

Operational Amplifiers / Comparators

Full Swing Low Voltage Operation CMOS Operational Amplifiers

BU7261G, BU7261SG, BU7295HFV, BU7295SHFV, BU7262F/FVM/NUX, BU7262SF/FVM/NUX, BU7264F, BU7264SF, BU7241G, BU7241SG, BU7275HFV, BU7275SHFV, BU7242F/FVM/NUX, BU7242S F/FVM/NUX, BU7244F, BU7244SF

No.10049EAT22

Description

Low Voltage CMOS Op-Amp integrates one or two or four independent output full swing Op-Amps and phase compensation capacitors on a single chip. Especially, this series is operable with low voltage, low supply current and low input bias current.

 Input-Output Full Swing : BU7261 (BU7261S) family, BU7241 (BU7241S) family, BU7295 (BU7295S) family, BU7275 (BU7275S) family, BU7262 (BU7262S) family, BU7242 (BU7242S) family, BU7264 (BU7264S) family, BU7244 (BU7244S) family,

Features

- 1) Operable with low voltage
- +1.8[V] ~ +5.5[V] (single supply): BU7261/BU7241 family BU7262/BU7242 family BU7264/BU7244 family BU7295/BU7275 family
- 2) Operable input-Output full swing
- 3) High slew rate (BU7261 family, BU7262 family) (BU7295 family, BU7264 family)
- 4) Internal phase compensation
- 5) Wide temperature range

-40[°C] ~ +85[°C] (BU7261G, BU7262 family, BU7264F, BU7295HFV) (BU7241G, BU7242 family, BU7244F, BU7275HFV) -40[°C] ~ +105[°C] (BU7261SG, BU7262S family, BU7264SF, BU7295SHFV) (BU7241SG, BU7242S family, BU7244SF, BU7275SHFV)

- 6) High large signal voltage gain
- 7) Low supply current (BU7241 family, BU7242 family) (BU7275 family, BU7244 family)
- 8) Low input bias current 1[pA](Typ.)
 9) Internal ESD protection
- Internal ESD protection
 Human body model (HBM)±4000[V](Typ.)

Pin Assignments

Input type	SSOP5 HVSOF5 SOP8				MSOP8	SOP14
Input-output Full Swing	BU7261G BU7261SG BU7241G BU7241SG	BU7275HFV BU7275SHFV BU7295HFV BU7295SHFV	BU7262F BU7262SF BU7242F BU7242SF	BU7262NUX BU7262SNUX BU7242NUX BU7242SNUX	BU7262FVM BU7262SFVM BU7242FVM BU7242SFVM	BU7264F BU7264SF BU7244F BU7244SF

●Absolute maximum rating (Ta=25[°C])

		Ratings								
Parameter	Symbol	BU7261G, BU7241G, BU7262F/FVM/NUX BU7242F/FVM/NUX BU7264F, BU7244F BU7295HFV, BU7275HFV	BU7261SG, BU7241SG, BU7262SF/FVM/NUX BU7242SF/FVM/NUX BU7264SF, BU7244SF BU7295SHFV, BU7275SHFV	Unit						
Supply Voltage	VDD-VSS	+7								
Differential Input Voltage ^(*1)	Vid	VDD-VSS								
Input Common-mode Voltage Range	Vicm	(VSS-0.3)(VDD+0.3)								
Operating Temperature	Topr	-40 ~ +85	-40 ~ +105	°C						
Storage Temperature	Tstg	-55 ~ +125								
Maximum Junction Temperature	Tjmax	+125								

Note: Absolute maximum rating item indicates the condition which must not be exceeded.

Application of voltage in excess of absolute maximum rating or use out absolute maximum rated temperature environment

may cause deterioration of characteristics.

(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VSS.

Technical Note

Electrical characteristics

OBU7261 family (Unless otherwise specified VDD=+3[V], VSS=0[V], Ta=25[°C])

				Limits				
Parameter	Symbol	Temperature Range	BU7261G, BU7261SG			Unit	Condition	
			Min.	Тур.	Max.			
Input Offset Voltage (*2)(*3)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V],	
input Onset voltage	VIO	Full range	—	—	10	IIIV	VOUT=VDD/2	
Input Offset Current (*2)	lio	25°C	_	1	_	pА	_	
Input Bias Current (*2)	lb	25°C	_	1	_	pА	-	
Supply Current (*3)	IDD	25°C	—	250	550		RL=∞ All Op-Amps	
Supply Current	שטו	Full range	—	—	600	μA	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	_	_	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	_	_	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	-	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	-	
Power Supply Rejection Ratio	PSRR	25°C	60	80	-	dB	-	
Output Source Current (*4)	IOH	25°C	4	10	-	mA	VDD-0.4[V]	
Output Sink Current (*4)	IOL	25°C	5	12	-	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	1.1	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	2	-	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	-	o	CL=25[pF], AV=40[dB]	

(*2) Absolute value (*3) Full range: BU7261: Ta=-40[°C] ~ +85[°C] BU7261S: Ta=-40[°C] ~ +105[°C]

(*4) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.

When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

OBU7262 family (Unless otherwise specified VDD=+3[V], VSS=0[V], Ta=25[°C])

OBU7262 family (Unless otherwise sp	Jecilieu	VDD=+3[V], \	/33 <u>–0[v]</u> ,	-	1/			
	Symbol	Tomporatura	PLIZO	Limits BU7262F/FVM/NUX				
Parameter		Temperature Range		62F/FVI0 62S F/FVI		Unit	Condition	
			Min.	Тур.	Max.			
Input Offset Voltage (*5)(*6)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V]	
Input Onset voltage	VIO	Full range	—	-	10	mv	VOUT=VDD/2	
Input Offset Current (*5)	lio	25°C	_	1	_	pА	-	
Input Bias Current (*5)	lb	25°C	_	1	_	pА	-	
Supply Current (*6)	IDD	25°C	—	550	1100	μA	RL=∞ All Op-Amps	
Supply Current	שטו	Full range	—		1200	μΑ	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	_	-	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	_	Η	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	_	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	-	
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_	
Output Source Current (*7)	IOH	25°C	4	10	_	mA	VDD-0.4[V]	
Output Sink Current (*7)	IOL	25°C	5	12	_	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	1.1	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	2	_	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	_	o	CL=25[pF], AV=40[dB]	
Total Harmonic Distortion	THD	25°C	_	0.05	_	%	VOUT=0.8[Vp-p], f=1[kHz]	
Channel Separation	CS	25°C	_	100	_	dB	AV=40[dB]	

(*5) Absolute value

(*6) Full range: BU7262: Ta=-40[°C] ~ +85[°C] BU7262S: Ta=-40[°C] ~ +105[°C]
(*7) Under the high temperature environment, consider the power dissipation of IC when selecting the output current. When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

OBU7264 family (Unless otherwise specified VDD=+3[V], VSS=0[V], Ta=25[°C])

			Limits BU7264F BU7264SF				Condition	
Parameter	Symbol	Temperature Range				Unit		
			Min.	Тур.	Max.			
Input Offset Voltage (*8)(*9)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V]	
Input Onset voltage \	VIO	Full range	—	-	10	ΠV	VOUT=VDD/2	
Input Offset Current (*8)	lio	25°C	_	1	-	pА	_	
Input Bias Current (*8)	lb	25°C	_	1	_	pА	_	
Supply Current (*9)	IDD	25°C	—	1100	2300	μA	RL=∞ All Op-Amps	
		Full range	_	-	2800	μA	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	-	_	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	_	_	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	_	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	_	
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_	
Output Source Current (*10)	IOH	25°C	4	10	_	mA	VDD-0.4[V]	
Output Sink Current (*10)	IOL	25°C	5	12	_	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	1.1	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	2	_	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	_	o	CL=25[pF], AV=40[dB]	
Total Harmonic Distortion	THD	25°C	_	0.05	_	%	VOUT=0.8[Vp-p], f=1[kHz]	
Channel Separation	CS	25°C	_	100	_	dB	AV=40[dB]	

(*8) Absolute value

(*8) Absolute value
 (*9) Full range: BU7264: Ta=-40[°C] ~ +85[°C] BU7264S: Ta=-40[°C] ~ +105[°C]
 (*10) Under the high temperature environment, consider the power dissipation of IC when selecting the output current. When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

Oborzes lanning (onless otherwise sp	Symbol	Taraa anatura		Limits			
Parameter				U7295HF J7295SH		Unit	Condition
			Min.	Тур.	Max.		
Input Offset Voltage (*11)	Vio	25°C	_	1	6	mV	_
Input Offset Current (*11)	lio	25°C	_	1	_	pА	_
Input Bias Current (*11)	lb	25°C	_	1	_	pА	_
Supply Current (*12)	IDD	25°C	—	150	300	μA	RL=∞ All Op-Amps
Supply Current	שטו	Full range	—	—	400	μA	AV=0[dB], VIN=1.5[V]
High Level Output Voltage	VOH	25°C	VDD-0.1	-	_	V	RL=10[kΩ]
Low Level Output Voltage	VOL	25°C	_	_	VSS+0.1	V	RL=10[kΩ]
Large Signal Voltage Gain	AV	25°C	60	95	_	dB	RL=10[kΩ]
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	_
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_
Output Source Current (*13)	IOH	25°C	4	8	_	mA	VDD-0.4[V]
Output Sink Current (*13)	IOL	25°C	9	18	_	mA	VSS+0.4[V]
Slew Rate	SR	25°C	_	1.0	_	V/µs	CL=25[pF]
Gain Band width	FT	25°C	_	1.0	_	MHz	CL=25[pF], AV=40[dB]
Phase Margin	θ	25°C	_	60	_	0	CL=25[pF], AV=40[dB]

(*11) Absolute value
(*12) Full range: BU7295: Ta=-40[°C] ~ +85[°C] BU7295S: Ta=-40[°C] ~ +105[°C]
(*13) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.

When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

Oborzer ranning (Onless otherwise sp			0-0[1], 1	/				
		Temperature Range		Limits				
Parameter	Symbol		BU7241G, BU7241SG			Unit	Condition	
			Min.	Тур.	Max.			
Input Offset Voltage (*14)(*15)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V]	
	10	Full range	—	-	10		VOUT=VDD/2	
Input Offset Current (*14)	lio	25°C	—	1	_	pА	_	
Input Offset Current (*14)	lb	25°C	_	1	_	рА	_	
Supply Current (*15)	IDD	25°C	—	70	150	μA	RL=∞ All Op-Amps	
		Full range	—	_	250	μA	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	_	-	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	_	_	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	_	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	_	
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_	
Output Source Current (*16)	IOH	25°C	4	10	_	mA	VDD-0.4[V]	
Output Sink Current (*16)	IOL	25°C	5	12	_	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	0.4	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	0.9	_	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	-	o	CL=25[pF], AV=40[dB]	
Total Harmonic Distortion	THD	25°C	_	0.05	-	%	VOUT=0.8[Vp-p], f=1[kHz]	

(*14) Absolute value

(*15) Full range: BU7241: Ta=-40[°C] ~ +85[°C] BU7241S: Ta=-40[°C] ~ +105[°C]

(*16) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.

When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

OB07242 Tarring (Offiess otherwise sp								
				Limits				
Parameter	Symbol	Temperature Range	BU7242F/FVM/NUX BU7242S F/FVM/NUX			Unit	Condition	
			Min.	Тур.	Max.			
Input Offset Voltage (*17) (*18)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V]	
input Onset voltage	VIO	Full range	_		10	IIIV	VOUT=VDD/2	
Input Offset Current (*17)	lio	25°C	_	1	_	pА	_	
Input Bias Current (*17)	lb	25°C	_	1	_	pА	_	
Supply Current (*18)	IDD	25°C	—	180	360	μA	RL=∞ All Op-Amps	
Supply Current	שטו	Full range	_		600	μΑ	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	-	—	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	_	_	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	_	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	-	
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_	
Output Source Current (*19)	IOH	25°C	4	10	_	mA	VDD-0.4[V]	
Output Sink Current (*19)	IOL	25°C	5	12	_	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	0.4	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	0.9	_	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	_	o	CL=25[pF], AV=40[dB]	
Total Harmonic Distortion	THD	25°C	_	0.05	_	%	VOUT=0.8[Vp-p], f=1[kHz]	
Channel Separation	CS	25°C	_	100	_	dB	AV=40[dB]	

(*17) Absolute value

(*17) Absolute value
 (*18) Full range: BU7242: Ta=-40[°C] ~ +85[°C] BU7242S: Ta=-40[°C] ~ +105[°C]
 (*19) Under the high temperature environment, consider the power dissipation of IC when selecting the output current. When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

OBU7244 family (Unless otherwise specified VDD=+3[V], VSS=0[V], Ta=25[°C])

OB07244 Tarning (Officess otherwise sp		Tomporatura		Limits			Condition	
Parameter	Symbol			BU7244F 3U7244SI		Unit		
			Min.	Тур.	Max.			
Input Offset Voltage (*20) (*21)	Vio	25°C	—	1	9	mV	VDD=1.8 ~ 5.5[V]	
input Onset voltage	VIO	Full range	_	_	10	IIIV	VOUT=VDD/2	
Input Offset Current (*20)	lio	25°C	_	1	_	pА	_	
Input Bias Current (*20)	lb	25°C	_	1	_	pА	-	
Supply Current (*21)	IDD	25°C	—	360	750		RL=∞ All Op-Amps	
	שטו	Full range	—		1200	μA	AV=0[dB], VIN=1.5[V]	
High Level Output Voltage	VOH	25°C	VDD-0.1	_	_	V	RL=10[kΩ]	
Low Level Output Voltage	VOL	25°C	—	Ι	VSS+0.1	V	RL=10[kΩ]	
Large Signal Voltage Gain	AV	25°C	70	95	_	dB	RL=10[kΩ]	
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]	
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	-	
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_	
Output Source Current (*22)	IOH	25°C	4	10	_	mA	VDD-0.4[V]	
Output Sink Current (*22)	IOL	25°C	5	12	_	mA	VSS+0.4[V]	
Slew Rate	SR	25°C	_	0.4	_	V/µs	CL=25[pF]	
Gain Band width	FT	25°C	_	0.9	_	MHz	CL=25[pF], AV=40[dB]	
Phase Margin	θ	25°C	_	50	_	o	CL=25[pF], AV=40[dB]	
Total Harmonic Distortion	THD	25°C	_	0.05	_	%	VOUT=0.8[Vp-p], f=1[kHz]	
Channel Separation	CS	25°C	_	100	_	dB	AV=40[dB]	

(*20) Absolute value

(*21) Full range: BU7244: Ta=-40[°C] ~ +85[°C] BU7244S: Ta=-40[°C] ~ +105[°C]
 (*22) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.

When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

Oborzro lanily (offiess otherwise sp				Limits			
Parameter	Symbol	Temperature Range		U7275HF J7275SH		Unit	Condition
			Min.	Тур.	Max.		
Input Offset Voltage (*23)	Vio	25°C	_	1	6	mV	_
Input Offset Current (*23)	lio	25°C	_	1	_	pА	_
Input Bias Current (*23)	lb	25°C	_	1	_	pА	_
Supply Current (*24)	IDD	25°C	—	40	80	μA	RL=∞ All Op-Amps
		Full range	—	_	130	μΛ	AV=0[dB], VIN=1.5[V]
High Level Output Voltage	VOH	25°C	VDD-0.1	-	_	V	RL=10[kΩ]
Low Level Output Voltage	VOL	25°C		_	VSS+0.1	V	RL=10[kΩ]
Large Signal Voltage Gain	AV	25°C	60	95	_	dB	RL=10[kΩ]
Input Common-mode Voltage Range	Vicm	25°C	0	_	3	V	VDD-VSS=3[V]
Common-mode Rejection Ratio	CMRR	25°C	45	60	_	dB	_
Power Supply Rejection Ratio	PSRR	25°C	60	80	_	dB	_
Output Source Current (*25)	IOH	25°C	4	8	_	mA	VDD-0.4[V]
Output Sink Current (*25)	IOL	25°C	9	18	-	mA	VSS+0.4[V]
Slew Rate	SR	25°C	_	0.3	-	V/µs	CL=25[pF]
Gain Band width	FT	25°C	_	0.6	-	MHz	CL=25[pF], AV=40[dB]
Phase Margin	θ	25°C	_	60	_	0	CL=25[pF], AV=40[dB]

(*23) Absolute value

(*24) Full range: BU7275: Ta=-40[°C] ~ +85[°C] BU7275S: Ta=-40[°C] ~ +105[°C]

(*25) Under the high temperature environment, consider the power dissipation of IC when selecting the output current.

When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.

-40°C

60 90 120

2 2.5 3

BU7261 family

BU7261 family

5

BU7261 family

6

BU7261 family

Reference Data (BU7261 family)

(*) The above data is ability value of sample, it is not guaranteed. BU7261G: -40[°C] ~ +85[°C] BU7261SG: -40[°C] ~ +105[°C]

60 90 120

(*) The above data is ability value of sample, it is not guaranteed. BU7261G: -40[°C] ~ +85[°C] BU7261SG: -40[°C] ~ +105[°C]

105°C

85°C

3

5.5\

1.8V

30 60 90 120

Fig.29

85%

1.5 2 2.5 3

Fig.32

3.0

30

Fig.35

Fig.26

4

5

BU7262 family

BU7262 family

BU7262 family

6

BU7262 family

Reference Data (BU7262 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7262F/FVM/NUX: -40[°C] ~ +85[°C] BU7262S F/FVM/NUX: -40[°C] ~ +105[°C]

60

90

120

(*)The above data is ability value of sample, it is not guaranteed. BU7262F/FVM/NUX: -40[°C] ~ +85[°C] BU7262S F/FVM/NUX: -40[°C] ~ +105[°C]

Reference Data (BU7264 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7264F: -40[°C] ~ +85[°C] BU7264SF: -40[°C] ~ +105[°C]

Fig.56

Output Source Current - Ambient Temperature

(VOUT=VDD-0.4[V])

(VDD=3[V])

(VOUT=VSS+0.4[V])

(*)The above data is ability value of sample, it is not guaranteed. BU7264F: -40[°C] ~ +85[°C] BU7264SF: -40[°C] ~ +105[°C]

Reference Data (BU7295 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7295HFV: -40[°C] ~ +85[°C] BU7295SHFV: -40[°C] ~ +105[°C]

(*)The above data is ability value of sample, it is not guaranteed. BU7295HFV: -40[°C] ~ +85[°C] BU7295SHFV: -40[°C] ~ +105[°C]

Reference Data (BU7241 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7241G: -40[°C] ~ +85[°C] BU7241SG: -40[°C] ~ +105[°C]

(*) The above data is ability value of sample, it is not guaranteed. BU7241G: $-40[^{\circ}C] \sim +85[^{\circ}C]$ BU7241SG: $-40[^{\circ}C] \sim +105[^{\circ}C]$

Reference Data (BU7242 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7242F/FVM/NUX: -40[°C] ~ +85[°C] BU7242S F/FVM/NUX: -40[°C] ~ +105[°C]

(*)The above data is ability value of sample, it is not guaranteed. BU7242F/FVM/NUX: -40[°C] ~ +85[°C] BU7242S F/FVM/NUX: -40[°C] ~ +105[°C]

Reference Data (BU7244 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7244F: -40[°C] ~ +85[°C] BU7244SF: -40[°C] ~ +105[°C]

(*) The above data is ability value of sample, it is not guaranteed. BU7244F: -40[$^{\circ}C$] ~ +85[$^{\circ}C$] BU7244SF: -40[$^{\circ}C$] ~ +105[$^{\circ}C$] ~ +105[$^{\circ}C$]

Reference Data (BU7275 family)

(*)The above data is ability value of sample, it is not guaranteed. BU7275 HFV: -40[°C] ~ +85[°C] BU7275S HFV: -40[°C] ~ +105[°C]

•Test circuit 1 NULL method

VDD, VSS, EK, Vicm Unit: [V]

Parameter	VF	S1	S2	S3	VDD	VSS	EK	Vicm	Calculation
Input Offset Voltage	VF1	ON	ON	OFF	3	0	-1.5	3	1
Large Signal Voltage Gain	VF2 VF3	ON	ON	ON	3	0	-0.5 -2.5	1.5	2
Common-mode Rejection Ratio (Input Common-mode Voltage Range)	VF4 VF5	ON	ON	OFF	3	0	-1.5	0 3	3
Power Supply Rejection Ratio	VF6 VF7	ON	ON	OFF	1.8 5.5	0	-0.9	0	4

-Calculation-

1. Input Offset Voltage (Vio)

$$Vio = \frac{|VF1|}{1+Rf/Rs} [V]$$

2. Large Signal Voltage Gain (Av)

 $Av = 20Log \quad \frac{2x(1+Rf/Rs)}{|VF2-VF3|} \quad [dB]$

3. Common-mode Rejection Ratio (CMRR)

$$CMRR = 20Log - \frac{1.8 \times (1 + Rf/Rs)}{|VF4 - VF5|} [dB]$$

3.7×(1+Rf/Rs)

|VF6-VF7|

[dB]

4. Power Supply Rejection Ratio (PSRR)

PSRR = 20Log

Fig.185 Test circuit 1 (one channel only)

Test circuit2 switch condition

SW No.	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8	SW 9	SW 10	SW 11	SW 12
Supply Current	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Maximum Output Voltage RL=10 [k Ω]	OFF	ON	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	ON	OFF
Output Current	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF
Slew Rate	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF	ON
Maximum Frequency	ON	OFF	OFF	ON	ON	OFF	OFF	OFF	ON	OFF	OFF	ON

Fig.186 Test circuit 2

Fig.187. Slew rate input output wave

Technical Note

• Test circuit 3 Channel separation

Schematic diagram

Fig.189 Simplified schematic

Technical Note

Examples of circuit

OVoltage follower

Fig. 190 Voltage follower circuit

Voltage gain is 0 [dB].

This circuit controls output voltage (Vout) equal input voltage (Vin), and keeps Vout with stable because of high input impedance and low output impedance. Vout is shown next formula.

Vout=Vin

OInverting amplifier

Fig. 191 Inverting amplifier circuit

ONon-inverting amplifier

Fig. 192 Non-inverting amplifier circuit

For inverting amplifier, Vin is amplified by voltage gain decided R1 and R2, and phase reversed voltage is outputted.

Vout is shown next formula.

Vout=-(R2/R1) · Vin

Input impedance is R1.

For non-inverting amplifier, Vin is amplified by voltage gain decided R1 and R2, and phase is same with Vin. Vout is shown next formula.

Vout=(1+R2/R1) · Vin

This circuit realizes high input impedance because Input impedance is operational amplifier's input Impedance.

Examples of circuit

OAdder circuit

Adder circuit output the voltage that added up Input voltage. A phase of the output voltage turns over, because non-inverting circuit is used. Vout is shown next formula.

Vout = -R3(Vin1/R1+Vin2/R2)

When three input voltage is as above, it connects with input through resistance like R1 and R2.

ODifferential amplifier

Fig. 194 Differential amplifier

Differential amplifier output the voltage that amplified a difference of input voltage. In the case of R1=R3=Ra, R2=R4=Rb Vout is shown next formula.

Vout = -Rb/Ra(Vin1-Vin2)

Description of electrical characteristics

Described here are the terms of electric characteristics used in this technical note. Items and symbols used are also shown. Note that item name and symbol and their meaning may differ from those on another manufacture's document or general document.

1. Absolute maximum ratings

Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute maximum rated temperature environment may cause deterioration of dharacteristics.

- 1.1 Power supply voltage (VDD/VSS) Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply terminalwithout deterioration or destruction of characteristics of internal circuit.
- 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without deterioration and destruction of characteristics of IC.
- 1.3 Input common-mode voltage range (Vicm) Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assure normal operation of IC. When normalOperation of IC is desired, the input common-mode voltage of characteristics item must be followed.
- 1.4 Power dissipation (Pd)

Indicates the power that can be consumed by specified mounted board at the ambient temperature 25°C(normal temperature).

As for package product, Pd is determined by the temperature that can be permitted by IC chip in the package (maximum junction temperature) and thermal resistance of the package.

2. Electrical characteristics item

2.1 Input offset voltage (Vio)

Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the input voltage difference required for setting the output voltage at 0 [V].

2.2 Input offset current (lio)

Indicates the difference of input bias current between non-inverting terminal and inverting terminal.

- 2.3 Input bias current (lb) Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at non-inverting terminal and input bias current at inverting terminal.
- 2.4 Circuit current (IDD)

Indicates the IC current that flows under specified conditions and no-load steady status.

- 2.5 High level output voltage / Low level output voltage (VOM) Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into high-level output voltage and low-level output voltage. High-level output voltage indicates the upper limit of output voltage. Low-level output voltage indicates the lower limit.
- 2.6 Large signal voltage gain (AV) Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage. Av = (Output voltage fluctuation) / (Input offset fluctuation)
- 2.7 Input common-mode voltage range (Vicm) Indicates the input voltage range where IC operates normally.
- 2.8 Common-mode rejection ratio (CMRR) Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the fluctuation of DC.

CMRR =(Change of Input common-mode voltage)/(Input offset fluctuation)

- 2.9 Power supply rejection ratio (PSRR) Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC. PSRR=(Change of power supply voltage)/(Input offset fluctuation)
- 2.10 Channel separation (CS) Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel.
- 2.11 Slew rate (SR)

Indicates the time fluctuation ratio of voltage output when step input signal is applied.

- 2.12 Unity gain frequency (ft) Indicates a frequency where the voltage gain of Op-Amp is 1.
- 2.13 Total harmonic distortion + Noise (THD+N) Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel.
- 2.14 Input referred noise voltage (Vn) Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal.

Derating curve

Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25°C(normal temperature).IC is heated when it consumed power, and the temperature of IC ship becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is called thermal resistance, represented by the symbol 0j-a[°C/W]. The temperature of IC inside the package can be estimated by this thermal resistance. Fig.195 (a) shows the model of thermal resistance of the package. Thermal resistance θ_{ja} , ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below :

 $\theta_{ja} = (T_j - T_a) / Pd$ [°C/W]

(I) Derating curve in Fig.195(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal resistance θ_{ja} . Thermal resistance θ_{ja} depends on chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig196(c) ~ (h) show a derating curve for an example of low voltage full swing

When using the unit above Ta=25[°C], subtract the value above per degree[°C]. Permissible dissipation is the value. when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm] (cooper foil area below 3[%]) is mounted.

Fig. 196 Derating Curve

Notes for use

1) Absolute maximum ratings

Absolute maximum ratings are the values which indicate the limits, within which the given voltage range can be safely charged to the terminal. However, it does not guarantee the circuit operation.

- Applied voltage to the input terminal For normal circuit operation of voltage comparator, please input voltage for its input terminal within input common mode voltage VDD + 0.3[V]. Then, regardless of power supply voltage, VSS-0.3[V] can be applied to input terminals without deterioration or destruction of its characteristics.
- Operating power supply (split power supply/single power supply) The voltage comparator operates if a given level of voltage is applied between VDD and VSS. Therefore, the operational amplifier can be operated under single power supply or split power supply.
- 4) Power dissipation (pd)

If the IC is used under excessive power dissipation. An increase in the chip temperature will cause deterioration of the radical characteristics of IC. For example, reduction of current capability. Take consideration of the effective power dissipation and thermal design with a sufficient margin. Pd is reference to the provided power dissipation curve.

- Short circuits between pins and incorrect mounting Short circuits between pins and incorrect mounting when mounting the IC on a printed circuits board, take notice of the direction and positioning of the IC.
 If IC is mounted erroneously, It may be damaged. Also, when a foreign object is inserted between output, between output and VDD terminal or VSS terminal which causes short circuit, the IC may be damaged.
- Using under strong electromagnetic field Be careful when using the IC under strong electromagnetic field because it may malfunction.
- 7) Usage of IC

When stress is applied to the IC through warp of the printed circuit board, The characteristics may fluctuate due to the piezo effect. Be careful of the warp of the printed circuit board.

8) Testing IC on the set board

When testing IC on the set board, in cases where the capacitor is connected to the low impedance, make sure to discharge per fabrication because there is a possibility that IC may be damaged by stress. When removing IC from the set board, it is essential to cut supply voltage. As a countermeasure against the static electricity, observe proper grounding during fabrication process and take due care when carrying and storage it.

9) The IC destruction caused by capacitive load

The transistors in circuits may be damaged when VDD terminal and VSS terminal is shorted with the charged output terminal capacitor. When IC is used as a operational amplifier or as an application circuit, where oscillation is not activated by an output capacitor, the output capacitor must be kept below $0.1[\mu F]$ in order to prevent the damage mentioned above.

- 10) Decupling capacitor Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.
- 11) Latch up

Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up operation. And protect the IC from abnormaly noise

12) Decupling capacitor

Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.

Ordering part number

SOP8

SOP14

SSOP5

Technical Note

MSOP8

HVSOF5

VSON008X2030

	copying or reproduction of this document, in part or in whole, is permitted without the asent of ROHM Co.,Ltd.
The	e content specified herein is subject to change for improvement without notice.
"Pr	e content specified herein is for the purpose of introducing ROHM's products (hereinafte oducts"). If you wish to use any such Product, please be sure to refer to the specifications ich can be obtained from ROHM upon request.
illu	amples of application circuits, circuit constants and any other information contained herein strate the standard usage and operations of the Products. The peripheral conditions mus taken into account when designing circuits for mass production.
Ho	eat care was taken in ensuring the accuracy of the information specified in this document wever, should you incur any damage arising from any inaccuracy or misprint of such prmation, ROHM shall bear no responsibility for such damage.
exa imp oth	e technical information specified herein is intended only to show the typical functions of an imples of application circuits for the Products. ROHM does not grant you, explicitly o plicitly, any license to use or exercise intellectual property or other rights held by ROHM and er parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the of such technical information.
equ	Products specified in this document are intended to be used with general-use electronic upment or devices (such as audio visual equipment, office-automation equipment, commu ation devices, electronic appliances and amusement devices).
The	Products specified in this document are not designed to be radiation tolerant.
	ile ROHM always makes efforts to enhance the quality and reliability of its Products, a duct may fail or malfunction for a variety of reasons.
aga fail sha	ase be sure to implement in your equipment using the Products safety measures to guard ainst the possibility of physical injury, fire or any other damage caused in the event of the ure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM all bear no responsibility whatsoever for your use of any Product outside of the prescribed uppe or not in accordance with the instruction manual.
sys ma ins cor of t	e Products are not designed or manufactured to be used with any equipment, device o tem which requires an extremely high level of reliability the failure or malfunction of which y result in a direct threat to human life or create a risk of human injury (such as a medica trument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- ntroller or other safety device). ROHM shall bear no responsibility in any way for use of any the Products for the above special purposes. If a Product is intended to be used for any ch special purpose, please contact a ROHM sales representative before purchasing.
be	ou intend to export or ship overseas any Product or technology specified herein that ma controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to ain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/