compilation

e Levels of Logic: The number of levels of combinatorial logic in the path. The
combinatorial logic typically comprises LUTs, F5 muxes, and carry chain muxes.

e Path Element: This shows the logic and net elements in the highlighted path.

¢ Delay (Element): This shows the delay through the logic and net elements in the
highlighted path.

e Type of Delay: This is the kind of delay incurred by the given path element. These
values are defined in the Xilinx part's data sheet. In the example shown above, Tcko is
the clk-to-out time of a flip-flop; net is a net delay; Tilo is the delay through a LUT, and
Tas is the setup time of a flip-flop.

You may click on the column headings to reorder the paths or elements according to delay,
slack, path name, or other column headings. Failing paths are highlighted in red/pink.

Name Unmunging and Displaying Low-Level Names

Part of the magic of the timing analyzer lies in its ability to perform the un-glorious task of
name unmunging, the task of automatically correlating System Generator components with
the low-level component names produced by the Xilinx implementation tools. The names
of these components often differ considerably. In fact, the logic blocks and wires that
appear in a System Generator diagram may have only a loose relation to the actual logic
that gets generated during the synthesis process. The System Generator timing analyzer
must correlate the names of logic elements and nets in the trace report to blocks and wires
in the System Generator diagram.

The timing analyzer cannot always perform this un-munging process. In the path shown in
the screen capture above, path elements #2 and #5 have a question mark displayed in the
name field. This means that the timing analyzer could not un-munge the name from the
trace report and correlate it to a System Generator block.

To see the actual names from the trace report, check the Display low-level names box. This
will show the trace report names. You may be able to correlate them to System Generator
elements by observation.

Cross-Probing

Highlighting a path in the Slow Paths view will highlight the blocks in the path in the
System Generator diagram. The path's source and destination blocks, as well as
combinational blocks through which the path passes, will be highlighted in red. The
diagram below shows how the model appears when the path that has Registerc as its

System Generator for DSP User Guide www.xilinx.com 397
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

source and parity_reg as its destination is highlighted. The blocks xor_1b, xor_2a, and
xor_3a are also highlighted because they are part of the path.

"W parity_tost * =&
Ek Edr Wk Smuaton Fomet Tods Heln
0 S Sl sl [Nemd o[MEBES G BEE

iﬂ
o
"
=

=)

conzstant Fabesay |

System
Generalor

iﬂ
o
"
=

g
g
i
iy
g
2

Foagldub

Feglsters

3

Constantzl sbmary |

d 71 q

h

§
3
i
3
&

Feglsted

i

Canctanbdbatusay Ind

i[o]
B
{i
o
3

o
™

i
=

&

Conctanatemary |

Raglstuig

E

4.7 9

i onetantriratesay In?

Raglstuih

Aa;

&

L% ncke5

Histogram Charts

Clicking on the Charts icon displays a histogram of the slow paths. This histogram is a
useful metric in analyzing the design. You may know that the design will only run at, for
example, 99MHz in your part when you wish it to run at 100MHz. But how close is the
design to meeting timing and how much work is involved in meeting this requirement?

398 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Timing and Power Analysis Compilation

The histogram will quickly give you an estimate of the work involved. For example, look
at the histogram of the results of a simple design below:

Timing Analyzer @@
s

Timing conetraint | Al constrainta :]

Sk Paths

Hiztogram detai J
l Distribution of Total Path Delay
Chartz

O | =
il b

Stahistics

TRACE

Dm: T T T T T 1 1 T T 1 1
2238 224 222 244 208 188 488 {181 4T3 165 167 148 140 {132 124 {46 41.07

Delay (ns)

This shows that most of the slow paths are concentrated about 1.5ns. The slowest path is
about 2.35ns. The numbers at the tops of the bins show the number of paths in each bin.
There is only one path in the bin which encompasses the time range 2.31ns-2.39ns. The bins
to the right of it are empty. This shows that the slowest path is an outlier and that if your
timing requirement were for a period of, for example, 2ns, you would need only to speed
up this single path to meet your timing requirements.

System Generator for DSP User Guide www.xilinx.com 399
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

Histogram Detail

The slider bar allows you to adjust the width of the bins in the histogram. This allows you
to get more detail about the paths if desired. The display below shows the results of a
different design with a larger number of bins than the diagram above:

Taning Analyzer Q@
< |
(!

S Paths Timig corelraint .!h.l constiante :]
| Hiztogram detal J
‘- Distribution of Total Path Delay
Charts
O | =y
- Lo,
Shalistics B0 1 i
7o o
Bl]
5

TRACE B0

20

20

X

10

L
tr

o
T -JH
;:‘ T

o T T T T T T T T T T T T T T T 1
9,98 949 900 452003755 7.07 6.599 6,11 382319406 4102370 221 2,73 2.25 1 77 1.29 D E]

T

Delay (ns)

[= [e

This diagram shows the paths grouped into three regions, with each forming a rough bell
curve distribution. These groups are probably from different portions of the circuit or from
different timing constraints that are from different clock regions. If you wish to analyze the
paths from a single timing constraint, you may select a single constraint for viewing from
the Timing constraint pulldown menu at the top of the display.

Note the bins and portions thereof shown in red. These are the paths that have negative
slack; i.e., they do not meet the timing constraint. In this example you can see that some
paths have failed but not by a large margin so it seems reasonable that with some work this
design could be reworked to meet timing.

Statistics

Clicking on the Statistics icon displays several design statistics, including the number of
constraints, paths analyzed, and maximum frequency of the design.

Trace Report

Clicking on the Trace icon shows the raw text report from the Trace program. This file gives
considerable detail about the paths analyzed. Each path analyzed contains information

400 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Timing and Power Analysis Compilation

about every net and logic delay, clock skew, and clock uncertainty. The box at the bottom
left of this display shows the path name of the timing report.

Timing Analyzer E
7
{ﬂ.d. RSN R LY S By e B Y R N el (LN RS LE

Glow Paths Sonrce Clock: cllk o ri=ing at 0.000n=
Deztinaticon Clock: cllk o rising at 10.000n=
' Clocl: Tno=rtainty: 0.000n=
Chat;. Data Path: ddr hdl_netlieting?_ ulsimagegen_portl_2bl9EBfclc slnoodelrsw cou
location Delay typs Delawi{n=s) Phyaical Resource
O, logical Bezource(e)
. SLICE_K45¥135.¥0 Tcko 0.340 ddr_hdl_netli=stingZ_=0
Statistice ddr _hdl _netli=tingd =0
SLICE_K447136.G2 net {Eenout-4) 0.823 ddr_hdl_netli=tingz_=0
™1 modarc i P DU ED. I [T .Y S R |

STTAT WAATY s T
1

|{ 1L

File: kevin/syegenstmingstiming bar

[o J[

Improving Failing Paths

"Now I have information about my failing paths; but what do I do now?" you may ask
yourself. This is the trick for which there is no simple answer, and this is where you may
need to delve into the lower-level aspects of FPGA design.

In general, steps that may be taken to meet timing are, in this order:

1. Change the source design. Just about any timing problem can be solved by changing
the source design and this is the easiest way to speed up the circuit. Unfortunately, this
is often the last step taken by designers, who often look for a quick solution such as
using a faster part. The source design may be changed in several ways:

a.

Pipelining. This is the surest way to improve speed, but may also be tricky.
Adding pipelining registers increases latency. For designs with feedback, this may
require great care since portions of the design may require pipeline rebalancing.
See the later example for more details on pipelining.

Parallelization. This is probably the second most-important improvement you can
make. Do you have a FIR filter that won't operate at the correct speed? You can use
two FIR filters in parallel, each operating at half-rate, and interleave the outputs.
This is the classic speed/area tradeoff.

Retiming. This involves taking existing registers and moving them to different
points within the combinational logic to rob from Peter to pay Paul, so to speak.
This works if, to stretch the maxim, Paul is bereft of slack, while Peter has a surfeit.
Some synthesis tools can perform a degree of retiming automatically.

Replication. Replication of registers or buffers increases the amount of logic but
reduces the fanout on the replicated objects. This decreases the capacitance of the
net and reduces net delay. The replicated registers may also be floorplanned to
place them closer to the logic groups they drive. Replication is often performed
automatically by the tools and manual replication is not a common practice in a
high-level design environment like System Generator.

Shannon Expansion. This method involves replicating the faster logic in a critical
path in order to remove dependencies on slower logic. This is sometimes done
automatically by the synthesizer.

System Generator for DSP User Guide www.xilinx.com 401

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

f. Using Hard Cores. Are you using a ROM that is implemented in distributed RAM
when it would operate much faster in a block memory hard core? Do you have a
wide adder that would benefit from being put in a DSP48 block, which can operate
at 500MHz? Take advantage of the embedded hard cores.

g. New Paradigms. Do you need to create a large delay? Instead of using a counter
with a long carry chain, why not build a delay out of cascaded Johnson rings using
SRL16s? Or how about using an LESR? Neither requires a carry chain and can
operate much faster. Sometimes you have to rethink certain design elements
completely.

Eliminate overconstraints. Ensure that elements of your design that only need to be
operated at a subsampled rate are designed that way by using the downsample and
upsample blocks in System Generator. If these blocks are not used, then the timing
analyzer is not aware that these sections of the circuit are subsampled, and the design
is overconstrainted.

Change the constraints. Is it possible to run the design at a lower clock speed? If so,
this is an easy way to meet your requirements. Unfortunately, this is rarely possible
due to design requirements.

Increase PAR effort levels. The mapper and place & route tools (PAR) in ISE take
effort levels as arguments. When using ISE (from the Project Navigator GUI), try the —
timing option in MAP. You may also increase the PAR effort levels which will increase
the PAR execution time but may also result in a faster design.

Multipass PAR using SmartXplorer. PAR is an iterative process and is somewhat
chaotic in that the initial conditions can vastly influence the final result. SmartXplorer
can be invoked from Project Navigator and allows you to run multiple implementation
flows using different sets of implementation properties designed to optimize design
performance.

Floorplanning. This step should be avoided if possible, but can yield huge
improvements. The automatic placer in PAR can be improved upon by human
intervention. Floorplanning places critical elements close to each other on the Xilinx
die, reducing net delays. The PACE tool in ISE may be used for CPLD. A more
advanced tool, PlanAhead™ software, is used for FPGA.

Use a faster part. This is often the first solution seized upon, but is also expensive. If
you are using an old Xilinx part, porting your design to a newer, faster Xilinx part may
often save money because the new parts may be cheaper on account of Moore's Law.
However, moving to a faster part in the same family incurs significant extra costs, and
often isn't necessary if the previous steps are followed.

402

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Timing and Power Analysis Compilation

Tutorial Example: Using the Timing Analyzer

Sometimes the hardware created by System Generator may not meet the requested timing
requirements. This is typically due to a setup time violation in the design. A setup time
violation means that a particular signal cannot get from the output of one synchronous
element to the input of another synchronous element within the requested clock period
and subject to the second synchronous element's setup time requirement.

Let us use an example to show how we would use the timing analyzer to improve circuit
performance. Our example will be a parity calculator that will find the parity of a byte by
using an 8-input XOR. The design can be found at:

<ISE Design Suite tree>/sysgen/examples/timing analysis/parity tes

t.mdl

[=] parity_test = _[O]x]
Fle Edt W“iew Simulaton Format Tools Help

DEEHE| Lt Be e (2@ 5o [fNoma HiEeme

-

An 8-bit Parity Circuit Implementation
Using Discrete Xilinx Logical Blocks

] d ! q
Constant Gateway Ind 1 -
Registem nor System
Gienaralor
1 xor_la
In d 2! q
ConstantiGateway Inl

:
l_l

B
Registerb %r —
xor_2a
B 4"
Constant2Gateway In2 |_ -
Registex xor
In d ! g
ConstantzGateway In3
Registerd > € & E
i
parity
xor_3a parity_rmeg
B @ e
Constant#Gateway Ind
Registes xor
-1 xor_lc
a q4|
ConstantyGateway In3 |
Registarf vor
xor_2b
B a '
Conslani@Gateway Ind

Hor

xor_1d

'!'
i

In

Caonstant7Gateway In?

Reqistarh

-
«| | »

Ready [100% [[oded5 4

The design has eight one-bit gateway inputs that are registered by one-bit registers. These
are processed by seven 2-input XOR blocks. These have a latency of zero and thus are
purely combinational. The final register, parity_reg, registers the final result (the parity)
which is connected to an output gateway. The design appears to have three levels of logic,
because each path fanning in to parity_reg goes through three XOR blocks.

System Generator for DSP User Guide www.xilinx.com 403
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types

& XILINX.

Generate the Example Design

We'll generate the design using the Timing Analysis target and a requested period of 1.4ns
(714MHz). This is admittedly a very high clock frequency, but we wish some paths to fail
for demonstration purposes. We set these parameters in the System Generator token:

=3 |

) System Generator: parity_test

¥ @ @

Compilation Clocking General

Compilation :

Ii“Timing and Power Analysis

Part :

Settings ... |

[=][spartans xcasixtszesgaze

Synthesis tool :

Hardware description language :

[xsT B
I | Greste testhench

Target directory :

fvHoL

-

™ Nimpor 82 configurable eubey=Em

I.s‘timin g

[™ Create interface document

Browse... |

Generate |

oK | Apphy | Canoell Help |

Examine the Slow Paths

After clicking on Generate, after a time, the timing analyzer window will appear as shown

below:

b Taming Anabyzer

=]

Tirnir coreeteain | A conpraite [+]
Source Diestiralion 5 ek [ra] Delap [me] % AouteDeley | Corabaint Levels of Logic
poTity textrRegistmr= peaTity tmeztr/peTitT res .09 1.7E 571 2falm... 2
poTity_testrRegisterd peTity _tmztr/peTity ress ENE] 1.A0 51 Z2faling... 2
paTity_test-Registarh parity _tast-parity_reg 0.0 161 il 2fdling... &
paTity_testrRegietara parity_tast-pearity_reg 0.0 1626 {70l] 2fding... 2
parity_test-Regietart paTity_tast-parity_reg 1.145 1566 {711s] 2faling... 2
paTity_test-Regietarb parity_tast-parity_reg 0.20 1478 a3 2fding... 2
Shaliabice paTity_test Regietarg parity _tast-parity_reg .25 1476 432 2faling... 2
poTity_test -Regiszter= peTity_test-perTity_reg 0.2z 1428 4ThH 2laling... 2
|.¢ . [+
TRACE | [y Paik Elerare Delny Type ol Dedsy
[1] parby best'A egisterc 030 Toko
1 pany b/ agters naia ml
2 pany bmekhaJa 0185 Tiks
k] paniy backtal_3a 0213 tal
4 T 028 Taz

[Driapap lows-ened names:

404

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Timing and Power Analysis Compilation

There are two failing paths, normally highlighted in red /pink. (The top path is gray
because it is selected.) The negative slack values are shown in boldface. The worst of the
two fails by 96ps.

Note that there are two levels of logic in the path shown. How can this be? The System
Generator diagram shows three levels of logic in all paths. The reason is that the
implemented design does not correlate exactly to the System Generator diagram. In this
case, the synthesizer has compressed some of the 2-bit XOR blocks into 4-input LUTs and
created the 8-input XOR using only two levels of logic as shown in this Synplify Pro
schematic:

LUT4_E995

LUT2 L 6

_|
E‘)D Y SO e F

y_5[0] ¥[0]

LUT4_E995

registerd _q_net[0:0]

registerc_q_net[0:0
regizterb_q_net[0:0

regiztera_q_net[0:0

y_4(0]

Note how the net and block names have all been munged, requiring the magic un-
munging capabilities of the timing analyzer.

Also note the details of the selected path. The logic delays cannot be reduced. One of the
net delays is 813ps. This could possibly be reduced by means of floorplanning, multipass
PAR, or simply by increasing the PAR effort level.

Rescue the Design

Instead, let us attempt a more robust solution to fix the path by changing the source design.
There are no feedback paths in this design, so let us assume we can add a cycle of latency
and pipeline the design. There are two levels of logic in the failing paths. Any design can
theoretically be re-implemented with only a single level of logic. We will do this now.

To add a pipeline stage, we will merely add latency to selected XOR blocks. By clicking on
an XOR block, you may change its latency from zero to one like so:

(o wor _2a (dihink Logical Block) — | | ﬂ

Oe=sic | Gl Ty oz I Ailvanel I T n:ll.dliuul

Logival i bon | 20R TI

MumbEr nf Inen rs |?

CIptnna Prcks
’]- Pru=ide enaae ol

Lebern:yl'.

0, | _37z3 Halz npphy

System Generator for DSP User Guide www.xilinx.com 405
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Chapter 5: System Generator Compilation Types

This will add a register to the end of the XOR gate. We will change the latency on blocks
xor_ 2a and xor 2b. We know from examining the Synplify Pro schematic that the
outputs of these blocks form the output of the first level of logic in the synthesized design.
The modified System Generator looks very similar with the exception of the z! on the
labels of the two modified XOR blocks, indicating their new latency.

5] parity_test * [(O]]
File Edt View Simulation Format Tools Help
DieRaly=ele> (22 i o HlEens

|»

An 8-bit Parity Circuit Implementation
Using Discrete Xilinx Logical Blocks

or_1e

[I
Constant Gateway Ind '
Fegitem Wl System
Genaralor
N xor_la
4l q
Constant1Gateway Inl
Registerh %or —
xor_2a
[DO s R
ConstantzGateway In2
Registe xor
il xor1b
[n__ | - q4|
Constant3Gateway In3
Registerd » e E
X
parity
®or 3a parity_ g
L] @
ConstantdGateway Ind
Registers xor
El.kme

ConstantiGateway Ind

Reqiste if ®or [—

®or_2h
d 2! g

;

ConstantgGateway Ind

Registen RO

xor_1d

i

d 2! q

;

ConstantfGatewsay In?
Registerh

-
« | »
Ready [100% [[|ode45 A

We generate this design as before and examine the slow paths:

"M} Tarring Analyzer

- Slub Mathe
Eﬁ‘f Timi ehainl | Al coreirans =
= -
Blow P | R ~
A

Eﬂun Dnllmlnn Shek (ra] Dolay pa] | 2RotaDakp | Lovek al Logie| Coralsine

‘ n18d 1516 22 1 TE magﬂg_fjﬁ_lu_
- F [- L= - I =
Chatz purihy_tust/ﬁequ:turc periky_ tu:t/)u:lr 2= 030 1460 E0B 1 TE_dLaimd FEHIEI

periky_test<Regiatard periby_test<wor 2= 02 137 1] 1 Th_ch_a5c72d = PEAID.
U pariky_teet - -Regimtars periky_test-wor_Fh 036 133 =8 1 T5_ch_a5c7553d = PERIO

parlt? tEEt-Reglaters [Cerity_test-Hor_Zs 033 171 e 1 T5_ck_ar?7dd=FERID |
Swiilie: | |pariky teet-Regiatarb periky_teat-xor 2a 1. 486 1122 Ly] 1 'IE _ch_3fizF93d = PEAID |

paru:? test ReTiatart parn:y teat oo (=1} 1.00 475 1 E_cl afr9Rdid = PERI],

e P S, S R — aenn 4 ewn o EI Tn . -coroema nrmial
TRAE B Pty Elenere Dielsy Type o Dby

] paiy e Tngitom 0360 Toko

1 paty i Tegitom 0BES et

2 pak:_ ek _2h 0213 Tae

[Drieply kowebered ramae:

406

www.xilinx.com

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Creating Compilation Targets

Excellent! No more failing paths! The design has been rescued, all in record time and
without using a more expensive part. Surely raises and promotions shall follow you for all
your days.

Note that all paths now have but a single level of logic. What exactly has happened here?
Let us examine the Synplify Pro schematic to see how the modified circuit was
synthesized:

ror_2h_Totzigcid
LUTS L G298 xor_3a_Tel 314292h
T8 pa iy _req_ 31230004zt
L eens = L
; —r o
: O —— > —
Bt wcy_ple_5_26_0_
fiy_2_1_big] | VEl op_mefn 19|20 0_
vor_3a P—
101_2h
1or_2a_gdeenatet
LUTH_L_5996
R —
Bt wcy_ple_5_26_0_
fl_2_1_biE | 25

1or_2a

See that there is an extra set of registers (highlighted in red) in between the two levels of
logic. The circuit functions the same as before but with an additional cycle of latency.

Use Retiming to Rescue the Design

If a cycle of latency had to be eliminated to match the latency of the original design, it
might be possible to remove the final output register or the input registers. This would
increase the constraints upon the paths outside the Xilinx chip (i.e., the copper paths on the
PCB), but it may be feasible depending upon board-level path delays. This would be an
example of retiming, because the latency is the same but the registers have been moved into
the logic "cloud".

Creating Compilation Targets

The HDL and netlist files that System Generator produces when it compiles a design into
hardware must be run through additional tools in order to produce a configuration
bitstream file that is suitable for your FPGA. A typical flow that allows you to generate an
FPGA configuration file is ProjectNavigator. There are other ways in which a bitstream can
be generated for your model. For example, it is possible to configure System Generator to
automatically run the tools necessary to produce a configuration file when it compiles a
design. This is advantageous since the complete bitstream generation process is
accomplished inside the tool. Moreover, you can have System Generator run different tools
(e.g., ChipScope™ Pro Analyzer and iMPACT) once the configuration file is generated for
a model.

The way in which System Generator compiles a model into hardware depends on the
compilation target that is chosen for the design. The HDL Netlist compilation target is
most common, and generates an HDL netlist of your design plus any cores that go along

System Generator for DSP User Guide www.xilinx.com 407
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

with it. New compilation targets can be created that extend the HDL Netlist target so that
additional tools can be applied to the resulting HDL netlist files.

This topic explains how you can create new compilation targets that extend the HDL
Netlist target in order to produce and configure FPGA hardware. More specifically, it
describes how to configure System Generator to produce a bitstream for a model, and how
to invoke various tools once the bitstream is created.

Defining New Compilation Targets

You can create new compilation targets to run tools that process the output files associated
with HDL Netlist compilation. A compilation target is defined by a minimum of two
MATLAB functions. The first function, x1target . m, tells System Generator to support
the target (i.e., make it selectable from the System Generator token dialog box), and
specifies the MATLAB function where more information about the target can be found.
This function is called a "target info" function. A target info function defines information
about the target, and can take any name, provided it is specified correctly in the target's
xltarget .m function. In some cases, a target info function defines a post-generation
function. A post-generation function is responsible for invoking tools or scripts after
normal HDL netlist compilation is complete. These functions are discussed in more detail
in the topics that follow.

The xltarget Function

An xltarget function specifies one or more compilation targets that should be supported by
System Generator. It also provides entry points through which System Generator can find
out more information about these targets.

Note: System Generator determines which compilation targets to support by searching the
plugins/compilation (and its subdirectories) of your System Generator software install tree for
x1ltarget .m files.

E{:I ilina

EI{:I SYSOEen

-1 bin

{:I core_cache
D data
-1 examples
{:I hielp

-1 include
-1 jtagoosin

B xtremedsphit

Although an xltarget function can specify multiple targets, it is not uncommon for each
compilation target to have its own xltarget function. The directories these functions are
saved in distinguish the targets. This means that each xltarget .m file must be saved in
its own subdirectory under the plugins/compilation directory.

An xltarget function returns a cell array of target information. Different elements in this
cell array define different compilation targets. The elements in this cell array are MATLAB
structs that define two parameters:

408

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Creating Compilation Targets

1. The name of the compilation target as it should appear in the Compilation field of the
System Generator parameters dialog box;

2. Thename of the MATLAB function it should invoke to find out more information (e.g.,
System Generator dialog box parameters, which post-generation function to use, if
any) about the target.

The following code shows how to define three compilation targets named Standalone
Bitstream, iMPACT, and ChipScope™ Pro Analyzer:

function s = xltarget

s = {};

target 1. ('name') = 'Standalone Bitstream';
target 1. ('target info') = 'xltools target';
target 2. ('name') = 'iMPACT';
target 2. ('target info') = 'xltools target';
target 3. ('mame') = 'ChipScope Pro Analyzer';
target 3. ('target info') = 'xltools target';

s = {target_1, target 2, target 3};

The name field in the code shown above specifies the name of the compilation target, as it
should appear in the Compilation field of the System Generator dialog box:

target 1. ('name') = 'Standalone Bitstream';

The target_info field tells System Generator the target info function it should call to find
out more information about the target. This function can have any name provided it is
saved in the same directory as the corresponding xltarget.m file, or it is saved somewhere
in the MATLAB path.

target 1. ('target info') = 'xltools target';

Note: An example xltarget function is included in the examples/comp_ targets directory of your
System Generator install tree. You can modify this function to define your own bitstream-related
compilation targets.

Target Info Functions

A target info function (specified by the target_info field in the code above) is responsible
for two things:

e It defines the available and default settings for the target in the System Generator
token dialog box;

e It specifies the functions System Generator should call before and after the standard
code generation process.

Note: An example target info function, x1tools_ target .m, is included in the
examples/comp_targets directory of your System Generator install tree.

One such function that is particularly useful to compilation targets is the post-generation
function. A post-generation function is run after standard code generation. The code below
shows how a post-generation function is specified in a target info function:

settings. ('postgeneration fcn') = 'xltools postgeneration';

Post-generation Functions

One way to extend System Generator compilation is by defining a new variety of
compilation that specifies a post-generation function. A post-generation function is a
MATLAB function that tells System Generator how to process the HDL and netlist files
once they are generated. This function is run after System Generator finishes the normal
code generation steps involved with HDL Netlist compilation (i.e., producing an HDL

System Generator for DSP User Guide www.xilinx.com 409
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

description of the design, running CORE Generator™, etc). For example, a hardware co-
simulation target defines a post-generation function that in turn runs the tools necessary to
produce hardware that can be used in the Simulink simulation loop.

Note: Two post-generation functions x1BitstreamPostGeneration.m and
xltools_postgeneration.m, are included in the examples/comp targets directory of your
System Generator install tree.

xIBitstreamPostGeneration.m

This example post-generation function compiles your model into a configuration bitstream
that is appropriate for the settings (e.g., FPGA part, clock frequency, clock pin location)
given in the System Generator dialog box of your design.

It then uses an XFLOW-based flow to invoke the Xilinx tools necessary to produce an
FPGA configuration bitstream.

It is possible to configure the tools and configurations for each tool invoked by XFLOW.
For more information on how to do this, refer to the topic in this example entitled Using
XFLOW

xltools_postgeneration.m

Sometimes you may want to run tools that configure and run the FPGA after a
configuration bitstream has been generated (e.g., iMPACT, ChipScope™ Pro Analyzer).
The xltools_postgeneration function first calls the xIBitstreamGeneration function to
generate the bitstream. It then invokes the appropriate tool (or tools) depending on the
compilation target that is selected.

For example, you may want a compilation target that invokes iMPACT after the bitstream
is generated. This can be done as follows (assuming iMPACT is in your system path):

if (strcmp (params.compilation, 'iMPACT'))
dos ('impact') ;
end;

The first line checks the name of the compilation target. The second line sets up a DOS
command that invokes iMPACT. ChipScope Pro Analyzer can be invoked similarly to the
code above:

if (strcmp (params.compilation, 'ChipScope Pro Analyzer'))
xlCallChipScopeAnalyzer;
end;

Note: xICallChipScopeAnalyzer is a MATLAB function provided by System Generator to invoke
ChipScope.

Configuring and Installing the Compilation Target

Listed below are the steps necessary to configure and install new bitstream compilation
targets.

1. Copythexltarget.m, xltools postgeneration.m,and xltools_target.m
files from examples/comp_targets into a temporary directory.

Change the permissions of the above files so they can be modified.

Add the desired compilation targets (e.g., iMPACT, ChipScope Analyzer Pro) to the
x1ltarget .mfile.

4. Add the desired tool invocations to the x1tools postgeneration.m file.

410

www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX. Creating Compilation Targets

5. Create a new directory (e.g., Bitstream) under the plugins/compilation directory
of your System Generator software install tree. Copy the xltarget.m,
xltools postgeneration.m and xltools target.m files into this directory.
Note: The System Generator Compilation submenus mirror the directory structure under the

plugins/compilation directory. When you create a new directory, or directory hierarchy, for the
compilation target files, the names of the directories define the taxonomy of the compilation target

submenus.
Compiation :
BN
Part MEC Metkak
4 Bikstream
-7 p & : ED# Expart Tool
=1 arget.m 1

- _| thrnpilation Jne Timirg Snalkysis MiroBlaze Multimedia Board |

= Hardveare Co-Simulation
"] Foo
) Bar
1 MicroBlaze Mutimedia Board
5] tremeDSP Development Kit

6. Copy the x1BitstreamPostGeneration.m, x1ToolsMakebit.pl,
balanced xltools.opt and bitgen xltools.opt files from the
examples/comp_targets directory into a directory that is in your MATLAB path.
These files must be in a common directory.

7. In the MATLAB command window, type the following:

>> rehash toolboxcache
>> xlrehash xltarget_cache

8. You can now access the newly installed compilation target from the System Generator
graphical interface.

Using XFLOW

The post-generation scripting included with this example uses XFLOW to produce a
configuration file for your FPGA. XFLOW allows you to automate the process of design
synthesis, implementation, and simulation using a command line interface. XFLOW uses
command files to tell it which tools to run, and how they should be run.

This example contains two XFLOW options files, balanced_xltools.opt and
bitgen xltools.opt. These files are associated with the implementation and
configuration flows of XFLOW, respectively. The balanced xltools.opt options files
runs the Xilinx NGDBUILD, MAP, and PAR tools. The settings for each tool are specified in
the options files . The bitgen_xltools.opt file runs BITGEN to produce a
configuration file for your FPGA. You may modify these files as desired (e.g., to run the
timing analyzer after PAR).

System Generator for DSP User Guide www.xilinx.com 411
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Chapter 5: System Generator Compilation Types & XILINX.

412 www.xilinx.com System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

Index

A

Addressable Shift Register block 17
Algorithm Exploration 19
ASR block 17
Asynchronous Clocking 26
Auto-Generated Clock Enable Logic
resetting in System Generator 95
Automatic Code Generation 39
AXI
Interface 141
signal Groups 24

Bit-Accurate 21

Bitstream Compilation 385

Bit-True Modeling 24

Black Box

Configuration M-Function

adding new ports 328
black box API 336
black box clocking 331
combinational paths 332
configuring port sample rates

330
configuring port types 329
defining block ports 328
dynamic output ports 330
error checking 336
language selection 327
obtaining a port object 328
specifying the top-level entity
327

specifying Verilog parameters
332

specifying VHDL Generics 332

SysgenBlockDescriptor Mem-
ber Variables 336

SysgenBlockDescriptor meth-
ods 337

SysgenPortDescriptor Member
Variables 339

SysgenPortDescriptor methods
339

Examples 343

advanced black box example us-
ing ModelSim 370

dynamic black boxes 366

importing a Core Generator
module 344

importing a Core Generator
module that needs a VHDL
wrapper 350

importing a Verilog module
364

importing a VHDL module 357

importing a Xilinx Core Genera-
tor module 343

Importing an Encrypted VHDL
File 375

Importing, Simulating, and Ex-
porting an Encrypted VHDL
Module 375

simulating several black boxes
simultaneously 368

HDL Co-Sim

configuring the HDL simulator
340

co-simulating multiple black
boxes 342

Black Box Configuration
M-function 326
Black Box Configuration Wizard 325
Block Masks 37
Blockset
Xilinx 22

C

ChipScope Pro Analyzer 129
Clock Domain Partitioning 118
Clock Enable

Fanout Reduction 89
Clock Frequency

selecting for Hardware Co-Sim 233
Clocking

and timing 24

asynchronous 26

synchronous 27
Clocking Options

Clock Enable 27

Expose Clock Ports 28

Hybrid DCM-CE 28, 42
Code Generation

automatic 39
Color Shading

blocks by signal rate 24
Compilation Type

using XFLOW 411

Compilation Types
Bitstream Compilation 385

configuring and installing the Com-
pilation Target 410

creating new compilation targets
407

EDK Export Tool 389

Hardware Co-Simulation Compila-
tion 393

HDL Netlist Compilation 384

NGC Netlist Compilation 384
Compiling for

bitstream generation 385

EDK Export 389

Hardware Co-Simulation 393

NGC Netlist generation 384

Compiling for HDL Netlist generation
384

Compiling MATLAB
complex multiplier with latency 55
disp function 71
finite state machines 62
FIR example 66
into an FPGA 51
optional input ports 60
parameterizable accumulator 63

passing parameters into the MCode
block 57

RPN calculator 69
shift operation 56
simple arithmetic operation 52
simple selector 51
Compiling Shared Memories
for HW Co-Sim 245

Configurable Subsystems and System
Generator 82

Configuring and Installing the Compila-
tion Target 410

Constraints File

System Generator 46
Controls

hierarchical 44
Creating Compilation Targets 407
Crossing Clock Domains 119
Custom Bus Interfaces

for exported pcore 390
Cycle-Accurate 21
Cycle-True Clock Islands 117
Cycle-True Modeling 24

System Generator for DSP User Guide

UG640 (v 13.1) March 1, 2011

www.xilinx.com

413

http://www.xilinx.com

& XILINX.

D

DCM locked pin 42
DCM reset pin 42
Debugging
using ChipScope Pro 129
Defining New Compilation Targets 408
Target Info functions
xltools_target 409
the xltarget Function 408
Discrete Time Systems 24
Distinct Clocks

generating multiple cycle-true is-
lands 117

DSP48
design styles for 98
design techniques 105
mapping from the DSP48 block 100
mapping standard components to

mapping to from logic synthesis
tools 99

physical planning for 106
DSP48 Macro block 101

E

EDK
generating software drivers 150
support from System Generator 165
writing a software program 153
EDK Export Tool 389
exporting a pcore 168
EDK Import Wizard 166
EDK Processor
exposing processor ports 167
importing 165
Encrypted VHDL File
how to import as a Black Box 375
Ethernet-based HW Co-Sim 295
Export pcore
enable Custom Bus Interfaces 390
Exporting
a pcore 168

a System Generator model as a pcore
149

Expose Clock Ports Option
tutorial 34

F

Fanout Reduction
for Clock Enable 89

FDATool

using in digital filter applications
108

FPGA
a brief introduction 14
generating a bitstream 92
notes for higher performance 88
Frame-Based Acceleration
using Hardware Co-Sim 256
FSL-based pcore 146
Full Precision signal type 23

G

Generating
an FPGA bitstream 92
EDK software drivers 150
Generating an FPGA Bitstream
Generating an FPGA Bitstream 92

H

Hardware
oversampling 26
Hardware Co-Sim 227
blocks 230
choosing a compilation target 229
compiling shared memories 245

co-simulating lockable shared mem-
ories 248

co-simulating shared FIFOs 251
co-simulating shared registers 250

co-simulating unprotected shared
memories 247

Installing Software on the Host PC
279

Installing the Proxy Executable for
Linux Users 283

invoking the code generator 229
JTAG hardware requirements 309

Loading the Sysgen HW Co-Sim
Configuration Files 281

Network-Based Ethernet 241
Point-to-Point Ethernet 237
processor integration 149
restrictions on shared memories 254

selecting the target clock frequency
233

Setting Up the Local Area Network
on the PC 279

shared memory support 244

using for frame-based acceleration
256

using for real-time signal processing
269

Xilinx tool flow settings 254

Hardware Co-Simulation Compilation
393

Hardware Debugging

using ChipScope Pro 129
Hardware Generation 149
Hardware Generation Mode

EDK pcore 149

HDL netlist 149
Hardware/Software Co-Design 146

Examples

creating MicroBlaze Peripherals
in System Generator 175

designing and simulating Mi-
croBlaze Processor Systems
180

using EDK 188

using PicoBlase in System Gen-
erator 170

HDL Co-Sim
configuring the HDL simulator 340

co-simulating multiple black boxes
342

HDL Netlist Compilation 384
HDL Testbench 50
Hierarchical Controls 44
Histogram Charts

from Timing Analyzer 398, 401
Hybrid DCM-CE Option

locked pin 28

reset pin 28

tutorial 29

Implementing
a complete design 19
part of a design 19
Importing
a System Generator design 73
an EDK processor 165
an EDK project 149
Importing a System Generator Design 73
integration design rules 73
integration flow with Project Navi-
gator 74
step-by-step example 75
Installation

Installing a Spartan-3A DSP 1800A
Starter Board for Hardware Co-
Sim 295

414

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

& XILINX.

Installing am ML402 Board for JTAG
Hardware Co-Sim 303

Installing an ML605 Board for JTAG
Hardware Co-Sim 305

Installing an SP601/SP605 Board for
Ethernet Hardware Co-Sim 301

Installing an SP601/SP605 Board for
JTAG Hardware Co-Sim 307

Introduction
to FPGAs 14

J

JTAG Hardware Co-Sim
board support package files 315
Detecting New Board Packages 321

installing board-support packages
320

manually specifying board-specific
ports 318

obtaining platform information 316

providing your own top-level 319

supporting new boards 309

JTAG-based HW Co-Sim 301, 303, 305,
307

L

Linux

Installing the Proxy Executable for
Linux Users 283

Locked pin
Hybrid DCM-CE Option 28

M

MATLAB
compiling into an FPGA 51
complex multiplier with latency 55
disp function 71
finite state machines 62
FIR example 66
optional input ports 60
parameterizable accumulator 63

passing parameters into the MCode
block 57

RPN calculator 69

simple arithmetic operation 52

simple selector 51

simple shift operation 56
Memory Map Creation

for processor integration 148
M-Function

black box configuration 326
MicroBlaze

in System Generator tutorial 175

System Design and Simulation 180
ML402 Board

Installation for JTAG HW Co-Sim
303

ML605 Board

Installation for JTAG HW Co-Sim
305

Modeling

bit-true and cycle-true 24
Multiple Clock Applications 117
Multirate Designs

color shading by signal rate 24
Multirate Models 25

N

Netlisting
multiple clock designs 120

Network-Based Ethernet Hardware Co-
Sim 241

NGC Netlist Compilation 384
Notes
forhigher performance FPGA design
88

(0

OutputFiles
produced by System Generator 44
Oversampling 26

P

Parameter Passing 38
Pcore

export as under development 389
pcore

exporting 168

exporting a System Generator model
as a peripheral 149

PicoBlaze

designing within System Generator
168

in System Generator tutorial 170
overview 168
PLB-based pcore 146
Point-to-Point Ethernet HW Co-Sim 237
Power Analysis
using XPower 393
Processor Integration

Hardware Co-Sim 149

hardware generation 149

memory map creation 148

using custom logic 146
Project Navigator

integration flow with System Gener-
ator 74

R

Rate-Changing Blocks 25
Real-Time Signal Processing

using Hardware Co-Sim 269
Reducing

Clock Enable Fannout 89
Reference Blockset

Xilinx 22
Reset pin

Hybrid DCM-CE Option 28
Resource Estimation 39

S

SBD Builder
saving plugin files 314
specifying board-specific I/O ports
312

SDK Standalone

Migrating a software project from
XPS 195

Shared Memory Support
for HW Co-Sim 244
Signal Groups
AXI 24
Signal Types 23
displaying data types 23
full precision 23
gateway blocks 23
user-specified precision 23
Simulink System Period 43
Software Project
migrating from XPS to SDK 195
SP601/SP605 Board
Installation for Ethernet Hardware
C-Sim Co-Sim 301
Installation for JTAG Hardware Co-
Sim 307

Spartan-3A DSP 1800A Starter Board

Installation for Ethernet HW Co-Sim
295

Synchronization Mechanisms
indeterminate data 37
valid ports 37

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

www.xilinx.com

415

http://www.xilinx.com

& XILINX.

Synchronous Clocking 27
Clock Enable option 27
Expose Clock Ports option 28
Hybrid DCM-CE option 28, 42
System Generator

adding a block to a Configurable
Subsystem 85

and Configurable Subsystems 82
blocksets 21

defining a Configurable Subsystem
82

deleting a block from a Configurable
Subsystem 85

generating hardware from Configu-
rable Subsystems 86

output files 44

processing a design with physical
design tools 89

resetting auto-generated Clock En-
able logic 95

system-level modeling 20
using a Configurable Subsystem 84
System Generator Constraints
constraints file 46
example 47
IOB timing and placement 46
multicycle path 46
system clock period 46
System Generator Design Flows
algorithm exploration 19
implementing a complete design 19
implementing part of alarger design

System Generator token
compiling and simulating 40
System-Level Modeling 20

T

Tapped Delay Lines 17

TDM data streams 16

Testbench
HDL 50

Time-Division Multiplexed 16

Timing Analysis
clock skew and jitter 396
concepts review 395
cross-probing 397
displaying low-level names 397
histogram charts 398, 401
improving failing paths 401
observing slow paths 396
path analysis example 395

period and slack 395
statistics 400
trace report 400
tutorial 403

Timing Analyzer

invoking on previously-generated
data 394

Timing and Clocking 24
Timing and Power Analysis
compilation type

Compiling for
timing and power
analysis 393
Trace Report
timing analysis 400
Tutorials
Black Box

Dynamic Black Boxes 366

Importing a Core Generator
Module 344

Importing a Core Generator
Module that Needs a VHDL
Wrapper 350

Importing a Verilog Module
365

Importing a VHDL Module 357

Importing, Simulating, and Ex-
porting an Encrypted VHDL
Module 375

Simulating Several Black Boxes
Simultaneously 368

ChipScope
Using ChipScope in System
Generator 129
Clocking

Using the Clock Genera-
tor(DCM) Option 29

Using the Expose Clock Ports
Option 34

Hardware/Software Co-Design
Creating a New XPS Project 188

Creating MicroBlaze Peripher-
als in System Generator 175

Designing and Simulating Mi-
croBlaze Processor Systems
180

Using PicoBlaze in System Gen-
erator 170

Timing Analysis
Using the Timing Analyzer 403

Using System Generator and SDK to
Co-Debug an Embedded DSP De-
sign 202

U

Underdevelopment
export pcore as 389
Using XFLOW 411

\'

Variable Clock Frequency
selecting for Hardware Co-Sim 233

W

Wizards
Base System Builder 188
Black Box Configuration 325, 357
EDK Import 166
XPS Import 182

X
Xilinx

Blockset 22

Reference Blockset 22
Xilinx Tool Flow Settings

for HW Co-Sim 254
xICallChipScopeAnalyzer 410
xlmax 51
xISimpleArith 52
xltarget

defining new Compilation Targets
408

xITimingAnalysis 394
xltools_postgeneration 409, 410
xltools_target 409
XPower

power analysis 393
XPS Import Wizard 182

416

www.xilinx.com

System Generator for DSP User Guide
UG640 (v 13.1) March 1, 2011

http://www.xilinx.com

	Return to Menu
	System Generator for DSP User Guide
	Table of Contents
	About This Guide
	Guide Contents
	System Generator PDF Doc Set
	Additional Resources
	Conventions
	Typographical
	Online Document

	Chapter 1 Hardware Design Using System Generator
	A Brief Introduction to FPGAs
	Note to the DSP Engineer
	Note to the Hardware Engineer

	Design Flows using System Generator
	Algorithm Exploration
	Implementing Part of a Larger Design
	Implementing a Complete Design

	System-Level Modeling in System Generator
	System Generator Blocksets
	Signal Types
	AXI Signal Groups
	Bit-True and Cycle-True Modeling
	Timing and Clocking
	Synchronization Mechanisms
	Block Masks and Parameter Passing
	Resource Estimation

	Automatic Code Generation
	Compiling and Simulating Using the System Generator Token
	Viewing ISE Reports
	Compilation Results
	HDL Testbench

	Compiling MATLAB into an FPGA
	Simple Selector
	Simple Arithmetic Operations
	Complex Multiplier with Latency
	Shift Operations
	Passing Parameters into the MCode Block
	Optional Input Ports
	Finite State Machines
	Parameterizable Accumulator
	FIR Example and System Verification
	RPN Calculator
	Example of disp Function

	Importing a System Generator Design into a Bigger System
	HDL Netlist Compilation
	Integration Design Rules
	New Integration Flow between System Generator & Project Navigator
	A Step-by-Step Example

	Configurable Subsystems and System Generator
	Defining a Configurable Subsystem
	Using a Configurable Subsystem
	Deleting a Block from a Configurable Subsystem
	Adding a Block to a Configurable Subsystem
	Generating Hardware from Configurable Subsystems

	Notes for Higher Performance FPGA Design
	Review the Hardware Notes Included in Block Dialog Boxes
	Register the Inputs and Outputs of Your Design
	Insert Pipeline Registers
	Use Saturation Arithmetic and Rounding Only When Necessary
	Use the System Generator Timing and Power Analysis Tools
	Set the Data Rate Option on All Gateway Blocks
	Reduce the Clock Enable (CE) Fanout

	Processing a System Generator Design with FPGA Physical Design Tools
	HDL Simulation
	Generating an FPGA Bitstream

	Resetting Auto-Generated Clock Enable Logic
	ce_clr and Rate Changing Blocks
	ce_clr Usage Recommendations

	Design Styles for the DSP48
	About the DSP48
	Designs Using Standard Components
	Designs Using Synthesizable Mult, Mux and AddSub Blocks
	Designs that Use DSP48 and DSP48 Macro Blocks
	DSP48 Design Techniques

	Using FDATool in Digital Filter Applications
	Design Overview
	Open and Generate the Coefficients for this FIR Filter
	Parameterize the MAC-Based FIR Block
	Generate and Assign Coefficients for the FIR Filter
	Browse Through and Understand the Xilinx Filter Block
	Run the Simulation

	Generating Multiple Cycle-True Islands for Distinct Clocks
	Multiple Clock Applications
	Clock Domain Partitioning
	Crossing Clock Domains
	Netlisting Multiple Clock Designs
	Step-by-Step Example
	Creating a Top-Level Wrapper

	Using ChipScope Pro Analyzer for Real-Time Hardware Debugging
	ChipScope Pro Overview
	Tutorial Example: Using ChipScope in System Generator
	Real-Time Debug
	Tutorial Example: Using ChipScope Pro Analyzer with JTAG Hardware Co-Simulation

	AXI Interface
	Introduction
	AXI4 Support in System Generator
	AXI4-Stream Support in System Generator
	AXI-Stream Blocks in System Generator

	Chapter 2 Hardware/Software Co-Design
	Hardware/Software Co-Design in System Generator
	Black Box Block
	PicoBlaze Block
	EDK Processor Block

	Integrating a Processor with Custom Logic
	Memory Map Creation
	Hardware Generation
	Hardware Co-Simulation
	The Software Driver
	Writing a Software Program
	Asynchronous Support
	Clock Wiring in the Hardware Co-Simulation Flow

	EDK Support
	Importing an EDK Processor
	Exposing Processor Ports to System Generator
	Exporting a pcore

	Designing with Embedded Processors and Microcontrollers
	Designing PicoBlaze Microcontroller Applications
	Designing and Exporting MicroBlaze Processor Peripherals
	Tutorial Example - Designing and Simulating MicroBlaze Processor Systems
	Using XPS
	Using Platform Studio SDK
	Tutorial Example - Using System Generator and SDK to Co-Debug an Embedded DSP Design
	Summary

	Chapter 3 Using Hardware Co-Simulation
	Introduction
	M-Code Access to Hardware Co-Simulation
	Installing Your Hardware Board
	Ethernet-Based Hardware Co-Simulation
	JTAG-Based Hardware Co-Simulation
	Third-Party Hardware Co-Simulation

	Compiling a Model for Hardware Co-Simulation
	Choosing a Compilation Target
	Invoking the Code Generator

	Hardware Co-Simulation Blocks
	Hardware Co-Simulation Clocking
	Selecting the Target Clock Frequency
	Clocking Modes
	Selecting the Clock Mode

	Board-Specific I/O Ports
	I/O Ports in Hardware Co-simulation

	Ethernet Hardware Co-Simulation
	Point-to-Point Ethernet Hardware Co-Simulation
	Network-Based Ethernet Hardware Co-Simulation
	Remote JTAG Cable Support in JTAG Co-Simulation

	Shared Memory Support
	Compiling Shared Memories for Hardware Co-Simulation
	Co-Simulating Unprotected Shared Memories
	Co-Simulating Lockable Shared Memories
	Co-Simulating Shared Registers
	Co-Simulating Shared FIFOs
	Restrictions on Shared Memories

	Specifying Xilinx Tool Flow Settings
	Frame-Based Acceleration using Hardware Co-Simulation
	Shared Memories
	Adding Buffers to a Design
	Compiling for Hardware Co-simulation
	Using Vector Transfers

	Real-Time Signal Processing using Hardware Co-Simulation
	Shared Memory I/O Buffering Example
	Applying a 5x5 Filter Kernel Data Path
	5x5 Filter Kernel Test Bench
	Reloading the Kernel

	Installing Your Board for Ethernet Hardware Co-Simulation
	Installing Software on the Host PC
	Setting Up the Local Area Network on the PC
	Loading the Sysgen HW Co-Sim Configuration Files
	Installing the Proxy Executable for Linux Users
	Installing an ML402 Board for Ethernet Hardware Co-Simulation
	Installing an ML506 Board for Ethernet Hardware Co-Simulation
	Installing an ML605 Board for Ethernet Hardware Co-Simulation
	Installing a Spartan-3A DSP 1800A Starter Board for Ethernet Hardware Co-Simulation
	Installing a Spartan-3A DSP 3400A Board for Ethernet Hardware Co- Simulation
	Installing an SP601/SP605 Board for Ethernet Hardware Co-Simulation

	Installing Your Board for JTAG Hardware Co-Simulation
	Installing an ML402 Board for JTAG Hardware Co-Simulation
	Installing an ML605 Board for JTAG Hardware Co-Simulation
	Installing an SP601/SP605 Board for JTAG Hardware Co-Simulation

	Supporting New Boards through JTAG Hardware Co-Simulation
	Hardware Requirements
	Supporting New Boards

	Chapter 4 Importing HDL Modules
	Black Box HDL Requirements and Restrictions
	Black Box Configuration Wizard
	Black Box Configuration M-Function
	HDL Co-Simulation
	Introduction
	Configuring the HDL Simulator
	Co-Simulating Multiple Black Boxes

	Black Box Examples
	Importing a Xilinx Core Generator Module
	Importing a VHDL Module
	Importing a Verilog Module
	Dynamic Black Boxes
	Simulating Several Black Boxes Simultaneously
	Advanced Black Box Example Using ModelSim
	Importing, Simulating, and Exporting an Encrypted VHDL File
	Black Box Tutorial Exercise 9: Prompting a User for Parameters in a Simulink Model and Passing Them to a Black Box

	Chapter 5 System Generator Compilation Types
	HDL Netlist Compilation
	NGC Netlist Compilation
	Bitstream Compilation
	XFLOW Option Files
	Additional Settings
	Re-Compiling EDK Processor Block Software Programs in Bitstreams

	EDK Export Tool
	Creating a Custom Bus Interface for Pcore Export
	Export as Pcore to EDK
	System Generator Ports as Top-Level Ports in EDK
	Supported Processors and Current Limitations
	See Also:

	Hardware Co-Simulation Compilation
	Timing and Power Analysis Compilation
	Timing Analysis Concepts Review
	Timing Analyzer Features

	Creating Compilation Targets
	Defining New Compilation Targets

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

