

BASIC STAMP FAQ

(FREQUENTLY ASKED QUESTIONS AND ANSWERS)

STAMP FAQS TABLE OF CONTENTS

Last Revised On: 7/21/00 Page: ii

GENERAL INFORMATION 4

WHAT IS THE BASIC STAMP? 4
DOES THE BASIC STAMP LOSE ITS PROGRAM WHEN I REMOVE THE BATTERY OR POWER SUPPLY? 4
DOES THE BASIC STAMP COME IN DIFFERENT VERSIONS? 5
WHAT IS THE DIFFERENCE BETWEEN THE BASIC STAMP REV. D (SOMETIMES JUST CALLED “BASIC STAMP”) AND

THE BASIC STAMP I? 5
HOW BIG IS THE BASIC STAMP? 6
HOW BIG ARE THE BASIC STAMP I AND BASIC STAMP II CARRIER BOARDS? 6
HOW DO I POWER THE BASIC STAMP? 6
HOW MUCH CURRENT DOES THE BASIC STAMP CONSUME? 6
IS THE BASIC STAMP SENSITIVE TO STATIC ELECTRICITY? 6
ARE THERE ANY PRODUCTION POSSIBILITIES WITH THE BASIC STAMP? 7
WHAT ITEMS DO I NEED TO GET STARTED WITH THE BASIC STAMP? 7
HOW CAN I MAKE MY OWN BASIC STAMP CIRCUIT? 7
WHAT KIND OF MICROCHIPS ARE USED IN THE BASIC STAMP? 7

FUNCTIONAL INFORMATION 7

WHAT KIND OF OPERATING ENVIRONMENT DOES THE BASIC STAMP REQUIRE? 7
WHAT ARE THE MAIN DIFFERENCES BETWEEN THE BASIC STAMPS? 8
IS THE BASIC STAMP II BETTER THAN THE BASIC STAMP I? 8
IS THE BASIC STAMP IISX BETTER THAN THE BASIC STAMP II? 8
HOW MANY I/O PINS DOES THE BASIC STAMP HAVE? 9
WHAT CAN I USE THE I/O PINS FOR? 9
CAN THE I/O PINS BE USED TO CONTROL RELAYS , SOLENOIDS AND OTHER SIMILAR DEVICES? 9
CAN I CONTROL LEDS WITH THE I/O PINS? 9
HOW MUCH CURRENT CAN THE I/O PINS HANDLE? 9
WHAT IS THE INPUT IMPEDANCE OF THE BASIC STAMP’S I/O PINS? 9
HOW FAST DOES THE BASIC STAMP EXECUTE ITS PBASIC CODE? 9
WHAT IS THE VIN PIN USED FOR? 10
HOW DOES THE VDD PIN WORK? 10
HOW DOES THE RESET PIN (RES) WORK? 10
HOW DOES THE ATN (ATTENTION) PIN WORK (BASIC STAMP II, BASIC STAMP IIE AND BASIC STAMP

IISX)? 10
HOW MUCH CURRENT CAN THE BASIC STAMP’S ON-BOARD REGULATOR PROVIDE? 11
CAN THE BASIC STAMP GENERATE A SINE WAVE? 11
CAN THE BASIC STAMP GENERATE A SINE WAVE ON TWO PINS AT ONCE? 11
CAN THE BASIC STAMP GENERATE MORE THAN ONE SINE WAVE ON A PIN AT THE SAME TIME? 11
CAN THE BASIC STAMP GENERATE SQUARE WAVES? 11
DOES THE BASIC STAMP INCLUDE A REAL TIME CLOCK FUNCTION? 11
DOES THE BASIC STAMP HAVE A BUILT-IN TIMER? 11
DOES THE BASIC STAMP SUPPORT INTERRUPTS? 12
DOES THE BASIC STAMP II, BASIC STAMP IIE OR BASIC STAMP IISX HAVE THE SAME BSAVE/BSLOAD

FEATURE AVAILABLE IN THE BASIC STAMP I? 12

STAMP FAQS TABLE OF CONTENTS

Last Revised On: 7/21/00 Page: iii

PROGRAMMING INFORMATION 12

HOW DO I PROGRAM THE BASIC STAMP? 12
HOW DO I CONNECT THE BASIC STAMP TO MY COMPUTER FOR PROGRAMMING? 12
HOW DOES MY PROGRAM GET STORED IN THE BASIC STAMP? 12
HOW DO I ERASE THE BASIC STAMP’S PROGRAM SPACE? 12
HOW DO I REPROGRAM THE BASIC STAMP? 13
HOW BIG OF A PROGRAM CAN I STORE IN THE BASIC STAMP? 13
CAN I EXPAND THE PROGRAM MEMORY? 13
CAN I EXPAND THE DATA MEMORY? 13
HOW DIFFICULT IS IT TO PROGRAM THE BASIC STAMP? 13
CAN I PROGRAM THE BASIC STAMP IN VISUAL BASIC OR QBASIC? 13
WHAT IS PBASIC? 13
CAN I IMBED ASSEMBLY LANGUAGE ROUTINES IN MY PBASIC CODE? 13
HOW MUCH SPACE DOES EACH PBASIC COMMAND TAKE? 14
HOW DO I KNOW HOW MUCH SPACE MY PBASIC PROGRAM CONSUMES ? 14
WHY DOESN’T THE MEMORY MAP FEATURE SHOW ME DATA I HAVE ALREADY STORED IN THE BASIC STAMP II, IIE
OR IISX’S EEPROM? 14
HOW DO I DEBUG MY PBASIC PROGRAMS? 14
HOW DO I PRINT OUT MY PBASIC PROGRAMS? 15
CAN I READ-OUT, OR UPLOAD, THE PBASIC PROGRAM WHICH IS ALREADY STORED IN THE BASIC STAMP? 15
SINCE THE BASIC STAMP II, IIE AND IISX USE THE SERIAL PORT FOR PROGRAMMING, CAN I USE A SIMPLE

TERMINAL PROGRAM TO DOWNLOAD MY PBASIC CODE? 15
WILL A PROGRAM AND CIRCUITRY DESIGNED FOR THE BASIC STAMP I WORK WITH THE BASIC STAMP II, IIE OR

IISX? 15
CAN I PROGRAM THE BASIC STAMP II, IIE OR IISX WITH THE BASIC STAMP I EDITOR (STAMP.EXE)? 15
HOW DO I MAKE MY PBASIC PROGRAM START OVER OR CONTINUE RUNNING FOREVER? 15
HOW DO I SET AN I/O PIN TO INPUT OR OUTPUT MODE? 16
HOW DO I MAKE AN I/O PIN OUTPUT A HIGH OR A LOW? 17
HOW DO I INPUT OR OUTPUT DATA IN PARALLEL ON THE I/O PINS? 18
WHY DO THE BASIC STAMP’S OUTPUT PINS TOGGLE BRIEFLY WHEN I USE THE SLEEP, NAP OR END COMMANDS

OR ALLOW MY PROGRAM TO END NATURALLY? 18
THE LET COMMAND IS NOT AVAILABLE ON THE BASIC STAMP II, IIE AND IISX. DOES THIS MEAN THE BASIC
STAMP II, IIE AND IISX CANNOT PERFORM MATHEMATICAL OPERATIONS? 19
CAN THE BASIC STAMP STORE DATA, SUCH AS TEMPERATURE READINGS , FOR REVIEW OR USE AT A LATER TIME? 19
HOW CAN I STORE A WORD VALUE INTO THE INTERNAL EEPROM? 19
HOW DOES THE FPIN (FLOW CONTROL PIN) WORK IN THE SERIN AND SEROUT COMMANDS ON THE BASIC
STAMP II, IIE AND IISX? 20
HOW ARE ARITHMETIC EXPRESSIONS EVALUATED WITHIN THE BASIC STAMP? 20
DOES THE BASIC STAMP HANDLE SIGNED NUMBERS AND ARITHMETIC? 20
HOW CAN I DEFINE AN ALIAS TO AN I/O PIN OR ANOTHER VARIABLE? 21
HOW DO I REFERENCE A SPECIFIC BIT WITHIN A BYTE OR WORD VARIABLE? 21
HOW DO I DEFINE A STRING VARIABLE? 21
HOW DO I DEFINE ALIASES TO SPECIFIC BYTES WITHIN A WORD ARRAY ON THE BASIC STAMP II, IIE AND IISX? 22

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 4

What is the BASIC Stamp?
The BASIC Stamp is a microcontroller developed by Parallax, Inc. which is easily programmed using a form of the
BASIC programming language. It is called a “Stamp” simply because it is close to the size of an average postage
stamp.

Does the BASIC Stamp lose its program when I remove the battery or power supply?

No, your PBASIC code is stored inside a serial EEPROM on-board the BASIC Stamp. EEPROMs provide non-
volatile storage; they retain memory even without power. The EEPROM used in the BASIC Stamp 1 and 2 is
guaranteed to function properly for 40 years and for 10,000,000 write cycles per memory location. The EEPROM
used in the BASIC Stamp 2e and 2sx is guaranteed for 1,000,000 write cycles per memory location.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 5

Does the BASIC Stamp come in different versions?
Yes. Currently there are four functional versions of the BASIC Stamp and seven physical versions. The BASIC
Stamp line consists of the BASIC Stamp I, the BASIC Stamp II, the BASIC Stamp IIe and the BASIC Stamp IIsx
. The BASIC Stamp I is available in three package types (physical versions) as shown in figures 1a, 1b and 1c
below. The BASIC Stamp 1 Rev. D is a through-hole, socketed package (with prototyping area). The BS1-IC is
a 14-pin SIP with surface-mounted components. The OEMBS1 is a 14-pin SIP in a larger board layout meant for
OEM use (for recreating the entire BASIC Stamp 1 circuitry). It’s important to note the three versions are
functionally equivalent (with the exception of the lack of a Reset pin on the BASIC Stamp 1 Rev. D) but are just in
physically different packages. The BASIC Stamp II , BASIC Stamp IIe and BASIC Stamp IIsx are available in a
24-pin DIP, with surface-mounted components (see Figures 2a, 3 and 4. They are called the BS2-IC, BS2E-IC
and BS2SX-IC, respectively. The BS2-IC is also available in an OEM version (Figure 2b) that is a 20-pin SIP
package.

Basic Stamp

 ©1993
REV DTM

P0
P1
P2
P3
P4
P5
P6
P7

+5V

Vin


+5V

Vss
Vss
Vss

>>

.1
“

(2
.5

4
m

m
)

.1“ (2.54 mm)

1.
5“

 (
38

 m
m

)

2.5“ (63.5 mm)

.5
“

(1
3

m
m

).5
“

(1
3

m
m

)

VIN

VSS

PCO

PCI

P0

P1

P2

P3

P4

P5

P6

P7

13

14

1

2

3

4

5

6

7

8

9

10

11

12

BS1-IC

RES

VDD

1.
4

1“
 (

3
6

m
m

)

.1
“

(2
.5

4
m

m
)

.19“ (4.8 mm)

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2-IC

1.
2“

 (3
1

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

V
in

V
s

s
P

C
O

P
C

I

V
d

d
R

E
S

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

1

OEM BASIC Stamp 1
(c) 1999

Rev A

>>

1

1 1 1

C1 +
U3

RN1

XTAL

1.4“ (36)

1.4“ (36)

0.25“ (6)

V
in

V
ss

V
dd

R
E

S
P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

OEM BASIC Stamp 2
(c) 1999 Rev A

RN1

Q3

+

XTAL

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

Q1

U3

Q2

RN2
C3

C2

T
M

2.0“ (51)

0.25“ (6)

2.0“ (51)

0.25“ (6)

SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2e-IC

1.
2“

 (3
1

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Rev A

BS2e © 2000

1 SOUT

SIN

ATN

VSS

P0

P1

P2

P3

P4

P5

P6

P7

VIN

VSS

RES

VDD

P15

P14

P13

P12

P11

P10

P9

P8

24

23

22

21

20

19

18

17

16

15

14

13

1

2

3

4

5

6

7

8

9

10

11

12

BS2SX-IC

1.
2“

 (3
1

 m
m

)

.62“ (16 mm)

.1
“

(2
.5

4
m

m
)

Figure 1a –BASIC Stamp 1 Rev. D Figure 1b –BS1-IC Figure 1c –OEMBS1

Figure 2a – BS2-IC

Figure 2b – OEMBS2

Figure 3 – BS2e-IC Figure 4 – BS2sx-IC

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 6

What is the difference between the BASIC Stamp Rev. D (sometimes just called “BASIC

The original version of the BASIC Stamp I was simply called, “BASIC Stamp”. That name was sufficient until the
arrival of the new physical package type, as well as the second model in the Stamp line, the BASIC Stamp II. At
that point, the original version was split into two package types, the Rev. D and the BS1-IC; both of which are
considered to be the “BASIC Stamp I”. The “BASIC Stamp II” is known as the BS2-IC, the "BASIC Stamp IIe"
is known as the BS2E-IC, and the “BASIC Stamp IIsx” is known as the BS2SX-IC. Today, the term “BASIC
Stamp” is too generic and really could be applied to any one of the units in the product line. Long-time Parallax
customers, however, still frequently refer to the BASIC Stamp I as the BASIC Stamp, thus, in many cases, there is
no difference between the term BASIC Stamp and the BASIC Stamp I. To keep things clear, we prefer the names:
“BASIC Stamp I”, “BASIC Stamp II”, "BASIC Stamp IIe", and “BASIC Stamp IIsx”, or more specifically,

-IC” , “BS2-IC” , “BS2E-IC” and “BS2SX-IC” and try to use the term “BASIC Stamp” to refer
to the entire line of microcontrollers.

How big is the BASIC Stamp?

The BASIC Stamp rev. D measures 2.5” (65 mm) L x 1.52” (39 mm) W x 0.4” (10 mm) D.
The BS1-IC measures 1.4” (35 mm) L x 0.58” (15 mm) W x 0.13” (3 mm) D.
The BS2-IC measures 1.2” (30 mm) L x 0.62” (16 mm) W x 0.35” (9 mm) D.
The BS2E-IC measures 1.2” (30 mm) L x 0.62” (16 mm) W x 0.35” (9 mm) D.
The BS2SX-IC measures 1.2” (30 mm) L x 0.62” (16 mm) W x 0.35” (9 mm) D.

How big are the BASIC Stamp I and BASIC Stamp II Carrier Boards?

The BASIC Stamp I Carrier Board measures 2.5” (65 mm) L x 1.5” (38 mm) W x 0.5” (13 mm) D
The BASIC Stamp II Carrier Board measures 2.8” (71 mm) L x 3.1” (79 mm) W x 0.6” (15 mm) D.

How do I power the BASIC Stamp?

The BASIC Stamp runs on 5 to 15 volts DC. All BASIC Stamps feature an on-board 5-volt regulator which will
convert an input 6 to 15 volts (on the VIN pin) down to the 5 volts that it’s components require. If your power
supply is 6 to 15 volts, you should connect it directly to the VIN and GND pins or to the battery clips on the
development board. The VIN and GND pins are pin number 1 and 2 on the BASIC Stamp rev. D or BS1-IC or
pin 24 and 23 on the BS2-IC, BS2E-IC and BS2SX-IC. If your power supply delivers a regulated 5 volts, you
should connect it directly to the +5V and GND pins (14 and 2 on the BASIC Stamp rev. D, 5 and 2 on the BS1-
IC, and 21 and 23 on the BS2-IC or BS2SX-IC). NOTE: When using battery or wall-pack power supplies, it is
recommended to limit the voltage to 9 volts on the Stamp 1 and Stamp 2, and 7.5 volts on the Stamp 2e and Stamp
2sx.

How much current does the BASIC Stamp consume?

The BASIC Stamp I consumes 2 mA in running mode and 20 µA in sleep mode, not including any circuitry on the
I/O pins. The BS2-IC consumes 8 mA in running mode and 100 µA in sleep mode, not including any circuitry on
the I/O pins. The BS2e-IC consumes 20 mA in running mode and 100 µA in sleep mode, not including any
circuitry on the I/O pins. The BS2SX-IC consumes 65 mA in running mode and 200 µA in sleep mode, not
including any circuitry on the I/O pins. A full comparison of the Stamps can be found at the end of this document.

Is the BASIC Stamp sensitive to static electricity?

While many electronic devices, including BASIC Stamps, can be damaged by static electricity, the BASIC Stamp is
generally less sensitive to static. We do, however, recommend taking all the usual precautions when handling
BASIC Stamps in static prone environments.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 7

Are there any production possibilities with the BASIC Stamp?
Yes. We offer the major components of the BASIC Stamp circuit (the interpreter, the EEPROM and the
resonator) separately at a discounted price for tight integration into your products. For initial development
purposes, request the OEMBS1 or OEMBS2 product. These are “OEM” versions of the modules with an easy to
follow circuit layout and all the components provided in through-hole format. The “OEM” versions provide a great
“base” unit, which you can build yourself, to test the circuit and help in your own designs.

What items do I need to get started with the BASIC Stamp?

The items you need are: 1) the programming software, 2) the programming cable, 3) the manual, 4) the BASIC
Stamp module itself, and optionally 5) the appropriate development board. If you are interested in using a particular
version of the BASIC Stamp, it is best to purchase the BASIC Stamp I, BASIC Stamp II, BASIC STAMP IIe or
BASIC Stamp IIsx Starter Kits. These kits include all five of the items listed above at a lower cost than if you were
to purchase each of the components separately. If you choose not to purchase a starter kit, you can retrieve all the
documentation and software from our web site and simply purchase the BASIC Stamp module you desire.

How can I make my own BASIC Stamp circuit?

Parallax sells the BASIC Stamp’s interpreter chip in three different package type: DIP, SOIC and SSOP. Any of
these can be used to create your own BASIC Stamp circuit for purposes of deeply embedding it within an
application. For initial development purposes, request the OEMBS1 or OEMBS2 product. These are “OEM”
versions of the modules with an easy to follow circuit layout and all the components provided in through-hole
format. The “OEM” versions provide a great “base” unit, which you can build yourself, to test the circuit and help
in your own designs. Please call Parallax Technical Support to receive information and pointers on other package
types (particularly SSOP) as the pin configurations of the interpreter chips are different and are not properly shown
in the 1995/96 Microchip documentation.

What kind of microchips are used in the BASIC Stamp?

The BASIC Stamp I uses a PIC16C56 from Microchip Technology Inc. The BASIC Stamp II uses a PIC16C57
Microchip Technology Inc. The BASIC Stamps IIe and IIsx use an SX28AC from Scenix.

What kind of operating environment does the BASIC Stamp require?

The BASIC Stamp modules will work in 0° to 70° C temperatures with up to 70%, non-condensing humidity.
While the modules may continue to function outside these ranges, it is not guaranteed or recommended. Parallax
also sells the BASIC Stamp I and BASIC Stamp II in industrial (-40° to 85° C) and extended (-40° to 125° C)
ranges. (At the time of this writing, this option is not available for the BS2E-IC or BS2SX-IC) Additionally, it is
best to keep the BASIC Stamps away from, or shielded from, any nearby RF interference as this may impact the
accuracy of its I/O functions.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 8

What are the main differences between the BASIC Stamps?
The BASIC Stamp I has 8 I/O pins, room for 80 to 100 lines of code, executes approximately 2000 instructions
per second and requires a parallel interface for programming. The BASIC Stamp II has 16 I/O pins, 2 dedicated
serial port pins (1 input, 1 output), room for 500 to 600 lines of code, executes approximately 4000 instructions per
second and requires a serial interface for programming. The BASIC Stamp IIsx has 16 I/O pins, 2 dedicated serial
port pins (1 input, 1 output), room for 4000 lines of code, executes approximately 10000 instructions per second
and requires a serial interface for programming For a more detailed comparison, refer to the language differences
page and review the BASIC Stamp I to BASIC Stamp II Conversion document on our web site:
http://www.parallaxinc.com/stamps/langdiff. There is also a comparison chart at the end of this document.

Is the BASIC Stamp II better than the BASIC Stamp I?

Yes and no, depending on your application. The BASIC Stamp II has twice the number of I/O pins, twice the
execution speed, 5 times the memory (code) space, a serial port and 5 times the resolution on time sensitive
commands. In many cases, the BASIC Stamp II fits applications better than the BASIC Stamp I. In some cases,
however, this is not true. For example, you may have a need for only a couple of inputs and outputs with which you
need to perform relatively simple, non speed-critical tasks. This is a perfect application for the BASIC Stamp I; the
BASIC Stamp II would be overkill if used in this way. A slightly different example would be if you have a variable
pulse width signal you need to monitor. The BASIC Stamp I can detect and measure a pulse as little as 10 µS wide
and as long as 0.65535 seconds wide. The BASIC Stamp II has 5 times the resolution, so it can measure a pulse
as little as 2 µS wide, however, only as long as 0.13107 seconds wide. While the better resolution may be helpful,
the smaller maximum pulse width measuring capability may prove disadvantageous to your application.

Is the BASIC Stamp IIsx better than the BASIC Stamp II?

Yes and no, depending on your application. The BASIC Stamp IIsx executes instructions 2.5 times as fast, has 8
times the memory (code) space and 2.5 times the resolution on time sensitive commands. In some cases, the
BASIC Stamp IIsx fits applications better than the BASIC Stamp II. For example, you may have a need for
additional program space that doesn’t exist in the Stamp II. Another example would be if you have a variable pulse
width signal you need to monitor. The BASIC Stamp II can detect and measure a pulse as little as 2 µS wide and
as long as 0.13107 seconds wide. The BASIC Stamp IIsx has 2.5 times the resolution, so it can measure a pulse
as little as 800 nS wide, however, only as long as 0.05243 seconds wide. While the better resolution may be
helpful, the smaller maximum pulse width measuring capability may prove disadvantageous to your application. A full
comparison of the Stamps can be found at the end of this document.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 9

How many I/O pins does the BASIC Stamp have?
The BASIC Stamp I has 8 I/O pins while the BASIC Stamp II, BASIC STAMP IIe and BASIC Stamp IIsx has
16 I/O pins plus 2 special serial port pins (1 input, 1 output).

What can I use the I/O pins for?

The BASIC Stamp’s I/O pins are perfectly suited for digital input and output with TTL/CMOS level (0 to 5 volt)
signals. However, you can use some special commands and techniques to input and output limited analog signals.
For example, the RCTIME and PWM commands can be used to read a variable resistance or output a variable
voltage from 0 to 5 volts. The I/O pins can not be used to read analog voltages by themselves, however, but this
can be done by interfacing the I/O pins to an A to D converter chip.

Can the I/O pins be used to control relays, solenoids and other similar devices?

Yes, however, due to the demanding current and voltage requirements of some of these components, driver circuitry
will need to be used to properly isolate the I/O pins from harmful effects. For examples of this, refer to BASIC
Stamp I Application Note #6 and BASIC Stamp Article #6, “Silicon Steroids for Stamps”.

Can I control LEDs with the I/O pins?

Yes. Simply use a 470 ohm resister in series with the LED to limit the current draw through the I/O pin (see “How
much current can the I/O pins handle?”). Also, keep in mind that most LEDs require a lot of current in relation to
what the BASIC Stamp can provide. If you attach and power 3 or more LEDs at one time from the BASIC
Stamp’s I/O pins, you are likely to see flaky and unpredictable results caused by voltage sag, I/O pin damage
and/or hardware resets. Driver circuitry or low current LEDs will need to be used if you require such an application.

How much current can the I/O pins handle?

On the BASIC Stamp I and BASIC Stamp II, each I/O pin is capable of sourcing 20 mA and sinking 25 mA. The
total across all I/O pins should not exceed 40 mA source or 50 mA sink at any given time, however. One
exception to this rule exists with the BS2-IC. If the BS2-IC is powered by an external 5-volt regulator capable of
delivering at least 100 mA, the total across each group of 8 I/O pins (0 - 7 and 8 - 15) can reach 40 mA source or
50 mA sink providing a total of 80 mA source or 100 mA sink overall. The BASIC Stamp IIsx’s I/O pins can
source and sink 30 mA, and the total across all I/O pins should not exceed 150 mA.

What is the input impedance of the BASIC Stamp’s I/O pins?

Approximately 1 Meg Ohm.

How fast does the BASIC Stamp execute its PBASIC code?

On average, the BASIC Stamp I executes 2000 instructions per second, the BASIC Stamp II executes 4000
instructions per second, the BASIC Stamp IIe executes apx 3800 instructions per second and the BASIC Stamp
IIsx executes 10000 instructions per second. This is only an estimate as the true execution speed depends upon
many factors including, the particular set of instructions used and the type of arguments provided to the instructions.
Some instructions execute at a much faster rate while others, especially those that have to deal with external signal
measurement or specific protocol speeds, will execute much slower.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 10

What is the VIN pin used for?
The VIN (Voltage Input) pin is used to power the BASIC Stamp from a 6 to 15 volt source. The VIN pin is the
positive connection while the VSS pin is the negative, or ground, connection. When powered from the VIN pin the
BASIC Stamp regulates the voltage down and outputs +5 volts on the VDD pin. For optimal operation, it is
recommended to keep the voltage below 12 volts for the BASIC Stamp I and II, IIe, and around 7.5 volts for the
BASIC Stamp IIsx.

How does the VDD pin work?

The VDD pin (+5V) outputs 5 volts when the BASIC Stamp is powered by a 6 to 15 volt source using the VIN
and VSS (ground) pins. The VDD pin can be used to power other circuitry if the overall current consumption is
within the capabilities of the BASIC Stamp’s regulator. The VDD pin can also be used to power the BASIC
Stamp from an external 5-volt regulator. In this case, the VDD pin is the +5 volt connection and the VSS (ground)
pin is the negative connection of the regulator.

How does the reset pin (RES) work?

The reset pin is internally controlled by the BASIC Stamp’s brownout detector. It is normally high (+5V), which
allows the BASIC Stamp to run its program normally, and is pulled low when the power supply voltage drops
below 4 volts (safely putting the BASIC Stamp to sleep). This pin can be monitored to detect when a reset
condition occurs, or, you can pull the line to ground to force a reset. After the reset pin is allowed to rise to +5
volts, the BASIC Stamp wakes up and starts executing its program from the first line of code. Do not drive this pin
high, it should be left electrically disconnected (floating) when you want the BASIC Stamp to run normally. This pin
has an inverse relationship to the ATN (Attention) pin on the BASIC Stamp II, BASIC STAMP IIe and BASIC
Stamp IIsx.

How does the ATN (Attention) pin work (BASIC Stamp II, BASIC STAMP IIe and BASIC
Stamp IIsx)?

The ATN pin is used strictly for programming the BASIC Stamp II, BASIC STAMP IIe, or BASIC Stamp IIsx,
and should not be connected to anything other than the DTR pin of the programming connector and/or filtering
capacitors. The ATN pin is an input and has an inverse relationship with the reset (RES) pin. When the ATN pin is
left unconnected, or is driven low, it causes the RES pin to go high (allowing the BASIC Stamp II, IIe or IIsx to
function properly). When the ATN pin is driven high it causes the RES pin to go low (performing a hardware reset
on the BASIC Stamp II, IIe or IIsx). The BASIC Stamp editor software toggles this pin from low to high and then
low again at the start of the programming process to perform a hardware reset on the module and begin the bi-
directional programming communication. It is important to be aware of a particular artifact of the DTR pin on a
standard serial port: upon port selection by standard software (terminal packages, development tools, etc.), the
DTR pin is driven high by default. If the same connections for programming the BASIC Stamp II, IIe or IIsx are
used to communicate with it via a serial port, the default state of the DTR pin will cause the BASIC Stamp to be
held in permanent reset and its PBASIC program will not execute. (This is the case on the Stamp II Carrier
Board). This problem can be fixed in a number of ways: 1) disconnect the DTR to ATN pin connection when trying
to communicate serially to the BASIC Stamp, or 2) explicitly set the DTR pin to low after selecting the port if the
terminal package or development tool allows this, or 3) modify the programming connection to include a 0.1 Fu
capacitor in series with the DTR to ATN pin connection and a 0.1 Fu capacitor from ATN to ground (VSS). The
last two options will allow you to use the same connection for both programming and serial communications. (The
Super Carrier Board, BASIC Stamp Activity Board and Board of Education use the last method).

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 11

How much current can the BASIC Stamp’s on-board regulator provide?
The built in 5-volt regulator on the BASIC Stamp I and BASIC Stamp II can supply 50 mA of current if powered
by a 12-volt source. The BASIC Stamp IIsx’s regulator can supply 150 mA if powered by a 7.5-volt source. The
BASIC Stamp I consumes 2 mA in running mode and the BASIC Stamp II consumes 7 mA. This leaves 48 mA
and 43 mA respectively for use with other circuitry via the VDD pin and the I/O pins. The BASIC Stamp IIsx
consumes 65 mA, leaving 85 mA for use with other circuitry via the VDD pin and the I/O pins.

Can the BASIC Stamp generate a sine wave?

Only the BASIC Stamp II, BASIC STAMP IIe and BASIC Stamp IIsx can generate sine waves. The BASIC
Stamp II uses the FREQOUT command to generate from 0 Hz to 32,767 Hz. The BASIC Stamp IIsx uses the
FREQOUT command to generate from 0 Hz to 81,917 Hz. Note that the output from the FREQOUT command
appears to be static when viewed on an oscilloscope. This is due to the nature of the underlying algorithm that
generates the frequency, however, when averaged out over time, the result is a sine wave. You may achieve a
cleaner signal by attaching the I/O pin to an appropriate RC filter circuit.

Can the BASIC Stamp generate a sine wave on two pins at once?

No. The BASIC Stamp is a single-task device and thus will execute only one FREQOUT command at a time.

Can the BASIC Stamp generate more than one sine wave on a pin at the same time?

Yes, the BASIC Stamp II, IIe and IIsx’s FREQOUT command can generate two frequencies at the same time, on
the same pin. This can be used to create harmonics, which greatly improve the sound output.

Can the BASIC Stamp generate square waves?

Yes, however, it is limited. The SOUND command in the BASIC Stamp I generates square waves which vary
from 94.8 Hz to 10,550 Hz (non-linearly). The BASIC Stamp II, IIe and IIsx, however, does not include any
functions to generate an accurately timed square wave, however, it can be done manually as long as fast timing is not
an issue. This can be done with multiple lines of code that simply set a pin high or low and pause for the appropriate
duration in-between transitions. The timing will vary somewhat depending upon your loop execution speeds.

Does the BASIC Stamp include a real time clock function?

No. If you need to keep track of time, especially dates and time, it is best to interface a real time clock to the
BASIC Stamp. Many are available from various manufacturers. The real time clocks with a serial interface are
usually the best choice, as they require fewer I/O pins from the BASIC Stamp to function properly. Parallax sells
the DS1302 Application Kit to address this issue.

Does the BASIC Stamp have a built-in timer?

Yes, however, it is used for timing functions within the BASIC Stamp interpreter and there is no direct access to it
through any PBASIC commands. Refer to BASIC Stamp I Application Note #20, “An Accurate Timebase” for
one possible solution to timing problems.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 12

Does the BASIC Stamp support interrupts?
No, the interpreter chip used in the BASIC Stamp does not support interrupts. In many cases, a fast polling routine
may be used to accomplish the same effect, however, depending on the number and size of the tasks involved in
some applications, this will not be fast enough and the BASIC Stamp may not be a plausible solution.

Does the BASIC Stamp II, BASIC STAMP IIe or BASIC Stamp IIsx have the same
bsave/bsload feature available in the BASIC Stamp I?

No. It is intended to provide this feature in the future.

How do I program the BASIC Stamp?

You can write your PBASIC program using the BASIC Stamp I, II, IIe or IIsx editor on a standard IBM
compatible PC. Both DOS and Windows versions are available for the BASIC Stamp II, IIe and IIsx. After you
write the code for your application, you simply connect the BASIC Stamp to the computer’s parallel port (BASIC
Stamp I) or serial port (BASIC Stamp II, IIe and IIsx), provide power to the BASIC Stamp and press ALT-R
(DOS version) or CTRL-R (Windows version) within the appropriate BASIC Stamp editor to download your
program into the BASIC Stamp’s EEPROM. As soon as the program has been downloaded successfully, it begins
executing its new program from the first line of code.

How do I connect the BASIC Stamp to my computer for programming?

The BASIC Stamp I (rev. D or BS1-IC) requires a three-wire connection to any available parallel port on your PC.
The BASIC Stamp II, IIe and IIsx (BS2-IC and BS2SX-IC) require a standard, straight-through, serial cable
connection to a 9-pin or 25-pin serial port on your PC. Only 6 wires are used for programming the BASIC Stamp
II, IIe or IIsx, 4 of which are absolutely required. You can not use a null-modem cable to program the BASIC
Stamp II, IIe or IIsx. Refer to the schematics on our web site for the details of the cable connections,
http://www.parallaxinc.com/stamps/stmpsche.htm.

How does my program get stored in the BASIC Stamp?

Your PBASIC code is tokenized (compressed) and stored within the Stamp’s EEPROM memory. This memory is
non-volatile, meaning it retains its program even without power. Every time the BASIC Stamp receives power, it
starts running its PBASIC code starting with the first executable line. This EEPROM can be rewritten immediately,
without any lengthy erase cycle or procedure, by simply re-downloading the code from the BASIC Stamp editor
again. Each location in the EEPROM is guaranteed for 10,000,000 write cycles before it wears out. The code is
tokenized before downloading. Source code elements like comments and constant and variable names are not
stored in the BASIC Stamp, thus you may feel free to use as many comments and descriptive symbol names in your
code as you like without worrying about increasing your code size.

How do I erase the BASIC Stamp’s program space?

An erase cycle is performed at the beginning of every programming process (in the BASIC Stamp I) or during the
programming process (in the BASIC Stamp II, IIe and IIsx), thus, by downloading from the BASIC Stamp editor
the necessary areas of the EEPROM are erased and then reprogrammed with the current PBASIC program in the
editor. The BASIC Stamp II, IIe and IIsx only erase data in 16-byte increments. It is possible to completely erase
the EEPROM by downloading the following line of code (in a program by itself):

DATA 0(2048)

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 13

How do I reprogram the BASIC Stamp?
Simply re-connect it to the computer, run the BASIC Stamp editor and press ALT-R (DOS software) or CTRL-R
(Windows software).

How big of a program can I store in the BASIC Stamp?

The BASIC Stamp I has 256 bytes of program storage; enough for 80 to 100 lines of PBASIC1 code. The
BASIC Stamp II has 2048 bytes of program storage; enough for 500 to 600 lines of PBASIC2 code. The BASIC
Stamps IIe and IIsx each have 16,384 bytes of program storage separated into 8 pages of 2048 bytes. Each page
(or code section) can hold 500 to 600 lines of PBASIC2e, or PBASIC2sx code, respectively, for an overall total
of approx. 4000 instructions.

Can I expand the program memory?

No, the program memory is not expandable as the interpreter chip expects the memory to be a specific, fixed size.

Can I expand the data memory?

Yes, you may interface EEPROMs, or other memory devices, the BASIC Stamp’s I/O pins to gain more data
storage area. You will have to include the appropriate code within your PBASIC program to interface to the
particular device you choose.

How difficult is it to program the BASIC Stamp?

When compared to other programmable microcontrollers, the BASIC Stamps are perhaps the easiest to use
because of their simple, but powerful, language structure and straightforward method of downloading and
debugging. If you have some experience programming in BASIC, C or Pascal, you should find the learning process
with the BASIC Stamp to be a simple one. If, however, you have never had any programming experience, you may
have to spend some extra time studying the examples and application notes before you feel comfortable with the
BASIC Stamp.

Can I program the BASIC Stamp in Visual BASIC or QBASIC?

No. The BASIC Stamp is a microcontroller, not a miniature PC. It does not have a graphical user interface, a hard
drive or a lot of RAM. The BASIC Stamp must only be programmed with PBASIC, which has been specifically
designed to exploit all of the BASIC Stamp’s capabilities.

What is PBASIC?

PBASIC (Parallax BASIC) is a hybrid form of the BASIC programming language in which many people are
familiar. Currently there are three versions of PBASIC: PBASIC1 for the BASIC Stamp I, PBASIC2 for the
BASIC Stamp II and PBASIC2sx for the BASIC Stamp IIsx. Each version is specifically tailored to take
advantage of the inherent features of the hardware it runs on. PBASIC is called a hybrid because, while it contains
some simplified forms of standard BASIC commands, it also has special commands to efficiently control the I/O
pins.

Can I imbed assembly language routines in my PBASIC code?

No. The BASIC Stamp is a PBASIC interpreter only and cannot except assembly language routines.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 14

How much space does each PBASIC command take?
Each command takes a variable amount of space within the BASIC Stamp’s EEPROM. It varies due to
complexities of the command itself and the types of arguments you supply each command. Generally, each
command takes 2 to 4 bytes of memory space, however, commands like SERIN, SEROUT, LOOKUP and
LOOKDOWN, which accept a variable length list of arguments, may take tens of bytes or more.

How do I know how much space my PBASIC program consumes?

On the BASIC Stamp I, enter the following code at the start of your PBASIC1 program:

READ 255,B0
DEBUG #B0

Upon running the program, a number will display in the debug window of the editor. Use the following equation to
determine how many bytes are used by your PBASIC1 code: 255 - # - 6; where # is the number displayed on the
debug window. Note, the “- 6” in the equation results from the fact that the above two lines of code take 6 bytes
of program space, thus without those two lines, your program takes 6 fewer bytes of space.

On the BASIC Stamp II, IIe or IIsx, from within the editor and with your PBASIC program on the screen, press
ALT-M (DOS software) or CTRL-M (Windows software) to view the memory map screens. In the DOS
software, the first screen shows your RAM space, the second screen shows an expanded view of the program
(EEPROM) space and the third screen shows a detailed view of the program space. Press the spacebar to
alternate between the three screens. In the Windows software, all EEPROM and RAM is shown on one window.

Why doesn’t the Memory Map feature show me data I have already stored in the BASIC
Stamp II, IIe or IIsx’s EEPROM?

The memory map feature (ALT-M, DOS software or CTRL-M, Windows software) shows only what the memory
space will look like immediately after you program the Stamp II, IIe or IIsx. The editor determines this by
examining your PBASIC source code within the editor, not the PBASIC code in the Stamp. It does not read the
BASIC Stamp’s EEPROM. It will only display data in the EEPROM that you’ve explicitly defined with DATA
commands; no data which is operated upon by READ and WRITE commands can be shown since those are run-
time, rather than compile-time, functions.

How do I debug my PBASIC programs?
You may use two features of the BASIC Stamp editor to debug your PBASIC program: 1) Syntax checking, and
2) the DEBUG command. Syntax checking alerts you to any syntactical errors and is automatically performed on
your code the moment you try to download to the BASIC Stamp. Any syntax errors will cause the download
process to abort and the editor will display an error message with a highlight cursor pointing to the source of the
error in your code. Logical errors are sometimes more difficult to find but may be more easily discovered by using
the DEBUG command. Debug operates similar to the PRINT command in the BASIC language and can be used
to print the current status of specific variables within your PBASIC program as it is executed within the BASIC
stamp. If your PBASIC code includes a DEBUG command, the editor opens up a special window at the end of the
download process to display the results for you. In the Windows editor, the Debug window (called the Debug
Terminal) can be left open, while you edit your code.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 15

How do I print out my PBASIC programs?
The BASIC Stamp DOS editors do not have a print option built-in, however, the source file created by the editor is
simply a DOS text file. This means it can be printed with the standard PRINT or TYPE commands as in:

PRINT source.bas

 -or-

TYPE source.bas > LPT1

where source.bas is the name of your PBASIC program. The Windows software features built-in printing support.

Can I read-out, or upload, the PBASIC program which is already stored in the BASIC
Stamp?

No. For security reasons, this feature was not made available. It is possible to read the tokenized form of the
PBASIC code out of the BASIC Stamp’s EEPROM, but there is no easy way to “reassemble” it into usable
source code.

Since the BASIC Stamp II, IIe and IIsx use the serial port for programming, can I use a
simple terminal program to download my PBASIC code?

No. The download process requires a very fast, bi-directional communication between the BASIC Stamp and PC
to program and verify the contents of the BASIC Stamp’s memory.

Will a program and circuitry designed for the BASIC Stamp I work with the BASIC
Stamp II, IIe or IIsx?

Yes, however, some changes, usually in the PBASIC code only, will have to be made for it to run properly or to
take advantage of some of the new features of the BASIC Stamp II, IIe or IIsx. For help in performing these
modifications or for insight into how the PBASIC1 language differs from PBASIC2, review Appendix C in the
BASIC Stamp Manual.

Can I program the BASIC Stamp II, IIe or IIsx with the BASIC Stamp I editor
(stamp.exe)?

No. The BASIC Stamp II, IIe and IIsx requires the BASIC Stamp II, IIe and IIsx editor (stamp2.exe,
stamp2e.exe or stamp2sx.exe in DOS, stampw.exe in Windows) due to the enhancements in the PBASIC2
language and the serial, rather than parallel, programming interface. Similarly, you cannot program the BASIC
Stamp I with the BASIC Stamp II, IIe or IIsx editors.

How do I make my PBASIC program start over or continue running forever?
All BASIC programs will simply end if one or more of their executable paths don’t lead them to a continuous loop.
In the simplest case, a program can be made to continue endlessly by adding a label (a unique name followed by a
colon ‘:’) to the start of code and adding a GOTO statement at the end of code directing logical execution back to
that label. Without this, the BASIC Stamp will run the program only once and then will remain unresponsive until
the power is cycled or a reset condition is created.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 16

How do I set an I/O pin to input or output mode?
There are many ways to set the I/O pin directions. The most readable and intuitive method is to use the INPUT and
OUTPUT commands. For example:

INPUT 5
OUTPUT 6

will set I/O pin 5 to an input and I/O pin 6 to an output. By default, upon reset or startup, all I/O pins are inputs,
thus only the second line of code above is really necessary.

Another method for setting the pin directions is to use the predefined variable DIRS or any one of its derivatives.
The following code is functionally equivalent to the first example:

DIR5 = 0
DIR6 = 1

DIR0 through DIR15 (or DIR7 on the BASIC Stamp I) are bit variables which control the direction of the
corresponding I/O pin. DIRS is a 16-bit variable (or 8-bit variable on the BASIC Stamp I) in which each bit
represents the direction of the corresponding I/O pin. A ‘1’ bit means output and a ‘0’ bit means input. The
advantage of this method of declaring pin directions is that multiple pin directions can be defined at once:

DIRS = %00101110

The above line of code defines I/O pins 7, 6, 4 and 0 as inputs and 5, 3, 2 and 1 as outputs. Review the BASIC
Stamp manual for more examples of this.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 17

How do I make an I/O pin output a high or a low?
As with setting I/O pin directions, there are many ways to set the I/O pin states. The most readable and intuitive
method is to use the HIGH and LOW commands. For example:

HIGH 5
LOW 6

will first set I/O pin 5 to output mode and then set it to a high (+5V) state. The second line will first set I/O pin 6 to
output mode and then set it to a low (0V) state. Notice that these commands automatically set the pin direction for
you; it’s not necessary to manually set the pins to output when using the HIGH and LOW commands. Keep in
mind that if a pin is set to input, its logical state, high or low, remains the same internally within the BASIC Stamp
but will no longer affect the voltage on the I/O pin.

Another method for setting the pin state is to use the predefined variable OUTS (or PINS in the BASIC Stamp I)
or any one of its derivatives. The following code is functionally equivalent to the first example:

DIR5 = 1
DIR6 = 1
OUT5 = 1
OUT6 = 0

Notice here that we had to explicitly define the I/O pins as outputs first. If we had left the pins as inputs, the OUT5
and OUT6 lines would have changed the state of the pins internally, but those changes would not appear externally
from the BASIC Stamp. OUT0 through OUT15 (or PIN0 through PIN7 on the BASIC Stamp I) are bit variables
which control the logical state of the corresponding I/O pin. OUTS is a 16-bit variable (PINS is an 8-bit variable
on the BASIC Stamp I) in which each bit represents the state of the corresponding I/O pin. A ‘1’ bit means high
and a ‘0’ bit means low. The advantage of this method of declaring pin states is that multiple pin states can be
defined at once:

DIRS = %00101110
OUTS = %00001010

The above line of code defines I/O pins 7, 6, 4 and 0 as inputs and 5, 3, 2 and 1 as outputs. And sets I/O pins 7,
6, 5, 4, 2 and 0 to logical 0’s and I/O pins 3 and 1 to logical 1’s. Only pins 5, 3, 2 and 1 will output the voltage set
in the OUTS variable because they are the only pins defined as outputs by the DIRS variable. Review the BASIC
Stamp manual for more examples of this.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 18

How do I input or output data in parallel on the I/O pins?
All BASIC Stamps have predefined variables that refer to the I/O pins. On the BASIC Stamp I, the PINS variable
refers to all eight I/O pins. Thus code such as:

SYMBOL Snapshot = B0
Snapshot = PINS

would copy the current state of all I/O pins (an 8-bit byte) into the variable Snapshot. Similarly:

DIRS = %11111111 ‘Set all eight pins as outputs
PINS = 150

would set the eight output pins to the binary form of 150, or %10010110.

On the BASIC Stamp II, IIe and IIsx, the PINS variable was replaced with the INS and OUTS variables. Both
INS and OUTS refer to all sixteen pins, while their derivatives, INL, INH, OUTL and OUTH refer to the low and
high bytes (groups of 8 pins). For example, the following code will input 8-bits in parallel from the lower 8 pins:

Snapshot VAR BYTE
Snapshot = INL

The following code will output 8-bits in parallel from the upper 8 pins:

DIRS = %1111111100000000 ‘Set upper 8 pins to outputs
OUTH = 255

Why do the BASIC Stamp’s output pins toggle briefly when I use the SLEEP, NAP or END
commands or allow my program to end naturally?

Inside the BASIC Stamp’s interpreter chip is a watchdog timer whose main purpose is to reset the interpreter chip
if, for some reason, it should stop functioning properly. The SLEEP and NAP commands also utilize the watchdog
timer to periodically (every 2.3 seconds to be exact) “wake-up” the BASIC Stamp from its low-power mode.
Upon reset, the I/O pins are set to inputs for approximately 18 mS before returning to their previous directions and
states. If you have an output pin set to a logical 1 state (+5V) and you use the SLEEP command, every 2.3
seconds during sleep mode that I/O pin will switch to an input for 18 mS causing a momentary signal loss. This
“power glitch” is easily viewable with an LED and a 470 ohm resister tied to an I/O pin and switched on just before
entering sleep mode. In many cases this problem can be remedied by tying a pull-up or pull-down resistor to the
I/O pin in question to provide a constant source of power should the I/O pin change directions. Allowing a
PBASIC program to end naturally, or using the END command, will exhibit the same “power glitch” behavior
because the interpreter chip enters a low-power state. The BASIC Stamp II, IIe and IIsx includes the STOP
command which acts just like END, except the output pins remain driven.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 19

The LET command is not available on the BASIC Stamp II, IIe and IIsx. Does this mean
the BASIC Stamp II, IIe and IIsx cannot perform mathematical operations?

No. The LET command on the BASIC Stamp I was optional; i.e.: you could leave it out of the variable assignment
statement or equation and it would work normally. To save some space in the interpreter code of the BASIC
Stamp II, IIe and IIsx, the LET command was removed completely, however, the mathematical ability was not
removed and, in fact, it is greatly improved on the BASIC Stamp II, IIe and IIsx.

Can the BASIC Stamp store data, such as temperature readings, for review or use at a
later time?

Yes. The READ and WRITE commands allow the BASIC Stamp to manipulate memory locations in its
EEPROM. Any space in the built-in EEPROM that is not occupied by PBASIC code may be used for data
storage and is just as non-volatile as the PBASIC code itself. You may also attach external EEPROMs of various
sizes to gain an even greater data storage area. The READ and WRITE commands will not function on external
EEPROMs so you must write the appropriate code to interface with the device.

How can I store a word value into the internal EEPROM?

The internal EEPROM of the BASIC Stamp (used for both program and data storage) is organized and accessed in
units of bytes only. Since a word value is actually two bytes it requires two consecutive memory locations to store it
in EEPROM. You must break the word value into its lower and upper byte parts and use two WRITE commands
to store the value, or two READ commands to retrieve it.

The following code demonstrates this for the BASIC Stamp I:

W0 = 1250
WRITE 0, B0
WRITE 1, B1

The following code demonstrates this for the BASIC Stamp II:

Temp VAR WORD

Temp = 1250
WRITE 0, Temp.LOWBYTE
WRITE 1, Temp.HIGHBYTE

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 20

How does the fpin (flow control pin) work in the SERIN and SEROUT commands on the
BASIC Stamp II, IIe and IIsx?

The optional fpin argument in the SERIN and SEROUT commands allows the use of an I/O pin as a hardware flow
control line between two BASIC Stamp II, IIe and IIsx’s at baud rates of up to 19.2 kBps. The flow control pin is
always controlled by the receiving device (SERIN) and monitored by the sending device (SEROUT). The logical
state of this pin and its meaning depend on the data mode, true or inverted, as specified within the baudmode
parameter. If true data mode is selected, the receiving BASIC Stamp II, IIe or IIsx holds the fpin low to indicate it
is ready to receive or high to indicate it is not ready to receive. If inverted data mode is selected, the receiving
BASIC Stamp II, IIe or IIsx holds the fpin high to indicate it is ready to receive or low to indicate it is not ready to
receive.

Assuming true data mode: the fpin is set to output high the moment the SERIN command is first encountered and
remains high until the SERIN command is complete at which point the fpin is set to low and remains there until the
SERIN command is executed again. The transmitting BASIC Stamp II, IIe or IIsx’s SEROUT command monitors
this line and halts transmission whenever a low on the fpin is detected.

How are arithmetic expressions evaluated within the BASIC Stamp?

All expressions are evaluated using 16-bit, integer arithmetic. Even if byte and bit variables are used in expressions
they are first expanded to 16-bits and then the expression is evaluated.

In the BASIC Stamp I, mathematical expressions are evaluated strictly from left to right. No order-of-precedence
is utilized, parentheses are not allowed and expressions must be on a line by themselves; i.e.: they can not be used
as an argument for a command. For example, the expression: W0 = 10 - 2 * 3 results in the value 24 being stored
into W0 (not the value 4 as you might think). To evaluate this expression properly, specify it as: W0 = 0 - 2 * 3 +
10.

In the BASIC Stamp II, IIe and IIsx, mathematical expressions are evaluated from left to right, as in the BASIC
Stamp I. No order-of-precedence is utilized, however, unlike the BASIC Stamp I, parentheses are allowed and
expressions may be used as arguments within commands. For example, the expression: Answer = 10 - 2 * 3
results in the value 24 being stored into Answer, however: Answer = 10 - (2 * 3) results in the value 4.

Does the BASIC Stamp handle signed numbers and arithmetic?

Yes. The BASIC Stamp uses twos-compliment notation for signed numbers. This means that the expression: 0 -
10 + 5 will result in -5 if viewed as a signed number, however, most instructions see the number as a positive value,
in this case 65531 (the twos-compliment value for -5). All mathematical operators, except division, will work
properly with signed numbers in the BASIC Stamp and signed numbers can be formatted for output properly using
the SDEC, SHEX and SBIN formatters within DEBUG and SEROUT statements on the BASIC Stamp II, IIe and
IIsx. Be careful how you use signed numbers elsewhere. For example, if the value -5 is stored in a variable called
Temp, and you use the following statement:

IF Temp < 0 THEN Loop

it will evaluate to false and will not branch to Loop because -5 is actually 65531 in twos-compliment form and thus
65531 is not less than 0.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 21

How can I define an alias to an I/O pin or another variable?
In the BASIC Stamp I you could specify the following:

SYMBOL Counter = B0
SYMBOL Index = B0
SYMBOL LED = PIN0

to designate the symbol Index as an alias to the Counter variable and the symbol LED as an alias to I/O pin 0.
Since Counter and Index use the same register, B0, anytime Counter is changed, Index will change in the same way.
The symbol LED will always contain either a 1 or a 0 depending on the logical state of I/O pin 0.

In the BASIC Stamp II, IIe or IIsx you could specify the following:

Counter VAR BYTE
Index VAR Counter
LED VAR IN0

to designate the symbol Index as an alias to the Counter variable and the symbol LED as an alias to I/O pin 0.
Since Index uses the same memory space as Counter, anytime Counter is changed, Index will change in the same
way. The symbol LED will always contain either a 1 or a 0 depending on the logical state of I/O pin 0.

How do I reference a specific bit within a byte or word variable?

On the BASIC Stamp I there is only one general purpose word register, W0, and two general purpose byte
registers, B0 and B1, which are bit addressable. The predefined symbols Bit0 through Bit15 refer to the
corresponding bits within W0 as well as B0 and B1 since those two byte variables correspond to the lower and
upper bytes of W0 respectively. Thus Bit0 is the lowest bit of both W0 and B0 while Bit8 is the lowest bit of B1
(and the 9th bit of W0).

On the BASIC Stamp II, IIe and IIsx all the variables are bit addressable, as well as nibble addressable. You can
reference a specific part of a variable by specifying the variable name followed by a dot ‘.’ and then the name of the
portion you’re interested in. For example, bit 2 of a word variable called Temp can be referenced with the notation:
Temp.BIT2. Additionally, the second nibble of Temp can be referenced with: Temp.NIB1. The valid modifiers
are: BIT0 through BIT15, LOWBIT, HIGHBIT, NIB0 through NIB3, LOWNIB, HIGHNIB, BYTE0 through
BYTE3, LOWBYTE and HIGHBYTE.

How do I define a string variable?

A string variable is simply an array of bytes. Only the BASIC Stamp II, IIe and IIsx allows the explicit definition of
arrays. If, for example, you want to define a string variable called Text to hold 6 characters, use the following code:

Text VAR BYTE(6)

The elements of an array can be accessed by specifying the array name followed by an open parenthesis, an index
value and a close parenthesis. The first element is always index 0. For example, the second element, or character
in this case, can be referenced with: Text(1) and the last element with: Text(5). Byte arrays are useful for receiving a
string of characters via the SERIN command using the STR modifier. The BASIC Stamp II, IIe and IIsx allows
you to define arrays of bits, nibbles and words as well.

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 22

How do I define aliases to specific bytes within a word array on the BASIC Stamp II, IIe
and IIsx?

The BASIC Stamp II, IIe and IIsx uses a very relaxed and flexible indexing scheme when it comes to arrays of
RAM space. When trying to define aliases in this way it is best to view the entire RAM space as one array of
word, byte, nibble and bit registers. The BASIC Stamp II, IIe and IIsx organizes variables in the RAM space from
largest entities (word declarations) to smallest entities (bit declarations), regardless of the order you define them, to
be most efficient. The relaxed nature of indexing allows a user to cross array boundaries at will, or by accident,
quite easily. For example, the following code defines two distinct byte variables:

Result VAR BYTE
Temp VAR BYTE

Normally you would reference the Result and Temp variables by name, as in: Result = 10. Even though this variable
is not an array, you can still access it as such. The code: Result(0) = 10 is equivalent to the previous example. The
most interesting, and powerful, feature is that you can index beyond the boundaries of this byte variable, as in
Result(1) = 20. This statement actually modifies the byte of RAM immediately following the Result variable. The
next byte happens to have been defined as Temp, in this case, thus the variable Temp will now equal 20. By
carefully defining variables we can take advantage of this flexible feature to define byte sized aliases to specific
locations within a word array. Suppose we have the need for an array of three words in which the first three bytes
have a special meaning; we’d like to be able to easily manipulate those bytes as well as access the three distinct
word elements.

Array VAR WORD
Special1 VAR Array.LOWBYTE
Special2 VAR Array.HIGHBYTE
Special3 VAR BYTE
TheRest VAR BYTE(3)

Remember: the BASIC Stamp II, IIe and IIsx will always organize RAM space from biggest elements to smallest.
In the example above we defined a single word variable called array (this becomes assigned to the very first word in
RAM space, word 0). The next two definitions create aliases to the first and second bytes of Array (no additional
RAM space is allocated here since we’re pointing at previously allocated space, byte 0 and byte 1). Next we
define a single byte variable (this becomes assigned to the first byte of RAM immediately following the Array
variable, byte 2). Finally, we define an array of three bytes (which are assigned to the next three bytes of RAM
immediately following the previous byte declaration, byte 3, byte 4 and byte 5). Visually, our RAM space now
appears like this:

Now, Array(0), Array(1) and Array(2) refer to the three words of our array and Special1, Special2 and Special3
refer to the first three bytes within our three byte array.

Array (WORD 0)
Special 1 (Byte 0) Special 2 (Byte 1)

WORD 1
Special 3 (Byte 2) TheRest(0) (Byte 3)

WORD 2
TheRest(1) (Byte 4) TheRest(2) (Byte 5)

STAMP FAQS PROGRAMMING INFORMATION

Last Revised On: 7/21/00 Page: 23

Released Products Rev.D / BS1-IC BS2-IC BS2e-IC BS2SX-IC
Package PCB w/Proto / 14-pin SIP 24-pin DIP 24-pin DIP 24-pin DIP
Package Size (L x W x H) 2.5" x 1.5" x .5" / 1.4" x .6" x .1" 1.2" x 0.6" x 0.4" 1.2" x 0.6" x 0.4" 1.2" x 0.6" x 0.4"
Environment 0º - 70º C* (32º - 158º F) ** 0º - 70º C* (32º - 158º F) ** 0º - 70º C* (32º - 158º F) ** 0º - 70º C* (32º - 158º F) **
Microcontroller Microchip PIC16C56 Microchip PIC16C57 Scenix SX28AC Scenix SX28AC
Processor Speed 4 MHz 20 MHz 20 MHz 50 MHz
Program Execution Speed ~2,000 instructions/sec. ~4,000 instructions/sec. ~4,000 instructions/sec. ~10,000 instructions/sec.
RAM Size 16 Bytes (2 I/O, 14 Variable) 32 Bytes (6 I/O, 26 Variable) 32 Bytes (6 I/O, 26 Variable) 32 Bytes (6 I/O, 26 Variable)
Scratch Pad RAM N/A N/A 64 Bytes 64 Bytes
EEPROM (Program) Size 256 Bytes, ~80 instructions 2K Bytes, ~500 instructions 8 x 2K Bytes, ~4,000 inst. 8 x 2K Bytes, ~4,000 inst.
Number of I/O pins 8 16 + 2 Dedicated Serial 16 + 2 Dedicated Serial 16 + 2 Dedicated Serial
Voltage Requirements 5 - 15 vdc 5 - 15 vdc 5 - 12 vdc 5 - 12 vdc
Current Draw @ 5V 2mA Run / 20µA Sleep 8 mA Run / 100 µA Sleep 20 mA Run / 100 µA Sleep 60 mA Run / 200 µA Sleep
Source / Sink Current per I/O 20 mA / 25 mA 20 mA / 25 mA 30 mA / 30 mA 30 mA / 30 mA
Source / Sink Current per unit 40 mA / 50 mA 40 mA / 50 mA per 8 I/O pins 60 mA / 60 mA per 8 I/O pins 60 mA / 60 mA per 8 I/O pins
PBASIC Commands 32 36 39 39
PC Programming Interface Parallel Port Serial Port (9600 baud) Serial Port (9600 baud) Serial Port (9600 baud)
DOS Text Editor STAMP.EXE STAMP2.EXE STAMP2E.EXE STAMP2SX.EXE
Windows Text Editor N/A Stampw.exe (v1.04 and up) Stampw.exe (v1.096 and up) Stampw.exe (v1.091 and up)

* Industrial Models Available - Environment is -40º - 85º C (-40º - 185º F)** ** 70% Non-Condensing Humidity

Stamp Specifications (revised 6/00)

